1
|
Bertinat R, Westermeier F, Silva P, Gatica R, Oliveira JM, Nualart F, Gomis R, Yáñez AJ. The Antidiabetic Agent Sodium Tungstate Induces Abnormal Glycogen Accumulation in Renal Proximal Tubules from Diabetic IRS2-Knockout Mice. J Diabetes Res 2018; 2018:5697970. [PMID: 30003110 PMCID: PMC5996472 DOI: 10.1155/2018/5697970] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/19/2017] [Accepted: 01/28/2018] [Indexed: 11/22/2022] Open
Abstract
The kidney is an insulin-sensitive organ involved in glucose homeostasis. One major effect of insulin is to induce glycogen storage in the liver and muscle. However, no significant glycogen stores are detected in normal kidneys, but diabetic subjects present a characteristic renal histopathological feature resulting from extensive glycogen deposition mostly in nonproximal tubules. The mechanism of renal glycogen accumulation is yet poorly understood. Here, we studied in situ glycogen accumulation in the kidney from diabetic IRS2-knockout mice and the effect of the insulin-mimetic agent sodium tungstate (NaW). IRS2-knockout mice displayed hyperglycemia and hyperinsulinemia. NaW only normalized glycemia. There was no evident morphological difference between kidneys from untreated wild-type (WT), NaW-treated WT, and untreated IRS2-knockout mice. However, NaW-treated IRS2-knockout mice showed tubular alterations resembling clear cells in the cortex, but not in the outer medulla, that were correlated with glycogen accumulation. Immunohistochemical detection of the gluconeogenic enzyme phosphoenolpyruvate carboxykinase, mostly expressed by renal proximal tubules, showed that altered tubules were of proximal origin. Our preliminary study suggests that IRS2 differentially regulates glycogen accumulation in renal tubules and that NaW treatment in the context of IRS2 ablation induces abnormal glycogen accumulation in cortical proximal tubules.
Collapse
Affiliation(s)
- Romina Bertinat
- Centro de Microscopía Avanzada (CMA BIO-BIO), Universidad de Concepción, Concepción, Chile
| | - Francisco Westermeier
- Institute of Biomedical Science, FH Joanneum Gesellschaft mbH University of Applied Sciences, Eggenberger Allee 13, 8020 Graz, Austria
- Facultad de Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Pamela Silva
- Facultad de Salud, Universidad Santo Tomás, Osorno, Chile
| | - Rodrigo Gatica
- Escuela de Veterinaria, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Joana Moitinho Oliveira
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
- Diabetes and Obesity Research Laboratory, IDIBAPS, Barcelona, Spain
| | - Francisco Nualart
- Centro de Microscopía Avanzada (CMA BIO-BIO), Universidad de Concepción, Concepción, Chile
| | - Ramón Gomis
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
- Diabetes and Obesity Research Laboratory, IDIBAPS, Barcelona, Spain
- Department of Endocrinology and Nutrition, Hospital Clinic, Barcelona, Spain
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | | |
Collapse
|
2
|
Affiliation(s)
- Loranne Agius
- Institutes of Cellular Medicine and Ageing and Health, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH United Kingdom;
| |
Collapse
|
3
|
Oliveira JM, Rebuffat SA, Gasa R, Gomis R. Targeting type 2 diabetes: lessons from a knockout model of insulin receptor substrate 2. Can J Physiol Pharmacol 2014; 92:613-20. [DOI: 10.1139/cjpp-2014-0114] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Insulin receptor substrate 2 (IRS2) is a widely expressed protein that regulates crucial biological processes including glucose metabolism, protein synthesis, and cell survival. IRS2 is part of the insulin – insulin-like growth factor (IGF) signaling pathway and mediates the activation of the phosphotidylinositol 3-kinase (PI3K)–Akt and the Ras–mitogen-activated protein kinase (MAPK) cascades in insulin target tissues and in the pancreas. The best evidence of this is that systemic elimination of the Irs2 in mice (Irs2−/−) recapitulates the pathogenesis of type 2 diabetes (T2D), in that diabetes arises as a consequence of combined insulin resistance and beta-cell failure. Indeed, work using this knockout mouse has confirmed the importance of IRS2 in the control of glucose homeostasis and especially in the survival and function of pancreatic beta-cells. These studies have shown that IRS2 is critically required for beta-cell compensation in conditions of increased insulin demand. Importantly, islets isolated from T2D patients exhibit reduced IRS2 expression, which supports the likely contribution of altered IRS2-dependent signaling to beta-cell failure in human T2D. For all these reasons, the Irs2−/− mouse has been and will be essential for elucidating the inter-relationship between beta-cell function and insulin resistance, as well as to delineate therapeutic strategies to protect beta-cells during T2D progression.
Collapse
Affiliation(s)
- Joana Moitinho Oliveira
- Diabetes and Obesity Research Laboratory, Institut d’Investigations Biomediques August Pi i Sunyer, Centre Esther Koplowitz, C/Rosselló, 149-153 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - Sandra A. Rebuffat
- Diabetes and Obesity Research Laboratory, Institut d’Investigations Biomediques August Pi i Sunyer, Centre Esther Koplowitz, C/Rosselló, 149-153 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - Rosa Gasa
- Diabetes and Obesity Research Laboratory, Institut d’Investigations Biomediques August Pi i Sunyer, Centre Esther Koplowitz, C/Rosselló, 149-153 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - Ramon Gomis
- Diabetes and Obesity Research Laboratory, Institut d’Investigations Biomediques August Pi i Sunyer, Centre Esther Koplowitz, C/Rosselló, 149-153 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
- University of Barcelona, Hospital Clínic, Barcelona, Spain
| |
Collapse
|
4
|
Wu LE, Meoli CC, Mangiafico SP, Fazakerley DJ, Cogger VC, Mohamad M, Pant H, Kang MJ, Powter E, Burchfield JG, Xirouchaki CE, Mikolaizak AS, Stöckli J, Kolumam G, van Bruggen N, Gamble JR, Le Couteur DG, Cooney GJ, Andrikopoulos S, James DE. Systemic VEGF-A neutralization ameliorates diet-induced metabolic dysfunction. Diabetes 2014; 63:2656-67. [PMID: 24696450 DOI: 10.2337/db13-1665] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The vascular endothelial growth factor (VEGF) family of cytokines are important regulators of angiogenesis that have emerged as important targets for the treatment of obesity. While serum VEGF levels rise during obesity, recent studies using genetic models provide conflicting evidence as to whether VEGF prevents or accelerates metabolic dysfunction during obesity. In the current study, we sought to identify the effects of VEGF-A neutralization on parameters of glucose metabolism and insulin action in a dietary mouse model of obesity. Within only 72 h of administration of the VEGF-A-neutralizing monoclonal antibody B.20-4.1, we observed almost complete reversal of high-fat diet-induced insulin resistance principally due to improved insulin sensitivity in the liver and in adipose tissue. These effects were independent of changes in whole-body adiposity or insulin signaling. These findings show an important and unexpected role for VEGF in liver insulin resistance, opening up a potentially novel therapeutic avenue for obesity-related metabolic disease.
Collapse
Affiliation(s)
- Lindsay E Wu
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales, AustraliaLaboratory for Ageing Research, School of Medical Sciences, UNSW Australia, New South Wales, Australia
| | - Christopher C Meoli
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Salvatore P Mangiafico
- Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, Victoria, Australia
| | - Daniel J Fazakerley
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Victoria C Cogger
- Centre for Education and Research on Ageing and ANZAC Medical Research Institute, University of Sydney and Concord Hospital, Concord, New South Wales, Australia
| | - Mashani Mohamad
- Centre for Education and Research on Ageing and ANZAC Medical Research Institute, University of Sydney and Concord Hospital, Concord, New South Wales, AustraliaFaculty of Pharmacy, Universiti Teknologi MARA, Bandar Puncak Alam, Selangor, Malaysia
| | - Himani Pant
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Myung-Jin Kang
- Laboratory for Ageing Research, School of Medical Sciences, UNSW Australia, New South Wales, Australia
| | - Elizabeth Powter
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, and The University of Sydney, Sydney, Australia
| | - James G Burchfield
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | | | - A Stefanie Mikolaizak
- Falls and Balance Research Group, Neuroscience Research Australia, Sydney, Australia
| | - Jacqueline Stöckli
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Ganesh Kolumam
- Department of Biomedical Imaging, Genentech Inc., San Francisco, CA
| | | | - Jennifer R Gamble
- Centre for the Endothelium, Vascular Biology Program, Centenary Institute, and The University of Sydney, Sydney, Australia
| | - David G Le Couteur
- Centre for Education and Research on Ageing and ANZAC Medical Research Institute, University of Sydney and Concord Hospital, Concord, New South Wales, Australia
| | - Gregory J Cooney
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Sofianos Andrikopoulos
- Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, Victoria, Australia
| | - David E James
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales, AustraliaCharles Perkins Centre, School of Molecular Bioscience, The University of Sydney, Sydney, Australia
| |
Collapse
|
5
|
Toyoshima Y, Tokita R, Taguchi Y, Akiyama-Akanishi N, Takenaka A, Kato H, Chida K, Hakuno F, Minami S, Takahashi SI. Tissue-specific effects of protein malnutrition on insulin signaling pathway and lipid accumulation in growing rats. Endocr J 2014; 61:499-512. [PMID: 24621780 DOI: 10.1507/endocrj.ej13-0514] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Our previous studies have revealed that protein malnutrition enhances insulin signaling in rat liver and muscle in response to a bolus insulin injection. However, it has not been established whether protein malnutrition up-regulates insulin signaling under physiological conditions, such as feeding. Here, we studied the effects of protein malnutrition on insulin signaling after feeding in rat liver, muscle and white adipose tissue (WAT). Six-week-old rats were fed a 15% casein diet (15C) or a calorie-matched 5% casein diet (5C) for 8 h/day during 14 days. On the 15th day, blood and tissues were collected at various time points after feeding. Feeding-induced insulin secretion was reduced in 5C-fed rats compared to 15C-fed rats. The 5C-feeding suppressed immediate activation of insulin receptor after feeding in the liver, muscle, and WAT. However, 5C-feeding constantly increased tyrosine phosphorylation of insulin receptor substrate (IRS)-2 and threonine phosphorylation of eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) in the liver during the examined periods, corresponding to the changes of their amounts. In skeletal muscle, 5C-feeding did not appreciably alter insulin signaling. In WAT, 5C-feeding decreased tyrosine phosphorylation of IRS-1 compared to 15C-feeding. Furthermore, hepatic triglyceride content was increased and feeding-induced acetyl-CoA carboxylase 1 gene expression was enhanced in 5C-fed rats. The 5C-feeding decreased insulin-dependent glucose uptake in adipocytes. These results suggest that enhanced insulin signaling through increased IRS-2 and 4E-BP1 levels in the liver and repressed insulin signaling through decreased IRS-1 levels in WAT contribute to the preferential hepatic lipid accumulation under protein malnutrition.
Collapse
Affiliation(s)
- Yuka Toyoshima
- Department of Bioregulation, Nippon Medical School, Kawasaki 211-8533, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Carobbio S, Hagen RM, Lelliott CJ, Slawik M, Medina-Gomez G, Tan CY, Sicard A, Atherton HJ, Barbarroja N, Bjursell M, Bohlooly-Y M, Virtue S, Tuthill A, Lefai E, Laville M, Wu T, Considine RV, Vidal H, Langin D, Oresic M, Tinahones FJ, Fernandez-Real JM, Griffin JL, Sethi JK, López M, Vidal-Puig A. Adaptive changes of the Insig1/SREBP1/SCD1 set point help adipose tissue to cope with increased storage demands of obesity. Diabetes 2013; 62:3697-708. [PMID: 23919961 PMCID: PMC3806615 DOI: 10.2337/db12-1748] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The epidemic of obesity imposes unprecedented challenges on human adipose tissue (WAT) storage capacity that may benefit from adaptive mechanisms to maintain adipocyte functionality. Here, we demonstrate that changes in the regulatory feedback set point control of Insig1/SREBP1 represent an adaptive response that preserves WAT lipid homeostasis in obese and insulin-resistant states. In our experiments, we show that Insig1 mRNA expression decreases in WAT from mice with obesity-associated insulin resistance and from morbidly obese humans and in in vitro models of adipocyte insulin resistance. Insig1 downregulation is part of an adaptive response that promotes the maintenance of SREBP1 maturation and facilitates lipogenesis and availability of appropriate levels of fatty acid unsaturation, partially compensating the antilipogenic effect associated with insulin resistance. We describe for the first time the existence of this adaptive mechanism in WAT, which involves Insig1/SREBP1 and preserves the degree of lipid unsaturation under conditions of obesity-induced insulin resistance. These adaptive mechanisms contribute to maintain lipid desaturation through preferential SCD1 regulation and facilitate fat storage in WAT, despite on-going metabolic stress.
Collapse
Affiliation(s)
- Stefania Carobbio
- University of Cambridge, Metabolic Research Laboratories, Institute of Metabolic Science Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, U.K
| | - Rachel M. Hagen
- University of Cambridge, Metabolic Research Laboratories, Institute of Metabolic Science Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, U.K
| | | | - Marc Slawik
- University of Cambridge, Metabolic Research Laboratories, Institute of Metabolic Science Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, U.K
- Endocrine Research Unit, Medizinische Klinik-Innenstadt, Ludwig-Maximilians University, Munich, Germany
| | - Gema Medina-Gomez
- University of Cambridge, Metabolic Research Laboratories, Institute of Metabolic Science Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, U.K
- Departamento de Bioquímica, Fisiología y Genética Molecular, Universidad Rey Juan Carlos Facultad de Ciencias de la Salud Avda.de Atenas s/n28922 Alcorcón, Madrid, Spain
| | - Chong-Yew Tan
- University of Cambridge, Metabolic Research Laboratories, Institute of Metabolic Science Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, U.K
| | - Audrey Sicard
- INSERM, Paul Sabatier University, UMR1048, Institute of Metabolic and Cardiovascular Diseases (I2MC), Laboratory of Obesity, Toulouse, France
| | - Helen J. Atherton
- MRC Human Nutrition Research, Elsie Widdowson Laboratory & University of Cambridge, Department of Biochemistry, Cambridge, U.K
| | - Nuria Barbarroja
- University of Cambridge, Metabolic Research Laboratories, Institute of Metabolic Science Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, U.K
- Hospital Virgen de la Victoria, CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Malaga, Spain
| | - Mikael Bjursell
- Department of Biosciences, CVGI iMED, AstraZeneca Research and Development, Mölndal, Sweden
| | - Mohammad Bohlooly-Y
- Department of Biosciences, CVGI iMED, AstraZeneca Research and Development, Mölndal, Sweden
| | - Sam Virtue
- University of Cambridge, Metabolic Research Laboratories, Institute of Metabolic Science Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, U.K
| | - Antoinette Tuthill
- University of Cambridge, Metabolic Research Laboratories, Institute of Metabolic Science Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, U.K
| | - Etienne Lefai
- INSERM U-1060; INRA U-1235; Human Nutrition Research Center of Lyon CarMeN Laboratory, Lyon1 University, Lyon, France
| | - Martine Laville
- INSERM U-1060; INRA U-1235; Human Nutrition Research Center of Lyon CarMeN Laboratory, Lyon1 University, Lyon, France
| | - Tingting Wu
- Department of Biosciences, CVGI iMED, AstraZeneca Research and Development, Mölndal, Sweden
| | - Robert V. Considine
- Division of Endocrinology and Metabolism, Indiana University School of Medicine, Indianapolis, Indiana
| | - Hubert Vidal
- INSERM U-1060; INRA U-1235; Human Nutrition Research Center of Lyon CarMeN Laboratory, Lyon1 University, Lyon, France
| | - Dominique Langin
- INSERM, Paul Sabatier University, UMR1048, Institute of Metabolic and Cardiovascular Diseases (I2MC), Laboratory of Obesity, Toulouse, France
- Laboratory of Clinical Biochemistry, Toulouse, France
| | - Matej Oresic
- Department of Medicine, Division of Internal Medicine, and Department of Psychiatry, Obesity Research Unit, Helsinki University Central Hospital, Helsinki, Finland
| | - Francisco J. Tinahones
- Hospital Virgen de la Victoria, CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Malaga, Spain
| | - Jose Manuel Fernandez-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomédica de Girona, CIBERobn Fisiopatología de la Obesidad y Nutrición CB06/03/010, Girona, Spain
| | - Julian L. Griffin
- MRC Human Nutrition Research, Elsie Widdowson Laboratory & University of Cambridge, Department of Biochemistry, Cambridge, U.K
| | - Jaswinder K. Sethi
- University of Cambridge, Metabolic Research Laboratories, Institute of Metabolic Science Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, U.K
| | - Miguel López
- University of Cambridge, Metabolic Research Laboratories, Institute of Metabolic Science Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, U.K
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Antonio Vidal-Puig
- University of Cambridge, Metabolic Research Laboratories, Institute of Metabolic Science Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, U.K
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, U.K
- Corresponding author: Antonio Vidal-Puig,
| |
Collapse
|
7
|
Gyengesi E, Paxinos G, Andrews ZB. Oxidative Stress in the Hypothalamus: the Importance of Calcium Signaling and Mitochondrial ROS in Body Weight Regulation. Curr Neuropharmacol 2013; 10:344-53. [PMID: 23730258 PMCID: PMC3520044 DOI: 10.2174/157015912804143496] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/12/2012] [Accepted: 08/02/2012] [Indexed: 12/25/2022] Open
Abstract
A considerable amount of evidence shows that reactive oxygen species (ROS) in the mammalian brain are directly responsible for cell and tissue function and dysfunction. Excessive reactive oxygen species contribute to various conditions including inflammation, diabetes mellitus, neurodegenerative diseases, tumor formation, and mental disorders such as depression. Increased intracellular calcium levels have toxic roles leading to cell death. However, the exact connection between reactive oxygen production and high calcium stress is not yet fully understood. In this review, we focus on the role of reactive oxygen species and calcium stress in hypothalamic arcuate neurons controlling feeding. We revisit the role of NPY and POMC neurons in the regulation of appetite and energy homeostasis, and consider how ROS and intracellular calcium levels affect these neurons. These novel insights give a new direction to research on hypothalamic mechanisms regulating energy homeostasis and may offer novel treatment strategies for obesity and type-2 diabetes.
Collapse
Affiliation(s)
- Erika Gyengesi
- Neuroscience Research Australia, Barker Street, Randwick, New South Wales, Australia
| | | | | |
Collapse
|
8
|
Bibiloni R. Rodent models to study the relationships between mammals and their bacterial inhabitants. Gut Microbes 2012; 3:536-43. [PMID: 22918304 PMCID: PMC3495791 DOI: 10.4161/gmic.21905] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Laboratory rodents have been instrumental in helping researchers to unravel the complex interactions that mammals have with their microbial commensals. Progress in defining these interactions has also been possible thanks to the development of culture-independent methods for describing the microbiota associated to body surfaces. Understanding the mechanisms that govern this relationship at the molecular, cellular, and ecological levels is central to both health and disease. The present review of rodent models commonly used to investigate microbial-host "conversations" is focused on those complex bacterial communities residing in the lower gut. Although many types of pathology have been studied using gnotobiotic animals, only the models relevant to commensal bacteria will be described.
Collapse
|
9
|
Softic S, Kirby M, Berger NG, Shroyer NF, Woods SC, Kohli R. Insulin concentration modulates hepatic lipid accumulation in mice in part via transcriptional regulation of fatty acid transport proteins. PLoS One 2012; 7:e38952. [PMID: 22745692 PMCID: PMC3380053 DOI: 10.1371/journal.pone.0038952] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 05/16/2012] [Indexed: 12/18/2022] Open
Abstract
Background Fatty liver disease (FLD) is commonly associated with insulin resistance and obesity, but interestingly it is also observed at low insulin states, such as prolonged fasting. Thus, we asked whether insulin is an independent modulator of hepatic lipid accumulation. Methods/Principal Findings In mice we induced, hypo- and hyperinsulinemia associated FLD by diet induced obesity and streptozotocin treatment, respectively. The mechanism of free fatty acid induced steatosis was studied in cell culture with mouse liver cells under different insulin concentrations, pharmacological phosphoinositol-3-kinase (PI3K) inhibition and siRNA targeted gene knock-down. We found with in vivo and in vitro models that lipid storage is increased, as expected, in both hypo- and hyperinsulinemic states, and that it is mediated by signaling through either insulin receptor substrate (IRS) 1 or 2. As previously reported, IRS-1 was up-regulated at high insulin concentrations, while IRS-2 was increased at low levels of insulin concentration. Relative increase in either of these insulin substrates, was associated with an increase in liver-specific fatty acid transport proteins (FATP) 2&5, and increased lipid storage. Furthermore, utilizing pharmacological PI3K inhibition we found that the IRS-PI3K pathway was necessary for lipogenesis, while FATP responses were mediated via IRS signaling. Data from additional siRNA experiments showed that knock-down of IRSs impacted FATP levels. Conclusions/Significance States of perturbed insulin signaling (low-insulin or high-insulin) both lead to increased hepatic lipid storage via FATP and IRS signaling. These novel findings offer a common mechanism of FLD pathogenesis in states of both inadequate (prolonged fasting) and ineffective (obesity) insulin signaling.
Collapse
Affiliation(s)
- Samir Softic
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, Riley Hospital for Children, Indiana University, Indianapolis, Indiana, United States of America
| | - Michelle Kirby
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Nicholas G. Berger
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Noah F. Shroyer
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Stephen C. Woods
- Metabolic Diseases Institute, Obesity Research Center, Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Rohit Kohli
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
10
|
Abstract
Type 2 Diabetes mellitus (T2D) is the most common endocrine disorder associated to metabolic syndrome (MS) and occurs when insulin secretion can no compensate peripheral insulin resistance. Among peripheral tissues, the liver controls glucose homeostasis due to its ability to consume and produce glucose. The molecular mechanism underlying hepatic insulin resistance is not completely understood; however, it involves the impairment of the insulin signalling network. Among the critical nodes of hepatic insulin signalling, insulin receptor substrate 2 (IRS2) and protein tyrosine phosphatase 1B (PTP1B) modulate the phosphatidylinositol (PI) 3-kinase/Akt/Foxo1 pathway that controls the suppression of gluconeogenic genes. In this review, we will focus on recent findings regarding the molecular mechanism by which IRS2 and PTP1B elicit opposite effects on carbohydrate metabolism in the liver in response to insulin. Finally, we will discuss the involvement of the critical nodes of insulin signalling in non-alcoholic fatty liver disease (NAFLD) in humans.
Collapse
Affiliation(s)
- Angela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC/UAM), C/Arturo Duperier 4, 28029 Madrid, Spain.
| | | |
Collapse
|
11
|
Leavens KF, Birnbaum MJ. Insulin signaling to hepatic lipid metabolism in health and disease. Crit Rev Biochem Mol Biol 2011; 46:200-15. [PMID: 21599535 DOI: 10.3109/10409238.2011.562481] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The increasing prevalence of overnutrition and reduced activity has led to a worldwide epidemic of obesity. In many cases, this is associated with insulin resistance, an inability of the hormone to direct its physiological actions appropriately. A number of disease states accompany insulin resistance such as type 2 diabetes mellitus, the metabolic syndrome, and non-alcoholic fatty liver disease. Though the pathways by which insulin controls hepatic glucose output have been of intense study in recent years, considerably less attention has been devoted to how lipid metabolism is regulated. Thus, both the proximal signaling pathways as well as the more distal targets of insulin remain uncertain. In this review, we consider the signaling pathways by which insulin controls the synthesis and accumulation of lipids in the mammalian liver and, in particular, how this might lead to abnormal triglyceride deposition in liver during insulin-resistant states.
Collapse
Affiliation(s)
- Karla F Leavens
- Department of Medicine, Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
12
|
Claret M, Smith MA, Knauf C, Al-Qassab H, Woods A, Heslegrave A, Piipari K, Emmanuel JJ, Colom A, Valet P, Cani PD, Begum G, White A, Mucket P, Peters M, Mizuno K, Batterham RL, Giese KP, Ashworth A, Burcelin R, Ashford ML, Carling D, Withers DJ. Deletion of Lkb1 in pro-opiomelanocortin neurons impairs peripheral glucose homeostasis in mice. Diabetes 2011; 60:735-45. [PMID: 21266325 PMCID: PMC3046834 DOI: 10.2337/db10-1055] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE AMP-activated protein kinase (AMPK) signaling acts as a sensor of nutrients and hormones in the hypothalamus, thereby regulating whole-body energy homeostasis. Deletion of Ampkα2 in pro-opiomelanocortin (POMC) neurons causes obesity and defective neuronal glucose sensing. LKB1, the Peutz-Jeghers syndrome gene product, and Ca(2+)-calmodulin-dependent protein kinase kinase β (CaMKKβ) are key upstream activators of AMPK. This study aimed to determine their role in POMC neurons upon energy and glucose homeostasis regulation. RESEARCH DESIGN AND METHODS Mice lacking either Camkkβ or Lkb1 in POMC neurons were generated, and physiological, electrophysiological, and molecular biology studies were performed. RESULTS Deletion of Camkkβ in POMC neurons does not alter energy homeostasis or glucose metabolism. In contrast, female mice lacking Lkb1 in POMC neurons (PomcLkb1KO) display glucose intolerance, insulin resistance, impaired suppression of hepatic glucose production, and altered expression of hepatic metabolic genes. The underlying cellular defect in PomcLkb1KO mice involves a reduction in melanocortin tone caused by decreased α-melanocyte-stimulating hormone secretion. However, Lkb1-deficient POMC neurons showed normal glucose sensing, and body weight was unchanged in PomcLkb1KO mice. CONCLUSIONS Our findings demonstrate that LKB1 in hypothalamic POMC neurons plays a key role in the central regulation of peripheral glucose metabolism but not body-weight control. This phenotype contrasts with that seen in mice lacking AMPK in POMC neurons with defects in body-weight regulation but not glucose homeostasis, which suggests that LKB1 plays additional functions distinct from activating AMPK in POMC neurons.
Collapse
Affiliation(s)
- Marc Claret
- Laboratory of Diabetes and Obesity, Endocrinology and Nutrition Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clinic de Barcelona, Barcelona, Spain
- Corresponding author: Dominic J. Withers, , or Marc Claret,
| | - Mark A. Smith
- Metabolic Signalling Group, Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, London, U.K
- Biomedical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, U.K
| | - Claude Knauf
- Institut National de la Santé et de la Recherche Médicale U858, Institut de Médecine Moléculaire de Rangueil, Toulouse, France
| | - Hind Al-Qassab
- Metabolic Signalling Group, Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, London, U.K
| | - Angela Woods
- Cellular Stress Group, MRC Clinical Sciences Centre, Imperial College London, London, U.K
| | - Amanda Heslegrave
- Cellular Stress Group, MRC Clinical Sciences Centre, Imperial College London, London, U.K
| | - Kaisa Piipari
- Metabolic Signalling Group, Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, London, U.K
| | - Julian J. Emmanuel
- Centre for Diabetes and Endocrinology, Rayne Institute, University College London, London, U.K
| | - André Colom
- Institut National de la Santé et de la Recherche Médicale U858, Institut de Médecine Moléculaire de Rangueil, Toulouse, France
| | - Philippe Valet
- Institut National de la Santé et de la Recherche Médicale U858, Institut de Médecine Moléculaire de Rangueil, Toulouse, France
| | - Patrice D. Cani
- Louvain Drug Research Institute, Unit of Pharmacokinetics, Metabolism, Nutrition, and Toxicology, Université Catholique de Louvain, Brussels, Belgium
| | - Ghazala Begum
- Faculties of Life Sciences and Medical and Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, U.K
| | - Anne White
- Faculties of Life Sciences and Medical and Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, U.K
| | - Phillip Mucket
- Cellular Stress Group, MRC Clinical Sciences Centre, Imperial College London, London, U.K
| | - Marco Peters
- Centre for the Cellular Basis of Behaviour, Institute of Psychiatry, King’s College London, London, U.K
| | - Keiko Mizuno
- Centre for the Cellular Basis of Behaviour, Institute of Psychiatry, King’s College London, London, U.K
| | - Rachel L. Batterham
- Centre for Diabetes and Endocrinology, Rayne Institute, University College London, London, U.K
| | - K. Peter Giese
- Centre for the Cellular Basis of Behaviour, Institute of Psychiatry, King’s College London, London, U.K
| | - Alan Ashworth
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, U.K
| | - Remy Burcelin
- Institut National de la Santé et de la Recherche Médicale U858, Institut de Médecine Moléculaire de Rangueil, Toulouse, France
| | - Michael L. Ashford
- Biomedical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, U.K
| | - David Carling
- Cellular Stress Group, MRC Clinical Sciences Centre, Imperial College London, London, U.K
| | - Dominic J. Withers
- Metabolic Signalling Group, Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, London, U.K
- Corresponding author: Dominic J. Withers, , or Marc Claret,
| |
Collapse
|
13
|
González-Rodríguez Á, Gutierrez JAM, Sanz-González S, Ros M, Burks DJ, Valverde ÁM. Inhibition of PTP1B restores IRS1-mediated hepatic insulin signaling in IRS2-deficient mice. Diabetes 2010; 59:588-99. [PMID: 20028942 PMCID: PMC2828646 DOI: 10.2337/db09-0796] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Mice with complete deletion of insulin receptor substrate 2 (IRS2) develop hyperglycemia, impaired hepatic insulin signaling, and elevated gluconeogenesis, whereas mice deficient for protein tyrosine phosphatase (PTP)1B display an opposing hepatic phenotype characterized by increased sensitivity to insulin. To define the relationship between these two signaling pathways in the regulation of liver metabolism, we used genetic and pharmacological approaches to study the effects of inhibiting PTP1B on hepatic insulin signaling and expression of gluconeogenic enzymes in IRS2(-/-) mice. RESEARCH DESIGN AND METHODS We analyzed glucose homeostasis and insulin signaling in liver and isolated hepatocytes from IRS2(-/-) and IRS2(-/-)/PTP1B(-/-) mice. Additionally, hepatic insulin signaling was assessed in control and IRS2(-/-) mice treated with resveratrol, an antioxidant present in red wine. RESULTS In livers of hyperglycemic IRS2(-/-) mice, the expression levels of PTP1B and its association with the insulin receptor (IR) were increased. The absence of PTP1B in the double-mutant mice restored hepatic IRS1-mediated phosphatidylinositol (PI) 3-kinase/Akt/Foxo1 signaling. Moreover, resveratrol treatment of hyperglycemic IRS2(-/-) mice decreased hepatic PTP1B mRNA and inhibited PTP1B activity, thereby restoring IRS1-mediated PI 3-kinase/Akt/Foxo1 signaling and peripheral insulin sensitivity. CONCLUSIONS By regulating the phosphorylation state of IR, PTB1B determines sensitivity to insulin in liver and exerts a unique role in the interplay between IRS1 and IRS2 in the modulation of hepatic insulin action.
Collapse
Affiliation(s)
- Águeda González-Rodríguez
- Institute of Biomedicine Alberto Sols, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Spain
| | | | - Silvia Sanz-González
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Spain
- Research Center Príncipe Felipe, Valencia, Spain
| | - Manuel Ros
- Faculty of Health Sciences, University Rey Juan Carlos, Madrid, Spain
| | - Deborah J. Burks
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Spain
- Research Center Príncipe Felipe, Valencia, Spain
| | - Ángela M. Valverde
- Institute of Biomedicine Alberto Sols, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Spain
- Corresponding author: Ángela M. Valverde,
| |
Collapse
|
14
|
Abstract
The Insulin Receptor/PI 3-kinase (INSR/PI3K) signalling pathway is a key regulator of cell and organismal metabolism. Phosphoinositides generated by PI 3-kinases following insulin and other metabolic hormone receptor activation give rise to signalling cascades involving a multitude of effector molecules. The physiological roles of these molecules have been dissected with the use of both pharmacological and genetic tools. Furthermore, tissue-specific mutagenesis has revealed the extent to which individual insulin-target organs and signalling molecules contribute to whole-body carbohydrate and lipid homeostasis. These studies have generated important information with respect to the function of these molecules in normal physiology and their implication in the development of metabolic diseases such as type-2 diabetes and obesity.
Collapse
|
15
|
Abstract
Type 2 diabetes mellitus (T2DM) affects a large population worldwide. T2DM is a complex heterogeneous group of metabolic disorders including hyperglycemia and impaired insulin action and/or insulin secretion. T2DM causes dysfunctions in multiple organs or tissues. Current theories of T2DM include a defect in insulin-mediated glucose uptake in muscle, a dysfunction of the pancreatic beta-cells, a disruption of secretory function of adipocytes, and an impaired insulin action in liver. The etiology of human T2DM is multifactorial, with genetic background and physical inactivity as two critical components. The pathogenesis of T2DM is not fully understood. Animal models of T2DM have been proved to be useful to study the pathogenesis of, and to find a new therapy for, the disease. Although different animal models share similar characteristics, each mimics a specific aspect of genetic, endocrine, metabolic, and morphologic changes that occur in human T2DM. The purpose of this review is to provide the recent progress and current theories in T2DM and to summarize animal models for studying the pathogenesis of the disease.
Collapse
Affiliation(s)
- Yi Lin
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | |
Collapse
|
16
|
Home PD, Pacini G. Hepatic dysfunction and insulin insensitivity in type 2 diabetes mellitus: a critical target for insulin-sensitizing agents. Diabetes Obes Metab 2008; 10:699-718. [PMID: 17825080 DOI: 10.1111/j.1463-1326.2007.00761.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The liver plays an essential role in maintaining glucose homeostasis, which includes insulin-mediated processes such as hepatic glucose output (HGO) and uptake, as well as in clearance of insulin itself. In type 2 diabetes, the onset of hyperglycaemia [itself a potent inhibitor of hepatic glucose output (HGO)], alongside hyperinsulinaemia, indicates the presence of hepatic insulin insensitivity. Increased HGO is central to the onset of hyperglycaemia and highlights the need to target hepatic insulin insensitivity as a central component of glucose-lowering therapy. The mechanisms underlying the development of hepatic insulin insensitivity are not well understood, but may be influenced by factors such as fatty acid oversupply and altered adipocytokine release from dysfunctional adipose tissue and increased liver fat content. Furthermore, although the impact of insulin insensitivity as a marker of cardiovascular disease is well known, the specific role of hepatic insulin insensitivity is less clear. The pharmacological tools available to improve insulin sensitivity include the biguanides (metformin) and thiazolidinediones (rosiglitazone and pioglitazone). Data from a number of sources indicate that thiazolidinediones, in particular, can improve multiple aspects of hepatic dysfunction, including reducing HGO, insulin insensitivity and liver fat content, as well as improving other markers of liver function and the levels of mediators with potential involvement in hepatic function, including fatty acids and adipocytokines. The current review addresses this topic from the perspective of the role of the liver in maintaining glucose homeostasis, its key involvement in the pathogenesis of type 2 diabetes and the tools currently available to reduce hepatic insulin insensitivity.
Collapse
Affiliation(s)
- P D Home
- School of Clinical Medical Sciences - Diabetes, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, UK.
| | | |
Collapse
|
17
|
Kubota N, Kubota T, Itoh S, Kumagai H, Kozono H, Takamoto I, Mineyama T, Ogata H, Tokuyama K, Ohsugi M, Sasako T, Moroi M, Sugi K, Kakuta S, Iwakura Y, Noda T, Ohnishi S, Nagai R, Tobe K, Terauchi Y, Ueki K, Kadowaki T. Dynamic functional relay between insulin receptor substrate 1 and 2 in hepatic insulin signaling during fasting and feeding. Cell Metab 2008; 8:49-64. [PMID: 18590692 DOI: 10.1016/j.cmet.2008.05.007] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 03/28/2008] [Accepted: 05/23/2008] [Indexed: 01/04/2023]
Abstract
Insulin receptor substrate (Irs) mediates metabolic actions of insulin. Here, we show that hepatic Irs1 and Irs2 function in a distinct manner in the regulation of glucose homeostasis. The PI3K activity associated with Irs2 began to increase during fasting, reached its peak immediately after refeeding, and decreased rapidly thereafter. By contrast, the PI3K activity associated with Irs1 began to increase a few hours after refeeding and reached its peak thereafter. The data indicate that Irs2 mainly functions during fasting and immediately after refeeding, and Irs1 functions primarily after refeeding. In fact, liver-specific Irs1-knockout mice failed to exhibit insulin resistance during fasting, but showed insulin resistance after refeeding; conversely, liver-specific Irs2-knockout mice displayed insulin resistance during fasting but not after refeeding. We propose the concept of the existence of a dynamic relay between Irs1 and Irs2 in hepatic insulin signaling during fasting and feeding.
Collapse
Affiliation(s)
- Naoto Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Cantley J, Choudhury AI, Asare-Anane H, Selman C, Lingard S, Heffron H, Herrera P, Persaud SJ, Withers DJ. Pancreatic deletion of insulin receptor substrate 2 reduces beta and alpha cell mass and impairs glucose homeostasis in mice. Diabetologia 2007; 50:1248-56. [PMID: 17393136 DOI: 10.1007/s00125-007-0637-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Accepted: 01/25/2007] [Indexed: 10/23/2022]
Abstract
AIMS/HYPOTHESIS Insulin signalling pathways regulate pancreatic beta cell function. Conditional gene targeting using the Cre/loxP system has demonstrated that mice lacking insulin receptor substrate 2 (IRS2) in the beta cell have reduced beta cell mass. However, these studies have been complicated by hypothalamic deletion when the RIPCre (B6.Cg-tg(Ins2-cre)25Mgn/J) transgenic mouse (expressing Cre recombinase under the control of the rat insulin II promoter) is used to delete floxed alleles in insulin-expressing cells. These features have led to marked insulin resistance making the beta cell-autonomous role of IRS2 difficult to determine. To establish the effect of deleting Irs2 only in the pancreas, we generated PIrs2KO mice in which Cre recombinase expression was driven by the promoter of the pancreatic and duodenal homeobox factor 1 (Pdx1, also known as Ipf1) gene. MATERIALS AND METHODS In vivo glucose homeostasis was examined in PIrs2KO mice using glucose tolerance and glucose-stimulated insulin secretion tests. Endocrine cell mass was determined by morphometric analysis. Islet function was examined in static cultures and by performing calcium imaging in Fluo3am-loaded beta cells. Islet gene expression was determined by RT-PCR. RESULTS The PIrs2KO mice displayed glucose intolerance and impaired glucose-stimulated insulin secretion in vivo. Pancreatic insulin and glucagon content and beta and alpha cell mass were reduced. Glucose-stimulated insulin secretion and calcium mobilisation were attenuated in PIrs2KO islets. Expression of the Glut2 gene (also known as Slc2a2) was also reduced in PIrs2KO mice. CONCLUSIONS/INTERPRETATION These studies suggest that IRS2-dependent signalling in pancreatic islets is required not only for the maintenance of normal beta and alpha cell mass but is also involved in the regulation of insulin secretion.
Collapse
Affiliation(s)
- J Cantley
- Centre for Diabetes and Endocrinology, Rayne Institute, University College London, University Street, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bibliography. Current world literature. Diabetes and the endocrine pancreas. Curr Opin Endocrinol Diabetes Obes 2007; 14:170-96. [PMID: 17940437 DOI: 10.1097/med.0b013e3280d5f7e9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Neganova I, Al-Qassab H, Heffron H, Selman C, Choudhury AI, Lingard SJ, Diakonov I, Patterson M, Ghatei M, Bloom SR, Franks S, Huhtaniemi I, Hardy K, Withers DJ. Role of central nervous system and ovarian insulin receptor substrate 2 signaling in female reproductive function in the mouse. Biol Reprod 2007; 76:1045-53. [PMID: 17329594 DOI: 10.1095/biolreprod.106.059360] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Insulin receptor signaling regulates female reproductive function acting in the central nervous system and ovary. Female mice that globally lack insulin receptor substrate (IRS) 2, which is a key mediator of insulin receptor action, are infertile with defects in hypothalamic and ovarian functions. To unravel the tissue-specific roles of IRS2, we examined reproductive function in female mice that lack Irs2 only in the neurons. Surprisingly, these animals had minimal defects in pituitary and ovarian hormone levels, ovarian anatomy and function, and breeding performance, which indicates that the central nervous system IRS2 is not an obligatory signaling component for the regulation of reproductive function. Therefore, we undertook a detailed analysis of ovarian function in a novel Irs2 global null mouse line. Comparative morphometric analysis showed reduced follicle size, increased numbers of atretic follicles, as well as impaired oocyte growth and antral cavity development in Irs2 null ovaries. Granulosa cell proliferation was also defective in the Irs2 null ovaries. Furthermore, the insulin- and eCG-stimulated phosphoinositide-3-OH kinase signaling events, which included phosphorylation of Akt/protein kinase B and glycogen synthase kinase 3-beta, were impaired, whereas mitogen-activated protein kinase signaling was preserved in Irs2 null ovaries. These abnormalities were associated with reduced expression of cyclin D2 and increased CDKN1B levels, which indicates dysregulation of key components of the cell cycle apparatus implicated in ovarian function. Our data suggest that ovarian rather than central nervous system IRS2 signaling is important in the regulation of female reproductive function.
Collapse
Affiliation(s)
- Irina Neganova
- Centre for Diabetes and Endocrinology, Rayne Institute, University College London, London WC1E 6JJ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The proper regulation of blood glucose homeostasis in mammals requires an adequate relation between the capacity to produce insulin and metabolic demand. Insulin receptor substrate proteins (IRS) are signalling intermediates that are required to keep this balance because they are needed for insulin action in target tissues but also for insulin production in pancreatic beta-cells. The total functional beta-cell mass in an individual sets the limit of how much insulin can be produced at a given time. It can change adaptively to meet demand and studies in vivo indicate that the regulation of beta-cell mass involves IRS2, while IRS1 is only required for proper insulin production in beta-cells. Overexpression studies in isolated islets have shown that IRS2, but not IRS1 or Shc, is sufficient to induce proliferation of beta-cells and to protect against d-glucose-induced apoptosis. In light of the finding that many growth factors can regulate Irs2 in islets, this signalling intermediate could balance capacity for insulin production with demand. This review summarizes observations in mouse models and in primary beta-cells and proposes a new hypothetical model of how IRS2 might control beta-cell mass.
Collapse
Affiliation(s)
- Markus Niessen
- Clinic of Endocrinology and Diabetes, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|