1
|
Ferreira YAM, Estadella D, Pisani LP. Effect of Different Fatty Acid Types on Mitochondrial Dysfunction Associated With Brown and Beige Adipose Tissue. Nutr Rev 2025:nuaf048. [PMID: 40233210 DOI: 10.1093/nutrit/nuaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025] Open
Abstract
Adipose tissue serves as a dynamic endocrine organ that is pivotal in metabolic regulation. Augmenting mitochondrial activity within this tissue holds promise in combating obesity. Mitochondrial function is intricately modulated by diverse fatty acid compositions. This comprehensive review aimed to elucidate the molecular mechanisms underlying mitochondrial dysfunction induced by various fatty acid profiles. While saturated fatty acids (SFAs) pose a threat to mitochondrial integrity, polyunsaturated fatty acids (PUFAs), notably n-3, mitigate SFA-induced damage, concurrently regulating thermogenic gene expression. With regard to monounsaturated fatty acids (MUFAs), their impact on mitochondrial function in adipose tissue remains relatively unexplored. Although human studies are imperative for comprehensive insights, prioritizing the consumption of n-3 fatty acids and MUFAs has emerged as a strategic approach, potentially enhancing mitochondrial biogenesis and metabolic pathways. This synthesis underscores the critical need for further investigation of the differential effects of fatty acid types on adipose tissue mitochondria, offering potential avenues for obesity intervention.
Collapse
Affiliation(s)
- Yasmin Alaby Martins Ferreira
- Department of Biosciences, Institute of Health and Science, Federal University of São Paulo (UNIFESP), Santos, SP 11015-020, Brazil
| | - Débora Estadella
- Department of Biosciences, Institute of Health and Science, Federal University of São Paulo (UNIFESP), Santos, SP 11015-020, Brazil
| | - Luciana Pellegrini Pisani
- Department of Biosciences, Institute of Health and Science, Federal University of São Paulo (UNIFESP), Santos, SP 11015-020, Brazil
| |
Collapse
|
2
|
Pahlavani M, Pham K, Kalupahana NS, Morovati A, Ramalingam L, Abidi H, Kiridana V, Moustaid-Moussa N. Thermogenic adipose tissues: Promising therapeutic targets for metabolic diseases. J Nutr Biochem 2025; 137:109832. [PMID: 39653156 DOI: 10.1016/j.jnutbio.2024.109832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025]
Abstract
The ongoing increase in the prevalence of obesity and its comorbidities such as cardiovascular disease, type 2 diabetes (T2D) and dyslipidemia warrants discovery of novel therapeutic options for these metabolic diseases. Obesity is characterized by white adipose tissue expansion due to chronic positive energy balance as a result of excessive energy intake and/or reduced energy expenditure. Despite various efforts to prevent or reduce obesity including lifestyle and behavioral interventions, surgical weight reduction approaches and pharmacological methods, there has been limited success in significantly reducing obesity prevalence. Recent research has shown that thermogenic adipocyte (brown and beige) activation or formation, respectively, could potentially act as a therapeutic strategy to ameliorate obesity and its related disorders. This can be achieved through the ability of these thermogenic cells to enhance energy expenditure and regulate circulating levels of glucose and lipids. Thus, unraveling the molecular mechanisms behind the formation and activation of brown and beige adipocytes holds the potential for probable therapeutic paths to combat obesity. In this review, we provide a comprehensive update on the development and regulation of different adipose tissue types. We also emphasize recent interventions in harnessing therapeutic potential of thermogenic adipocytes by bioactive compounds and new pharmacological anti-obesity agents.
Collapse
Affiliation(s)
- Mandana Pahlavani
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Department of Nutrition and Food Sciences, Texas Woman's University, Dallas, Texas, USA
| | - Kenneth Pham
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Nishan Sudheera Kalupahana
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Ashti Morovati
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Department of Nutrition and Food Studies, Syracuse University, Syracuse, New York, USA
| | - Hussain Abidi
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Vasana Kiridana
- Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Institute for One Health Innovation, Texas Tech University and Texas Tech Health Sciences Center, Lubbock, Texas, USA.
| |
Collapse
|
3
|
Sabinari I, Horakova O, Cajka T, Kleinova V, Wieckowski MR, Rossmeisl M. Influence of Lipid Class Used for Omega-3 Fatty Acid Supplementation on Liver Fat Accumulation in MASLD. Physiol Res 2024; 73:S295-S320. [PMID: 39016154 PMCID: PMC11412347 DOI: 10.33549/physiolres.935396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) occurs in subjects with obesity and metabolic syndrome. MASLD may progress from simple steatosis (i.e., hepatic steatosis) to steatohepatitis, characterized by inflammatory changes and liver cell damage, substantially increasing mortality. Lifestyle measures associated with weight loss and/or appropriate diet help reduce liver fat accumulation, thereby potentially limiting progression to steatohepatitis. As for diet, both total energy and macronutrient composition significantly influence the liver's fat content. For example, the type of dietary fatty acids can affect the metabolism of lipids and hence their tissue accumulation, with saturated fatty acids having a greater ability to promote fat storage in the liver than polyunsaturated ones. In particular, polyunsaturated fatty acids of n-3 series (omega-3), such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), have been intensively studied for their antisteatotic effects, both in preclinical animal models of obesity and hepatic steatosis and in overweight/obese patients. Their effects may depend not only on the dose and duration of administration of omega-3, or DHA/EPA ratio, but also on the lipid class used for their supplementation. This review summarizes the available evidence from recent comparative studies using omega-3 supplementation via different lipid classes. Albeit the evidence is mainly limited to preclinical studies, it suggests that phospholipids and possibly wax esters could provide greater efficacy against MASLD compared to traditional chemical forms of omega-3 supplementation (i.e., triacylglycerols, ethyl esters). This cannot be attributed solely to improved EPA and/or DHA bioavailability, but other mechanisms may be involved. Keywords: MASLD • Metabolic dysfunction-associated steatotic liver disease • NAFLD • Non-alcoholic fatty liver disease • n-3 polyunsaturated fatty acids.
Collapse
Affiliation(s)
- I Sabinari
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
4
|
Lu D, He A, Tan M, Mrad M, El Daibani A, Hu D, Liu X, Kleiboeker B, Che T, Hsu FF, Bambouskova M, Semenkovich CF, Lodhi IJ. Liver ACOX1 regulates levels of circulating lipids that promote metabolic health through adipose remodeling. Nat Commun 2024; 15:4214. [PMID: 38760332 PMCID: PMC11101658 DOI: 10.1038/s41467-024-48471-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 04/29/2024] [Indexed: 05/19/2024] Open
Abstract
The liver gene expression of the peroxisomal β-oxidation enzyme acyl-coenzyme A oxidase 1 (ACOX1), which catabolizes very long chain fatty acids (VLCFA), increases in the context of obesity, but how this pathway impacts systemic energy metabolism remains unknown. Here, we show that hepatic ACOX1-mediated β-oxidation regulates inter-organ communication involved in metabolic homeostasis. Liver-specific knockout of Acox1 (Acox1-LKO) protects mice from diet-induced obesity, adipose tissue inflammation, and systemic insulin resistance. Serum from Acox1-LKO mice promotes browning in cultured white adipocytes. Global serum lipidomics show increased circulating levels of several species of ω-3 VLCFAs (C24-C28) with previously uncharacterized physiological role that promote browning, mitochondrial biogenesis and Glut4 translocation through activation of the lipid sensor GPR120 in adipocytes. This work identifies hepatic peroxisomal β-oxidation as an important regulator of metabolic homeostasis and suggests that manipulation of ACOX1 or its substrates may treat obesity-associated metabolic disorders.
Collapse
Affiliation(s)
- Dongliang Lu
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Anyuan He
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Min Tan
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Marguerite Mrad
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Amal El Daibani
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Donghua Hu
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xuejing Liu
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Brian Kleiboeker
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tao Che
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Monika Bambouskova
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Cell Biology and Physiology; Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Irfan J Lodhi
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
5
|
Megawati G, Syahruddin SS, Tjandra W, Kusumawati M, Herawati DMD, Gurnida DA, Musfiroh I. Effects of Indonesian Shortfin Eel ( Anguilla bicolor) By-Product Oil Supplementation on HOMA-IR and Lipid Profile in Obese Male Wistar Rats. Nutrients 2023; 15:3904. [PMID: 37764688 PMCID: PMC10534436 DOI: 10.3390/nu15183904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The prevalence of people being overweight and obese has increased globally over the past decades. The use of omega-3 fatty acids-a compound usually primarily found in fish oil-has been known to improve the metabolic profile of obese patients. As the demand for eels increases, the number of waste products from the eels increases and creates environmental problems. This study was conducted to investigate the effect of a newly discovered Indonesian Shortfin eel by-product oil supplementation on the Homeostasis Model Assessment-Estimated Insulin Resistance (HOMA-IR) and lipid profiles of obese male (Lee index ≥ 0.3) Wistar rats (Rattus norvegicus). The oil was extracted from waste products (heads). Fifteen obese rats were divided into three groups and were administered NaCl (C), commercial fish oil (CO), and Indonesian shortfin eel by-product oil (EO). All groups had statistically significant differences in total cholesterol, LDL, and triglyceride levels (p < 0.05). The CO and EO group showed a significant decrease in total cholesterol, LDL, and triglyceride after treatment. However, no significant difference was found in HDL levels and HOMA-IR. The supplementation of Indonesian shortfin eel by-product oil significantly improved lipid profile while effectively mitigating environmental challenges.
Collapse
Affiliation(s)
- Ginna Megawati
- Doctoral Study Program, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, Indonesia;
- Division of Medical Nutrition, Department of Public Health, Faculty of Medicine, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Siti Shofiah Syahruddin
- Medical Undergraduate Program, Faculty of Medicine, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Winona Tjandra
- Medical Undergraduate Program, Faculty of Medicine, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Maya Kusumawati
- Department of Internal Medicine, Faculty of Medicine, Hasan Sadikin Hospital, Universitas Padjadjaran, Bandung 40161, Indonesia
| | - Dewi Marhaeni Diah Herawati
- Division of Medical Nutrition, Department of Public Health, Faculty of Medicine, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Dida Achmad Gurnida
- Department of Child Health, Faculty of Medicine, Hasan Sadikin Hospital, Universitas Padjadjaran, Bandung 40161, Indonesia
| | - Ida Musfiroh
- Department of Pharmaceutical Analysis dan Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
6
|
Lim JY, Kim E. The Role of Organokines in Obesity and Type 2 Diabetes and Their Functions as Molecular Transducers of Nutrition and Exercise. Metabolites 2023; 13:979. [PMID: 37755259 PMCID: PMC10537761 DOI: 10.3390/metabo13090979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Maintaining systemic homeostasis requires the coordination of different organs and tissues in the body. Our bodies rely on complex inter-organ communications to adapt to perturbations or changes in metabolic homeostasis. Consequently, the liver, muscle, and adipose tissues produce and secrete specific organokines such as hepatokines, myokines, and adipokines in response to nutritional and environmental stimuli. Emerging evidence suggests that dysregulation of the interplay of organokines between organs is associated with the pathophysiology of obesity and type 2 diabetes (T2D). Strategies aimed at remodeling organokines may be effective therapeutic interventions. Diet modification and exercise have been established as the first-line therapeutic intervention to prevent or treat metabolic diseases. This review summarizes the current knowledge on organokines secreted by the liver, muscle, and adipose tissues in obesity and T2D. Additionally, we highlighted the effects of diet/nutrition and exercise on the remodeling of organokines in obesity and T2D. Specifically, we investigated the ameliorative effects of caloric restriction, selective nutrients including ω3 PUFAs, selenium, vitamins, and metabolites of vitamins, and acute/chronic exercise on the dysregulation of organokines in obesity and T2D. Finally, this study dissected the underlying molecular mechanisms by which nutrition and exercise regulate the expression and secretion of organokines in specific tissues.
Collapse
Affiliation(s)
- Ji Ye Lim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., Houston, TX 77030, USA
| | - Eunju Kim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., Houston, TX 77030, USA
| |
Collapse
|
7
|
Horakova O, Sistilli G, Kalendova V, Bardova K, Mitrovic M, Cajka T, Irodenko I, Janovska P, Lackner K, Kopecky J, Rossmeisl M. Thermoneutral housing promotes hepatic steatosis in standard diet-fed C57BL/6N mice, with a less pronounced effect on NAFLD progression upon high-fat feeding. Front Endocrinol (Lausanne) 2023; 14:1205703. [PMID: 37501785 PMCID: PMC10369058 DOI: 10.3389/fendo.2023.1205703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Introduction Non-alcoholic fatty liver disease (NAFLD) can progress to more severe stages, such as steatohepatitis and fibrosis. Thermoneutral housing together with high-fat diet promoted NAFLD progression in C57BL/6J mice. Due to possible differences in steatohepatitis development between different C57BL/6 substrains, we examined how thermoneutrality affects NAFLD progression in C57BL/6N mice. Methods Male mice were fed standard or high-fat diet for 24 weeks and housed under standard (22°C) or thermoneutral (30°C) conditions. Results High-fat feeding promoted weight gain and hepatic steatosis, but the effect of thermoneutral environment was not evident. Liver expression of inflammatory markers was increased, with a modest and inconsistent effect of thermoneutral housing; however, histological scores of inflammation and fibrosis were generally low (<1.0), regardless of ambient temperature. In standard diet-fed mice, thermoneutrality increased weight gain, adiposity, and hepatic steatosis, accompanied by elevated de novo lipogenesis and changes in liver metabolome characterized by complex decreases in phospholipids and metabolites involved in urea cycle and oxidative stress defense. Conclusion Thermoneutrality appears to promote NAFLD-associated phenotypes depending on the C57BL/6 substrain and/or the amount of dietary fat.
Collapse
Affiliation(s)
- Olga Horakova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Gabriella Sistilli
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Veronika Kalendova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Kristina Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Marko Mitrovic
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
- First Faculty of Medicine, Charles University, Prague, Czechia
| | - Tomas Cajka
- Laboratory of Translational Metabolism, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Ilaria Irodenko
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Petra Janovska
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Karoline Lackner
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Jan Kopecky
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
8
|
Raj RR, Lofquist S, Lee MJ. Remodeling of Adipose Tissues by Fatty Acids: Mechanistic Update on Browning and Thermogenesis by n-3 Polyunsaturated Fatty Acids. Pharm Res 2023; 40:467-480. [PMID: 36050546 DOI: 10.1007/s11095-022-03377-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
Enhancing thermogenesis by increasing the amount and activity of brown and brite adipocytes is a potential therapeutic target for obesity and its associated diseases. Diet plays important roles in energy metabolism and a myriad of dietary components including lipids are known to regulate thermogenesis through recruitment and activation of brown and brite adipocytes. Depending on types of fatty acids (FAs), the major constituent in lipids, their health benefits differ. Long-chain polyunsaturated FAs (PUFAs), especially n-3 PUFAs remodel adipose tissues in a healthier manner with reduced inflammation and enhanced thermogenesis, while saturated FAs exhibit contrasting effects. Lipid mediators derived from FAs act as autocrine/paracrine as well as endocrine factors to regulate thermogenesis. We discuss lipid mediators that may contribute to the differential effects of FAs on adipose tissue remodeling and hence, cardiometabolic diseases. We also discuss current understanding of molecular and cellular mechanisms through which n-3 PUFAs enhance thermogenesis. Elucidating molecular details of beneficial effects of n-3 PUFAs on thermogenesis is expected to provide information that can be used for development of novel therapeutics for obesity and its associated diseases.
Collapse
Affiliation(s)
- Radha Raman Raj
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 98622, USA
| | - Sydney Lofquist
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 98622, USA
| | - Mi-Jeong Lee
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 98622, USA.
| |
Collapse
|
9
|
Shin S. Regulation of Adipose Tissue Biology by Long-Chain Fatty Acids: Metabolic Effects and Molecular Mechanisms. J Obes Metab Syndr 2022; 31:147-160. [PMID: 35691686 PMCID: PMC9284576 DOI: 10.7570/jomes22014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/13/2022] [Accepted: 04/27/2022] [Indexed: 11/20/2022] Open
Abstract
Long-chain fatty acids (LCFA) modulate metabolic, oxidative, and inflammatory responses, and the physiological effects of LCFA are determined by chain length and the degree of saturation. Adipose tissues comprise multiple cell types, and play a significant role in energy storage and expenditure. Fatty acid uptake and oxidation are the pathways through which fatty acids participate in the regulation of energy homeostasis, and their dysregulation can lead to the development of obesity and chronic obesity-related disorders, including type 2 diabetes, cardiovascular diseases, and certain types of cancer. Numerous studies have reported that many aspects of adipose tissue biology are influenced by the number and position of double bonds in LCFA, and these effects are mediated by various signaling pathways, including those regulating adipocyte differentiation (adipogenesis), thermogenesis, and inflammation in adipose tissue. This review aims to describe the underlying molecular mechanisms by which different types of LCFA influence adipose tissue metabolism, and to further clarify their relevance to metabolic dysregulation associated with obesity. A better understanding of the effects of LCFA on adipose tissue metabolism may lead to improved nutraceutical strategies to address obesity and obesity-associated diseases.
Collapse
Affiliation(s)
- Sunhye Shin
- Major of Food and Nutrition, Division of Applied Food System, Seoul Women's University, Seoul, Korea
| |
Collapse
|
10
|
Leite BF, Morimoto MA, Gomes CMF, Klemz BNC, Genaro PS, Shivappa N, Hébert JR, Damasceno NRT, Pinheiro MM. Dietetic intervention in psoriatic arthritis: the DIETA trial. Adv Rheumatol 2022; 62:12. [PMID: 35387686 DOI: 10.1186/s42358-022-00243-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
AIM To evaluate whether dietary pattern changes, antioxidant supplementation or 5-10% weight loss could improve disease activity (skin and joint) in patients with psoriatic arthritis (PsA). METHODS A total of 97 PsA patients were enrolled in this 12-week randomized, double-blinded, placebo-controlled trial. Patients were randomized into three groups: Diet-placebo (hypocaloric diet + placebo supplementation); Diet-fish (hypocaloric diet + 3 g/day of omega-3 supplementation; and Placebo. Food intake (3-day registry, Healthy Eating Index (HEI), and the Dietary Inflammatory Index (DII)), body composition (whole-body dual-energy X-ray absorptiometry (DXA), weight and waist circumference) and disease activity (PASI, BSA, BASDAI, DAS28-ESR, DAS28-CRP and MDA) were evaluated at baseline and after the 12-week intervention. Statistical analysis used the intention-to-treat approach. The P value was considered to indicate significance when below 0.05. RESULTS After 12 weeks, DAS28-CRP and BASDAI scores improved, especially in the Diet-placebo group (- 0.6 ± 0.9; p = 0.004 and - 1.39 ± 1.97; p = 0.001, respectively). In addition, a higher proportion of patients achieved minimal disease activity (MDA) in all groups. The Diet-fish group showed significant weight loss (- 1.79 ± 2.4; p = 0.004), as well as waist circumference (- 3.28 ± 3.5, p < 0.001) and body fat (- 1.2 ± 2.2, p = 0.006) reductions. There was no significant correlation between weight loss and disease activity improvement. Each 1-unit increase in the HEI value reduced the likelihood of achieving remission by 4%. Additionally, each 100-cal daily intake increase caused a 3.4-fold DAS28-ESR impairment. CONCLUSION A 12-week hypocaloric intervention provided suitable control of joint disease activity in patients with PsA, regardless of weight loss. Adding omega-3 supplementation caused relevant body composition changes but not disease activity improvement. TRIAL REGISTRATION The study was recorded on Clinicaltrials.gov (NCT03142503).
Collapse
Affiliation(s)
- Beatriz F Leite
- Rheumatology Division, Universidade Federal de São Paulo, Escola Paulista de Medicina (UNIFESP/EPM), 204 Leandro Dupré St., Room 74, Vila Clementino, Sao Paulo, SP, 04025-010, Brazil.
| | - Melissa A Morimoto
- Rheumatology Division, Universidade Federal de São Paulo, Escola Paulista de Medicina (UNIFESP/EPM), 204 Leandro Dupré St., Room 74, Vila Clementino, Sao Paulo, SP, 04025-010, Brazil
| | - Carina M F Gomes
- Rheumatology Division, Universidade Federal de São Paulo, Escola Paulista de Medicina (UNIFESP/EPM), 204 Leandro Dupré St., Room 74, Vila Clementino, Sao Paulo, SP, 04025-010, Brazil
| | - Barbara N C Klemz
- Rheumatology Division, Universidade Federal de São Paulo, Escola Paulista de Medicina (UNIFESP/EPM), 204 Leandro Dupré St., Room 74, Vila Clementino, Sao Paulo, SP, 04025-010, Brazil
| | - Patrícia S Genaro
- Department of Nutrition, Vale Do Paraíba University, 2911 Shishima Hifumi Av, Urbanova, Sao Jose dos Campos, São Paulo, 12244-000, Brazil
| | - Nittin Shivappa
- Cancer Prevention and Control Program and Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA
| | - James R Hébert
- Cancer Prevention and Control Program and Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA
| | - Nágila R T Damasceno
- Nutrition Department, Public Health School, Sao Paulo University, 715 Dr Arnaldo Av, Pacaembu, São Paulo, SP, 01246-904, Brazil
| | - Marcelo M Pinheiro
- Rheumatology Division, Universidade Federal de São Paulo, Escola Paulista de Medicina (UNIFESP/EPM), 204 Leandro Dupré St., Room 74, Vila Clementino, Sao Paulo, SP, 04025-010, Brazil
| |
Collapse
|
11
|
Pavlisova J, Horakova O, Kalendova V, Buresova J, Bardova K, Holendova B, Plecita-Hlavata L, Vackova S, Windrichova J, Topolcan O, Kopecky J, Rossmeisl M. Chronic n-3 fatty acid intake enhances insulin response to oral glucose and elevates GLP-1 in high-fat diet-fed obese mice. Food Funct 2021; 11:9764-9775. [PMID: 33078809 DOI: 10.1039/d0fo01942a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
n-3 polyunsaturated fatty acids (PUFA) can exert beneficial effects on glucose homeostasis, especially in obese rodents. Gut incretin hormones regulate glucose and lipid homeostasis, but their involvement in the above effects is not entirely clear. This study aims to assess the effects of chronic n-3 PUFA administration on the insulin and incretin responses in C57BL/6N obese male mice subjected to oral glucose tolerance test (oGTT) after 8 weeks of feeding a corn-oil-based high-fat diet (cHF). The weight gain and adiposity were partially reduced in mice fed cHF in which some of the corn oil was replaced with n-3 PUFA concentrate containing ∼60% DHA and EPA in a 3 : 1 ratio. In addition, these mice had improved glucose tolerance, which was consistent with an increased insulin response to oral glucose and plasma glucagon-like peptide-1 (GLP-1) levels. While the stimulatory effects of n-3 PUFA on GLP-1 levels could not be attributed to changes in intestinal or plasma dipeptidyl peptidase-4 activity, their beneficial effects on glucose tolerance were abolished when mice were pretreated with the GLP-1 receptor antagonist exendin 9-39. Moreover, chronic n-3 PUFA intake prevented the detrimental effects of cHF feeding on glucose-stimulated insulin secretion in the pancreatic islets. Collectively, our data suggest that n-3 PUFA may modulate postprandial glucose metabolism in obese mice through a GLP-1-based mechanism. The significance of these findings in terms of the effective DHA and EPA ratio of the n-3 PUFA concentrate as well as the effect of n-3 PUFA in humans requires further research.
Collapse
Affiliation(s)
- Jana Pavlisova
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Verduci E, Calcaterra V, Di Profio E, Fiore G, Rey F, Magenes VC, Todisco CF, Carelli S, Zuccotti GV. Brown Adipose Tissue: New Challenges for Prevention of Childhood Obesity. A Narrative Review. Nutrients 2021; 13:1450. [PMID: 33923364 PMCID: PMC8145569 DOI: 10.3390/nu13051450] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Pediatric obesity remains a challenge in modern society. Recently, research has focused on the role of the brown adipose tissue (BAT) as a potential target of intervention. In this review, we revised preclinical and clinical works on factors that may promote BAT or browning of white adipose tissue (WAT) from fetal age to adolescence. Maternal lifestyle, type of breastfeeding and healthy microbiota can affect the thermogenic activity of BAT. Environmental factors such as exposure to cold or physical activity also play a role in promoting and activating BAT. Most of the evidence is preclinical, although in clinic there is some evidence on the role of omega-3 PUFAs (EPA and DHA) supplementation on BAT activation. Clinical studies are needed to dissect the early factors and their modulation to allow proper BAT development and functions and to prevent onset of childhood obesity.
Collapse
Affiliation(s)
- Elvira Verduci
- Department of Health Sciences, University of Milan, 20146 Milan, Italy
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Valeria Calcaterra
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
| | - Elisabetta Di Profio
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Department of Animal Sciences for Health, Animal Production and Food Safety, University of Milan, 20133 Milan, Italy
| | - Giulia Fiore
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Federica Rey
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy;
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy
| | - Vittoria Carlotta Magenes
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Carolina Federica Todisco
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy;
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy
| | - Gian Vincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (V.C.); (E.D.P.); (G.F.); (V.C.M.); (C.F.T.); (G.V.Z.)
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy;
- Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy
| |
Collapse
|
13
|
Filatov E, Short LI, Forster MAM, Harris SS, Schien EN, Hughes MC, Cline DL, Appleby CJ, Gray SL. Contribution of thermogenic mechanisms by male and female mice lacking pituitary adenylate cyclase-activating polypeptide in response to cold acclimation. Am J Physiol Endocrinol Metab 2021; 320:E475-E487. [PMID: 33356993 DOI: 10.1152/ajpendo.00205.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide critical to the regulation of the stress response, including having a role in energy homeostasis. Mice lacking PACAP are cold-sensitive and have impaired adrenergic-induced thermogenesis. Interestingly, Pacap null mice can survive cold housing if acclimated slowly, similar to observations in uncoupling protein 1 (UCP1)-deficient mice. We hypothesized that Pacap null mice use alternate thermogenic pathways to compensate for impaired adaptive thermogenesis when acclimated to cold. Observations of behavior and assessment of fiber type in skeletal muscles did not show evidence of prolonged burst shivering or changes in oxidative metabolism in male or female Pacap-/- mice during cold acclimation compared with Pacap+/+ mice. Despite previous work that has established impaired capacity for adaptive thermogenesis in Pacap null mice, adaptive thermogenesis can be induced in mice lacking PACAP to support survival with cold housing. Interestingly, sex-specific morphological and molecular differences in adipose tissue remodeling were observed in Pacap null mice compared with controls. Thus, sexual dimorphisms are highlighted in adipose tissue remodeling and thermogenesis with cold acclimation in the absence of PACAP.NEW & NOTEWORTHY This manuscript adds to the literature of endocrine regulation of adaptive thermogenesis and energy balance. It specifically describes the role of pituitary adenylate cyclase-activating polypeptide on the regulation of brown adipose tissue via the sympathetic nervous system with a focus on compensatory mechanisms of thermogenesis. We highlight sex-specific differences in energy metabolism.
Collapse
Affiliation(s)
- Ekaterina Filatov
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Landon I Short
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Maeghan A M Forster
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Simon S Harris
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Erik N Schien
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Malcolm C Hughes
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Daemon L Cline
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Colin J Appleby
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Sarah L Gray
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| |
Collapse
|
14
|
Sistilli G, Kalendova V, Cajka T, Irodenko I, Bardova K, Oseeva M, Zacek P, Kroupova P, Horakova O, Lackner K, Gastaldelli A, Kuda O, Kopecky J, Rossmeisl M. Krill Oil Supplementation Reduces Exacerbated Hepatic Steatosis Induced by Thermoneutral Housing in Mice with Diet-Induced Obesity. Nutrients 2021; 13:437. [PMID: 33572810 PMCID: PMC7912192 DOI: 10.3390/nu13020437] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
Preclinical evidence suggests that n-3 fatty acids EPA and DHA (Omega-3) supplemented as phospholipids (PLs) may be more effective than triacylglycerols (TAGs) in reducing hepatic steatosis. To further test the ability of Omega-3 PLs to alleviate liver steatosis, we used a model of exacerbated non-alcoholic fatty liver disease based on high-fat feeding at thermoneutral temperature. Male C57BL/6N mice were fed for 24 weeks a lard-based diet given either alone (LHF) or supplemented with Omega-3 (30 mg/g diet) as PLs (krill oil; ω3PL) or TAGs (Epax 3000TG concentrate; ω3TG), which had a similar total content of EPA and DHA and their ratio. Substantial levels of TAG accumulation (~250 mg/g) but relatively low inflammation/fibrosis levels were achieved in the livers of control LHF mice. Liver steatosis was reduced by >40% in the ω3PL but not ω3TG group, and plasma ALT levels were markedly reduced (by 68%) in ω3PL mice as well. Krill oil administration also improved hepatic insulin sensitivity, and its effects were associated with high plasma adiponectin levels (150% of LHF mice) along with superior bioavailability of EPA, increased content of alkaloids stachydrine and trigonelline, suppression of lipogenic gene expression, and decreased diacylglycerol levels in the liver. This study reveals that in addition to Omega-3 PLs, other constituents of krill oil, such as alkaloids, may contribute to its strong antisteatotic effects in the liver.
Collapse
Affiliation(s)
- Gabriella Sistilli
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; (G.S.); (V.K.); (T.C.); (I.I.); (K.B.); (M.O.); (P.K.); (O.H.); (O.K.); (J.K.)
- Department of Physiology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague 2, Czech Republic
| | - Veronika Kalendova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; (G.S.); (V.K.); (T.C.); (I.I.); (K.B.); (M.O.); (P.K.); (O.H.); (O.K.); (J.K.)
- Department of Physiology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague 2, Czech Republic
| | - Tomas Cajka
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; (G.S.); (V.K.); (T.C.); (I.I.); (K.B.); (M.O.); (P.K.); (O.H.); (O.K.); (J.K.)
| | - Illaria Irodenko
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; (G.S.); (V.K.); (T.C.); (I.I.); (K.B.); (M.O.); (P.K.); (O.H.); (O.K.); (J.K.)
- Department of Physiology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague 2, Czech Republic
| | - Kristina Bardova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; (G.S.); (V.K.); (T.C.); (I.I.); (K.B.); (M.O.); (P.K.); (O.H.); (O.K.); (J.K.)
| | - Marina Oseeva
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; (G.S.); (V.K.); (T.C.); (I.I.); (K.B.); (M.O.); (P.K.); (O.H.); (O.K.); (J.K.)
- Department of Physiology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague 2, Czech Republic
| | - Petr Zacek
- Proteomics Core Facility, Faculty of Science, Charles University, Division BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic;
| | - Petra Kroupova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; (G.S.); (V.K.); (T.C.); (I.I.); (K.B.); (M.O.); (P.K.); (O.H.); (O.K.); (J.K.)
| | - Olga Horakova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; (G.S.); (V.K.); (T.C.); (I.I.); (K.B.); (M.O.); (P.K.); (O.H.); (O.K.); (J.K.)
| | - Karoline Lackner
- Institute of Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria;
| | - Amalia Gastaldelli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56100 Pisa, Italy;
| | - Ondrej Kuda
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; (G.S.); (V.K.); (T.C.); (I.I.); (K.B.); (M.O.); (P.K.); (O.H.); (O.K.); (J.K.)
| | - Jan Kopecky
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; (G.S.); (V.K.); (T.C.); (I.I.); (K.B.); (M.O.); (P.K.); (O.H.); (O.K.); (J.K.)
| | - Martin Rossmeisl
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; (G.S.); (V.K.); (T.C.); (I.I.); (K.B.); (M.O.); (P.K.); (O.H.); (O.K.); (J.K.)
| |
Collapse
|
15
|
Maurer SF, Dieckmann S, Lund J, Fromme T, Hess AL, Colson C, Kjølbaek L, Astrup A, Gillum MP, Larsen LH, Liebisch G, Amri EZ, Klingenspor M. No Effect of Dietary Fish Oil Supplementation on the Recruitment of Brown and Brite Adipocytes in Mice or Humans under Thermoneutral Conditions. Mol Nutr Food Res 2021; 65:e2000681. [PMID: 33274552 DOI: 10.1002/mnfr.202000681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/09/2020] [Indexed: 01/06/2023]
Abstract
SCOPE Brown and brite adipocytes within the mammalian adipose organ provide non-shivering thermogenesis and thus, have an exceptional capacity to dissipate chemical energy as heat. Polyunsaturated fatty acids (PUFA) of the n3-series, abundant in fish oil, have been repeatedly demonstrated to enhance the recruitment of thermogenic capacity in these cells, consequently affecting body adiposity and glucose tolerance. These effects are scrutinized in mice housed in a thermoneutral environment and in a human dietary intervention trial. METHODS AND RESULTS Mice are housed in a thermoneutral environment eliminating the superimposing effect of mild cold-exposure on thermogenic adipocyte recruitment. Dietary fish oil supplementation in two different inbred mouse strains neither affects body mass trajectory nor enhances the recruitment of brown and brite adipocytes, both in the presence and absence of a β3-adrenoreceptor agonist imitating the effect of cold-exposure on adipocytes. In line with these findings, dietary fish oil supplementation of persons with overweight or obesity fails to recruit thermogenic adipocytes in subcutaneous adipose tissue. CONCLUSION Thus, the authors' data question the hypothesized potential of n3-PUFA as modulators of adipocyte-based thermogenesis and energy balance regulation.
Collapse
Affiliation(s)
- Stefanie F Maurer
- Chair for Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences, Freising, 85354, Germany
- EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, 85354, Germany
| | - Sebastian Dieckmann
- Chair for Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences, Freising, 85354, Germany
- EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, 85354, Germany
- ZIEL - Institute for Food and Health, Technical University of Munich, Freising, 85354, Germany
| | - Jens Lund
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, DK-1958, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Tobias Fromme
- Chair for Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences, Freising, 85354, Germany
- EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, 85354, Germany
- ZIEL - Institute for Food and Health, Technical University of Munich, Freising, 85354, Germany
| | - Anne Lundby Hess
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, DK-1958, Denmark
| | - Cécilia Colson
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, 06107, France
| | - Louise Kjølbaek
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, DK-1958, Denmark
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, DK-1958, Denmark
| | - Matthew Paul Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Lesli Hingstrup Larsen
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, DK-1958, Denmark
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, 93053, Germany
| | - Ez-Zoubir Amri
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, 06107, France
| | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences, Freising, 85354, Germany
- EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, 85354, Germany
- ZIEL - Institute for Food and Health, Technical University of Munich, Freising, 85354, Germany
| |
Collapse
|
16
|
Bardova K, Funda J, Pohl R, Cajka T, Hensler M, Kuda O, Janovska P, Adamcova K, Irodenko I, Lenkova L, Zouhar P, Horakova O, Flachs P, Rossmeisl M, Colca J, Kopecky J. Additive Effects of Omega-3 Fatty Acids and Thiazolidinediones in Mice Fed a High-Fat Diet: Triacylglycerol/Fatty Acid Cycling in Adipose Tissue. Nutrients 2020; 12:nu12123737. [PMID: 33291653 PMCID: PMC7761951 DOI: 10.3390/nu12123737] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022] Open
Abstract
Long-chain n-3 polyunsaturated fatty acids (Omega-3) and anti-diabetic drugs thiazolidinediones (TZDs) exhibit additive effects in counteraction of dietary obesity and associated metabolic dysfunctions in mice. The underlying mechanisms need to be clarified. Here, we aimed to learn whether the futile cycle based on the hydrolysis of triacylglycerol and re-esterification of fatty acids (TAG/FA cycling) in white adipose tissue (WAT) could be involved. We compared Omega-3 (30 mg/g diet) and two different TZDs—pioglitazone (50 mg/g diet) and a second-generation TZD, MSDC-0602K (330 mg/g diet)—regarding their effects in C57BL/6N mice fed an obesogenic high-fat (HF) diet for 8 weeks. The diet was supplemented or not by the tested compound alone or with the two TZDs combined individually with Omega-3. Activity of TAG/FA cycle in WAT was suppressed by the obesogenic HF diet. Additive effects in partial rescue of TAG/FA cycling in WAT were observed with both combined interventions, with a stronger effect of Omega-3 and MSDC-0602K. Our results (i) supported the role of TAG/FA cycling in WAT in the beneficial additive effects of Omega-3 and TZDs on metabolism of diet-induced obese mice, and (ii) showed differential modulation of WAT gene expression and metabolism by the two TZDs, depending also on Omega-3.
Collapse
Affiliation(s)
- Kristina Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.B.); (J.F.); (M.H.); (P.J.); (K.A.); (I.I.); (L.L.); (P.Z.); (O.H.); (P.F.); (M.R.)
| | - Jiri Funda
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.B.); (J.F.); (M.H.); (P.J.); (K.A.); (I.I.); (L.L.); (P.Z.); (O.H.); (P.F.); (M.R.)
| | - Radek Pohl
- NMR Spectroscopy, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemmingovo Namesti 542/2, 160 00 Prague 6, Czech Republic;
| | - Tomas Cajka
- Laboratory of Metabolomics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic;
- Laboratory of Translational Metabolism, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Michal Hensler
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.B.); (J.F.); (M.H.); (P.J.); (K.A.); (I.I.); (L.L.); (P.Z.); (O.H.); (P.F.); (M.R.)
| | - Ondrej Kuda
- Laboratory of Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic;
| | - Petra Janovska
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.B.); (J.F.); (M.H.); (P.J.); (K.A.); (I.I.); (L.L.); (P.Z.); (O.H.); (P.F.); (M.R.)
| | - Katerina Adamcova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.B.); (J.F.); (M.H.); (P.J.); (K.A.); (I.I.); (L.L.); (P.Z.); (O.H.); (P.F.); (M.R.)
| | - Ilaria Irodenko
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.B.); (J.F.); (M.H.); (P.J.); (K.A.); (I.I.); (L.L.); (P.Z.); (O.H.); (P.F.); (M.R.)
| | - Lucie Lenkova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.B.); (J.F.); (M.H.); (P.J.); (K.A.); (I.I.); (L.L.); (P.Z.); (O.H.); (P.F.); (M.R.)
| | - Petr Zouhar
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.B.); (J.F.); (M.H.); (P.J.); (K.A.); (I.I.); (L.L.); (P.Z.); (O.H.); (P.F.); (M.R.)
| | - Olga Horakova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.B.); (J.F.); (M.H.); (P.J.); (K.A.); (I.I.); (L.L.); (P.Z.); (O.H.); (P.F.); (M.R.)
| | - Pavel Flachs
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.B.); (J.F.); (M.H.); (P.J.); (K.A.); (I.I.); (L.L.); (P.Z.); (O.H.); (P.F.); (M.R.)
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.B.); (J.F.); (M.H.); (P.J.); (K.A.); (I.I.); (L.L.); (P.Z.); (O.H.); (P.F.); (M.R.)
| | - Jerry Colca
- Cirius Therapeutics, Kalamazoo, MI 490 07, USA;
| | - Jan Kopecky
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.B.); (J.F.); (M.H.); (P.J.); (K.A.); (I.I.); (L.L.); (P.Z.); (O.H.); (P.F.); (M.R.)
- Correspondence: ; Tel.: +420-296442554; Fax: +420-296442599
| |
Collapse
|
17
|
Ramalho A, Leblanc N, Fortin MG, Marette A, Tchernof A, Jacques H. Characterization of a Coproduct from the Sea Cucumber Cucumaria frondosa and Its Effects on Visceral Adipocyte Size in Male Wistar Rats. Mar Drugs 2020; 18:E530. [PMID: 33114645 PMCID: PMC7693588 DOI: 10.3390/md18110530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/03/2022] Open
Abstract
Sea cucumbers have been shown to have potential health benefits and are a rich source of several bioactive compounds, particularly triterpenoid saponins. However, most studies concentrate on the body wall, and little is known about the health effects of the coproducts. The objectives of this study were to determine the nutritional composition of a coproduct from the sea cucumber Cucumaria frondosa and the effects of the dietary consumption of this coproduct on cardiometabolic health in rats. Chemical, biochemical, and nutritional analyses were performed to characterize this coproduct. Forty (40) male Wistar rats were then equally divided into four groups and fed a purified control diet or a diet enriched with 0.5%, 1.5%, or 2.5% (by protein) of coproduct. After 28 days of feeding, the rats were sacrificed. Body and tissue weight, body composition, epididymal adipocyte diameter, plasma and hepatic lipids, glycemia, and insulinemia were measured at the end of the 28-day experiment. Analysis of the coproduct revealed high levels of protein, omega-3 fatty acids, minerals, and saponins. The 1.5% group had significantly smaller epididymal adipocytes vs. the control. We conclude that dietary administration of this sea cucumber coproduct at 1.5% doses decreases visceral adiposity, potentially decreasing the risk of cardiometabolic dysfunction. The coproduct's saponin content may contribute to the observed effects, but the impact of other components cannot be ruled out.
Collapse
Affiliation(s)
- Alan Ramalho
- School of Nutrition, Faculty of Agricultural and Food Sciences, Université Laval, Laval, QC G1V 0A6, Canada; (A.R.); (A.T.)
- Institute of Nutrition and Functional Foods, Université Laval, Laval, QC G1V 0A6, Canada; (N.L.); (A.M.)
| | - Nadine Leblanc
- Institute of Nutrition and Functional Foods, Université Laval, Laval, QC G1V 0A6, Canada; (N.L.); (A.M.)
| | - Marie-Gil Fortin
- Fisheries and Aquaculture Innovation Centre, Merinov, Gaspé, QC G4X 2V6, Canada;
| | - André Marette
- Institute of Nutrition and Functional Foods, Université Laval, Laval, QC G1V 0A6, Canada; (N.L.); (A.M.)
- Quebec Heart and Lung Institute, Université Laval, Laval, QC G1V 4G5, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Laval, QC G1V 0A6, Canada
| | - André Tchernof
- School of Nutrition, Faculty of Agricultural and Food Sciences, Université Laval, Laval, QC G1V 0A6, Canada; (A.R.); (A.T.)
- Quebec Heart and Lung Institute, Université Laval, Laval, QC G1V 4G5, Canada
| | - Hélène Jacques
- School of Nutrition, Faculty of Agricultural and Food Sciences, Université Laval, Laval, QC G1V 0A6, Canada; (A.R.); (A.T.)
- Institute of Nutrition and Functional Foods, Université Laval, Laval, QC G1V 0A6, Canada; (N.L.); (A.M.)
| |
Collapse
|
18
|
Kalupahana NS, Goonapienuwala BL, Moustaid-Moussa N. Omega-3 Fatty Acids and Adipose Tissue: Inflammation and Browning. Annu Rev Nutr 2020; 40:25-49. [DOI: 10.1146/annurev-nutr-122319-034142] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
White adipose tissue (WAT) and brown adipose tissue (BAT) are involved in whole-body energy homeostasis and metabolic regulation. Changes to mass and function of these tissues impact glucose homeostasis and whole-body energy balance during development of obesity, weight loss, and subsequent weight regain. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs), which have known hypotriglyceridemic and cardioprotective effects, can also impact WAT and BAT function. In rodent models, these fatty acids alleviate obesity-associated WAT inflammation, improve energy metabolism, and increase thermogenic markers in BAT. Emerging evidence suggests that ω-3 PUFAs can also modulate gut microbiota impacting WAT function and adiposity. This review discusses molecular mechanisms, implications of these findings, translation to humans, and future work, especially with reference to the potential of these fatty acids in weight loss maintenance.
Collapse
Affiliation(s)
- Nishan Sudheera Kalupahana
- Department of Physiology, Faculty of Medicine, University of Peradeniya, Peradeniya, 20400, Sri Lanka
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, Texas 79409-1270, USA;,
| | - Bimba Lakmini Goonapienuwala
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, Texas 79409-1270, USA;,
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, Texas 79409-1270, USA;,
| |
Collapse
|
19
|
Kroupova P, van Schothorst EM, Keijer J, Bunschoten A, Vodicka M, Irodenko I, Oseeva M, Zacek P, Kopecky J, Rossmeisl M, Horakova O. Omega-3 Phospholipids from Krill Oil Enhance Intestinal Fatty Acid Oxidation More Effectively than Omega-3 Triacylglycerols in High-Fat Diet-Fed Obese Mice. Nutrients 2020; 12:nu12072037. [PMID: 32660007 PMCID: PMC7400938 DOI: 10.3390/nu12072037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Antisteatotic effects of omega-3 fatty acids (Omega-3) in obese rodents seem to vary depending on the lipid form of their administration. Whether these effects could reflect changes in intestinal metabolism is unknown. Here, we compare Omega-3-containing phospholipids (krill oil; ω3PL-H) and triacylglycerols (ω3TG) in terms of their effects on morphology, gene expression and fatty acid (FA) oxidation in the small intestine. Male C57BL/6N mice were fed for 8 weeks with a high-fat diet (HFD) alone or supplemented with 30 mg/g diet of ω3TG or ω3PL-H. Omega-3 index, reflecting the bioavailability of Omega-3, reached 12.5% and 7.5% in the ω3PL-H and ω3TG groups, respectively. Compared to HFD mice, ω3PL-H but not ω3TG animals had lower body weight gain (−40%), mesenteric adipose tissue (−43%), and hepatic lipid content (−64%). The highest number and expression level of regulated intestinal genes was observed in ω3PL-H mice. The expression of FA ω-oxidation genes was enhanced in both Omega-3-supplemented groups, but gene expression within the FA β-oxidation pathway and functional palmitate oxidation in the proximal ileum was significantly increased only in ω3PL-H mice. In conclusion, enhanced intestinal FA oxidation could contribute to the strong antisteatotic effects of Omega-3 when administered as phospholipids to dietary obese mice.
Collapse
Affiliation(s)
- Petra Kroupova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (P.K.); (I.I.); (M.O.); (J.K.)
| | - Evert M. van Schothorst
- Human and Animal Physiology, Wageningen University, 6708 WD Wageningen, The Netherlands; (E.M.v.S.); (J.K.); (A.B.)
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, 6708 WD Wageningen, The Netherlands; (E.M.v.S.); (J.K.); (A.B.)
| | - Annelies Bunschoten
- Human and Animal Physiology, Wageningen University, 6708 WD Wageningen, The Netherlands; (E.M.v.S.); (J.K.); (A.B.)
| | - Martin Vodicka
- Laboratory of Epithelial Physiology, Institute of Physiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Ilaria Irodenko
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (P.K.); (I.I.); (M.O.); (J.K.)
| | - Marina Oseeva
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (P.K.); (I.I.); (M.O.); (J.K.)
| | - Petr Zacek
- Proteomics Core Facility, Faculty of Science, Charles University, Division BIOCEV, 25250 Vestec, Czech Republic;
| | - Jan Kopecky
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (P.K.); (I.I.); (M.O.); (J.K.)
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (P.K.); (I.I.); (M.O.); (J.K.)
- Correspondence: (M.R.); (O.H.); Tel.: +420-296443706 (M.R. & O.H.); Fax: +420 296442599 (M.R. & O.H.)
| | - Olga Horakova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic; (P.K.); (I.I.); (M.O.); (J.K.)
- Correspondence: (M.R.); (O.H.); Tel.: +420-296443706 (M.R. & O.H.); Fax: +420 296442599 (M.R. & O.H.)
| |
Collapse
|
20
|
de Souza T, Vargas da Silva S, Fonte-Faria T, Nascimento-Silva V, Barja-Fidalgo C, Citelli M. Chia oil induces browning of white adipose tissue in high-fat diet-induced obese mice. Mol Cell Endocrinol 2020; 507:110772. [PMID: 32114022 DOI: 10.1016/j.mce.2020.110772] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/03/2020] [Accepted: 02/24/2020] [Indexed: 01/10/2023]
Abstract
Previous research suggests that omega-3 fatty acids from animal origin may promote the browning of subcutaneous white adipose tissue. We evaluated if supplementation with a plant oil (chia, Salvia hispanica L.) rich in alpha-linolenic fatty acid (C18:3; ω-3) would promote browning and improve glucose metabolism in animals subjected to an obesogenic diet. Swiss male mice (n = 28) were divided into 4 groups: C: control diet; H: high-fat diet; HC: animals in the H group supplemented with chia oil after reaching obesity; HCW: animals fed since weaning on a high-fat diet supplemented with chia oil. Glucose tolerance, inflammatory markers, and expression of genes and proteins involved in the browning process were examined. When supplemented since weaning, chia oil improved glucose metabolism and promoted the browning process and a healthier phenotype. Results of this study suggested that chia oil has potential to protect against the development of obesity-related diseases.
Collapse
Affiliation(s)
- Thamiris de Souza
- Institute of Nutrition, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, RJ, Brazil
| | | | - Thaís Fonte-Faria
- Department of Cellular Biology, Rio de Janeiro State University, RJ, Brazil
| | | | | | - Marta Citelli
- Institute of Nutrition, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, RJ, Brazil.
| |
Collapse
|
21
|
Sato H, Taketomi Y, Miki Y, Murase R, Yamamoto K, Murakami M. Secreted Phospholipase PLA2G2D Contributes to Metabolic Health by Mobilizing ω3 Polyunsaturated Fatty Acids in WAT. Cell Rep 2020; 31:107579. [DOI: 10.1016/j.celrep.2020.107579] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 11/18/2019] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
|
22
|
Rossmeisl M, Pavlisova J, Bardova K, Kalendova V, Buresova J, Kuda O, Kroupova P, Stankova B, Tvrzicka E, Fiserova E, Horakova O, Kopecky J. Increased plasma levels of palmitoleic acid may contribute to beneficial effects of Krill oil on glucose homeostasis in dietary obese mice. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158732. [PMID: 32371092 DOI: 10.1016/j.bbalip.2020.158732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/15/2020] [Accepted: 04/27/2020] [Indexed: 01/17/2023]
Abstract
Omega-3 polyunsatuarted fatty acids (PUFA) are associated with hypolipidemic and anti-inflammatory effects. However, omega-3 PUFA, usually administered as triacylglycerols or ethyl esters, could also compromise glucose metabolism, especially in obese type 2 diabetics. Phospholipids represent an alternative source of omega-3 PUFA, but their impact on glucose homeostasis is poorly explored. Male C57BL/6N mice were fed for 8 weeks a corn oil-based high-fat diet (cHF) alone or cHF-based diets containing eicosapentaenoic acid and docosahexaenoic acid (~3%; wt/wt), admixed either as a concentrate of re-esterified triacylglycerols (ω3TG) or Krill oil containing mainly phospholipids (ω3PL). Lean controls were fed a low-fat diet. Insulin sensitivity (hyperinsulinemic-euglycemic clamps), parameters of glucose homeostasis, adipose tissue function, and plasma levels of N-acylethanolamines, monoacylglycerols and fatty acids were determined. Feeding cHF induced obesity and worsened (~4.3-fold) insulin sensitivity as determined by clamp. Insulin sensitivity was almost preserved in ω3PL but not ω3TG mice. Compared with cHF mice, endogenous glucose production was reduced to 47%, whereas whole-body and muscle glycogen synthesis increased ~3-fold in ω3PL mice that showed improved adipose tissue function and elevated plasma adiponectin levels. Besides eicosapentaenoic and docosapentaenoic acids, principal component analysis of plasma fatty acids identified palmitoleic acid (C16:1n-7) as the most discriminating analyte whose levels were increased in ω3PL mice and correlated negatively with the degree of cHF-induced glucose intolerance. While palmitoleic acid from Krill oil may help improve glucose homeostasis, our findings provide a general rationale for using omega-3 PUFA-containing phospholipids as nutritional supplements with potent insulin-sensitizing effects.
Collapse
Affiliation(s)
- Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic.
| | - Jana Pavlisova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Kristina Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Veronika Kalendova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Jana Buresova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Ondrej Kuda
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Petra Kroupova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Barbora Stankova
- 4th Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Eva Tvrzicka
- 4th Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Eva Fiserova
- Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Olga Horakova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Jan Kopecky
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| |
Collapse
|
23
|
Rodríguez M, G Rebollar P, Mattioli S, Castellini C. n-3 PUFA Sources (Precursor/Products): A Review of Current Knowledge on Rabbit. Animals (Basel) 2019; 9:ani9100806. [PMID: 31618904 PMCID: PMC6827073 DOI: 10.3390/ani9100806] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/27/2019] [Accepted: 10/09/2019] [Indexed: 01/01/2023] Open
Abstract
This review compares the effects of different n-3 polyunsaturated fatty acid (PUFA) sources on biological activity, physiological/reproductive endpoints, and health implications with a special emphasis on a rabbit case study. Linoleic acid (LA) and α-linolenic acid (ALA) are members of two classes of PUFAs, namely the n-6 and n-3 series, which are required for normal human health. Both are considered precursors of a cascade of molecules (eicosanoids), which take part in many biological processes (inflammation, vasoconstriction/vasodilation, thromboregulation, etc.). However, their biological functions are opposite and are mainly related to the form (precursor or long-chain products) in which they were administered and to the enzyme-substrate preference. ALA is widely present in common vegetable oils and foods, marine algae, and natural herbs, whereas its long-chain PUFA derivatives are available mainly in fish and animal product origins. Recent studies have shown that the accumulation of n-3 PUFAs seems mostly to be tissue-dependent and acts in a tissue-selective manner. Furthermore, dietary n-3 PUFAs widely affect the lipid oxidation susceptibility of all tissues. In conclusion, sustainable sources of n-3 PUFAs are limited and exert a different effect about (1) the form in which they are administered, precursor or derivatives; (2) their antioxidant protections; and (3) the purpose to be achieved (health improvement, physiological and reproductive traits, metabolic pathways, etc.).
Collapse
Affiliation(s)
- María Rodríguez
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Pilar G Rebollar
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Simona Mattioli
- Department of Agricultural, Environmental and Food Science, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy.
| | - Cesare Castellini
- Department of Agricultural, Environmental and Food Science, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy.
| |
Collapse
|
24
|
Hill EM, Esper RM, Sen A, Simon BR, Aslam MN, Jiang Y, Dame MK, McClintock SD, Colacino JA, Djuric Z, Wicha MS, Smith WL, Brenner DE. Dietary polyunsaturated fatty acids modulate adipose secretome and is associated with changes in mammary epithelial stem cell self-renewal. J Nutr Biochem 2019; 71:45-53. [PMID: 31272031 PMCID: PMC6917480 DOI: 10.1016/j.jnutbio.2019.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
Chronic low-grade adipose inflammation, characterized by aberrant adipokine production and pro-inflammatory macrophage activation/polarization is associated with increased risk of breast cancer. Adipocyte fatty acid composition is influenced by dietary availability and may regulate adipokine secretion and adipose inflammation. After feeding F344 rats for 20 weeks with a Western diet or a fish oil-supplemented diet, we cultured primary rat adipose tissue in a three-dimensional explant culture and collected the conditioned medium. The rat adipose tissue secretome was assayed using the Proteome Profiler Cytokine XL Array, and adipose tissue macrophage polarization (M1/M2 ratio) was assessed using the iNOS/ARG1 ratio. We then assessed the adipokine's effects upon stem cell self-renewal using primary human mammospheres from normal breast mammoplasty tissue. Adipose from rats fed the fish oil diet had an ω-3:ω-6 fatty acid ratio of 0.28 compared to 0.04 in Western diet rats. The adipokine profile from the fish oil-fed rats was shifted toward adipokines associated with reduced inflammation compared to the rats fed the Western diet. The M1/M2 macrophage ratio decreased by 50% in adipose of fish oil-fed rats compared to that from rats fed the Western diet. Conditioned media from rats fed the high ω-6 Western diet increased stem cell self-renewal by 62%±9% (X¯%±SD) above baseline compared to only an 11%±11% increase with the fish oil rat adipose. Modulating the adipokine secretome with dietary interventions therefore may alter stromal-epithelial signaling that plays a role in controlling mammary stem cell self-renewal.
Collapse
Affiliation(s)
- Evan M Hill
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Raymond M Esper
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ananda Sen
- Department of Family Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Becky R Simon
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Muhammad N Aslam
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yan Jiang
- MD Anderson Cancer Center, Houston, TX, USA
| | - Michael K Dame
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Shannon D McClintock
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Justin A Colacino
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Zora Djuric
- Department of Family Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Max S Wicha
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - William L Smith
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dean E Brenner
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
25
|
Zhuang P, Lu Y, Shou Q, Mao L, He L, Wang J, Chen J, Zhang Y, Jiao J. Differential Anti-Adipogenic Effects of Eicosapentaenoic and Docosahexaenoic Acids in Obesity. Mol Nutr Food Res 2019; 63:e1801135. [PMID: 31140724 DOI: 10.1002/mnfr.201801135] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 04/25/2019] [Indexed: 12/19/2022]
Abstract
SCOPE To assess the associations of plasma eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) with body fat in a population-based sample and explore the mechanism of action based on browning of white adipose tissue (WAT) in high-fat-diet-induced obese (DIO) mice and 3T3-L1 adipocytes. METHODS AND RESULTS Plasma EPA and DHA of 1719 adults in the National Health and Nutrition Examination Survey (2003-2004) are determined by gas chromatography mass spectrometry, while total body fat is measured by dual-energy X-ray absorptiometry. DIO mice are fed a high-fat diet supplemented with EPA or DHA (1% wt/wt) for 15 weeks and 3T3-L1 preadipocytes are treated with EPA or DHA during differentiation. Plasma DHA but not EPA is associated with lower body fat mass (ptrend < 0.0001), which persists in overweight/obese subjects (ptrend = 0.02). DHA supplementation reduces inguinal WAT and exhibits a more pronounced thermogenic effect than EPA in DIO mice. In vitro, the browning process is induced after 2-day and 6-day treatment with DHA and EPA, respectively. CONCLUSION Plasma DHA but not EPA is inversely associated with body fat mass. The more potent anti-adipogenic effect of DHA than EPA may involve a better capability of inducing browning of WAT for DHA.
Collapse
Affiliation(s)
- Pan Zhuang
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yanhua Lu
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, 311121, Zhejiang, China
| | - Qiyang Shou
- Experimental Animal Research Center & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Lei Mao
- Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Lilin He
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jun Wang
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jingnan Chen
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yu Zhang
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| |
Collapse
|
26
|
Alzoubi KH, Mayyas F, Abu Zamzam HI. Omega-3 fatty acids protects against chronic sleep-deprivation induced memory impairment. Life Sci 2019; 227:1-7. [PMID: 30998938 DOI: 10.1016/j.lfs.2019.04.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/05/2019] [Accepted: 04/13/2019] [Indexed: 12/17/2022]
Abstract
AIMS The current study aims to evaluate the possible protective effect of omega-3 fatty acids on memory impairment induced by sleep-deprivation in rats. MATERIALS AND METHODS Animals were chronically sleep deprived using the modified multiple platform model (8 h/day for 8 weeks). Omega-3 fatty acids were administered as fish oil via oral gavage at a daily dose of 100 mg omega-3 PUFA/100 g BWT. The spatial learning and memory were evaluated using the radial arm water maze (RAWM). Additionally, the following oxidative stress biomarkers were measured in the hippocampus: glutathione (GSH), oxidized glutathione (GSSG), GSH/GSSG, glutathione peroxidase (GPx), catalase, superoxide dismutase (SOD), and thiobarbituric acid reactive substance (TBARS). KEY FINDINGS Animals in the SD group committed significantly more errors in both short- and long- term memory tests of the RAWM compared to other groups. On the other hand, animals that were sleep deprived and treated with omega-3 fatty acids committed similar number of errors compared to the control group. This indicates that SD impaired both short- and long- term memories, and that chronic omega-3 fatty acids administration prevented these effects. Omega-3 fatty acids also prevented the decreases in hippocampal GPx, catalase and GSH/GSSG ratio and normalized the increases in GSSG levels, which were impaired by SD model. No changes were observed on hippocampal TBARS levels, or activity of SOD among experimental groups. SIGNIFICANCE In conclusion, a protective effect of omega-3 fatty acids administration has been observed against chronic SD-induced memory impairment probably via improving hippocampus antioxidant effects.
Collapse
Affiliation(s)
- Karem H Alzoubi
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan.
| | - Fadia Mayyas
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Hamza I Abu Zamzam
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
27
|
Reduced Number of Adipose Lineage and Endothelial Cells in Epididymal fat in Response to Omega-3 PUFA in Mice Fed High-Fat Diet. Mar Drugs 2018; 16:md16120515. [PMID: 30567329 PMCID: PMC6316446 DOI: 10.3390/md16120515] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 02/06/2023] Open
Abstract
We found previously that white adipose tissue (WAT) hyperplasia in obese mice was limited by dietary omega-3 polyunsaturated fatty acids (omega-3 PUFA). Here we aimed to characterize the underlying mechanism. C57BL/6N mice were fed a high-fat diet supplemented or not with omega-3 PUFA for one week or eight weeks; mice fed a standard chow diet were also used. In epididymal WAT (eWAT), DNA content was quantified, immunohistochemical analysis was used to reveal the size of adipocytes and macrophage content, and lipidomic analysis and a gene expression screen were performed to assess inflammatory status. The stromal-vascular fraction of eWAT, which contained most of the eWAT cells, except for adipocytes, was characterized using flow cytometry. Omega-3 PUFA supplementation limited the high-fat diet-induced increase in eWAT weight, cell number (DNA content), inflammation, and adipocyte growth. eWAT hyperplasia was compromised due to the limited increase in the number of preadipocytes and a decrease in the number of endothelial cells. The number of leukocytes and macrophages was unaffected, but a shift in macrophage polarization towards a less inflammatory phenotype was observed. Our results document that the counteraction of eWAT hyperplasia by omega-3 PUFA in dietary-obese mice reflects an effect on the number of adipose lineage and endothelial cells.
Collapse
|
28
|
Løvsletten NG, Bakke SS, Kase ET, Ouwens DM, Thoresen GH, Rustan AC. Increased triacylglycerol - Fatty acid substrate cycling in human skeletal muscle cells exposed to eicosapentaenoic acid. PLoS One 2018; 13:e0208048. [PMID: 30496314 PMCID: PMC6264501 DOI: 10.1371/journal.pone.0208048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/09/2018] [Indexed: 11/18/2022] Open
Abstract
It has previously been shown that pretreatment of differentiated human skeletal muscle cells (myotubes) with eicosapentaenoic acid (EPA) promoted increased uptake of fatty acids and increased triacylglycerol accumulation, compared to pretreatment with oleic acid (OA) and palmitic acid (PA). The aim of the present study was to examine whether EPA could affect substrate cycling in human skeletal muscle cells by altering lipolysis rate of intracellular TAG and re-esterification of fatty acids. Fatty acid metabolism was studied in human myotubes using a mixture of fatty acids, consisting of radiolabelled oleic acid as tracer (14C-OA) together with EPA or PA. Co-incubation of myotubes with EPA increased cell-accumulation and incomplete fatty acid oxidation of 14C-OA compared to co-incubation with PA. Lipid distribution showed higher incorporation of 14C-OA into all cellular lipids after co-incubation with EPA relative to PA, with most markedly increases (3 to 4-fold) for diacylglycerol and triacylglycerol. Further, the increases in cellular lipids after co-incubation with EPA were accompanied by higher lipolysis and fatty acid re-esterification rate. Correspondingly, basal respiration, proton leak and maximal respiration were significantly increased in cells exposed to EPA compared to PA. Microarray and Gene Ontology (GO) enrichment analysis showed that EPA, related to PA, significantly changed i.e. the GO terms "Neutral lipid metabolic process" and "Regulation of lipid storage". Finally, an inhibitor of diacylglycerol acyltransferase 1 decreased the effect of EPA to promote fatty acid accumulation. In conclusion, incubation of human myotubes with EPA, compared to PA, increased processes of fatty acid turnover and oxidation suggesting that EPA may activate futile substrate cycling of fatty acids in human myotubes. Increased TAG-FA cycling may be involved in the potentially favourable effects of long-chain polyunsaturated n-3 fatty acids on skeletal muscle and whole-body energy metabolism.
Collapse
Affiliation(s)
- Nils G. Løvsletten
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
- * E-mail:
| | - Siril S. Bakke
- Centre of Molecular Inflammation Research, and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Eili T. Kase
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - D. Margriet Ouwens
- German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - G. Hege Thoresen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Arild C. Rustan
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
29
|
Kuda O, Brezinova M, Silhavy J, Landa V, Zidek V, Dodia C, Kreuchwig F, Vrbacky M, Balas L, Durand T, Hübner N, Fisher AB, Kopecky J, Pravenec M. Nrf2-Mediated Antioxidant Defense and Peroxiredoxin 6 Are Linked to Biosynthesis of Palmitic Acid Ester of 9-Hydroxystearic Acid. Diabetes 2018; 67:1190-1199. [PMID: 29549163 PMCID: PMC6463562 DOI: 10.2337/db17-1087] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 03/08/2018] [Indexed: 12/12/2022]
Abstract
Fatty acid esters of hydroxy fatty acids (FAHFAs) are lipid mediators with promising antidiabetic and anti-inflammatory properties that are formed in white adipose tissue (WAT) via de novo lipogenesis, but their biosynthetic enzymes are unknown. Using a combination of lipidomics in WAT, quantitative trait locus mapping, and correlation analyses in rat BXH/HXB recombinant inbred strains, as well as response to oxidative stress in murine models, we elucidated the potential pathway of biosynthesis of several FAHFAs. Comprehensive analysis of WAT samples identified ∼160 regioisomers, documenting the complexity of this lipid class. The linkage analysis highlighted several members of the nuclear factor, erythroid 2 like 2 (Nrf2)-mediated antioxidant defense system (Prdx6, Mgst1, Mgst3), lipid-handling proteins (Cd36, Scd6, Acnat1, Acnat2, Baat), and the family of flavin containing monooxygenases (Fmo) as the positional candidate genes. Transgenic expression of Nrf2 and deletion of Prdx6 genes resulted in reduction of palmitic acid ester of 9-hydroxystearic acid (9-PAHSA) and 11-PAHSA levels, while oxidative stress induced by an inhibitor of glutathione synthesis increased PAHSA levels nonspecifically. Our results indicate that the synthesis of FAHFAs via carbohydrate-responsive element-binding protein-driven de novo lipogenesis depends on the adaptive antioxidant system and suggest that FAHFAs may link activity of this system with insulin sensitivity in peripheral tissues.
Collapse
Affiliation(s)
- Ondrej Kuda
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Marie Brezinova
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Silhavy
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimir Landa
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Vaclav Zidek
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Chandra Dodia
- Institute for Environmental Medicine and Department of Physiology, University of Pennsylvania, Philadelphia, PA
| | - Franziska Kreuchwig
- Max Delbrück Center for Molecular Medicine, German Centre for Cardiovascular Research, and Charité - Universitätsmedizin, Berlin, Germany
| | - Marek Vrbacky
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Laurence Balas
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université Montpellier, ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université Montpellier, ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Norbert Hübner
- Max Delbrück Center for Molecular Medicine, German Centre for Cardiovascular Research, and Charité - Universitätsmedizin, Berlin, Germany
| | - Aron B Fisher
- Institute for Environmental Medicine and Department of Physiology, University of Pennsylvania, Philadelphia, PA
| | - Jan Kopecky
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
30
|
Abstract
The current paradigms of prevention and treatment are unable to curb obesity rates, which indicates the need to explore alternative therapeutic approaches. Obesity leads to several damages to the body and is an important risk factor for a number of other chronic diseases. Furthermore, despite the first alterations in obesity being observed and reported in peripheral tissues, studies indicate that obesity can also cause brain damage. Obesity leads to a chronic low-grade inflammatory state, and the therapeutic manipulation of inflammation can be explored. In this context, the use of n-3 PUFA (especially in the form of fish oil, rich in EPA and DHA) may be an interesting strategy, as this substance is known by its anti-inflammatory effect and numerous benefits to the body, such as reduction of TAG, cardiac arrhythmias, blood pressure and platelet aggregation, and has shown potential to help treat obesity. Thereby, the aim of this narrative review was to summarise the literature related to n-3 PUFA use in obesity treatment. First, the review provides a brief description of the obesity pathophysiology, including alterations that occur in peripheral tissues and at the central nervous system. In the sequence, we describe what are n-3 PUFA, their sources and their general effects. Finally, we explore the main topic linking obesity and n-3 PUFA. Animal and human studies were included and alterations on the whole organism were described (peripheral tissues and brain).
Collapse
|
31
|
Abstract
Numerous studies have shown that feeding rodents n-3 polyunsaturated fatty acids attenuates adiposity. Moreover, meta-analyses of human dietary intervention studies indicate that fish oil (eicosapentaenoic and docosahexaenoic acid) supplementation might reduce waist circumference. A recent line of research suggests that browning of white adipose depots and activation of uncoupled respiration in brown fat contributes to these effects. This mini-review summarizes the observations in rodents, highlights several mechanisms that might explain these observations and discusses the translational potential. Given the available in vivo evidence and the ability of human adipocytes to aquire a beige phenotype in response to eicosapentaenoic acid incubation, future studies should test the hypothesis that fish oil activates thermogenic brown and beige adipose tissue in humans.
Collapse
Affiliation(s)
- Jens Lund
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Lesli Hingstrup Larsen
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Lotte Lauritzen
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
32
|
Albracht-Schulte K, Kalupahana NS, Ramalingam L, Wang S, Rahman SM, Robert-McComb J, Moustaid-Moussa N. Omega-3 fatty acids in obesity and metabolic syndrome: a mechanistic update. J Nutr Biochem 2018; 58:1-16. [PMID: 29621669 DOI: 10.1016/j.jnutbio.2018.02.012] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/24/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023]
Abstract
Strategies to reduce obesity have become public health priorities as the prevalence of obesity has risen in the United States and around the world. While the anti-inflammatory and hypotriglyceridemic properties of long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs) are well known, their antiobesity effects and efficacy against metabolic syndrome, especially in humans, are still under debate. In animal models, evidence consistently suggests a role for n-3 PUFAs in reducing fat mass, particularly in the retroperitoneal and epididymal regions. In humans, however, published research suggests that though n-3 PUFAs may not aid weight loss, they may attenuate further weight gain and could be useful in the diet or as a supplement to help maintain weight loss. Proposed mechanisms by which n-3 PUFAs may work to improve body composition and counteract obesity-related metabolic changes include modulating lipid metabolism; regulating adipokines, such as adiponectin and leptin; alleviating adipose tissue inflammation; promoting adipogenesis and altering epigenetic mechanisms.
Collapse
Affiliation(s)
- Kembra Albracht-Schulte
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Cluster, Texas Tech University, Lubbock, TX, USA
| | - Nishan Sudheera Kalupahana
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Cluster, Texas Tech University, Lubbock, TX, USA; Department of Physiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka.
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Cluster, Texas Tech University, Lubbock, TX, USA
| | - Shu Wang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Cluster, Texas Tech University, Lubbock, TX, USA
| | - Shaikh Mizanoor Rahman
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Cluster, Texas Tech University, Lubbock, TX, USA
| | - Jacalyn Robert-McComb
- Obesity Research Cluster, Texas Tech University, Lubbock, TX, USA; Department of Kinesiology, Texas Tech University, Lubbock, TX, USA
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Cluster, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
33
|
Mendonça AM, Cayer LGJ, Pauls SD, Winter T, Leng S, Taylor CG, Zahradka P, Aukema HM. Distinct effects of dietary ALA, EPA and DHA on rat adipose oxylipins vary by depot location and sex. Prostaglandins Leukot Essent Fatty Acids 2018; 129:13-24. [PMID: 29482766 DOI: 10.1016/j.plefa.2017.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022]
Abstract
Dietary EPA and DHA given together alter oxylipins in adipose tissue. To compare the separate effects of individual dietary n-3 PUFA on oxylipins in different adipose depots (gonadal, mesenteric, perirenal, subcutaneous) in males and females, rats were provided diets containing higher levels of α-linolenic acid (ALA), EPA or DHA. Each n-3 PUFA enhanced its respective oxylipins the most, while effects on other n-3 oxylipins varied. For example: in perirenal and subcutaneous depots, more DHA oxylipins were higher with dietary ALA than with EPA; dietary EPA uniquely decreased 14-hydroxy-docosahexaenoic acid, in contrast to increasing many other DHA oxylipins. The n-3 PUFAs also reduced oxylipins from n-6 PUFAs in order of effectiveness: DHA > EPA > ALA. Diet by sex interactions in all depots except the perirenal depot resulted in higher oxylipins in males given DHA, and higher oxylipins in females given the other diets. Diet and sex effects on oxylipins did not necessarily reflect effects on either their tissue phospholipid or neutral lipid PUFA precursors. These varying diet and sex effects on oxylipins in the different adipose sites indicate that they may have distinct effects on adipose function.
Collapse
Affiliation(s)
- Anne M Mendonça
- School of Medicine, Federal University of Uberlândia, Brazil; Department of Food and Human Nutritional Sciences, University of Manitoba, Canada
| | - Lucien G J Cayer
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada
| | - Samantha D Pauls
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada
| | - Tanja Winter
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada
| | - Shan Leng
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada
| | - Carla G Taylor
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Research in Agri-Food Research in Health and Medicine, Winnipeg, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Canada
| | - Peter Zahradka
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Research in Agri-Food Research in Health and Medicine, Winnipeg, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Canada
| | - Harold M Aukema
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Research in Agri-Food Research in Health and Medicine, Winnipeg, Canada.
| |
Collapse
|
34
|
Kuda O, Rossmeisl M, Kopecky J. Omega-3 fatty acids and adipose tissue biology. Mol Aspects Med 2018; 64:147-160. [PMID: 29329795 DOI: 10.1016/j.mam.2018.01.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 12/16/2022]
Abstract
This review provides evidence for the importance of white and brown adipose tissue (i.e. WAT and BAT) function for the maintenance of healthy metabolic phenotype and its preservation in response to omega-3 polyunsaturated fatty acids (omega-3 PUFA), namely in the context of diseased states linked to aberrant accumulation of body fat, systemic low-grade inflammation, dyslipidemia and insulin resistance. More specifically, the review deals with (i) the concept of immunometabolism, i.e. how adipose-resident immune cells and adipocytes affect each other and define the immune-metabolic interface; and (ii) the characteristic features of "healthy adipocytes" in WAT, which are relatively small fat cells endowed with a high capacity for mitochondrial oxidative phosphorylation, triacylglycerol/fatty acid (TAG/FA) cycling and de novo lipogenesis (DNL). The intrinsic metabolic features of WAT and their flexible regulations, reflecting the presence of "healthy adipocytes", provide beneficial local and systemic effects, including (i) protection against in situ endoplasmic reticulum stress and related inflammatory response during activation of adipocyte lipolysis; (ii) prevention of ectopic fat accumulation and dyslipidemia caused by increased hepatic VLDL synthesis, as well as prevention of lipotoxic damage of insulin signaling in extra-adipose tissues; and also (iii) increased synthesis of anti-inflammatory and insulin-sensitizing lipid mediators with pro-resolving properties, including the branched fatty acid esters of hydroxy fatty acids (FAHFAs), also depending on the activity of DNL in WAT. The "healthy adipocytes" phenotype can be induced in WAT of obese mice in response to various stimuli including dietary omega-3 PUFA, especially when combined with moderate calorie restriction, and possibly also with other life style (e.g. physical activity) or pharmacological (e.g. thiazolidinediones) interventions. While omega-3 PUFA could exert beneficial systemic effects by improving immunometabolism of WAT without a concomitant induction of BAT, it is currently not clear whether the metabolic effects of the combined intervention using omega-3 PUFA and calorie restriction or thiazolidinediones depend also on the activation of BAT function and/or the induction of brite/beige adipocytes in WAT. It remains to be established why omega-3 PUFA intervention in type 2 diabetic subjects does not improve insulin sensitivity and glucose homeostasis despite inducing various anti-inflammatory mediators in WAT, including the recently discovered docosahexaenoyl esters of hydroxy linoleic acid, the lipokines from the FAHFA family, as well as several endocannabinoid-related anti-inflammatory lipids. To answer the question whether and to which extent omega-3 PUFA supplementation could promote the formation of "healthy adipocytes" in WAT of human subjects, namely in the obese insulin-resistant patients, represents a challenging task that is of great importance for the treatment of some serious non-communicable diseases.
Collapse
Affiliation(s)
- Ondrej Kuda
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska, 1083 Prague 4, Czech Republic
| | - Martin Rossmeisl
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska, 1083 Prague 4, Czech Republic
| | - Jan Kopecky
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska, 1083 Prague 4, Czech Republic.
| |
Collapse
|
35
|
Docosahexaenoic Acid in Combination with Dietary Energy Restriction for Reducing the Risk of Obesity Related Breast Cancer. Int J Mol Sci 2017; 19:ijms19010028. [PMID: 29271901 PMCID: PMC5795979 DOI: 10.3390/ijms19010028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 12/30/2022] Open
Abstract
There is strong evidence that obesity poses a significant risk factor for postmenopausal breast cancer. There are multiple mechanisms by which obesity can predispose to breast cancer, prominent among which is the creation of a pro-inflammatory milieu systemically in the visceral and subcutaneous tissue, as well as locally in the breast. Although dietary intervention studies have shown in general a favorable effect on biomarkers of breast cancer risk, it is still unclear whether losing excess weight will lower the risk. In this manuscript, we will review the evidence that omega-3 fatty acids, and among them docosahexaenoic acid (DHA) in particular, may reduce the risk of obesity related breast cancer primarily because of their pleotropic effects which target many of the systemic and local oncogenic pathways activated by excess weight. We will also review the evidence indicating that intentional weight loss (IWL) induced by dietary energy restriction (DER) will augment the tumor protective effect of DHA because of its complementary mechanisms of action and its ability to reverse the obesity-induced alterations in fatty acid metabolism predisposing to carcinogenesis. We believe that the combination of DER and DHA is a promising safe and effective intervention for reducing obesity-related breast cancer risk which needs to be validated in appropriately designed prospective, randomized clinical trials.
Collapse
|
36
|
Kumari M, Heeren J, Scheja L. Regulation of immunometabolism in adipose tissue. Semin Immunopathol 2017; 40:189-202. [PMID: 29209828 DOI: 10.1007/s00281-017-0668-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/22/2017] [Indexed: 12/14/2022]
|
37
|
Systems biology reveals uncoupling beyond UCP1 in human white fat-derived beige adipocytes. NPJ Syst Biol Appl 2017; 3:29. [PMID: 28983409 PMCID: PMC5626775 DOI: 10.1038/s41540-017-0027-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/04/2017] [Accepted: 08/23/2017] [Indexed: 01/08/2023] Open
Abstract
Pharmaceutical induction of metabolically active beige adipocytes in the normally energy storing white adipose tissue has potential to reduce obesity. Mitochondrial uncoupling in beige adipocytes, as in brown adipocytes, has been reported to occur via the uncoupling protein 1 (UCP1). However, several previous in vitro characterizations of human beige adipocytes have only measured UCP1 mRNA fold increase, and assumed a direct correlation with metabolic activity. Here, we provide an example of pharmaceutical induction of beige adipocytes, where increased mRNA levels of UCP1 are not translated into increased protein levels, and perform a thorough analysis of this example. We incorporate mRNA and protein levels of UCP1, time-resolved mitochondrial characterizations, and numerous perturbations, and analyze all data with a new fit-for-purpose mathematical model. The systematic analysis challenges the seemingly obvious experimental conclusion, i.e., that UCP1 is not active in the induced cells, and shows that hypothesis testing with iterative modeling and experimental work is needed to sort out the role of UCP1. The analyses demonstrate, for the first time, that the uncoupling capability of human beige adipocytes can be obtained without UCP1 activity. This finding thus opens the door to a new direction in drug discovery that targets obesity and its associated comorbidities. Furthermore, the analysis advances our understanding of how to evaluate UCP1-independent thermogenesis in human beige adipocytes.
Collapse
|
38
|
Marine Lipids on Cardiovascular Diseases and Other Chronic Diseases Induced by Diet: An Insight Provided by Proteomics and Lipidomics. Mar Drugs 2017; 15:md15080258. [PMID: 28820493 PMCID: PMC5577612 DOI: 10.3390/md15080258] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 12/21/2022] Open
Abstract
Marine lipids, especially ω-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have largely been linked to prevention of diet-induced diseases. The anti-inflammatory and hypolipidemic properties of EPA and DHA supplementation have been well-described. However, there is still a significant lack of information about their particular mechanism of action. Furthermore, repeated meta-analyses have not shown conclusive results in support of their beneficial health effects. Modern "omics" approaches, namely proteomics and lipidomics, have made it possible to identify some of the mechanisms behind the benefits of marine lipids in the metabolic syndrome and related diseases, i.e., cardiovascular diseases and type 2 diabetes. Although until now their use has been scarce, these "omics" have brought new insights in this area of nutrition research. The purpose of the present review is to comprehensively show the research articles currently available in the literature which have specifically applied proteomics, lipidomics or both approaches to investigate the role of marine lipids intake in the prevention or palliation of these chronic pathologies related to diet. The methodology adopted, the class of marine lipids examined, the diet-related disease studied, and the main findings obtained in each investigation will be reviewed.
Collapse
|
39
|
Rombaldova M, Janovska P, Kopecky J, Kuda O. Omega-3 fatty acids promote fatty acid utilization and production of pro-resolving lipid mediators in alternatively activated adipose tissue macrophages. Biochem Biophys Res Commun 2017; 490:1080-1085. [PMID: 28668396 DOI: 10.1016/j.bbrc.2017.06.170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 12/31/2022]
Abstract
It is becoming increasingly apparent that mutual interactions between adipocytes and immune cells are key to the integrated control of adipose tissue inflammation and lipid metabolism in obesity, but little is known about the non-inflammatory functions of adipose tissue macrophages (ATMs) and how they might be impacted by neighboring adipocytes. In the current study we used metabolipidomic analysis to examine the adaptations to lipid overload of M1 or M2 polarized macrophages co-incubated with adipocytes and explored potential benefits of omega-3 polyunsaturated fatty acids (PUFA). Macrophages adjust their metabolism to process excess lipids and M2 macrophages in turn modulate lipolysis and fatty acids (FA) re-esterification of adipocytes. While M1 macrophages tend to store surplus FA as triacylglycerols and cholesteryl esters in lipid droplets, M2 macrophages channel FA toward re-esterification and β-oxidation. Dietary omega-3 PUFA enhance β-oxidation in both M1 and M2. Our data document that ATMs contribute to lipid trafficking in adipose tissue and that omega-3 PUFA could modulate FA metabolism of ATMs.
Collapse
Affiliation(s)
- Martina Rombaldova
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Praha 4, Czech Republic; Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, Albertov 2030, 128 43 Prague, Czech Republic
| | - Petra Janovska
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Praha 4, Czech Republic
| | - Jan Kopecky
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Praha 4, Czech Republic
| | - Ondrej Kuda
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Praha 4, Czech Republic.
| |
Collapse
|
40
|
Flachs P, Adamcova K, Zouhar P, Marques C, Janovska P, Viegas I, Jones JG, Bardova K, Svobodova M, Hansikova J, Kuda O, Rossmeisl M, Liisberg U, Borkowska AG, Kristiansen K, Madsen L, Kopecky J. Induction of lipogenesis in white fat during cold exposure in mice: link to lean phenotype. Int J Obes (Lond) 2016; 41:372-380. [PMID: 28008171 DOI: 10.1038/ijo.2016.228] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/10/2016] [Accepted: 11/24/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND/OBJECTIVE Futile substrate cycling based on lipolytic release of fatty acids (FA) from intracellular triacylglycerols (TAG) and their re-esterification (TAG/FA cycling), as well as de novo FA synthesis (de novo lipogenesis (DNL)), represent the core energy-consuming biochemical activities of white adipose tissue (WAT). We aimed to characterize their roles in cold-induced thermogenesis and energy homeostasis. METHODS Male obesity-resistant A/J and obesity-prone C57BL/6J mice maintained at 30 °C were exposed to 6 °C for 2 or 7 days. In epididymal WAT (eWAT), TAG synthesis and DNL were determined using in vivo 2H incorporation from 2H2O into tissue TAG and nuclear magnetic resonance spectroscopy. Quantitative real-time-PCR and/or immunohistochemistry and western blotting were used to determine the expression of selected genes and proteins in WAT and liver. RESULTS The mass of WAT depots declined during cold exposure (CE). Plasma levels of TAG and non-esterified FA were decreased by day 2 but tended to normalize by day 7 of CE. TAG synthesis (reflecting TAG/FA cycle activity) gradually increased during CE. DNL decreased by day 2 of CE but increased several fold over the control values by day 7. Expression of genes involved in lipolysis, glyceroneogenesis, FA re-esterification, FA oxidation and mitochondrial biogenesis in eWAT was induced during CE. All these changes were more pronounced in obesity-resistant A/J than in B6 mice and occurred in the absence of uncoupling protein 1 in eWAT. Expression of markers of glyceroneogenesis in eWAT correlated negatively with hepatic FA synthesis by day 7 in both strains. Leptin and fibroblast growth factor 21 plasma levels were differentially affected by CE in the two mouse strains. CONCLUSIONS Our results indicate integrated involvement of (i) TAG/FA cycling and DNL in WAT, and (ii) hepatic very-low-density lipoprotein-TAG synthesis in the control of blood lipid levels and provision of FA fuels for thermogenesis in cold. They suggest that lipogenesis in WAT contributes to a lean phenotype.
Collapse
Affiliation(s)
- P Flachs
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - K Adamcova
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - P Zouhar
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - C Marques
- Centre for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
| | - P Janovska
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - I Viegas
- Centre for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
| | - J G Jones
- Centre for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
| | - K Bardova
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - M Svobodova
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - J Hansikova
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - O Kuda
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - M Rossmeisl
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - U Liisberg
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - A G Borkowska
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - K Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,BGI-Shenzhen, Shenzhen, China
| | - L Madsen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - J Kopecky
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
41
|
Okemoto K, Maekawa K, Tajima Y, Tohkin M, Saito Y. Cross-Classification of Human Urinary Lipidome by Sex, Age, and Body Mass Index. PLoS One 2016; 11:e0168188. [PMID: 27973561 PMCID: PMC5156423 DOI: 10.1371/journal.pone.0168188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 11/29/2016] [Indexed: 12/17/2022] Open
Abstract
Technological advancements in past decades have led to the development of integrative analytical approaches to lipidomics, such as liquid chromatography-mass spectrometry (LC/MS), and information about biogenic lipids is rapidly accumulating. Although several cohort-based studies have been conducted on the composition of urinary lipidome, the data on urinary lipids cross-classified by sex, age, and body mass index (BMI) are insufficient to screen for various abnormalities. To promote the development of urinary lipid metabolome-based diagnostic assay, we analyzed 60 urine samples from healthy white adults (young (c.a., 30 years) and old (c.a., 60 years) men/women) using LC/MS. Women had a higher urinary concentration of omega-3 12-lipoxygenase (LOX)-generated oxylipins with anti-inflammatory activity compared to men. In addition, young women showed increased abundance of poly-unsaturated fatty acids (PUFAs) and cytochrome P450 (P450)-produced oxylipins with anti-hypertensive activity compared with young men, whereas elderly women exhibited higher concentration of 5-LOX-generated anti-inflammatory oxylipins than elderly men. There were no significant differences in urinary oxylipin levels between young and old subjects or between subjects with low and high BMI. Our findings suggest that sex, but neither ages nor BMI could be a confounding factor for measuring the composition of urinary lipid metabolites in the healthy population. The information showed contribute to the development of reliable biomarker findings from urine.
Collapse
Affiliation(s)
- Kazuo Okemoto
- Division of Medicinal Safety Science, National Institute of Health Sciences, Setagaya, Tokyo, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Keiko Maekawa
- Division of Medicinal Safety Science, National Institute of Health Sciences, Setagaya, Tokyo, Japan
| | - Yoko Tajima
- Division of Medicinal Safety Science, National Institute of Health Sciences, Setagaya, Tokyo, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Masahiro Tohkin
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Yoshiro Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences, Setagaya, Tokyo, Japan
| |
Collapse
|
42
|
Bargut TCL, Souza-Mello V, Mandarim-de-Lacerda CA, Aguila MB. Fish oil diet modulates epididymal and inguinal adipocyte metabolism in mice. Food Funct 2016; 7:1468-76. [PMID: 26876019 DOI: 10.1039/c5fo00909j] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We aimed to investigate the impact of different high-fat diets containing fish oil on adiposity and white adipose tissue (WAT) function in mice, comparing the effects on epididymal (eWAT) and subcutaneous (sWAT) depots. For this, we used C57BL/6 male mice fed four types of diets for eight weeks: standard chow (SC), high-fat lard (HF-L), high-fat lard plus fish oil (HF-L + FO), and high-fat fish oil (HF-FO). The HF-L group had a greater body mass (BM) gain, insulin resistance, increased gene expression related to lipogenesis (CD36, aP2, SREBP1c, and FAS), decreased gene expression of perilipin in both eWAT and sWAT, and reduced expression of genes related to beta-oxidation (CPT-1a) and to mitochondrial biogenesis (PGC1alpha, NRF1, and TFAM) in eWAT and sWAT. On the other hand, the HF-L + FO and HF-FO groups showed a smaller BM gain and adiposity, and normalization of insulin resistance and lipogenic genes in both eWAT and sWAT. These animals also showed decreased perilipin gene expression and elevated expression of beta-oxidation and mitochondrial biogenesis genes in eWAT and sWAT. 'Beige' adipocytes were identified in sWAT of the HF-FO animals. In conclusion, fish oil intake has anti-obesity effects through modulation of both eWAT and sWAT metabolism in mice and is relevant in diminishing the BM gain, adiposity, and insulin resistance even in combination with a high-fat lard diet in mice.
Collapse
Affiliation(s)
- Thereza Cristina Lonzetti Bargut
- Laboratory of Morphometry, Metabolism, and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism, and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism, and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism, and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
43
|
Quesada-López T, Cereijo R, Turatsinze JV, Planavila A, Cairó M, Gavaldà-Navarro A, Peyrou M, Moure R, Iglesias R, Giralt M, Eizirik DL, Villarroya F. The lipid sensor GPR120 promotes brown fat activation and FGF21 release from adipocytes. Nat Commun 2016; 7:13479. [PMID: 27853148 PMCID: PMC5118546 DOI: 10.1038/ncomms13479] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 10/07/2016] [Indexed: 01/08/2023] Open
Abstract
The thermogenic activity of brown adipose tissue (BAT) and browning of white adipose tissue are important components of energy expenditure. Here we show that GPR120, a receptor for polyunsaturated fatty acids, promotes brown fat activation. Using RNA-seq to analyse mouse BAT transcriptome, we find that the gene encoding GPR120 is induced by thermogenic activation. We further show that GPR120 activation induces BAT activity and promotes the browning of white fat in mice, whereas GRP120-null mice show impaired cold-induced browning. Omega-3 polyunsaturated fatty acids induce brown and beige adipocyte differentiation and thermogenic activation, and these effects require GPR120. GPR120 activation induces the release of fibroblast growth factor-21 (FGF21) by brown and beige adipocytes, and increases blood FGF21 levels. The effects of GPR120 activation on BAT activation and browning are impaired in FGF21-null mice and cells. Thus, the lipid sensor GPR120 activates brown fat via a mechanism that involves induction of FGF21. GPR120 is a G-protein-coupled receptor that binds polyunsaturated fatty acids. Here, the authors show that GPR120 is upregulated in brown fat in cold-exposed mice, and mediates thermogenic activation of brown fat via a mechanism that, at least in part, depends on the release of the adipokine FGF21.
Collapse
Affiliation(s)
- Tania Quesada-López
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina, Universitat de Barcelona (IBUB) and CIBER Fisiopatologia de la Obesidad y Nutrición, Avda Diagonal 643, 08028 Barcelona, Spain
| | - Rubén Cereijo
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina, Universitat de Barcelona (IBUB) and CIBER Fisiopatologia de la Obesidad y Nutrición, Avda Diagonal 643, 08028 Barcelona, Spain
| | - Jean-Valery Turatsinze
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Avenue Franklin Roosevelt 50, 1050 Brussels, Belgium
| | - Anna Planavila
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina, Universitat de Barcelona (IBUB) and CIBER Fisiopatologia de la Obesidad y Nutrición, Avda Diagonal 643, 08028 Barcelona, Spain
| | - Montserrat Cairó
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina, Universitat de Barcelona (IBUB) and CIBER Fisiopatologia de la Obesidad y Nutrición, Avda Diagonal 643, 08028 Barcelona, Spain
| | - Aleix Gavaldà-Navarro
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina, Universitat de Barcelona (IBUB) and CIBER Fisiopatologia de la Obesidad y Nutrición, Avda Diagonal 643, 08028 Barcelona, Spain
| | - Marion Peyrou
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina, Universitat de Barcelona (IBUB) and CIBER Fisiopatologia de la Obesidad y Nutrición, Avda Diagonal 643, 08028 Barcelona, Spain
| | - Ricardo Moure
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina, Universitat de Barcelona (IBUB) and CIBER Fisiopatologia de la Obesidad y Nutrición, Avda Diagonal 643, 08028 Barcelona, Spain
| | - Roser Iglesias
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina, Universitat de Barcelona (IBUB) and CIBER Fisiopatologia de la Obesidad y Nutrición, Avda Diagonal 643, 08028 Barcelona, Spain
| | - Marta Giralt
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina, Universitat de Barcelona (IBUB) and CIBER Fisiopatologia de la Obesidad y Nutrición, Avda Diagonal 643, 08028 Barcelona, Spain
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Avenue Franklin Roosevelt 50, 1050 Brussels, Belgium
| | - Francesc Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina, Universitat de Barcelona (IBUB) and CIBER Fisiopatologia de la Obesidad y Nutrición, Avda Diagonal 643, 08028 Barcelona, Spain
| |
Collapse
|
44
|
de Luis D, Domingo JC, Izaola O, Casanueva FF, Bellido D, Sajoux I. Effect of DHA supplementation in a very low-calorie ketogenic diet in the treatment of obesity: a randomized clinical trial. Endocrine 2016; 54:111-122. [PMID: 27117144 DOI: 10.1007/s12020-016-0964-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/15/2016] [Indexed: 01/11/2023]
Abstract
A VLCK diet supplemented with DHA, commercially available, was tested against an isocaloric VLCK diet without DHA. The main purpose of this study was to compare the effect of DHA supplementation in classic cardiovascular risk factors, adipokine levels, and inflammation-resolving eicosanoids. A total of obese patients were randomized into two groups: a group supplemented with DHA (n = 14) (PnK-DHA group) versus a group with an isocaloric diet free of supplementation (n = 15) (control group). The follow-up period was 6 months. The average weight loss after 6 months of treatment was 20.36 ± 5.02 kg in control group and 19.74 ± 5.10 kg in PnK-DHA group, without statistical differences between both groups. The VLCK diets induced a significant change in some of the biological parameters, such as insulin, HOMA-IR, triglycerides, LDL cholesterol, C-reactive protein, resistin, TNF alpha, and leptin. Following DHA supplementation, the DHA-derived oxylipins were significantly increased in the intervention group. The ratio of proresolution/proinflammatory lipid markers was increased in plasma of the intervention group over the entire study. Similarly, the mean ratios of AA/EPA and AA/DHA in erythrocyte membranes were dramatically reduced in the PnK-DHA group and the anti-inflammatory fatty acid index (AIFAI) was consistently increased after the DHA treatment (p < 0.05). The present study demonstrated that a very low-calorie ketogenic diet supplemented with DHA was significantly superior in the anti-inflammatory effect, without statistical differences in weight loss and metabolic improvement.
Collapse
Affiliation(s)
- Daniel de Luis
- Department of Endocrinology and Nutrition, School of Medicine, Center of Investigation of Endocrinology and Nutrition, Hospital Clinico Universitario Valladolid, University of Valladolid, C/los perales 16, 47130, Simancas, Spain.
| | - Joan Carles Domingo
- Department of Biochemistry and Molecular Biology, School of Biology, University of Barcelona, Barcelona, Spain
| | - Olatz Izaola
- Department of Endocrinology and Nutrition, School of Medicine, Center of Investigation of Endocrinology and Nutrition, Hospital Clinico Universitario Valladolid, University of Valladolid, C/los perales 16, 47130, Simancas, Spain
| | - Felipe F Casanueva
- Division of Endocrinology, Department of Medicine, Complejo Hospitalario Universitario de Santiago, Santiago de Compostela University and CIBER Fisiopatología Nutrición y Obesidad, Santiago De Compostela, Spain
| | - Diego Bellido
- Division of Endocrinology, Complejo Hospitalario Universitario de Ferrol and Coruña University, Ferrol, Spain
| | - Ignacio Sajoux
- Medical Department Pronokal Group, PronokalGroup, Barcelona, Spain
| |
Collapse
|
45
|
Laiglesia LM, Lorente-Cebrián S, Prieto-Hontoria PL, Fernández-Galilea M, Ribeiro SMR, Sáinz N, Martínez JA, Moreno-Aliaga MJ. Eicosapentaenoic acid promotes mitochondrial biogenesis and beige-like features in subcutaneous adipocytes from overweight subjects. J Nutr Biochem 2016; 37:76-82. [PMID: 27637001 DOI: 10.1016/j.jnutbio.2016.07.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 07/04/2016] [Accepted: 07/15/2016] [Indexed: 02/08/2023]
Abstract
Eicosapentaenoic acid (EPA), a n-3 long-chain polyunsaturated fatty acid, has been reported to have beneficial effects in obesity-associated metabolic disorders. The objective of the present study was to determine the effects of EPA on the regulation of genes involved in lipid metabolism, and the ability of EPA to induce mitochondrial biogenesis and beiging in subcutaneous adipocytes from overweight subjects. Fully differentiated human subcutaneous adipocytes from overweight females (BMI: 28.1-29.8kg/m2) were treated with EPA (100-200 μM) for 24 h. Changes in mRNA expression levels of genes involved in lipogenesis, fatty acid oxidation and mitochondrial biogenesis were determined by qRT-PCR. Mitochondrial content was evaluated using MitoTracker® Green stain. The effects on peroxisome proliferator-activated receptor gamma, co-activator 1 alpha (PGC-1α) and AMP-activated protein kinase (AMPK) were also characterized. EPA down-regulated lipogenic genes expression while up-regulated genes involved in fatty acid oxidation. Moreover, EPA-treated adipocytes showed increased mitochondrial content, accompanied by an up-regulation of nuclear respiratory factor-1, mitochondrial transcription factor A and cytochrome c oxidase IV mRNA expression. EPA also promoted the activation of master regulators of mitochondrial biogenesis such as sirtuin 1, PGC1-α and AMPK. In parallel, EPA induced the expression of genes that typify beige adipocytes such as fat determination factor PR domain containing 16, uncoupling protein 1 and cell death-inducing DFFA-like effector A, T-Box protein 1 and CD137. Our results suggest that EPA induces a remodeling of adipocyte metabolism preventing fat storage and promoting fatty acid oxidation, mitochondrial biogenesis and beige-like markers in human subcutaneous adipocytes from overweight subjects.
Collapse
Affiliation(s)
- L M Laiglesia
- Department of Nutrition, Food Sciences and Physiology, School of Pharmacy, University of Navarra; Center for Nutrition Research, University of Navarra, Spain
| | - S Lorente-Cebrián
- Department of Nutrition, Food Sciences and Physiology, School of Pharmacy, University of Navarra; Center for Nutrition Research, University of Navarra, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - P L Prieto-Hontoria
- Department of Nutrition, Food Sciences and Physiology, School of Pharmacy, University of Navarra
| | - M Fernández-Galilea
- Department of Nutrition, Food Sciences and Physiology, School of Pharmacy, University of Navarra
| | - S M R Ribeiro
- Department of Nutrition, Food Sciences and Physiology, School of Pharmacy, University of Navarra; Department of Nutrition and Health, University Federal of Viçosa, 36570-000, Viçosa, MG, Brazil
| | - N Sáinz
- Department of Nutrition, Food Sciences and Physiology, School of Pharmacy, University of Navarra; Center for Nutrition Research, University of Navarra, Spain
| | - J A Martínez
- Department of Nutrition, Food Sciences and Physiology, School of Pharmacy, University of Navarra; Center for Nutrition Research, University of Navarra, Spain; CIBERobn, Physiopathology of Obesity and Nutrition, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - M J Moreno-Aliaga
- Department of Nutrition, Food Sciences and Physiology, School of Pharmacy, University of Navarra; Center for Nutrition Research, University of Navarra, Spain; CIBERobn, Physiopathology of Obesity and Nutrition, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
| |
Collapse
|
46
|
Giralt M, Cairó M, Villarroya F. Hormonal and nutritional signalling in the control of brown and beige adipose tissue activation and recruitment. Best Pract Res Clin Endocrinol Metab 2016; 30:515-525. [PMID: 27697212 DOI: 10.1016/j.beem.2016.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent research has revealed that the activity of adipose tissue (BAT) in adult humans is higher than previously thought, and that obese patients show abnormally low levels of brown fat activity. Studies in experimental animals have shown that BAT is a site of energy expenditure, and that BAT activity protects against obesity and associated metabolic diseases. The action of the sympathetic nervous activity on BAT depots is considered the main regulator of BAT activity in rodent models and possibly also in humans. However, recent research has revealed the existence of additional hormonal factors, produced by distinct peripheral tissues or present in the diet, that influence the amount and activity of BAT. These hormonal factors may act on BAT directly, but also indirectly by targeting the brain and determining the intensity of sympathetic action upon BAT. Identification and characterization of novel factors that control BAT may provide clues for the development of new strategies to treat obesity and metabolic diseases.
Collapse
Affiliation(s)
- Marta Giralt
- Department of Biochemistry and Molecular Biomedicine and Institut de Biomedicina (IBUB), University of Barcelona, Barcelona, Catalonia, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain; Institut de Recerca Pediàtrica Sant Joan de Déu, Barcelona, Catalonia, Spain
| | - Montserrat Cairó
- Department of Biochemistry and Molecular Biomedicine and Institut de Biomedicina (IBUB), University of Barcelona, Barcelona, Catalonia, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain; Institut de Recerca Pediàtrica Sant Joan de Déu, Barcelona, Catalonia, Spain
| | - Francesc Villarroya
- Department of Biochemistry and Molecular Biomedicine and Institut de Biomedicina (IBUB), University of Barcelona, Barcelona, Catalonia, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain; Institut de Recerca Pediàtrica Sant Joan de Déu, Barcelona, Catalonia, Spain.
| |
Collapse
|
47
|
Plasma Acylcarnitines and Amino Acid Levels As an Early Complex Biomarker of Propensity to High-Fat Diet-Induced Obesity in Mice. PLoS One 2016; 11:e0155776. [PMID: 27183228 PMCID: PMC4868278 DOI: 10.1371/journal.pone.0155776] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/04/2016] [Indexed: 02/08/2023] Open
Abstract
Obesity is associated with insulin resistance and impaired glucose tolerance, which represent characteristic features of the metabolic syndrome. Development of obesity is also linked to changes in fatty acid and amino acid metabolism observed in animal models of obesity as well as in humans. The aim of this study was to explore whether plasma metabolome, namely the levels of various acylcarnitines and amino acids, could serve as a biomarker of propensity to obesity and impaired glucose metabolism. Taking advantage of a high phenotypic variation in diet-induced obesity in C57BL/6J mice, 12-week-old male and female mice (n = 155) were fed a high-fat diet (lipids ~32 wt%) for a period of 10 weeks, while body weight gain (BWG) and changes in insulin sensitivity (ΔHOMA-IR) were assessed. Plasma samples were collected before (week 4) and after (week 22) high-fat feeding. Both univariate and multivariate statistical analyses were then used to examine the relationships between plasma metabolome and selected phenotypes including BWG and ΔHOMA-IR. Partial least squares-discrimination analysis was able to distinguish between animals selected either for their low or high BWG (or ΔHOMA-IR) in male but not female mice. Among the metabolites that differentiated male mice with low and high BWG, and which also belonged to the major discriminating metabolites when analyzed in plasma collected before and after high-fat feeding, were amino acids Tyr and Orn, as well as acylcarnitines C16-DC and C18:1-OH. In general, the separation of groups selected for their low or high ΔHOMA-IR was less evident and the outcomes of a corresponding multivariate analysis were much weaker than in case of BWG. Thus, our results document that plasma acylcarnitines and amino acids could serve as a gender-specific complex biomarker of propensity to obesity, however with a limited predictive value in case of the associated impairment of insulin sensitivity.
Collapse
|
48
|
Pavlisova J, Bardova K, Stankova B, Tvrzicka E, Kopecky J, Rossmeisl M. Corn oil versus lard: Metabolic effects of omega-3 fatty acids in mice fed obesogenic diets with different fatty acid composition. Biochimie 2016; 124:150-162. [DOI: 10.1016/j.biochi.2015.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/02/2015] [Indexed: 02/09/2023]
|
49
|
Liisberg U, Fauske KR, Kuda O, Fjære E, Myrmel LS, Norberg N, Frøyland L, Graff IE, Liaset B, Kristiansen K, Kopecky J, Madsen L. Intake of a Western diet containing cod instead of pork alters fatty acid composition in tissue phospholipids and attenuates obesity and hepatic lipid accumulation in mice. J Nutr Biochem 2016; 33:119-27. [PMID: 27155918 DOI: 10.1016/j.jnutbio.2016.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/18/2016] [Accepted: 03/23/2016] [Indexed: 01/03/2023]
Abstract
The content of the marine n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is far lower in lean than in fatty seafood. Cod filets contain less than 2g fat per kg, whereof approximately 50% is EPA and DHA. However, a large fraction of these n-3 PUFAs is present in the phospholipid (PL) fraction and may have high bioavailability and capacity to change the endocannabinoid profile. Here we investigated whether exchanging meat from a lean terrestrial animal with cod in a background Western diet would alter the endocannabinoid tone in mice and thereby attenuate obesity development and hepatic lipid accumulation. Accordingly, we prepared iso-caloric diets with 15.1 energy (e) % protein, 39.1 e% fat and 45.8 e% carbohydrates using freeze-dried meat from cod filets or pork sirloins, and using a combination of soybean oil, corn oil, margarine, milk fat, and lard as the fat source. Compared with mice receiving diets containing pork, mice fed cod gained less adipose tissue mass and had a lower content of hepatic lipids. This was accompanied by a lower n-6 to n-3 ratio in liver PLs and in red blood cells (RBCs) in the mice. Furthermore, mice receiving the cod-containing diet had lower circulating levels of the two major endocannabinoids, N-arachidonoylethanolamine and 2-arachidonoylglycerol. Together, our data demonstrate that despite the relatively low content of n-3 PUFAs in cod fillets, the cod-containing diet could exert beneficial metabolic effects.
Collapse
Affiliation(s)
- Ulrike Liisberg
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Denmark
| | - Kristin Røen Fauske
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
| | - Ondrej Kuda
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Even Fjære
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
| | - Lene Secher Myrmel
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
| | - Nina Norberg
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
| | - Livar Frøyland
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
| | - Ingvild Eide Graff
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
| | - Bjørn Liaset
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Denmark
| | - Jan Kopecky
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lise Madsen
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Denmark.
| |
Collapse
|
50
|
López-Domínguez JA, Cánovas Á, Medrano JF, Islas-Trejo A, Kim K, Taylor SL, Villalba JM, López-Lluch G, Navas P, Ramsey JJ. Omega-3 fatty acids partially revert the metabolic gene expression profile induced by long-term calorie restriction. Exp Gerontol 2016; 77:29-37. [PMID: 26875793 DOI: 10.1016/j.exger.2016.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/03/2016] [Accepted: 02/08/2016] [Indexed: 11/18/2022]
Abstract
Calorie restriction (CR) consistently extends longevity and delays age-related diseases across several animal models. We have previously shown that different dietary fat sources can modulate life span and mitochondrial ultrastructure, function and membrane fatty acid composition in mice maintained on a 40% CR. In particular, animals consuming lard as the main fat source (CR-Lard) lived longer than CR mice consuming diets with soybean oil (CR-Soy) or fish oil (CR-Fish) as the predominant lipid source. In the present work, a transcriptomic analysis in the liver and skeletal muscle was performed in order to elucidate possible mechanisms underlying the changes in energy metabolism and longevity induced by dietary fat in CR mice. After 8 months of CR, transcription downstream of several mediators of inflammation was inhibited in liver. In contrast, proinflammatory signaling was increased in the CR-Fish versus other CR groups. Dietary fish oil induced a gene expression pattern consistent with increased transcriptional regulation by several cytokines (TNF, GM-CSF, TGF-β) and sex hormones when compared to the other CR groups. The CR-Fish also had lower expression of genes involved in fatty acid biosynthesis and increased expression of mitochondrial and peroxisomal fatty acid β-oxidation genes than the other CR diet groups. Our data suggest that a diet high in n-3 PUFA, partially reverts CR-related changes in gene expression of key processes, such as inflammation and steroid hormone signaling, and this may mitigate life span extension with CR in mice consuming diets high in fish oil.
Collapse
Affiliation(s)
| | - Ángela Cánovas
- Department of Animal Science, University of California, Davis, USA
| | - Juan F Medrano
- Department of Animal Science, University of California, Davis, USA
| | - Alma Islas-Trejo
- Department of Animal Science, University of California, Davis, USA
| | - Kyoungmi Kim
- Department of Public Health, School of Medicine, University of California, Davis, USA
| | - Sandra L Taylor
- Department of Public Health, School of Medicine, University of California, Davis, USA
| | - José Manuel Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| | - Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC, CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC, CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Jon J Ramsey
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, USA
| |
Collapse
|