1
|
Symonová R, Jůza T, Tesfaye M, Brabec M, Bartoň D, Blabolil P, Draštík V, Kočvara L, Muška M, Prchalová M, Říha M, Šmejkal M, Souza AT, Sajdlová Z, Tušer M, Vašek M, Skubic C, Brabec J, Kubečka J. Transition to Piscivory Seen Through Brain Transcriptomics in a Juvenile Percid Fish: Complex Interplay of Differential Gene Transcription, Alternative Splicing, and ncRNA Activity. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:257-277. [PMID: 39629900 PMCID: PMC11788885 DOI: 10.1002/jez.2886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 02/04/2025]
Abstract
Pikeperch (Sander Lucioperca) belongs to main predatory fish species in freshwater bodies throughout Europe playing the key role by reducing planktivorous fish abundance. Two size classes of the young-of-the-year (YOY) pikeperch are known in Europe and North America. Our long-term fish survey elucidates late-summer size distribution of YOY pikeperch in the Lipno Reservoir (Czechia) and recognizes two distinct subcohorts: smaller pelagic planktivores heavily outnumber larger demersal piscivores. To explore molecular mechanisms accompanying the switch from planktivory to piscivory, we compared brain transcriptomes of both subcohorts and identified 148 differentially transcribed genes. The pathway enrichment analyses identified the piscivorous phase to be associated with genes involved in collagen and extracellular matrix generation with numerous Gene Ontology (GO), while the planktivorous phase was associated with genes for non-muscle-myosins (NMM) with less GO terms. Transcripts further upregulated in planktivores from the periphery of the NMM network were Pmchl, Pomcl, and Pyyb, all involved also in appetite control and producing (an)orexigenic neuropeptides. Noncoding RNAs were upregulated in transcriptomes of planktivores including three transcripts of snoRNA U85. Thirty genes mostly functionally unrelated to those differentially transcribed were alternatively spliced between the subcohorts. Our results indicate planktivores as potentially driven by voracity to initiate the switch to piscivory, while piscivores undergo a dynamic brain development. We propose a spatiotemporal spreading of juvenile development over a longer period and larger spatial scales through developmental plasticity as an adaptation to exploiting all types of resources and decreasing the intraspecific competition.
Collapse
Affiliation(s)
- Radka Symonová
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Tomáš Jůza
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Million Tesfaye
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
- South Bohemian Research Centre for Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of WatersUniversity of South Bohemia in České BudějoviceVodňanyCzech Republic
| | - Marek Brabec
- Institute of Computer ScienceCzech Academy of SciencesPragueCzech Republic
| | - Daniel Bartoň
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Petr Blabolil
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Vladislav Draštík
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Luboš Kočvara
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Milan Muška
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Marie Prchalová
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Milan Říha
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Marek Šmejkal
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Allan T. Souza
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
- Institute for Atmospheric and Earth System Research INARForest Sciences, Faculty of Agriculture and Forestry, University of HelsinkiHelsinkiFinland
| | - Zuzana Sajdlová
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Michal Tušer
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Mojmír Vašek
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Cene Skubic
- Institute for Biochemistry and Molecular Genetics, Centre for Functional Genomics and Bio‐Chips, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Jakub Brabec
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Jan Kubečka
- Institute of HydrobiologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| |
Collapse
|
2
|
Hu C, Chen Y, Yin X, Xu R, Yin C, Wang C, Zhao Y. Pancreatic endocrine and exocrine signaling and crosstalk in physiological and pathological status. Signal Transduct Target Ther 2025; 10:39. [PMID: 39948335 PMCID: PMC11825823 DOI: 10.1038/s41392-024-02098-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/20/2024] [Accepted: 12/03/2024] [Indexed: 02/16/2025] Open
Abstract
The pancreas, an organ with dual functions, regulates blood glucose levels through the endocrine system by secreting hormones such as insulin and glucagon. It also aids digestion through the exocrine system by secreting digestive enzymes. Complex interactions and signaling mechanisms between the endocrine and exocrine functions of the pancreas play a crucial role in maintaining metabolic homeostasis and overall health. Compelling evidence indicates direct and indirect crosstalk between the endocrine and exocrine parts, influencing the development of diseases affecting both. From a developmental perspective, the exocrine and endocrine parts share the same origin-the "tip-trunk" domain. In certain circumstances, pancreatic exocrine cells may transdifferentiate into endocrine-like cells, such as insulin-secreting cells. Additionally, several pancreatic diseases, including pancreatic cancer, pancreatitis, and diabetes, exhibit potential relevance to both endocrine and exocrine functions. Endocrine cells may communicate with exocrine cells directly through cytokines or indirectly by regulating the immune microenvironment. This crosstalk affects the onset and progression of these diseases. This review summarizes the history and milestones of findings related to the exocrine and endocrine pancreas, their embryonic development, phenotypic transformations, signaling roles in health and disease, the endocrine-exocrine crosstalk from the perspective of diseases, and potential therapeutic targets. Elucidating the regulatory mechanisms of pancreatic endocrine and exocrine signaling and provide novel insights for the understanding and treatment of diseases.
Collapse
Grants
- National High Level Hospital Clinical Research Funding (2022, 2022-PUMCH-D-001, to YZ), CAMS Innovation Fund for Medical Sciences (2021, 2021-I2M-1-002, to YZ), National Nature Science Foundation of China (2021, 82102810, to CW, the Fundamental Research Funds for the Central Universities(3332023123)
- cNational High Level Hospital Clinical Research Funding (2022, 2022-PUMCH-D-001, to YZ), CAMS Innovation Fund for Medical Sciences (2021, 2021-I2M-1-002, to YZ), National Nature Science Foundation of China (2021, 82102810, to CW, the Fundamental Research Funds for the Central Universities(3332023123)
Collapse
Affiliation(s)
- Chenglin Hu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Chenxue Yin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Chengcheng Wang
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China.
- National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, PR China.
- Institute of Clinical Medicine, Peking Union Medical College Hospital, Beijing, PR China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China.
- National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, PR China.
| |
Collapse
|
3
|
Deis T, Goetze JP, Kistorp C, Gustafsson F. Gut Hormones in Heart Failure. Circ Heart Fail 2024; 17:e011813. [PMID: 39498569 DOI: 10.1161/circheartfailure.124.011813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/07/2024] [Indexed: 11/21/2024]
Abstract
Heart failure (HF) is a syndrome affecting all organ systems. While some organ interactions have been studied intensively in HF (such as the cardiorenal interaction), the endocrine gut has to some degree been overlooked. However, there is growing evidence of direct cardiac effects of several hormones secreted from the gastrointestinal tract. For instance, GLP-1 (glucagon-like peptide-1), an incretin hormone secreted from the distal intestine following food intake, has notable effects on the heart, impacting heart rate and contractility. GLP-1 may even possess cardioprotective abilities, such as inhibition of myocardial ischemia and cardiac remodeling. While other gut hormones have been less studied, there is evidence suggesting cardiostimulatory properties of several hormones. Moreover, it has been reported that patients with HF have altered bioavailability of numerous gastrointestinal hormones, which may have prognostic implications. This might indicate an important role of gut hormones in cardiac physiology and pathology, which may be of particular importance in the failing heart. We present an overview of the current knowledge on gut hormones in HF, focusing on HF with reduced ejection fraction, and discuss how these hormones may be regulators of cardiac function and central hemodynamics. Potential therapeutic perspectives are discussed, and knowledge gaps are highlighted herein.
Collapse
Affiliation(s)
- Tania Deis
- Department of Cardiology (T.D., F.G.), Rigshospitalet, Copenhagen, Denmark
| | - Jens P Goetze
- Department of Clinical Biochemistry (J.P.G.), Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences (J.P.G.), University of Copenhagen, Denmark
| | - Caroline Kistorp
- Department of Endocrinology (C.K.), Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine (C.K., F.G.), University of Copenhagen, Denmark
| | - Finn Gustafsson
- Department of Cardiology (T.D., F.G.), Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine (C.K., F.G.), University of Copenhagen, Denmark
| |
Collapse
|
4
|
Lafferty RA, Flatt PR, Irwin N. NPYR modulation: Potential for the next major advance in obesity and type 2 diabetes management? Peptides 2024; 179:171256. [PMID: 38825012 DOI: 10.1016/j.peptides.2024.171256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/13/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
The approval of the glucagon-like peptide 1 (GLP-1) mimetics semaglutide and liraglutide for management of obesity, independent of type 2 diabetes (T2DM), has initiated a resurgence of interest in gut-hormone derived peptide therapies for the management of metabolic diseases, but side-effect profile is a concern for these medicines. However, the recent approval of tirzepatide for obesity and T2DM, a glucose-dependent insulinotropic polypeptide (GIP), GLP-1 receptor co-agonist peptide therapy, may provide a somewhat more tolerable option. Despite this, an increasing number of non-incretin alternative peptides are in development for obesity, and it stands to reason that other hormones will take to the limelight in the coming years, such as peptides from the neuropeptide Y family. This narrative review outlines the therapeutic promise of the neuropeptide Y family of peptides, comprising of the 36 amino acid polypeptides neuropeptide Y (NPY), peptide tyrosine-tyrosine (PYY) and pancreatic polypeptide (PP), as well as their derivatives. This family of peptides exerts a number of metabolically relevant effects such as appetite regulation and can influence pancreatic beta-cell survival. Although some of these actions still require full translation to the human setting, potential therapeutic application in obesity and type 2 diabetes is conceivable. However, like GLP-1 and GIP, the endogenous NPY, PYY and PP peptide forms are subject to rapid in vivo degradation and inactivation by the serine peptidase, dipeptidyl-peptidase 4 (DPP-4), and hence require structural modification to prolong circulating half-life. Numerous protective modification strategies are discussed in this regard herein, alongside related impact on biological activity profile and therapeutic promise.
Collapse
Affiliation(s)
- Ryan A Lafferty
- Diabetes Research Centre, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK.
| | - Peter R Flatt
- Diabetes Research Centre, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Nigel Irwin
- Diabetes Research Centre, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| |
Collapse
|
5
|
Rubinić I, Kurtov M, Likić R. Novel Pharmaceuticals in Appetite Regulation: Exploring emerging gut peptides and their pharmacological prospects. Pharmacol Res Perspect 2024; 12:e1243. [PMID: 39016695 PMCID: PMC11253306 DOI: 10.1002/prp2.1243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/23/2024] [Accepted: 06/22/2024] [Indexed: 07/18/2024] Open
Abstract
Obesity, a global health challenge, necessitates innovative approaches for effective management. Targeting gut peptides in the development of anti-obesity pharmaceuticals has already demonstrated significant efficacy. Ghrelin, peptide YY (PYY), cholecystokinin (CCK), and amylin are crucial in appetite regulation offering promising targets for pharmacological interventions in obesity treatment using both peptide-based and small molecule-based pharmaceuticals. Ghrelin, a sole orexigenic gut peptide, has a potential for anti-obesity therapies through various approaches, including endogenous ghrelin neutralization, ghrelin receptor antagonists, ghrelin O-acyltransferase, and functional inhibitors. Anorexigenic gut peptides, peptide YY, cholecystokinin, and amylin, have exhibited appetite-reducing effects in animal models and humans. Overcoming substantial obstacles is imperative for translating these findings into clinically effective pharmaceuticals. Peptide YY and cholecystokinin analogues, characterized by prolonged half-life and resistance to proteolytic enzymes, present viable options. Positive allosteric modulators emerge as a novel approach for modulating the cholecystokinin pathway. Amylin is currently the most promising, with both amylin analogues and dual amylin and calcitonin receptor agonists (DACRAs) progressing to advanced stages of clinical trials. Despite persistent challenges, innovative pharmaceutical strategies provide a glimpse into the future of anti-obesity therapies.
Collapse
Affiliation(s)
- Igor Rubinić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of MedicineUniversity of RijekaRijekaCroatia
- Clinical Pharmacology unitClinical Hospital Center RijekaRijekaCroatia
| | - Marija Kurtov
- Division of Clinical Pharmacology and Toxicology, Department of Internal MedicineUniversity Hospital “Sveti Duh”ZagrebCroatia
| | - Robert Likić
- Department of Internal MedicineSchool of Medicine University of ZagrebZagrebCroatia
| |
Collapse
|
6
|
Prajapati A, Rana D, Rangra S, Jindal AB, Benival D. Current Status of Therapeutic Peptides for the Management of Diabetes Mellitus. Int J Pept Res Ther 2024; 30:13. [DOI: 10.1007/s10989-024-10590-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2024] [Indexed: 01/04/2025]
|
7
|
Tsilingiris D, Kokkinos A. Advances in obesity pharmacotherapy; learning from metabolic surgery and beyond. Metabolism 2024; 151:155741. [PMID: 37995806 DOI: 10.1016/j.metabol.2023.155741] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/05/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Currently, metabolic surgery (MS) constitutes the most effective means for durable weight loss of clinically meaningful magnitude, type 2 diabetes remission and resolution of non-alcoholic steatohepatitis, as well as other obesity-related comorbidities. Accumulating evidence on the mechanisms through which MS exerts its actions has highlighted the altered secretion of hormonally active peptides of intestinal origin with biological actions crucial to energy metabolism as key drivers of MS clinical effects. The initial success of glucagon-like peptide-1 (GLP-1) receptor agonists regarding weight loss and metabolic amelioration have been followed by the development of unimolecular dual and triple polyagonists, additionally exploiting the effects of glucagon and/or glucose-dependent insulinotropic polypeptide (GIP) which achieves a magnitude of weight loss approximating that of common MS operations. Through the implementation of such therapies, the feasibility of a "medical bypass", namely the replication of the clinical effects of MS through non-surgical interventions may be foreseeable in the near future. Apart from weight loss, this approach ought to be put to the test also regarding other clinical outcomes, such as liver steatosis and steatohepatitis, cardiovascular disease, and overall prognosis, on which MS has a robustly demonstrated impact. Besides, a medical bypass as an alternative, salvage, or combination strategy to MS may promote precision medicine in obesity therapeutics.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Alexander Kokkinos
- 1st Department of Propaedeutic Internal Medicine, Athens University Medical School, Laiko Hospital, Athens, Greece.
| |
Collapse
|
8
|
Akagi Y, Takayama Y, Nihashi Y, Yamashita A, Yoshida R, Miyamoto Y, Kida YS. Functional engineering of human iPSC-derived parasympathetic neurons enhances responsiveness to gastrointestinal hormones. FEBS Open Bio 2024; 14:63-78. [PMID: 38013211 PMCID: PMC10761937 DOI: 10.1002/2211-5463.13741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023] Open
Abstract
Food-derived biological signals are transmitted to the brain via peripheral nerves through the paracrine activity of gastrointestinal (GI) hormones. The signal transduction circuit of the brain-gut axis has been analyzed in animals; however, species-related differences and animal welfare concerns necessitate investigation using in vitro human experimental models. Here, we focused on the receptors of five GI hormones (CCK, GLP1, GLP2, PYY, and serotonin (5-HT)), and established human induced pluripotent stem cell (iPSC) lines that functionally expressed each receptor. Compared to the original iPSCs, iPSCs expressing one of the receptors did not show any differences in global mRNA expression, genomic stability, or differentiation capacities of the three germ layers. We induced parasympathetic neurons from these established iPSC lines to assess vagus nerve activity. We generated GI hormone receptor-expressing neurons (CCKAR, GLP1R, and NPY2R-neuron) and tested their responsiveness to each ligand using Ca2+ imaging and microelectrode array recording. GI hormone receptor-expressing neurons (GLP2R and HTR3A) were generated directly by gene induction into iPSC-derived peripheral nerve progenitors. These receptor-expressing neurons promise to contribute to a better understanding of how the body responds to GI hormones via the brain-gut axis, aid in drug development, and offer an alternative to animal studies.
Collapse
Affiliation(s)
- Yuka Akagi
- Cellular and Molecular Biotechnology Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
- Tsukuba Life Science Innovation Program (T‐LSI), School of Comprehensive Human SciencesUniversity of TsukubaTsukubaJapan
| | - Yuzo Takayama
- Cellular and Molecular Biotechnology Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Yuma Nihashi
- Cellular and Molecular Biotechnology Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Azusa Yamashita
- Analytical Science Laboratories, Asahi Quality & Innovations, Ltd.MoriyaJapan
| | - Risa Yoshida
- Analytical Science Laboratories, Asahi Quality & Innovations, Ltd.MoriyaJapan
| | - Yasuhisa Miyamoto
- Analytical Science Laboratories, Asahi Quality & Innovations, Ltd.MoriyaJapan
| | - Yasuyuki S. Kida
- Cellular and Molecular Biotechnology Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
- School of Integrative & Global Majors (SIGMA)University of TsukubaTsukubaJapan
| |
Collapse
|
9
|
Bany Bakar R, Reimann F, Gribble FM. The intestine as an endocrine organ and the role of gut hormones in metabolic regulation. Nat Rev Gastroenterol Hepatol 2023; 20:784-796. [PMID: 37626258 DOI: 10.1038/s41575-023-00830-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
Gut hormones orchestrate pivotal physiological processes in multiple metabolically active tissues, including the pancreas, liver, adipose tissue, gut and central nervous system, making them attractive therapeutic targets in the treatment of obesity and type 2 diabetes mellitus. Most gut hormones are derived from enteroendocrine cells, but bioactive peptides that are derived from other intestinal epithelial cell types have also been implicated in metabolic regulation and can be considered gut hormones. A deeper understanding of the complex inter-organ crosstalk mediated by the intestinal endocrine system is a prerequisite for designing more effective drugs that are based on or target gut hormones and their receptors, and extending their therapeutic potential beyond obesity and diabetes mellitus. In this Review, we present an overview of gut hormones that are involved in the regulation of metabolism and discuss their action in the gastrointestinal system and beyond.
Collapse
Affiliation(s)
- Rula Bany Bakar
- Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Frank Reimann
- Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Fiona M Gribble
- Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Cambridge, UK.
| |
Collapse
|
10
|
Chen W, Binbin G, Lidan S, Qiang Z, Jing H. Evolution of peptide YY analogs for the management of type 2 diabetes and obesity. Bioorg Chem 2023; 140:106808. [PMID: 37666110 DOI: 10.1016/j.bioorg.2023.106808] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/13/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023]
Abstract
Peptide YY (PYY) is a gastrointestinal hormone consisting of 36 amino acids, that is predominantly secreted by intestinal l-cells. Originally extracted from pig intestines, it belongs to the pancreatic polypeptide (PP) family, but has functions distinct from those of PP and neuropeptide Y (NPY). PYY is a potential treatment for type 2 diabetes mellitus (T2DM) because of its ability to delay gastric emptying, reduce appetite, decrease weight, and lower blood glucose. However, the clinical use of PYY is limited because it is rapidly cleared by the kidneys and degraded by enzymes. In recent years, researchers have conducted various structural modifications, including amino acid substitution, PEGylation, lipidation, and fusion of PYY with other proteins to prolong its half-life and enhance its biological activity. This study presents an overview of the recent progress on PYY, including its physiological functions, metabolites and structure-activity relationships.
Collapse
Affiliation(s)
- Wang Chen
- College of Medicine, Jiaxing University, The Affiliated Hospital of Jiaxing University, Jiaxing 314001, China
| | - Gong Binbin
- College of Pharmacy, Zhejiang University of Technology, Hangzhou 310000, China
| | - Sun Lidan
- College of Medicine, Jiaxing University, The Affiliated Hospital of Jiaxing University, Jiaxing 314001, China.
| | - Zhou Qiang
- College of Medicine, Jiaxing University, The Affiliated Hospital of Jiaxing University, Jiaxing 314001, China.
| | - Han Jing
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
11
|
Kowalka AM, Alexiadou K, Cuenco J, Clarke RE, Minnion J, Williams EL, Bech P, Purkayastha S, Ahmed AR, Takats Z, Whitwell HJ, Romero MG, Bloom SR, Camuzeaux S, Lewis MR, Khoo B, Tan TM. The postprandial secretion of peptide YY 1-36 and 3-36 in obesity is differentially increased after gastric bypass versus sleeve gastrectomy. Clin Endocrinol (Oxf) 2023; 99:272-284. [PMID: 36345253 PMCID: PMC10952770 DOI: 10.1111/cen.14846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/13/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVES Peptide tyrosine tyrosine (PYY) exists as two species, PYY1-36 and PYY3-36 , with distinct effects on insulin secretion and appetite regulation. The detailed effects of bariatric surgery on PYY1-36 and PYY3-36 secretion are not known as previous studies have used nonspecific immunoassays to measure total PYY. Our objective was to characterize the effect of sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB) on fasting and postprandial PYY1-36 and PYY3-36 secretion using a newly developed liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay. DESIGN AND SUBJECTS Observational study in 10 healthy nonobese volunteers and 30 participants with obesity who underwent RYGB (n = 24) or SG (n = 6) at the Imperial Weight Centre [NCT01945840]. Participants were studied using a standardized mixed meal test (MMT) before and 1 year after surgery. The outcome measures were PYY1-36 and PYY3-36 concentrations. RESULTS Presurgery, the fasting and postprandial levels of PYY1-36 and PYY3-36 were low, with minimal responses to the MMT, and these did not differ from healthy nonobese volunteers. The postprandial secretion of both PYY1-36 and PYY3-36 at 1 year was amplified after RYGB, but not SG, with the response being significantly higher in RYGB compared with SG. CONCLUSIONS There appears to be no difference in PYY secretion between nonobese and obese volunteers at baseline. At 1 year after surgery, RYGB, but not SG, is associated with increased postprandial secretion of PYY1-36 and PYY3-36 , which may account for long-term differences in efficacy and adverse effects between the two types of surgery.
Collapse
Affiliation(s)
- Anna M. Kowalka
- Section of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Kleopatra Alexiadou
- Section of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Joyceline Cuenco
- Section of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | | | - James Minnion
- Section of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Emma L. Williams
- Department of Clinical Biochemistry, North West London PathologyCharing Cross HospitalLondonUK
| | - Paul Bech
- Section of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Sanjay Purkayastha
- Department of Surgery and CancerImperial College Healthcare NHS TrustLondonUK
| | - Ahmed R. Ahmed
- Department of Surgery and CancerImperial College Healthcare NHS TrustLondonUK
| | - Zoltan Takats
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
- National Phenome CentreImperial College LondonLondonUK
| | - Harry J. Whitwell
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
- National Phenome CentreImperial College LondonLondonUK
| | - Maria Gomez Romero
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
- National Phenome CentreImperial College LondonLondonUK
| | - Stephen R. Bloom
- Section of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Stephane Camuzeaux
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
- National Phenome CentreImperial College LondonLondonUK
| | - Matthew R. Lewis
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
- National Phenome CentreImperial College LondonLondonUK
| | - Bernard Khoo
- Endocrinology, Division of MedicineUniversity College LondonLondonUK
| | - Tricia M.‐M. Tan
- Section of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| |
Collapse
|
12
|
Inceu AI, Neag MA, Craciun AE, Buzoianu AD. Gut Molecules in Cardiometabolic Diseases: The Mechanisms behind the Story. Int J Mol Sci 2023; 24:3385. [PMID: 36834796 PMCID: PMC9965280 DOI: 10.3390/ijms24043385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Atherosclerotic cardiovascular disease is the most common cause of morbidity and mortality worldwide. Diabetes mellitus increases cardiovascular risk. Heart failure and atrial fibrillation are associated comorbidities that share the main cardiovascular risk factors. The use of incretin-based therapies promoted the idea that activation of alternative signaling pathways is effective in reducing the risk of atherosclerosis and heart failure. Gut-derived molecules, gut hormones, and gut microbiota metabolites showed both positive and detrimental effects in cardiometabolic disorders. Although inflammation plays a key role in cardiometabolic disorders, additional intracellular signaling pathways are involved and could explain the observed effects. Revealing the involved molecular mechanisms could provide novel therapeutic strategies and a better understanding of the relationship between the gut, metabolic syndrome, and cardiovascular diseases.
Collapse
Affiliation(s)
- Andreea-Ioana Inceu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Maria-Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Anca-Elena Craciun
- Department of Diabetes, and Nutrition Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Anca-Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
13
|
Zhu W, Tanday N, Flatt PR, Irwin N. Pancreatic polypeptide revisited: Potential therapeutic effects in obesity-diabetes. Peptides 2023; 160:170923. [PMID: 36509169 DOI: 10.1016/j.peptides.2022.170923] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Pancreatic polypeptide (PP), a member of the neuropeptide Y (NPY) family of peptides, is a hormone secreted from the endocrine pancreas with established actions on appetite regulation. Thus, through activation of hypothalamic neuropeptide Y4 (NPY4R or Y4) receptors PP induces satiety in animals and humans, suggesting potential anti-obesity actions. In addition, despite being actively secreted from pancreatic islets and evidence of local Y4 receptor expression, PP mediated effects on the endocrine pancreas have not been fully elucidated. To date, it appears that PP possesses an acute insulinostatic effect, similar to the impact of other peptides from the NPY family. However, it is interesting that prolonged activation of pancreatic Y1 receptors leads to established benefits on beta-cell turnover, preservation of beta-cell identity and improved insulin secretory responsiveness. This may hint towards possible similar anti-diabetic actions of sustained Y4 receptor modulation, since the Y1 and Y4 receptors trigger comparable cell signalling pathways. In terms of exploiting the prospective therapeutic promise of PP, this is severely restricted by a short circulating half-life as is the case for many regulatory peptide hormones. It follows that long-acting, enzyme resistant, forms of PP will be required to determine viability of the Y4 receptor as an anti-obesity and -diabetes drug target. The current review aims to refocus interest on the biology of PP and highlight opportunities for therapeutic development.
Collapse
|
14
|
Telle-Hansen VH, Gaundal L, Høgvard B, Ulven SM, Holven KB, Byfuglien MG, Måge I, Knutsen SH, Ballance S, Rieder A, Rud I, Myhrstad MCW. A Three-Day Intervention With Granola Containing Cereal Beta-Glucan Improves Glycemic Response and Changes the Gut Microbiota in Healthy Individuals: A Crossover Study. Front Nutr 2022; 9:796362. [PMID: 35578615 PMCID: PMC9106798 DOI: 10.3389/fnut.2022.796362] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
Intake of soluble fibers including beta-glucan, is known to improve post-prandial glycemic response. The mechanisms have been attributed to the viscous gel forming in the stomach and small intestine, giving a longer absorption time. However, recent evidence suggests a link between intake of beta-glucan and improved glycemic regulation at subsequent meals through the gut microbiota. We investigated the short-term effect of granola with different amounts of cereal beta-glucan on glycemic response and gut microbiota. After a two-week run-in period (baseline), fourteen healthy, normal weight adults completed a dose-response dietary crossover study. Different amounts of cereal beta-glucan (low: 0.8 g, medium: 3.2 g and high: 6.6 g) were provided in granola and eaten with 200 ml low-fat milk as an evening meal for three consecutive days. Blood glucose and insulin were measured fasted and after an oral glucose tolerance test (OGTT) the following day, in addition to peptide YY (PYY) and glucagon-like peptide (GLP-2), fasting short chain fatty acids (SCFA) in blood, breath H2, and gut microbiota in feces. Only the intervention with medium amounts of beta-glucan decreased blood glucose and insulin during OGTT compared to baseline. Fasting PYY increased with both medium and high beta-glucan meal compared to the low beta-glucan meal. The microbiota and SCFAs changed after all three interventions compared to baseline, where acetate and butyrate increased, while propionate was unchanged. Highest positive effect size after intake of beta-glucan was found with Haemophilus, followed by Veillonella and Sutterella. Furthermore, we found several correlations between different bacterial taxa and markers of glycemic response. In summary, intake of granola containing 3.2 g cereal beta-glucan as an evening meal for three consecutive days reduced the glycemic response after an OGTT 0-180 min and changed gut microbiota composition. Since we cannot rule out that other fiber types have contributed to the effect, more studies are needed to further explore the effect of cereal beta-glucan on glycemic regulation. Clinical Trial Registration [www.clinicaltrials.gov], identifier [NCT03293693].
Collapse
Affiliation(s)
- Vibeke H. Telle-Hansen
- Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Line Gaundal
- Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Benedicte Høgvard
- Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Stine M. Ulven
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Kirsten B. Holven
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- The Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | - Ingrid Måge
- Nofima AS (Norwegian Institute of Food, Fisheries and Aquaculture Research), Ås, Norway
| | - Svein Halvor Knutsen
- Nofima AS (Norwegian Institute of Food, Fisheries and Aquaculture Research), Ås, Norway
| | - Simon Ballance
- Nofima AS (Norwegian Institute of Food, Fisheries and Aquaculture Research), Ås, Norway
| | - Anne Rieder
- Nofima AS (Norwegian Institute of Food, Fisheries and Aquaculture Research), Ås, Norway
| | - Ida Rud
- Nofima AS (Norwegian Institute of Food, Fisheries and Aquaculture Research), Ås, Norway
| | - Mari C. W. Myhrstad
- Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
15
|
Andersen DB, Holst JJ. Peptides in the regulation of glucagon secretion. Peptides 2022; 148:170683. [PMID: 34748791 DOI: 10.1016/j.peptides.2021.170683] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023]
Abstract
Glucose homeostasis is maintained by the glucoregulatory hormones, glucagon, insulin and somatostatin, secreted from the islets of Langerhans. Glucagon is the body's most important anti-hypoglycemic hormone, mobilizing glucose from glycogen stores in the liver in response to fasting, thus maintaining plasma glucose levels within healthy limits. Glucagon secretion is regulated by both circulating nutrients, hormones and neuronal inputs. Hormones that may regulate glucagon secretion include locally produced insulin and somatostatin, but also urocortin-3, amylin and pancreatic polypeptide, and from outside the pancreas glucagon-like peptide-1 and 2, peptide tyrosine tyrosine and oxyntomodulin, glucose-dependent insulinotropic polypeptide, neurotensin and ghrelin, as well as the hypothalamic hormones arginine-vasopressin and oxytocin, and calcitonin from the thyroid. Each of these hormones have distinct effects, ranging from regulating blood glucose, to regulating appetite, stomach emptying rate and intestinal motility, which makes them interesting targets for treating metabolic diseases. Awareness regarding the potential effects of the hormones on glucagon secretion is important since secretory abnormalities could manifest as hyperglycemia or even lethal hypoglycemia. Here, we review the effects of each individual hormone on glucagon secretion, their interplay, and how treatments aimed at modulating the plasma levels of these hormones may also influence glucagon secretion and glycemic control.
Collapse
Affiliation(s)
- Daniel B Andersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200, Copenhagen N, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200, Copenhagen N, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
16
|
Cheng Y, Song M, Zhu Q, Azad MAK, Gao Q, Kong X. Impacts of Betaine Addition in Sow and Piglet's Diets on Growth Performance, Plasma Hormone, and Lipid Metabolism of Bama Mini-Pigs. Front Nutr 2022; 8:779171. [PMID: 35004811 PMCID: PMC8733558 DOI: 10.3389/fnut.2021.779171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/15/2021] [Indexed: 11/23/2022] Open
Abstract
The present study evaluated the effects of betaine addition in sow and piglet's diets on growth performance, plasma hormone, and lipid metabolism of Bama mini-pigs. A total of 26 pregnant Bama mini-pigs and 104 weaned piglets were selected and divided into different dietary treatment groups (details in “Materials and Methods”). Blood and muscle samples were collected at 65-, 95-, and 125-day-old, respectively. The results showed that betaine addition in sow-offspring diets increased (P < 0.05) the body weight at 125-day-old, average daily gain from 35- to 65-day-old, and average daily feed intake at 35–65 and 35–95 days old of pigs compared with the control group. Betaine addition in sow-offspring diets increased (P < 0.05) the plasma gastrin level at 95-day-old, while betaine addition in sow diets decreased (P < 0.05) the plasma peptide YY and leptin levels at 65-day-old pigs. In the longissimus dorsi muscle of pigs, betaine addition in sow and sow-offspring diets increased (P < 0.05) the C12:0 content at 65-day-old while decreased at 95-day-old. Moreover, betaine addition in sow-offspring diets increased the C24:0 content and decreased the C18:1n9t content at 125-day-old (P < 0.05). In the biceps femoris muscle, the contents of C12:0 at 65-day-old and C20:4n6 at 125-day-old were decreased (P < 0.05) after the betaine addition in both sow and piglet's diets. In addition, betaine addition in sow diets decreased (P < 0.05) the C20:0 content at 125-day-old, while betaine addition in sow-offspring diets increased the C18:3n6 and decreased C24:0 contents at 65-day-old pigs (P < 0.05). In the psoas major muscle, betaine addition in sow and sow-offspring diets decreased (P < 0.05) the contents of C18:1n9t at 65-day-old and C20:1 at 95-day-old, while betaine addition in sow diets decreased (P < 0.05) the intramuscular fat content at 125-day-old. Moreover, betaine addition in sow-offspring diets was also associated with muscle lipid deposition and metabolisms by regulating the gene expressions related to fatty acid metabolism. These findings suggested that betaine addition in sow-offspring diets could improve the growth performance, whereas betaine addition in both sow and sow-offspring diets could enhance lipid quality by altering plasma hormone level and fatty acid composition and regulating the gene expressions related to fatty acid metabolism.
Collapse
Affiliation(s)
- Yating Cheng
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mingtong Song
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Qian Zhu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Md Abul Kalam Azad
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiankun Gao
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China.,Research Center of Mini-Pig, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang, China
| |
Collapse
|
17
|
Domin H. Neuropeptide Y Y2 and Y5 receptors as potential targets for neuroprotective and antidepressant therapies: Evidence from preclinical studies. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110349. [PMID: 33991587 DOI: 10.1016/j.pnpbp.2021.110349] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/22/2022]
Abstract
There is currently no effective treatment either for neurological illnesses (ischemia and neurodegenerative diseases) or psychiatric disorders (depression), in which the Glu/GABA balance is disturbed and accompanied by significant excitotoxicity. Therefore, the search for new and effective therapeutic strategies is imperative for these disorders. Studies conducted over the last several years indicate that the neuropeptide Y (NPY)-ergic system may be a potential therapeutic target for neuroprotective or antidepressant compounds. This review focuses on the neuroprotective roles of Y2 and Y5 receptors (YRs) in neurological disorders such as ischemia, Alzheimer's disease, Parkinson's disease, Huntington's disease, and in psychiatric disorders such as depression. It summarizes current knowledge on the possible mechanisms underlying the neuroprotective or antidepressant-like actions of Y2R and Y5R ligands. The review also discusses ligands acting at Y2R and Y5R and their limitations as in vivo pharmacological tools. The results from the preclinical studies discussed here may be useful in developing effective therapeutic strategies to treat neurological diseases on the one hand and psychiatric disorders on the other, and may pave the way for the development of novel Y2R and Y5R ligands as candidate drugs for the treatment of these diseases.
Collapse
Affiliation(s)
- Helena Domin
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, 12 Smętna Street, Poland.
| |
Collapse
|
18
|
Nishizaki H, Matsuoka O, Kagawa T, Kobayashi A, Watanabe M, Moritoh Y. SCO-267, a GPR40 Full Agonist, Stimulates Islet and Gut Hormone Secretion and Improves Glycemic Control in Humans. Diabetes 2021; 70:2364-2376. [PMID: 34321316 PMCID: PMC8571351 DOI: 10.2337/db21-0451] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/20/2021] [Indexed: 11/21/2022]
Abstract
SCO-267 is a full agonist of the free fatty acid receptor 1 (GPR40), which regulates the secretion of islet and gut hormones. In this phase 1 study, we aimed to evaluate the clinical profile of single and multiple once-daily oral administration of SCO-267 in healthy adults and patients with diabetes. Plasma SCO-267 concentration was seen to increase in a dose-dependent manner after administration, and its plasma exposure was maintained for 24 h. Repeated dose did not alter the pharmacokinetic profile of SCO-267 in healthy adults. SCO-267 was generally safe and well tolerated at all evaluated single and multiple doses. Single and repeated doses of SCO-267 stimulated the secretion of insulin, glucagon, glucagon-like peptide 1, glucose-dependent insulinotropic polypeptide, and peptide YY in healthy adults. Furthermore, a single dose of SCO-267 stimulated the secretion of these hormones, decreased fasting hyperglycemia, and improved glycemic control during an oral glucose tolerance test in patients with diabetes, without inducing hypoglycemia. This study is the first to demonstrate the clinical effects of a GPR40 full agonist. SCO-267 is safe and well tolerated and exhibits once-daily oral dosing potential. Its robust therapeutic effects on hormonal secretion and glycemic control make SCO-267 an attractive drug candidate for the treatment of diabetes.
Collapse
Affiliation(s)
| | - Osamu Matsuoka
- Medical Corporation Heishinkai ToCROM Clinic, Tokyo, Japan
| | | | | | | | | |
Collapse
|
19
|
Dhamad A, Zampiga M, Greene ES, Sirri F, Dridi S. Neuropeptide Y and its receptors are expressed in chicken skeletal muscle and regulate mitochondrial function. Gen Comp Endocrinol 2021; 310:113798. [PMID: 33961876 DOI: 10.1016/j.ygcen.2021.113798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/24/2021] [Accepted: 04/28/2021] [Indexed: 12/26/2022]
Abstract
Neuropeptide Y (NPY) is a highly conserved 36-amino acid neurotransmitter, which is primarily expressed in the mammalian arcuate nucleus of the hypothalamus. It is a potent orexigenic neuropeptide, stimulating appetite and inducing feed intake in a variety of species. Recent research has shown that NPY and its receptors can be expressed by peripheral tissues, but their role is not yet well defined. Specifically, this information is particularly sparse in avian species. Therefore, the aim of this study was to determine the expression of NPY and its receptors, and determine their regulation by environmental and nutritional stressors, in the skeletal muscle of avian species using in vivo and in vitro approaches. Here, we show that NPY and its receptors are expressed in chicken breast and leg muscle as well as in quail myoblast (QM7) cell line. Intraperitoneal injection of recombinant NPY increased feed intake in 9-d old chicks and upregulated the expression of NPY and NPY receptors in breast and leg muscle, suggesting autocrine and/or paracrine roles for NPY. Additionally, NPY is able to modulate the mitochondrial network. In breast muscle, a low dose of NPY upregulated (P < 0.05) the expression of genes involved in ATP production (uncoupling protein, UCP; nuclear factor erythroid 2 like 2, NFE2L2) and dynamics (mitofusin 1, MFN1), while a high dose decreased (P < 0.05) markers of mitochondrial dynamics (mitofusin 2, MFN2; OPA1 mitochondrial dynamin like GTPase, OPA1) and increased (P < 0.05) genes involved in mitochondrial biogenesis (D-loop, peroxisome proliferator activated receptor gamma, PPARG). In leg muscle, NPY decreased (P < 0.05) markers of mitochondrial biogenesis and ATP synthesis (D-loop; peroxisome proliferator activated receptor alpha, PCG1A; peroxisome proliferator-activated receptor gamma, coactivator 1 beta, PPARGC1B; PPARG; NFE2L2). In QM7 cells, genes associated with mitochondrial biogenesis, dynamics, and ATP synthesis were all upregulated (P < 0.05), even though basal respiration and ATP production were decreased (P < 0.05) with NPY treatment as measured by XF Flux analysis. Together, these data show that the NPY system is expressed in avian skeletal muscle and plays a role in mitochondrial function.
Collapse
Affiliation(s)
- Ahmed Dhamad
- University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, AR 72701, United States
| | - Marco Zampiga
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Elizabeth S Greene
- University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, AR 72701, United States
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Sami Dridi
- University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, AR 72701, United States.
| |
Collapse
|
20
|
Fernández-García V, González-Ramos S, Martín-Sanz P, Laparra JM, Boscá L. Beyond classic concepts in thyroid homeostasis: Immune system and microbiota. Mol Cell Endocrinol 2021; 533:111333. [PMID: 34048865 DOI: 10.1016/j.mce.2021.111333] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
It has long been known that thyroid hormones have implications for multiple physiological processes and can lead to serious illness when there is an imbalance in its metabolism. The connections between thyroid hormone metabolism and the immune system have been extensively described, as they can participate in inflammation, autoimmunity, or cancer progression. In addition, changes in the normal intestinal microbiota involve the activation of the immune system while triggering different pathophysiological disorders. Recent studies have linked the microbiota and certain bacterial fragments or metabolites to the regulation of thyroid hormones and the general response in the endocrine system. Even if the biology and function of the thyroid gland has attracted more attention due to its pathophysiological importance, there are essential mechanisms and issues related to it that are related to the interplay between the intestinal microbiota and the immune system and must be further investigated. Here we summarize additional information to uncover these relationships, the knowledge of which would help establish new personalized medical strategies.
Collapse
Affiliation(s)
- Victoria Fernández-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029, Madrid, Spain
| | - Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029, Madrid, Spain.
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Melchor Fernández Almagro 6, 28029, Madrid, Spain
| | - José M Laparra
- Madrid Institute for Advanced Studies in Food (IMDEA Food), Ctra. Cantoblanco 8, 28049, Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029, Madrid, Spain.
| |
Collapse
|
21
|
Yang CH, Onda DA, Oakhill JS, Scott JW, Galic S, Loh K. Regulation of Pancreatic β-Cell Function by the NPY System. Endocrinology 2021; 162:6213414. [PMID: 33824978 DOI: 10.1210/endocr/bqab070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 01/24/2023]
Abstract
The neuropeptide Y (NPY) system has been recognized as one of the most critical molecules in the regulation of energy homeostasis and glucose metabolism. Abnormal levels of NPY have been shown to contribute to the development of metabolic disorders including obesity, cardiovascular diseases, and diabetes. NPY centrally promotes feeding and reduces energy expenditure, while the other family members, peptide YY (PYY) and pancreatic polypeptide (PP), mediate satiety. New evidence has uncovered additional functions for these peptides that go beyond energy expenditure and appetite regulation, indicating a more extensive function in controlling other physiological functions. In this review, we will discuss the role of the NPY system in the regulation of pancreatic β-cell function and its therapeutic implications for diabetes.
Collapse
Affiliation(s)
- Chieh-Hsin Yang
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Danise-Ann Onda
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Jonathan S Oakhill
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
| | - John W Scott
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3010, Australia
| | - Sandra Galic
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kim Loh
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
22
|
Interactions between the microbiota and enteric nervous system during gut-brain disorders. Neuropharmacology 2021; 197:108721. [PMID: 34274348 DOI: 10.1016/j.neuropharm.2021.108721] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 02/08/2023]
Abstract
For the last 20 years, researchers have focused their intention on the impact of gut microbiota in healthy and pathological conditions. This year (2021), more than 25,000 articles can be retrieved from PubMed with the keywords "gut microbiota and physiology", showing the constant progress and impact of gut microbes in scientific life. As a result, numerous therapeutic perspectives have been proposed to modulate the gut microbiota composition and/or bioactive factors released from microbes to restore our body functions. Currently, the gut is considered a primary site for the development of pathologies that modify brain functions such as neurodegenerative (Parkinson's, Alzheimer's, etc.) and metabolic (type 2 diabetes, obesity, etc.) disorders. Deciphering the mode of interaction between microbiota and the brain is a real original option to prevent (and maybe treat in the future) the establishment of gut-brain pathologies. The objective of this review is to describe recent scientific elements that explore the communication between gut microbiota and the brain by focusing our interest on the enteric nervous system (ENS) as an intermediate partner. The ENS, which is known as the "second brain", could be under the direct or indirect influence of the gut microbiota and its released factors (short-chain fatty acids, neurotransmitters, gaseous factors, etc.). Thus, in addition to their actions on tissue (adipose tissue, liver, brain, etc.), microbes can have an impact on local ENS activity. This potential modification of ENS function has global repercussions in the whole body via the gut-brain axis and represents a new therapeutic strategy.
Collapse
|
23
|
Yu X, Xin Y, Cui L, Jia J, Yuan X, Fu S, Zhang J, Sun C, Miao X, Li W. Effects of neuropeptide Y as a feed additive on stimulating the growth of tilapia (Oreochromis niloticus) fed low fish meal diets. Peptides 2021; 138:170505. [PMID: 33539872 DOI: 10.1016/j.peptides.2021.170505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 10/22/2022]
Abstract
Neuropeptide Y is known to stimulate food intake in fish. In this study, we investigated tilapia NPY (tNPY) both for its effects on the growth of tilapia (Oreochromis niloticus, GIFT) in low fish meal and for its thermal stability. Three diets were formulated containing 0, 3 and 10 % fish meal (NF, LF and HF). From these diets, six experimental diets were prepared by spraying either tNPY solution (0.3 μg/g feed) or distilled water (DW) onto the surface of formulated feeds (NF + DW, NF + tNPY, LF + DW, LF + tNPY, HF + DW and HF + tNPY). Tilapia were fed the six experimental diets for 8 weeks. Fish in the NF + tNPY, LF + tNPY and HF + tNPY groups showed increasing trends in the weight gain rate and specific growth rate compared to its corresponding control group. The feed coefficient of group HF + tNPY was significantly lower than that of the control group. The growth performance of the LF + tNPY approached that of the HF + DW group. The mRNA levels of npy in NF + tNPY were significantly higher than those in NF + DW. A field experiment in which tNPY was sprayed in feeds by the vacuum spray method with doses of 0, 0.2 and 0.4 μg/g feed was performed for three months, and the FBW of tilapia receiving tNPY at 0.2 and 0.4 μg/g feed was higher than that of the control group although not significantly. The bioactivity of tNPY was confirmed by its ability to reduce cAMP levels and activate the ERK1/2 pathway. These results demonstrated that tNPY could promote tilapia growth with oral administration low fish meal diets.
Collapse
Affiliation(s)
- Xiaozheng Yu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Lab Oratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Ying Xin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Lab Oratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lili Cui
- Yunnan Academy of Fishery Sciences, Yunnan Agricultural University, Kunming, China; College of Animal, Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jirong Jia
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Lab Oratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xi Yuan
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Lab Oratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shiwei Fu
- Yunnan Academy of Fishery Sciences, Yunnan Agricultural University, Kunming, China
| | - Jiahui Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Lab Oratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Caiyun Sun
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Lab Oratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiangjun Miao
- Yunnan Academy of Fishery Sciences, Yunnan Agricultural University, Kunming, China
| | - Wensheng Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Lab Oratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
24
|
Lafferty RA, Flatt PR, Irwin N. Established and emerging roles peptide YY (PYY) and exploitation in obesity-diabetes. Curr Opin Endocrinol Diabetes Obes 2021; 28:253-261. [PMID: 33395088 DOI: 10.1097/med.0000000000000612] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW The antiobesity effects of activation of hypothalamic neuropeptide Y2 receptors (NPYR2) by the gut-derived hormone, peptide YY (PYY), are established. However, more recent insight into the biology of PYY has demonstrated remarkable benefits of sustained activation of pancreatic beta-cell NPYR1, that promises to open a new therapeutic avenue in diabetes. RECENT FINDINGS The therapeutic applicability of NPYR2 agonists for obesity has been considered for many years. An alternative pathway for the clinical realisation of PYY-based drugs could be related to the development of NPYR1 agonists for treatment of diabetes. Thus, although stimulation of NPYR1 on pancreatic beta-cells has immediate insulinostatic effects, prolonged activation of these receptors leads to well defined beta-cell protective effects, with obvious positive implications for the treatment of diabetes. In this regard, NPYR1-specific, long-acting enzyme resistant PYY analogues, have been recently developed with encouraging preclinical effects observed on pancreatic islet architecture in diabetes. In agreement, the benefits of certain types of bariatric surgeries on beta-cell function and responsiveness have also been linked to elevated PYY secretion and NPY1 receptor activation. SUMMARY Enzymatically stable forms of PYY, that selectively activate NPYR1, may have significant potential for preservation of beta-cell mass and the treatment of diabetes.
Collapse
Affiliation(s)
- Ryan A Lafferty
- Diabetes Research Group, Ulster University, Coleraine, Northern Ireland, UK
| | | | | |
Collapse
|
25
|
Milliken BT, Elfers C, Chepurny OG, Chichura KS, Sweet IR, Borner T, Hayes MR, De Jonghe BC, Holz GG, Roth CL, Doyle RP. Design and Evaluation of Peptide Dual-Agonists of GLP-1 and NPY2 Receptors for Glucoregulation and Weight Loss with Mitigated Nausea and Emesis. J Med Chem 2021; 64:1127-1138. [PMID: 33449689 PMCID: PMC7956155 DOI: 10.1021/acs.jmedchem.0c01783] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
There is a critical unmet need for
therapeutics to treat the epidemic
of comorbidities associated with obesity and type 2 diabetes, ideally
devoid of nausea/emesis. This study developed monomeric peptide agonists
of glucagon-like peptide 1 receptor (GLP-1R) and neuropeptide Y2 receptor
(Y2-R) based on exendin-4 (Ex-4) and PYY3–36. A
novel peptide, GEP44, was obtained via in vitro receptor
screens, insulin secretion in islets, stability assays, and in vivo rat and shrew studies of glucoregulation, weight
loss, nausea, and emesis. GEP44 in lean and diet-induced obese rats
produced greater reduction in body weight compared to Ex-4 without
triggering nausea associated behavior. Studies in the shrew demonstrated
a near absence of emesis for GEP44 in contrast to Ex-4. Collectively,
these data demonstrate that targeting GLP-1R and Y2-R with chimeric
single peptides offers a route to new glucoregulatory treatments that
are well-tolerated and have improved weight loss when compared directly
to Ex-4.
Collapse
Affiliation(s)
- Brandon T Milliken
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| | - Clinton Elfers
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington 98105, United States
| | - Oleg G Chepurny
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, New York 13210, United States
| | - Kylie S Chichura
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| | - Ian R Sweet
- Diabetes Research Institute, University of Washington, Seattle, Washington 98105, United States
| | - Tito Borner
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Bart C De Jonghe
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - George G Holz
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, New York 13210, United States
| | - Christian L Roth
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington 98105, United States
| | - Robert P Doyle
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States.,Department of Medicine, State University of New York, Upstate Medical University, Syracuse, New York 13210, United States
| |
Collapse
|
26
|
Mashayekhi M, Wilson JR, Jafarian-Kerman S, Nian H, Yu C, Shuey MM, Luther JM, Brown NJ. Association of a glucagon-like peptide-1 receptor gene variant with glucose response to a mixed meal. Diabetes Obes Metab 2021; 23:281-286. [PMID: 33001556 PMCID: PMC8142152 DOI: 10.1111/dom.14216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/09/2020] [Accepted: 09/25/2020] [Indexed: 11/27/2022]
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors increase endogenous glucagon-like peptide-1 (GLP-1). We hypothesized that genetic variation in the gene encoding the GLP-1 receptor (GLP1R) could affect the metabolic response to DPP-4 inhibition. To evaluate the relationship between the GLP1R rs6923761 variant (G-to-A nucleic acid substitution) and metabolic responses, we performed mixed meal studies in individuals with type 2 diabetes mellitus and hypertension after 7-day treatment with placebo and the DPP-4 inhibitor sitagliptin. This analysis is a substudy of NCT02130687. The genotype frequency was 13:12:7 GG:GA:AA among individuals of European ancestry. Postprandial glucose excursion was significantly decreased in individuals carrying the rs6923761 variant (GA or AA) as compared with GG individuals during both placebo (P = 0.001) and sitagliptin treatment (P = 0.045), while intact GLP-1 levels were similar among the genotype groups. In contrast, sitagliptin lowered postprandial glucose to a greater degree in GG as compared with GA/AA individuals (P = 0.035). The relationship between GLP1R rs6923761 genotype and therapies that modulate GLP-1 signalling merits study in large populations.
Collapse
Affiliation(s)
- Mona Mashayekhi
- Division of Endocrinology, Diabetes, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jessica R. Wilson
- Division of Endocrinology, Diabetes and Metabolism, University of Pennsylvania Department of Medicine, Philadelphia, Pennsylvania
| | - Scott Jafarian-Kerman
- Division of Applied Regulatory Science, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Hui Nian
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Chang Yu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Megan M. Shuey
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - James M. Luther
- Division of Clinical Pharmacology, Vanderbilt Department of Medicine, Nashville, Tennessee
| | - Nancy J. Brown
- Division of Clinical Pharmacology, Vanderbilt Department of Medicine, Nashville, Tennessee
- Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
27
|
Cheon M, Park H, Chung C. Protein kinase C mediates neuropeptide Y-induced reduction in inhibitory neurotransmission in the lateral habenula. Neuropharmacology 2020; 180:108295. [PMID: 32882226 DOI: 10.1016/j.neuropharm.2020.108295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/06/2020] [Accepted: 08/29/2020] [Indexed: 11/30/2022]
Abstract
Neuropeptide Y (NPY) is one of peptide neuromodulators, well known for orexigenic, anxiolytic and antidepressant effects. We previously reported that NPY decreases GABAergic transmission in the lateral habenula (LHb). In the current study, we aim to investigate the underlying signaling pathways that mediate inhibitory action of NPY in the LHb by employing whole-cell patch clamp recording with pharmacological interventions. Here, we revealed that Y1 receptors (Y1Rs) but not Y2Rs mediate NPY-induced decrease of GABAergic transmission in the LHb. Surprisingly, NPY-induced decrease of inhibitory transmission in the LHb was not dependent on adenylyl cyclase (AC)/protein kinase A (PKA)-dependent pathway as reported in other brain areas. Instead, pharmacological blockade of phospholipase C (PLC) or protein kinase C (PKC) activity abolished the decrease of GABAergic transmission by NPY in the LHb. Our findings suggest that Y1Rs in the LHb may trigger the activation of PLC/PKC-dependent pathway but not the classical AC/PKA-dependent pathway to decrease inhibitory transmission of the LHb.
Collapse
Affiliation(s)
- Myunghyun Cheon
- Department of Biological Sciences, Konkuk University, Seoul, 05029, South Korea
| | - Hoyong Park
- Department of Biological Sciences, Konkuk University, Seoul, 05029, South Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
28
|
Morris JK, John CS, Green ZD, Wilkins HM, Wang X, Kamat A, Swerdlow RS, Vidoni ED, Petersen ME, O’Bryant SE, Honea RA, Burns JM. Characterization of the Meal-Stimulated Incretin Response and Relationship With Structural Brain Outcomes in Aging and Alzheimer's Disease. Front Neurosci 2020; 14:608862. [PMID: 33328877 PMCID: PMC7734152 DOI: 10.3389/fnins.2020.608862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/02/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Individuals with Alzheimer's Disease (AD) are often characterized by systemic markers of insulin resistance; however, the broader effects of AD on other relevant metabolic hormones, such as incretins that affect insulin secretion and food intake, remains less clear. METHODS Here, we leveraged a physiologically relevant meal tolerance test to assess diagnostic differences in these metabolic responses in cognitively healthy older adults (CH; n = 32) and AD (n = 23) participants. All individuals also underwent a comprehensive clinical examination, cognitive evaluation, and structural magnetic resonance imaging. RESULTS The meal-stimulated response of glucose, insulin, and peptide tyrosine tyrosine (PYY) was significantly greater in individuals with AD as compared to CH. Voxel-based morphometry revealed negative relationships between brain volume and the meal-stimulated response of insulin, C-Peptide, and glucose-dependent insulinotropic polypeptide (GIP) in primarily parietal brain regions. CONCLUSION Our findings are consistent with prior work that shows differences in metabolic regulation in AD and relationships with cognition and brain structure.
Collapse
Affiliation(s)
- Jill K. Morris
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, United States
| | - Casey S. John
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, United States
| | - Zachary D. Green
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, United States
| | - Heather M. Wilkins
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, United States
| | - Xiaowan Wang
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, United States
| | - Ashwini Kamat
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, United States
| | - Russell S. Swerdlow
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, United States
| | - Eric D. Vidoni
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, United States
| | - Melissa E. Petersen
- Department of Family Medicine, University of North Texas Health Science Center, Fort Worth, TX, United States
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, TX, United states
| | - Sid E. O’Bryant
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, TX, United states
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Robyn A. Honea
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, United States
| | - Jeffrey M. Burns
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Alzheimer’s Disease Center, Kansas City, KS, United States
| |
Collapse
|
29
|
Albrecht A, Redavide E, Regev-Tsur S, Stork O, Richter-Levin G. Hippocampal GABAergic interneurons and their co-localized neuropeptides in stress vulnerability and resilience. Neurosci Biobehav Rev 2020; 122:229-244. [PMID: 33188820 DOI: 10.1016/j.neubiorev.2020.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/05/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
Abstract
Studies in humans and rodents suggest a critical role for the hippocampal formation in cognition and emotion, but also in the adaptation to stressful events. Successful stress adaptation promotes resilience, while its failure may lead to stress-induced psychopathologies such as depression and anxiety disorders. Hippocampal architecture and physiology is shaped by its strong control of activity via diverse classes of inhibitory interneurons that express typical calcium binding proteins and neuropeptides. Celltype-specific opto- and chemogenetic intervention strategies that take advantage of these biochemical markers have bolstered our understanding of the distinct role of different interneurons in anxiety, fear and stress adaptation. Moreover, some of the signature proteins of GABAergic interneurons have a potent impact on emotion and cognition on their own, making them attractive targets for interventions. In particular, neuropeptide Y is a promising endogenous agent for mediating resilience against severe stress. In this review, we evaluate the role of the major types of interneurons across hippocampal subregions in the adaptation to chronic and acute stress and to emotional memory formation.
Collapse
Affiliation(s)
- Anne Albrecht
- Institute of Anatomy, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; Center for Behavioral Brain Science, Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Elisa Redavide
- Institute of Anatomy, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; Center for Behavioral Brain Science, Universitätsplatz 2, 39106 Magdeburg, Germany; Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; Institute of Pharmacology and Toxicology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Stav Regev-Tsur
- Sagol Department of Neurobiology, University of Haifa, 199 Aba-Hushi Avenue, 3498838 Haifa, Israel; The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, 199 Aba-Hushi Avenue, 3498838 Haifa, Israel.
| | - Oliver Stork
- Center for Behavioral Brain Science, Universitätsplatz 2, 39106 Magdeburg, Germany; Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, 199 Aba-Hushi Avenue, 3498838 Haifa, Israel; The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, 199 Aba-Hushi Avenue, 3498838 Haifa, Israel; Psychology Department, University of Haifa199 Aba-Hushi Avenue, 3498838 Haifa, Israel.
| |
Collapse
|
30
|
Shim YE, Lee ES, Hong MG, Kim DK, Lee BH. Highly branched α-limit dextrins attenuate the glycemic response and stimulate the secretion of satiety hormone peptide YY. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Lafferty RA, Tanday N, Flatt PR, Irwin N. Generation and characterisation of C-terminally stabilised PYY molecules with potential in vivo NPYR2 activity. Metabolism 2020; 111:154339. [PMID: 32777442 DOI: 10.1016/j.metabol.2020.154339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/09/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Activation of neuropeptide Y2 receptors (NPYR2) by the N-terminally truncated, dipeptidyl peptidase-4 (DPP-4) generated, Peptide YY (PYY) metabolite, namely PYY(3-36), results in satiating actions. However, PYY(3-36) is also subject to C-terminal enzymatic cleavage, which annuls anorectic effects. METHODS Substitution of l-Arg35 with d-Arg35 in the DPP-4 stable sea lamprey PYY(1-36) peptide imparts full C-terminal stability. In the current study, we have taken this molecule and introduced DPP-4 susceptibility by Iso3 substitution. RESULTS As expected, [Iso3]sea lamprey PYY(1-36) and [Iso3](d-Arg35)sea lamprey PYY(1-36) were N-terminally degraded to respective PYY(3-36) metabolites in plasma. Only [Iso3](d-Arg35)sea lamprey PYY(1-36) was C-terminally stable. Both peptides possessed similar insulinostatic and anti-apoptotic biological actions to native PYY(1-36) in beta-cells. Unlike native PYY(1-36) and [Iso3](d-Arg35)sea lamprey PYY(1-36), [Iso3]sea lamprey PYY(1-36) displayed some proliferative actions in Npyr1 knockout beta-cells. In addition, [Iso3]sea lamprey PYY(1-36) induced more rapid NPYR2-dependent appetite suppressive effects in mice than its C-terminally stable counterpart. Twice daily administration of either peptide to high fat fed (HFF) mice resulted in significant body weight reduction and improvements in circulating triglyceride levels. [Iso3]sea lamprey PYY(1-36) treatment also prevented elevations in glucagon. Both peptides, and especially [Iso3]sea lamprey PYY(1-36), improved glucose tolerance. The treatment interventions also partially reversed the deleterious effects of sustained high fat feeding on pancreatic islet morphology. CONCLUSION The present study confirms that sustained NPYR2 receptor activation by [Iso3](d-Arg35)sea lamprey induced significant weight lowering actions. However, identifiable benefits of this peptide over [Iso3]sea lamprey PYY(1-36), which was not protected against C-terminal degradation, were not pronounced.
Collapse
Affiliation(s)
- Ryan A Lafferty
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK
| | - Neil Tanday
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK.
| |
Collapse
|
32
|
Yang H, Liu H, Jiao Y, Qian J. Roux-en-Y Gastrointestinal Bypass Promotes Activation of TGR5 and Peptide YY. Endocr Metab Immune Disord Drug Targets 2020; 20:1262-1267. [PMID: 32600238 DOI: 10.2174/1871530320666200628024500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 04/26/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND G protein-coupled bile acid receptor (TGR5) is involved in a number of metabolic diseases. The aim of this study was to identify the role of TGR5 after Roux-en-Y gastric bypass (GBP). METHODS Wild type and TGR5 knockout mice (tgr5-/-) were fed a high-fat diet (HFD) to establish the obesity model. GBP was performed. The changes in body weight and food intake were measured. The levels of TGR5 and peptide YY (PYY) were evaluated by RT-PCR, Western blot, and ELISA. Moreover, the L-cells were separated from wild type and tgr5-/- mice. The levels of PYY in L-cells were evaluated by ELISA. RESULTS The body weights were significantly decreased after GBP in wild type mice (p<0.05), but not tgr5-/- mice (p>0.05). Food intake was reduced after GBP in wild type mice, but also not significantly affected in tgr5-/- mice (p>0.05). The levels of PYY were significantly increased after GBP compared with the sham group (p<0.05); however, in tgr5-/- mice the expression of PYY was not significantly affected (p>0.05). After INT-777 stimulation in L-cells obtained from murine intestines, the levels of PYY were significantly increased in L-cells tgr5+/+ (p<0.05). CONCLUSION Our study suggests that GBP up-regulated the expression of TGR5 in murine intestines, and increased the levels of PYY, which further reduced food intake and decreased the body weight.
Collapse
Affiliation(s)
- Haojun Yang
- Department of Gastrointestinal Surgery, Nanjing Medical University Affiliated Changzhou No. 2 People's Hospital, Changzhou, 213000, China
| | - Hanyang Liu
- Department of Gastrointestinal Surgery, Nanjing Medical University Affiliated Changzhou No. 2 People's Hospital, Changzhou, 213000, China
| | - YuWen Jiao
- Department of Gastrointestinal Surgery, Nanjing Medical University Affiliated Changzhou No. 2 People's Hospital, Changzhou, 213000, China
| | - Jun Qian
- Department of Gastrointestinal Surgery, Nanjing Medical University Affiliated Changzhou No. 2 People's Hospital, Changzhou, 213000, China
| |
Collapse
|
33
|
Russell R, Carnese PP, Hennings TG, Walker EM, Russ HA, Liu JS, Giacometti S, Stein R, Hebrok M. Loss of the transcription factor MAFB limits β-cell derivation from human PSCs. Nat Commun 2020; 11:2742. [PMID: 32488111 PMCID: PMC7265500 DOI: 10.1038/s41467-020-16550-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Next generation sequencing studies have highlighted discrepancies in β-cells which exist between mice and men. Numerous reports have identified MAF BZIP Transcription Factor B (MAFB) to be present in human β-cells postnatally, while its expression is restricted to embryonic and neo-natal β-cells in mice. Using CRISPR/Cas9-mediated gene editing, coupled with endocrine cell differentiation strategies, we dissect the contribution of MAFB to β-cell development and function specifically in humans. Here we report that MAFB knockout hPSCs have normal pancreatic differentiation capacity up to the progenitor stage, but favor somatostatin- and pancreatic polypeptide–positive cells at the expense of insulin- and glucagon-producing cells during endocrine cell development. Our results describe a requirement for MAFB late in the human pancreatic developmental program and identify it as a distinguishing transcription factor within islet cell subtype specification. We propose that hPSCs represent a powerful tool to model human pancreatic endocrine development and associated disease pathophysiology. The MAF bZIP transcription factor B (MAFB) is present in postnatal human beta cells but its role is unclear. Here, the authors show that MAFB regulates endocrine pancreatic cell fate specification.
Collapse
Affiliation(s)
- Ronan Russell
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Phichitpol P Carnese
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Thomas G Hennings
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Emily M Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Holger A Russ
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA.,Barbara Davis Center for Diabetes, School of Medicine, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Jennifer S Liu
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Simone Giacometti
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Matthias Hebrok
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
34
|
Lafferty RA, Tanday N, McCloskey A, Bompada P, De Marinis Y, Flatt PR, Irwin N. Peptide YY (1-36) peptides from phylogenetically ancient fish targeting mammalian neuropeptide Y1 receptors demonstrate potent effects on pancreatic β-cell function, growth and survival. Diabetes Obes Metab 2020; 22:404-416. [PMID: 31692207 DOI: 10.1111/dom.13908] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023]
Abstract
AIM To investigate the antidiabetic efficacy of enzymatically stable Peptide YY (PYY) peptides from phylogenetically ancient fish. MATERIALS AND METHODS N-terminally stabilized, PYY (1-36) sequences from Amia calva (bowfin), Oncorhynchus mykiss (trout), Petromyzon marinus (sea lamprey) and Scaphirhynchus albus (sturgeon), were synthesized, and both biological actions and antidiabetic therapeutic efficacy were assessed. RESULTS All fish PYY (1-36) peptides were resistant to dipeptidyl peptidase-4 (DPP-4) degradation and inhibited glucose- and alanine-induced (P < 0.05 to P < 0.001) insulin secretion. In addition, PYY (1-36) peptides imparted significant (P < 0.05 to P < 0.001) β-cell proliferative and anti-apoptotic benefits. Proliferative effects were almost entirely absent in β cells with CRISPR-Cas9-induced knockout of Npyr1. In contrast to human PYY (1-36), the piscine-derived peptides lacked appetite-suppressive actions. Twice-daily administration of sea lamprey PYY (1-36), the superior bioactive peptide, for 21 days significantly (P < 0.05 to P < 0.001) decreased fluid intake, non-fasting glucose and glucagon in streptozotocin (STZ)-induced diabetic mice. In addition, glucose tolerance, insulin sensitivity, pancreatic insulin and glucagon content were significantly improved. Metabolic benefits were linked to positive changes in pancreatic islet morphology as a result of augmented (P < 0.001) proliferation and decreased apoptosis of β cells. Sturgeon PYY (1-36) exerted similar but less impressive effects in STZ mice. CONCLUSION These observations reveal, for the first time, that PYY (1-36) peptide sequences from phylogenetically ancient fish replicate the pancreatic β-cell benefits of human PYY (1-36) and have clear potential for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Ryan A Lafferty
- SAAD Centre for Pharmacy and Diabetes, Biomedical Sciences Research Institute, University of Ulster, Coleraine, UK
| | - Neil Tanday
- SAAD Centre for Pharmacy and Diabetes, Biomedical Sciences Research Institute, University of Ulster, Coleraine, UK
| | - Andrew McCloskey
- SAAD Centre for Pharmacy and Diabetes, Biomedical Sciences Research Institute, University of Ulster, Coleraine, UK
| | - Pradeep Bompada
- Genomics, Diabetes and Endocrinology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Yang De Marinis
- Genomics, Diabetes and Endocrinology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, Biomedical Sciences Research Institute, University of Ulster, Coleraine, UK
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, Biomedical Sciences Research Institute, University of Ulster, Coleraine, UK
| |
Collapse
|
35
|
Gewehr MCF, Silverio R, Rosa-Neto JC, Lira FS, Reckziegel P, Ferro ES. Peptides from Natural or Rationally Designed Sources Can Be Used in Overweight, Obesity, and Type 2 Diabetes Therapies. Molecules 2020; 25:E1093. [PMID: 32121443 PMCID: PMC7179135 DOI: 10.3390/molecules25051093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/18/2022] Open
Abstract
Overweight and obesity are among the most prominent health problems in the modern world, mostly because they are either associated with or increase the risk of other diseases such as type 2 diabetes, hypertension, and/or cancer. Most professional organizations define overweight and obesity according to individual body-mass index (BMI, weight in kilograms divided by height squared in meters). Overweight is defined as individuals with BMI from 25 to 29, and obesity as individuals with BMI ≥30. Obesity is the result of genetic, behavioral, environmental, physiological, social, and cultural factors that result in energy imbalance and promote excessive fat deposition. Despite all the knowledge concerning the pathophysiology of obesity, which is considered a disease, none of the existing treatments alone or in combination can normalize blood glucose concentration and prevent debilitating complications from obesity. This review discusses some new perspectives for overweight and obesity treatments, including the use of the new orally active cannabinoid peptide Pep19, the advantage of which is the absence of undesired central nervous system effects usually experienced with other cannabinoids.
Collapse
Affiliation(s)
- Mayara C. F. Gewehr
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| | - Renata Silverio
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, Brazil;
| | - José Cesar Rosa-Neto
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| | - Fabio S. Lira
- Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente 19060-900, Brazil;
| | - Patrícia Reckziegel
- Department of Pharmacology, National Institute of Pharmacology and Molecular Biology (INFAR), Federal University of São Paulo (UNIFESP), São Paulo 05508-000, Brazil;
| | - Emer S. Ferro
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| |
Collapse
|
36
|
Jakobsson JET, Ma H, Lagerström MC. Neuropeptide Y in itch regulation. Neuropeptides 2019; 78:101976. [PMID: 31668651 DOI: 10.1016/j.npep.2019.101976] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/03/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022]
Abstract
Itch is a somatosensory sensation that informs the organism about the presence of potentially harmful substances or parasites, and initiates scratching to remove the threat. Itch-inducing (pruritogenic) substances activate primary afferent neurons in the skin through interactions with specific receptors that converts the stimulus into an electrical signal. These signals are conveyed to the dorsal horn of the spinal cord through the release of neurotransmitters such as natriuretic polypeptide b and somatostatin, leading to an integrated response within a complex spinal interneuronal network. A large sub-population of somatostatin-expressing spinal interneurons also carry the Neuropeptide Y (NPY) Y1 receptor, indicating that NPY and somatostatin partly regulate the same neuronal pathway. This review focuses on recent findings regarding the role of the NPY/Y1 and somatostatin/SST2A receptor in itch, and also presents data integrating the two neurotransmitter systems.
Collapse
Affiliation(s)
- Jon E T Jakobsson
- Department of Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | - Haisha Ma
- Department of Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | | |
Collapse
|
37
|
Miron I, Dumitrascu D. GASTROINTESTINAL MOTILITY DISORDERS IN OBESITY. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2019; 15:497-504. [PMID: 32377248 PMCID: PMC7200119 DOI: 10.4183/aeb.2019.497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gastrointestinal (GI) motility, which is important for the digestion and absorption, may be altered in obesity. The aim of this review is to present the GI motility changes occurring in obesity, as well as their underlying mechanisms. We have conducted a systematic review of the published literature concerning GI motility and obesity and have described recent published data on the changes throughout the entire GI tract. Most recent discoveries include evidence supporting the increase of gastroesophageal reflux disease in obesity and inhibition of gastric motility. Intestinal transit of the distal small bowel generally slows down, ensuring enough time for digestion and absorption. Constipation is more frequent in obese patients than in those with a normal weight. The gut-brain axis plays an important role in the pathophysiology of GI motility disorders in obesity. This bidirectional communication is achieved by way of neurons, hormones, metabolites derived from intestinal microbiota and cytokines. The molecular mechanisms of GI motility changes in obesity are complex. Current data offer a starting point for further research needed to clarify the association of obesity with GI motility disorders.
Collapse
Affiliation(s)
- I. Miron
- “Iuliu Hatieganu” University of Medicine and Pharmacy, 3 Medical Clinic, Cluj-Napoca, Romania
| | - D.L. Dumitrascu
- “Iuliu Hatieganu” Dept of Internal Medicine, Cluj-Napoca, Romania
| |
Collapse
|
38
|
Donlon J, Ryan P. Peptidylglycine monooxygenase activity of monomeric species of growth hormone. Heliyon 2019; 5:e02436. [PMID: 31528749 PMCID: PMC6739457 DOI: 10.1016/j.heliyon.2019.e02436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/27/2019] [Accepted: 09/04/2019] [Indexed: 11/30/2022] Open
Abstract
C-terminal α-amidation of peptides is an important event in the course of pro-hormone and neuropeptide processing; it is a modification that contributes to the biological activity and stability of about 25 peptides in neural and endocrine systems. This laboratory has shown that bovine growth hormone (bGH) also has a catalytic function, i.e. peptidylglycine monooxygenase activity, which is the first step in the alpha-amidation of glycine-extended peptides. We report here that the peptidylglycine monooxygenase activity of monomeric bovine pituitary GH, in the presence of ascorbate, is stimulated by combination with oligomeric forms of bGH one of which is a hetero-oligomer with metallothionein. Three species of recombinant monomeric GH (bovine, human and chicken) also catalyze this monooxygenase reaction. Tetrahydrobiopterin also functions as a reductant - with a significantly greater turnover than achieved with ascorbate. These findings clarify the role of GH in peptidylglycine monooxygenation and provide an explanation for earlier observations that peptide amidation is not totally obliterated in the absence of ascorbate, in cultured pituitary cells or in vivo. The evolution of bifunctional GH is also discussed, as are some of the significances of the peptidylglycine monooxygenase activity of human GH in relation to peptides such as oxytocin, glucagon-like peptide-1 and peptide PYY.
Collapse
Affiliation(s)
- John Donlon
- Discipline of Biochemistry, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Patrick Ryan
- Discipline of Biochemistry, School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
39
|
Pharmacological characterization, cellular localization and expression profile of NPY receptor subtypes Y2 and Y7 in large yellow croaker, Larimichthys crocea. Comp Biochem Physiol B Biochem Mol Biol 2019; 238:110347. [PMID: 31499219 DOI: 10.1016/j.cbpb.2019.110347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 11/23/2022]
Abstract
Neuropeptide Y (NPY) receptors are suggested to mediate the multi-physiological functions of NPY family peptides, such as food intake, in teleost fish. However, the structure and signaling of fish NPY receptors are yet to be fully elucidated. In this study, we report the cloning and characterization of two neuropeptide Y receptor subtypes, Y2 (NPY2R) and Y7 (NPY7R), in yellow croaker Larimichthys crocea (L. crocea) (LcNPY2R, LcNPY7R). The gene structure, pharmacological characterization, cell location, and tissue expression of these two receptors were explored. The phylogenetic results showed that LcNPY2R and LcNPY7R had typical G protein-coupled receptor profiles, associated with the Y2 subfamily, with coding sequences that are highly conserved in vertebrates. The expression of both LcNPY2R and LcNPY7R could be activated by LcNPY in HEK293 cells. However, truncated LcNPY18-36 was only able to activate LcNPY2R at the same level as full length LcNPY. Expression analysis revealed that LcNPY2R mRNA was predominantly expressed in the intestine and liver, whereas LcNPY7R was expressed in the stomach, which indicated that both receptors were related to the digestive system. Overall, our data establishes a molecular basis to determine the actions of LcNPY2R and LcNPY7R, which could be used to elucidate the conserved roles of these receptor-ligand pairs in vertebrates.
Collapse
|
40
|
Lafferty RA, Gault VA, Flatt PR, Irwin N. Effects of 2 Novel PYY(1-36) Analogues, (P 3L 31P 34)PYY(1-36) and PYY(1-36)(Lys 12PAL), on Pancreatic Beta-Cell Function, Growth, and Survival. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2019; 12:1179551419855626. [PMID: 31244528 PMCID: PMC6580715 DOI: 10.1177/1179551419855626] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
Recent studies have identified a beneficial role for peptide tyrosine tyrosine
(PYY) on pancreatic beta-cell function and survival. These effects are linked to
the activation of neuropeptide Y1 receptors (NPYR1s) by PYY(1-36). However,
PYY(1-36) is subject to rapid degradation by dipeptidyl peptidase-4 (DPP-4),
resulting is the loss of NPYR1 activity. Therefore, the aim of this study was to
develop 2 enzymatically stable PYY(1-36) analogues, namely,
(P3L31P34)PYY(1-36) and
PYY(1-36)(Lys12PAL), with further structural modifications to
enhance NPYR1 specificity. As expected,
(P3L31P34)PYY(1-36) was fully resistant to
DPP-4-mediated degradation in vitro, whereas PYY(1-36) and
PYY(1-36)(Lys12PAL) were both liable to DPP-4 breakdown.
PYY(1-36) and (P3L31P34)PYY(1-36) induced
significant reductions in glucose-stimulated insulin secretion (GSIS) from BRIN
BD11 cells, but only PYY(1-36) diminished alanine-stimulated insulin secretion.
In contrast, PYY(1-36)(Lys12PAL) had no impact on GSIS or
alanine-induced insulin release. All 3 PYY peptides significantly enhanced
proliferation in BRIN BD11 and 1.1B4 beta-cell lines, albeit only at the highest
concentration examined, 10-6 M, for
(P3L31P34)PYY(1-36) and
PYY(1-36)(Lys12PAL) in BRIN BD11 cells. Regarding the protection
of beta-cells against cytokine-induced apoptosis, PYY(1-36) induced clear
protective effects. Both (P3L31P34)PYY(1-36)
and PYY(1-36)(Lys12PAL) offered some protection against apoptosis in
BRIN BD11 cells, but were significantly less efficacious than PYY(1-36).
Similarly, in 1.1B4 cells, both PYY analogues (10-6 M) protected
against cytokine-induced apoptosis, but
(P3L31P34)PYY(1-36) was significantly less
effective than PYY(1-36). All 3 PYY peptides had no impact on refeeding in
overnight fasted mice. These data underline the beta-cell benefits of PYY(1-36)
and highlight the challenges of synthesising stable, bioactive, NPYR1-specific,
PYY(1-36) analogues.
Collapse
Affiliation(s)
- Ryan A Lafferty
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, UK.,Diabetes Research Group, University of Ulster, Coleraine, UK
| | - Victor A Gault
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, UK
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, UK
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, UK
| |
Collapse
|
41
|
Calcium Signaling Pathways: Key Pathways in the Regulation of Obesity. Int J Mol Sci 2019; 20:ijms20112768. [PMID: 31195699 PMCID: PMC6600289 DOI: 10.3390/ijms20112768] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023] Open
Abstract
Nowadays, high epidemic obesity-triggered hypertension and diabetes seriously damage social public health. There is now a general consensus that the body's fat content exceeding a certain threshold can lead to obesity. Calcium ion is one of the most abundant ions in the human body. A large number of studies have shown that calcium signaling could play a major role in increasing energy consumption by enhancing the metabolism and the differentiation of adipocytes and reducing food intake through regulating neuronal excitability, thereby effectively decreasing the occurrence of obesity. In this paper, we review multiple calcium signaling pathways, including the IP3 (inositol 1,4,5-trisphosphate)-Ca2+ (calcium ion) pathway, the p38-MAPK (mitogen-activated protein kinase) pathway, and the calmodulin binding pathway, which are involved in biological clock, intestinal microbial activity, and nerve excitability to regulate food intake, metabolism, and differentiation of adipocytes in mammals, resulting in the improvement of obesity.
Collapse
|
42
|
Neuroendocrinology of Adipose Tissue and Gut-Brain Axis. ADVANCES IN NEUROBIOLOGY 2018; 19:49-70. [PMID: 28933061 DOI: 10.1007/978-3-319-63260-5_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Food intake and energy expenditure are closely regulated by several mechanisms which involve peripheral organs and nervous system, in order to maintain energy homeostasis.Short-term and long-term signals express the size and composition of ingested nutrients and the amount of body fat, respectively. Ingested nutrients trigger mechanical forces and gastrointestinal peptide secretion which provide signals to the brain through neuronal and endocrine pathways. Pancreatic hormones also play a role in energy balance exerting a short-acting control regulating the start, end, and composition of a meal. In addition, insulin and leptin derived from adipose tissue are involved in long-acting adiposity signals and regulate body weigh as well as the amount of energy stored as fat over time.This chapter focuses on the gastrointestinal-, pancreatic-, and adipose tissue-derived signals which are integrated in selective orexigenic and anorexigenic brain areas that, in turn, regulate food intake, energy expenditure, and peripheral metabolism.
Collapse
|
43
|
Lafferty RA, Flatt PR, Irwin N. C-terminal degradation of PYY peptides in plasma abolishes effects on satiety and beta-cell function. Biochem Pharmacol 2018; 158:95-102. [PMID: 30292757 DOI: 10.1016/j.bcp.2018.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/03/2018] [Indexed: 02/08/2023]
Abstract
The importance of dipeptidyl peptidase-4 mediated N-terminal metabolism of the enteroendocrine-derived hormone, peptide YY (PYY), for receptor binding and subsequent biological action profile is well established. However, an intact C-terminus may be fundamental also for bioactivity of PYY peptides. The current study has demonstrated C-terminal degradation of the major recognised circulating forms of PYY, PYY(1-36) and PYY(3-36), in plasma, resulting in production of PYY(1-34) and PYY(3-34). Interestingly, the angiotensin-converting-enzyme (ACE) inhibitor, captopril, blocked formation of PYY(3-34) from PYY(3-36) in plasma, but did result in the appearance of PYY(3-35). In addition, we were able to evidence C-terminal truncation of PYY(1-35) and PYY(3-35) to PYY(1-34) and PYY(3-34), respectively. As expected, PYY(1-36) and PYY(3-36) inhibited (P < 0.05-P < 0.001) glucose- and alanine-stimulated insulin secretion from BRIN-BD11 beta-cells. In contrast, PYY(1-34), PYY(3-34), PYY(1-35) and PYY(3-35) were devoid of insulinostatic actions. Both PYY(1-36) and PYY(3-36), but not related PYY metabolites, significantly (P < 0.05-P < 0.001) enhanced proliferation of BRIN BD11 and 1.1B4 beta-cell lines, and protected (P < 0.01-P < 0.001) these cell lines against cytokine-induced apoptosis. As expected, PYY(3-36) induced clear (P < 0.05-P < 0.01) appetite suppressive effects in mice, but this action was eliminated by mono- or di-peptide C-terminal truncation. Interestingly, captopril significantly (P < 0.05) augmented the anorexigenic effects of PYY(3-36) in mice. PYY(1-36), PYY(3-36), PYY(1-34) and PYY(3-34) lacked effects on in vivo glucose tolerance or glucose-induced insulin release. Taken together, these data highlight the unrecognised importance of C-terminal integrity of PYY peptides for biological activity and therapeutic usefulness in obesity-diabetes.
Collapse
Affiliation(s)
- R A Lafferty
- The SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, UK
| | - P R Flatt
- The SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, UK
| | - N Irwin
- The SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, UK.
| |
Collapse
|
44
|
Atanes P, Ruz-Maldonado I, Hawkes R, Liu B, Zhao M, Huang GC, Al-Amily IM, Salehi A, Amisten S, Persaud SJ. Defining G protein-coupled receptor peptide ligand expressomes and signalomes in human and mouse islets. Cell Mol Life Sci 2018; 75:3039-3050. [PMID: 29455414 PMCID: PMC6061145 DOI: 10.1007/s00018-018-2778-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/30/2018] [Accepted: 02/13/2018] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Islets synthesise and secrete numerous peptides, some of which are known to be important regulators of islet function and glucose homeostasis. In this study, we quantified mRNAs encoding all peptide ligands of islet G protein-coupled receptors (GPCRs) in isolated human and mouse islets and carried out in vitro islet hormone secretion studies to provide functional confirmation for the species-specific role of peptide YY (PYY) in mouse islets. MATERIALS AND METHODS GPCR peptide ligand mRNAs in human and mouse islets were quantified by quantitative real-time PCR relative to the reference genes ACTB, GAPDH, PPIA, TBP and TFRC. The pathways connecting GPCR peptide ligands with their receptors were identified by manual searches in the PubMed, IUPHAR and Ingenuity databases. Distribution of PYY protein in mouse and human islets was determined by immunohistochemistry. Insulin, glucagon and somatostatin secretion from islets was measured by radioimmunoassay. RESULTS We have quantified GPCR peptide ligand mRNA expression in human and mouse islets and created specific signalomes mapping the pathways by which islet peptide ligands regulate human and mouse GPCR signalling. We also identified species-specific islet expression of several GPCR ligands. In particular, PYY mRNA levels were ~ 40,000-fold higher in mouse than human islets, suggesting a more important role of locally secreted Pyy in mouse islets. This was confirmed by IHC and functional experiments measuring insulin, glucagon and somatostatin secretion. DISCUSSION The detailed human and mouse islet GPCR peptide ligand atlases will allow accurate translation of mouse islet functional studies for the identification of GPCR/peptide signalling pathways relevant for human physiology, which may lead to novel treatment modalities of diabetes and metabolic disease.
Collapse
Affiliation(s)
- Patricio Atanes
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK.
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, UK.
| | - Inmaculada Ruz-Maldonado
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Ross Hawkes
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Bo Liu
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Min Zhao
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Guo Cai Huang
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Israa Mohammed Al-Amily
- Division of Islet Cell Physiology, Department of Clinical Science, SUS, University of Lund, Malmö, Sweden
| | - Albert Salehi
- Division of Islet Cell Physiology, Department of Clinical Science, SUS, University of Lund, Malmö, Sweden
| | - Stefan Amisten
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Shanta J Persaud
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK.
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
45
|
Eltahan HM, Bahry MA, Yang H, Han G, Nguyen LTN, Ikeda H, Ali MN, Amber KA, Furuse M, Chowdhury VS. Central NPY-Y5 sub-receptor partially functions as a mediator of NPY-induced hypothermia and affords thermotolerance in heat-exposed fasted chicks. Physiol Rep 2018; 5. [PMID: 29208684 PMCID: PMC5727273 DOI: 10.14814/phy2.13511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 12/26/2022] Open
Abstract
Exposure of chicks to a high ambient temperature (HT) has previously been shown to increase neuropeptide Y (NPY) mRNA expression in the brain. Furthermore, it was found that NPY has anti‐stress functions in heat‐exposed fasted chicks. The aim of the study was to reveal the role of central administration of NPY on thermotolerance ability and the induction of heat‐shock protein (HSP) and NPY sub‐receptors (NPYSRs) in fasted chicks with the contribution of plasma metabolite changes. Six‐ or seven‐day‐old chicks were centrally injected with 0 or 375 pmol of NPY and exposed to either HT (35 ± 1°C) or control thermoneutral temperature (CT: 30 ± 1°C) for 60 min while fasted. NPY reduced body temperature under both CT and HT. NPY enhanced the brain mRNA expression of HSP‐70 and ‐90, as well as of NPYSRs‐Y5, ‐Y6, and ‐Y7, but not ‐Y1, ‐Y2, and ‐Y4, under CT and HT. A coinjection of an NPYSR‐Y5 antagonist (CGP71683) and NPY (375 pmol) attenuated the NPY‐induced hypothermia. Furthermore, central NPY decreased plasma glucose and triacylglycerol under CT and HT and kept plasma corticosterone and epinephrine lower under HT. NPY increased plasma taurine and anserine concentrations. In conclusion, brain NPYSR‐Y5 partially afforded protective thermotolerance in heat‐exposed fasted chicks. The NPY‐mediated reduction in plasma glucose and stress hormone levels and the increase in free amino acids in plasma further suggest that NPY might potentially play a role in minimizing heat stress in fasted chicks.
Collapse
Affiliation(s)
- Hatem M Eltahan
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Mohammad A Bahry
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Hui Yang
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Guofeng Han
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Linh T N Nguyen
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Hiromi Ikeda
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Mohamed N Ali
- Agriculture Research Center, Animal Production Research Institute, Agriculture Ministry, Cairo, Egypt
| | - Khairy A Amber
- Division for Poultry Production, Faculty of Agriculture, Kafr-Elsheikh University, Kafr-Elsheikh, Egypt
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Vishwajit S Chowdhury
- Division for Experimental Natural Science, Faculty of Arts and Science, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
46
|
Avogaro A, Fadini GP. The pleiotropic cardiovascular effects of dipeptidyl peptidase-4 inhibitors. Br J Clin Pharmacol 2018; 84:1686-1695. [PMID: 29667232 DOI: 10.1111/bcp.13611] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022] Open
Abstract
Patients with Type 2 diabetes have an excess risk for cardiovascular disease. One of the several approaches, included in the guidelines for the management of Type 2 diabetes, is based on dipeptidyl peptidase 4 (DPP-4; also termed CD26) inhibitors, also called gliptins. Gliptins inhibit the degradation of glucagon-like peptide-1 (GLP-1): this effect is associated with increased circulating insulin-to-glucagon ratio, and a consequent reduction of HbA1c. In addition to incretin hormones, there are several proteins that may be affected by DPP-4 and its inhibition: among these some are relevant for the cardiovascular system homeostasis such as SDF-1α and its receptor CXCR4, brain natriuretic peptides, neuropeptide Y and peptide YY. In this review, we will discuss the pathophysiological relevance of gliptin pleiotropism and its translational potential.
Collapse
Affiliation(s)
- Angelo Avogaro
- Department of Medicine, Section of Diabetes and Metabolic Diseases, University of Padova, Padova, Italy
| | - Gian Paolo Fadini
- Department of Medicine, Section of Diabetes and Metabolic Diseases, University of Padova, Padova, Italy
| |
Collapse
|
47
|
Ohlsson B, Darwiche G, Roth B, Höglund P. Alignments of endocrine, anthropometric, and metabolic parameters in type 2 diabetes after intervention with an Okinawa-based Nordic diet. Food Nutr Res 2018; 62:1328. [PMID: 29599686 PMCID: PMC5854836 DOI: 10.29219/fnr.v62.1328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 02/19/2018] [Accepted: 02/19/2018] [Indexed: 12/26/2022] Open
Abstract
Background An Okinawa-based Nordic diet with moderately low carbohydrate content and high fat and protein content has been shown to improve anthropometry and metabolism in type 2 diabetes. Objective The objectives of this study were to measure plasma or serum levels of hormones regulating energy metabolism and metabolic control, that is, cholecystokinin (CCK), Cortisol, C-peptide, ghrelin, glucagon, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), insulin, leptin, plasminogen activator inhibitor-1 (PAI-1), polypeptide YY (PYY), resistin, and visfatin after this diet intervention, and to determine partial correlations between hormonal levels and anthropometric and metabolic responses. Design A total of 30 patients (17 women) with type 2 diabetes, mean age 57.5 ± 8.2 years, and body mass index (BMI) 29.9 ± 4.1 kg/m2 were served the diet for 12 weeks. Fasting hormones were measured by Luminex and enzyme–linked immunosorbent assay (ELISA) before study start and after 12 and 28 weeks, along with anthropometric and metabolic parameters. Result The levels of CCK (P = 0.005), cortisol (P = 0.015), C-peptide (P = 0.022), glucagon (P = 0.003), GLP-1 (P = 0.013), GIP (P < 0.001), insulin (P = 0.004), leptin (P < 0.001), and PYY (P < 0.001) were lowered after dietary intervention. These reduced levels only remained for PYY at week 28 (P = 0.002), when also ghrelin (P = 0.012) and visfatin (P = 0.021) levels were reduced. Changes of glucose values correlated with changed levels of C-peptide and PYY (P < 0.001), insulin (P = 0.002), and PAI-1 (P = 0.009); changes of triglyceride values with changed levels of C-peptide, insulin, and PYY (P < 0.001) and PAI-1 (P = 0.005); changes of insulin resistance with changes of leptin levels (P = 0.003); and changes of BMI values with changed levels of C-peptide, insulin, and leptin (P < 0.001). Conclusions Okinawa-based Nordic diet in type 2 diabetes has significant impact on the endocrine profile, which correlates with anthropometric and metabolic improvements.
Collapse
Affiliation(s)
- Bodil Ohlsson
- Department of Internal Medicine, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Gassan Darwiche
- Department of Internal Medicine, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Bodil Roth
- Department of Internal Medicine, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Peter Höglund
- Department of Clinical Chemistry and Pharmacology, Skåne University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
48
|
Guida C, McCulloch LJ, Godazgar M, Stephen SD, Baker C, Basco D, Dong J, Chen D, Clark A, Ramracheya RD. Sitagliptin and Roux-en-Y gastric bypass modulate insulin secretion via regulation of intra-islet PYY. Diabetes Obes Metab 2018; 20:571-581. [PMID: 28892258 PMCID: PMC5836881 DOI: 10.1111/dom.13113] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/28/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022]
Abstract
AIMS The gut hormone peptide tyrosine tyrosine (PYY) is critical for maintaining islet integrity and restoring islet function following Roux-en-Y gastric bypass (RYGB). The expression of PYY and its receptors (NPYRs) in islets has been documented but not fully characterized. Modulation of islet PYY by the proteolytic enzyme dipeptidyl peptidase IV (DPP-IV) has not been investigated and the impact of DPP-IV inhibition on islet PYY function remains unexplored. Here we have addressed these gaps and their effects on glucose-stimulated insulin secretion (GSIS). We have also investigated changes in pancreatic PYY in diabetes and following RYGB. METHODS Immunohistochemistry and gene expression analysis were used to assess PYY, NPYRs and DPP-IV expression in rodent and human islets. DPP-IV activity inhibition was achieved by sitagliptin. Secretion studies were used to test PYY and the effects of sitagliptin on insulin release, and the involvement of GLP-1. Radioimmunoassays were used to measure hormone content in islets. RESULTS PYY and DPP-IV localized in different cell types in islets while NPYR expression was confined to the beta-cells. Chronic PYY application enhanced GSIS in rodent and diabetic human islets. DPP-IV inhibition by sitagliptin potentiated GSIS; this was mediated by locally-produced PYY, and not GLP-1. Pancreatic PYY was markedly reduced in diabetes. RYGB strongly increased islet PYY content, but did not lead to full restoration of pancreatic GLP-1 levels. CONCLUSION Local regulation of pancreatic PYY, rather than GLP-1, by DPP-IV inhibition or RYGB can directly modulate the insulin secretory response to glucose, indicating a novel role of pancreatic PYY in diabetes and weight-loss surgery.
Collapse
Affiliation(s)
- Claudia Guida
- Oxford Centre for Diabetes, Endocrinology and MetabolismChurchill Hospital, Oxford UniversityOxfordUK
| | - Laura J. McCulloch
- Oxford Centre for Diabetes, Endocrinology and MetabolismChurchill Hospital, Oxford UniversityOxfordUK
| | - Mahdieh Godazgar
- Oxford Centre for Diabetes, Endocrinology and MetabolismChurchill Hospital, Oxford UniversityOxfordUK
| | - Sam D. Stephen
- Oxford Centre for Diabetes, Endocrinology and MetabolismChurchill Hospital, Oxford UniversityOxfordUK
| | - Charlotte Baker
- Oxford Centre for Diabetes, Endocrinology and MetabolismChurchill Hospital, Oxford UniversityOxfordUK
| | - Davide Basco
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | | | - Duan Chen
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Anne Clark
- Oxford Centre for Diabetes, Endocrinology and MetabolismChurchill Hospital, Oxford UniversityOxfordUK
| | - Reshma D Ramracheya
- Oxford Centre for Diabetes, Endocrinology and MetabolismChurchill Hospital, Oxford UniversityOxfordUK
| |
Collapse
|
49
|
Franklin ZJ, Tsakmaki A, Fonseca Pedro P, King AJ, Huang GC, Amjad S, Persaud SJ, Bewick GA. Islet neuropeptide Y receptors are functionally conserved and novel targets for the preservation of beta-cell mass. Diabetes Obes Metab 2018; 20:599-609. [PMID: 28940946 DOI: 10.1111/dom.13119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/13/2017] [Accepted: 09/16/2017] [Indexed: 12/27/2022]
Abstract
AIMS Two unmet therapeutic strategies for diabetes treatment are prevention of beta-cell death and stimulation of beta-cell replication. Our aim was to characterize the role of neuropeptide Y receptors in the control of beta-cell mass. MATERIALS AND METHODS We used endogenous and selective agonists of the NPY receptor system to explore its role in the prevention of beta-cell apoptosis and proliferation in islets isolated from both mouse and human donors. We further explored the intra-cellular signalling cascades involved, using chemical inhibitors of key signalling pathways. As proof of principle we designed a long-acting analogue of [Leu31 Pro34 ]-NPY, an agonist of the islet-expressed Y receptors, to determine if targeting this system could preserve beta-cell mass in vivo. RESULTS Our data reveal that NPY Y1, 4 and 5 receptor activation engages a generalized and powerful anti-apoptotic pathway that protects mouse and human islets from damage. These anti-apoptotic effects were dependent on stimulating a Gαi-PLC-PKC signalling cascade, which prevented cytokine-induced NFkB signalling. NPY receptor activation functionally protected islets by restoring glucose responsiveness following chemically induced injury in both species. NPY receptor activation attenuated beta-cell apoptosis, preserved functional beta-cell mass and attenuated the hyperglycaemic phenotype in a low-dose streptozotocin model of diabetes. CONCLUSION Taken together, our observations identify the islet Y receptors as promising targets for the preservation of beta-cell mass. As such, targeting these receptors could help to maintain beta-cell mass in both type 1 and type 2 diabetes, and may also be useful for improving islet transplantation outcomes.
Collapse
Affiliation(s)
- Zara J Franklin
- Division of Diabetes and Nutritional Sciences, King's College London, London, UK
| | - Anastasia Tsakmaki
- Division of Diabetes and Nutritional Sciences, King's College London, London, UK
| | | | - Aileen J King
- Division of Diabetes and Nutritional Sciences, King's College London, London, UK
| | - Guo Cai Huang
- Division of Diabetes and Nutritional Sciences, King's College London, London, UK
| | - Sakeena Amjad
- Division of Diabetes and Nutritional Sciences, King's College London, London, UK
| | - Shanta J Persaud
- Division of Diabetes and Nutritional Sciences, King's College London, London, UK
| | - Gavin A Bewick
- Division of Diabetes and Nutritional Sciences, King's College London, London, UK
| |
Collapse
|
50
|
Khan D, Moffet CR, Flatt PR, Kelly C. Role of islet peptides in beta cell regulation and type 2 diabetes therapy. Peptides 2018; 100:212-218. [PMID: 29412821 DOI: 10.1016/j.peptides.2017.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/22/2017] [Accepted: 11/22/2017] [Indexed: 12/25/2022]
Abstract
The endocrine pancreas is composed of islets of Langerhans, which secrete a variety of peptide hormones critical for the maintenance of glucose homeostasis. Insulin is the primary regulator of glucose and its secretion from beta-cells is tightly regulated in response to physiological demands. Direct cell-cell communication within islets is essential for glucose-induced insulin secretion. Emerging data suggest that islet connectivity is also important in the regulating the release of other islet hormones including glucagon and somatostatin. Autocrine and paracrine signals exerted by secreted peptides within the islet also play a key role. A great deal of attention has focused on classical islet peptides, namely insulin, glucagon and somatostatin. Recently, it has become clear that islets also synthesise and secrete a range of non-classical peptides, which regulate beta-cell function and insulin release. The current review summarises the roles of islet cell connectivity and islet peptide-driven autocrine and paracrine signalling in beta-cell function and survival. The potential to harness the paracrine effects of non-classical islet peptides for the treatment of type 2 diabetes is also briefly discussed.
Collapse
Affiliation(s)
- Dawood Khan
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Glenshane Road, L/Derry, BT47 6SB, Northern Ireland, UK
| | - Charlotte R Moffet
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, UK
| | - Catriona Kelly
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Glenshane Road, L/Derry, BT47 6SB, Northern Ireland, UK.
| |
Collapse
|