1
|
Park S, Ahn YS, Lim J, Yu S, Kim Y, Lee J. Association between humidifier disinfectant use and development of lung cancer: A nested case-cohort study. Cancer Epidemiol 2025; 97:102822. [PMID: 40250083 DOI: 10.1016/j.canep.2025.102822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/13/2024] [Accepted: 04/11/2025] [Indexed: 04/20/2025]
Abstract
OBJECTIVE The outbreak of lung disease among humidifier disinfectants (HDs) users lead to the identification of humidifier disinfectants-associated lung injury (HDLI) cases. Subsequent research highlighted the respiratory health risks associated HDs but the connection to lung cancer remained uncertain. To assess the risk of lung cancer development among individuals exposed to HDs and to investigate the characteristics of HDs exposure influencing the occurrence of lung cancer. MATERIALS AND METHODS A cohort study was conducted using the national database, encompassing 7343 claimants exposed to HDs. The study focused on 195 confirmed lung cancer cases, employing the standardized incidence ratio (SIR) for comparisons with the general population, and the odds ratio (OR) using propensity score matching for internal comparisons. RESULTS The study found a significantly higher incidence of lung cancer among individuals exposed to HDs compared to the general Korean population, with elevated SIRs observed in both men and women (SIR = 3.43, 95 % CI = 2.81-4.13 for men; SIR = 11.19, 95 % CI = 8.95-13.82 for women). In the propensity score-matched case-control design, a longer duration of HDs use was associated with an increased risk of lung cancer (OR = 2.48, 95 % CI = 1.35-4.56 for using HDs for more than 49 months and OR = 1.02, 95 % CI = 1.01 - 1.03 for every one month). CONCLUSION The findings suggest a potential association between HDs exposure and an increased risk of lung cancer.
Collapse
Affiliation(s)
- Soyoung Park
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, Seoul, Republic of Korea
| | - Yeon-Soon Ahn
- Department of Medicine and Institute of Genomic Cohort, Wonju College of Medicine, Yonsei University, Wonju, Gangwon, Republic of Korea
| | - Jungyun Lim
- Humidifier Disinfectant Health Center, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Sol Yu
- Humidifier Disinfectant Health Center, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Younghee Kim
- Humidifier Disinfectant Health Center, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Jongin Lee
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Centre for Occupational and Environmental Health, Division of Population Health, Health Services Research & Primary Care, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
2
|
Choi S, Kim EH, Kim D, Park HJ, Gil J, Bian Y, Bae ON. Polyhexamethylene guanidine-phosphate enhances pro-coagulant activity of human erythrocytes and venous thrombosis in rats through phosphatidylserine externalization. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138303. [PMID: 40250271 DOI: 10.1016/j.jhazmat.2025.138303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
Polyhexamethylene guanidine-phosphate (PHMG-p) is a main compound used as a humidifier disinfectant, but the systemic health effects of PHMG-p still need to be explored. The circulatory and blood system is the organ that comes into contact with compounds absorbed into the body after inhalation exposure, resulting in various health problems, including cardiovascular diseases. This study examined the impact of PHMG-p on erythrocytes (red blood cells; RBCs), which are essential for sustaining circulatory health and are directly associated with thrombotic risks. We demonstrated that PHMG-p could enhance the thrombotic risk by promoting pro-coagulant activity and reducing erythrocyte deformability. In PHMG-p-exposed erythrocytes, phosphatidylserine externalization in the outer membrane and microvesicle generation were significantly increased under sub-hemolytic conditions, along with the morphological alterations in the erythrocytes. Exposure to PHMG-p induced erythrocyte phosphatidylserine externalization, leading to enhanced pro-coagulant activity, which was characterized by increased adhesion to vascular endothelial cells, elevated thrombin generation, and decreased deformability. Notably, calcium chelation effectively inhibited PS externalization and thrombin generation, highlighting the pivotal role of calcium influx in PHMG-p-induced thrombogenic alterations. Moreover, intratracheal instillation of PHMG-p promoted phosphatidylserine externalization and thrombin generation in rat erythrocytes, leading to a significant increase in thrombus formation, thereby corroborating the link between in vitro findings and the increased thrombotic risk observed in vivo. These findings suggest that PHMG-p may increase pro-thrombotic risk by promoting RBC pro-coagulant activity through calcium influx-driven PS externalization.
Collapse
Affiliation(s)
- Sungbin Choi
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Eun-Hye Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Republic of Korea; College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea
| | - Donghyun Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Han Jin Park
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Junkyung Gil
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Yiying Bian
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Ok-Nam Bae
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
3
|
Seok JK, Jee JI, Jeon M, Kim D, Chung KH, Kim HR, Baek YW, Kang H, Lim J, Bae ON, Lee JY. cGAS/STING pathway modulation in polyhexamethyleneguanidine phosphate-induced immune dysregulation and pulmonary fibrosis using human monocytic cells (THP-1) and male C57BL/6 mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025; 88:162-174. [PMID: 39604835 DOI: 10.1080/15287394.2024.2432020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Polyhexamethyleneguanidine phosphate (PHMG), a widely used antimicrobial agent, has been implicated in humidifier disinfectant-associated lung injuries (HDLI). PHMG exposure suppressed interferon regulatory factor 3 (IRF3) activation and interferon-β (IFN-β) expression induced by a cGAS agonist or a STING agonist in human monocytic cells (THP-1), which are known to transition to alveolar macrophages during pulmonary fibrosis development. However, the mechanisms underlying PHMG-induced pulmonary toxicity in lung remain unclear. Thus, it was of interest to investigate the effects of PHMG on the innate immune system in male C57BL/6 mouse, focusing on the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway and potential role in pulmonary fibrosis. Intratracheal administration of PHMG (1 or 2 mg/kg) in mice resulted in lung fibrosis, as evidenced by H&E staining with Szapiel scoring, Masson's trichrome staining with Ashcroft scoring, and increased mRNA levels of TGF-β and collagen type I. Interestingly, lower dose of PHMG enhanced IFN-β production in the lungs, whereas higher dose decreased IFN-β levels, indicating a biphasic effect that initially promotes inflammation but ultimately impairs host defense mechanisms, leading to pulmonary fibrosis. Our findings demonstrate the critical role of the cGAS/STING pathway in PHMG-induced mouse lung injury and suggest that targeting this pathway might serve as a potential therapeutic strategy for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Jin Kyung Seok
- College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Jung In Jee
- College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Minwoo Jeon
- College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Donghyun Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, Republic of Korea
| | - Kyu Hyuck Chung
- College of Pharmacy, Kyungsung University, Busan, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ha Ryong Kim
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Yong-Wook Baek
- Humidifier Disinfectant Health Center, Environmental Health Research Department, National Institute of Environmental Research, Incheon, Republic of Korea
| | - HanGoo Kang
- Humidifier Disinfectant Health Center, Environmental Health Research Department, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Jungyun Lim
- Humidifier Disinfectant Health Center, Environmental Health Research Department, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Ok-Nam Bae
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, Republic of Korea
| | - Joo Young Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| |
Collapse
|
4
|
Park YJ, Kim HR, Kim JW, Lee JH, Kim Y, Lim J, Baek YW, Chung KH. Comprehensive analysis of adverse outcome pathway, potency, human exposure supports carcinogenicity of polyhexamethylene guanidine phosphate in lung cancer. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117222. [PMID: 39520742 DOI: 10.1016/j.ecoenv.2024.117222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
In this study, we investigated the potential mechanisms by which polyhexamethylene guanidine phosphate (PHMG-p), a known respiratory irritant, may contribute to lung cancer development. Using the adverse outcome pathway (AOP) framework, we analyzed established databases (such as AOP-Wiki) and employed AI tools (AOP-helpFinder) to identify key events (KEs) associated with lung carcinogenesis. Our analysis indicates that chronic inhalation of PHMG-p triggers a non-genotoxic pathway, characterized by cell membrane disruption, inflammation, and oxidative stress, with a point of departure (POD) of 0.0018 mg/m³, suggesting carcinogenic potential. Additionally, a human exposure assessment revealed that most claimants were exposed to PHMG-p levels exceeding the estimated inhalation reference concentration (RfC) of 0.018 µg/m³. While downstream KEs, such as DNA damage, mutation, and cell proliferation, require further investigation, our findings, supported by the AOP framework and potency and exposure assessments, strongly suggest that PHMG-p exposure could induce lung cancer in individuals affected by humidifier disinfectants. These results underscore the importance of a comprehensive risk assessment approach for evaluating the carcinogenicity of PHMG-p.
Collapse
Affiliation(s)
- Yong Joo Park
- College of Pharmacy, Kyungsung University, Busan, South Korea.
| | - Ha Ryong Kim
- School of Pharmacy, Korea University, Sejong, South Korea
| | - Jun Woo Kim
- Inhalation Toxicology Center, Jeonbuk Department of Non-Human Primate, Korea Institute of Toxicology, Jeongeup, South Korea
| | | | - Younghee Kim
- Humidifier Disinfectant Health Center, Environmental Health Research Department, National Institute of Environmental Research, Incheon, South Korea
| | - Jungyun Lim
- Humidifier Disinfectant Health Center, Environmental Health Research Department, National Institute of Environmental Research, Incheon, South Korea
| | - Yong-Wook Baek
- Humidifier Disinfectant Health Center, Environmental Health Research Department, National Institute of Environmental Research, Incheon, South Korea
| | - Kyu Hyuck Chung
- College of Pharmacy, Kyungsung University, Busan, South Korea; School of Pharmacy, Sungkyunkwan University, Suwon, South Korea.
| |
Collapse
|
5
|
Song J, Cho J, Shin NO, Yang MJ, Jung JH, Hwang JH. Comparison of repeated toxicity of polyhexamethyleneguanidine phosphate, a causative agent of humidifier disinfectant tragedy, in young and adult mice. Sci Rep 2024; 14:25213. [PMID: 39448742 PMCID: PMC11502745 DOI: 10.1038/s41598-024-75936-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Some drugs or chemicals exhibit different safety profiles in newborns/young children compared to adults. Polyhexamethyleneguanidine phosphate (PHMG-P) has been implicated in the humidifier disinfectant tragedy in 2011. There are limited reports on the toxicity of PHMG-P in neonatal animals. This study aimed to assess the toxicity of PHMG-P in neonates and to compare toxicity between young and adult mice. Mice aged 7-10 days and 8 weeks were anesthetized with isoflurane and then intranasally instilled with 0.9 mg/kg and 1.5 mg/kg PHMG-P once weekly for 4 weeks. The control group was given a corresponding volume of saline intranasally. Approximately 20 h after the 4th instillation, all mice (juveniles aged 28‒31 days and adults aged 11 weeks) were euthanized. Assessments included body weights, organ weights, cytokine production, and histopathological examinations. Both juvenile and adult mice exhibited significant pulmonary toxicity. There were no significant changes in body weight in either male or female juveniles, whereas adult mice experienced 5.0‒22.2% weight loss. However, lung weights increased in both age groups, accompanied by rises in cytokines and chemokines. Histopathological analyses revealed significant lung changes in both juvenile and adult mice, including immune cell infiltration, foamy macrophage, and granulomatous inflammation. PHMG-P is known to cause inflammation and fibrotic changes in rodents and humans that persist even during long recovery periods. Further research is required to explore the long-term health effects of PHMG-P following repeated early-life exposure.
Collapse
Affiliation(s)
- Jeongah Song
- Center for Large Animals Convergence Research, Korea Institute of Toxicology, Jeongeup, 56212, Republic of Korea.
| | - Jeonghee Cho
- Center for Vascular Research, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Nan Ok Shin
- Center for Large Animals Convergence Research, Korea Institute of Toxicology, Jeongeup, 56212, Republic of Korea
- Department of Pre-Clinical Laboratory Science, Graduate School of Konyang University of Bioconvergence, Daejeon, 35365, Republic of Korea
| | - Mi-Jin Yang
- Center for Translational Toxicologic Research, Korea Institute of Toxicology, Jeonbuk, 56212, Republic of Korea
| | - Ji-Hoon Jung
- Office of Information Security, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Jeong Ho Hwang
- Center for Large Animals Convergence Research, Korea Institute of Toxicology, Jeongeup, 56212, Republic of Korea.
| |
Collapse
|
6
|
Kim JW, Kim HS, Kim HR, Chung KH. Next generation risk assessment of biocides (PHMG-p and CMIT/MIT)-induced pulmonary fibrosis using adverse outcome pathway-based transcriptome analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134986. [PMID: 38944992 DOI: 10.1016/j.jhazmat.2024.134986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/02/2024]
Abstract
Next-generation risk assessment (NGRA) has emerged as a promising alternative to non-animal studies owing to the increasing demand for the risk assessment of inhaled toxicants. In this study, NGRA was used to assess the inhalation risks of two biocides commonly used as humidifier disinfectants: polyhexamethylene guanidine phosphate (PHMG-p) and chloromethylisothiazolinone/methylisothiazolinone (CMIT/MIT). Human bronchial epithelial cell transcriptomic data were processed based on adverse outcome pathways and used to establish transcriptome-based points of departure (tPODs) for each biocide. tPOD values were 0.00500-0.0510 μg/cm2 and 0.0342-0.0544 μg/cm2 for PHMG-p and CMIT/MIT, respectively. tPODs may provide predictive power comparable to that of traditional animal-based PODs (aPODs). The tPOD-based NGRA determined that both PHMG-p and CMIT/MIT present a high inhalation risk. Moreover, the identified PHMG-p posed a higher risk than CMIT/MIT, and children were identified as more susceptible population compared to adults. This finding is consistent with observations from actual exposure events. Our findings suggest that NGRA with transcriptomics offers a reliable approach for risk assessment of specific humidifier disinfectant biocides, while acknowledging the limitations of current models and in vitro systems, particularly regarding uncertainties in pharmacokinetics (PK) and pharmacodynamics (PD).
Collapse
Affiliation(s)
- Jun Woo Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Ha Ryong Kim
- College of Pharmacy, Korea University, Sejong 30019, South Korea.
| | - Kyu Hyuck Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
7
|
Kim D, Shin Y, Park JI, Lim D, Choi H, Choi S, Baek YW, Lim J, Kim Y, Kim HR, Chung KH, Bae ON. A systematic review and BMD modeling approach to develop an AOP for humidifier disinfectant-induced pulmonary fibrosis and cell death. CHEMOSPHERE 2024; 364:143010. [PMID: 39098349 DOI: 10.1016/j.chemosphere.2024.143010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/06/2024]
Abstract
Dosimetry modeling and point of departure (POD) estimation using in vitro data are essential for mechanism-based hazard identification and risk assessment. This study aimed to develop a putative adverse outcome pathway (AOP) for humidifier disinfectant (HD) substances used in South Korea through a systematic review and benchmark dose (BMD) modeling. We collected in vitro toxicological studies on HD substances, including polyhexamethylene guanidine hydrochloride (PHMG-HCl), PHMG phosphate (PHMG-p), a mixture of 5-chloro-2-methyl-4-isothiazolin-3-one and 2-methyl-4-isothiazolin-3-one (CMIT/MIT), CMIT, and MIT from scientific databases. A total of 193 sets of dose-response data were extracted from 34 articles reporting in vitro experimental results of HD toxicity. The risk of bias (RoB) in each study was assessed following the office of health assessment and translation (OHAT) guideline. The BMD of each HD substance at different toxicity endpoints was estimated using the US Environmental Protection Agency (EPA) BMD software (BMDS). Interspecies- or interorgan differences or most critical effects in the toxicity of the HD substances were analyzed using a 95% lower confidence limit of the BMD (BMDL). We found a critical molecular event and cells susceptible to each HD substance and constructed an AOP of PHMG-p- or CMIT/MIT-induced damage. Notably, PHMG-p induced ATP depletion at the lowest in vitro concentration, endoplasmic reticulum (ER) stress, epithelial-to-mesenchymal transition (EMT), inflammation, leading to fibrosis. CMIT/MIT enhanced mitochondrial reactive oxygen species (ROS) production, oxidative stress, mitochondrial dysfunction, resulting in cell death. Our approach will increase the current understanding of the effects of HD substances on human health and contribute to evidence-based risk assessment of these compounds.
Collapse
Affiliation(s)
- Donghyun Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, South Korea
| | - Yusun Shin
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, South Korea
| | - Jong-In Park
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, South Korea
| | - Donghyeon Lim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, South Korea
| | - Hyunjoon Choi
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, South Korea
| | - Seongwon Choi
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, South Korea
| | - Yong-Wook Baek
- Humidifier Disinfectant Health Center, Environmental Health Research, National Institute of Envrironmental Research, Incheon, 22689, South Korea
| | - Jungyun Lim
- Humidifier Disinfectant Health Center, Environmental Health Research, National Institute of Envrironmental Research, Incheon, 22689, South Korea
| | - Younghee Kim
- Humidifier Disinfectant Health Center, Environmental Health Research, National Institute of Envrironmental Research, Incheon, 22689, South Korea
| | - Ha Ryong Kim
- College of Pharmacy, Korea University, Sejong, South Korea
| | - Kyu Hyuck Chung
- College of Pharmacy, Kyungsung University, Busan, South Korea
| | - Ok-Nam Bae
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, South Korea.
| |
Collapse
|
8
|
Park JY, Kim JH, Park CH, Kim SH, Kim IH, Cho WG. Polyhexamethylene guanidine phosphate induces pyroptosis via reactive oxygen species-regulated mitochondrial dysfunction in bronchial epithelial cells. Toxicology 2024; 505:153827. [PMID: 38729513 DOI: 10.1016/j.tox.2024.153827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/24/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Pyroptosis is a form of programmed cell death characterized by gasdermin (GSDM)-mediated pore formation in the cell membrane, resulting in the release of pro-inflammatory cytokines and cellular lysis. Increasing evidence has shown that pyroptosis is responsible for the progression of various pulmonary disorders. The inhalation of polyhexamethylene guanidine (PHMG) causes severe lung inflammation and pulmonary toxicity; however, the underlying mechanisms are unknown. Therefore, in this study, we investigate the role of pyroptosis in PHMG-induced pulmonary toxicity. We exposed bronchial epithelial cells, BEAS-2B, to PHMG phosphate (PHMG-p) and evaluated cell death type, reactive oxygen species (ROS) levels, and relative expression levels of pyroptosis-related proteins. Our data revealed that PHMG-p reduced viability and induced morphological alterations in BEAS-2B cells. Exposure to PHMG-p induced excessive accumulation of mitochondrial ROS (mtROS) in BEAS-2B cells. PHMG-p activated caspase-dependent apoptosis as well as NLRP3/caspase-1/GSDMD-mediated- and caspase-3/GSDME-mediated pyroptosis through mitochondrial oxidative stress in BEAS-2B cells. Notably, PHMG-p reduced mitochondrial respiratory function and induced the translocation of Bax and cleaved GSDM into the mitochondria, leading to mitochondrial dysfunction. Our results enhanced our understanding of PHMG-p-induced lung toxicity by demonstrating that PHMG-p induces pyroptosis via mtROS-induced mitochondrial dysfunction in bronchial epithelial cells.
Collapse
Affiliation(s)
- Jun Young Park
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ji-Hee Kim
- Department of Occupational Therapy, Soonchunhyang University, 22 Soonchunhyang-ro, Asan-si 35138, Republic of Korea
| | - Chan Ho Park
- Department of Anatomy, Yonsei University Wonju College of Medicine, 20, Ilsan-ro, Wonju-si, Gangwon-do 26426, Republic of Korea
| | - Sung-Hwan Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, 56212, Republic of Korea
| | - In-Hyeon Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, 56212, Republic of Korea
| | - Won Gil Cho
- Department of Anatomy, Yonsei University Wonju College of Medicine, 20, Ilsan-ro, Wonju-si, Gangwon-do 26426, Republic of Korea.
| |
Collapse
|
9
|
Kang H, Lee S, Jo EK, Yang W, Choi YH. Synergistic interaction of co-exposure to humidifier disinfectant chemicals CMIT/MIT and PHMG in lung injury. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33098-33106. [PMID: 38676862 DOI: 10.1007/s11356-024-33455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
A number of biocidal disinfectant chemicals are used as household products to prevent spread of pathogens. People are commonly exposed to multiple chemicals through those disinfectants. However, effects of interactions (e.g., synergism) between disinfectants on human health outcomes have been rarely studied. In this study, we aimed to investigate associations of a mixture of chloromethylisothiazolinone/methylisothiazolinone (CMIT/MIT) and polyhexamethylene guanidine (PHMG), which had been used as humidifier disinfectants (HDs) in South Korea, with HD-associated lung injury (HDLI) in a Korean population (n = 4058) with HD exposure through use of HD products. Exposure to HD was retrospectively assessed by an interview-based standardized survey, and HDLI was determined by clinical assessment. After adjusting for covariates, PHMG-specific exposure indices (e.g., amount of use, indoor air concentration, and weekly exposure level) were dose-dependently associated with HDLI (their odds ratios for the comparison of third tertile versus first tertile were 1.95, 1.77, and 2.16, respectively). CMIT/MIT exposure was not observed to have a significant association with HDLI in a single chemical exposure model; however, associations between PHMG exposure and HDLI were strengthened by co-exposure to CMIT/MIT in combined chemical exposure models, where synergistic interactions between CMIT/MIT use and PHMG indices (amount of use and weekly exposure level) were observed (p-interaction in additive scale: 0.02 and 0.03, respectively). Our findings imply that adverse effects of PHMG exposure on lung injury among HD users might be worsened by co-exposure to CMIT/MIT. Given that plenty of household products contain disinfectants on global markets, epidemiological and toxicological investigations are warranted on interaction effects of co-exposure to disinfectants.
Collapse
Affiliation(s)
- Habyeong Kang
- Institute of Health Sciences, Korea University, Seoul, 02841, Korea
- School of Health and Environmental Science, Korea University, Anam-Ro 145, Seongbuk-Gu, Seoul, 02841, Korea
| | - Seula Lee
- Center for Humidifier Disinfectant Research, Korean Society of Environmental Health, Seoul, 04376, Korea
| | - Eun-Kyung Jo
- Center for Humidifier Disinfectant Research, Korean Society of Environmental Health, Seoul, 04376, Korea
| | - Wonho Yang
- Department of Occupational Health, Daegu Catholic University, Gyeongsan, 42472, Korea
| | - Yoon-Hyeong Choi
- Institute of Health Sciences, Korea University, Seoul, 02841, Korea.
- School of Health and Environmental Science, Korea University, Anam-Ro 145, Seongbuk-Gu, Seoul, 02841, Korea.
| |
Collapse
|
10
|
Jeong SH, Lee H, Nam YJ, Kang JY, Lee H, Choi JY, Lee YS, Kim J, Park YH, Park SA, Choi H, Park EK, Baek YW, Lim J, Kim S, Kim C, Lee JH. Longitudinal long term follow up investigation on the carcinogenic impact of polyhexamethylene guanidine phosphate in rat models. Sci Rep 2024; 14:7178. [PMID: 38531959 DOI: 10.1038/s41598-024-57605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/20/2024] [Indexed: 03/28/2024] Open
Abstract
Polyhexamethylene guanidine phosphate (PHMG-p) is a major component in humidifier disinfectants, which cause life-threatening lung injuries. However, to our knowledge, no published studies have investigated associations between PHMG-p dose and lung damage severity with long-term follow-up. Therefore, we evaluated longitudinal dose-dependent changes in lung injuries using repeated chest computed tomography (CT). Rats were exposed to low (0.2 mg/kg, n = 10), intermediate (1.0 mg/kg, n = 10), and high (5.0 mg/kg, n = 10) doses of PHMG-p. All rats underwent repeated CT scans after 10 and 40 weeks following the first exposure. All CT images were quantitatively analyzed using commercial software. Inflammation/fibrosis and tumor counts underwent histopathological evaluation. In both radiological and histopathologic results, the lung damage severity increased as the PHMG-p dose increased. Moreover, the number, size, and malignancy of the lung tumors increased as the dose increased. Bronchiolar-alveolar hyperplasia developed in all groups. During follow-up, there was intergroup variation in bronchiolar-alveolar hyperplasia progression, although bronchiolar-alveolar adenomas or carcinomas usually increase in size over time. Thirty-three carcinomas were detected in the high-dose group in two rats. Overall, lung damage from PHMG-p and the number and malignancy of lung tumors were shown to be dose-dependent in a rat model using repeated chest CT scans during a long-term follow-up.
Collapse
Affiliation(s)
- Sang Hoon Jeong
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea
| | - Hong Lee
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea
| | - Yoon Jeong Nam
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea
| | - Ja Young Kang
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea
| | - Hyejin Lee
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea
| | - Jin Young Choi
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea
| | - Yu-Seon Lee
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea
| | - Jaeyoung Kim
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea
| | - Yoon Hee Park
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea
| | - Su A Park
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea
| | - Hangseok Choi
- Medical Science Research Center, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Eun-Kee Park
- Department of Medical Humanities and Social Medicine, College of Medicine, Kosin University, Busan, 49267, South Korea
| | - Yong-Wook Baek
- Humidifier disinfectant Health Center, National Institute of Environmental Research, Incheon, 22689, South Korea
| | - Jungyun Lim
- Humidifier disinfectant Health Center, National Institute of Environmental Research, Incheon, 22689, South Korea
| | - Suejin Kim
- Environmental Health Research Division, National Institute of Environmental Research, Incheon, 22689, South Korea
| | - Cherry Kim
- Department of Radiology, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea.
| | - Ju-Han Lee
- Department of Pathology, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, South Korea.
| |
Collapse
|
11
|
Sun H, Yan Z, Sun J, Zhang J, Wang H, Jiang X, Wang M, Zhang X, Xiao Y, Ji X, Tang J, Ren D. Polyhexamethylene guanidine accelerates the macrophage foamy formation mediated pulmonary fibrosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116084. [PMID: 38350217 DOI: 10.1016/j.ecoenv.2024.116084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
Polyhexamethylene guanidine (PHMG) is manufactured and applied extensively due to its superior disinfectant capabilities. However, the inhalatory exposure to PHMG aerosols is increasingly recognized as a potential instigator of pulmonary fibrosis, prompting an urgent call for elucidation of the underlying pathophysiological mechanisms. Within this context, alveolar macrophages play a pivotal role in the primary immune defense in the respiratory tract. Dysregulated lipid metabolism within alveolar macrophages leads to the accumulation of foam cells, a process that is intimately linked with the pathogenesis of pulmonary fibrosis. Therefore, this study examines PHMG's effects on alveolar macrophage foaminess and its underlying mechanisms. We conducted a 3-week inhalation exposure followed by a 3-week recovery period in C57BL/6 J mice using a whole-body exposure system equipped with a disinfection aerosol generator (WESDAG). The presence of lipid-laden alveolar macrophages and downregulation of pulmonary tissue lipid transport proteins ABCA1 and ABCG1 were observed in mice. In cell culture models involving lipid-loaded macrophages, we demonstrated that PHMG promotes foam cell formation by inhibiting lipid efflux in mouse alveolar macrophages. Furthermore, PHMG-induced foam cells were found to promote an increase in the release of TGF-β1, fibronectin deposition, and collagen remodeling. In vivo interventions were subsequently implemented on mice exposed to PHMG aerosols, aiming to restore macrophage lipid efflux function. Remarkably, this intervention demonstrated the potential to retard the progression of pulmonary fibrosis. In conclusion, this study underscores the pivotal role of macrophage foaming in the pathogenesis of PHMG disinfectants-induced pulmonary fibrosis. Moreover, it provides compelling evidence to suggest that the regulation of macrophage efflux function holds promise for mitigating the progression of pulmonary fibrosis, thereby offering novel insights into the mechanisms underlying inhaled PHMG disinfectants-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- He Sun
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China; Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Zhijiao Yan
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China; Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jiaxing Sun
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jianzhong Zhang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Hongmei Wang
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xinmin Jiang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Mingyue Wang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xinglin Zhang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yuting Xiao
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xiaoya Ji
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jinglong Tang
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China; Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China.
| | - Dunqiang Ren
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China; Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
12
|
Cho Y, Jeon S, Kim SH, Kim HY, Kim B, Yang MJ, Rho J, Lee MY, Lee K, Kim MS. Nicotinamide adenine dinucleotide phosphate oxidase 2 deletion attenuates polyhexamethylene guanidine-induced lung injury in mice. Heliyon 2024; 10:e25045. [PMID: 38317961 PMCID: PMC10838801 DOI: 10.1016/j.heliyon.2024.e25045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
Inhalation of polyhexamethylene guanidine phosphate (PHMG) can cause pulmonary fibrosis. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Nox) are enzymes that produce reactive oxygen species, which may be involved in tissue damage in various lung diseases. To investigate whether the Nox2 isoform of Nox is involved in the progression of PHMG-induced lung damage, we studied the contribution of Nox2 in PHMG-induced lung injury in Nox2-deficient mice. We treated wild-type (WT) and Nox2 knockout mice with a single intratracheal instillation of 1.1 mg/kg PHMG and sacrificed them after 14 days. We analyzed lung histopathology and the number of total and differential cells in the bronchoalveolar lavage fluid. In addition, the expressions of cytokines, chemokines, and profibrogenic genes were analyzed in the lung tissues. Based on our results, Nox2-deficient mice showed less PHMG-induced pulmonary damage than WT mice, as indicated by parameters such as body weight, lung weight, total cell count, cytokine and chemokine levels, fibrogenic mediator expression, and histopathological findings. These findings suggest that Nox2 may have the potential to contribute to PHMG-induced lung injury and serves as an essential signaling molecule in the development of PHMG-induced pulmonary fibrosis by regulating the expression of profibrogenic genes.
Collapse
Affiliation(s)
- Yoon Cho
- Inhalation Toxicology Research Group, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Seulgi Jeon
- Inhalation Toxicology Research Group, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Sung-Hwan Kim
- Human Health Risk Assessment Center, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Hyeon-Young Kim
- Human Health Risk Assessment Center, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Bumseok Kim
- Biosafety Research Institute and Laboratory of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-Ro, Iksan-Si, Jeollabuk-Do, 54596, Republic of Korea
| | - Mi-Jin Yang
- Pathology Research Group, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Jinhyung Rho
- Pathology Research Group, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Moo-Yeol Lee
- College of Pharmacy, Dongguk University, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Kyuhong Lee
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do, 56212, Republic of Korea
- Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Min-Seok Kim
- Inhalation Toxicology Research Group, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| |
Collapse
|
13
|
Kim TH, Heo SY, Chandika P, Kim YM, Kim HW, Kang HW, Je JY, Qian ZJ, Kim N, Jung WK. A literature review of bioactive substances for the treatment of periodontitis: In vitro, in vivo and clinical studies. Heliyon 2024; 10:e24216. [PMID: 38293511 PMCID: PMC10826675 DOI: 10.1016/j.heliyon.2024.e24216] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/16/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Periodontitis is a common chronic inflammatory disease of the supporting tissues of the tooth that involves a complex interaction of microorganisms and various cell lines around the infected site. To prevent and treat this disease, several options are available, such as scaling, root planning, antibiotic treatment, and dental surgeries, depending on the stage of the disease. However, these treatments can have various side effects, including additional inflammatory responses, chronic wounds, and the need for secondary surgery. Consequently, numerous studies have focused on developing new therapeutic agents for more effective periodontitis treatment. This review explores the latest trends in bioactive substances with therapeutic effects for periodontitis using various search engines. Therefore, this study aimed to suggest effective directions for therapeutic approaches. Additionally, we provide a summary of the current applications and underlying mechanisms of bioactive substances, which can serve as a reference for the development of periodontitis treatments.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
| | - Seong-Yeong Heo
- Jeju Marine Research Center, Korea Institute of Ocean Science & Technology (KIOST), Jeju, 63349, Republic of Korea
| | - Pathum Chandika
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hyun-Woo Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Marine Biology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hyun Wook Kang
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| | - Jae-Young Je
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Human Bioconvergence, School of Smart Healthcare, Pukyong National University, Busan, 48513, Republic of Korea
| | - Zhong-Ji Qian
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
- Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen, 518108, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China
| | - Namwon Kim
- Ingram School of Engineering, Texas State University, San Marcos, TX, 78666, USA
- Materials Science, Engineering, and Commercialization (MSEC), Texas State University, San Marcos, TX, 78666, USA
| | - Won-Kyo Jung
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| |
Collapse
|
14
|
Choi JH, Kim K. Polyhexamethylene Guanidine Phosphate Enhanced Procoagulant Activity through Oxidative-Stress-Mediated Phosphatidylserine Exposure in Platelets. TOXICS 2024; 12:50. [PMID: 38251006 PMCID: PMC10820372 DOI: 10.3390/toxics12010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
Polyhexamethylene guanidine phosphate (PHMG-p) is a common biocidal disinfectant that is widely used in industry and household products. However, PHMG-p was misused as a humidifier disinfectant (HD) in South Korea, which had fatal health effects. Various health problems including cardiovascular diseases were observed in HD-exposed groups. However, the potential underlying mechanism of HD-associated cardiovascular diseases is poorly understood. Here, we examined the procoagulant activity of platelets caused by PHMG-p and clarified the underlying mechanism. PHMG-p enhanced phosphatidylserine (PS) exposure through alteration of phospholipid transporters, scramblase, and flippase. Intracellular calcium elevation, intracellular ATP depletion, and caspase-3 activation appeared to underlie phospholipid transporter dysregulation caused by PHMG-p, which was mediated by oxidative stress and mitochondrial dysfunction. Notably, antioxidant enzyme catalase and calcium chelator EGTA reversed PHMG-p-induced PS exposure and thrombin generation, confirming the contributive role of oxidative stress and intracellular calcium in the procoagulant effects of PHMG-p. These series of events led to procoagulant activation of platelets, which was revealed as enhanced thrombin generation. Collectively, PHMG-p triggered procoagulant activation of platelets, which may promote prothrombotic risks and cardiovascular diseases. These findings improve our understanding of HD-associated cardiovascular diseases.
Collapse
Affiliation(s)
| | - Keunyoung Kim
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea;
| |
Collapse
|
15
|
Lee S, Kim SY, Kwon E, Choi S, Jung DM, Kim KK, Kim EM. A novel G3BP1-GFP reporter human lung cell system enabling real-time monitoring of stress granule dynamics for in vitro lung toxicity assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115755. [PMID: 38039847 DOI: 10.1016/j.ecoenv.2023.115755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Under various cellular stress conditions, including exposure to toxic chemicals, RNA-binding proteins (RBPs), including Ras GTPase-activating protein-binding protein 1 (G3BP1), aggregate and form stress granule complexes, which serve as hallmarks of cellular stress. The existing methods for analyzing stress granule assembly have limitations in the rapid detection of dynamic cellular stress and ignore the effects of constitutively overexpressed RBP on cellular stress and stress-related processes. Therefore, to overcome these limitations, we established a G3BP1-GFP reporter in a human lung epithelial cell line using CRISPR/Cas9-based knock-in as an alternative system for stress granule analysis. We showed that the G3BP1-GFP reporter system responds to stress conditions and forms a stress granule complex similar to that of native G3BP1. Furthermore, we validated the stress granule response of an established cell line under exposure to various household chemicals. Overall, this novel G3BP1-GFP reporter human lung cell system is capable of monitoring stress granule dynamics in real time and can be used for assessing the lung toxicity of various substances in vitro.
Collapse
Affiliation(s)
- Sangsoo Lee
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, South Korea
| | - Seung-Yeon Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, South Korea; Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, South Korea
| | - Eunhye Kwon
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, South Korea
| | - Sunkyung Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, South Korea
| | - Da-Min Jung
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, South Korea
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, South Korea.
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, South Korea.
| |
Collapse
|
16
|
Braakhuis HM, Gremmer ER, Bannuscher A, Drasler B, Keshavan S, Rothen-Rutishauser B, Birk B, Verlohner A, Landsiedel R, Meldrum K, Doak SH, Clift MJD, Erdem JS, Foss OAH, Zienolddiny-Narui S, Serchi T, Moschini E, Weber P, Burla S, Kumar P, Schmid O, Zwart E, Vermeulen JP, Vandebriel RJ. Transferability and reproducibility of exposed air-liquid interface co-culture lung models. NANOIMPACT 2023; 31:100466. [PMID: 37209722 DOI: 10.1016/j.impact.2023.100466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/03/2023] [Accepted: 05/03/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND The establishment of reliable and robust in vitro models for hazard assessment, a prerequisite for moving away from animal testing, requires the evaluation of model transferability and reproducibility. Lung models that can be exposed via the air, by means of an air-liquid interface (ALI) are promising in vitro models for evaluating the safety of nanomaterials (NMs) after inhalation exposure. We performed an inter-laboratory comparison study to evaluate the transferability and reproducibility of a lung model consisting of the human bronchial cell line Calu-3 as a monoculture and, to increase the physiologic relevance of the model, also as a co-culture with macrophages (either derived from the THP-1 monocyte cell line or from human blood monocytes). The lung model was exposed to NMs using the VITROCELL® Cloud12 system at physiologically relevant dose levels. RESULTS Overall, the results of the 7 participating laboratories are quite similar. After exposing Calu-3 alone and Calu-3 co-cultures with macrophages, no effects of lipopolysaccharide (LPS), quartz (DQ12) or titanium dioxide (TiO2) NM-105 particles on the cell viability and barrier integrity were detected. LPS exposure induced moderate cytokine release in the Calu-3 monoculture, albeit not statistically significant in most labs. In the co-culture models, most laboratories showed that LPS can significantly induce cytokine release (IL-6, IL-8 and TNF-α). The exposure to quartz and TiO2 particles did not induce a statistically significant increase in cytokine release in both cell models probably due to our relatively low deposited doses, which were inspired by in vivo dose levels. The intra- and inter-laboratory comparison study indicated acceptable interlaboratory variation for cell viability/toxicity (WST-1, LDH) and transepithelial electrical resistance, and relatively high inter-laboratory variation for cytokine production. CONCLUSION The transferability and reproducibility of a lung co-culture model and its exposure to aerosolized particles at the ALI were evaluated and recommendations were provided for performing inter-laboratory comparison studies. Although the results are promising, optimizations of the lung model (including more sensitive read-outs) and/or selection of higher deposited doses are needed to enhance its predictive value before it may be taken further towards a possible OECD guideline.
Collapse
Affiliation(s)
- Hedwig M Braakhuis
- National Institute for Public Health & the Environment (RIVM), the Netherlands
| | - Eric R Gremmer
- National Institute for Public Health & the Environment (RIVM), the Netherlands
| | - Anne Bannuscher
- Adolphe Merkle Institute (AMI), University of Fribourg, Switzerland
| | - Barbara Drasler
- Adolphe Merkle Institute (AMI), University of Fribourg, Switzerland
| | - Sandeep Keshavan
- Adolphe Merkle Institute (AMI), University of Fribourg, Switzerland
| | | | | | | | - Robert Landsiedel
- BASF SE, Ludwigshafen, Germany; Free University of Berlin, Pharmacy - Pharmacology and Toxicology, Berlin, Germany
| | | | | | | | | | - Oda A H Foss
- National Institute of Occupational Health (STAMI), Norway
| | | | - Tommaso Serchi
- Luxembourg Institute of Science and Technology (LIST), Grand Duchy of Luxembourg, Luxembourg
| | - Elisa Moschini
- Luxembourg Institute of Science and Technology (LIST), Grand Duchy of Luxembourg, Luxembourg
| | - Pamina Weber
- Luxembourg Institute of Science and Technology (LIST), Grand Duchy of Luxembourg, Luxembourg
| | - Sabina Burla
- Luxembourg Institute of Science and Technology (LIST), Grand Duchy of Luxembourg, Luxembourg
| | - Pramod Kumar
- Comprehensive Pneumology Center (CPC-M) with the CPC-M bioArchive, Helmholtz Center Munich - Member of the German Center for Lung Research (DZL), Munich, Germany; Institute of Lung Health and Immunity, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
| | - Otmar Schmid
- Comprehensive Pneumology Center (CPC-M) with the CPC-M bioArchive, Helmholtz Center Munich - Member of the German Center for Lung Research (DZL), Munich, Germany; Institute of Lung Health and Immunity, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
| | - Edwin Zwart
- National Institute for Public Health & the Environment (RIVM), the Netherlands
| | - Jolanda P Vermeulen
- National Institute for Public Health & the Environment (RIVM), the Netherlands
| | - Rob J Vandebriel
- National Institute for Public Health & the Environment (RIVM), the Netherlands.
| |
Collapse
|
17
|
Keshavan S, Bannuscher A, Drasler B, Barosova H, Petri-Fink A, Rothen-Rutishauser B. Comparing species-different responses in pulmonary fibrosis research: Current understanding of in vitro lung cell models and nanomaterials. Eur J Pharm Sci 2023; 183:106387. [PMID: 36652970 DOI: 10.1016/j.ejps.2023.106387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/16/2022] [Accepted: 01/14/2023] [Indexed: 01/16/2023]
Abstract
Pulmonary fibrosis (PF) is a chronic, irreversible lung disease that is typically fatal and characterized by an abnormal fibrotic response. As a result, vast areas of the lungs are gradually affected, and gas exchange is impaired, making it one of the world's leading causes of death. This can be attributed to a lack of understanding of the onset and progression of the disease, as well as a poor understanding of the mechanism of adverse responses to various factors, such as exposure to allergens, nanomaterials, environmental pollutants, etc. So far, the most frequently used preclinical evaluation paradigm for PF is still animal testing. Nonetheless, there is an urgent need to understand the factors that induce PF and find novel therapeutic targets for PF in humans. In this regard, robust and realistic in vitro fibrosis models are required to understand the mechanism of adverse responses. Over the years, several in vitro and ex vivo models have been developed with the goal of mimicking the biological barriers of the lung as closely as possible. This review summarizes recent progress towards the development of experimental models suitable for predicting fibrotic responses, with an emphasis on cell culture methods, nanomaterials, and a comparison of results from studies using cells from various species.
Collapse
Affiliation(s)
- Sandeep Keshavan
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland
| | - Anne Bannuscher
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland
| | - Barbara Drasler
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland
| | - Hana Barosova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland; Chemistry Department, University of Fribourg, Chemin du Musée 9, Fribourg 1700, Switzerland
| | | |
Collapse
|
18
|
Sung HJ, Jeong SH, Kang JY, Kim C, Nam YJ, Kim JY, Choi JY, Lee HJ, Lee YS, Kim EY, Baek YW, Lee H, Lee JH. Hematotoxic Effect of Respiratory Exposure to PHMG-p and Its Integrated Genetic Analysis. TOXICS 2022; 10:694. [PMID: 36422902 PMCID: PMC9693004 DOI: 10.3390/toxics10110694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Polyhexamethylene guanidine phosphate (PHMG-p), the main ingredient of humidifier disinfectants, circulates systemically through the lungs; however, its toxicological assessment has been primarily limited to pulmonary disease. Herein, we investigated the possible abnormalities in hematopoietic function 20 weeks after intratracheal instillation of PHMG-p in a rat model. Notable abnormalities were found out in the peripheral blood cell count and bone marrow (BM) biopsy, while RNA sequencing of BM tissue revealed markedly altered gene expression. Furthermore, signaling involved in hematopoietic dysfunction was predicted by analyzing candidate genes through Ingenuity Pathway Analysis (IPA) program. Respiratory PHMG-p exposure significantly decreased monocyte and platelet (PLT) counts and total protein, while significantly increasing hemoglobin and hematocrit levels in peripheral blood. Histopathological analysis of the BM revealed a reduced number of megakaryocytes, with no significant differences in spleen and liver weight to body weight. Moreover, PHMG-p exposure significantly activated estrogen receptor signaling and RHOA signaling, and inhibited RHOGDI signaling. In IPA analysis, candidate genes were found to be strongly related to 'hematological system development and function' and 'hematological disease.' Accordingly, our results suggest that PHMG-p could affect hematopoiesis, which participates in monocyte differentiation and PLT production, and may induce hematologic diseases via the respiratory tract.
Collapse
Affiliation(s)
- Hwa Jung Sung
- Department of Oncology and Hematology, Ansan Hospital, Korea University College of Medicine, Ansan-si 15355, Gyeonggi, Republic of Korea
| | - Sang Hoon Jeong
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si 15355, Gyeonggi, Republic of Korea
| | - Ja Young Kang
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si 15355, Gyeonggi, Republic of Korea
| | - Cherry Kim
- Department of Radiology, Ansan Hospital, Korea University College of Medicine, Ansan-si 15355, Gyeonggi, Republic of Korea
| | - Yoon Jeong Nam
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si 15355, Gyeonggi, Republic of Korea
| | - Jae Young Kim
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si 15355, Gyeonggi, Republic of Korea
| | - Jin Young Choi
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si 15355, Gyeonggi, Republic of Korea
| | - Hye Jin Lee
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si 15355, Gyeonggi, Republic of Korea
| | - Yu Seon Lee
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si 15355, Gyeonggi, Republic of Korea
| | - Eun Yeob Kim
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si 15355, Gyeonggi, Republic of Korea
| | - Yong Wook Baek
- Humidifier Disinfectant Health Center, Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Hong Lee
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si 15355, Gyeonggi, Republic of Korea
| | - Ju Han Lee
- Department of Pathology, Ansan Hospital, Korea University College of Medicine, Ansan-si 15355, Gyeonggi, Republic of Korea
| |
Collapse
|
19
|
Kim J, Baek YW, Kim C, Nam YJ, Lee YS, Lee H, Kang JY, Lee H, Choi JY, Park YH, Park SA, Park EK, Jeong SH, Lee JH. Evaluating the comparative MT1B, MT1F, MT1G, and MT1H expression in human pulmonary alveolar epithelial cells treated with polyhexamethylene guanidine-phosphate, chloromethylisothiazolinone/methylisothiazolinone, oligo(2-(2-ethoxy)ethoxyethyl guanidinium chloride, benzalkonium chloride, and sodium dichloroisocyanurate. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00311-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Li F, Choi J, Zhang X, Rajaraman PK, Lee CH, Ko H, Chae KJ, Park EK, Comellas AP, Hoffman EA, Lin CL. Characterizing Subjects Exposed to Humidifier Disinfectants Using Computed-Tomography-Based Latent Traits: A Deep Learning Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11894. [PMID: 36231196 PMCID: PMC9565839 DOI: 10.3390/ijerph191911894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Around nine million people have been exposed to toxic humidifier disinfectants (HDs) in Korea. HD exposure may lead to HD-associated lung injuries (HDLI). However, many people who have claimed that they experienced HD exposure were not diagnosed with HDLI but still felt discomfort, possibly due to the unknown effects of HD. Therefore, this study examined HD-exposed subjects with normal-appearing lungs, as well as unexposed subjects, in clusters (subgroups) with distinct characteristics, classified by deep-learning-derived computed-tomography (CT)-based tissue pattern latent traits. Among the major clusters, cluster 0 (C0) and cluster 5 (C5) were dominated by HD-exposed and unexposed subjects, respectively. C0 was characterized by features attributable to lung inflammation or fibrosis in contrast with C5. The computational fluid and particle dynamics (CFPD) analysis suggested that the smaller airway sizes observed in the C0 subjects led to greater airway resistance and particle deposition in the airways. Accordingly, women appeared more vulnerable to HD-associated lung abnormalities than men.
Collapse
Affiliation(s)
- Frank Li
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
- IIHR—Hydroscience & Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Jiwoong Choi
- Department of Mechanical Engineering, University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, School of Medicine, University of Kansas, Kansas City, KS 66045, USA
| | - Xuan Zhang
- IIHR—Hydroscience & Engineering, University of Iowa, Iowa City, IA 52242, USA
- Department of Mechanical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Prathish K. Rajaraman
- IIHR—Hydroscience & Engineering, University of Iowa, Iowa City, IA 52242, USA
- Department of Mechanical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Chang-Hyun Lee
- Department of Radiology, University of Iowa, Iowa City, IA 52242, USA
- Department of Radiology, College of Medicine, Seoul National University, Seoul 100-011, Korea
| | - Hongseok Ko
- Department of Radiology, Kangwon National University Hospital, Chuncheon 200-010, Korea
| | - Kum-Ju Chae
- Department of Radiology, Jeonbuk National University Hospital, Jeonju 560-011, Korea
| | - Eun-Kee Park
- Department of Medical Humanities and Social Medicine, College of Medicine, Kosin University, Busan 600-011, Korea
| | | | - Eric A. Hoffman
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
- Department of Radiology, University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Ching-Long Lin
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
- IIHR—Hydroscience & Engineering, University of Iowa, Iowa City, IA 52242, USA
- Department of Mechanical Engineering, University of Iowa, Iowa City, IA 52242, USA
- Department of Radiology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
21
|
Nam K, Kim M, Hur S, Kim K, Cho Y, Kim K, Kim H, Lim KM. P20-10 A new murine liver fibrosis model induced by polyhexamethylene guanidine-phosphate. Toxicol Lett 2022. [DOI: 10.1016/j.toxlet.2022.07.676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Song JH, Ahn J, Park MY, Park J, Lee YM, Myong JP, Koo JW, Lee J. Health Effects Associated With Humidifier Disinfectant Use: A Systematic Review for Exploration. J Korean Med Sci 2022; 37:e257. [PMID: 35996934 PMCID: PMC9424740 DOI: 10.3346/jkms.2022.37.e257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/29/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND It has been 10 years since the outbreak of lung disease caused by humidifier disinfectants in Korea, but the health effects have not yet been summarized. Therefore, this study aims to systematically examine the health effects of humidifier disinfectants that have been discovered so far. METHODS All literature with humidifier disinfectants and their representative components as the main words were collected based on the web, including PubMed, Research Information Sharing Service, and government publication reports. A total of 902 studies were searched, of which 196 were selected. They were divided into four groups: published human studies (group 1), published animal and cytotoxicology studies (group 2), technical reports (group 3), and gray literature (group 4). RESULTS Out of the 196 studies, 97 (49.5%) were published in peer-reviewed journals as original research. Group 1 consisted of 49 articles (50.5%), while group 2 consisted of 48 articles (49.5%). Overall, respiratory diseases such as humidifier disinfectant associated lung injury, interstitial lung disease, and asthma have a clear correlation, but other effects such as liver, heart, thymus, thyroid, fetal growth, metabolic abnormalities, and eyes are observed in toxicological experimental studies, but have not yet been identified in epidemiologic studies. CONCLUSION The current level of evidence does not completely rule out the effects of humidifier disinfectants on extrapulmonary disease. Based on the toxicological evidence so far, it is required to monitor the population of humidifier disinfectant exposure continuously to see if similar damage occurs.
Collapse
Affiliation(s)
- Ji-Hun Song
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Joonho Ahn
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Min Young Park
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jaeyoung Park
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yu Min Lee
- Department of Occupational and Environmental Medicine, Severance Hospital, College of Medicine, Yonsei University, Seoul, Korea
| | - Jun-Pyo Myong
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung-Wan Koo
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jongin Lee
- Department of Occupational and Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
23
|
New-Onset and Exacerbation of Lung Diseases after Short-Term Exposures to Humidifier Disinfectant during Hospitalization. TOXICS 2022; 10:toxics10070371. [PMID: 35878276 PMCID: PMC9318961 DOI: 10.3390/toxics10070371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022]
Abstract
(1) Background: Humidifier disinfectant (HD) is a biocidal chemical to keep the water tank inside a humidifier clean. Thousands of Koreans have experienced HD-related lung injuries. Of them, 6.9% were exposed to HD in hospitals. (2) Methods: This study investigated changes of diseases in patients (or caregivers) who experienced HD exposures during hospitalization and also investigated characteristics of hospital exposure using data from all HD-related lung injury enrollment in Korea. (3) Results: Of a total of 162 subjects, 139 subjects were hospitalized for non-lung diseases, and 23 people were hospitalized for lung diseases at the time of hospitalization. During hospital exposure, 99 (71.2%) of those hospitalized with non-lung disease experienced a new-onset of lung disease, and 15 (65.2%) of those hospitalized with lung diseases experienced exacerbation of their existing lung diseases. When we compared their exposure characteristics, those exposed in hospitals (vs. non-hospital, mostly home) were exposed for shorter periods, at closer distances, at higher HD indoor concentrations, constantly all day, and directly in the facial direction. (4) Conclusion: In conclusion, HD exposures in hospital with a high intensity even for a short term were associated with new-onset or exacerbation of lung diseases. Our findings suggest that acute exposures to HD can cause lung diseases.
Collapse
|
24
|
Liu S, Yang Q, Dong B, Qi C, Yang T, Li M, He S, Liu B, Wu J. Gypenosides Attenuate Pulmonary Fibrosis by Inhibiting the AKT/mTOR/c-Myc Pathway. Front Pharmacol 2022; 12:806312. [PMID: 35095515 PMCID: PMC8795913 DOI: 10.3389/fphar.2021.806312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/20/2021] [Indexed: 12/29/2022] Open
Abstract
Gypenosides (Gyps), the major active constituents isolated from Gynostemma pentaphyllum, possess anti-inflammatory and antioxidant activities. Previous studies have demonstrated that Gyps displayed potent ameliorative effects on liver fibrosis and renal fibrosis. In this study, we found that Gyps significantly reduced the mortality of bleomycin-induced pulmonary fibrosis mice (40% mortality rate of mice in the model group versus 0% in the treatment group). Masson staining showed that Gyps could reduce the content of collagen in the lung tissue of pulmonary fibrosis mice Masson staining and immunohistochemistry demonstrated that the expression of the collagen gene α-SMA and fibrosis gene Col1 markedly decreased after Gyps treatment. The active mitosis of fibroblasts is one of the key processes in the pathogenesis of fibrotic diseases. RNA-seq showed that Gyps significantly inhibited mitosis and induced the G2/M phase cell cycle arrest. The mTOR/c-Myc axis plays an important role in the pathological process of pulmonary fibrosis. RNA-seq also demonstrated that Gyps inhibited the mTOR and c-Myc signaling in pulmonary fibrosis mice, which was further validated by Western blot and immunohistochemistry. AKT functions as an upstream molecule that regulates mTOR. Our western blot data showed that Gyps could suppress the activation of AKT. In conclusion, Gyps exerted anti-pulmonary fibrosis activity by inhibiting the AKT/mTOR/c-Myc pathway.
Collapse
Affiliation(s)
- Suqing Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qingqing Yang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Binbin Dong
- Department of Pediatrics, Huashan Hospital North, Fudan University, Shanghai, China
| | - Chunhui Qi
- Department of Respiratory Medicine, Qingpu District Traditional Chinese Medicine Hospital, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Tao Yang
- Department of Cardiovascular Disease, Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shan He
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Baojun Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Lee J, Choi SJ, Jeong JS, Kim SY, Lee SJ, Baek SK, Kwon N, Lee SH, Kim W, Cho JW, Koh EM, Lee K, Jeong EJ, Nam SY, Yu WJ. Adverse postnatal developmental effects in offspring from humidifier disinfectant biocide inhaled pregnant rats. CHEMOSPHERE 2022; 286:131636. [PMID: 34358894 DOI: 10.1016/j.chemosphere.2021.131636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Inhalation exposure to polyhexamethylene guanidine phosphate (PHMG-P), one of the primary biocides used in humidifier disinfectants, caused a fatal pulmonary disease in Korea. Pregnant women were also exposed to PHMG-P, and subsequent studies showed that PHMG-P inhalation during pregnancy adversely affects their health and embryo-fetal development. However, the postnatal developmental effects after birth on prenatally PHMG-P-exposed offspring have not yet been investigated. Therefore, in this study, we aimed to examine the postnatal development of prenatally PHMG-P-exposed offspring. Pregnant rats (22 or 24 females per group) were exposed to PHMG-P during pregnancy in a whole-body inhalation chamber at the target concentrations of 0, 0.14, 1.60, and 3.20 mg/m3. After parturition, the prenatally exposed offspring were transferred to non-exposed surrogate mothers to minimize the secondary effects of severe maternal toxicities. Postnatal development of offspring was then examined with a modified extended one-generation reproductive toxicity study design. At 3.20 mg/m3 PHMG-P, increased perinatal death rates and decreased viability index (postnatal survival of offspring between birth and postnatal day 4) were observed. In addition, F1 offspring had lower body weight at birth that persisted throughout the study. PHMG-P-exposed pregnant rats also had severe systemic toxicities and increased gestation period. At 1.60 mg/m3 PHMG-P, a decreased viability index was also observed with systemic toxicities of PHMG-P-exposed pregnant rats. These results indicate that prenatal PHMG-P exposure adversely affects the offspring's future health and could be used for human risk assessment.
Collapse
Affiliation(s)
- Jinsoo Lee
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea; College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Seong-Jin Choi
- Department of Chemical Assessment, Korea Environment Corporation, Incheon, Republic of Korea
| | - Ji-Seong Jeong
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Sang Yun Kim
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Seung-Jin Lee
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Sang-Ki Baek
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Nayun Kwon
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Sang-Hyub Lee
- Department of Chemical Assessment, Korea Environment Corporation, Incheon, Republic of Korea
| | - Woojin Kim
- Toxicologic Pathology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Jae-Woo Cho
- Toxicologic Pathology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Eun Mi Koh
- Bioanalytical and Immunoanalytical Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Kyuhong Lee
- Inhalation Toxicology Research Group, Korea Institute of Toxicology, Jeongeup, Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon, Republic of Korea
| | - Eun Ju Jeong
- Chemical Risk Assessment Research Committee, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Sang-Yoon Nam
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Wook-Joon Yu
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea.
| |
Collapse
|
26
|
Choi S, Choi S, Choi Y, Cho N, Kim SY, Lee CH, Park HJ, Oh WK, Kim KK, Kim EM. Polyhexamethylene guanidine phosphate increases stress granule formation in human 3D lung organoids under respiratory syncytial virus infection. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113094. [PMID: 34942421 DOI: 10.1016/j.ecoenv.2021.113094] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Polyhexamethylene guanidine phosphate (PHMG-p), a humidifier disinfectant, is known to cause lung toxicity, including inflammation and pulmonary fibrosis. In this study, we aimed to investigate the effect of PHMG-p on human lung tissue models (2D epithelial cells and 3D organoids) under conditions of oxidative stress and viral infection. The effect of PHMG-p was studied by evaluating the formation of stress granules (SGs), which play a pivotal role in cellular adaptation to various stress conditions. Under oxidative stress and respiratory syncytial virus (RSV) infection, exposure to PHMG-p remarkably increased eIF2α phosphorylation, which is essential for SG-related signalling, and significantly increased SG formation. Furthermore, PHMG-p induced fibrotic gene expression and caused cell death due to severe DNA damage, which was further increased under oxidative stress and RSV infection, indicating that PHMG-p induces severe lung toxicity under stress conditions. Taken together, toxicity evaluation under various stressful conditions is necessary to accurately predict potential lung toxicity of chemicals affecting the respiratory tract.
Collapse
Affiliation(s)
- Seri Choi
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, South Korea; Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Sunkyung Choi
- Department of Biochemistry, Chungnam National University, Daejeon 34134, South Korea
| | - Yeongsoo Choi
- Department of Biochemistry, Chungnam National University, Daejeon 34134, South Korea
| | - Namjoon Cho
- Department of Biochemistry, Chungnam National University, Daejeon 34134, South Korea
| | - Seung-Yeon Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, South Korea; Department of Biochemistry, Chungnam National University, Daejeon 34134, South Korea
| | - Chang Hyun Lee
- Institute of Radiation Medicine, Seoul National University Hospital and College of Medicine, Seoul National University, Seoul 08826, South Korea; Department of Radiology, Seoul National University College of Medicine and Hospital, Seoul National University, Seoul 03080, South Korea
| | - Han-Jin Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, South Korea
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Kee K Kim
- Department of Biochemistry, Chungnam National University, Daejeon 34134, South Korea.
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, South Korea.
| |
Collapse
|
27
|
Yoo J, Kim H, Lim YM, Yoon BI, Kim P, Eom IC, Shim I. Pulmonary toxicity of sodium dichloroisocyanurate after intratracheal instillation in sprague-dawley rats. Hum Exp Toxicol 2022; 41:9603271221106336. [PMID: 35675544 DOI: 10.1177/09603271221106336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In water, sodium dichloroisocyanurate (NaDCC), a source for chlorine gas generation, releases free available chlorine in the form of hypochlorous acid, a strong oxidizing agent. NaDCC has been used as a disinfectant in humidifiers; however, its inhalation toxicity is a concern. Seven-week-old rats were exposed to NaDCC doses of 100, 500, and 2500 μg·kg-1 body weight by intratracheal instillation (ITI) to investigate pulmonary toxicity. The rats were sacrificed at 1 d (exposure group) or 14 d (recovery group) after ITI. Despite a slight decrease in body weight after exposure, there was no statistically significant difference between the control and NaDCC-treated groups. A significant increase in the total protein level of the bronchoalveolar lavage fluid (BALF) was observed in the exposure groups. Lactate dehydrogenase leakage into the BALF increased significantly (p < 0.01) in the exposure groups; however, recovery was observed after 14 d. The measurement of cytokines in the BALF samples indicated a significant increase in interleukin (IL)-6 in the exposure group and IL-8 in the recovery group. Histopathological examination revealed inflammatory foci and pulmonary edema around the terminal bronchioles and alveoli. This study demonstrated that ITI of NaDCC induced reversible pulmonary edema and inflammation without hepatic involvement in rats.
Collapse
Affiliation(s)
- Jean Yoo
- Environmental Health Research Department, 65740National Institute of Environmental Research, Incheon, Korea
| | - Haewon Kim
- Environmental Health Research Department, 65740National Institute of Environmental Research, Incheon, Korea
| | - Yeon-Mi Lim
- Environmental Health Research Department, 65740National Institute of Environmental Research, Incheon, Korea
| | - Byung-Il Yoon
- College of Veterinary Medicine & Institute of Veterinary Science, 34962Kangwon National University, Chuncheon, Korea
| | - Pilje Kim
- Environmental Health Research Department, 65740National Institute of Environmental Research, Incheon, Korea
| | - Ig-Chun Eom
- Environmental Health Research Department, 65740National Institute of Environmental Research, Incheon, Korea
| | - Ilseob Shim
- Environmental Health Research Department, 65740National Institute of Environmental Research, Incheon, Korea
| |
Collapse
|
28
|
Kim JW, Jeong MH, Kim GE, Han YB, Park YJ, Chung KH, Kim HR. Comparison of 3D airway models for the assessment of fibrogenic chemicals. Toxicol Lett 2021; 356:100-109. [PMID: 34902520 DOI: 10.1016/j.toxlet.2021.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 11/24/2022]
Abstract
Lung epithelial cells and fibroblasts play key roles in pulmonary fibrosis and are involved in fibrotic signaling and production of the extracellular matrix (ECM), respectively. Recently, 3D airway models consisting of both cell types have been developed to evaluate the fibrotic responses while facilitating cell-cell crosstalk. This study aimed to evaluate the fibrotic responses in these models using different fibrogenic agents, which are known as key events in adverse outcome pathways of pulmonary fibrosis. We quantified cell injury and several sequential steps in fibrogenesis, including inflammation, the epithelial-mesenchymal transition (EMT), fibroblast activation, and ECM accumulation, using two different 3D airway models, the EpiAirway™-full thickness (Epi/FT) and MucilAir™-human fibroblast (Mucil/HF) models. In the Epi/FT model, fibrogenic agents induced the expression of inflammation and EMT-associated markers, while in the Mucil/HF model, they induced fibroblast activation and ECM accumulation. Using this information, we conducted gene ontology term network analysis. In the Epi/FT model, the terms associated with cell migration and response to stimulus made up a large part of the network. In the Mucil/HF model, the terms associated with ECM organization and cell differentiation and proliferation constituted a great part of the network. Collectively, our data suggest that polyhexamethyleneguanidine phosphate and bleomycin induce different responses in the two 3D airway models. While Epi/FT was associated with inflammatory/EMT-associated responses, Mucil/HF was associated with fibroblast-associated responses. This study will provide an important basis for selecting proper 3D airway models and fibrogenic agents to further research or screen chemicals causing inhalation toxicity.
Collapse
Affiliation(s)
- Jun Woo Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Mi Ho Jeong
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ga Eun Kim
- College of Pharmacy, Daegu Catholic University, 13-13, Hayang-ro, Hayang-eup, Gyeongsan, Gyeongsangbuk-do, 38430, Republic of Korea
| | - Yu Bin Han
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Yong Joo Park
- College of Pharmacy, Kyungsung University, Busan, 48434, Republic of Korea
| | - Kyu Hyuck Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Ha Ryong Kim
- College of Pharmacy, Daegu Catholic University, 13-13, Hayang-ro, Hayang-eup, Gyeongsan, Gyeongsangbuk-do, 38430, Republic of Korea.
| |
Collapse
|
29
|
Dudala SS, Venkateswarulu TC, Kancharla SC, Kodali VP, Babu DJ. A review on importance of bioactive compounds of medicinal plants in treating idiopathic pulmonary fibrosis (special emphasis on isoquinoline alkaloids). FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00304-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Abstract
Background
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease of unknown cause which disrupts the normal lung architecture and functions by deregulating immune responses and ultimately leads to the death of the individual. A number of factors can lead to its development and currently there is no cure for this disease.
Main text
There are synthetic drugs available to relieve the symptoms and decelerate its development by targeting pathways involved in the development of IPF, but there had also been various side effects detected by their usage. It is known since decades that medicinal plants and their compounds have been used all over the world in natural medicines to cure various diseases. This review article is focused on the effects of various natural bioactive compounds of 26 plant extracts that show prophylactic and therapeutic properties against the disease and so can be used in treating IPF replacing synthetic drugs and reducing the side effects.
Short conclusion
This review includes different mechanisms that cause pulmonary fibrosis along with compounds that can induce fibrosis, drugs used for the treatment of pulmonary fibrosis, diagnosis, the biochemical tests used for the experimental study to determine the pathogenesis of disease with a special note on Isoquinoline alkaloids and their role in reducing various factors leading to IPF thus providing promising therapeutic approach.
Collapse
|
30
|
Li X, Zhang J, Du C, Jiang Y, Zhang W, Wang S, Zhu X, Gao J, Zhang X, Ren D, Zheng Y, Tang J. Polyhexamethylene guanidine aerosol triggers pulmonary fibrosis concomitant with elevated surface tension via inhibiting pulmonary surfactant. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126642. [PMID: 34329089 DOI: 10.1016/j.jhazmat.2021.126642] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/26/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Environmental chemicals inhalation exposure could induce pulmonary fibrosis, which is characterized by the excessive proliferation of fibroblasts and accumulation of extracellular matrix components, in which surface tension usually plays vital roles. Polyhexamethylene guanidine (PHMG) was first recognized as a potential hazard ingredient in humidifier disinfectants, which caused an outbreak of pulmonary fibrosis in South Korea. However, the underlying mechanisms involved in PHMG-induced pulmonary fibrosis have not yet been fully elucidated. Therefore, this study mainly focuses on the effect of PHMG on surface tension to unveil the influence and involved mechanisms in PHMG-induced pulmonary fibrosis. C57BL/6J mice were exposed to sub-acute PHMG aerosol for 8 weeks. The results indicated that PHMG induced pulmonary fibrosis combined with elevated surface tension. Results from in vitro study further confirmed PHMG elevated surface tension by inhibited pulmonary surfactant. Mechanistically, PHMG suppressed the key surfactant protein SP-B and SP-C by inhibiting protein expression and block their active sites. The present study, for the first time, revealed the molecular mechanism of PHMG-induced pulmonary fibrosis based on pulmonary surfactant inhibition mediated surface tension elevated. And pulmonary surfactant may be a potential target for further intervention to prevent PHMG-induced fibrosis or alleviate the symptom of relevant patients.
Collapse
Affiliation(s)
- Xin Li
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jianzhong Zhang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Chao Du
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yingying Jiang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Wanjun Zhang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Shuo Wang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiaoxiao Zhu
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jinling Gao
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xinru Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dunqiang Ren
- Department of Respiratory Medicine, Affiliated Hospital of Medical College of Qingdao University, Qingdao 266021, China
| | - Yuxin Zheng
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jinglong Tang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
31
|
Song J, Jung KJ, Cho JW, Park T, Han SC, Park D. Transcriptomic Analysis of Polyhexamethyleneguanidine-Induced Lung Injury in Mice after a Long-Term Recovery. TOXICS 2021; 9:toxics9100253. [PMID: 34678949 PMCID: PMC8540838 DOI: 10.3390/toxics9100253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 02/06/2023]
Abstract
Polyhexamethyleneguanidine phosphate (PHMG-P) is one of the causative agents of humidifier disinfectant-induced lung injury. Direct exposure of the lungs to PHMG-P causes interstitial pneumonia with fibrosis. Epidemiological studies showed that patients with humidifier disinfectant-associated lung injuries have suffered from restrictive lung function five years after the onset of the lung injuries. We investigated whether lung damage was sustained after repeated exposure to PHMG-P followed by a long-term recovery and evaluated the adverse effects of PHMG-P on mice lungs. Mice were intranasally instilled with 0.3 mg/kg PHMG-P six times at two weeks intervals, followed by a recovery period of 292 days. Histopathological examination of the lungs showed the infiltration of inflammatory cells, the accumulation of extracellular matrix in the lung parenchyma, proteinaceous substances in the alveoli and bronchiolar–alveolar hyperplasia. From RNA-seq, the gene expression levels associated with the inflammatory response, leukocyte chemotaxis and fibrosis were significantly upregulated, whereas genes associated with epithelial/endothelial cells development, angiogenesis and smooth muscle contraction were markedly decreased. These results imply that persistent inflammation and fibrotic changes caused by repeated exposure to PHMG-P led to the downregulation of muscle and vascular development and lung dysfunction. Most importantly, this pathological structural remodeling induced by PHMG-P was not reversed even after long-term recovery.
Collapse
Affiliation(s)
- Jeongah Song
- Animal Model Research Group, Korea Institute of Toxicology, Jeongeup 56212, Korea
- Correspondence: (J.S.); (D.P.); Tel.: +82-63-850-8553 (J.S.); +82-42-610-8844 (D.P.)
| | - Kyung-Jin Jung
- Bioanalytical and Immunoanalytical Research Group, Korea Institute of Toxicology, Daejeon 34114, Korea;
| | - Jae-Woo Cho
- Toxicologic Pathology Research Group, Korea Institute of Toxicology, Daejeon 34114, Korea;
| | - Tamina Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea;
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Korea
| | - Su-Cheol Han
- Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup 56212, Korea;
| | - Daeui Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea;
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Korea
- Correspondence: (J.S.); (D.P.); Tel.: +82-63-850-8553 (J.S.); +82-42-610-8844 (D.P.)
| |
Collapse
|
32
|
Shin YJ, Kim SH, Park CM, Kim HY, Kim IH, Yang MJ, Lee K, Kim MS. Exposure to cigarette smoke exacerbates polyhexamethylene guanidine-induced lung fibrosis in mice. J Toxicol Sci 2021; 46:487-497. [PMID: 34602533 DOI: 10.2131/jts.46.487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cigarette smoke (CS) is the leading cause of chronic pulmonary diseases, including lung cancer, chronic obstructive pulmonary disease, and pulmonary fibrosis. In this study, we aimed to investigate the effects of repeated CS exposure on polyhexamethylene guanidine (PHMG)-induced pulmonary fibrosis in mice. A single intratracheal instillation of 0.6 mg/kg PHMG enhanced the immune response of mice by increasing the number of total and specific inflammatory cell types in the bronchoalveolar lavage fluid. It induced histopathological changes such as granulomatous inflammation/fibrosis and macrophage infiltration in the lungs. These responses were upregulated upon exposure to a combination of PHMG and CS. In contrast, a 4-hr/day exposure to 300 mg/m3 CS alone for 2 weeks by nose-only inhalation resulted in minimal inflammation in the mouse lung. Furthermore, PHMG administration increased the expression of fibrogenic mediators, especially in the pulmonary tissues of the PHMG + CS group compared with that in the PHMG alone group. However, there was no upregulation in the expression of inflammatory cytokines following exposure to a combination of PHMG and CS. Our results demonstrate that repeated exposure to CS may promote the development of PHMG-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Young-Jun Shin
- Inhalation Toxicity Research Group, Korea Institute of Toxicology, Korea
| | - Sung-Hwan Kim
- Inhalation Toxicology Center for Airborne Risk Factors, Korea Institute of Toxicology, Korea
| | - Chul Min Park
- Inhalation Toxicity Research Group, Korea Institute of Toxicology, Korea
| | - Hyeon-Young Kim
- Inhalation Toxicology Center for Airborne Risk Factors, Korea Institute of Toxicology, Korea
| | - In-Hyeon Kim
- Inhalation Toxicology Center for Airborne Risk Factors, Korea Institute of Toxicology, Korea
| | - Mi-Jin Yang
- Pathology Research Group, Korea Institute of Toxicology, Korea
| | - Kyuhong Lee
- Inhalation Toxicology Center for Airborne Risk Factors, Korea Institute of Toxicology, Korea.,Department of Human and Environmental Toxicology, University of Science & Technology, Korea
| | - Min-Seok Kim
- Inhalation Toxicity Research Group, Korea Institute of Toxicology, Korea
| |
Collapse
|
33
|
Kim M, Hur S, Kim KH, Cho Y, Kim K, Kim HR, Nam KT, Lim KM. A New Murine Liver Fibrosis Model Induced by Polyhexamethylene Guanidine-Phosphate. Biomol Ther (Seoul) 2021; 30:126-136. [PMID: 34580237 PMCID: PMC8902451 DOI: 10.4062/biomolther.2021.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/05/2022] Open
Abstract
Liver fibrosis is part of the wound healing process to help the liver recover from the injuries caused by various liver-damaging insults. However, liver fibrosis often progresses to life-threatening cirrhosis and hepatocellular carcinoma. To overcome the limitations of current in vivo liver fibrosis models for studying the pathophysiology of liver fibrosis and establishing effective treatment strategies, we developed a new mouse model of liver fibrosis using polyhexamethylene guanidine phosphate (PHMG-p), a humidifier sterilizer known to induce lung fibrosis in humans. Male C57/BL6 mice were intraperitoneally injected with PHMG-p (0.03% and 0.1%) twice a week for 5 weeks. Subsequently, liver tissues were examined histologically and RNA-sequencing was performed to evaluate the expression of key genes and pathways affected by PHMG-p. PHMG-p injection resulted in body weight loss of ~15% and worsening of physical condition. Necropsy revealed diffuse fibrotic lesions in the liver with no effect on the lungs. Histology, collagen staining, immunohistochemistry for smooth muscle actin and collagen, and polymerase chain reaction analysis of fibrotic genes revealed that PHMG-p induced liver fibrosis in the peri-central, peri-portal, and capsule regions. RNA-sequencing revealed that PHMG-p affected several pathways associated with human liver fibrosis, especially with upregulation of lumican and IRAK3, and downregulation of GSTp1 and GSTp2, which are closely involved in liver fibrosis pathogenesis. Collectively we demonstrated that the PHMG-p-induced liver fibrosis model can be employed to study human liver fibrosis.
Collapse
Affiliation(s)
- Minjeong Kim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sumin Hur
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Kwang H Kim
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Yejin Cho
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Keunyoung Kim
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ha Ryong Kim
- College of Pharmacy, Daegu Catholic University, Daegu 38430, Republic of Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
34
|
Kim C, Jeong SH, Kim J, Kang JY, Nam YJ, Togloom A, Cha J, Lee KY, Lee CH, Park EK, Lee JH. Evaluation of the long-term effect of polyhexamethylene guanidine phosphate in a rat lung model using conventional chest computed tomography with histopathologic analysis. PLoS One 2021; 16:e0256756. [PMID: 34492061 PMCID: PMC8423271 DOI: 10.1371/journal.pone.0256756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 08/15/2021] [Indexed: 12/26/2022] Open
Abstract
There have been no studies on the effects of polyhexamethylene guanidine phosphate (PHMG) after a long period of exposure in the rodent model. We aimed to evaluate long-term lung damage after PHMG exposure using conventional chest computed tomography (CT) and histopathologic analysis in a rat model. A PHMG solution was intratracheally administrated to 24 male rats. At 8, 26, and 52 weeks after PHMG instillation, conventional chest CT was performed in all rats and both lungs were extracted for histopathologic evaluation. At 52 weeks after PHMG instillation, four carcinomas had developed in three of the eight rats (37.5%). Bronchiolo-alveolar hyperplasia and adenoma were found in rats at 8, 26, and 52 weeks post-instillation. The number of bronchiolo-alveolar hyperplasia significantly increased over time (P-value for trend< 0.001). The severity of lung fibrosis and fibrosis scores significantly increased over time (P-values for trend = 0.002 and 0.023, respectively). Conventional chest CT analysis showed that bronchiectasis and linear density scores suggestive of fibrosis significantly increased over time (P-value for trend < 0.001). Our study revealed that one instillation of PHMG in a rat model resulted in lung carcinomas and progressive and irreversible fibrosis one year later based on conventional chest CT and histopathologic analysis. PHMG may be a lung carcinogen in the rat model.
Collapse
Affiliation(s)
- Cherry Kim
- Department of Radiology, Ansan Hospital, Korea University College of Medicine, Danwon-gu, Ansan-si, Gyeonggi, South Korea
| | - Sang Hoon Jeong
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Danwon-gu, Ansan-si, Gyeonggi, South Korea
| | - Jaeyoung Kim
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Danwon-gu, Ansan-si, Gyeonggi, South Korea
| | - Ja Young Kang
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Danwon-gu, Ansan-si, Gyeonggi, South Korea
| | - Yoon Jeong Nam
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Danwon-gu, Ansan-si, Gyeonggi, South Korea
| | - Ariunaa Togloom
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Danwon-gu, Ansan-si, Gyeonggi, South Korea
| | - Jaehyung Cha
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Danwon-gu, Ansan-si, Gyeonggi, South Korea
| | - Ki Yeol Lee
- Department of Radiology, Ansan Hospital, Korea University College of Medicine, Danwon-gu, Ansan-si, Gyeonggi, South Korea
| | - Chang Hyun Lee
- Department of Radiology, College of Medicine, Seoul National University, Seoul National University Hospital, Seoul, South Korea
| | - Eun-Kee Park
- Department of Medical Humanities and Social Medicine, College of Medicine, Kosin University, Busan, South Korea
| | - Ju-Han Lee
- Department of Pathology, Ansan Hospital, Korea University College of Medicine, Danwon-gu, Ansan-si, Gyeonggi, South Korea
| |
Collapse
|
35
|
Characteristics of the Molecular Weight of Polyhexamethylene Guanidine (PHMG) Used as a Household Humidifier Disinfectant. Molecules 2021; 26:molecules26154490. [PMID: 34361643 PMCID: PMC8347013 DOI: 10.3390/molecules26154490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/03/2022] Open
Abstract
(1) Background: Household humidifier disinfectant (HD) brands containing polyhexamethylene guanidine (PHMG) have been found to cause the most HD-associated lung injuries (HDLIs) in the Republic of Korea. Nevertheless, no study has attempted to characterize the potential association of the health effects, including HDLI, with the physicochemical properties of PHMG dissolved in different HD brands. This study aimed to characterize the molecular weight (MW) distribution, the number-average molecular weight (Mn), the weight-average molecular weight (Mw), and the structural types of PHMG used in HD products. (2) Methods: Quantitative measurements were made using matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry (MALDI-TOF MS). The Mn, Mw, and MW distributions were compared among various HD products. (3) Results: The mean Mn and Mw were 542.4 g/mol (range: 403.0–692.2 g/mol) and 560.7 g/mol (range: 424.0–714.70 g/mol), respectively. The degree of PHMG oligomerization ranged from 3 to 7. The MW distribution of PHMG indicated oligomeric compounds regardless of the HD brands. (4) Conclusions: Based on the molecular weight distribution, the average molecular weight of PHMG, and the degree of polymerization, the PHMG collected from HDLI victims could be regarded as an oligomer. PHMG, as used in household humidifiers, should not be exempted from toxic chemical registration as a polymer. Further study is necessary to examine the association of PHMG oligomeric compounds and respiratory health effects, including HDLI.
Collapse
|
36
|
Lee H, Park J, Park K. Fibrosis as a result of polyhexamethylene guanide exposure in cultured Statens Seruminstitut Rabbit Cornea (SIRC) cells. Environ Anal Health Toxicol 2021; 36:e2021009-0. [PMID: 34130374 PMCID: PMC8421752 DOI: 10.5620/eaht.2021009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/29/2021] [Indexed: 12/26/2022] Open
Abstract
Previous research studies on the toxicity of polyhexamethylene guanidine (PHMG) as a humidifier disinfectant majorly focused on lung fibrosis. Considering that disinfectants in humidifiers are released in aerosol form, the eyes are directly exposed and highly vulnerable to the detrimental effects of the PHMG. Therefore, in the present study we investigated the adverse effects of PHMG on the eyes; considering fibrosis as a manifestation of PHMG toxicity in the eye, we evaluated fibrosis-related biomarkers in cultured Statens Seruminstitut Rabbit Cornea (SIRC) cells. Cell viability was measured using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, fibrosis-related biomarkers were evaluated through polymerase chain reaction (PCR) and immunoblotting, and oxidative stress was evaluated using 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA). Polyhexamethylene guanidine showed cytotoxicity in a time and concentration-dependent manner. Fibrosis related biomarkers including transforming growth factor-β (TGF-β), α-smooth muscle actin (α-SMA), matrix metalloproteinase (MMP), tissue inhibitor of metalloproteinase (TIMP) and hemeoxygenase-1 (HO-1) increased in both gene and protein levels. Oxidative stress also increased in the PHMG-treated cultured cells. The findings of the present study suggest that PHMG could cause toxicity in the eye as manifested by fibrosis.
Collapse
Affiliation(s)
- Handule Lee
- College of Pharmacy, Dongduk Women's University, Seoul 02748, Korea
| | - Juyoung Park
- College of Pharmacy, Dongduk Women's University, Seoul 02748, Korea
| | - Kwangsik Park
- College of Pharmacy, Dongduk Women's University, Seoul 02748, Korea
| |
Collapse
|
37
|
Humidifier Disinfectant Consumption and Humidifier Disinfectant-Associated Lung Injury in South Korea: A Nationwide Population-Based Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18116136. [PMID: 34204162 PMCID: PMC8201190 DOI: 10.3390/ijerph18116136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/17/2022]
Abstract
Humidifier disinfectant (HD) is a household biocidal product used in humidifier water tanks to prevent the growth of microorganisms. In 2011, a series of lung injury cases of unknown causes emerged in children and pregnant women who had used HD in Korea. This study investigated changes in the nationwide number of cases of humidifier disinfectant-associated lung injury (HDLI) in concordance with nationwide HD consumption using data covering the entire Korean population. More than 25 kinds of HD products were sold between 1994 and 2011. The number of diagnosed HDLI, assessed by S27.3 (other injuries of lungs) of the Korea National Health Insurance Service (NHIS) data, sharply increased by 2005, subsequently decreased after 2005, and almost disappeared after 2011 in concordance with the annual number of HD sales. The number of self-reported HDLIs, assessed using data from all suspected HDLI cases registered in the Korea Ministry of Environment, changed with the annual number of HD sales, with a delay pattern, potentially induced by the late awareness of lung injury diseases. The present study suggests that changes in the nationwide annual consumption of HD products were consistent with changes in the annual number of HDLI cases in Korea.
Collapse
|
38
|
Kwon TY, Jeong J, Park E, Cho Y, Lim D, Ko UH, Shin JH, Choi J. Physical analysis reveals distinct responses of human bronchial epithelial cells to guanidine and isothiazolinone biocides. Toxicol Appl Pharmacol 2021; 424:115589. [PMID: 34029620 DOI: 10.1016/j.taap.2021.115589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/18/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
Changes in the physical state of the cells can serve as important indicators of stress responses because they are closely linked with the changes in the pathophysiological functions of the cells. Physical traits can be conveniently assessed by analyzing the morphological features and the stresses at the cell-matrix and cell-cell adhesions in both single-cell and monolayer model systems in 2D. In this study, we investigated the mechano-stress responses of human bronchial epithelial cells, BEAS-2B, to two functionally distinct groups of biocides identified during the humidifier disinfectant accident, namely, guanidine (PHMG) and isothiazolinone (CMIT/MIT). We analyzed the physical traits, including cell area, nuclear area, and nuclear shape. While the results showed inconsistent average responses to the biocides, the degree of dispersion in the data set, measured by standard deviation, was remarkably higher in CMIT/MIT treated cells for all traits. As mechano-stress endpoints, traction and intercellular stresses were also measured, and the cytoskeletal actin structures were analyzed using immunofluorescence. This study demonstrates the versatility of the real-time imaging-based biomechanical analysis, which will contribute to identifying the temporally sensitive cellular behaviors as well as the emergence of heterogeneity in response to exogenously imposed stress factors. This study will also shed light on a comparative understanding of less studied substance, CMIT/MIT, in relation to a more studied substance, PHMG, which will further contribute to more strategic planning for proper risk management of the ingredients involved in toxicological accidents.
Collapse
Affiliation(s)
- Tae Yoon Kwon
- Department of Mechanical Engineering, KAIST, 291 Daehakro, Yuseong-gu, Daejeon 34034, Republic of Korea
| | - Jaeseong Jeong
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Eunyoung Park
- Department of Mechanical Engineering, KAIST, 291 Daehakro, Yuseong-gu, Daejeon 34034, Republic of Korea
| | - Youngbin Cho
- Department of Mechanical Engineering, KAIST, 291 Daehakro, Yuseong-gu, Daejeon 34034, Republic of Korea
| | - Dongyoung Lim
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Ung Hyun Ko
- Department of Mechanical Engineering, KAIST, 291 Daehakro, Yuseong-gu, Daejeon 34034, Republic of Korea
| | - Jennifer H Shin
- Department of Mechanical Engineering, KAIST, 291 Daehakro, Yuseong-gu, Daejeon 34034, Republic of Korea.
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea.
| |
Collapse
|
39
|
Evaluation of polyhexamethylene guanidine-induced lung injuries by chest CT, pathologic examination, and RNA sequencing in a rat model. Sci Rep 2021; 11:6318. [PMID: 33737587 PMCID: PMC7973781 DOI: 10.1038/s41598-021-85662-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/04/2021] [Indexed: 12/19/2022] Open
Abstract
Our aim was to correlate chest CT and pathologic findings of polyhexamethylene guanidine phosphate (PHMG)-induced lung injuries in a rat model, to determine whether PHMG exposure causes lung tumors, and to explore genetic alterations according to PHMG exposure under the guidance of CT. A PHMG solution was intratracheally administrated to 40 male rats. Chest CT was carried out in all rats and both lungs were collected for histopathologic evaluation. At 4- and 8-weeks post-instillation, one lobe of the right lung from 3 rats was subjected to RNA sequencing. At least one abnormal CT finding was found in all rats at all weeks. The major CT findings were inflammation, fibrosis, and tumors in the pathologic analysis, where significant changes were observed over time. The lung lesions remained persistent after 8 weeks of PHMG exposure. In the pathologic analysis, the extent/severity of inflammation did not show statistically significant changes over time, whereas the extent/severity of fibrosis increased continuously up to 6 weeks after PHMG exposure and then decreased significantly at 8 weeks. Bronchiolar-alveolar adenomas which have malignant potential were found in 50% of rats at 6 and 8 weeks after PHMG exposure. Also, several genes associated with lung cancer, acute lung injury, and pulmonary fibrosis were detected. Our study revealed that PHMG-induced lung injury and its changes according to the number of weeks after exposure were demonstrated using chest CT and pathologic evaluation. In addition, we showed that PHMG exposure caused lung tumors and genetic alterations according to PHMG exposure under the guidance of CT.
Collapse
|
40
|
Song MK, Kim DI, Lee K. Causal relationship between humidifier disinfectant exposure and Th17-mediated airway inflammation and hyperresponsiveness. Toxicology 2021; 454:152739. [PMID: 33640443 DOI: 10.1016/j.tox.2021.152739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/03/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022]
Abstract
In this study, we investigated whether humidifier disinfectants (HDs) induce asthmatic airway inflammation in an animal model and compared the features of HD-induced inflammatory symptoms with ovalbumin (OVA)-induced allergic asthma. Mice were intratracheally instilled three times with either the control or 0.1, 0.3, or 0.5 mg/kg of polyhexamethylene guanidine phosphate (PHMG-P). To characterize asthmatic features, the following parameters were analyzed: (i) differential cell counts and cytokine expression in the bronchoalveolar lavage fluid (BALF); (ii) presence of mucus-producing goblet cells and pulmonary eosinophilic infiltration in the lungs; (iii) serum immunoglobulin levels; and (iv) airway hyperresponsiveness (AHR). RNA-Seq and bioinformatics tools were used to investigate whether PHMG-P altered asthma-related gene expression in lung tissues. The PHMG-P exposure groups showed higher peribronchial/perivascular inflammation, elevated goblet cell hyperplasia, and inhaled methacholine-induced airway resistance. Additionally, IL-13 and IL-17 in BALF were significantly increased in the PHMG-P exposure groups. However, there were no significant differences in total serum IgE and BALF IL-4 and IL-5 levels in the PHMG-P exposure groups compared to the control group. PHMG-P exposure modulated the expression of genes related to Th17 signaling pathways including the IL-17A, IL-23, and STAT3 signaling pathways, but not the Th2 signaling pathway. Altogether, our results suggest that repeated exposure to low does PHMG-P induces asthma-like symptoms and is thus a possible risk factor for developing asthma. The PHMG-P-induced asthmatic airway inflammation showed a different pattern from that found in typical allergic asthma and may be related to irritant-induced airway inflammation and hyperresponsiveness characterized by Th2-low, Th17-related, IgE-independent, and mixed granulocytic features.
Collapse
Affiliation(s)
- Mi-Kyung Song
- National Center for Efficacy Evaluation for Respiratory Disease Products, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do, 56212, Republic of Korea; Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Dong Im Kim
- National Center for Efficacy Evaluation for Respiratory Disease Products, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Kyuhong Lee
- National Center for Efficacy Evaluation for Respiratory Disease Products, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do, 56212, Republic of Korea; Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
41
|
Lee J, Choi SJ, Jeong JS, Kim SY, Lee SH, Yang MJ, Lee SJ, Shin YJ, Lee K, Jeong EJ, Nam SY, Yu WJ. A humidifier disinfectant biocide, polyhexamethylene guanidine phosphate, inhalation exposure during pregnancy induced toxicities in rats. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124007. [PMID: 33049556 DOI: 10.1016/j.jhazmat.2020.124007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Biocides are widely used for their effective antiseptic and disinfectant properties, including polyhexamethylene guanidine phosphate (PHMG-P), which is also used as a biocide as it selectively disrupts bacterial cell membrane. It is used to clean humidifiers commonly used in the dry winter season in South Korea, which exposes people to PHMG-P inhalation. However, comprehensive toxicological data on PHMG-P inhalation exposure, including in pregnant women, and the potential occurrence of lung disease is lacking. Therefore, in this study, we investigated PHMG-P inhalation exposure-induced toxicities in pregnant rats and prenatal development of their conceptus. Pregnant rats were exposed to PHMG-P via inhalation at target concentrations of 0, 0.14, 1.60, and 3.20 mg/m3 from implantation to nearly parturition (from gestation day 6-20) and then analyzed for relevant abnormalities. Results showed systemic toxicities in the pregnant rats including respiratory function abnormalities, decreased body weight gain, and decreased food consumption at ≥1.60 mg/m3. Prenatal development toxicities, including decreased fetal weight with ossification retardations of fetal bones, were observed at 3.20 mg/m3. These results will contribute to clarifying the PHMG-P inhalation exposure-induced toxicities during pregnancy and support its risk assessment in humans.
Collapse
Affiliation(s)
- Jinsoo Lee
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea; College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Seong-Jin Choi
- Department of Chemical Assessment, Korea Environment Corporation, Incheon, Republic of Korea
| | - Ji-Seong Jeong
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Sang Yun Kim
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Sang-Hyub Lee
- Department of Chemical Assessment, Korea Environment Corporation, Incheon, Republic of Korea
| | - Mi Jin Yang
- Toxicological Pathology Research Group, Korea Institute of Toxicology, Jeongeup, Republic of Korea
| | - Seung-Jin Lee
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Young-Jun Shin
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Kyuhong Lee
- Inhalation Toxicology Research Group, Korea Institute of Toxicology, Jeongeup, Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon, Republic of Korea
| | - Eun Ju Jeong
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Sang-Yoon Nam
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Wook-Joon Yu
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea.
| |
Collapse
|
42
|
Lee N, Jang DY, Lee DH, Jeong H, Nam KT, Choi DW, Lim KM. Local Toxicity of Biocides after Direct and Aerosol Exposure on the Human Skin Epidermis and Airway Tissue Models. TOXICS 2021; 9:toxics9020029. [PMID: 33546295 PMCID: PMC7913294 DOI: 10.3390/toxics9020029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 11/16/2022]
Abstract
Biocides are commonly used as spray- or trigger-type formulations, thus dermal and respiratory exposure to biocide aerosol is unavoidable. However, little is known about the impact of aerosolization on the local toxicity of biocides on the skin or the airway. We compared the local toxicity of biocides after direct or aerosol exposure on reconstructed human skin epidermis and upper airway models. Three biocides, 1,2-benzisothiazol-3(2H)-one (BIT), 2-phenoxyethanol (PE), and 2-phenylphenol (OPP), most widely used in the market were selected. When the biocide was treated in aerosols, toxicity to the skin epidermis and upper airway tissue became significantly attenuated compared with the direct application as determined by the higher tissue viabilities. This was further confirmed in histological examination, wherein the tissue damages were less pronounced. LC-MS/MS and GC/MS analysis revealed that concentrations of biocides decreased during aerosolization. Importantly, the toxicity of biocides treated in 3 μm (median mass aerodynamic diameter (MMAD)) aerosols was stronger than that of 5 μm aerosol, suggesting that the aerosol particle size may affect biocide toxicity. Collectively, we demonstrated that aerosolization could affect the local toxicity of biocides on the skin epidermis and the upper airway.
Collapse
Affiliation(s)
- Nahyun Lee
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea;
| | - Dae Yong Jang
- Department of Public Health Sciences, Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02481, Korea; (D.Y.J.); (D.H.L.)
| | - Do Hyeon Lee
- Department of Public Health Sciences, Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02481, Korea; (D.Y.J.); (D.H.L.)
| | - Haengdueng Jeong
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seodaemungu, Seoul 03722, Korea; (H.J.); (K.T.N.)
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seodaemungu, Seoul 03722, Korea; (H.J.); (K.T.N.)
| | - Dal-Woong Choi
- Department of Public Health Sciences, Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02481, Korea; (D.Y.J.); (D.H.L.)
- Correspondence: authors: (D.-W.C.); (K.-M.L.); Tel.: +82-10-9775-7875 (D.-W.C.); +82-2-3277-3055 (K.-M.L.); Fax: +82-02-940-2778 (D.-W.C.); +82-2-3277-3760 (K.-M.L.)
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea;
- Correspondence: authors: (D.-W.C.); (K.-M.L.); Tel.: +82-10-9775-7875 (D.-W.C.); +82-2-3277-3055 (K.-M.L.); Fax: +82-02-940-2778 (D.-W.C.); +82-2-3277-3760 (K.-M.L.)
| |
Collapse
|
43
|
Polyhexamethylene Guanidine Phosphate Induces Apoptosis through Endoplasmic Reticulum Stress in Lung Epithelial Cells. Int J Mol Sci 2021; 22:ijms22031215. [PMID: 33530568 PMCID: PMC7865558 DOI: 10.3390/ijms22031215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 12/17/2022] Open
Abstract
Airway epithelial cell death contributes to the pathogenesis of lung fibrosis. Polyhexamethylene guanidine phosphate (PHMG-p), commonly used as a disinfectant, has been shown to be strongly associated with lung fibrosis in epidemiological and toxicological studies. However, the molecular mechanism underlying PHMG-p-induced epithelial cell death is currently unclear. We synthesized a PHMG-p–fluorescein isothiocyanate (FITC) conjugate and assessed its uptake into lung epithelial A549 cells. To examine intracellular localization, the cells were treated with PHMG-p–FITC; then, the cytoplasmic organelles were counterstained and observed with confocal microscopy. Additionally, the organelle-specific cell death pathway was investigated in cells treated with PHMG-p. PHMG-p–FITC co-localized with the endoplasmic reticulum (ER), and PHMG-p induced ER stress in A549 cells and mice. The ER stress inhibitor tauroursodeoxycholic acid (TUDCA) was used as a pre-treatment to verify the role of ER stress in PHMG-p-induced cytotoxicity. The cells treated with PHMG-p showed apoptosis, which was inhibited by TUDCA. Our results indicate that PHMG-p is rapidly located in the ER and causes ER-stress-mediated apoptosis, which is an initial step in PHMG-p-induced lung fibrosis.
Collapse
|
44
|
Chatterjee N, Lee H, Kim J, Kim D, Lee S, Choi J. Critical window of exposure of CMIT/MIT with respect to developmental effects on zebrafish embryos: Multi-level endpoint and proteomics analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115784. [PMID: 33120346 DOI: 10.1016/j.envpol.2020.115784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 07/29/2020] [Accepted: 10/03/2020] [Indexed: 05/08/2023]
Abstract
Systemic toxicity, particularly, developmental defects of humidifier disinfectant chemicals that have caused lung injuries in Korean children, remains to be elucidated. This study evaluated the mechanisms of the adverse effects of 5-chloro-2-methyl-4-isothiazoline-3-one/2methyl-4-isothiazolin-3-one (CMIT/MIT), one of the main biocides of the Korean tragedy, and identify the most susceptible developmental stage when exposed in early life. To this end, the study was designed to analyze several endpoints (morphology, heart rate, behavior, global DNA methylation, gene expressions of DNA methyl-transferases (dnmts) and protein profiling) in exposed zebrafish (Danio rerio) embryos at various developmental stages. The results showed that CMIT/MIT exposure causes bent tail, pericardial edema, altered heart rates, global DNA hypermethylation and significant alterations in the locomotion behavior. Consistent with the morphological and physiological endpoints, proteomics profiling with bioinformatics analysis suggested that the suppression of cardiac muscle contractions and energy metabolism (oxidative phosphorylation) were possible pivotal underlying mechanisms of the CMIT/MIT mediated adverse effects. Briefly, multi-level endpoint analysis indicated the most susceptible window of exposure to be ≤ 6 hpf followed by ≤ 48 hpf for CMIT/MIT. These results could potentially be translated to a risk assessment of the developmental exposure effects to the humidifier disinfectants.
Collapse
Affiliation(s)
- Nivedita Chatterjee
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Hyunho Lee
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Jiwan Kim
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Doeun Kim
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02504, Republic of Korea.
| |
Collapse
|
45
|
Morimoto Y, Nishida C, Tomonaga T, Izumi H, Yatera K, Sakurai K, Kim Y. Lung disorders induced by respirable organic chemicals. J Occup Health 2021; 63:e12240. [PMID: 34128301 PMCID: PMC8204092 DOI: 10.1002/1348-9585.12240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/30/2021] [Accepted: 05/19/2021] [Indexed: 01/21/2023] Open
Abstract
Respirable organic chemicals were originally thought to cause allergic respiratory diseases, such as bronchial asthma and hypersensitivity pneumonitis, and believed not to cause lung disorders derived from inflammatory or fibrotic processes such as pulmonary fibrosis and interstitial pneumonitis. It has recently been reported, however, that exposure to organic chemicals can cause interstitial lung diseases. In this review, we discuss the clinical features of occupational asthma and hypersensitivity pneumonitis, as well as other lung disorders, including interstitial pneumonitis, caused by humidifier disinfectants in Korea and by a cross-linked acrylic acid-based polymer (CL-PAA) in Japan.
Collapse
Affiliation(s)
- Yasuo Morimoto
- Department of Occupational PneumologyInstitute of Industrial Ecological SciencesUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Chinatsu Nishida
- Department of Respiratory MedicineSchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Taisuke Tomonaga
- Department of Occupational PneumologyInstitute of Industrial Ecological SciencesUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Hiroto Izumi
- Department of Occupational PneumologyInstitute of Industrial Ecological SciencesUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Kazuhiro Yatera
- Department of Respiratory MedicineSchool of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
| | - Kazuo Sakurai
- Department of Life and Environmental EngineeringThe University of KitakyushuKitakyushuJapan
| | - Yangho Kim
- Department of Occupational and Environmental MedicineUlsan University HospitalUniversity of Ulsan College of MedicineUlsanKorea
| |
Collapse
|
46
|
Lee SH, Ahn JR, Go HN, Lee SY, Park MJ, Song KB, Yoon J, Jung S, Cho HJ, Lee E, Yang SI, Hong SJ. Exposure to Polyhexamethylene Guanidine Exacerbates Bronchial Hyperresponsiveness and Lung Inflammation in a Mouse Model of Ovalbumin-Induced Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:655-664. [PMID: 34212551 PMCID: PMC8255342 DOI: 10.4168/aair.2021.13.4.655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 11/20/2022]
Abstract
Humidifier disinfectants (HDs) exposure has now been associated with acute lung injury and pulmonary fibrosis; polyhexamethylene guanidine (PHMG) has been confirmed to cause severe lung inflammation and fibrosis in mice. Recent evidence also indicates that HDs exposure increases the asthma risk in children, but the underlying mechanisms remain unclear. We aimed to investigate the effects of PHMG exposure on asthma in mice and the potential underlying mechanisms. BALB/c mice were intranasally administered PHMG (0.1 mg/kg/day; 5 days per week) during 2 episodes of ovalbumin (OVA) sensitization and were then challenged with 1% OVA by inhalation. Bronchial hyperresponsiveness (BHR), inflammatory cell influx into bronchoalveolar lavage (BAL) fluid, serum total and OVA-specific immunoglobulin (Ig) E levels, and histopathological changes in the lung were analyzed. The levels of asthma-related cytokines and chemokines were assayed in the lung tissues to evaluate possible mechanisms. Exposure to PHMG following OVA sensitization and challenge significantly enhanced BHR, inflammatory cell counts in BAL fluid, airway inflammation, and total serum IgE levels in the asthma mouse model. In addition, the levels of chemokine ligand (CCL) 11 and serpine F1/pigment epithelium-derived factor (SERPINF1) were significantly elevated in the lungs of these mice compared to those in the control and OVA-treated only groups. Our findings suggest that PHMG can enhance the development of allergic responses and lung inflammation via CCL11- and SERPINF1-induced signaling in a mouse model of asthma.
Collapse
Affiliation(s)
- Seung Hwa Lee
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Rin Ahn
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Han Na Go
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - So Yeon Lee
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Min Jee Park
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kun Baek Song
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jisun Yoon
- Department of Pediatrics, Mediplex Sejong Hospital, Incheon, Korea
| | - Sungsu Jung
- Department of Pediatrics, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Hyun Ju Cho
- Department of Pediatrics, International St. Mary's hospital, Catholic Kwandong University, Incheon, Korea
| | - Eun Lee
- Department of Pediatrics, Chonnam National University College of Medicine, Gwangju, Korea
| | - Song I Yang
- Department of Pediatrics, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Soo Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
47
|
Yang S, Heo Y, Gautam R, Lee J, Maharjan A, Jo J, Acharya M, Kim C, Kim H. Prediction of the skin sensitization potential of polyhexamethylene guanidine and triclosan and mixtures of these compounds with the excipient propylene glycol through the human Cell Line Activation Test. Toxicol Ind Health 2020; 37:1-8. [PMID: 33295265 DOI: 10.1177/0748233720974131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Household products often contain an antimicrobial agent such as biocides, polyhexamethylene guanidine (PHMG), triclosan (TCS), and propylene glycol (PG) as an excipient to dissolve the active ingredients. The skin sensitization (SS) potentials of each of these substances or mixtures of PHMG or TCS with PG have not been investigated through in vitro alternative test methods. The in vitro alternative assay called human Cell Line Activation Test (h-CLAT) served to address these issues. The h-CLAT assay was conducted in accordance with OECD TG 442E. On three independent runs, all the three substances were predicted to be sensitizers according to the SS positivity with relative fluorescence intensity of CD86 ≥ 150% and/or CD54 ≥ 200% at any tested concentrations. Mixtures of PHMG or TCS with PG at ratios of 9:1, 4:1, or 1:4 weight/volume were all positive in terms of SS potential. Since humans can be occupationally or environmentally exposed to mixtures of excipients with active ingredients of biocides, the present study may give insights into further investigations of the SS potentials of various chemical mixtures.
Collapse
Affiliation(s)
- SuJeong Yang
- Department of Occupational Health, College of Bio-Medical Sciences, Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - Yong Heo
- Department of Occupational Health, College of Bio-Medical Sciences, Daegu Catholic University, Gyeongbuk, Republic of Korea.,Department of Toxicology, Graduate School of 37981Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - Ravi Gautam
- Department of Occupational Health, College of Bio-Medical Sciences, Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - JaeHee Lee
- Department of Occupational Health, College of Bio-Medical Sciences, Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - Anju Maharjan
- Department of Occupational Health, College of Bio-Medical Sciences, Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - JiHun Jo
- Department of Occupational Health, College of Bio-Medical Sciences, Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - Manju Acharya
- Department of Occupational Health, College of Bio-Medical Sciences, Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - ChangYul Kim
- Department of Occupational Health, College of Bio-Medical Sciences, Daegu Catholic University, Gyeongbuk, Republic of Korea.,Department of Toxicology, Graduate School of 37981Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - HyoungAh Kim
- Department of Preventive Medicine, College of Medicine, The 37128Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
48
|
Lee YH, Seo DS. Toxicity of humidifier disinfectant polyhexamethylene guanidine hydrochloride by two-week whole body-inhalation exposure in rats. J Toxicol Pathol 2020; 33:265-277. [PMID: 33239844 PMCID: PMC7677626 DOI: 10.1293/tox.2020-0043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/22/2020] [Indexed: 12/02/2022] Open
Abstract
The use of polyhexamethylene guanidine hydrochloride (PHMG·HCl) as a humidifier
disinfectant caused an outbreak of pulmonary disease, leading to the deaths of pregnant
women and children in South Korea. However, limited information is available on the
inhalation toxicity of PHMG·HCl. Therefore, this study aimed to characterize the subacute
inhalation toxicity of PHMG·HCl by whole-body exposure in rats. F344 rats were exposed to
0 mg/m3, 1 mg/m3, 5 mg/m3, or 25 mg/m3 of
PHMG·HCl for 6 h/day, 5 days/week for two weeks via whole-body inhalation. Emaciation and
rale were observed in rats in the 25 mg/m3 PHMG·HCl group. Significant changes
in body weight, hematology, serum chemistry and organ weight were observed in all
PHMG·HCl-exposed groups. Gross lesions showed ballooning or red focus in the lungs of rats
in the PHMG·HCl-exposed groups. In histopathological examination, most of histological
lesions (including degeneration, atrophy, ulcer, inflammatory cell infiltration,
inflammation, and fibrosis in nasal cavity, larynx, trachea, and lungs) indicated tissue
damage by PHMG·HCl in all PHMG·HCl-exposed groups. Additionally, atrophy of the spleen,
thymus, and reproductive organs; immaturity of the testes; and cell debris in the
epididymides were affected by the reduction in body weight in PHMG·HCl-exposed groups. In
conclusion, two-week repeated whole-body inhalation exposure of rats to PHMG·HCl reveled
toxic effects on the respiratory system and secondary effects on other organs. The results
of this study indicate that the no observable adverse effect level (NOAEL) for PHMG·HCl is
below 1 mg/m3.
Collapse
Affiliation(s)
- Yong-Hoon Lee
- Inhalation Toxicity Research Center, Chemicals Research Bureau, Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency, 339-30 Expo-ro, Yuseong-gu, Daejeon 305-380, Republic of Korea
| | - Dong-Seok Seo
- Inhalation Toxicity Research Center, Chemicals Research Bureau, Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency, 339-30 Expo-ro, Yuseong-gu, Daejeon 305-380, Republic of Korea
| |
Collapse
|
49
|
Zhu X, Kong X, Ma S, Liu R, Li X, Gao S, Ren D, Zheng Y, Tang J. TGFβ/Smad mediated the polyhexamethyleneguanide areosol-induced irreversible pulmonary fibrosis in subchronic inhalation exposure. Inhal Toxicol 2020; 32:419-430. [PMID: 33148071 DOI: 10.1080/08958378.2020.1836091] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIM Polyhexamethylene guanidine (PHMG) is widely used as a disinfectant with broad spectra of bactericidal activity and low oral toxicity. However, inhalation of PHMG can cause pulmonary injury and severe pulmonary fibrosis. The mechanism underlying PHMG aerosol induced pulmonary fibrosis remains unclear. In this study, we aimed to examine the subchronic lung injury and determine potential cytokines involved in PHMG aerosol induced fibrosis. METHODS C57BL/6N mice were exposed to 1.03 mg/m3 PHMG through aerosol inhalation for 3 weeks, or 3 weeks followed by other 3 weeks recovery. RESULTS The results indicated that the expression of transforming growth factor-beta1 (TGF-β1) and extracellular matrix remodeling markers were up-regulated in the PHMG-treated mice and these parameters were aggravated after 3 weeks recovery. Bronchoalveolar lavage fluids (BALFs) analysis showed that the number of total cells was significantly decreased in exposure group. The percentage of macrophages in BALFs decreased significantly whereas the percentage of neutrophils and lymphocytes increased. Extensive collagen deposition was observed in the peribronchiolar and interstitial areas in the PHMG exposed lungs. CONCLUSION In conclusion, even low-does PHMG aerosol exposure could induce mice pulmonary local inflammation and irreversible fibrosis. In addition, TGF-β/Smad signaling pathway mediated the extracellular matrix remodeling involved in the development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Xiaoxiao Zhu
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Xiao Kong
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Sai Ma
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Rui Liu
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Xin Li
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Shaobo Gao
- Department of Respiratory Medicine, the Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Dunqiang Ren
- Department of Respiratory Medicine, the Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Jinglong Tang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
50
|
Do VQ, Seo YS, Park JM, Yu J, Duong MTH, Nakai J, Kim SK, Ahn HC, Lee MY. A mixture of chloromethylisothiazolinone and methylisothiazolinone impairs rat vascular smooth muscle by depleting thiols and thereby elevating cytosolic Zn 2+ and generating reactive oxygen species. Arch Toxicol 2020; 95:541-556. [PMID: 33074372 DOI: 10.1007/s00204-020-02930-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/08/2020] [Indexed: 12/26/2022]
Abstract
Chloromethylisothiazolinone (CMIT) and methylisothiazolinone (MIT) are biocidal preservatives and the active ingredients in Kathon CG, which contains ca. 1.5% mixture of CMIT and MIT at a ratio of 3:1 (CMIT/MIT). CMIT/MIT was misused as humidifier disinfectant products, which caused serious health problems in Korea. Here, the vascular effects of CMIT/MIT were investigated to evaluate claims of putative cardiovascular toxicity observed in humidifier disinfectant users. CMIT/MIT did not affect the basal tension of the rat thoracic aorta up to 2.5 μg/mL in myograph experiments. Instead, pretreatment with CMIT/MIT impaired phenylephrine- or 5-hydroxytryptamine-induced vasoconstriction in a range of 0.5-2.5 μg/mL, which was largely irreversible and not recovered by washing out the CMIT/MIT. Similarly, the application of CMIT/MIT to pre-contracted aorta caused a gradual loss of tension. In primary cultured vascular smooth muscle cells (VSMCs), CMIT/MIT caused thiol depletion, which in turn led to cytosolic Zn2+ elevation and reactive oxygen species (ROS) formation. CMIT/MIT-induced shrinkage, detachment, and lysis of VSMCs depending on the concentration and the treatment time. All events induced by CMIT/MIT were prevented by a thiol donor N-acetylcysteine (NAC). Cytolysis could be inhibited by a Zn2+ chelator TPEN and a superoxide scavenger TEMPOL, whereas they did not affect shrinkage and detachment. In accordance with these results, CMIT/MIT-exposed aortas exhibited dissociation and collapse of tissue in histology analysis. Taken together, CMIT/MIT causes functional impairment and tissue damage to blood vessels by depleting thiol and thereby elevating cytosolic Zn2+ and generating ROS. Therefore, exposure to CMIT/MIT in consumer products may be a risk factor for cardiovascular disorders.
Collapse
Affiliation(s)
- Van Quan Do
- College of Pharmacy, Integrated Research Institute for Drug Development, and BK21 FOUR team, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Yoon-Seok Seo
- College of Pharmacy, Integrated Research Institute for Drug Development, and BK21 FOUR team, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Jung-Min Park
- College of Pharmacy, Integrated Research Institute for Drug Development, and BK21 FOUR team, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Jieun Yu
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Men Thi Hoai Duong
- College of Pharmacy, Integrated Research Institute for Drug Development, and BK21 FOUR team, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Junichi Nakai
- Graduate School of Dentistry, Tohoku University, Miyagi, 980-8575, Japan
| | - Sang-Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hee-Chul Ahn
- College of Pharmacy, Integrated Research Institute for Drug Development, and BK21 FOUR team, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Moo-Yeol Lee
- College of Pharmacy, Integrated Research Institute for Drug Development, and BK21 FOUR team, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea.
| |
Collapse
|