1
|
Zhou P, Ma X, Scalia S, Toskic D, Wu X, Fogaren T, Lyons NC, del Pozo-Yauner L, Comenzo R. Heterohybridomas producing human immunoglobulin light chains using CD138-selected bone marrow cells. Biochem Biophys Rep 2025; 42:102017. [PMID: 40330075 PMCID: PMC12051113 DOI: 10.1016/j.bbrep.2025.102017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/14/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
Background Light chain research is hampered by lack of mammalian cell lines producing human light chains (FLC). Therefore, we used heterohybridoma (HH) technology to produce clones making FLC thereby providing tools to study light chain behavior. Methods Marrow CD138+ cells from patients with multiple myeloma (MM) and polyclonal gammopathy (PG) were selected, fused with B5-6 T cells and cultured in hypoxanthine-aminopterin-thymidine medium (HAT). HH clones were selected based on ELISA for human immunoglobulins and flow cytometry for intracellular (IC) FLC. We compared marrow cell counts and HH yields by diagnosis, evaluated clones making only FLC by flow and by dimer/monomer (D/M) ratios in vitro and in vivo, and sequenced FLC genes with RT-PCR. Results Marrows from 13 patients with active disease, 10 MM and 3 PG, were no different in mononuclear or CD138-selected cell counts. HH FLC clones (7 λ, 1 κ) were obtained from 5/10 MM and 2/3 PG; one PG case produced 2 HH FLC clones (one λ and one κ). Of the 10 MM cases, 8 had high risk cytogenetic features and 4 of the 8 produced HH clones while of the 3 PG cases 2 had negative cytogenetics and 1 had loss of IgH identified and produced an HH clone. Mononuclear (MNC) and CD138-selected cell numbers were markedly higher in the samples that enabled productive fusions. Median MFI for the 8 HH clones by IC flow for FLC was 9849 (range, 5344-27451) and median percentage of cells IC positive was 88 % (69-95). Medians of in vitro and in vivo FLC production were 47 μg/mL (9-80) per million cells after 2 days of culture and 66.4 μg/mL (16-1100) in NOD-SCID γ (NSG) mice 14 days after intraperitoneal (IP) implants of 2 × 106 HH cells. Dimer/monomer ratio medians were 0.575 (0.08-0.939) in vitro and 0.91 (0.82-2.7) in vivo, values that were correlated (R2 = 0.565) by two-tailed paired t-test with P < 0.05. Conclusions B5-6 T HH producing human FLC were obtained from 50 % of MM and PG cases. High numbers of MNC and CD138+ cells enabled productive fusions. The HH clones produced FLC with easily appreciated dimers and monomers in vitro and in vivo. With IP in vivo implants after 2 weeks more dimers were seen than in short term cultures in vitro. These HH clones will be made available for study of FLC metabolism and testing of therapeutics designed to abrogate FLC production or enable FLC clearance in vivo.
Collapse
Affiliation(s)
- P. Zhou
- Tufts Medicine Myeloma and Amyloid Program, USA
| | - X. Ma
- Tufts Medicine Myeloma and Amyloid Program, USA
| | - S. Scalia
- Tufts Medicine Myeloma and Amyloid Program, USA
| | - D. Toskic
- Tufts Medicine Myeloma and Amyloid Program, USA
| | - X. Wu
- Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - T. Fogaren
- Tufts Medicine Myeloma and Amyloid Program, USA
- Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Nancy Coady Lyons
- Tufts Medicine Myeloma and Amyloid Program, USA
- Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | | | - R.L. Comenzo
- Tufts Medicine Myeloma and Amyloid Program, USA
- Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
2
|
Schön K, Lepenies B, Goyette-Desjardins G. Impact of Protein Glycosylation on the Design of Viral Vaccines. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 175:319-354. [PMID: 32935143 DOI: 10.1007/10_2020_132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glycans play crucial roles in various biological processes such as cell proliferation, cell-cell interactions, and immune responses. Since viruses co-opt cellular biosynthetic pathways, viral glycosylation mainly depends on the host cell glycosylation machinery. Consequently, several viruses exploit the cellular glycosylation pathway to their advantage. It was shown that viral glycosylation is strongly dependent on the host system selected for virus propagation and/or protein expression. Therefore, the use of different expression systems results in various glycoforms of viral glycoproteins that may differ in functional properties. These differences clearly illustrate that the choice of the expression system can be important, as the resulting glycosylation may influence immunological properties. In this review, we will first detail protein N- and O-glycosylation pathways and the resulting glycosylation patterns; we will then discuss different aspects of viral glycosylation in pathogenesis and in vaccine development; and finally, we will elaborate on how to harness viral glycosylation in order to optimize the design of viral vaccines. To this end, we will highlight specific examples to demonstrate how glycoengineering approaches and exploitation of different expression systems could pave the way towards better self-adjuvanted glycan-based viral vaccines.
Collapse
Affiliation(s)
- Kathleen Schön
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hanover, Germany
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Bernd Lepenies
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hanover, Germany.
| | - Guillaume Goyette-Desjardins
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hanover, Germany.
| |
Collapse
|
3
|
Watanabe Y, Bowden TA, Wilson IA, Crispin M. Exploitation of glycosylation in enveloped virus pathobiology. Biochim Biophys Acta Gen Subj 2019; 1863:1480-1497. [PMID: 31121217 PMCID: PMC6686077 DOI: 10.1016/j.bbagen.2019.05.012] [Citation(s) in RCA: 346] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022]
Abstract
Glycosylation is a ubiquitous post-translational modification responsible for a multitude of crucial biological roles. As obligate parasites, viruses exploit host-cell machinery to glycosylate their own proteins during replication. Viral envelope proteins from a variety of human pathogens including HIV-1, influenza virus, Lassa virus, SARS, Zika virus, dengue virus, and Ebola virus have evolved to be extensively glycosylated. These host-cell derived glycans facilitate diverse structural and functional roles during the viral life-cycle, ranging from immune evasion by glycan shielding to enhancement of immune cell infection. In this review, we highlight the imperative and auxiliary roles glycans play, and how specific oligosaccharide structures facilitate these functions during viral pathogenesis. We discuss the growing efforts to exploit viral glycobiology in the development of anti-viral vaccines and therapies.
Collapse
Affiliation(s)
- Yasunori Watanabe
- School of Biological Sciences and Institute of Life Sciences, University of Southampton, Southampton SO17 1BJ, UK; Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford OX3 7BN, UK; Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Thomas A Bowden
- Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Max Crispin
- School of Biological Sciences and Institute of Life Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
4
|
Ubah O, Palliyil S. Monoclonal Antibodies and Antibody Like Fragments Derived from Immunised Phage Display Libraries. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1053:99-117. [PMID: 29549637 PMCID: PMC7120432 DOI: 10.1007/978-3-319-72077-7_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Morbidity and mortality associated with infectious diseases are always on the rise, especially in poorer countries and in the aging population. The inevitable, but unpredictable emergence of new infectious diseases has become a global threat. HIV/AIDS, severe acute respiratory syndrome (SARS), and the more recent H1N1 influenza are only a few of the numerous examples of emerging infectious diseases in the modern era. However despite advances in diagnostics, therapeutics and vaccines, there is need for more specific, efficacious, cost-effective and less toxic treatment and preventive drugs. In this chapter, we discuss a powerful combinatorial technology in association with animal immunisation that is capable of generating biologic drugs with high affinity, efficacy and limited off-site toxicity, and diagnostic tools with great precision. Although time consuming, immunisation still remains the preferred route for the isolation of high-affinity antibodies and antibody-like fragments. Phage display is a molecular diversity technology that allows the presentation of large peptide and protein libraries on the surface of filamentous phage. The selection of binding fragments from phage display libraries has proven significant for routine isolation of invaluable peptides, antibodies, and antibody-like domains for diagnostic and therapeutic applications. Here we highlight the many benefits of combining immunisation with phage display in combating infectious diseases, and how our knowledge of antibody engineering has played a crucial role in fully exploiting these platforms in generating therapeutic and diagnostic biologics towards antigenic targets of infectious organisms.
Collapse
Affiliation(s)
- Obinna Ubah
- Scottish Biologics Facility, Elasmogen Ltd, Aberdeen, UK
| | - Soumya Palliyil
- Scottish Biologics Facility, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
5
|
Yu GY, Mate S, Garcia K, Ward MD, Brueggemann E, Hall M, Kenny T, Sanchez-Lockhart M, Lefranc MP, Palacios G. Cynomolgus macaque (Macaca fascicularis) immunoglobulin heavy chain locus description. Immunogenetics 2016; 68:417-428. [PMID: 27233955 DOI: 10.1007/s00251-016-0921-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/22/2016] [Indexed: 10/21/2022]
Abstract
Cynomolgus macaques (Macaca fascicularis) have become an important animal model for biomedical research. In particular, it is the animal model of choice for the development of vaccine candidates associated with emerging dangerous pathogens. Despite their increasing importance as animal models, the cynomolgus macaque genome is not fully characterized, hindering molecular studies for this model. More importantly, the lack of knowledge about the immunoglobulin (IG) locus organization directly impacts the analysis of the humoral response in cynomolgus macaques. Recent advances in next generation sequencing (NGS) technologies to analyze IG repertoires open the opportunity to deeply characterize the humoral immune response. However, the IG locus organization for the animal is required to completely dissect IG repertoires. Here, we describe the localization and organization of the rearranging IG heavy (IGH) genes on chromosome 7 of the cynomolgus macaque draft genome. Our annotation comprises 108 functional genes which include 63 variable (IGHV), 38 diversity (IGHD), and 7 joining (IGHJ) genes. For validation, we provide RNA transcript data for most of the IGHV genes and all of the annotated IGHJ genes, as well as proteomic data to validate IGH constant genes. The description and annotation of the rearranging IGH genes for the cynomolgus macaques will significantly facilitate scientific research. This is particularly relevant to dissect the immune response during vaccination or infection with dangerous pathogens such as Ebola, Marburg and other emerging pathogens where non-human primate models play a significant role for countermeasure development.
Collapse
Affiliation(s)
- Guo-Yun Yu
- Center for Genome Sciences of the United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA
| | - Suzanne Mate
- Center for Genome Sciences of the United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA
| | - Karla Garcia
- Center for Genome Sciences of the United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA
| | - Michael D Ward
- Molecular Translational Sciences of the United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA
| | - Ernst Brueggemann
- Molecular Translational Sciences of the United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA
| | - Matthew Hall
- Center for Genome Sciences of the United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA
| | - Tara Kenny
- Molecular Translational Sciences of the United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA
| | - Mariano Sanchez-Lockhart
- Center for Genome Sciences of the United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA
| | - Marie-Paule Lefranc
- IMGT®, The international ImMunoGeneTics information system®, Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Montpellier University, Montpellier, France
| | - Gustavo Palacios
- Center for Genome Sciences of the United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA.
- USAMRIID, Center for Genome Sciences, 1425 Porter St., Frederick, MD, 21702, USA.
| |
Collapse
|
6
|
Noy-Porat T, Rosenfeld R, Ariel N, Epstein E, Alcalay R, Zvi A, Kronman C, Ordentlich A, Mazor O. Isolation of Anti-Ricin Protective Antibodies Exhibiting High Affinity from Immunized Non-Human Primates. Toxins (Basel) 2016; 8:toxins8030064. [PMID: 26950154 PMCID: PMC4810209 DOI: 10.3390/toxins8030064] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 11/16/2022] Open
Abstract
Ricin, derived from the castor bean plant Ricinus communis, is one of the most potent and lethal toxins known, against which there is no available antidote. To date, the use of neutralizing antibodies is the most promising post-exposure treatment for ricin intoxication. The aim of this study was to isolate high affinity anti-ricin antibodies that possess potent toxin-neutralization capabilities. Two non-human primates were immunized with either a ricin-holotoxin- or subunit-based vaccine, to ensure the elicitation of diverse high affinity antibodies. By using a comprehensive set of primers, immune scFv phage-displayed libraries were constructed and panned. A panel of 10 antibodies (five directed against the A subunit of ricin and five against the B subunit) was isolated and reformatted into a full-length chimeric IgG. All of these antibodies were found to neutralize ricin in vitro, and several conferred full protection to ricin-intoxicated mice when given six hours after exposure. Six antibodies were found to possess exceptionally high affinity toward the toxin, with KD values below pM (koff < 1 × 10−7 s−1) that were well correlated with their ability to neutralize ricin. These antibodies, alone or in combination, could be used for the development of a highly-effective therapeutic preparation for post-exposure treatment of ricin intoxication.
Collapse
Affiliation(s)
- Tal Noy-Porat
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Ronit Rosenfeld
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Naomi Ariel
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Eyal Epstein
- Department of Biotechnology, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Ron Alcalay
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Anat Zvi
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Chanoch Kronman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Arie Ordentlich
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Ohad Mazor
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| |
Collapse
|
7
|
Construction and characterization of VL–VH tail-parallel genetically engineered antibodies against staphylococcal enterotoxins. Immunol Res 2015; 61:281-93. [DOI: 10.1007/s12026-015-8623-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Larsen PA, Campbell CR, Yoder AD. Next-generation approaches to advancing eco-immunogenomic research in critically endangered primates. Mol Ecol Resour 2014; 14:1198-209. [DOI: 10.1111/1755-0998.12274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/01/2014] [Accepted: 05/05/2014] [Indexed: 11/27/2022]
Affiliation(s)
- P. A. Larsen
- Department of Biology; Box 90338; Duke University; Durham NC 27708 USA
| | - C. R. Campbell
- Department of Biology; Box 90338; Duke University; Durham NC 27708 USA
| | - A. D. Yoder
- Department of Biology; Box 90338; Duke University; Durham NC 27708 USA
| |
Collapse
|
9
|
Affiliation(s)
- Jonathan D. Cook
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey E. Lee
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
10
|
Goodchild SA, Dooley H, Schoepp RJ, Flajnik M, Lonsdale SG. Isolation and characterisation of Ebolavirus-specific recombinant antibody fragments from murine and shark immune libraries. Mol Immunol 2011; 48:2027-37. [DOI: 10.1016/j.molimm.2011.06.437] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 06/09/2011] [Accepted: 06/13/2011] [Indexed: 12/15/2022]
|
11
|
Kuwata T, Katsumata Y, Takaki K, Miura T, Igarashi T. Isolation of potent neutralizing monoclonal antibodies from an SIV-Infected rhesus macaque by phage display. AIDS Res Hum Retroviruses 2011; 27:487-500. [PMID: 20854170 DOI: 10.1089/aid.2010.0191] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The humoral immune response is a mechanism that potently suppresses or prevents viral infections. However, genetic diversity and resistance to antibody-mediated neutralization are serious obstacles in controlling HIV-1 infection. In this study, we isolated monoclonal antibodies from an SIV-infected macaque by using the phage display method to characterize antibodies in SIV infection. Variable regions of immunoglobulin genes were amplified by rhesus macaque-specific primers and inserted into the phagemid pComb3X, which produced the Fab fragment. Antibodies against SIV proteins were selected by biopanning using an SIV protein-coated 96-well plate. A total of 20 Fab clones obtained included 14 clones directed to gp41, four clones to gp120, and two clones to p27. The anti-gp120 Fab clones completely neutralized the homologous neutralization-sensitive SIVsmH635FC and the genetically divergent SIVmac316, and showed at least 50% inhibition against the neutralization-resistant strain, SIVsmE543-3. Competition ELISA revealed that these anti-gp120 Fab clones recognize the same epitope on gp120 including the V3 loop. Identification of antibodies with potent neutralizing activity will help to elucidate the mechanisms for inducing broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Takeo Kuwata
- Priority Organization for Innovation and Excellence, Kumamoto University, Honjyo, Kumamoto, Japan
| | - Yuko Katsumata
- Priority Organization for Innovation and Excellence, Kumamoto University, Honjyo, Kumamoto, Japan
| | - Kaori Takaki
- Priority Organization for Innovation and Excellence, Kumamoto University, Honjyo, Kumamoto, Japan
| | - Tomoyuki Miura
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Tatsuhiko Igarashi
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
12
|
Das S, Hirano M, McCallister C, Tako R, Nikolaidis N. Comparative genomics and evolution of immunoglobulin-encoding loci in tetrapods. Adv Immunol 2011; 111:143-78. [PMID: 21970954 DOI: 10.1016/b978-0-12-385991-4.00004-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The immunoglobulins (Igs or antibodies) as an integral part of the tetrapod adaptive immune response system have evolved toward producing highly diversified molecules that recognize a remarkably large number of different antigens. Antibodies and their respective encoding loci have been shaped by different and often contrasting evolutionary forces, some of which aim to conserve an established pattern or mechanism and others to generate alternative and diversified structural and functional configurations. The genomic organization, gene content, ratio between functional genes and pseudogenes, number and position of recombining genetic elements, and the different levels of divergence present at the germline of the Ig-encoding loci have been evolutionarily shaped and optimized in a lineage- and, in some cases, species-specific mode aiming to increase organismal fitness. Further, evolution favored the development of multiple mechanisms of primary and secondary antibody diversification, such as V(D)J recombination, class switch recombination, isotype exclusion, somatic hypermutation, and gene conversion. Diverse tetrapod species, based on their specific germline configurations, use these mechanisms in several different combinations to effectively generate a vast array of distinct antibody types and structures. This chapter summarizes our current knowledge on the Ig-encoding loci in tetrapods and discusses the different evolutionary mechanisms that shaped their diversification.
Collapse
Affiliation(s)
- Sabyasachi Das
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, School of Medicine, Emory University, Atlanta, Georgia, USA
| | | | | | | | | |
Collapse
|
13
|
Lee JE, Fusco ML, Abelson DM, Hessell AJ, Burton DR, Saphire EO. Techniques and tactics used in determining the structure of the trimeric ebolavirus glycoprotein. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2009; 65:1162-80. [PMID: 19923712 PMCID: PMC2777170 DOI: 10.1107/s0907444909032314] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 08/14/2009] [Indexed: 11/10/2022]
Abstract
The trimeric membrane-anchored ebolavirus envelope glycoprotein (GP) is responsible for viral attachment, fusion and entry. Knowledge of its structure is important both for understanding ebolavirus entry and for the development of medical interventions. Crystal structures of viral glycoproteins, especially those in their metastable prefusion oligomeric states, can be difficult to achieve given the challenges in production, purification, crystallization and diffraction that are inherent in the heavily glycosylated flexible nature of these types of proteins. The crystal structure of ebolavirus GP in its trimeric prefusion conformation in complex with a human antibody derived from a survivor of the 1995 Kikwit outbreak has now been determined [Lee et al. (2008), Nature (London), 454, 177-182]. Here, the techniques, tactics and strategies used to overcome a series of technical roadblocks in crystallization and phasing are described. Glycoproteins were produced in human embryonic kidney 293T cells, which allowed rapid screening of constructs and expression of protein in milligram quantities. Complexes of GP with an antibody fragment (Fab) promoted crystallization and a series of deglycosylation strategies, including sugar mutants, enzymatic deglycosylation, insect-cell expression and glycan anabolic pathway inhibitors, were attempted to improve the weakly diffracting glycoprotein crystals. The signal-to-noise ratio of the search model for molecular replacement was improved by determining the structure of the uncomplexed Fab. Phase combination with Fab model phases and a selenium anomalous signal, followed by NCS-averaged density modification, resulted in a clear interpretable electron-density map. Model building was assisted by the use of B-value-sharpened electron-density maps and the proper sequence register was confirmed by building alternate sequences using N-linked glycan sites as anchors and secondary-structural predictions.
Collapse
Affiliation(s)
- Jeffrey E. Lee
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Marnie L. Fusco
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Dafna M. Abelson
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ann J. Hessell
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Dennis R. Burton
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Erica Ollmann Saphire
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
14
|
Lee JE, Kuehne A, Abelson DM, Fusco ML, Hart MK, Saphire EO. Complex of a protective antibody with its Ebola virus GP peptide epitope: unusual features of a V lambda x light chain. J Mol Biol 2008; 375:202-16. [PMID: 18005986 PMCID: PMC2173910 DOI: 10.1016/j.jmb.2007.10.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2007] [Revised: 10/09/2007] [Accepted: 10/10/2007] [Indexed: 11/15/2022]
Abstract
13F6-1-2 is a murine monoclonal antibody that recognizes the heavily glycosylated mucin-like domain of the Ebola virus virion-attached glycoprotein (GP) and protects animals against lethal viral challenge. Here we present the crystal structure, at 2.0 A, of 13F6-1-2 in complex with its Ebola virus GP peptide epitope. The GP peptide binds in an extended conformation, anchored primarily by interactions with the heavy chain. Two GP residues, Gln P406 and Arg P409, make extensive side-chain hydrogen bond and electrostatic interactions with the antibody and are likely critical for recognition and affinity. The 13F6-1-2 antibody utilizes a rare V lambda(x) light chain. The three light-chain complementarity-determining regions do not adopt canonical conformations and represent new classes of structures distinct from V kappa and other V lambda light chains. In addition, although V lambda(x) had been thought to confer specificity, all light-chain contacts are mediated through germ-line-encoded residues. This structure of an antibody that protects against the Ebola virus now provides a framework for humanization and development of a postexposure immunotherapeutic.
Collapse
Affiliation(s)
- Jeffrey E. Lee
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA USA 92037
| | - Ana Kuehne
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD USA 21702
| | - Dafna M. Abelson
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA USA 92037
| | - Marnie L. Fusco
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA USA 92037
| | - Mary Kate Hart
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD USA 21702
| | - Erica Ollmann Saphire
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA USA 92037
| |
Collapse
|
15
|
Abstract
Ebola virus causes lethal hemorrhagic fever in human and nonhuman primates. Effective prophylaxis and treatment for this disease are not yet available. Antisera and monoclonal antibodies specific to Ebola virus proteins have been tested for passive immunization in experimental animal models and clinical cases, and shown to be effective in mice and guinea pigs, whereas the evidence of protective efficacy in primates, including humans, remains elusive. In this review, we focus on research relevant to prophylaxis and treatment by passive immunization, and discuss the potential use of antibody therapy for Ebola virus infection. Nevertheless, there is no doubt that a comprehensive understanding of Ebola virus pathogenesis will aid in the development of therapeutic strategies against Ebola hemorrhagic fever.
Collapse
Affiliation(s)
- Keita Matsuno
- Hokkaido University Research Center for Zoonosis Control, Department of Global Epidemiology, Sapporo 001-0020, Japan
| | - Ayato Takada
- Hokkaido University Research Center for Zoonosis Control, Department of Global Epidemiology, Sapporo 001-0020, Japan
| |
Collapse
|