1
|
Tang YY, Chen JM, Zhang J, Wu H, Wang YP, Zhang JF. Biodegradation of polystyrene by Spodoptera litura and Spodoptera frugiperda larvae (Lepidoptera: Noctuidae): Insights into the frass characterization and responses of gut microbiomes. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138178. [PMID: 40199076 DOI: 10.1016/j.jhazmat.2025.138178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
Polystyrene (PS) biodegradation by some lepidoptera larvae has been demonstrated, but little is known about the Spodoptera litura and Spodoptera frugiperda (Lepidoptera: Noctuidae). Here we confirmed that PS-fed larvae showed significantly higher survival rates than starvation and antibiotic groups, with S. frugiperda consuming PS more efficiently than S. litura (1.52 vs. 0.56 mg larva⁻¹ day⁻¹). PS-frass characterization revealed oxygen-containing groups (C-O, CO, -OH) with reduced thermal stability and a significant decrease in weight-average molecular weight (S. litura: -6.01 %; S. frugiperda: -8.93 %), evidencing oxidative depolymerization of PS by both species. The gut microbiota (Pedobacter, Achromobacter, Pseudomonas, Acinetobacter, etc.) and functional enzymes (e.g., monooxygenase, dioxygenase, chitinases) were upregulated in PS-fed larvae. Metabolome analysis revealed altered stress responses and reprogrammed metabolic pathways, particularly in lipid and carbohydrate metabolism, which correlated strongly with gut microbiota changes. Overall, we demonstrated the biodegradation of PS by S. litura and S. frugiperda for the first time, and proposed a plausible degradation mechanism mediated by gut microbiota, illustrating both the host and gut microbiomes contributed to PS biodegradation. These findings highlight the feasibility of developing insect-based plastic degradation systems through the isolation of key microbial-enzymatic consortia, offering a sustainable solution for plastic waste management.
Collapse
Affiliation(s)
- Ya-Yuan Tang
- College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Jian-Ming Chen
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Juan Zhang
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou 311251, China
| | - Hong Wu
- College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| | - Yi-Ping Wang
- College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Jue-Feng Zhang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
2
|
Taxeidis G, Siaperas R, Foka K, Ponjavic M, Nikodinovic-Runic J, Zerva A, Topakas E. Elucidating the enzymatic response of the white rot basidiomycete Abortiporus biennis for the downgrade of polystyrene. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126214. [PMID: 40189091 DOI: 10.1016/j.envpol.2025.126214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/14/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025]
Abstract
Plastic pollution is a growing global environmental concern, with polyolefins such as polyethylene and polypropylene, as well as polystyrene (PS) constituting a significant amount of plastic waste. Both polyolefins and PS, when inappropriately disposed of in the environment, contribute to environmental contamination since they degrade slowly, with both abiotic and biotic factors contributing to their downgrade. In terms of the microbial effect on plastics, in recent decades, several studies have focused on the biodeterioration and assimilation of polyolefins, while more comprehensive degradation of PS by diverse organisms, including bacteria, fungi, and even insect larvae, has been documented. The present study investigates the biocatalytic potential of the white-rot basidiomycete Abortiporus biennis LGAM 436 for PS degradation. Building on prior research, we examined the ability of this fungal strain to modify the structure of different PS forms, including commercial expanded polystyrene (EPS) foam and amorphous PS film. In addition, we explored the impact of olive oil mill wastewater (OOMW) effluent as an enzymatic inducer to enhance the degradation process. Through gel permeation chromatography (GPC), surface morphology changes, and FTIR-ATR analysis, we assessed the extent of PS degradation and identified relevant enzymatic activities via proteomics. The findings offer insights into the discovery of novel fungal biocatalysts for addressing plastic pollution, particularly through the action of high-redox oxidative enzymes.
Collapse
Affiliation(s)
- George Taxeidis
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Romanos Siaperas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Katerina Foka
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Marijana Ponjavic
- Eco-biotechnology and Drug Development Group, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Jasmina Nikodinovic-Runic
- Eco-biotechnology and Drug Development Group, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Anastasia Zerva
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece; Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, Athens, Attiki, 11855 Athens, Greece.
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece.
| |
Collapse
|
3
|
Dhaka V, Singh S, Rao R, Garg S, Samuel J, Khan NA, Ramamurthy PC, Singh J. Statistical optimization of process variables for improved poly(ethylene terephthalate) plastic degradation by a rhizospheric bacterial consortium. Sci Rep 2025; 15:14813. [PMID: 40295522 PMCID: PMC12037729 DOI: 10.1038/s41598-025-88084-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/23/2025] [Indexed: 04/30/2025] Open
Abstract
The current study focuses on the poly(ethylene terephthalate) (PET) powder degradation potential of a rhizobacterial consortium screened from the rhizosphere of plants growing at plastic-polluted sites. The rhizobacterial consortium were screened and ability of PET powder degradation was studied up to 18 days. For observing the efficiency of degradation, all three rhizobacterial strains with highest percentage of degradation were combined to formulate the consortium. The Response Surface Methodology (RSM) was used to optimize the process variables. The combinations demonstrating highest weight reduction percentage for PET were selected for further degradation studies. The changes in the structure and surfaces that occurred after biodegradation on the plastic were observed through SEM and FTIR analysis. The obtained results showed the disappearance and elongation of the peak, signifying that the rhizobacterial consortium could modify the PET plastic. The weight reduction percentage of PET powder (300 µm) was 71.12% at optimized conditions (29.8 °C, 7.02 pH and 1 g/L carbon source). The mathematical model developed through RSM is found to be significant (P < 0.05), and optimization and validation experiments were also well correlated for the process.
Collapse
Affiliation(s)
- Vaishali Dhaka
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Raman Rao
- Forest Biomaterials Department, NC State University, Raleigh, NC, 27606, USA
| | - Shashank Garg
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Jastin Samuel
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Nadeem A Khan
- Civil Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bengaluru, Karnataka, 560012, India.
| | - Joginder Singh
- Department of Botany, Nagaland University, Lumami, Nagaland, 798627, India.
| |
Collapse
|
4
|
Bulati A, Zhan L, Xu Z, Yang K. Obtaining the value of waste polyethylene mulch film through pretreatment and recycling technology in China. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 197:35-49. [PMID: 39986045 DOI: 10.1016/j.wasman.2025.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/19/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
Polyethylene (PE) mulch film has been widely used in agricultural production. However, the residual PE mulch film fragments in the soil can cause severe pollution, affecting the quality of agricultural products and even the stability of the ecological environment. Moreover, PE mulch film has high calorific value and thermoplasticity, so recycling is necessary. This review provides an overview of the current pretreatment and recycling methods for waste PE mulch film, cites application examples from plastic recycling enterprises, and offers suggestions for future research directions. In the pretreatment technology, the research status of mechanical collection with high efficiency and mechanical collection with pretreatment function was summarized, and the advantages and disadvantages of different collection machines were pointed out. In the treatment technology, several technologies' advantages, disadvantages and research progress, including incineration, thermal pyrolysis, direct regranulation and modified regranulation, were summarized. It points out that improving the degree of resource recycling and optimizing the quality of recycled products is the key to reuse. In summary, this review points out that the research on collecting and recycling waste PE mulch film requires joint efforts in raising collecting awareness, promoting resource recycling technology, preventing secondary pollution, and making positive contributions to agricultural production and ecological environment protection.
Collapse
Affiliation(s)
- Akemareli Bulati
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, 671000, China
| | - Lu Zhan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, 671000, China.
| | - Zhenming Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, China
| | - Kai Yang
- School of Ecological and Environmental Science, East China Normal University, 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
5
|
Simica A, Segovia Y, Navarro-Sempere A, Martínez-Espinosa RM, Pire C. Advanced Strategies for Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Production: PHA Synthase Homologous Overexpression in the Extremophile Haloferax mediterranei. Mar Drugs 2025; 23:166. [PMID: 40278287 PMCID: PMC12028471 DOI: 10.3390/md23040166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
Bioplastics such as poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) are promising alternatives to conventional plastics. However, the high production cost limits their industrial application. In this study, PHBV production was optimized in Haloferax mediterranei by the homologous overexpression of the key enzyme PHA synthase (PhaEC), resulting in the OEphaEC strain. The growth and PHBV production of OEphaEC compared with the parental strain (HM26) were evaluated in three culture media with different nitrogen sources (KNO3, NH4Cl, and casamino acids). The OEphaEC strain exhibited a 20% increase in PHBV production and a 40% increase in 3-hydroxyvalerate monomer (3HV) content in a defined medium with nitrate as a nitrogen source, as determined by GC-MS. Moreover, enzyme activity, measured spectrophotometrically, increased from 2.3 to 3.9 U/mg. Soluble and insoluble protein fractions were analysed to assess the overexpression of PHA synthase. Only PhaE was found in the insoluble protein fraction, where PHBV granules accumulate. Transmission electron microscopy (TEM) images confirmed a higher PHBV content in OEphaEC compared to the parental strain. These results demonstrate that the homologous overexpression of the key enzyme implicated in PHBV biosynthesis can enhance PHBV content, making its production competitive for industrial applications.
Collapse
Affiliation(s)
- Alexandra Simica
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.S.); (R.M.M.-E.)
| | - Yolanda Segovia
- Biotechnology Department, Faculty of Science, University of Alicante Ap. 99, E-03080 Alicante, Spain; (Y.S.); (A.N.-S.)
| | - Alicia Navarro-Sempere
- Biotechnology Department, Faculty of Science, University of Alicante Ap. 99, E-03080 Alicante, Spain; (Y.S.); (A.N.-S.)
| | - Rosa María Martínez-Espinosa
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.S.); (R.M.M.-E.)
- Biochemistry, Molecular Biology, Edaphology and Agrochemistry Department, Faculty of Science, University of Alicante Ap. 99, E-03080 Alicante, Spain
| | - Carmen Pire
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.S.); (R.M.M.-E.)
- Biochemistry, Molecular Biology, Edaphology and Agrochemistry Department, Faculty of Science, University of Alicante Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
6
|
Li A, Yuan F, Li L, Gu J, Zhang Y, Li F, Tang T, Liu F. Interactions between nanoplastics and Tetrahymena thermophila: Low toxicity vs. potential biodegradation. CHEMOSPHERE 2025; 373:144166. [PMID: 39914086 DOI: 10.1016/j.chemosphere.2025.144166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/09/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025]
Abstract
Nanoplastics (NPs) are prevalent throughout the environment and have raised growing environmental concerns. Although numerous studies have examined the toxicological aspects of NPs, few have investigated their environmental fate and behavior when affected by organisms other than bacteria or fungi. Planktonic ciliates are essential components of aquatic ecosystems and play important roles in decomposing organic matter and transferring energy from the microbial food web to higher trophic levels. To investigate the interplay between NPs and the ciliate Tetrahymena thermophila, we executed a sequence of feeding experiments utilizing 50 nm polystyrene nanoplastics (PS-NPs). In the presence of sufficient nutrition, exposure to PS-NPs (even at concentrations up to 500 mg/L) did not significantly inhibit growth in Tetrahymena thermophila, indicating only a mild toxic effect of PS-NPs. When ingested by T. thermophila, the PS-NPs are repackaged into aggregates with lysosomal components in the food vacuole and finally expelled as compacted "fecal pellets". This process modifies the physical attributes of PS-NPs, including their hydrophilicity, aggregability, and buoyancy, influencing their transportation, retention, deposition dynamics, and ultimately their bioavailability within the environment. A total of 73 proteins were identified from the fecal pellets, containing various hydrolases. Gel permeation chromatography (GPC), Fourier transform infrared (FTIR), and thermogravimetric analysis (TGA) were used to identify changes in molecular weights, functional groups, and thermal stabilities of PS-NP residues in fecal pellets. The results verified the degradation of PS-NPs during the passage through the T. thermophila cell.
Collapse
Affiliation(s)
- Aiyun Li
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Fengyu Yuan
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Lianshan Li
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Jihai Gu
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yuming Zhang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Fengchao Li
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Ting Tang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China.
| | - Fengsong Liu
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China; Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China.
| |
Collapse
|
7
|
Lepcha A, Kumar R, Dindhoria K, Bhargava B, Pati AM, Kumar R. Metagenomic insights into the functional potential of non-sanitary landfill microbiomes in the Indian Himalayan region, highlighting key plastic degrading genes. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136642. [PMID: 39653637 DOI: 10.1016/j.jhazmat.2024.136642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/03/2024] [Accepted: 11/22/2024] [Indexed: 01/29/2025]
Abstract
Solid waste management in the Indian Himalayan Region (IHR) is a growing challenge, intensified by increasing population and tourism, which strain non-sanitary landfills. This study investigates microbial diversity and functional capabilities within these landfills using a high-throughput shotgun metagenomic approach. Physicochemical analysis revealed that the Manali and Mandi landfill sites were under heavy metal contamination and thermal stress. Taxonomic annotation identified a dominance of bacterial phyla, including Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes, with genera like Pseudomonas and Bacillus prevalent. Squeezemeta analysis generated 9,216,983 open reading frames (ORFs) across the sampling sites, highlighting diverse metabolic potentials for heavy metal resistance and degrading organic, xenobiotics and plastic wastes. Hierarchical clustering and principal component analysis (PCA) identified distinct gene clusters in Manali and Mandi landfill sites, reflecting differences in pollution profiles. Functional redundancy of landfill microbiome was observed with notable xenobiotic and plastic degradation pathways. This is the first comprehensive metagenomic assessment of non-sanitary landfills in the IHR, providing valuable insights into the microbial roles in degrading persistent pollutants, plastic waste, and other contaminants in these stressed environments.
Collapse
Affiliation(s)
- Ayush Lepcha
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raghawendra Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Himachal Pradesh 176061, India
| | - Kiran Dindhoria
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhavya Bhargava
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Himachal Pradesh 176061, India
| | - Aparna Maitra Pati
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Molecular Biology & Bioinformatics, Tripura University (A Central University), Suryamaninagar, Tripura 799022, India.
| |
Collapse
|
8
|
Nawaz F, Islam ZU, Ghori SA, Bahadur A, Ullah H, Ahmad M, Khan GU. Microplastic and nanoplastic pollution: Assessing translocation, impact, and mitigation strategies in marine ecosystems. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70032. [PMID: 39927485 DOI: 10.1002/wer.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/13/2024] [Accepted: 01/21/2025] [Indexed: 02/11/2025]
Abstract
The widespread presence of plastic debris in marine ecosystems was first highlighted as a serious concern in the United Nations Convention on the Law of the Sea (UNCLOS) and the 1972 London Convention. This realization identified plastic pollution as one of the major global environmental issues. Majorities of plastic debris are neither recycled nor incinerated, as a result, it eventually makes its way into lakes, rivers, and oceans. Analysis of water and sediment worldwide indicates that microplastics and nanoplastic are ubiquitous in soils, freshwater, and marine ecosystems. Microplastic and nanoplastics are distributed throughout marine environments via processes such as biofouling and chemical leaching, contaminating both pelagic and benthic species. Despite growing recognition of the hazards posed by microplastics and nanoplastics, regulatory efforts remain hampered by limited understanding of their broader ecological impacts, particularly how diverse factors translate into population declines and ecosystem disruptions. This review examines the pathways of microplastic and nanoplastic pollution, their interactions with other environmental stressors such as climate change and chemical pollution, and their effects on marine food webs. The review highlights the urgent need for further research into the behavior and fate of nanoplastics, which are the degradation product of microplastics, owing to their nano size they pose additional risks, unique properties, and potential for widespread ecological impacts. Studies have demonstrated that smaller microplastics and nanoplastics, particularly nanoplastics, are more toxic than larger microplastics. Additionally, microplastics and nanoplastics serve as vectors for contaminants such as heavy metals, exacerbating their toxicity. They also translocate through marine food chains, posing potential health risks. While evidence of their impact continues to grow, the chronic toxicity of microplastics and nanoplastics remains poorly understood, emphasizing the need for further research, particularly at the cellular level, to fully understand their effects on marine ecosystems and human health. This review also concludes with a call for standardized measurement methods, effective mitigation strategies, and enhanced international cooperation to combat this escalating threat. Future research should prioritize the complex interactions between microplastics and nanoplastics, other pollutants, and marine ecosystems, with the ultimate goal of developing holistic approaches to manage and mitigate the impact of plastic pollution. PRACTITIONER POINTS: Microplastic/nanoplastic translocate through marine food webs, affecting species and human health. Nanoplastics are more toxic than microplastics, exacerbating environmental risks. Nanoplastic aggregation influences their distribution and ecological interactions. Future research should focus on nanoplastic behavior, transport, and toxicity.
Collapse
Affiliation(s)
- Faheem Nawaz
- Department of Environmental Science, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Zia Ul Islam
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Sadaf Aslam Ghori
- Department of Environmental Science, Sardar Bahadur Khan Womens University, Quetta, Pakistan
| | - Anila Bahadur
- Department of Environmental Science, Sardar Bahadur Khan Womens University, Quetta, Pakistan
| | - Hamid Ullah
- Department of Chemistry, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Maqsood Ahmad
- Department of Environmental Science, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Ghulam Ullah Khan
- Department of Chemical Engineering, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| |
Collapse
|
9
|
Song Q, Zhang Y, Ju C, Zhao T, Meng Q, Cong J. Microbial strategies for effective microplastics biodegradation: Insights and innovations in environmental remediation. ENVIRONMENTAL RESEARCH 2024; 263:120046. [PMID: 39313172 DOI: 10.1016/j.envres.2024.120046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Microplastics (MPs), diminutive yet ubiquitous fragments arising from the degradation of plastic waste, pervade environmental matrices, posing substantial risks to ecological systems and trophic dynamics. This review meticulously examines the origins, distribution, and biological impacts of MPs, with an incisive focus on elucidating the molecular and cellular mechanisms underpinning their toxicity. We highlight the indispensable role of microbial consortia and enzymatic pathways in the oxidative degradation of MPs, offering insights into enhanced biodegradation processes facilitated by innovative pretreatment methodologies. Central to our discourse is the interplay between MPs and biota, emphasizing the detoxification capabilities of microbial metabolisms and enzymatic functions in ameliorating MPs' deleterious effects. Additionally, we address the practical implementations of MP biodegradation in environmental remediation, advocating for intensified research to unravel the complex biodegradation pathways and to forge effective strategies for the expeditious elimination of MPs from diverse ecosystems. This review not only articulates the pervasive challenges posed by MPs but also positions microbial strategies at the forefront of remedial interventions, thereby paving the way for groundbreaking advancements in environmental conservation.
Collapse
Affiliation(s)
- Qianqian Song
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Yun Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Cuiping Ju
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266000, China
| | - Tianyu Zhao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Qingxuan Meng
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Jing Cong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
10
|
Yang N, Zhang Y, Yang N, Men C, Zuo J. Distribution characteristics and relationship of microplastics, phthalate esters, and bisphenol A in the Beiyun River basin of Beijing. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136190. [PMID: 39490169 DOI: 10.1016/j.jhazmat.2024.136190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024]
Abstract
Urban rivers are closely related to human life, and due to the widespread use of plastic products, rivers have become important carriers of pollutants such as microplastics (MP), phthalate esters (PAEs), and bisphenol A (BPA). However, our understanding of the distribution characteristics and relationships of MP, PAEs, and BPA in rivers is limited. In this study, MP, six PAEs and BPA were detected in the water and sediments of the Beiyun River basin. Polyvinyl chloride (PVC) was the most abundant type of microplastic, while di(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) were the most abundant PAEs. MP, PAEs, and BPA in both water and sediment showed positive correlations, with stronger correlations and higher pollution levels in sediment than in water. The tendency for PAE congeners to partition into sediments increased with a higher octanol-water partition coefficient (Kow). There was a significant positive correlation between the distribution tendency of ∑6PAEs and TOC in sediments with a pearson correlation coefficient of 0.717. Rivers with more frequent human activities and higher levels of urbanization in the vicinity had a higher abundance of various pollutants and a greater diversity of MP types.
Collapse
Affiliation(s)
- Nina Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanyan Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Nijuan Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300350, China
| | - Cong Men
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrialpollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiane Zuo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
11
|
Bagiyan V, Ghazanchyan N, Khachaturyan N, Gevorgyan S, Barseghyan S, Davidyan T, Chitchyan K. Fungal microbiota of biodamages of various polymeric materials. Braz J Microbiol 2024; 55:3251-3260. [PMID: 39441516 PMCID: PMC11711409 DOI: 10.1007/s42770-024-01547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Data on microbial fouling of various synthetic polymer materials, including those used in space technology, are summarized. It has been established that the dominant groups of microbiota of polymer fouling are the genera of mitosporous fungi Aspergillus, Penicillium, Alternaria, Trichoderma. The enzymatic properties of fungal strains from the collection of microbial cultures of the Microbial Depository Center of the National Academy of Sciences of Armenia were studied. It has been shown that Aspergillus fumigatus, Penicillium chrysogenum, P. steckii, Juxtiphoma eupyrena and a number of other fungi have biofouling activity towards polyethylene, polyethylene terephthalate and some other synthetic polymers. New fungal kits have been developed and proposed to evaluate the fungal resistance of polymeric materials. They include fungi isolated from bio-damaged polymers used in space technology and contain 2 to 5 fungal strains instead of 7 to 9 strains in previously used kits. Taking into account the obtained data, a comparative assessment of the fungal resistance of samples of synthetic polymeric materials of various classes that passed accelerated climatic tests has been carried out. It has been established that the kits of biodegradant fungi, composed of cultures of bio-damaged space technology, generally exceeded the activity of the previously used kits, based on which one can judge the obvious advantages of strains isolated from bio-damaged space technology. In the future, these kits could find application not only for biodegradation of polymers, but also for testing the biostability of various polymers, to use for the construction of aviation and space techniques. Moreover, new optimized kits may be developed based on the strains involved in this study.
Collapse
Affiliation(s)
- Valeri Bagiyan
- Microbial Depository Center of the Scientific and Production Center of "Armbiotechnology" of NAS RA, Yerevan, 0056, Armenia.
| | - Narine Ghazanchyan
- Microbial Depository Center of the Scientific and Production Center of "Armbiotechnology" of NAS RA, Yerevan, 0056, Armenia
| | - Nune Khachaturyan
- Microbial Depository Center of the Scientific and Production Center of "Armbiotechnology" of NAS RA, Yerevan, 0056, Armenia
| | - Sona Gevorgyan
- Microbial Depository Center of the Scientific and Production Center of "Armbiotechnology" of NAS RA, Yerevan, 0056, Armenia
| | - Sona Barseghyan
- Microbial Depository Center of the Scientific and Production Center of "Armbiotechnology" of NAS RA, Yerevan, 0056, Armenia
| | - Tamara Davidyan
- Microbial Depository Center of the Scientific and Production Center of "Armbiotechnology" of NAS RA, Yerevan, 0056, Armenia
| | - Karine Chitchyan
- Microbial Depository Center of the Scientific and Production Center of "Armbiotechnology" of NAS RA, Yerevan, 0056, Armenia
| |
Collapse
|
12
|
Crowther TW, Rappuoli R, Corinaldesi C, Danovaro R, Donohue TJ, Huisman J, Stein LY, Timmis JK, Timmis K, Anderson MZ, Bakken LR, Baylis M, Behrenfeld MJ, Boyd PW, Brettell I, Cavicchioli R, Delavaux CS, Foreman CM, Jansson JK, Koskella B, Milligan-McClellan K, North JA, Peterson D, Pizza M, Ramos JL, Reay D, Remais JV, Rich VI, Ripple WJ, Singh BK, Smith GR, Stewart FJ, Sullivan MB, van den Hoogen J, van Oppen MJH, Webster NS, Zohner CM, van Galen LG. Scientists' call to action: Microbes, planetary health, and the Sustainable Development Goals. Cell 2024; 187:5195-5216. [PMID: 39303686 DOI: 10.1016/j.cell.2024.07.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/05/2024] [Accepted: 07/27/2024] [Indexed: 09/22/2024]
Abstract
Microorganisms, including bacteria, archaea, viruses, fungi, and protists, are essential to life on Earth and the functioning of the biosphere. Here, we discuss the key roles of microorganisms in achieving the United Nations Sustainable Development Goals (SDGs), highlighting recent and emerging advances in microbial research and technology that can facilitate our transition toward a sustainable future. Given the central role of microorganisms in the biochemical processing of elements, synthesizing new materials, supporting human health, and facilitating life in managed and natural landscapes, microbial research and technologies are directly or indirectly relevant for achieving each of the SDGs. More importantly, the ubiquitous and global role of microbes means that they present new opportunities for synergistically accelerating progress toward multiple sustainability goals. By effectively managing microbial health, we can achieve solutions that address multiple sustainability targets ranging from climate and human health to food and energy production. Emerging international policy frameworks should reflect the vital importance of microorganisms in achieving a sustainable future.
Collapse
Affiliation(s)
- Thomas W Crowther
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland; Restor Eco AG, Zürich 8001, Switzerland.
| | - Rino Rappuoli
- Fondazione Biotecnopolo di Siena, Siena 53100, Italy.
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Ancona 60131, Italy; National Biodiversity Future Center, Palermo 90133, Italy
| | - Roberto Danovaro
- National Biodiversity Future Center, Palermo 90133, Italy; Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Timothy J Donohue
- Wisconsin Energy Institute, Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam 94240, the Netherlands
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - James Kenneth Timmis
- Institute of Political Science, University of Freiburg, Freiburg 79085, Germany; Athena Institute for Research on Innovation and Communication in Health and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081, the Netherlands
| | - Kenneth Timmis
- Institute of Microbiology, Technical University of Braunschweig, Braunschweig 38106, Germany
| | - Matthew Z Anderson
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA; Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lars R Bakken
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas 1433, Norway
| | - Matthew Baylis
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Cheshire, Neston CH64 7TE, UK
| | - Michael J Behrenfeld
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7004, Australia
| | - Ian Brettell
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Camille S Delavaux
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland
| | - Christine M Foreman
- Department of Chemical and Biological Engineering and Center for Biofilm Engineering, Montana State University, Bozeman, MT 59718, USA
| | - Janet K Jansson
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kat Milligan-McClellan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA
| | - Justin A North
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Devin Peterson
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - Mariagrazia Pizza
- Department of Life Sciences, CBRB Center, Imperial College, London SW7 2AZ, UK
| | - Juan L Ramos
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Granada 18008, Spain
| | - David Reay
- School of GeoSciences, The University of Edinburgh, Edinburgh EH8 9XP, UK
| | - Justin V Remais
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Virginia I Rich
- Center of Microbiome Science, Byrd Polar and Climate Research, and Microbiology Department, The Ohio State University, Columbus, OH 43214, USA
| | - William J Ripple
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331-5704, USA
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Gabriel Reuben Smith
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland
| | - Frank J Stewart
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Matthew B Sullivan
- Departments of Microbiology and Civil, Environmental, and Geodetic Engineering, Center of Microbiome Science, and EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
| | - Johan van den Hoogen
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland
| | - Madeleine J H van Oppen
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia; School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicole S Webster
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7004, Australia; Australian Institute of Marine Science, Townsville, QLD 4810, Australia; Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD 4072, Australia
| | - Constantin M Zohner
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland
| | - Laura G van Galen
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Zürich 8092, Switzerland; Society for the Protection of Underground Networks (SPUN), Dover, DE 19901, USA.
| |
Collapse
|
13
|
Wang S, Yu H, Li W, Song E, Zhao Z, Xu J, Gao S, Wang D, Xie Z. Biodegradation of four polyolefin plastics in superworms (Larvae of Zophobas atratus) and effects on the gut microbiome. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135381. [PMID: 39088959 DOI: 10.1016/j.jhazmat.2024.135381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/28/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
Recent studies have demonstrated superworms (larvae of Zophobas atratus) ability to degrade polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polypropylene (PP) within their digestive system. This study aimed to compare the ability of superworms to degrade the above four polyolefin plastics over a duration of 30 days. In this study, the degradation rate of PE was the highest, and the final average weight of superworms, as well as the final plastic mass loss consumed by them, significantly increased (73.38 % and 52.33 %, respectively) when PE was fed with wheat bran (1:1 [w/w]). FTIR and TGA indicated the occurrence of oxidation and biodegradation processes in the four polyolefin plastics when exposed to superworms. In addition, the molecular weights (Mw and Mn) of excreted polymer residues decreased by 3.1 % and 2.87 % in PE-fed superworms, suggesting that the depolymerization of PE was not entirely dependent on the gut microbial community. The analysis of the gut microbial communities revealed that the dominant microbial community were different for each type of plastic. The results indicate that the gut microbiome of superworms exhibited remarkable adaptability in degrading various types of plastics, and the intake preferences and efficiency of different plastics are associated with different dominant microbial community species.
Collapse
Affiliation(s)
- Shuaibing Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an City, Shandong 271018, China
| | - Hong Yu
- College of Resources and Environment, Shandong Agricultural University, Tai'an City, Shandong 271018, China
| | - Wei Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an City, Shandong 271018, China
| | - Enze Song
- College of Resources and Environment, Shandong Agricultural University, Tai'an City, Shandong 271018, China
| | - Zhiguo Zhao
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi 030800, China
| | - Jing Xu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an City, Shandong 271018, China
| | - Shangkun Gao
- College of Plant Protection, Shandong Agricultural University, Tai'an City, Shandong 271018, China
| | - Dandan Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an City, Shandong 271018, China.
| | - Zhihong Xie
- College of Resources and Environment, Shandong Agricultural University, Tai'an City, Shandong 271018, China.
| |
Collapse
|
14
|
Dogra K, Kumar M, Deoli Bahukhandi K, Zang J. Traversing the prevalence of microplastics in soil-agro ecosystems: Origin, occurrence, and pollutants synergies. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 266:104398. [PMID: 39032427 DOI: 10.1016/j.jconhyd.2024.104398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
The ubiquity of plastics in modern life has made them a significant environmental concern and a marker of the Anthropocene era. The degradation of plastics results in the formation of microplastics (MPs), which measure 5 mm or less. The coexistence of MPs with other pollutants found in sludge, water treatment plant effluents, surface water, and groundwater, shapes the environmental landscape together. Despite extensive investigation, the long-term implications of MPs in soils remain uncertain, underscoring the importance of delving into their transportation and interactions with soil biota and other contaminants. The present article provides a comprehensive overview of MPs contamination in soil, encompassing its sources, prevalence, features, and interactions with soil flora and fauna, heavy metals, and organic compounds. The sources of MPs in soil agroecosystems are mulching, composting, littering, sewage sludge, irrigation water, and fertilizer application. The concentration of MPs reported in plastic mulch, littering, and sewage sludge is 503 ± 2760 items per kg-1, 4483 ± 2315 MPs/kg, and 11,100 ± 570 per/kg. The transport of MPs in soil agroecosystems is due to their horizontal and vertical migration including biotic and abiotic mobility. The article also highlighted the analytical process, which includes sampling planning, collection, purification, extraction, and identification techniques of MPs in soil agroecosystems. The mechanism in the interaction of MPs and organic pollutants includes surface adsorption or adhesion cation bridging, hydrogen bonding, charge transfer, ligand exchange, van der Waals interactions, and ion exchange.
Collapse
Affiliation(s)
- Kanika Dogra
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun 248007, Uttarakhand, India
| | - Manish Kumar
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun 248007, Uttarakhand, India; Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo León, Mexico.
| | - Kanchan Deoli Bahukhandi
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun 248007, Uttarakhand, India
| | - Jian Zang
- Joint International Research Laboratory of Green Buildings and Built Environments, School of Civil Engineering, Chongqing University, Chongqing, China
| |
Collapse
|
15
|
Lee YM, Choi KM, Mun SH, Yoo JW, Jung JH. Gut microbiota composition of the isopod Ligia in South Korea exposed to expanded polystyrene pollution. PLoS One 2024; 19:e0308246. [PMID: 39110709 PMCID: PMC11305568 DOI: 10.1371/journal.pone.0308246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/20/2024] [Indexed: 08/10/2024] Open
Abstract
Plastics pose a considerable challenge to aquatic ecosystems because of their increasing global usage and non-biodegradable properties. Coastal plastic debris can persist in ecosystems; however, its effects on resident organisms remain unclear. A metagenomic analysis of the isopoda Ligia, collected from clean (Nae-do, ND) and plastic-contaminated sites (Maemul-do, MD) in South Korea, was conducted to clarify the effects of microplastic contamination on the gut microbiota. Ligia gut microbiota's total operational taxonomic units were higher in ND than in MD. Alpha diversity did not differ significantly between the two Ligia gut microbial communities collected from ND and MD, although richness (Observed species) was lower in MD than in ND. Proteobacteria (67.47%, ND; 57.30%, MD) and Bacteroidetes (13.63%, ND; 20.76%, MD) were the most abundant phyla found at both sites. Significant different genera in Ligia from EPS-polluted sites were observed. Functional gene analysis revealed that 19 plastic degradation-related genes, including those encoding hydrogenase, esterase, and carboxylesterase, were present in the gut microbes of Ligia from MD, indicating the potential role of the Ligia gut microbiota in plastic degradation. This study provides the first comparative field evidence of the gut microbiota dynamics of plastic detritus consumers in marine ecosystems.
Collapse
Affiliation(s)
- Young-Mi Lee
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul, Republic of Korea
| | - Kwang-Min Choi
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje, Republic of Korea
| | - Seong Hee Mun
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje, Republic of Korea
| | - Je-Won Yoo
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul, Republic of Korea
| | - Jee-Hyun Jung
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje, Republic of Korea
- Department of Marine Environmental Science, Korea University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
16
|
Wang Z, Liu C, Shi Y, Huang M, Song Z, Simal-Gandara J, Li N, Shi J. Classification, application, multifarious activities and production improvement of lipopeptides produced by Bacillus. Crit Rev Food Sci Nutr 2024; 64:7451-7464. [PMID: 36876514 DOI: 10.1080/10408398.2023.2185588] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Lipopeptides, a class of compounds consisting of a peptide ring and a fatty acid chain, are secondary metabolites produced by Bacillus spp. As their hydrophilic and oleophilic properties, lipopeptides are widely used in food, medicine, environment and other industrial or agricultural fields. Compared with artificial synthetic surfactants, microbial lipopeptides have the advantages of low toxicity, high efficiency and versatility, resulting in urgent market demand and broad development prospect of lipopeptides. However, due to the complex metabolic network and precursor requirements of synthesis, the specific and strict synthesis pathway, and the coexistence of multiple homologous substances, the production of lipopeptides by microorganisms has the problems of high cost and low production efficiency, limiting the mass production of lipopeptides and large-scale application in industry. This review summarizes the types of Bacillus-produced lipopeptides and their biosynthetic pathways, introduces the versatility of lipopeptides, and describes the methods to improve the production of lipopeptides, including genetic engineering and optimization of fermentation conditions.
Collapse
Affiliation(s)
- Zhimin Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, PR China
| | - Yingying Shi
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Mingming Huang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Zunyang Song
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Ourense, Spain
| | - Ningyang Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jingying Shi
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
17
|
Cao Y, Bian J, Han Y, Liu J, Ma Y, Feng W, Deng Y, Yu Y. Progress and Prospects of Microplastic Biodegradation Processes and Mechanisms: A Bibliometric Analysis. TOXICS 2024; 12:463. [PMID: 39058115 PMCID: PMC11281104 DOI: 10.3390/toxics12070463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
In order to visualize the content and development patterns of microplastic biodegradation research, the American Chemical Society (ACS), Elsevier, Springer Link, and American Society for Microbiology (ASM) were searched for the years 2012-2022 using Citespace and VOSvivewer for bibliometrics and visual analysis. The biodegradation processes and mechanisms of microplastics were reviewed on this basis. The results showed a sharp increase in the number of publications between 2012 and 2022, peaking in 2020-2021, with 62 more publications than the previous decade. The University of Chinese Academy of Sciences (UCAS), Northwest A&F University (NWAFU), and Chinese Academy of Agricultural Sciences (CAAS) are the top three research institutions in this field. Researchers are mainly located in China, The United States of America (USA), and India. Furthermore, the research in this field is primarily concerned with the screening of functional microorganisms, the determination of functional enzymes, and the analysis of microplastic biodegradation processes and mechanisms. These studies have revealed that the existing functional microorganisms for microplastic biodegradation are bacteria, predominantly Proteobacteria and Firmicutes; fungi, mainly Ascomycota; and some intestinal microorganisms. The main enzymes secreted in the process are hydrolase, oxidative, and depolymerization enzymes. Microorganisms degrade microplastics through the processes of colonization, biofilm retention, and bioenzymatic degradation. These studies have elucidated the current status of and problems in the microbial degradation of microplastics, and provide a direction for further research on the degradation process and molecular mechanism of functional microorganisms.
Collapse
Affiliation(s)
- Yingnan Cao
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental Engineering, Inner Mongolia University of Technology, Hohhot 010051, China; (Y.C.); (J.B.); (Y.M.); (Y.Y.)
| | - Jing Bian
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental Engineering, Inner Mongolia University of Technology, Hohhot 010051, China; (Y.C.); (J.B.); (Y.M.); (Y.Y.)
| | - Yunping Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianguo Liu
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental Engineering, Inner Mongolia University of Technology, Hohhot 010051, China; (Y.C.); (J.B.); (Y.M.); (Y.Y.)
| | - Yuping Ma
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental Engineering, Inner Mongolia University of Technology, Hohhot 010051, China; (Y.C.); (J.B.); (Y.M.); (Y.Y.)
| | - Weiying Feng
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China; (W.F.); (Y.D.)
| | - Yuxin Deng
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China; (W.F.); (Y.D.)
| | - Yaojiang Yu
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental Engineering, Inner Mongolia University of Technology, Hohhot 010051, China; (Y.C.); (J.B.); (Y.M.); (Y.Y.)
| |
Collapse
|
18
|
Wang S, Hadji-Thomas A, Adekunle A, Raghavan V. The exploitation of bio-electrochemical system and microplastics removal: Possibilities and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172737. [PMID: 38663611 DOI: 10.1016/j.scitotenv.2024.172737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Microplastic (MP) pollution has caused severe concern due to its harmful effect on human beings and ecosystems. Existing MP removal methods face many obstacles, such as high cost, high energy consumption, low efficiency, release of toxic chemicals, etc. Thus, it is crucial to find appropriate and sustainable methods to replace common MP removal approaches. Bio-electrochemical system (BES) is a sustainable clean energy technology that has been successfully applied to wastewater treatment, seawater desalination, metal removal, energy production, biosensors, etc. However, research reports on BES technology to eliminate MP pollution are limited. This paper reviews the mechanism, hazards, and common treatment methods of MP removal and discusses the application of BES systems to improve MP removal efficiency and sustainability. Firstly, the characteristics and limitations of common MP removal techniques are systematically summarized. Then, the potential application of BES technology in MP removal is explored. Furthermore, the feasibility and stability of the potential BES MP removal application are critically evalauted while recommendations for further research are proposed.
Collapse
Affiliation(s)
- Shuyao Wang
- Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Andre Hadji-Thomas
- Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Ademola Adekunle
- National Research Council of Canada, 6100 Avenue Royalmount, Montréal, QC H4P 2R2, Canada.
| | - Vijaya Raghavan
- Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| |
Collapse
|
19
|
Weng Y, Han X, Sun H, Wang J, Wang Y, Zhao X. Effects of polymerization types on plastics ingestion and biodegradation by Zophobas atratus larvae, and successions of both gut bacterial and fungal microbiomes. ENVIRONMENTAL RESEARCH 2024; 251:118677. [PMID: 38508358 DOI: 10.1016/j.envres.2024.118677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/28/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Recent studies demonstrated that plastic degradation in Zophobas atratus superworms is related to the gut microbiota. To determine whether the biodegradation and gut-microbiota were influenced by ingested plastic polymerization types, foams of polypropylene (PP), polyurethane (PU) and ethylene vinyl acetate (EVA) were selected as representatives of polyolefins, polyester and copolymers, and the sole feedstock for superworms for 45 d. Both growth and survival rates of superworms were influenced by the type of plastic diet. Although the total consumptions of EVA- and PP-fed groups were similar at 29.03 ± 0.93 and 28.89 ± 1.14 mg/g-larva, which were both significantly higher than that of PU-fed groups (21.63 ± 2.18 mg/g-larva), the final survival rates of the EVA-fed group of 36.67 ± 10.41% exhibited significantly lower than that of the PP- and PU-fed groups of 76.67 ± 2.89% and 75.00 ± 7.07%, respectively, and even the starvation group of 51.67 ± 10.93%. The Illumina MiSeq results revealed similarities in the dominant gut bacterial communities between PU- and EVA-fed groups, with an increase in relative abundance of Lactococcus, but significant differences from the PP-fed groups, which had two predominant genera of unclassified Enterobacteriaceae and Enterococcus. Compared to bran-fed groups, changes in gut fungal communities were similar across all plastics-fed groups, with an increase in the dominant abundance of Rhodotorula. The abundance of Rhodotorula increased in the order of polyolefin, polyester, and copolymer. In summary, plastic ingestion, larval growth, and changes in gut bacterial and fungal community of superworms were all influenced by foam diets of different polymerization types, and especially influences on the gut microbiomes were different from each other.
Collapse
Affiliation(s)
- Yue Weng
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Xiaoyu Han
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Huayang Sun
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Jiaming Wang
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Yumeng Wang
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Xin Zhao
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
20
|
Akhigbe GE, EnochOghene AE, Olumurewa KO, Koleoso OB, Ogbonna ND. Characterization of low-density polyethylene (LDPE) films degraded using bacteria strains isolated from oil-contaminated soil. ENVIRONMENTAL TECHNOLOGY 2024; 45:3155-3161. [PMID: 37139964 DOI: 10.1080/09593330.2023.2210770] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
This study assessed the low-density polyethylene (LDPE) film degradation potential of microorganisms isolated from oil-contaminated soil and also analyzed the morphological and chemical composition of LDPE films after the biodegradation period. The bacteria strains isolated from oil-contaminated soil were standardized and used to degrade the pretreated LDPE films in mineral salt media. Thereafter, they were incubated for 78 days at 37°C in an incubator shaker, and the degraded LDPE films were analyzed quantitatively and qualitatively (using scanning electron microscope (SEM) images and energy dispersal x-ray (EDX)). Isolates A32 and BTT4 amongst other bacteria isolates showed the highest LDPE film degradation activity, with a weight reduction of 71.80% and 89.72% respectively, and were identified using the 16S rRNA sequencing technique. The EDX results showed that LDPE film incubated with A32 has the highest reduction in carbon and nitrogen (23.8% and 44.9% respectively) when compared with the Control. However, LDPE film incubated with BTT4 had an increase in calcium and chlorine (139% and 40% respectively), when compared with the control. Similarly, the SEM images showed the appearance of pinholes, cracks and particles on the surfaces of LDPE films incubated with A32 and BTT4 contrary to the controls. A32 and BTT4 were identified as Proteus mirabilis (Accession number: MN124173.1) and Proteus mirabilis (Accession number: KY027145.1) respectively. Proteus mirabilis showed viable plastic biodegradation potentials and may be useful in the management of plastic waste, leading to a reduction in global plastic waste and a clean environment.
Collapse
Affiliation(s)
- Godswill E Akhigbe
- Department of Chemical Sciences, McPherson University, Seriki Sotayo, Nigeria
| | | | - Kayode O Olumurewa
- Department of Physical and Computer Sciences, McPherson University, Seriki Sotayo, Nigeria
| | | | - Ngozi D Ogbonna
- Department of Biological Sciences, McPherson University, Seriki Sotayo, Nigeria
| |
Collapse
|
21
|
Ekrem Parlak M, Irmak Sahin O, Neslihan Dundar A, Türker Saricaoglu F, Smaoui S, Goksen G, Koirala P, Al-Asmari F, Prakash Nirmal N. Natural colorant incorporated biopolymers-based pH-sensing films for indicating the food product quality and safety. Food Chem 2024; 439:138160. [PMID: 38086233 DOI: 10.1016/j.foodchem.2023.138160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
The current synthetic plastic-based packaging creates environmental hazards that impact climate change. Hence, the topic of the current research in food packaging is biodegradable packaging and its development. In addition, new smart packaging solutions are being developed to monitor the quality of packaged foods, with dual functions as food preservation and quality indicators. In the creation of intelligent and active food packaging, many natural colorants have been employed effectively as pH indicators and active substances, respectively. This review provides an overview of biodegradable polymers and natural colorants that are being extensively studied for pH-indicating packaging. A comprehensive discussion has been provided on the current status of the development of intelligent packaging systems for food, different incorporation techniques, and technical challenges in the development of such green packaging. Finally, the food industry and environmental protection might be revolutionized by pH-sensing biodegradable packaging enabling real-time detection of food product quality and safety.
Collapse
Affiliation(s)
- Mahmud Ekrem Parlak
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Oya Irmak Sahin
- Department of Chemical Engineering, Faculty of Engineering, Yalova University, 76200 Yalova, Turkey
| | - Ayse Neslihan Dundar
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Furkan Türker Saricaoglu
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Fahad Al-Asmari
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 400, Al-Ahsa, 31982 Al-Hofuf, Saudi Arabia
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
22
|
Wang Y, van Putten RJ, Tietema A, Parsons JR, Gruter GJM. Polyester biodegradability: importance and potential for optimisation. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2024; 26:3698-3716. [PMID: 38571729 PMCID: PMC10986773 DOI: 10.1039/d3gc04489k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/23/2024] [Indexed: 04/05/2024]
Abstract
To reduce global CO2 emissions in line with EU targets, it is essential that we replace fossil-derived plastics with renewable alternatives. This provides an opportunity to develop novel plastics with improved design features, such as better reusability, recyclability, and environmental biodegradability. Although recycling and reuse of plastics is favoured, this relies heavily on the infrastructure of waste management, which is not consistently advanced on a worldwide scale. Furthermore, today's bulk polyolefin plastics are inherently unsuitable for closed-loop recycling, but the introduction of plastics with enhanced biodegradability could help to combat issues with plastic accumulation, especially for packaging applications. It is also important to recognise that plastics enter the environment through littering, even where the best waste-collection infrastructure is in place. This causes endless environmental accumulation when the plastics are non-(bio)degradable. Biodegradability depends heavily on circumstances; some biodegradable polymers degrade rapidly under tropical conditions in soil, but they may not also degrade at the bottom of the sea. Biodegradable polyesters are theoretically recyclable, and even if mechanical recycling is difficult, they can be broken down to their monomers by hydrolysis for subsequent purification and re-polymerisation. Additionally, both the physical properties and the biodegradability of polyesters are tuneable by varying their building blocks. The relationship between the (chemical) structures/compositions (aromatic, branched, linear, polar/apolar monomers; monomer chain length) and biodegradation/hydrolysis of polyesters is discussed here in the context of the design of biodegradable polyesters.
Collapse
Affiliation(s)
- Yue Wang
- van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | | | - Albert Tietema
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - John R Parsons
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Gert-Jan M Gruter
- van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
- Avantium Support BV Zekeringstraat 29 1014 BV Amsterdam The Netherlands
| |
Collapse
|
23
|
Zhang S, Shen C, Zhang F, Wei K, Shan S, Zhao Y, Man YB, Wong MH, Zhang J. Microplastics removal mechanisms in constructed wetlands and their impacts on nutrient (nitrogen, phosphorus and carbon) removal: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170654. [PMID: 38331284 DOI: 10.1016/j.scitotenv.2024.170654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Microplastics (MPs) are now prevalent in aquatic ecosystems, prompting the use of constructed wetlands (CWs) for remediation. However, the interaction between MPs and CWs, including removal efficiency, mechanisms, and impacts, remains a subject requiring significant investigation. This review investigates the removal of MPs in CWs and assesses their impact on the removal of carbon, nitrogen, and phosphorus. The analysis identifies crucial factors influencing the removal of MPs, with substrate particle size and CWs structure playing key roles. The review highlights substrate retention as the primary mechanism for MP removal. MPs hinder plant nitrogen uptake, microbial growth, community composition, and nitrogen-related enzymes, reducing nitrogen removal in CWs. For phosphorus and carbon removal, adverse effects of MPs on phosphorus elimination are observed, while their impact on carbon removal is minimal. Further research is needed to understand their influence fully. In summary, CWs are a promising option for treating MPs-contaminated wastewater, but the intricate relationship between MPs and CWs necessitates ongoing research to comprehend their dynamics and potential consequences.
Collapse
Affiliation(s)
- Shaochen Zhang
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Cheng Shen
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China.
| | - Fuhao Zhang
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Kejun Wei
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Shengdao Shan
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China
| | - Yu Bon Man
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, PR China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, PR China
| | - Jin Zhang
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China.
| |
Collapse
|
24
|
Parida D, Katare K, Ganguly A, Chakraborty D, Konar O, Nogueira R, Bala K. Molecular docking and metagenomics assisted mitigation of microplastic pollution. CHEMOSPHERE 2024; 351:141271. [PMID: 38262490 DOI: 10.1016/j.chemosphere.2024.141271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Microplastics, tiny, flimsy, and direct progenitors of principal and subsidiary plastics, cause environmental degradation in aquatic and terrestrial entities. Contamination concerns include irrevocable impacts, potential cytotoxicity, and negative health effects on mortals. The detection, recovery, and degradation strategies of these pollutants in various biota and ecosystems, as well as their impact on plants, animals, and humans, have been a topic of significant interest. But the natural environment is infested with several types of plastics, all having different chemical makeup, structure, shape, and origin. Plastic trash acts as a substrate for microbial growth, creating biofilms on the plastisphere surface. This colonizing microbial diversity can be glimpsed with meta-genomics, a culture-independent approach. Owing to its comprehensive description of microbial communities, genealogical evidence on unconventional biocatalysts or enzymes, genomic correlations, evolutionary profile, and function, it is being touted as one of the promising tools in identifying novel enzymes for the degradation of polymers. Additionally, computational tools such as molecular docking can predict the binding of these novel enzymes to the polymer substrate, which can be validated through in vitro conditions for its environmentally feasible applications. This review mainly deals with the exploration of metagenomics along with computational tools to provide a clearer perspective into the microbial potential in the biodegradation of microplastics. The computational tools due to their polymathic nature will be quintessential in identifying the enzyme structure, binding affinities of the prospective enzymes to the substrates, and foretelling of degradation pathways involved which can be quite instrumental in the furtherance of the plastic degradation studies.
Collapse
Affiliation(s)
- Dinesh Parida
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, 453552, India.
| | - Konica Katare
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, 453552, India.
| | - Atmaadeep Ganguly
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, West Bengal State University, Kolkata, 700118, India.
| | - Disha Chakraborty
- Department of Botany, Shri Shikshayatan College, University of Calcutta, Lord Sinha Road, Kolkata, 700071, India.
| | - Oisi Konar
- Department of Botany, Shri Shikshayatan College, University of Calcutta, Lord Sinha Road, Kolkata, 700071, India.
| | - Regina Nogueira
- Institute of Sanitary Engineering and Waste Management, Leibniz Universität, Hannover, Germany.
| | - Kiran Bala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, 453552, India.
| |
Collapse
|
25
|
Messer LF, Lee CE, Wattiez R, Matallana-Surget S. Novel functional insights into the microbiome inhabiting marine plastic debris: critical considerations to counteract the challenges of thin biofilms using multi-omics and comparative metaproteomics. MICROBIOME 2024; 12:36. [PMID: 38389111 PMCID: PMC10882806 DOI: 10.1186/s40168-024-01751-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/03/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Microbial functioning on marine plastic surfaces has been poorly documented, especially within cold climates where temperature likely impacts microbial activity and the presence of hydrocarbonoclastic microorganisms. To date, only two studies have used metaproteomics to unravel microbial genotype-phenotype linkages in the marine 'plastisphere', and these have revealed the dominance of photosynthetic microorganisms within warm climates. Advancing the functional representation of the marine plastisphere is vital for the development of specific databases cataloging the functional diversity of the associated microorganisms and their peptide and protein sequences, to fuel biotechnological discoveries. Here, we provide a comprehensive assessment for plastisphere metaproteomics, using multi-omics and data mining on thin plastic biofilms to provide unique insights into plastisphere metabolism. Our robust experimental design assessed DNA/protein co-extraction and cell lysis strategies, proteomics workflows, and diverse protein search databases, to resolve the active plastisphere taxa and their expressed functions from an understudied cold environment. RESULTS For the first time, we demonstrate the predominance and activity of hydrocarbonoclastic genera (Psychrobacter, Flavobacterium, Pseudomonas) within a primarily heterotrophic plastisphere. Correspondingly, oxidative phosphorylation, the citrate cycle, and carbohydrate metabolism were the dominant pathways expressed. Quorum sensing and toxin-associated proteins of Streptomyces were indicative of inter-community interactions. Stress response proteins expressed by Psychrobacter, Planococcus, and Pseudoalteromonas and proteins mediating xenobiotics degradation in Psychrobacter and Pseudoalteromonas suggested phenotypic adaptations to the toxic chemical microenvironment of the plastisphere. Interestingly, a targeted search strategy identified plastic biodegradation enzymes, including polyamidase, hydrolase, and depolymerase, expressed by rare taxa. The expression of virulence factors and mechanisms of antimicrobial resistance suggested pathogenic genera were active, despite representing a minor component of the plastisphere community. CONCLUSION Our study addresses a critical gap in understanding the functioning of the marine plastisphere, contributing new insights into the function and ecology of an emerging and important microbial niche. Our comprehensive multi-omics and comparative metaproteomics experimental design enhances biological interpretations to provide new perspectives on microorganisms of potential biotechnological significance beyond biodegradation and to improve the assessment of the risks associated with microorganisms colonizing marine plastic pollution. Video Abstract.
Collapse
Affiliation(s)
- Lauren F Messer
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland
| | - Charlotte E Lee
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland
| | - Ruddy Wattiez
- Proteomics and Microbiology Department, University of Mons, Mons, 7000, Belgium
| | - Sabine Matallana-Surget
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland.
| |
Collapse
|
26
|
Li K, Xiu X, Hao W. Microplastics in soils: Production, behavior process, impact on soil organisms, and related toxicity mechanisms. CHEMOSPHERE 2024; 350:141060. [PMID: 38159733 DOI: 10.1016/j.chemosphere.2023.141060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
In recent years, microplastics (MPs) pollution has become a hot ecological issue of global concern and MP pollution in soil is becoming increasingly serious. Studies have shown that MPs have adverse effects on soil biology and ecological functions. Although MPs are evident in soils, identifying their source, abundance, and types is difficult because of the complexity and variability of soil components. In addition, the effects of MPs on soil physicochemical properties (PCP), including direct effects such as direct interaction with soil particles and indirect effects such as the impact on soil organisms, have not been reported in a differentiated manner. Furthermore, at present, the soil ecological effects of MPs are mostly based on biological toxicity reports of their exudate or size effects, whereas the impact of their surface-specific properties (such as environmentally persistent free radicals, surface functional groups, charge, and curvature) on soil ecological functions is not fully understood. Considering this, this paper reviews the latest research findings on the production and behavioral processes of MPs in soil, the effects on soil PCP, the impacts on different soil organisms, and the related toxic mechanisms. The above discussion will enhance further understanding of the behavioral characteristics and risks of MPs in soil ecosystems and provide some theoretical basis for further clarification of the molecular mechanisms of the effects of MPs on soil organisms.
Collapse
Affiliation(s)
- Kun Li
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China.
| | - Xiaojia Xiu
- Changwang School of Honors, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Wanqi Hao
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China
| |
Collapse
|
27
|
Zhang Z, Zou S, Li P. Aging of plastics in aquatic environments: Pathways, environmental behavior, ecological impacts, analyses and quantifications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122926. [PMID: 37963513 DOI: 10.1016/j.envpol.2023.122926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023]
Abstract
The ubiquity of plastics in our environment has brought about pressing concerns, with their aging processes, photo-oxidation, mechanical abrasion, and biodegradation, being at the forefront. Microplastics (MPs), whether originating from plastic degradation or direct anthropogenic sources, further complicate this landscape. This review delves into the intricate aging dynamics of plastics in aquatic environments under various influential factors. We discuss the physicochemical changes that occur in aged plastics and the release of oxidation products during their degradation. Particular attention is given to their evolving environmental interactions and the resulting ecotoxicological implications. A rigorous evaluation is also conducted for methodologies in the analysis and quantification of plastics aging, identifying their merits and limitations and suggesting potential avenues for future research. This comprehensive review is able to illuminate the complexities of plastics aging, charting a path for future research and aiding in the formulation of informed policy decisions.
Collapse
Affiliation(s)
- Zekun Zhang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Shichun Zou
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China
| | - Pu Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China.
| |
Collapse
|
28
|
Zhang H, Huang Y, An S, Wang P, Xie C, Jia P, Huang Q, Wang B. Mulch-derived microplastic aging promotes phthalate esters and alters organic carbon fraction content in grassland and farmland soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132619. [PMID: 37757559 DOI: 10.1016/j.jhazmat.2023.132619] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Agricultural plastic mulch is a major microplastics (MPs) source in terrestrial ecosystems. However, knowledge about the aging characteristics of mulch-derived MPs entering natural and agricultural soils and their effects on phthalate esters (PAEs) and organic carbon fractions is still limited. Black (contains black masterbatches) and white polyethylene (PE) and biodegradable (Bio, Poly propylene carbonate and Polybutylene adipate terephthalate synthetic material (PPC+PBAT)) mulch-derived MPs, at 0.3% (w/w) dose, were added to grassland and farmland soils for eight-week incubation. Microplastic (MP) aging degree was explored by quantifying the carbonyl index (CI). The soil PAEs and organic carbon fractions were also analyzed. After incubation, black and white PE-MP aged greater in farmland than in grassland. PAEs accumulated highest in PE-MP treatment (5.27-6.41 mg kg-1) followed by Bio-MP (1.88-2.38 mg kg-1). Soil organic carbon (SOC), particulate organic carbon (POC), and microbial biomass carbon (MBC) were reduced by 5.3%-8.2%, 31.8%-41.6%, and 39.7%-63.0%, dissolved organic carbon (DOC) was increased by 10.1%-27.6% in grassland containing MP compared to control. MPs' aging degree promoted PAEs content or altered nutrients, then regulated soil microbial biomass and extracellular enzyme activity directly or indirectly, ultimately affecting SOC. ENVIRONMENTAL IMPLICATION: Microplastics are persistent environmental pollutants that gradually undergo surface aging in response to extracellular enzymes secreted by microorganisms. As microplastics age, their surface roughness and functional groups change; thus, organochemical contaminants gradually leach out. Therefore, this study analyzed the aging of mulch film-derived microplastics under the action of diverse microorganisms in farmland and grassland soils and the effect on plasticizer and organic carbon fractions. The results proved that polyethylene microplastic aging degree was highest in farmland soil. Besides, biodegradable microplastic caused lower contamination of phthalate esters than polyethylene, but they affected soil carbon balance in grassland and farmland soils. STATEMENT OF ENVIRONMENTAL IMPLICATION: This study highlights that MPs affect organic carbon fractions by influencing the PAEs, available nutrients, and extracellular enzyme activity.
Collapse
Affiliation(s)
- Haixin Zhang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, Shaanxi 712100, China
| | - Yimei Huang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, Shaanxi 712100, China.
| | - Shaoshan An
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pan Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China
| | - Chunjiao Xie
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, Shaanxi 712100, China
| | - Penghui Jia
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, Shaanxi 712100, China
| | - Qian Huang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, Shaanxi 712100, China
| | - Baorong Wang
- College of Grassland Agriculture, Northwest A&F University, Shaanxi 712100, China
| |
Collapse
|
29
|
Zeb A, Liu W, Ali N, Shi R, Wang Q, Wang J, Li J, Yin C, Liu J, Yu M, Liu J. Microplastic pollution in terrestrial ecosystems: Global implications and sustainable solutions. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132636. [PMID: 37778309 DOI: 10.1016/j.jhazmat.2023.132636] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Microplastic (MPs) pollution has become a global environmental concern with significant impacts on ecosystems and human health. Although MPs have been widely detected in aquatic environments, their presence in terrestrial ecosystems remains largely unexplored. This review examines the multifaceted issues of MPs pollution in terrestrial ecosystem, covering various aspects from additives in plastics to global legislation and sustainable solutions. The study explores the widespread distribution of MPs worldwide and their potential antagonistic interactions with co-occurring contaminants, emphasizing the need for a holistic understanding of their environmental implications. The influence of MPs on soil and plants is discussed, shedding light on the potential consequences for terrestrial ecosystems and agricultural productivity. The aging mechanisms of MPs, including photo and thermal aging, are elucidated, along with the factors influencing their aging process. Furthermore, the review provides an overview of global legislation addressing plastic waste, including bans on specific plastic items and levies on single-use plastics. Sustainable solutions for MPs pollution are proposed, encompassing upstream approaches such as bioplastics, improved waste management practices, and wastewater treatment technologies, as well as downstream methods like physical and biological removal of MPs. The importance of international collaboration, comprehensive legislation, and global agreements is underscored as crucial in tackling this pervasive environmental challenge. This review may serve as a valuable resource for researchers, policymakers, and stakeholders, providing a comprehensive assessment of the environmental impact and potential risks associated with MPs.
Collapse
Affiliation(s)
- Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Nouman Ali
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jiantao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Chuan Yin
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Miao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jianv Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| |
Collapse
|
30
|
Santoro A, Marino M, Vandenberg LN, Szychlinska MA, Lamparelli EP, Scalia F, Della Rocca N, D’Auria R, Pastorino GMG, Della Porta G, Operto FF, Viggiano A, Cappello F, Meccariello R. PLASTAMINATION: Outcomes on the Central Nervous System and Reproduction. Curr Neuropharmacol 2024; 22:1870-1898. [PMID: 38549522 PMCID: PMC11284724 DOI: 10.2174/1570159x22666240216085947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Environmental exposures to non-biodegradable and biodegradable plastics are unavoidable. Microplastics (MPs) and nanoplastics (NPs) from the manufacturing of plastics (primary sources) and the degradation of plastic waste (secondary sources) can enter the food chain directly or indirectly and, passing biological barriers, could target both the brain and the gonads. Hence, the worldwide diffusion of environmental plastic contamination (PLASTAMINATION) in daily life may represent a possible and potentially serious risk to human health. OBJECTIVE This review provides an overview of the effects of non-biodegradable and the more recently introduced biodegradable MPs and NPs on the brain and brain-dependent reproductive functions, summarizing the molecular mechanisms and outcomes on nervous and reproductive organs. Data from in vitro, ex vivo, non-mammalian and mammalian animal models and epidemiological studies have been reviewed and discussed. RESULTS MPs and NPs from non-biodegradable plastics affect organs, tissues and cells from sensitive systems such as the brain and reproductive organs. Both MPs and NPs induce oxidative stress, chronic inflammation, energy metabolism disorders, mitochondrial dysfunction and cytotoxicity, which in turn are responsible for neuroinflammation, dysregulation of synaptic functions, metabolic dysbiosis, poor gamete quality, and neuronal and reproductive toxicity. In spite of this mechanistic knowledge gained from studies of non-biodegradable plastics, relatively little is known about the adverse effects or molecular mechanisms of MPs and NPs from biodegradable plastics. CONCLUSION The neurological and reproductive health risks of MPs/NPs exposure warrant serious consideration, and further studies on biodegradable plastics are recommended.
Collapse
Affiliation(s)
- Antonietta Santoro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Marianna Marino
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Laura N. Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Marta Anna Szychlinska
- Faculty of Medicine and Surgery, Kore University of Enna, Cittadella Universitaria 94100 Enna (EN), Italy
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Federica Scalia
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Natalia Della Rocca
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Raffaella D’Auria
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Grazia Maria Giovanna Pastorino
- Child and Adolescence Neuropsychiatry Unit, Department of Medicine, Surgery and Dentistry, University of 84100 Salerno, Salerno, Italy
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Francesca Felicia Operto
- Department of Science of Health School of Medicine, University Magna Graecia 88100 Catanzaro, Italy
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy
| | - Francesco Cappello
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, 90127, Italy
| | - Rosaria Meccariello
- Department of Movement and Wellness Sciences, Parthenope University of Naples, 80133 Naples, Italy
| |
Collapse
|
31
|
Talukdar A, Kundu P, Bhattacharjee S, Dey S, Dey A, Biswas JK, Chaudhuri P, Bhattacharya S. Microplastics in mangroves with special reference to Asia: Occurrence, distribution, bioaccumulation and remediation options. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166165. [PMID: 37574065 DOI: 10.1016/j.scitotenv.2023.166165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/15/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
Microplastics (MPs) are a new and lesser-known pollutant that has intrigued the interest of scientists all over the world in recent decades. MP (<5mm in size) can enter marine environments such as mangrove forests in a variety of ways, interfering with the health of the environment and organisms. Mangroves are now getting increasingly exposed to microplastic contamination due to their proximity to human activities and their position as critical transitional zones between land and sea. The present study reviews the status of MPs contamination specifically in mangrove ecosystems situated in Asia. Different sources and characteristics of MPs, subsequent deposition of MPs in mangrove water and sediments, bioaccumulation in different organisms are discussed in this context. MP concentrations in sediments and organisms were higher in mangrove forests exposed to fishing, coastal tourism, urban, and industrial wastewater than in pristine areas. The distribution of MPs varies from organism to organism in mangrove ecosystems, and is significantly influenced by their morphometric characteristics, feeding habits, dwelling environment etc. Mangrove plants can accumulate microplastics in their roots, stem and leaves through absorption, adsorption and entrapment helping in reducing abundance of microplastic in the surrounding environment. Several bacterial and fungal species are reported from these mangrove ecosystems, which are capable of degrading MPs. The bioremediation potential of mangrove plants offers an innovative and sustainable approach to mitigate microplastic pollution. Diverse mechanisms of MP biodegradation by mangrove dwelling organisms are discussed in this context. Biotechnological applications can be utilized to explore the genetic potential of the floral and faunal species found in the Asian mangroves. Detailed studies are required to monitor, control, and evaluate MP pollution in sediments and various organisms in mangrove ecosystems in Asia as well as in other parts of the world.
Collapse
Affiliation(s)
| | - Pritha Kundu
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar 803116, India
| | - Shrayan Bhattacharjee
- Ecosystem and Ecology Laboratory, Post-graduate Department of Zoology, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, India
| | - Satarupa Dey
- Department of Botany, Shyampur Siddheswari Mahavidyalaya, Howrah 711301, West Bengal, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Jayanta Kumar Biswas
- Enviromicrobiology, Ecotoxicology & Ecotechnology Research Laboratory (3E-MicroToxTech Lab), Department of Ecological Studies, and International Centre for Ecological Engineering, University of Kalyani, Nadia, West Bengal 741235, India
| | - Punarbasu Chaudhuri
- Department of Environmental Science, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Sayan Bhattacharya
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar 803116, India.
| |
Collapse
|
32
|
Fan Z, Jiang C, Muhammad T, Ali I, Feng Y, Sun L, Geng H. Impacts and mechanism of biodegradable microplastics on lake sediment properties, bacterial dynamics, and greenhouse gasses emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165727. [PMID: 37487892 DOI: 10.1016/j.scitotenv.2023.165727] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
The accumulation of microplastics (MPs) in freshwater ecosystems plays a vital role in greenhouse gases (GHGs) emissions from lake sediment by altering sediment properties and microbial communities. Thus, a short-term microcosm experiment was performed to explore the effect of conventional polyethylene (PE) and biodegradable Poly (butylene-adipate-co-terephtalate) (PBAT) MPs on carbon dioxide (CO2) and methane (CH4) emissions from lake sediment and associated microbial community. The results indicated that at 1.0 % concentration, the cumulative CO2 emissions were increased by 16.8 % and the cumulative CH4 emissions were increased more than four times following the addition of biodegradable MPs compared to conventional MPs, which was due to the more dissolved organic carbon (DOC) provided by biodegradable MPs for microbial respiration. Furthermore, the cumulative CO2 and CH4 emissions significantly (p < 0.05) increased with the increasing concentrations of biodegradable MPs. Notably, the accumulation of MPs could weaken the microbial stress from requirements of energy and substrate, and increase the microbial biomass carbon (MBC) value, thus eventually improving the respiratory capacity of microbes. In addition, the biodegradable MPs significantly increased the abundance of microbes, such as Firmicutes, Myxococcota and Actinobacteriota, which were related to the function of anaerobic respiration. Overall, we concluded that the abundant DOC provided by biodegradable MPs could promote the growth of microbes in lake sediment, and they could change the structure and diversity of the microbial community, which would eventually enhance the anaerobic respiration of microbes and aggravate the GHGs emissions.
Collapse
Affiliation(s)
- Zequn Fan
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
| | - Cuiling Jiang
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
| | - Tahir Muhammad
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
| | - Imran Ali
- College of environment, Hohai University, Nanjing 210098, China
| | - Yakun Feng
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Lei Sun
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Hui Geng
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
| |
Collapse
|
33
|
Sodré FF, Arowojolu IM, Canela MC, Ferreira RS, Fernandes AN, Montagner CC, Vidal C, Dias MA, Abate G, da Silva LC, Grassi MT, Bertoldi C, Fadini PS, Urban RC, Ferraz GM, Schio NS, Waldman WR. How natural and anthropogenic factors should drive microplastic behavior and fate: The scenario of Brazilian urban freshwater. CHEMOSPHERE 2023; 340:139813. [PMID: 37586495 DOI: 10.1016/j.chemosphere.2023.139813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/23/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Brazil maintains its position at the top of the global ranking of plastic producers, yet recycling efforts have been incipient. Recent data reveals an annual production of approximately 14 million tons of plastic waste, not accounting for the surge in the usage of plastic masks and related materials due to the COVID-19 pandemic. However, what remains largely unreported is that over half of post-consumer plastic packaging in Brazil is managed without any monitoring, and it remains unclear how this will contribute to the occurrence of plastic waste and microplastics in Brazilian freshwaters. This scenario requires the consideration of several other crucial factors. Studies have been carried out mainly in marine and estuarine waters, while data on freshwaters are lacking. Brazil has continental dimensions and the highest water availability on the planet, yet the demand for water is greatest in regions with medium to low supply. Many densely populated Brazilian urban areas face chronic flood problems, possess inadequate levels of wastewater treatment, and display inadequate solid waste management practices. Consequently, urban freshwater with tropical characteristics in Brazil presents an intriguing scenario and is complementary to the most commonly studied marine environments. In this study, we explore the nuances of pollution in Brazilian urban freshwater and discuss how various parameters, such as organic matter, suspended solids, temperature, and pH, among others, influence the behavior of microplastics and their interactions with organic and inorganic contaminants. Furthermore, we address how microplastic conditions, such as biofouling, the type of plastic, or degradation level, may impact their behavior. By analyzing how these conditions change, we propose priority themes for investigating the occurrence of microplastics in Brazilian urban freshwater systems under different degrees of human impact. Ultimately, this study aims to establish a network dedicated to standardized monitoring of microplastic pollution in Brazilian urban freshwaters.
Collapse
Affiliation(s)
- Fernando F Sodré
- Institute of Chemistry, University of Brasília, Brasília, DF, Brazil.
| | - Imisi M Arowojolu
- Institute of Chemistry, University of Brasília, Brasília, DF, Brazil
| | - Maria C Canela
- Exact Sciences and Technology Center, State University of the North Fluminense Darcy Ribeiro, Campos Dos Goytacazes, RJ, Brazil
| | - Rodrigo S Ferreira
- Exact Sciences and Technology Center, State University of the North Fluminense Darcy Ribeiro, Campos Dos Goytacazes, RJ, Brazil
| | - Andreia N Fernandes
- Institute of Chemistry, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | | | - Cristiane Vidal
- Institute of Chemistry, University of Campinas, Campinas, SP, Brazil
| | - Mariana A Dias
- Institute of Chemistry, University of Campinas, Campinas, SP, Brazil
| | - Gilberto Abate
- Chemistry Department, Federal University of Paraná, PR, Brazil
| | | | - Marco T Grassi
- Chemistry Department, Federal University of Paraná, PR, Brazil
| | - Crislaine Bertoldi
- Institute of Chemistry, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil; Chemistry Department, Federal University of Paraná, PR, Brazil
| | - Pedro S Fadini
- Chemistry Department, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Roberta C Urban
- Chemistry Department, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Gabriel M Ferraz
- Chemistry Department, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Natalí S Schio
- Chemistry Department, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Walter R Waldman
- Science and Technology Center for Sustainability, Federal University of São Carlos, Sorocaba, SP, Brazil
| |
Collapse
|
34
|
Xu L, Li K, Zhang M, Guo J, Jia W, Bai X, Tian X, Huang Y. Plastic substrate and residual time of microplastics in the urban river shape the composition and structure of bacterial communities in plastisphere. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118710. [PMID: 37536136 DOI: 10.1016/j.jenvman.2023.118710] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
The widespread secondary microplastics (MPs) in urban freshwater, originating from plastic wastes, have created a new habitat called plastisphere for microorganisms. The factors influencing the structure and ecological risks of the microbial community within the plastisphere are not yet fully understood. We conducted an in-site incubation experiment in an urban river, using MPs from garbage bags (GB), shopping bags (SB), and plastic bottles (PB). Bacterial communities in water and plastisphere incubated for 2 and 4 weeks were analyzed by 16S high-throughput sequencing. The results showed the bacterial composition of the plastisphere, especially the PB, exhibited enrichment of plastic-degrading and photoautotrophic taxa. Diversity declined in GB and PB but increased in SB plastisphere. Abundance analysis revealed distinct bacterial species that were enriched or depleted in each type of plastisphere. As the succession progressed, the differences in community structure was more pronounced, and the decline in the complexity of bacterial community within each plastisphere suggested increasing specialization. All the plastisphere exhibited elevated pathogenicity at the second or forth week, compared to bacterial communities related to natural particles. These findings highlighted the continually evolving plastisphere in urban rivers was influenced by the plastic substrates, and attention should be paid to fragile plastic wastes due to the rapidly increasing pathogenicity of the bacterial community attached to them.
Collapse
Affiliation(s)
- Libo Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Kang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Mengjun Zhang
- Peking University Shenzhen Institute, Shenzhen, Guangdong, 518057, China; PKU-HKUST Shenzhen-Hongkong Institution, Shenzhen, Guangdong, 518057, China
| | - Jiabao Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Weiqian Jia
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xinyi Bai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xudong Tian
- Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control of Zhejiang, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou, 310012, China.
| | - Yi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
35
|
Burelo M, Hernández-Varela JD, Medina DI, Treviño-Quintanilla CD. Recent developments in bio-based polyethylene: Degradation studies, waste management and recycling. Heliyon 2023; 9:e21374. [PMID: 37885729 PMCID: PMC10598529 DOI: 10.1016/j.heliyon.2023.e21374] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
Nowadays, the tendency to replace conventional fossil-based plastics is increasing considerably; there is a growing trend towards alternatives that involve the development of plastic materials derived from renewable sources, which are compostable and biodegradable. Indeed, only 1.5 % of whole plastic production is part of the small bioplastics market, even when these materials with a partial or full composition from biomass are rapidly expanding. A very interesting field of investigation is currently being developed in which the disposal and processing of the final products are evaluated in terms of reducing environmental harm. This review presents a compilation of polyethylene (PE) types, their uses, and current problems in the waste management of PE and recycling. Particularly, this review is based on the capabilities to synthesize bio-based PE from natural and renewable sources as a replacement for the raw material derived from petroleum. In addition to recent studies in degradation on different types of PE with weight loss ranges from 1 to 47 %, the techniques used and the main changes observed after degradation. Finally, perspectives are presented in the manuscript about renewable and non-renewable polymers, depending on the non-degradable, biodegradable, and compostable behavior, including composting recent studies in PE. In addition, it contributes to the 3R approaches to responsible waste management of PE and advancement towards an environmentally friendly PE.
Collapse
Affiliation(s)
- Manuel Burelo
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Josué David Hernández-Varela
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Dora I. Medina
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Cecilia D. Treviño-Quintanilla
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, 64849, Nuevo Leon, Mexico
| |
Collapse
|
36
|
Guo W, Duan J, Shi Z, Yu X, Shao Z. Biodegradation of PET by the membrane-anchored PET esterase from the marine bacterium Rhodococcus pyridinivorans P23. Commun Biol 2023; 6:1090. [PMID: 37891241 PMCID: PMC10611731 DOI: 10.1038/s42003-023-05470-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Evidence for microbial biodegradation of polyethylene terephthalate (PET) has been reported, but little is known about the PET biodegradation process and molecular mechanism by marine microorganisms. Here, we show the biodegradation of PET by the membrane-anchored PET esterase from the marine bacterium Rhodococcus pyridinivorans P23, elucidate the properties of this enzyme, and propose the PET biodegradation by this strain in biofilm. We identify the PET-degrading enzyme dubbed PET esterase through activity tracking. In addition to depolymerizing PET, it hydrolyzes MHET into TPA under acid conditions. We prove that it is a low and constitutively transcribed, membrane-anchored protein displayed on the cell surface. Furthermore, we also investigate the microbial groups possessing PET esterase coupled with the TPA degradation pathway, mainly in the phyla Proteobacteria and Actinobacteriota. Clarification of the microbial PET biodegradation in the marine environment will contribute to the understanding of bioremediation of marine PET pollution.
Collapse
Affiliation(s)
- Wenbin Guo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 361005, Xiamen, Fujian, China.
| | - Jingjing Duan
- College of Environment and Ecology, Xiamen University, 361005, Xiamen, Fujian, China.
| | - Zhengguang Shi
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 361005, Xiamen, Fujian, China
- School of Advanced Manufacturing, Fuzhou University, 362251, Jinjiang, China
| | - Xue Yu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 361005, Xiamen, Fujian, China
- School of Advanced Manufacturing, Fuzhou University, 362251, Jinjiang, China
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 361005, Xiamen, Fujian, China
| |
Collapse
|
37
|
El-Dash HA, Yousef NE, Aboelazm AA, Awan ZA, Yahya G, El-Ganiny AM. Optimizing Eco-Friendly Degradation of Polyvinyl Chloride (PVC) Plastic Using Environmental Strains of Malassezia Species and Aspergillus fumigatus. Int J Mol Sci 2023; 24:15452. [PMID: 37895132 PMCID: PMC10607177 DOI: 10.3390/ijms242015452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Worldwide, huge amounts of plastics are being introduced into the ecosystem, causing environmental pollution. Generally, plastic biodegradation in the ecosystem takes hundreds of years. Hence, the isolation of plastic-biodegrading microorganisms and finding optimum conditions for their action is crucial. The aim of the current study is to isolate plastic-biodegrading fungi and explore optimum conditions for their action. Soil samples were gathered from landfill sites; 18 isolates were able to grow on SDA. Only 10 isolates were able to the degrade polyvinyl chloride (PVC) polymer. Four isolates displayed promising depolymerase activity. Molecular identification revealed that three isolates belong to genus Aspergillus, and one isolate was Malassezia sp. Three isolates showed superior PVC-biodegrading activity (Aspergillus-2, Aspergillus-3 and Malassezia) using weight reduction analysis and SEM. Two Aspergillus strains and Malassezia showed optimum growth at 40 °C, while the last strain grew better at 30 °C. Two Aspergillus isolates grew better at pH 8-9, and the other two isolates grow better at pH 4. Maximal depolymerase activity was monitored at 50 °C, and at slightly acidic pH in most isolates, FeCl3 significantly enhanced depolymerase activity in two Aspergillus isolates. In conclusion, the isolated fungi have promising potential to degrade PVC and can contribute to the reduction of environmental pollution in eco-friendly way.
Collapse
Affiliation(s)
- Heba A. El-Dash
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.A.E.-D.); (N.E.Y.); (G.Y.)
| | - Nehal E. Yousef
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.A.E.-D.); (N.E.Y.); (G.Y.)
| | - Abeer A. Aboelazm
- Microbiology and Immunology Department, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Zuhier A. Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Galal Yahya
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.A.E.-D.); (N.E.Y.); (G.Y.)
- Department of Molecular Genetics, Faculty of Biology, Technical University of Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany
| | - Amira M. El-Ganiny
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.A.E.-D.); (N.E.Y.); (G.Y.)
| |
Collapse
|
38
|
Jin J, Arciszewski J, Auclair K, Jia Z. Enzymatic polyethylene biorecycling: Confronting challenges and shaping the future. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132449. [PMID: 37690195 DOI: 10.1016/j.jhazmat.2023.132449] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
Polyethylene (PE) is a widely used plastic known for its resistance to biodegradation, posing a significant environmental challenge. Recent advances have shed light on microorganisms and insects capable of breaking down PE and identified potential PE-degrading enzymes (PEases), hinting at the possibility of PE biorecycling. Research on enzymatic PE degradation is still in its early stages, especially compared to the progress made with polyethylene terephthalate (PET). While PET hydrolases have been extensively studied and engineered for improved performance, even the products of PEases remain mostly undefined. This Perspective analyzes the current state of enzymatic PE degradation research, highlighting obstacles in the search for bona fide PEases and suggesting areas for future exploration. A critical challenge impeding progress in this field stems from the inert nature of the C-C and C-H bonds of PE. Furthermore, breaking down PE into small molecules using only one monofunctional enzyme is theoretically impossible. Overcoming these obstacles requires identifying enzymatic pathways, which can be facilitated using emerging technologies like omics, structure-based design, and computer-assisted engineering of enzymes. Understanding the mechanisms underlying PE enzymatic biodegradation is crucial for research progress and for identifying potential solutions to the global plastic pollution crisis.
Collapse
Affiliation(s)
- Jin Jin
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON KL7 3N6, Canada
| | - Jane Arciszewski
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal QC H3A 0B8, Canada
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal QC H3A 0B8, Canada
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON KL7 3N6, Canada.
| |
Collapse
|
39
|
Yuan Y, Liu P, Zheng Y, Li Q, Bian J, Liang Q, Su T, Dian L, Qi Q. Unique Raoultella species isolated from petroleum contaminated soil degrades polystyrene and polyethylene. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115232. [PMID: 37429089 DOI: 10.1016/j.ecoenv.2023.115232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/12/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023]
Abstract
Polyolefin plastics, such as polyethylene (PE) and polystyrene (PS), are the most widely used synthetic plastics in our daily life. However, the chemical structure of polyolefin plastics is composed of carbon-carbon (C-C) bonds, which is extremely stable and makes polyolefin plastics recalcitrant to degradation. The growing accumulation of plastic waste has caused serious environmental pollution and has become a global environmental concern. In this study, we isolated a unique Raoultella sp. DY2415 strain from petroleum-contaminated soil that can degrade PE and PS film. After 60 d of incubation with strain DY2415, the weight of the UV-irradiated PE (UVPE) film and PS film decreased by 8% and 2%, respectively. Apparent microbial colonization and holes on the surface of the films were observed by scanning electron microscopy (SEM). Furthermore, the Fourier transform infrared spectrometer (FTIR) results showed that new oxygen-containing functional groups such as -OH and -CO were introduced into the polyolefin molecular structure. Potential enzymes that may be involved in the biodegradation of polyolefin plastics were analyzed. These results demonstrate that Raoultella sp. DY2415 has the ability to degrade polyolefin plastics and provide a basis for further investigating the biodegradation mechanism.
Collapse
Affiliation(s)
- Yingbo Yuan
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Pan Liu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Yi Zheng
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Qingbin Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Junling Bian
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Tianyuan Su
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China.
| | - Longyang Dian
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China.
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| |
Collapse
|
40
|
Xiang P, Zhang Y, Zhang T, Wu Q, Zhao C, Li Q. A novel bacterial combination for efficient degradation of polystyrene microplastics. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131856. [PMID: 37331064 DOI: 10.1016/j.jhazmat.2023.131856] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
This study aimed to investigate the combined decomposition of polystyrene (PS) microplastics using three bacterial cultures: Stenotrophomonas maltophilia, Bacillus velezensis, and Acinetobacter radioresistens. The ability of all three strains to grow on medium containing PS (Mn 90,000 Da, Mw 241,200 Da) microplastics as the sole carbon source was examined. After 60 days of A. radioresistens treatment, the maximum weight loss of the PS microplastics was found to be 16.7 ± 0.6% (half-life 251.1 d). After 60 days of treatment with S. maltophilia and B. velezensis, the maximum weight loss of PS microplastics was 43.5 ± 0.8% (half-life 74.9 d). After 60 days of treatment with S. maltophilia, B. velezensis, and A. radioresistens, the weight loss of the PS microplastics was 17.0 ± 0.2% (half-life 224.2 d). The S. maltophilia and B. velezensis treatment showed a more significant degradation effect after 60 days. This result was attributed to interspecific assistance and interspecific competition. Biodegradation of PS microplastics was confirmed using scanning electron microscopy, water contact angle, high-temperature gel chromatography, Fourier transform infrared spectroscopy and thermogravimetric analysis. This study is the first to explore the degradation ability of different bacterial combinations on PS microplastics, providing a reference for future research on the biodegradation technology of mixed bacteria.
Collapse
Affiliation(s)
- Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Yunfeng Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China; School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
| |
Collapse
|
41
|
Luo G, Liang B, Cui H, Kang Y, Zhou X, Tao Y, Lu L, Fan L, Guo J, Wang A, Gao SH. Determining the Contribution of Micro/Nanoplastics to Antimicrobial Resistance: Challenges and Perspectives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12137-12152. [PMID: 37578142 DOI: 10.1021/acs.est.3c01128] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Microorganisms colonizing the surfaces of microplastics form a plastisphere in the environment, which captures miscellaneous substances. The plastisphere, owning to its inherently complex nature, may serve as a "Petri dish" for the development and dissemination of antibiotic resistance genes (ARGs), adding a layer of complexity in tackling the global challenge of both microplastics and ARGs. Increasing studies have drawn insights into the extent to which the proliferation of ARGs occurred in the presence of micro/nanoplastics, thereby increasing antimicrobial resistance (AMR). However, a comprehensive review is still lacking in consideration of the current increasingly scattered research focus and results. This review focuses on the spread of ARGs mediated by microplastics, especially on the challenges and perspectives on determining the contribution of microplastics to AMR. The plastisphere accumulates biotic and abiotic materials on the persistent surfaces, which, in turn, offers a preferred environment for gene exchange within and across the boundary of the plastisphere. Microplastics breaking down to smaller sizes, such as nanoscale, can possibly promote the horizontal gene transfer of ARGs as environmental stressors by inducing the overgeneration of reactive oxygen species. Additionally, we also discussed methods, especially quantitatively comparing ARG profiles among different environmental samples in this emerging field and the challenges that multidimensional parameters are in great necessity to systematically determine the antimicrobial dissemination risk in the plastisphere. Finally, based on the biological sequencing data, we offered a framework to assess the AMR risks of micro/nanoplastics and biocolonizable microparticles that leverage multidimensional AMR-associated messages, including the ARGs' abundance, mobility, and potential acquisition by pathogens.
Collapse
Affiliation(s)
- Gaoyang Luo
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Hanlin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuanyuan Kang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Xu Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Yu Tao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Lu Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| |
Collapse
|
42
|
Perera P, Herath H, Paranagama PA, Wijesinghe P, Attanayake RN. Wood decay fungi show enhanced biodeterioration of low-density polyethylene in the absence of wood in culture media. PLoS One 2023; 18:e0288133. [PMID: 37494333 PMCID: PMC10370761 DOI: 10.1371/journal.pone.0288133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 06/20/2023] [Indexed: 07/28/2023] Open
Abstract
The involvement of microorganisms in low-density polyethylene (LDPE) degradation is widely studied across the globe. Even though soil, landfills, and garbage dumps are reported to be promising niches for such organisms, recently the involvement of wood decay fungi in polyethylene degradation is highlighted. In light of this, 50 fungal samples isolated from decaying hardwoods were assessed for their wood degradation ability and for their depolymerization enzymatic activities. For the LDPE deterioration assay, 22 fungal isolates having wood decay ability and de-polymerization enzymatic activities were selected. Fungal cultures with LDPE sheets (2 cm x 10 cm x 37.5 μm) were incubated in the presence and in the absence of wood as the carbon source (C) for 45 days. Degradation was measured by weight loss, changes in tensile properties, reduction in contact angle, changes of functional groups in Fourier-transform infrared spectroscopy, Scanning electron microscopic imaging, and CO2 evolution by strum test. Among the isolates incubated in the absence of wood, Phlebiopsis flavidoalba out-performed the other fungal species showing the highest percentage of weight reduction (23.68 ± 0.34%), and the lowest contact angle (64.28° ± 5.01). Biodegradation of LDPE by P. flavidoalba was further supported by 46.79 ± 0.67% of the mass loss, and 3.07 ± 0.13% of CO2 emission (mg/L) in the strum test. The most striking feature of the experiment was that all the isolates showed elevated degradation of LDPE in the absence of wood than that in the presence of wood. It is clear that in the absence of a preferred C source, wood decay fungi thrive to utilize any available C source (LDPE in this case) showing the metabolic adaptability of fungi to survive under stressful conditions. A potential mechanism for LDPE degradation is also proposed.
Collapse
Affiliation(s)
- Prameesha Perera
- Department of Plant and Molecular Biology, University of Kelaniya, Kelaniya, Sri Lanka
| | - Harshini Herath
- Department of Plant and Molecular Biology, University of Kelaniya, Kelaniya, Sri Lanka
| | | | | | - Renuka N Attanayake
- Department of Plant and Molecular Biology, University of Kelaniya, Kelaniya, Sri Lanka
| |
Collapse
|
43
|
Liu M, Wang C, Zhu B. Drought Alleviates the Negative Effects of Microplastics on Soil Micro-Food Web Complexity and Stability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37471306 DOI: 10.1021/acs.est.3c01538] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Soil ecosystems are under considerable pressure due to anthropogenic factors, including microplastics (MPs) pollution and drought. However, little is known about the interactive effects of MPs and drought on soil organisms, especially soil micro-food web. We conducted a microcosm experiment with MPs pollution (including two types and two sizes of MPs) and drought to investigate their interaction effects on soil microbial, protist, and nematode communities in soil micro-food web. We found that MPs significantly decreased the complexity and stability of soil micro-food web, with greater negative effects of biodegradable and smaller-sized MPs than conventional and larger-sized MPs. Drought had negative effects on soil micro-food web in the non-MPs pollution soils while increasing the complexity and stability of soil micro-food web in the MPs pollution soils. Drought increased the proportion of negative correlations between bacteria and fungi in the biodegradable MPs soils while decreasing the proportion of negative correlations between protists and nematodes in the smaller-sized MPs soils. Our study reveals that drought may alleviate the negative effects of MPs on soil micro-food web by reducing competition among lower trophic levels in the biodegradable MPs pollution soils while reducing competition among higher trophic levels in the smaller-sized MPs pollution soils.
Collapse
Affiliation(s)
- Mengli Liu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Chong Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Biao Zhu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
44
|
Thakur B, Singh J, Singh J, Angmo D, Vig AP. Biodegradation of different types of microplastics: Molecular mechanism and degradation efficiency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162912. [PMID: 36933716 DOI: 10.1016/j.scitotenv.2023.162912] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023]
Abstract
Microplastics are widely distributed and a major pollutant in our ecosystem. Microplastics (MPs) are very small size plastic (<5 mm) present in environment, which comes from industrial, agricultural and household wastes. Plastic particles are more durable due to the presence of plasticizers and chemicals or additives. These plastics pollutants are more resistant to degradation. Inadequate recycling and excessive use of plastics lead to a large amount of waste accumulating in the terrestrial ecosystem, causing a risk to humans and animals. Thus, there is an urgent need to control microplastic pollution by employing different microorganisms to overcome this hazardous issue for the environment. Biological degradation depends upon different aspects, including chemical structure, functional group, molecular weight, crystallinity and additives. Molecular mechanisms for degradation of MPs through various enzymes have not extremely studied. It is necessary to degrade the MPs and overcome this problem. This review approaches different molecular mechanisms to degrade different types of microplastics and summarize the degradation efficiency of different types of bacteria, algae and fungal strains. The present study also summarizes the potential of microorganisms to degrade different polymers and the role of different enzymes in degradation of microplastics. To the outstanding of our awareness, this is the first article devoted to the role of microorganisms with their degradation efficiency. Furthermore, it also summarizes the role of intracellular and extracellular enzymes in biological degradation mechanism of microplastics.
Collapse
Affiliation(s)
- Babita Thakur
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Jaswinder Singh
- Department of Zoology, Khalsa College Amritsar, Punjab, India.
| | - Joginder Singh
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Deachen Angmo
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Adarsh Pal Vig
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
45
|
Ahmed ASS, Billah MM, Ali MM, Bhuiyan MKA, Guo L, Mohinuzzaman M, Hossain MB, Rahman MS, Islam MS, Yan M, Cai W. Microplastics in aquatic environments: A comprehensive review of toxicity, removal, and remediation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162414. [PMID: 36868275 DOI: 10.1016/j.scitotenv.2023.162414] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
The occurrence of microplastics (MPs) in aquatic environments has been a global concern because they are toxic and persistent and may serve as a vector for many legacies and emerging pollutants. MPs are discharged to aquatic environments from different sources, especially from wastewater plants (WWPs), causing severe impacts on aquatic organisms. This study mainly aims to review the Toxicity of MPs along with plastic additives in aquatic organisms at various trophic compartments and available remediation methods/strategies for MPs in aquatic environments. Occurrences of oxidative stress, neurotoxicity, and alterations in enzyme activity, growth, and feeding performance were identical in fish due to MPs toxicity. On the other hand, growth inhibition and ROS formation were observed in most of the microalgae species. In zooplankton, potential impacts were acceleration of premature molting, growth retardation, mortality increase, feeding behaviour, lipid accumulation, and decreased reproduction activity. MPs togather with additive contaminants could also exert some toxicological impacts on polychaete, including neurotoxicity, destabilization of the cytoskeleton, reduced feeding rate, growth, survivability and burrowing ability, weight loss, and high rate of mRNA transcription. Among different chemical and biological treatments for MPs, high removal rates have been reported for coagulation and filtration (>86.5 %), electrocoagulation (>90 %), advanced oxidation process (AOPs) (30 % to 95 %), primary sedimentation/Grit chamber (16.5 % to 58.84 %), adsorption removal technique (>95 %), magnetic filtration (78 % to 93 %), oil film extraction (>95 %), and density separation (95 % to 100 %). However, desirable extraction methods are required for large-scale research in MPs removal from aquatic environments.
Collapse
Affiliation(s)
- A S Shafiuddin Ahmed
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong; Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong.
| | - Md Masum Billah
- Inter-Departmental Research Centre for Environmental Science-CIRSA, University of Bologna, Ravenna Campus, Italy
| | - Mir Mohammad Ali
- Department of Aquaculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Md Khurshid Alam Bhuiyan
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, Cadiz, Spain
| | - Laodong Guo
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, USA
| | - Mohammad Mohinuzzaman
- Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Sonapur, Bangladesh
| | - M Belal Hossain
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Sonapur, Bangladesh; School of Engineering and Built Environment, Griffith University, Brisbane, Australia
| | - M Safiur Rahman
- Water Quality Research Laboratory, Chemistry Division, Atomic Energy Center, Atomic Energy Commission, Dhaka, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Meng Yan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong
| | - Wenlong Cai
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong; Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong
| |
Collapse
|
46
|
Park JW, Kim M, Kim SY, Bae J, Kim TJ. Biodegradation of polystyrene by intestinal symbiotic bacteria isolated from mealworms, the larvae of Tenebrio molitor. Heliyon 2023; 9:e17352. [PMID: 37426801 PMCID: PMC10329137 DOI: 10.1016/j.heliyon.2023.e17352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023] Open
Abstract
Objectives Polystyrene is a plastic that leads to environmental pollution. In particular, expanded polystyrene is very light and takes up much space, causing additional environmental problems. The aim of this study was to isolate new symbiotic bacteria which degraded polystyrene from mealworms. Methods The population of polystyrene degrading bacteria was increased by enrichment culture of intestinal bacteria from mealworms with polystyrene as a sole carbon source. The degradation activity of isolated bacteria was evaluated by morphological change of micro-polystyrene particles and the surface change of polystyrene films. Results Eight isolated species (Acinetobacter septicus, Agrobacterium tumefaciens, Klebsiella grimontii, Pseudomonas multiresinivorans, Pseudomonas nitroreducens, Pseudomonas plecoglossicida, Serratia marcescens, and Yokenella regensburgei) were identified that degrade polystyrene. Conclusion Bacterial identification shows that a broad spectrum of bacteria decomposing polystyrene coexists in the intestinal tract of mealworms.
Collapse
Affiliation(s)
- Ji-Won Park
- Department of Forest Products and Biotechnology, College of Science and Technology, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea
| | - Minjun Kim
- Department of Forest Products and Biotechnology, College of Science and Technology, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea
| | - Seo-Young Kim
- Department of Forest Products and Biotechnology, College of Science and Technology, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea
| | - Jihye Bae
- Department of Forest Products and Biotechnology, College of Science and Technology, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea
| | - Tae-Jong Kim
- Department of Forest Products and Biotechnology, College of Science and Technology, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea
| |
Collapse
|
47
|
Mattelin V, Verfaille L, Kundu K, De Wildeman S, Boon N. A New Colorimetric Test for Accurate Determination of Plastic Biodegradation. Polymers (Basel) 2023; 15:polym15102311. [PMID: 37242886 DOI: 10.3390/polym15102311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
As plastic waste is accumulating in both controlled waste management settings and natural settings, much research is devoted to search for solutions, also in the field of biodegradation. However, determining the biodegradability of plastics in natural environments remains a big challenge due to the often very low biodegradation rates. Many standardised test methods for biodegradation in natural environments exist. These are often based on mineralisation rates in controlled conditions and are thus indirect measurements of biodegradation. It is of interest for both researchers and companies to have tests that are more rapid, easier, and more reliable to screen different ecosystems and/or niches for their plastic biodegradation potential. In this study, the goal is to validate a colorimetric test, based on carbon nanodots, to screen biodegradation of different types of plastics in natural environments. After introducing carbon nanodots into the matrix of the target plastic, a fluorescent signal is released upon plastic biodegradation. The in-house-made carbon nanodots were first confirmed regarding their biocompatibility and chemical and photostability. Subsequently, the effectivity of the developed method was evaluated positively by an enzymatic degradation test with polycaprolactone with Candida antarctica lipase B. Finally, validation experiments were performed with enriched microorganisms and real environmental samples (freshwater and seawater), of which the results were compared with parallel, frequently used biodegradation measures such as O2 and CO2, dissolved organic carbon, growth and pH, to assess the reliability of the test. Our results indicate that this colorimetric test is a good alternative to other methods, but a combination of different methods gives the most information. In conclusion, this colorimetric test is a good fit to screen, in high throughput, the depolymerisation of plastics in natural environments and under different conditions in the lab.
Collapse
Affiliation(s)
- Valérie Mattelin
- Center for Microbial Ecology and Technology (CMET), Ghent University, 9000 Ghent, Belgium
| | - Lennert Verfaille
- Center for Microbial Ecology and Technology (CMET), Ghent University, 9000 Ghent, Belgium
| | - Kankana Kundu
- Center for Microbial Ecology and Technology (CMET), Ghent University, 9000 Ghent, Belgium
| | | | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, 9000 Ghent, Belgium
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), 9000 Ghent, Belgium
| |
Collapse
|
48
|
Nyamjav I, Jang Y, Park N, Lee YE, Lee S. Physicochemical and Structural Evidence that Bacillus cereus Isolated from the Gut of Waxworms ( Galleria mellonella Larvae) Biodegrades Polypropylene Efficiently In Vitro. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2023; 31:1-14. [PMID: 37361349 PMCID: PMC10171730 DOI: 10.1007/s10924-023-02878-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 06/28/2023]
Abstract
Biodegradation of plastic waste using microorganisms has been proposed as one of the solutions to the increasing worldwide plastic waste. Polypropylene (PP) is the second most used plastic used in various industries, and it has been widely used in the production of personal protective equipment such as masks due to the COVID-19 pandemic. Therefore, biodegradation of PP becomes very important. Here, we present results on the physicochemical and structural studies of PP biodegradation by Bacillus cereus isolated from the gut of the waxworms, Galleria mellonella larvae. We also studied the biodegradability of PP by the gut microbiota compared with Bacillus cereus. We analyzed the microbial degradation of the PP surface using scanning electron microscopy and energy - dispersive X-ray spectroscopy and confirmed that the physical and chemical changes were caused by Bacillus cereus and the gut microbiota. The chemical structural changes were further investigated using X-ray photoelectron microscopy and Fourier - transform - infrared spectroscopy, and it was confirmed that the oxidation of the PP surface proceeded with the formation of carbonyl groups (C=O), ester groups (C-O), and hydroxyl groups (-OH) by Bacillus cereus. Additionally, the gut microbiota composed of diverse microbial species showed equal oxidation of PP compared to Bacillus cereus. More importantly, high temperature gel permeation chromatography (HT-GPC) analysis showed that Bacillus cereus exhibited quantitatively a higher biodegradability of PP compared to the gut microbiota. Our results suggest that Bacillus cereus possesses a complete set of enzymes required to initiate the oxidation of the carbon chain of PP and will be used to discover new enzymes and genes that are involved in degrading PP. Supplementary Information The online version contains supplementary material available at 10.1007/s10924-023-02878-y.
Collapse
Affiliation(s)
- Indra Nyamjav
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988 Republic of Korea
| | - Yejin Jang
- School of Undergraduate Studies, College of Transdisciplinary Studies, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988 Republic of Korea
| | - Nohyoon Park
- School of Undergraduate Studies, College of Transdisciplinary Studies, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988 Republic of Korea
| | - Ye Eun Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988 Republic of Korea
| | - Sukkyoo Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988 Republic of Korea
| |
Collapse
|
49
|
Chigwada AD, Tekere M. The plastic and microplastic waste menace and bacterial biodegradation for sustainable environmental clean-up a review. ENVIRONMENTAL RESEARCH 2023; 231:116110. [PMID: 37172684 DOI: 10.1016/j.envres.2023.116110] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Environment plastic litter accumulation is a significant concern, needing urgent advancements in plastic waste management. Recent investigations into plastic biodegradation by bacteria and their enzymes are creating exciting unique opportunities for the development of biotechnological plastic waste treatment methods. This review summarizes information on bacterial and enzymatic biodegradation of plastic in a wide range of synthetic plastics such as polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polystyrene (PS), polyurethane (PUR), polytetrafluoroethylene (PTFE) and polyvinyl chloride (PVC). Plastic biodegradation is facilitated by Acinetobacter, Bacillus, Brevibacillus, Escherichia, Pseudomonas, Micrococcus, Streptomyces, and Rhodococcus bacteria, and enzymes such as proteases, esterases, lipases, and glycosidases. Molecular and analytical procedures used to analyze biodegradation processes are outlined, as are the obstacles in verifying plastic breakdown using these methods. Taken together, the findings of this study will contribute significantly to the construction of a library of high-efficiency bacterial isolates and consortiums and their enzymes for use in plastic biosynthesis. This information is useful to researchers investigating plastic bioremediation and a supplement to the scientific and grey literature already accessible. Finally, the review focuses on expanding the understanding of bacterial capacity to break-down plastic utilizing modern biotechnological methods, bio-nanotechnological-based materials, and their future role in resolving pollution problems.
Collapse
Affiliation(s)
- Aubrey Dickson Chigwada
- Department Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), Florida Campus, Roodepoort, 1709, South Africa
| | - Memory Tekere
- Department Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), Florida Campus, Roodepoort, 1709, South Africa.
| |
Collapse
|
50
|
Huang J, Tan X, Ali I, Duan Z, Naz I, Cao J, Ruan Y, Wang Y. More effective application of biochar-based immobilization technology in the environment: Understanding the role of biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162021. [PMID: 36775150 DOI: 10.1016/j.scitotenv.2023.162021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
In recent years, biochar-based immobilization technology (BIT) has been widely used to treat different environmental issues because of its cost-effectiveness and high removal performance. However, the complexity of the real environment is always ignored, which hinders the transfer of the BIT from lab-scale to commercial applications. Therefore, in this review, the analysis is performed separately on the internal side of the BIT (microbial fixation and growth) and on the external side of the BIT (function) to achieve effective BIT performance. Importantly, the internal two stages of BIT have been discussed concisely. Further, the usage of BIT in different areas is summarized precisely. Notably, the key impacts were systemically analyzed during BIT applications including environmental conditions and biochar types. Finally, the suggestions and perspectives are elucidated to solve current issues regarding BIT.
Collapse
Affiliation(s)
- Jiang Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Imran Ali
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhipeng Duan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Iffat Naz
- Department of Biology, Deanship of Educational Services, Qassim University, Buraidah 51452, Kingdom of Saudi Arabia
| | - Jun Cao
- National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China
| | - Yinlan Ruan
- Institute for Photonics and Advanced Sensing, The University of Adelaide, SA 5005, Australia
| | - Yimin Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|