1
|
Zhou TY, Guo YY, Jing QQ, Wei MY, Xu WF, Gu YC, Shao CL. Semisynthesis and biological evaluation of 17-hydroxybrevianamide N derivatives as anti-inflammatory agents by mediating NF-κB and MAPK signaling pathways. Eur J Med Chem 2025; 290:117541. [PMID: 40174263 DOI: 10.1016/j.ejmech.2025.117541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/04/2025]
Abstract
Chronic inflammation is a trigger for many diseases that affect approximately 10-20 % of the population around the world. Herein, (±)-17-hydroxybrevianamide N (1) was isolated from the fungus Aspergillus sp. (CHNSCLM-0151) and exhibited strong inhibitory activity against nitric oxide (NO) in lipopolysaccharide (LPS)-induced RAW264.7 cell. A series of new derivatives (±)-3-(±)-29 was semisynthesized by structural modification of the imide, phenolic hydroxyl, and carbonyl groups from the natural product (±)-1. The results of anti-inflammatory activity demonstrated that (±)-4, (±)-6, (±)-9, (±)-22, (±)-23, and (±)-24 exhibited obviously NO inhibitory (P < 0.0001) in LPS-stimulated RAW264.7 cells. To further investigate the relationship between chirality and activity, the enantiomers of the above six compounds were obtained by chiral resolution. As expected, the bioactivity results indicated stereoselectivity in the anti-inflammatory effect among the different isomers. In particular, compound (+)-4S-23 inhibited NO concentration with an IC50 value of 0.5 μM, demonstrating 3-fold greater potency compared to its (R)-enantiomer, and achieving 40-fold superior potency over the positive control NG-monomethyl-l-arginine (L-NMMA). This compound demonstrated suppression of TNF-α (25.7 ± 1.5 %), IL-6 (54.5 ± 3.9 %) and IL-1β (92.9 ± 4.1 %) production at 2 μM. More importantly, mechanistic investigations revealed that (+)-4S-23 (0.2 μM) modulates the MAPK signaling pathway, specifically downregulating phosphorylation of p38, ERK, and JNK. Furthermore, (+)-4S-23 also exhibited potent inhibitory activity against the NF-κB pathway by suppressing the phosphorylation of IκB-α and blocking nuclear translocation of phosphorylated p65. Notably, these findings position (+)-4S-23 as a promising candidate for development as a novel anti-inflammatory therapeutic targeting both MAPK and NF-κB signaling nodes.
Collapse
Affiliation(s)
- Tian-Yi Zhou
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Yang-Yang Guo
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Qian-Qian Jing
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Wei-Feng Xu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China; School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China.
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, People's Republic of China.
| |
Collapse
|
2
|
Guedes M, Vieira de Castro J, Lima AC, M F Gonçalves V, Tiritan ME, L Reis R, Ferreira H, M Neves N. Fishroesomes show intrinsic anti-inflammatory bioactivity and ability as celecoxib carriers in vivo. Eur J Pharm Biopharm 2025; 207:114587. [PMID: 39645203 DOI: 10.1016/j.ejpb.2024.114587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/21/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
According to the World Health Organization (WHO), chronic inflammatory-related diseases represent the greatest threat to human health. Indeed, failure in the resolution of inflammation leads to serious pathological conditions, such as cardiovascular diseases, arthritis, cancer, diabetes, autoimmune diseases, and neurodegenerative disorders that are often associated with extremely high human suffering and societal and economic burdens. Despite the number and efficacy of available therapeutic agents have been increased, the serious side effects associated with some of them often create a very high risk/benefit ratio for patients. Therefore, herein, a drug delivery system was engineered to overcome important drawbacks of conventional therapies and to have a synergistic action with the incorporated drug. Indeed, it will have an added beneficial role in controlling inflammation. For that, sardine (Sardina pilchardus) roe was used as the lipidic source to produce bioactive liposomes, namely fishroesomes. These spherical vesicles with ≈326 nm in size and a significant negative surface charge (≈-31 mV) were able to encapsulate and control the release of the anti-inflammatory drug celecoxib. Moreover, fishroesomes were cytocompatible for different cell types (chondrocytes and macrophages), at concentrations in which they present anti-inflammatory properties. Importantly, fishroesomes were more effective in reducing pro-inflammatory mediators than the free drug. We also demonstrated that a single intra-articular injection of the fishroesomes encapsulating or not celecoxib in an experimental rat model of inflammatory arthritis was safe and more effective in controlling the pain and reducing the synovial inflammation compared to the free drug. Notably, as the celecoxib concentration in the sardine roe-derived liposomes was less than half of the amount of free drug, this study demonstrates the value of fishroesomes in counteracting inflammation. Therefore, the developed formulations may be considered a promising therapeutic option for inflammatory conditions.
Collapse
Affiliation(s)
- Marta Guedes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edifício 1 (Sede), 4805-694 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Vieira de Castro
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edifício 1 (Sede), 4805-694 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Cláudia Lima
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edifício 1 (Sede), 4805-694 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Virgínia M F Gonçalves
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Maria Elizabeth Tiritan
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edifício 1 (Sede), 4805-694 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Helena Ferreira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edifício 1 (Sede), 4805-694 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Nuno M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edifício 1 (Sede), 4805-694 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
3
|
Lee EG, Yim SK, Kang SM, Ahn BJ, Kim CK, Lee M, Tark D, Lee GH. Phlorofucofuroeckol-A: A Natural Compound with Potential to Attenuate Inflammatory Diseases Caused by Airborne Fine Dust. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:165. [PMID: 39859147 PMCID: PMC11767036 DOI: 10.3390/medicina61010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Background and Objectives: Persistent exposure to airborne fine dust (FD) particles contributing to air pollution has been linked to various human health issues, including respiratory inflammation, allergies, and skin diseases. We aimed to identify potential seaweed anti-inflammatory bioactive reagents and determine their effects on systemic inflammatory responses induced by FD particles. Materials and Methods: While exploring anti-inflammatory bioactive reagents, we purified compounds with potential anti-inflammatory effects from the seaweed extracts of Ecklonia cava, Ecklonia stolonifera, and Codium fragile. Structural analyses of the purified compounds siphonaxanthin (Sx), fucoxanthin (Fx), dieckol (Dk), and phlorofucofuroeckol-A (PFF-A) were performed using NMR and LC-MS/MS. Results: Notably, these compounds, especially PFF-A, showed significant protective effects against FD-induced inflammatory responses in RAW 264.7 cells without cytotoxicity. Further investigation of inflammatory-associated signaling demonstrated that PFF-A inhibited IL-1β expression by modulating the NF-κB/MAPK signal pathway in FD-induced RAW 264.7 cells. Additionally, gene profiling revealed the early activation of various signature genes involved in the production of inflammatory cytokines and chemokines using gene profiling. Treatment with PFF-A markedly reduced the expression levels of pro-inflammatory and apoptosis-related genes and even elevated the Bmp gene families. Conclusions: These results suggested that PFF-A is a potential natural therapeutic candidate for managing FD-induced inflammatory response.
Collapse
Affiliation(s)
- Eun-Gyeong Lee
- Laboratory for Infection Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea; (E.-G.L.); (S.-M.K.)
| | - Sung-Kun Yim
- Marine Biotechnology Research Center, Jeonnam Bioindustry Foundation, Wando-gun 59108, Republic of Korea; (S.-K.Y.); (B.J.A.)
| | - Sang-Min Kang
- Laboratory for Infection Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea; (E.-G.L.); (S.-M.K.)
| | - Byung Jae Ahn
- Marine Biotechnology Research Center, Jeonnam Bioindustry Foundation, Wando-gun 59108, Republic of Korea; (S.-K.Y.); (B.J.A.)
| | - Chang-Kwon Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea; (C.-K.K.); (M.L.)
| | - Mina Lee
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea; (C.-K.K.); (M.L.)
| | - Dongseob Tark
- Laboratory for Infection Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea; (E.-G.L.); (S.-M.K.)
| | - Gun-Hee Lee
- Laboratory for Infection Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea; (E.-G.L.); (S.-M.K.)
| |
Collapse
|
4
|
Eissa AH, Abdel-Tawab AM, El-Ablack FZ, Ayyad SEN. Cytotoxic and anti-bacterial evaluation of two new aromatic A-ring steroids isolated from the Red Sea soft coral Dendronephthya spp.. Nat Prod Res 2025; 39:94-102. [PMID: 37665217 DOI: 10.1080/14786419.2023.2254452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
A successful column chromatography of a CHCl3/MeOH crude extract of Dendronephthya spp. soft coral led to the isolation of two new aromatic A-ring steroids (1-2), together with three known compounds (3-5). Both 1 and 2 are 19-norsteroids. The chemical structures were elucidated based on extensive 1D, 2D NMR, and EIMS analyses. In cytotoxic bioassays, compounds 1-5 were tested against three cancer cell lines: MCF-7, NCI-1299, and HepG2, with IC50 in the ranges of 22.1-85.4, 26.9-88.7, and 25.9-93.7 μM, respectively. Compounds 1, 2, and 5 showed moderate degrees of inhibition against Escherichia coli and Pseudomonas sp. at 100 and 150 µg/mL, while exhibiting weak inhibition against Bacillus cereus and Staphylococcus aureus at 150 µg/mL.
Collapse
Affiliation(s)
- Ahmed H Eissa
- Department of Chemistry, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Asmaa M Abdel-Tawab
- Marine Biotechnology and Natural Products Laboratory, National Institute of Oceanography and Fisheries, Cairo, Egypt
| | - Fawzia Z El-Ablack
- Department of Chemistry, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Seif-Eldin N Ayyad
- Department of Chemistry, Faculty of Science, Damietta University, New Damietta, Egypt
| |
Collapse
|
5
|
Kantasrila R, Pandith H, Balslev H, Wangpakapattanawong P, Panyadee P, Inta A. Ethnobotany and phytochemistry of plants used to treat musculoskeletal disorders among Skaw Karen, Thailand. PHARMACEUTICAL BIOLOGY 2024; 62:62-104. [PMID: 38131672 PMCID: PMC10763916 DOI: 10.1080/13880209.2023.2292261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
CONTEXT Musculoskeletal system disorders (MSD) are prevalent around the world affecting the health of people, especially farmers who work hard in the field. Karen farmers use many medicinal plants to treat MSD. OBJECTIVE This study collects traditional plant-based remedies used by the Skaw Karen to treat MSD and evaluates their active phytochemical compounds. MATERIALS AND METHODS The ethnobotanical study was conducted in six Karen villages in Chiang Mai province using semi-structured interviews were of 120 informants. The data were analyzed using ethnobotanical indices including use values (UV), choice value (CV), and informant consensus factor (ICF). Consequently, the 20 most important species, according to the indices, were selected for phytochemical analysis using LC-MS/MS. RESULTS A total of 3731 use reports were obtained for 139 species used in MSD treatment. The most common ailments treated with those plants were muscular pain. A total of 172 high-potential active compounds for MSD treatment were identified. Most of them were flavonoids, terpenoids, alkaloids, and steroids. The prevalent phytochemical compounds related to treat MSD were 9-hydroxycalabaxanthone, dihydrovaltrate, morroniside, isoacteoside, lithocholic acid, pomiferin, cucurbitacin E, leonuriside A, liriodendrin, and physalin E. Sambucus javanica Reinw. ex Blume (Adoxaceae), Betula alnoides Buch.-Ham. ex D.Don (Betulaceae), Blumea balsamifera (L.) DC. (Asteraceae), Plantago major L. (Plantaginaceae) and Flacourtia jangomas (Lour.) Raeusch. (Salicaceae) all had high ethnobotanical index values and many active compounds. DISCUSSION AND CONCLUSIONS This study provides valuable information, demonstrating low-cost medicine plants that are locally available. It is a choice of treatment for people living in remote areas.
Collapse
Affiliation(s)
- Rapeeporn Kantasrila
- Department of Biology, Faculty of Science, Chiang Mai University, Thailand
- The Botanical Garden Organization, Queen Sirikit Botanic Garden, Chiang Mai, Thailand
| | | | - Henrik Balslev
- Department of Biology, Aarhus University, Aarhus C, Denmark
| | | | - Prateep Panyadee
- The Botanical Garden Organization, Queen Sirikit Botanic Garden, Chiang Mai, Thailand
| | - Angkhana Inta
- Department of Biology, Faculty of Science, Chiang Mai University, Thailand
| |
Collapse
|
6
|
Yang G, Lin M, Kaliaperumal K, Lu Y, Qi X, Jiang X, Xu X, Gao C, Liu Y, Luo X. Recent Advances in Anti-Inflammatory Compounds from Marine Microorganisms. Mar Drugs 2024; 22:424. [PMID: 39330305 PMCID: PMC11433063 DOI: 10.3390/md22090424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Marine microbial secondary metabolites with diversified structures have been found as promising sources of anti-inflammatory lead compounds. This review summarizes the sources, chemical structures, and pharmacological properties of anti-inflammatory natural products reported from marine microorganisms in the past three years (2021-2023). Approximately 252 anti-inflammatory compounds, including 129 new ones, were predominantly obtained from marine fungi and they are structurally divided into polyketides (51.2%), terpenoids (21.0%), alkaloids (18.7%), amides or peptides (4.8%), and steroids (4.3%). This review will shed light on the development of marine microbial secondary metabolites as potential anti-inflammatory lead compounds with promising clinical applications in human health.
Collapse
Affiliation(s)
- Guihua Yang
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Miaoping Lin
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Kumaravel Kaliaperumal
- Unit of Biomaterials Research, Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India
| | - Yaqi Lu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xin Qi
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiaodong Jiang
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xinya Xu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Chenghai Gao
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yonghong Liu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiaowei Luo
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
7
|
Alghrably M, Tammam MA, Koutsaviti A, Roussis V, Lopez X, Bennici G, Sharfalddin A, Almahasheer H, Duarte CM, Emwas AH, Ioannou E, Jaremko M. Metabolites from Marine Macroorganisms of the Red Sea Acting as Promoters or Inhibitors of Amylin Aggregation. Biomolecules 2024; 14:951. [PMID: 39199339 PMCID: PMC11352613 DOI: 10.3390/biom14080951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Amylin is part of the endocrine pancreatic system that contributes to glycemic control, regulating blood glucose levels. However, human amylin has a high tendency to aggregate, forming isolated amylin deposits that are observed in patients with type 2 diabetes mellitus. In search of new inhibitors of amylin aggregation, we undertook the chemical analyses of five marine macroorganisms encountered in high populations in the Red Sea and selected a panel of 10 metabolites belonging to different chemical classes to evaluate their ability to inhibit the formation of amyloid deposits in the human amylin peptide. The thioflavin T assay was used to examine the kinetics of amyloid aggregation, and atomic force microscopy was employed to conduct a thorough morphological examination of the formed fibrils. The potential ability of these compounds to interact with the backbone of peptides and compete with β-sheet formation was analyzed by quantum calculations, and the interactions with the amylin peptide were computationally examined using molecular docking. Despite their structural similarity, it could be observed that the hydrophobic and hydrogen bond interactions of pyrrolidinones 9 and 10 with the protein sheets result in one case in a stable aggregation, while in the other, they cause distortion from aggregation.
Collapse
Affiliation(s)
- Mawadda Alghrably
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (M.A.); (G.B.)
| | - Mohamed A. Tammam
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.A.T.); (A.K.); (V.R.)
- Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Aikaterini Koutsaviti
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.A.T.); (A.K.); (V.R.)
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.A.T.); (A.K.); (V.R.)
| | - Xabier Lopez
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, UPV/EHU & Donostia International Physics Center (DIPC), PK 1072, 20018 Donostia-San Sebastian, Euskadi, Spain;
| | - Giulia Bennici
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (M.A.); (G.B.)
| | - Abeer Sharfalddin
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
| | - Hanan Almahasheer
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), Dammam 31441-1982, Saudi Arabia;
| | - Carlos M. Duarte
- Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia;
| | - Abdul-Hamid Emwas
- Core Lab of NMR, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.A.T.); (A.K.); (V.R.)
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (M.A.); (G.B.)
| |
Collapse
|
8
|
Shan S, Zhang Z, Nie J, Wen Y, Wu W, Liu Y, Zhao C. Marine algae-derived oligosaccharide via protein crotonylation of key targeting for management of type 2 diabetes mellitus in the elderly. Pharmacol Res 2024; 205:107257. [PMID: 38866264 DOI: 10.1016/j.phrs.2024.107257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Global aging is a tendency of the world, as is the increasing prevalence of diabetes, and the two are closely linked. In our early research, Enteromorpha prolifera oligosaccharide (EPO) possesses the excellent ability of anti-oxidative, anti-inflammatory, and anti-diabetic. We aim to further explore the deeper mechanism of how EPO delays aging and regulates glycometabolism. EPO effectively impacts crotonylation procession to enhance glucose metabolism and reduce cell senescence in aging diabetic rats. Crotonylation modification of XPO1 influences the expression of critical genes, including p53, CDK1, and CCNB1, which affect cell cycle regulation and aging. Additionally, EPO improves glucose metabolism by inhibiting the crotonylation modification of HSPA8-K126 and activating the AKT pathway. EPO promotes crotonylation of histones in intestinal cells, influencing the aging process by increasing the butyric acid-producing bacteria Ruminococcaceae. The observed enhancement in pyrimidine metabolism underscores EPO's potential role in regulating intestinal health, presenting a promising avenue for delaying aging. In summary, our findings affirm EPO as a naturally bioactive ingredient with significant potential for anti-aging and antidiabetic interventions.
Collapse
Affiliation(s)
- Shuo Shan
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Ourense 32004, Spain
| | - Zijie Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianping Nie
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuxi Wen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Ourense 32004, Spain
| | - Weihao Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuning Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
9
|
Ma Z, Elango J, Hao J, Wu W. Purification and Characterization of a Novel Fibrinolytic Enzyme from Marine Bacterium Bacillus sp. S-3685 Isolated from the South China Sea. Mar Drugs 2024; 22:267. [PMID: 38921578 PMCID: PMC11204972 DOI: 10.3390/md22060267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/09/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024] Open
Abstract
A novel fibrinolytic enzyme, BSFE1, was isolated from the marine bacterium Bacillus sp. S-3685 (GenBank No.: KJ023685) found in the South China Sea. This enzyme, with a molecular weight of approximately 42 kDa and a specific activity of 736.4 U/mg, exhibited its highest activity at 37 °C in a phosphate buffer at pH 8.0. The fibrinolytic enzyme remained stable over a pH range of 7.5 to 10.0 and retained about 76% of its activity after being incubated at 37 °C for 2 h. The Km and Vmax values of the enzyme at 37 °C were determined to be 2.1 μM and 49.0 μmol min-1 mg-1, respectively. The fibrinolytic activity of BSFE1 was enhanced by Na+, Ba2+, K+, Co2+, Mn2+, Al3+, and Cu2+, while it was inhibited by Fe3+, Ca2+, Mg2+, Zn2+, and Fe2+. These findings indicate that the fibrinolytic enzyme isolated in this study exhibits a strong affinity for fibrin. Moreover, the enzyme we have purified demonstrates thrombolytic enzymatic activity. These characteristics make BSFE1 a promising candidate for thrombolytic therapy. In conclusion, the results obtained from this study suggest that our work holds potential in the development of agents for thrombolytic treatment.
Collapse
Affiliation(s)
- Zibin Ma
- School of Agriculture and Bioengineering, Taizhou Vocational College of Science & Technology, Taizhou 318020, China;
| | - Jeevithan Elango
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
- Center of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain
| | - Jianhua Hao
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Wenhui Wu
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
| |
Collapse
|
10
|
Ghallab DS, Ibrahim RS, Mohyeldin MM, Shawky E. Marine algae: A treasure trove of bioactive anti-inflammatory compounds. MARINE POLLUTION BULLETIN 2024; 199:116023. [PMID: 38211540 DOI: 10.1016/j.marpolbul.2023.116023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 01/13/2024]
Abstract
This comprehensive review examines the diverse classes of pharmacologically active compounds found in marine algae and their promising anti-inflammatory effects. The review covers various classes of anti-inflammatory compounds sourced from marine algae, including phenolic compounds, flavonoids, terpenoids, caretenoids, alkaloids, phlorotannins, bromophenols, amino acids, peptides, proteins, polysaccharides, and fatty acids. The anti-inflammatory activities of marine algae-derived compounds have been extensively investigated using in vitro and in vivo models, demonstrating their ability to inhibit pro-inflammatory mediators, such as cytokines, chemokines, and enzymes involved in inflammation. Moreover, marine algae-derived compounds have exhibited immunomodulatory properties, regulating immune cell functions and attenuating inflammatory responses. Specific examples of compounds with notable anti-inflammatory activities are highlighted. This review provides valuable insights for researchers in the field of marine anti-inflammatory pharmacology and emphasizes the need for further research to harness the pharmacological benefits of marine algae-derived compounds for the development of effective and safe therapeutic agents.
Collapse
Affiliation(s)
- Dina S Ghallab
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Reham S Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Mohamed M Mohyeldin
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Eman Shawky
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt.
| |
Collapse
|
11
|
Babbar R, Kaur A, Vanya, Arora R, Gupta JK, Wal P, Tripathi AK, Koparde AA, Goyal P, Ramniwas S, Gulati M, Behl T. Impact of Bioactive Compounds in the Management of Various Inflammatory Diseases. Curr Pharm Des 2024; 30:1880-1893. [PMID: 38818920 DOI: 10.2174/0113816128299615240513174041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 06/01/2024]
Abstract
Inflammation is an individual's physiological response to a sequence of physical, chemical, or infectious stressors acting mainly to provide localized protection. Although inflammation is a protective and thus beneficial process, its excess or prolonged action can be harmful to the body. An increasing number of the population worldwide are changing their lifestyles, which leads to a rise in inflammatory diseases, such as atherosclerosis, angina pectoris, myocardial infarction, ulcerative colitis, cancer, and many more. Their treatment is based majorly on the pharmacological approach. However, natural products or bioactive compounds are of great significance in inflammation therapy because they show minimum side effects and maximum bioavailability. Therefore, it is critical to investigate bioactive substances that can modify target functions associated with oxidative stress defense and might be used to achieve various health benefits. This review accentuates the essence of bioactive chemicals used in the treatment of inflammation and other inflammatory illnesses. These bioactive compounds can be of any origin, such as plants, animals, bacteria, fungi, marine invertebrates, etc. Bioactive compounds derived from plant sources, such as glycyrrhizin, lignans, lycopene, resveratrol, indoles, and phenolic and polyphenolic compounds, work mainly by reducing oxidative stress and thereby preventing various inflammatory disorders. A large diversity of these anti-inflammatory bioactive compounds has also been discovered in marine environments, giving rise to an increase in the interest of various scientists in marine invertebrates and microbes. The vast diversity of microbes found in the marine environment represents an enormous supply to extract novel compounds, such as from bacteria, cyanobacteria, fungi, algae, microalgae, tiny invertebrates, etc. In the present review, an attempt has been made to summarize such novel bioactive compounds that help prevent inflammatory responses via different mechanisms of action.
Collapse
Affiliation(s)
- Ritchu Babbar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Arpanpreet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Vanya
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Pranay Wal
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, Uttar Pradesh 209305, India
| | | | - Akshada Amit Koparde
- Department of Pharmaceutical Chemistry, Krishna Vishwa Vidyapeeth, Krishna Institute of Pharmacy, Malkapur, Karad 415110, Maharashtra, India
| | - Pradeep Goyal
- Department of Pharmacology, Saraswati College of Pharmacy, Gharuan, Mohali, Punjab, India
| | - Seema Ramniwas
- University Centre for Research and Development, University of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India
- ARCCIM, Faculty of Health, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| |
Collapse
|
12
|
Zhu M, Gao Y, Li Y, Xie F, Zhou J, Xu L, Lv D, Zhang X, Xu Z, Dong T, Shen T, Zhang J, Lou H. Novel Diterpenoids Incorporating Rearranged Labdanes from the Chinese Liverwort Anastrophyllum joergensenii and Their Anti-inflammatory Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19551-19567. [PMID: 38032113 DOI: 10.1021/acs.jafc.3c06235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Liverworts provide valuable ecological services to improve the sustainability of agriculture, encompassing soil health maintenance and natural pest management. Some liverworts have potential applications in medicine and as food additives. Twenty-two novel diterpenoids (anajoerins A-V), of which anajoerins B-G are rearranged labdanes featuring an unprecedented 6/5 fused ring system, were isolated from the Chinese liverwort Anastrophyllum joergensenii Schiffn. The absolute configurations of all compounds were identified based on high-resolution electrospray ionization mass spectroscopy data, NMR spectra, and ECD calculations. Plausible biogenetic pathways for unprecedented rearranged labdanes were proposed. Seven diterpenoids exhibited anti-inflammatory activity by reducing nitric oxide production in LPS-stimulated RAW264.7 murine macrophages in a dose-dependent manner with IC50s between 9.71 and 56.56 μM. All tested compounds showed no cytotoxicity at the tested concentrations. Western blot analyses of NF-κB p65 downregulation showed that anajoerin L could inhibit the NF-κB signaling pathway. Furthermore, anajoerin L also suppressed the secretion of the ConA-induced proinflammatory cytokines IFN-γ, TNF-α, and IL-6.
Collapse
Affiliation(s)
- Mingzhu Zhu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yinghui Gao
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yi Li
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Feng Xie
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jinchuan Zhou
- School of Pharmacy, Linyi University, Linyi 276000, China
| | - Lintao Xu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Dongxue Lv
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xinyu Zhang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zejun Xu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ting Dong
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tao Shen
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jiaozhen Zhang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
13
|
Pang C, Chen YH, Bian HH, Zhang JP, Su L, Han H, Zhang W. Anti-Inflammatory Ergosteroid Derivatives from the Coral-Associated Fungi Penicillium oxalicum HL-44. Molecules 2023; 28:7784. [PMID: 38067514 PMCID: PMC10708211 DOI: 10.3390/molecules28237784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
To obtain the optimal fermentation condition for more abundant secondary metabolites, Potato Dextrose Agar (PDA) medium was chosen for the scale-up fermentation of the fungus Penicillium oxalicum HL-44 associated with the soft coral Sinularia gaweli. The EtOAc extract of the fungi HL-44 was subjected to repeated column chromatography (CC) on silica gel and Sephadex LH-20 and semipreparative RP-HPLC to afford a new ergostane-type sterol ester (1) together with fifteen derivatives (2-16). Their structures were determined with spectroscopic analyses and comparisons with reported data. The anti-inflammatory activity of the tested isolates was assessed by evaluating the expression of pro-inflammatory factors Tnfα and Ifnb1 in Raw264.7 cells stimulated with LPS or DMXAA. Compounds 2, 9, and 14 exhibited significant inhibition of Ifnb1 expression, while compounds 2, 4, and 5 showed strong inhibition of Tnfα expression in LPS-stimulated cells. In DMXAA-stimulated cells, compounds 1, 5, and 7 effectively suppressed Ifnb1 expression, whereas compounds 7, 8, and 11 demonstrated the most potent inhibition of Tnfα expression. These findings suggest that the tested compounds may exert their anti-inflammatory effects by modulating the cGAS-STING pathway. This study provides valuable insight into the chemical diversity of ergosteroid derivatives and their potential as anti-inflammatory agents.
Collapse
Affiliation(s)
- Cheng Pang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Gao-Ke Rd., Hangzhou 311402, China
- School of Medicine, Tongji University, 1238 Gonghexin Rd., Shanghai 200070, China
| | - Yu-Hong Chen
- Institute of Translational Medicine, Shanghai University, 99 Shangda Rd., Shanghai 200444, China
| | - Hui-Hui Bian
- Institute of Translational Medicine, Shanghai University, 99 Shangda Rd., Shanghai 200444, China
| | - Jie-Ping Zhang
- School of Medicine, Tongji University, 1238 Gonghexin Rd., Shanghai 200070, China
| | - Li Su
- Institute of Translational Medicine, Shanghai University, 99 Shangda Rd., Shanghai 200444, China
| | - Hua Han
- School of Medicine, Tongji University, 1238 Gonghexin Rd., Shanghai 200070, China
| | - Wen Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Gao-Ke Rd., Hangzhou 311402, China
- School of Medicine, Tongji University, 1238 Gonghexin Rd., Shanghai 200070, China
| |
Collapse
|
14
|
Islam F, Dehbia Z, Zehravi M, Das R, Sivakumar M, Krishnan K, Billah AAM, Bose B, Ghosh A, Paul S, Nainu F, Ahmad I, Emran TB. Indole alkaloids from marine resources: Understandings from therapeutic point of view to treat cancers. Chem Biol Interact 2023; 383:110682. [PMID: 37648047 DOI: 10.1016/j.cbi.2023.110682] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/12/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Cancer is the leading cause of mortality all over the world. Scientific investigation has demonstrated that disruptions in the process of autophagy are frequently interrelated with the emergence of cancer. Hence, scientists are seeking permanent solutions to counter the deadly disease. Indole alkaloids have been extensively studied and are acknowledged to exhibit several bioactivities. The current state of disease necessitates novel pharmacophores development. In recent decades, indole alkaloids have become increasingly significant in cancer treatment and are also used as adjuvants. A substantial amount of pharmacologically active molecules come from indole alkaloids, which are widely distributed in nature. Indole alkaloids derived from marine organisms show immense potential for therapeutic applications and seem highly effective in cancer treatment. A couple of experiments have been conducted preclinically to investigate the possibility of indole alkaloids in cancer treatment. Marine-derived indole alkaloids possess the ability to exhibit anticancer properties through diverse antiproliferative mechanisms. Certain indole alkaloids, including vincristine and vinblastine, were verified in clinical trials or are presently undergoing clinical assessments for preventing and treating cancer. Indole alkaloids from marine resources hold a significant functionality in identifying new antitumor agents. The current literature highlights recent advancements in indole alkaloids that appear to be anticancer agents and the underlying mechanisms.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Zerrouki Dehbia
- Laboratory of Agro - Biotechnology and Nutrition in Semi-Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Al-Kharj, 11942, Saudi Arabia
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - M Sivakumar
- Department of Pharmacognosy, Faculty of Pharmacy, Sree Balaji Medical College and Hospital BIHER (DU), Chromepet, Chennai, 600044, India
| | - Karthickeyan Krishnan
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Pallavaram, Chennai, 600117, India
| | - Abdul Ajeed Mohathasim Billah
- Department of Pharmacy Practice, Sri Ramachandra Faculty of Pharmacy, SRIHER (DU), Porur, Chennai, Tamil Nadu, India
| | - Bharadhan Bose
- Department of Pharmacognosy, Karpagam College of Pharmacy, Coimbatore, Tamil Nadu, India
| | - Avoy Ghosh
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shyamjit Paul
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
15
|
Das D, Arulkumar A, Paramasivam S, Lopez-Santamarina A, Del Carmen Mondragon A, Miranda Lopez JM. Phytochemical Constituents, Antimicrobial Properties and Bioactivity of Marine Red Seaweed ( Kappaphycus alvarezii) and Seagrass ( Cymodocea serrulata). Foods 2023; 12:2811. [PMID: 37509902 PMCID: PMC10379174 DOI: 10.3390/foods12142811] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The present work was performed to evaluate the levels of phytochemical constituents and the antioxidant and antibacterial properties of marine red seaweed (Kappaphycus alvarezii) and seagrass (Cymodocea serrulata). Quantitative phytochemical analysis, antioxidant activity and antimicrobial activity against five potential pathogenic bacteria was investigated. In each case, we found the presence of flavonoids, tannins, phenolic compounds, glycosides, steroids, carbohydrates and ashes. Alkaloids were only found in K. alvarezii, though they were not found in C. serrulata. The antimicrobial properties of both K. alvarezii and C. serrulata chloroform extracts were found to be antagonistically effective against the Gram-positive bacteria Bacillus subtilis and the Gram-negative bacteria Vibrio parahaemolyticus, Vibrio alginolyticus, Vibrio harveyi and Klebsiella pneumoniae. GC-MS analysis revealed the presence of 94 bioactive compounds in K. alvarezii and 104 bioactive compounds in C. serrulata, including phenol, decane, dodecane, hexadecane, vanillin, heptadecane, diphenylamine, benzophenone, octadecanoic acid, dotriaconate, benzene, phytol, butanoic acid and 2-hydroxyl-ethyl ether, which all played important roles in antioxidant and antibacterial activities. Thus, in view of the results, both K. alvarezii and C. serrulata could be considered to be sources of ingredients with appreciable nutritional and medicinal value.
Collapse
Affiliation(s)
- Deep Das
- Department of Oceanography and Coastal Area Studies, School of Marine Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Abimannan Arulkumar
- Department of Biotechnology, Achariya Arts and Science College (Affiliated to Pondicherry University), Villiabur, Puducherry 605 110, Tamil Nadu, India
| | - Sadayan Paramasivam
- Department of Oceanography and Coastal Area Studies, School of Marine Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Aroa Lopez-Santamarina
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Alicia Del Carmen Mondragon
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Jose Manuel Miranda Lopez
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
16
|
Choi SH, Kim SY, Kim KM, Mony TJ, Bae HJ, Kim MS, Lee CH, Choi SE, Lee SH, Park SJ. Fermented Sprouts of Codonopsis lanceolata Suppress LPS-Induced Inflammatory Responses by Inhibiting NF-κB Signaling Pathway in RAW 264.7 Macrophages and CD1 Mice. Pharmaceutics 2023; 15:1793. [PMID: 37513980 PMCID: PMC10384864 DOI: 10.3390/pharmaceutics15071793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
The interest in bioconversion through fermentation of sprouts produced in smart farms is increasing due to their potential health benefits. Codonopsis lanceolata (CL) is reported to alleviate inflammatory conditions, but much research is still needed to determine which types and parts of CL are most effective. This study investigated the anti-inflammatory effects of a fermented extract of CL sprouts' aerial part (F-CSA) against LPS-stimulated RAW 264.7 macrophages and mice. In the screening test, F-CSA showed the most substantial anti-inflammatory effect among several samples, containing the highest total flavonoids, tannins, and polyphenols. UPLC-ESI-Q/TOF-MS and HPLC analysis revealed that F-CSA had the highest amount of luteolin among all the CL samples analyzed. F-CSA reduced the release of inflammatory cytokines and mediators such as NO and PGE2 by inhibiting the expression levels of iNOS and COX-2 in LPS-stimulated macrophages. Further, we found that the anti-inflammatory effects of F-CSA were mediated by inhibiting the JNK/NF-κB signaling pathway. Moreover, F-CSA improved survival rates and reduced plasma levels of NO and IL-6 in CD1 mice stimulated with LPS. These findings suggest that F-CSA, which contains luteolin, can alleviate inflammation in LPS-induced RAW 264.7 cells and a CD1 mouse model by inhibiting the JNK/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Seung-Hyuk Choi
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - So-Yeon Kim
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kyeong-Min Kim
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Tamanna Jahan Mony
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ho Jung Bae
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Min Seok Kim
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Chan Ho Lee
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sun-Eun Choi
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sang Ho Lee
- College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - Se Jin Park
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
17
|
Ebrahimi B, Baroutian S, Li J, Zhang B, Ying T, Lu J. Combination of marine bioactive compounds and extracts for the prevention and treatment of chronic diseases. Front Nutr 2023; 9:1047026. [PMID: 36712534 PMCID: PMC9879610 DOI: 10.3389/fnut.2022.1047026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Background In recent years, marine-based functional foods and combination therapy are receiving greater recognition for their roles in healthy lifestyle applications and are being investigated as viable and effective strategies for disease treatment or prevention. Aim of the review This review article presents and discusses the relevant scientific publications that have studied the synergistic and additive effects of natural marine bioactive compounds and extract combinations with anti-obesity, anti-inflammatory, antioxidant, and chemopreventive activities in the last two decades. The paper presents the mechanism of action and health benefits of developed combinations and discusses the limitation of the studies. Furthermore, it recommends alternatives and directions for future studies. Finally, it highlights the factors for developing novel combinations of marine bioactive compounds. Key scientific concepts of review Combination of marine bioactive compounds or extracts affords synergistic or additive effects by multiple means, such as multi-target effects, enhancing the bioavailability, boosting the bioactivity, and neutralizing adverse effects of compounds in the mixture. For the development of marine-based combinations, there are key points for consideration and issues to address: knowledge of the mechanism of action of individual compounds and their combinations, optimum ratio and dosing of compounds, and experimental models must all be taken into account. Strategies to increase the number and diversity of marine combinations, and further development of marine-based functional foods, are available. However, only a small number of natural marine bioactive combinations have been assessed, and most research has been focused on fish oil and carotenoid synergy. Therefore, more research and resources should be spent on developing novel marine bioactive combinations as functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Belgheis Ebrahimi
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Saeid Baroutian
- Department of Chemical and Materials Engineering, University of Auckland, Auckland, New Zealand
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Xinjiang, China
| | - Baohong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Lu
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand,Institute of Biomedical Technology, Auckland University of Technology, Auckland, New Zealand,Maurice Wilkins Centre for Molecular Discovery, Auckland, New Zealand,College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China,College of Food Engineering and Nutrition Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China,College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China,*Correspondence: Jun Lu ✉
| |
Collapse
|
18
|
Elbandy M. Anti-Inflammatory Effects of Marine Bioactive Compounds and Their Potential as Functional Food Ingredients in the Prevention and Treatment of Neuroinflammatory Disorders. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010002. [PMID: 36615197 PMCID: PMC9822486 DOI: 10.3390/molecules28010002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Functional foods include enhanced, enriched, fortified, or whole foods that impart health benefits beyond their nutritional value, particularly when consumed as part of a varied diet on a regular basis at effective levels. Marine sources can serve as the sources of various healthy foods and numerous functional food ingredients with biological effects can be derived from these sources. Microalgae, macroalgae, crustaceans, fungi, bacteria fish, and fish by-products are the most common marine sources that can provide many potential functional food ingredients including phenolic compounds, proteins and peptides, and polysaccharides. Neuroinflammation is closely linked with the initiation and progression of various neurodegenerative diseases, including Alzheimer's disease, Huntington's disease, and Parkinson's disease. Activation of astrocytes and microglia is a defense mechanism of the brain to counter damaged tissues and detrimental pathogens, wherein their chronic activation triggers neuroinflammation that can further exacerbate or induce neurodegeneration. Currently, available therapeutic agents only provide symptomatic relief from these disorders and no therapies are available to stop or slow down the advancement of neurodegeneration. Thereffore, natural compounds that can exert a protective effect against these disorders have therapeutic potential. Numerous chemical compounds, including bioactive peptides, fatty acids, pigments, alkaloids, and polysaccharides, have already been isolated from marine sources that show anti-inflammatory properties, which can be effective in the treatment and prevention of neuroinflammatory disorders. The anti-inflammatory potential of marine-derived compounds as functional food ingredients in the prevention and treatment of neurological disorders is covered in this review.
Collapse
Affiliation(s)
- Mohamed Elbandy
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
19
|
Marasinghe CK, Jung WK, Je JY. Anti-inflammatory action of ark shell (Scapharca subcrenata) protein hydrolysate in LPS-stimulated RAW264.7 murine macrophages. J Food Biochem 2022; 46:e14493. [PMID: 36309949 DOI: 10.1111/jfbc.14493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 01/14/2023]
Abstract
Potential anti-inflammatory effects of ark shell (Scapharca subcrenata) protein hydrolysates were investigated. Ark shell protein hydrolysates were prepared using Alcalase® and pepsin and were designated ASAH and ASPH, respectively. The nitric oxide (NO) inhibitory activity of ASAH and ASPH was determined in lipopolysaccharides (LPS)-stimulated RAW264.7 murine macrophages, and the results showed that ASAH inhibited better NO inhibitory activity than ASPH. ASAH suppressed inflammatory mediator, a prostaglandin E2, secretion of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6), and production of reactive oxygen species (ROS) dose dependently. It inhibited the protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and simulated heme oxygenase-1 (HO-1) protein expression. However, the pharmacological approach revealed that pretreatment with zinc protoporphyrin ІX (ZnPP), an inhibitor of HO-1, reversed the anti-inflammatory effect of ASAH. Moreover, ASAH upregulated phosphorylation of mitogen-activated protein kinases (MAPKs) including ERK1/2, JNK1/2, and p38 MAPK. To find out the role of MAPKs phosphorylation, MAPKs inhibitors were used, and the results showed that ASAH-mediated HO-1 protein expression and Nrf2 nuclear translocation were abolished. Taken all together, this study revealed that ASAH has a potential anti-inflammatory activity through regulation of the MAPK-dependent HO-1/Nrf2 pathway. PRACTICAL APPLICATIONS: Food-derived marine bioactive peptides, due to their pivotal role in biological activities, are gaining much attention recently. However, the anti-inflammatory activities of ark shell protein hydrolysates still remain to be investigated. This study investigated that ASAH shows potential anti-inflammatory activities through regulation of the MAPK-dependent HO-1/Nrf2 pathway in RAW264.7 murine macrophages. These findings indicated that ASAH may be used as a dietary supplement, functional food, and medicinal drug for the management of inflammation and inflammation-associated diseases.
Collapse
Affiliation(s)
| | - Won-Kyo Jung
- Major of Biomedical Engineering, Division of Smart Healthcare, Pukyong National University, Busan, Republic of Korea.,Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Jae-Young Je
- Major of Human Bioconvergence, Division of Smart Healthcare, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
20
|
Ghelani H, Khursheed M, Adrian TE, Jan RK. Anti-Inflammatory Effects of Compounds from Echinoderms. Mar Drugs 2022; 20:693. [PMID: 36355016 PMCID: PMC9699147 DOI: 10.3390/md20110693] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 10/28/2023] Open
Abstract
Chronic inflammation can extensively burden a healthcare system. Several synthetic anti-inflammatory drugs are currently available in clinical practice, but each has its own side effect profile. The planet is gifted with vast and diverse oceans, which provide a treasure of bioactive compounds, the chemical structures of which may provide valuable pharmaceutical agents. Marine organisms contain a variety of bioactive compounds, some of which have anti-inflammatory activity and have received considerable attention from the scientific community for the development of anti-inflammatory drugs. This review describes such bioactive compounds, as well as crude extracts (published during 2010-2022) from echinoderms: namely, sea cucumbers, sea urchins, and starfish. Moreover, we also include their chemical structures, evaluation models, and anti-inflammatory activities, including the molecular mechanism(s) of these compounds. This paper also highlights the potential applications of those marine-derived compounds in the pharmaceutical industry to develop leads for the clinical pipeline. In conclusion, this review can serve as a well-documented reference for the research progress on the development of potential anti-inflammatory drugs from echinoderms against various chronic inflammatory conditions.
Collapse
Affiliation(s)
- Hardik Ghelani
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Md Khursheed
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Thomas Edward Adrian
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Reem Kais Jan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| |
Collapse
|
21
|
Guedes M, Vieira SF, Reis RL, Ferreira H, Neves NM. Potent antioxidant and anti-inflammatory bioactivities of fish roe-derived extracts. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Jang AY, Rod-in W, Monmai C, Choi GS, Park WJ. Anti-inflammatory effects of neutral lipids, glycolipids, phospholipids from Halocynthia aurantium tunic by suppressing the activation of NF-κB and MAPKs in LPS-stimulated RAW264.7 macrophages. PLoS One 2022; 17:e0270794. [PMID: 35969529 PMCID: PMC9377571 DOI: 10.1371/journal.pone.0270794] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/19/2022] [Indexed: 11/21/2022] Open
Abstract
Halocynthia aurantium is a marine organism that has been considered a promising source for bio-functional materials. Total lipids were extracted from H. aurantium tunic, and then they were separated into neutral lipids, glycolipids, and phospholipids. In the present study, fatty acid profiles of three lipids and their anti-inflammatory effects in RAW264.7 cells were investigated. Among the lipid classes, phospholipids showed the diversity of fatty acid constituents, compared with the glycolipids and neutral lipids. Three lipids contain different contents of fatty acids depending on the kinds of lipids. The most contents were saturated fatty acids (SFAs, 53–69% of the fatty acids) and monounsaturated fatty acids (MUFAs, 15–17% of fatty acids) and polyunsaturated fatty acids (PUFAs, 14–32% of fatty acids) are followed. H. aurantium lipids not only dose-dependently inhibited nitric oxide production but also reduced the expression of inflammatory cytokine genes such as TNF-α, IL-1β, and IL-6 in LPS-stimulated macrophages. It was also demonstrated that the expression of COX-2 was dose-dependently suppressed. Moreover, H. aurantium lipids decreased phosphorylation of NF-κB p-65, p38, ERK1/2, and JNK, suggesting that three lipids from H. aurantium tunic provide anti-inflammatory effects through NF-κB and MAPK signaling. These results indicate that H. aurantium is a potential source for anti-inflammation.
Collapse
Affiliation(s)
- A-yeong Jang
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
| | - Weerawan Rod-in
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
| | - Chaiwat Monmai
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
| | - Gyoung Su Choi
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
| | - Woo Jung Park
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
- * E-mail:
| |
Collapse
|
23
|
Yi L, Wang Q, Luo H, Lei D, Tang Z, Lei S, Xiao H. Inhibitory Effects of Polyphenols-Rich Components From Three Edible Seaweeds on Inflammation and Colon Cancer in vitro. Front Nutr 2022; 9:856273. [PMID: 35634377 PMCID: PMC9136665 DOI: 10.3389/fnut.2022.856273] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/01/2022] [Indexed: 01/03/2023] Open
Abstract
Polyphenols from edible seaweeds display various health benefits which have not been adequately studied. This study aimed to characterize the composition of extractable polyphenol-rich components (EPCs) and non-extractable polyphenol-rich components (NEPCs) from three edible seaweeds (i.e., Laminaria japonica, Ulva lactuca, and Porphyra tenera) and evaluate their anti-inflammatory capacities in activated macrophages and anticancer properties in colon cancer cells. Both EPCs and NEPCs from three edible seaweeds against lipopolysaccharides (LPS) stimulated nitric oxide in activated macrophages. Immunoblotting and qRT-PCR indicated that EPCs and NEPCs regulated the expression levels of proinflammatory enzymes, proinflammatory cytokines, and antioxidant enzymes in macrophages. Furthermore, EPCs and NEPCs lowered the viability of colon cancer cells, while normal colon cells were not affected. Additionally, EPCs and NEPCs induced cellular apoptosis and led to G0/G1 cell cycle arrest in HCT116 cells. Overall, these results provide a rationale for future animal and human studies designed to examine the anti-inflammatory and chemopreventive capacities of polyphenols-rich components from L. japonica, U. lactuca, and P. tenera.
Collapse
Affiliation(s)
- Lingxiao Yi
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Qi Wang
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Haiyan Luo
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Daqing Lei
- School of Food and Drug, Shenzhen Polytechnic, Shenzhen, China
| | - Zhonghai Tang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Sijia Lei
- School of Food and Drug, Shenzhen Polytechnic, Shenzhen, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
24
|
Huang P, Hong J, Mi J, Sun B, Zhang J, Li C, Yang W. Polyphenols extracted from Enteromorpha clathrata alleviates inflammation in lipopolysaccharide-induced RAW 264.7 cells by inhibiting the MAPKs/NF-κB signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2022; 286:114897. [PMID: 34890728 DOI: 10.1016/j.jep.2021.114897] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Enteromorpha has long been recorded in traditional Chinese medicine, with cholesterol-lowering, anti-cancer, anti-inflammatory and antibacterial effects. Recently, we extracted the polyphenol-enriched fraction from Enteromorpha clathrata (E. clathrata) by ethyl acetate (ECPs), and isolated six individual polyphenols from ECPs via high-speed counter-current chromatography (HSCCC) with high-performance liquid chromatography (HPLC). AIM OF THE STUDY In this study, we explored the anti-inflammatory activity and underlying mechanism of ECPs in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. MATERIALS AND METHODS ECPs and the six polyphenols were used for nitric oxide (NO) assay to identify the components with potent inflammation inhibitory effect. Enzyme-linked immunosorbent assay (ELISA), quantitative real-time PCR (qPCR), flow cytometry, and Western blot analysis were applied to further investigate their anti-inflammatory effects and underlying mechanism in LPS-stimulated RAW264.7 cells. RESULTS ECPs and the three individual polyphenols, including (-)-epicatechin, epigallocatechin-3-O-gallate and (-)-epicatechin-3-O-gallate, showed in vitro immunosuppressive activity by altering the cell biology at the gene, protein and functional levels in a dose- and species-dependent manner. Their anti-inflammatory effects were achieved by inhibiting LPS-induced production of nitric oxide and its upstream enzyme inducible nitric oxide synthase (iNOS), the pro-inflammatory cytokines including interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), as well as the phagocytotic capacity, without cytotoxicity. The mechanism study further revealed that these anti-inflammatory properties were, at least partly, attributed to the suppressed activation of nuclear factor-κB (NF-κB) and p38 mitogen-activated protein kinase (MAPK) signaling pathways. CONCLUSIONS These findings indicated for the first time the correlation between the anti-inflammatory activity of ECPs and NF-κB and MAPK signaling pathways, suggesting that polyphenol-enriched organic fraction of E. clathrata could be potential candidate as therapeutic agent for treating inflammatory diseases.
Collapse
Affiliation(s)
- Ping Huang
- College of Food and Pharmaceutical Sciences, Ningbo University, 315211, China
| | - Jingxia Hong
- College of Food and Pharmaceutical Sciences, Ningbo University, 315211, China
| | - Jie Mi
- College of Food and Pharmaceutical Sciences, Ningbo University, 315211, China
| | - Bolun Sun
- College of Food and Pharmaceutical Sciences, Ningbo University, 315211, China
| | - Jinjie Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, 315211, China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, 315211, China
| | - Chao Li
- College of Food and Pharmaceutical Sciences, Ningbo University, 315211, China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, 315211, China.
| | - Wenge Yang
- College of Food and Pharmaceutical Sciences, Ningbo University, 315211, China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
25
|
Susana SR, Salvador-Reyes LA. Anti-Inflammatory Activity of Monosubstituted Xestoquinone Analogues from the Marine Sponge Neopetrosia compacta. Antioxidants (Basel) 2022; 11:antiox11040607. [PMID: 35453294 PMCID: PMC9028180 DOI: 10.3390/antiox11040607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/04/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic inflammation is recognized as a contributor to multiple chronic diseases, such as cancer, cardiovascular, and autoimmune disorders. Here, a natural products-initiated discovery of anti-inflammatory agents from marine sponges was undertaken. From the screening of 231 crude extracts, a total of 30 extracts showed anti-inflammatory activity with no direct cytotoxic effects at 50 μg/mL on RAW 264.7 (ATCC®TIB-71™) murine macrophage cells stimulated with 1 μg/mL lipopolysaccharide (LPS). Bioactivity-guided purification of the anti-inflammatory extract from the sponge Neopetrosia compacta led to the isolation of xestoquinone (1), adociaquinone B (2), adociaquinone A (3), 14-hydroxymethylxestoquinone (4), 15-hydroxymethylxestoquinone (5), and an inseparable 2:1 mixture of 14-methoxyxestoquinone and 15-methoxyxestoquinone (6). Compounds 1–6 caused a concentration-dependent reduction of nitric oxide (NO) production in LPS-stimulated RAW 264.7 cells, with 4–6 having low micromolar IC50 and acceptable selectivity index. Gene expression analysis using qRT-PCR showed that 1, 5, and 6 downregulated Il1b and Nos2 expression by 2.1- to 14.8-fold relative to the solvent control at 10 μM. Xestoquinone (1) and monosubstituted analogues (4–6), but not the disubstituted adociaquinones (2 and 3), caused Nrf2 activation in a luciferase reporter MCF7 stable cells. Compounds 5 and 6 caused a modest increase in Nqo1 gene expression at 10 μM. The anti-inflammatory activity of xestoquinone (1) and monosubstituted analogues (4–6) may, in part, be mediated by Nrf2 activation, leading to attenuation of inflammatory mediators such as IL-1β and NOS2.
Collapse
|
26
|
Chen M, Liang J, Wang Y, Liu Y, Zhou C, Hong P, Zhang Y, Qian ZJ. A new benzaldehyde from the coral-derived fungus Aspergillus terreus C23-3 and its anti-inflammatory effects via suppression of MAPK signaling pathway in RAW264.7 cells. J Zhejiang Univ Sci B 2022; 23:230-240. [PMID: 35261218 DOI: 10.1631/jzus.b2100807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Marine fungi are important members of the marine microbiome, which have been paid growing attention by scientists in recent years. The secondary metabolites of marine fungi have been reported to contain rich and diverse compounds with novel structures (Chen et al., 2019). Aspergillus terreus, the higher level marine fungus of the Aspergillus genus (family of Trichocomaceae, order of Eurotiales, class of Eurotiomycetes, phylum of Ascomycota), is widely distributed in both sea and land. In our previous study, the coral-derived A. terreus strain C23-3 exhibited potential in producing other biologically active (with antioxidant, acetylcholinesterase inhibition, and anti-inflammatory activity) compounds like arylbutyrolactones, territrems, and isoflavones, and high sensitivity to the chemical regulation of secondary metabolism (Yang et al., 2019, 2020; Nie et al., 2020; Ma et al., 2021). Moreover, we have isolated two different benzaldehydes, including a benzaldehyde with a novel structure, from A. terreus C23-3 which was derived from Pectinia paeonia of Xuwen, Zhanjiang City, Guangdong Province, China.
Collapse
Affiliation(s)
- Minqi Chen
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.,Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen 518108, China
| | - Jinyue Liang
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuan Wang
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yayue Liu
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.,Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen 518108, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Chunxia Zhou
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.,Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen 518108, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Pengzhi Hong
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.,Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen 518108, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Zhang
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China. .,Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen 518108, China. .,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Zhong-Ji Qian
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China. , .,Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen 518108, China. , .,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China. ,
| |
Collapse
|
27
|
Banerjee P, Mandhare A, Bagalkote V. Marine natural products as source of new drugs: an updated patent review (July 2018-July 2021). Expert Opin Ther Pat 2021; 32:317-363. [PMID: 34872430 DOI: 10.1080/13543776.2022.2012150] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Marine natural products have aided as rich sources of new bioactive agents. The multiplicity of marine habitations and exclusive ecological conditions of the sea offer mostly unexploited sources of unique biological and chemical entities. In continuation with the authors' previous publication, the present study reviews recently published patents in correlation to the efforts in finding new therapeutically potent chemical and biological entities from marine organisms. AREAS COVERED This review summarizes the progress in the field of marine natural products as therapeutic agents based on an analysis of the patents published after June 2018. We have identified 68 unique patent families related to novel marine natural products for this time period. Patent information pertaining to therapeutic applications and clinical studies has been analysed and reported. EXPERT OPINION Marine organisms are excellent producers of secondary metabolites with diverse structures and pharmacological activities. Cumulative increase in the number of patents published during the last few years justifies the importance of this study for spotting new entities as sources of therapeutic agents. The new compounds have been claimed to show a range of activities predominantly anticancer, antimicrobial, anti-inflammatory, and neuroprotection. Majority of the recent patents have been filed by Chinese inventors and a number of these patents are still in the prosecution stage.
Collapse
Affiliation(s)
- Paromita Banerjee
- CSIR Unit for Research and Development of Information Products (CSIR-URDIP), "Tapovan" S.No. 113 & 114, NCL Estate, Pashan Road, Pune 411008, Maharashtra, India
| | - Anita Mandhare
- CSIR Unit for Research and Development of Information Products (CSIR-URDIP), "Tapovan" S.No. 113 & 114, NCL Estate, Pashan Road, Pune 411008, Maharashtra, India
| | - Vrushali Bagalkote
- CSIR Unit for Research and Development of Information Products (CSIR-URDIP), "Tapovan" S.No. 113 & 114, NCL Estate, Pashan Road, Pune 411008, Maharashtra, India
| |
Collapse
|
28
|
Anti-inflammatory activities of the mixture of strawberry and rice powder as materials of fermented rice cake on RAW264.7 macrophage cells and mouse models. Food Sci Biotechnol 2021; 30:1409-1416. [PMID: 34790424 DOI: 10.1007/s10068-021-00929-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/20/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022] Open
Abstract
Rice cake is a traditional food in Korea, and is made by rice alone, or with other grain powder. To improve the health benefits of fermented rice cake, the rice powder was supplemented with strawberry powder. Anti-inflammatory activities of the mixture of strawberry and rice powder were evaluated. Treatment with the mixture significantly decreased the production of nitric oxide (NO). The mixture of strawberry and rice powder in the ratio 10: 90 effectively and dose-dependently reduced the immune-associated genes iNOS, IL-1β, IL-6, COX-2, and TNF-α. Furthermore, carrageenan-injected mice were used to study the anti-inflammatory effect of the mixture. Pre-oral administration of the mixture of strawberry and rice powder at doses of 50 and 100 mg/kg BW significantly reduced paw edema induced by carrageenan. These results suggest that for fermented rice cake production and processing, the strawberry and rice powder mixture may be a potential source of anti-inflammatory activity.
Collapse
|
29
|
Rahman MM, Junaid M, Hosen SMZ, Mostafa M, Liu L, Benkendorff K. Mollusc-Derived Brominated Indoles for the Selective Inhibition of Cyclooxygenase: A Computational Expedition. Molecules 2021; 26:molecules26216538. [PMID: 34770946 PMCID: PMC8587571 DOI: 10.3390/molecules26216538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Inflammation plays an important role in different chronic diseases. Brominated indoles derived from the Australian marine mollusk Dicathais orbita (D. orbita) are of interest for their anti-inflammatory properties. This study evaluates the binding mechanism and potentiality of several brominated indoles (tyrindoxyl sulfate, tyrindoleninone, 6-bromoisatin, and 6,6′-dibromoindirubin) against inflammatory mediators cyclooxygenases-1/2 (COX-1/2) using molecular docking, followed by molecular dynamics simulation, along with physicochemical, drug-likeness, pharmacokinetic (pk), and toxicokinetic (tk) properties. Molecular docking identified that these indole compounds are anchored, with the main amino acid residues, positioned in the binding pocket of the COX-1/2, required for selective inhibition. Moreover, the molecular dynamics simulation based on root mean square deviation (RMSD), radius of gyration (Rg), solvent accessible surface area (SASA), and root mean square fluctuation (RMSF) analyses showed that these natural brominated molecules transit rapidly to a progressive constant configuration during binding with COX-1/2 and seem to accomplish a consistent dynamic behavior by maintaining conformational stability and compactness. The results were comparable to the Food and Drug Administration (FDA)-approved selective COX inhibitor, aspirin. Furthermore, the free energy of binding for the compounds assessed by molecular mechanics–Poisson–Boltzmann surface area (MM–PBSA) confirmed the binding capacity of indoles towards COX-1/2, with suitable binding energy values except for the polar precursor tyrindoxyl sulfate (with COX-1). The physicochemical and drug-likeness analysis showed zero violations of Lipinski’s rule, and the compounds are predicted to have excellent pharmacokinetic profiles. These indoles are projected to be non-mutagenic and free from hepatotoxicity, with no inhibition of human ether-a-go–go gene (hERG) I inhibitors, and the oral acute toxicity LD50 in rats is predicted to be similar or lower than aspirin. Overall, this work has identified a plausible mechanism for selective COX inhibition by natural marine indoles as potential therapeutic candidates for the mitigation of inflammation.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Marine Ecology Research Centre, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Md. Junaid
- Molecular Modeling Drug-design and Discovery Laboratory, Pharmacology Research Division, BCSIR Laboratories Chattogram, Bangladesh Council of Scientific and Industrial Research, Chattogram 4217, Bangladesh; (M.J.); (S.M.Z.H.); (M.M.)
| | - S. M. Zahid Hosen
- Molecular Modeling Drug-design and Discovery Laboratory, Pharmacology Research Division, BCSIR Laboratories Chattogram, Bangladesh Council of Scientific and Industrial Research, Chattogram 4217, Bangladesh; (M.J.); (S.M.Z.H.); (M.M.)
- Pancreatic Research Group, South Western Sydney Clinical School, and Ingham Institute for AppliedMedical Research, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mohammad Mostafa
- Molecular Modeling Drug-design and Discovery Laboratory, Pharmacology Research Division, BCSIR Laboratories Chattogram, Bangladesh Council of Scientific and Industrial Research, Chattogram 4217, Bangladesh; (M.J.); (S.M.Z.H.); (M.M.)
| | - Lei Liu
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Kirsten Benkendorff
- Marine Ecology Research Centre, Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW 2450, Australia
- Correspondence:
| |
Collapse
|
30
|
Asif M, Saleem M, Yaseen HS, Yehya AH, Saadullah M, Zubair HM, Oon CE, Khaniabadi PM, Khalid SH, Khan IU, Mahrukh. Potential role of marine species-derived bioactive agents in the management of SARS-CoV-2 infection. Future Microbiol 2021; 16:1289-1301. [PMID: 34689597 PMCID: PMC8592065 DOI: 10.2217/fmb-2021-0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
COVID-19, caused by the SARS-CoV-2 outbreak, has resulted in a massive global health crisis. Bioactive molecules extracted or synthesized using starting material obtained from marine species, including griffithsin, plitidepsin and fingolimod are in clinical trials to evaluate their anti-SARS-CoV-2 and anti-HIV efficacies. The current review highlights the anti-SARS-CoV-2 potential of marine-derived phytochemicals explored using in silico, in vitro and in vivo models. The current literature suggests that these molecules have the potential to bind with various key drug targets of SARS-CoV-2. In addition, many of these agents have anti-inflammatory and immunomodulatory potentials and thus could play a role in the attenuation of COVID-19 complications. Overall, these agents may play a role in the management of COVID-19, but further preclinical and clinical studies are still required to establish their role in the mitigation of the current viral pandemic.
Collapse
Affiliation(s)
- Muhammad Asif
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Mohammad Saleem
- Punjab University College of Pharmacy, University of the Punjab, Lahore, 54000, Punjab, Pakistan
| | - Hafiza Sidra Yaseen
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Ashwaq Hs Yehya
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Malik Saadullah
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Hafiz Muhammad Zubair
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Chern E Oon
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Pegah Moradi Khaniabadi
- Department of Radiology & Molecular Imaging, College of Medicine & Health Sciences, Sultan Qaboos University, PO. Box 35, 123, Al Khod, Muscat, Oman
| | - Syed Haroon Khalid
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Ikram Ullah Khan
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Mahrukh
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| |
Collapse
|
31
|
Li CQ, Ma QY, Gao XZ, Wang X, Zhang BL. Research Progress in Anti-Inflammatory Bioactive Substances Derived from Marine Microorganisms, Sponges, Algae, and Corals. Mar Drugs 2021; 19:572. [PMID: 34677471 PMCID: PMC8538560 DOI: 10.3390/md19100572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/04/2021] [Accepted: 10/10/2021] [Indexed: 12/24/2022] Open
Abstract
Inflammation is the body's defense reaction in response to stimulations and is the basis of various physiological and pathological processes. However, chronic inflammation is undesirable and closely related to the occurrence and development of diseases. The ocean gives birth to unique and diverse bioactive substances, which have gained special attention and been a focus for anti-inflammatory drug development. So far, numerous promising bioactive substances have been obtained from various marine organisms such as marine bacteria and fungi, sponges, algae, and coral. This review covers 71 bioactive substances described during 2015-2020, including the structures (65 of which), species sources, evaluation models and anti-inflammatory activities of these substances. This review aims to provide some reference for the research progress of marine-organism-derived anti-inflammatory metabolites and give more research impetus for their conversion to novel anti-inflammatory drugs.
Collapse
Affiliation(s)
- Chao-Qun Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; (C.-Q.L.); (Q.-Y.M.); (X.-Z.G.)
| | - Qin-Yuan Ma
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; (C.-Q.L.); (Q.-Y.M.); (X.-Z.G.)
| | - Xiu-Zhen Gao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; (C.-Q.L.); (Q.-Y.M.); (X.-Z.G.)
| | - Xuan Wang
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China;
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, Qingdao 266003, China
| | - Bei-Li Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; (C.-Q.L.); (Q.-Y.M.); (X.-Z.G.)
| |
Collapse
|
32
|
Matulja D, Grbčić P, Bojanić K, Topić-Popović N, Čož-Rakovac R, Laclef S, Šmuc T, Jović O, Marković D, Pavelić SK. Chemical Evaluation, Antioxidant, Antiproliferative, Anti-Inflammatory and Antibacterial Activities of Organic Extract and Semi-Purified Fractions of the Adriatic Sea Fan, Eunicella cavolini. Molecules 2021; 26:molecules26195751. [PMID: 34641295 PMCID: PMC8510138 DOI: 10.3390/molecules26195751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 11/25/2022] Open
Abstract
Due to sedentary lifestyle and harsh environmental conditions, gorgonian coral extracts are recognized as a rich source of novel compounds with various biological activities, of interest to the pharmaceutical and cosmetic industries. The presented study aimed to perform chemical screening of organic extracts and semi-purified fractions obtained from the common Adriatic gorgonian, sea fan, Eunicella cavolini (Koch, 1887) and explore its abilities to exert different biological effects in vitro. Qualitative chemical evaluation revealed the presence of several classes of secondary metabolites extended with mass spectrometry analysis and tentative dereplication by using Global Natural Product Social Molecular Networking online platform (GNPS). Furthermore, fractions F4 and F3 showed the highest phenolic (3.28 ± 0.04 mg GAE/g sample) and carotene (23.11 ± 2.48 mg β-CA/g sample) content, respectively. The fraction F3 inhibited 50% of DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) and ABTS (2,2′-azino-bis (3-ethylbenzthiazolin-6-yl) sulfonic acid) radicals at the concentrations of 767.09 ± 11.57 and 157.16 ± 10.83 µg/mL, respectively. The highest anti-inflammatory potential was exhibited by F2 (IC50 = 198.70 ± 28.77 µg/mL) regarding the inhibition of albumin denaturation and F1 (IC50 = 254.49 ± 49.17 µg/mL) in terms of soybean lipoxygenase inhibition. In addition, the most pronounced antiproliferative effects were observed for all samples (IC50 ranging from 0.82 ± 0.14–231.18 ± 46.13 µg/mL) against several carcinoma cell lines, but also towards non-transformed human fibroblasts pointing to a generally cytotoxic effect. In addition, the antibacterial activity was tested by broth microdilution assay against three human pathogenic bacteria: Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The latter was the most affected by fractions F2 and F3. Finally, further purification, isolation and characterization of pure compounds from the most active fractions are under investigation.
Collapse
Affiliation(s)
- Dario Matulja
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (P.G.)
| | - Petra Grbčić
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (P.G.)
| | - Krunoslav Bojanić
- Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (K.B.); (N.T.-P.); (R.Č.-R.); (T.Š.); (O.J.)
| | - Natalija Topić-Popović
- Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (K.B.); (N.T.-P.); (R.Č.-R.); (T.Š.); (O.J.)
| | - Rozelindra Čož-Rakovac
- Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (K.B.); (N.T.-P.); (R.Č.-R.); (T.Š.); (O.J.)
| | - Sylvain Laclef
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources (LG2A) UMR CNRS 7378—Institut de Chimie de Picardie FR 3085, Université de Picardie Jules Verne, 33 Rue Saint Leu, 80039 Amiens, France;
| | - Tomislav Šmuc
- Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (K.B.); (N.T.-P.); (R.Č.-R.); (T.Š.); (O.J.)
| | - Ozren Jović
- Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (K.B.); (N.T.-P.); (R.Č.-R.); (T.Š.); (O.J.)
| | - Dean Marković
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (P.G.)
- Correspondence: (D.M.); (S.K.P.); Tel.: +385-91-500-8676 (D.M.); +385-51-688-266 (S.K.P.)
| | - Sandra Kraljević Pavelić
- Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 5, 51000 Rijeka, Croatia
- Correspondence: (D.M.); (S.K.P.); Tel.: +385-91-500-8676 (D.M.); +385-51-688-266 (S.K.P.)
| |
Collapse
|
33
|
Cho BO, Shin JY, Kang HJ, Park JH, Hao S, Wang F, Jang SI. Anti‑inflammatory effect of Chrysanthemum zawadskii, peppermint, Glycyrrhiza glabra herbal mixture in lipopolysaccharide‑stimulated RAW264.7 macrophages. Mol Med Rep 2021; 24:532. [PMID: 34036392 PMCID: PMC8170225 DOI: 10.3892/mmr.2021.12171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/19/2021] [Indexed: 11/05/2022] Open
Abstract
The normal inflammatory reaction protects the body from harmful external factors, whereas abnormal chronic inflammation can cause various diseases, including cancer. The purpose of the present study was to investigate the anti‑inflammatory activity of a mixture of Chrysanthemum zawadskii, peppermint and Glycyrrhiza glabra (CPG) by analyzing the expression levels of inflammatory mediators, cytokines and transcription factors in lipopolysaccharide (LPS)‑stimulated Raw264.7 cells. A nitric oxide assay, ELISA, western blotting and immunofluorescence staining were performed to investigate the anti‑inflammatory activity of the CPG mixture. Pretreatment of Raw264.7 cells with CPG inhibited the increase of inflammatory mediators (inducible nitric oxide synthase, cyclooxygenase‑2 and IFN‑β) induced by LPS. Additionally, it inhibited the production of pro‑inflammatory cytokines (TNF‑α, IL‑6 and IL‑1β). CPG suppressed LPS‑induced phosphorylation of STAT1, AKT, Iκb and NF‑κB. Furthermore, CPG inhibited the translocation of NF‑κB into the nucleus. In summary, CPG could inhibit LPS‑induced inflammation, which occurs primarily through the AKT/Iκb/NF‑κB signaling pathway in RAW264.7 cells.
Collapse
Affiliation(s)
- Byoung Ok Cho
- Department of Food Science, Institute of Health Science, Jeonju University, Jeonju‑si, Jeollabuk‑do 55069, Republic of Korea
| | - Jae Young Shin
- Department of Food Science and Technology, Jeonbuk National University, Jeonju‑si, Jeollabuk‑do 54896, Republic of Korea
| | - Hyun Ju Kang
- Department of Health Management, Jeonju University, Jeonju‑si, Jeollabuk‑do 55069, Republic of Korea
| | - Ji Hyeon Park
- Department of Health Management, Jeonju University, Jeonju‑si, Jeollabuk‑do 55069, Republic of Korea
| | - Suping Hao
- Department of Health Management, Jeonju University, Jeonju‑si, Jeollabuk‑do 55069, Republic of Korea
| | - Feng Wang
- Department of Health Management, Jeonju University, Jeonju‑si, Jeollabuk‑do 55069, Republic of Korea
| | - Seon Il Jang
- Department of Food Science, Institute of Health Science, Jeonju University, Jeonju‑si, Jeollabuk‑do 55069, Republic of Korea
| |
Collapse
|
34
|
Guedes M, Vieira SF, Reis RL, Ferreira H, Neves NM. Fishroesomes as carriers with antioxidant and anti-inflammatory bioactivities. Biomed Pharmacother 2021; 140:111680. [PMID: 34020247 DOI: 10.1016/j.biopha.2021.111680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 11/26/2022] Open
Abstract
The great diversity of marine habitats and organisms renders them a high-value source to find/develop novel drugs and formulations. Therefore, herein, sardine (Sardina pilchardus) roe was used as a lipidic source to produce liposomes. This fish product presents high nutritional value, being its lipidic content associated with important health benefits. Consequently, it can be advantageously used to produce therapeutically active delivery devices. Roe lipids were extracted using the Matyash method. After lipid film hydration and extrusion, sardine roe-derived large unilamellar liposomes (LUVs), designated as fishroesomes, presented a size of ≈330 nm and a significant negative surface charge (≈-27 mV). Radical scavenging assays demonstrated that fishroesomes efficiently neutralized peroxyl, hydroxyl and nitric oxide radicals. Moreover, fishroesomes significantly reduced the expression of pro-inflammatory cytokines and chemokines by LPS-stimulated macrophages at non-toxic concentrations for L929 and THP-1 cells. Consequently, the developed liposomes exhibit unique properties as bioactive drug carriers for inflammatory diseases treatment.
Collapse
Affiliation(s)
- Marta Guedes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Sara F Vieira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Helena Ferreira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nuno M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
35
|
Kuznetsova TA, Andryukov BG, Makarenkova ID, Zaporozhets TS, Besednova NN, Fedyanina LN, Kryzhanovsky SP, Shchelkanov MY. The Potency of Seaweed Sulfated Polysaccharides for the Correction of Hemostasis Disorders in COVID-19. Molecules 2021; 26:2618. [PMID: 33947107 PMCID: PMC8124591 DOI: 10.3390/molecules26092618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Hemostasis disorders play an important role in the pathogenesis, clinical manifestations, and outcome of COVID-19. First of all, the hemostasis system suffers due to a complicated and severe course of COVID-19. A significant number of COVID-19 patients develop signs of hypercoagulability, thrombocytopenia, and hyperfibrinolysis. Patients with severe COVID-19 have a tendency toward thrombotic complications in the venous and arterial systems, which is the leading cause of death in this disease. Despite the success achieved in the treatment of SARS-CoV-2, the search for new effective anticoagulants, thrombolytics, and fibrinolytics, as well as their optimal dose strategies, continues to be relevant. The wide therapeutic potential of seaweed sulfated polysaccharides (PSs), including anticoagulant, thrombolytic, and fibrinolytic activities, opens up new possibilities for their study in experimental and clinical trials. These natural compounds can be important complementary drugs for the recovery from hemostasis disorders due to their natural origin, safety, and low cost compared to synthetic drugs. In this review, the authors analyze possible pathophysiological mechanisms involved in the hemostasis disorders observed in the pathological progression of COVID-19, and also focus the attention of researchers on seaweed PSs as potential drugs aimed to correction these disorders in COVID-19 patients. Modern literature data on the anticoagulant, antithrombotic, and fibrinolytic activities of seaweed PSs are presented, depending on their structural features (content and position of sulfate groups on the main chain of PSs, molecular weight, monosaccharide composition and type of glycosidic bonds, the degree of PS chain branching, etc.). The mechanisms of PS action on the hemostasis system and the issues of oral bioavailability of PSs, important for their clinical use as oral anticoagulant and antithrombotic agents, are considered. The combination of the anticoagulant, thrombolytic, and fibrinolytic properties, along with low toxicity and relative cheapness of production, open up prospects for the clinical use of PSs as alternative sources of new anticoagulant and antithrombotic compounds. However, further investigation and clinical trials are needed to confirm their efficacy.
Collapse
Affiliation(s)
- Tatyana A. Kuznetsova
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (I.D.M.); (T.S.Z.); (N.N.B.); (M.Y.S.)
| | - Boris G. Andryukov
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (I.D.M.); (T.S.Z.); (N.N.B.); (M.Y.S.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia;
| | - Ilona D. Makarenkova
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (I.D.M.); (T.S.Z.); (N.N.B.); (M.Y.S.)
| | - Tatyana S. Zaporozhets
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (I.D.M.); (T.S.Z.); (N.N.B.); (M.Y.S.)
| | - Natalya N. Besednova
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (I.D.M.); (T.S.Z.); (N.N.B.); (M.Y.S.)
| | - Ludmila N. Fedyanina
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia;
| | - Sergey P. Kryzhanovsky
- Medical Association of the Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| | - Mikhail Yu. Shchelkanov
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (I.D.M.); (T.S.Z.); (N.N.B.); (M.Y.S.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia;
- Federal Scientific Center of the Eastern Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, 690091 Vladivostok, Russia
- National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, 690091 Vladivostok, Russia
| |
Collapse
|
36
|
Procerolides A-B from Microcionidae marine sponge Clathria procera: Anti-inflammatory macrocylic lactones with selective cyclooxygenase-2 attenuation properties. Bioorg Chem 2021; 109:104663. [PMID: 33581508 DOI: 10.1016/j.bioorg.2021.104663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
Cyclooxygenase-2 has been recognized to catalyze the formation of inflammatory prostaglandins from arachidonic acid. Attenuation potential against cyclooxygenase-2 coupled with greater anti-inflammatory selectivity index were contemplated to be vital indicators to assess anti-inflammatory activities of bioactive compounds. In the present study, two undescribed fourteen-membered macrocyclic lactones, procerolide A and B were isolated to homogeneity from the organic extract of the marine sponge Clathria procera (family: Microcionidae). Procerolide B exhibited greater attenuation potential against cyclooxygenase-2 (IC50 0.89 mM) than that displayed by procerolide A, whereas 5-lipoxygenase inhibitory activity of procerolide B (IC50 1.08 mM) was significantly greater than that displayed by procerolide A (IC50 0.95 mM) and anti-inflammatory agent ibuprofen (IC50 4.50 mM). Additionally, greater anti-inflammatory selectivity index of the procerolides (~1.3) than the synthetic agent (0.43) was accounted for the selective inhibition of the compounds towards cyclooxygenase-2. Higher electronic properties (topological polar surface area of > 100) along with lesser steric properties (molar volume < 300 cm3) of the compounds compared to the standard supported their significant anti-inflammatory potential. Additionally, procerolide B exhibited comparatively lesser binding energy with aminoacyl residues of cyclooxygenase-2 (-9.82 kcal/mol) thereby recognizing its prospective therapeutic use against inflammatory pathogenesis.
Collapse
|
37
|
Wieczfinska J, Sitarek P, Kowalczyk T, Skała E, Pawliczak R. The Anti-inflammatory Potential of Selected Plant-derived Compounds in Respiratory Diseases. Curr Pharm Des 2021; 26:2876-2884. [PMID: 32250214 DOI: 10.2174/1381612826666200406093257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/06/2020] [Indexed: 01/04/2023]
Abstract
Inflammation plays a major role in chronic airway diseases like asthma, COPD, and cystic fibrosis. Inflammation plays a crucial role in the worsening of the lung function resulting in worsening symptoms. The inflammatory process is very complexed, therefore the strategies for developing an effective treatment for inflammatory airway diseases would benefit from the use of natural substances. Plant products have demonstrated anti-inflammatory properties on various lung disease models and numerous natural plant agents have successfully been used to treat inflammation. Naturally occurring substances may exert some anti-inflammatory effects by modulating some of the inflammatory pathways. These agents have been used in different cultures for thousands of years and have proven to be relatively safe. Parthenolide, apocynin, proanthocyanidins, and boswellic acid present different mechanisms of actions - among others, through NF-kB or NADPH oxidase inhibition, therefore showing a wide range of applications in various inflammatory diseases. Moreover, some of them have also antioxidant properties. This review provides an overview of the anti-inflammatory effects of some of the natural agents and illustrates their great potential as sources of drugs to cover an extensive range of pharmacological effects.
Collapse
Affiliation(s)
| | - Przemyslaw Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Lodz, Poland
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, S. Banacha 12/16, 90-237, Lodz, Poland
| | - Ewa Skała
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Lodz, Poland
| | - Rafal Pawliczak
- Department of Immunopathology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
38
|
Nageen B, Rasul A, Hussain G, Shah MA, Anwar H, Hussain SM, Uddin MS, Sarfraz I, Riaz A, Selamoglu Z. Jaceosidin: A Natural Flavone with Versatile Pharmacological and Biological Activities. Curr Pharm Des 2021; 27:456-466. [PMID: 32348212 DOI: 10.2174/1381612826666200429095101] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/17/2020] [Indexed: 11/22/2022]
Abstract
Nature always remains an inexhaustible source of treasures for mankind. It remains a mystery for every challenge until the completion of the challenge. While we talk about the complicated health issues, nature offers us a great variety of chemical scaffolds and their various moieties packed in the form of natural products e.g., plants, microorganisms (fungi, algae, protozoa), and terrestrial vertebrates and invertebrates. This review article is an update about jaceosidin, a bioactive flavone, from genus Artemisia. This potentially active compound exhibits a variety of pharmacological activities including anti-inflammatory, anti-oxidant, anti-bacterial, antiallergic and anti-cancer activities. The bioactivities and the therapeutic action of jaceosidin, especially the modulation of different cell signaling pathways (ERK1/2, NF-κB, PI3K/Akt and ATM-Chk1/2) which become deregulated in various pathological disorders, have been focused here. The reported data suggest that the bioavailability of this anti-cancer compound should be enhanced by utilizing various chemical, biological and computational techniques. Moreover, it is recommended that researchers and scientists should work on exploring the mode of action of this particular flavone to precede it further as a potent anti-cancer compound.
Collapse
Affiliation(s)
- Bushra Nageen
- Cell and Molecular Biology Lab, Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Azhar Rasul
- Cell and Molecular Biology Lab, Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad A Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Syed M Hussain
- Cell and Molecular Biology Lab, Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Iqra Sarfraz
- Cell and Molecular Biology Lab, Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Ammara Riaz
- Cell and Molecular Biology Lab, Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Campus 51240, Nigde, Turkey
| |
Collapse
|
39
|
Bilal M, Qindeel M, Nunes LV, Duarte MTS, Ferreira LFR, Soriano RN, Iqbal HMN. Marine-Derived Biologically Active Compounds for the Potential Treatment of Rheumatoid Arthritis. Mar Drugs 2020; 19:10. [PMID: 33383638 PMCID: PMC7823916 DOI: 10.3390/md19010010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 02/05/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease with a prevalence rate of up to 1% and is significantly considered a common worldwide public health concern. Commercially, several traditional formulations are available to treat RA to some extent. However, these synthetic compounds exert toxicity and considerable side effects even at lower therapeutic concentrations. Considering the above-mentioned critiques, research is underway around the world in finding and exploiting potential alternatives. For instance, marine-derived biologically active compounds have gained much interest and are thus being extensively utilized to confront the confines of in practice counterparts, which have become ineffective for 21st-century medical settings. The utilization of naturally available bioactive compounds and their derivatives can minimize these synthetic compounds' problems to treat RA. Several marine-derived compounds exhibit anti-inflammatory and antioxidant properties and can be effectively used for therapeutic purposes against RA. The results of several studies ensured that the extraction of biologically active compounds from marine sources could provide a new and safe source for drug development against RA. Finally, current challenges, gaps, and future perspectives have been included in this review.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Maimoona Qindeel
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Leonardo Vieira Nunes
- Department of Medicine, Federal University of Juiz de Fora, Juiz de Fora-MG 36036-900, Brazil;
| | | | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, Aracaju-Sergipe 49032-490, Brazil;
- Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, Aracaju-Sergipe 49032-490, Brazil
| | - Renato Nery Soriano
- Division of Physiology and Biophysics, Department of Basic Life Sciences, Federal University of Juiz de Fora, Governador Valadares-MG 35010-180, Brazil;
| | - Hafiz M. N. Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
| |
Collapse
|
40
|
Nguyen TKM, Ki MR, Son RG, Kim KH, Hong J, Pack SP. A dual-functional peptide, Kpt from Ruegeria pomeroyi DSS-3 for protein purification and silica precipitation. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Eghianruwa Q, Osoniyi O, Maina N, Wachira S, Imbuga M. Evaluation of Analgesic Activities of Extracts of Two Marine Molluscs: Tympanotonus fuscatus var radula (Linnaeus) and Pachymelania aurita (Müller). J Pain Res 2020; 13:2739-2747. [PMID: 33154664 PMCID: PMC7608598 DOI: 10.2147/jpr.s271458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
PURPOSE AND METHODS In this study, the analgesic activity of the crude alcohol (acetone-methanol) and aqueous (in PBS, pH 7.2) extracts of the marine molluscs, Pachymelania aurita and Tympanotonus fuscatus, has been evaluated using the formalin test (for chronic antinociceptive) and the tail-flick (acute antinociceptive) pain models in male swiss albino mice. RESULTS The results show that the extracts of P. aurita and T. fuscatus demonstrated high safety margins as single doses of up to 2000 mg/kg bwt proved to be well tolerated and non-lethal, although the alcohol extract of P. aurita caused necrosis in the liver and kidney when administered at a dose level of 2000 mg/kg bwt. In the formalin test, treatment with the aqueous extracts of P. aurita and T. fuscatus as well as the alcohol extract of T. fuscatus 30 min before the subcutaneous injection of 5% formalin to the paw of the mice resulted in a significant time- and dose-dependent reduction in total and phase 2a pain-related behavior and thus nociception. The extracts had no analgesic effect in tail-flick test up to the highest dose tested. CONCLUSION Hence, the results from both models indicate that the site of their analgesic action is probably peripheral.
Collapse
Affiliation(s)
- Queensley Eghianruwa
- Department of Molecular Biology and Biotechnology, Pan African University Institute of Science, Technology and Innovation, JKUAT campus, Juja, Kenya
- Department of Biochemistry, University of Uyo, Uyo, Nigeria
| | - Omolaja Osoniyi
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile Ife, Nigeria
| | - Naomi Maina
- Department of Molecular Biology and Biotechnology, Pan African University Institute of Science, Technology and Innovation, JKUAT campus, Juja, Kenya
- Biochemistry Department, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| | - Sabina Wachira
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Mabel Imbuga
- Biochemistry Department, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| |
Collapse
|
42
|
Papadogiannis F, Batsali A, Klontzas ME, Karabela M, Georgopoulou A, Mantalaris A, Zafeiropoulos NE, Chatzinikolaidou M, Pontikoglou C. Osteogenic differentiation of bone marrow mesenchymal stem cells on chitosan/gelatin scaffolds: gene expression profile and mechanical analysis. ACTA ACUST UNITED AC 2020; 15:064101. [PMID: 32629436 DOI: 10.1088/1748-605x/aba325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the present study we explore the extracellular matrix (ECM) produced by human bone marrow mesenchymal stem/stromal cells (BM-MSCs) induced to undergo osteogenic differentiation within porous chitosan/gelatin (CS:Gel) scaffolds by investigating their multiple gene expression profile and mechanical behavior. Initially, the efficiency of the BM-MSCs osteogenic differentiation within the constructs was confirmed by the significant rise in the expression of the osteogenesis associated genes DLX5, RUNX2, ALP and OSC. In line with these findings, OSC and Col1A1 protein expression was also detected in BM-MSCs on the CS:Gel scaffolds at day 14 of osteogenic differentiation. We then profiled, for the first time, the expression of 84 cell adhesion and ECM molecules using PCR arrays. The arrays, which were conducted at day 14 of osteogenic differentiation, demonstrated that 49 genes including collagens, integrins, laminins, ECM proteases, catenins, thrombospondins, ECM protease inhibitors and cell-cell adhesion molecules were differentially expressed in BM-MSCs seeded on scaffolds compared to tissue culture polystyrene control. Moreover, we performed dynamic mechanical analysis of the cell-loaded scaffolds on days 0, 7 and 14 to investigate the correlation between the biological results and the mechanical behavior of the constructs. Our data demonstrate a significant increase in the stiffness of the constructs with storage modulus values of 2 MPa on day 7, compared to 0.5 MPa on day 0, following a drop of the stiffness at 0.8 MPa on day 14, that may be attributed to the significant increase of specific ECM protease gene expression such as MMP1, MMP9, MMP11 and MMP16 at this time period.
Collapse
Affiliation(s)
- Fotios Papadogiannis
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, Heraklion, Greece. Department of Materials Science and Technology, University of Crete, Heraklion, Greece. All authors contributed equally to this work
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Chen S, Deng Y, Yan C, Wu Z, Guo H, Liu L, Liu H. Secondary Metabolites with Nitric Oxide Inhibition from Marine-Derived Fungus Alternaria sp. 5102. Mar Drugs 2020; 18:md18080426. [PMID: 32823987 PMCID: PMC7460390 DOI: 10.3390/md18080426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
Two new benzofurans, alternabenzofurans A and B (1 and 2) and two new sesquiterpenoids, alternaterpenoids A and B (3 and 4), along with 18 known polyketides (5−22), were isolated from the marine-derived fungus Alternaria sp. 5102. Their structures were elucidated on the basis of extensive spectroscopic analyses (1D and 2D NMR, HR-ESIMS, and ECD) and X-ray crystallography, as well as the modified Mosher’s method. Compounds 2, 3, 5, 7, 9–18, and 20–22 exhibited potent anti-inflammatory activity by inhibiting the production of NO in RAW264.7 cells activated by lipopolysaccharide with IC50 values in the range from 1.3 to 41.1 μM. Structure-activity relationships of the secondary metabolites were discussed.
Collapse
Affiliation(s)
- Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (S.C.); (Z.W.); (H.G.); (L.L.)
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Yanlian Deng
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; (Y.D.); (C.Y.)
| | - Chong Yan
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; (Y.D.); (C.Y.)
| | - Zhenger Wu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (S.C.); (Z.W.); (H.G.); (L.L.)
| | - Heng Guo
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (S.C.); (Z.W.); (H.G.); (L.L.)
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (S.C.); (Z.W.); (H.G.); (L.L.)
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Hongju Liu
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; (Y.D.); (C.Y.)
- Correspondence: ; Tel.: +86-769-22896599
| |
Collapse
|
44
|
Tan Y, Deng W, Zhang Y, Ke M, Zou B, Luo X, Su J, Wang Y, Xu J, Nandakumar KS, Liu Y, Zhou X, Li X. A marine fungus-derived nitrobenzoyl sesquiterpenoid suppresses receptor activator of NF-κB ligand-induced osteoclastogenesis and inflammatory bone destruction. Br J Pharmacol 2020; 177:4242-4260. [PMID: 32608081 DOI: 10.1111/bph.15179] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 05/15/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Osteoclasts are unique cells to absorb bone. Targeting osteoclast differentiation is a therapeutic strategy for osteolytic diseases. Natural marine products have already become important sources of new drugs. The naturally occurring nitrobenzoyl sesquiterpenoids first identified from marine fungi in 1998 are bioactive compounds with a special structure, but their pharmacological functions are largely unknown. Here, we investigated six marine fungus-derived nitrobenzoyl sesquiterpenoids on osteoclastogenesis and elucidated the mechanisms. EXPERIMENTAL APPROACH Compounds were first tested by RANKL-induced NF-κB luciferase activity and osteoclastic TRAP assay, followed by molecular docking to characterize the structure-activity relationship. The effects and mechanisms of the most potent nitrobenzoyl sesquiterpenoid on RANKL-induced osteoclastogenesis and bone resorption were further evaluated in vitro. Micro-CT and histology analysis were used to assess the prevention of bone destruction by nitrobenzoyl sesquiterpenoids in vivo. KEY RESULTS Nitrobenzoyl sesquiterpenoid 4, with a nitrobenzoyl moiety at C-14 and a hydroxyl group at C-9, was the most active compound on NF-κB activity and osteoclastogenesis. Consequently, nitrobenzoyl sesquiterpenoid 4 exhibited suppression of RANKL-induced osteoclastogenesis and bone resorption from 0.5 μM. It blocked RANKL-induced IκBa phosphorylation, NF-κB p65 and RelB nuclear translocation, NFATc1 activation, reduced DC-STAMP but not c-Fos expression during osteoclastogenesis in vitro. Nitrobenzoyl sesquiterpenoid 4 also ameliorated LPS-induced osteolysis in vivo. CONCLUSION AND IMPLICATIONS These results highlighted nitrobenzoyl sesquiterpenoid 4 as a novel inhibitor of osteoclast differentiation. This marine-derived sesquiterpenoid is a promising lead compound for the treatment of osteolytic diseases.
Collapse
Affiliation(s)
- Yanhui Tan
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wende Deng
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yueyang Zhang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Minhong Ke
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Binhua Zou
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaowei Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Jianbin Su
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yiyuan Wang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jialan Xu
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Kutty Selva Nandakumar
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaojuan Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
45
|
Lee HP, Wu YC, Chen BC, Liu SC, Li TM, Huang WC, Hsu CJ, Tang CH. Soya-cerebroside reduces interleukin production in human rheumatoid arthritis synovial fibroblasts by inhibiting the ERK, NF-κB and AP-1 signalling pathways. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1766426] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Hsiang-Ping Lee
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yang-Chang Wu
- Chinese Medicine Research and Development Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- The Biotechnology Department, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Bo-Cheng Chen
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chien Huang
- The Biotechnology Department, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Drug Development Center, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chin-Jung Hsu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsin Tang
- The Biotechnology Department, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
46
|
Souza CRM, Bezerra WP, Souto JT. Marine Alkaloids with Anti-Inflammatory Activity: Current Knowledge and Future Perspectives. Mar Drugs 2020; 18:md18030147. [PMID: 32121638 PMCID: PMC7142576 DOI: 10.3390/md18030147] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/10/2020] [Accepted: 02/19/2020] [Indexed: 12/17/2022] Open
Abstract
Alkaloids are nitrogenous compounds with various biological activities. Alkaloids with anti-inflammatory activity are commonly found in terrestrial plants, but there are few records of the identification and characterization of the activity of these compounds in marine organisms such as fungi, bacteria, sponges, ascidians, and cnidarians. Seaweed are a source of several already elucidated bioactive compounds, but few studies have described and characterized the activity of seaweed alkaloids with anti-inflammatory properties. In this review, we have gathered the current knowledge about marine alkaloids with anti-inflammatory activity and suggest future perspectives for the study and bioprospecting of these compounds.
Collapse
Affiliation(s)
| | | | - Janeusa T. Souto
- Correspondence: ; Tel.: +55-84-99908-7027; Fax: +55-84-3215-3311
| |
Collapse
|
47
|
Florean C, Dicato M, Diederich M. Immune-modulating and anti-inflammatory marine compounds against cancer. Semin Cancer Biol 2020; 80:58-72. [PMID: 32070764 DOI: 10.1016/j.semcancer.2020.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
The recent advances in cancer immunotherapy confirm the crucial role of the immune system in cancer progression and treatment. Chronic inflammation and reduced immune surveillance are both features of the tumor microenvironment. Strategies aimed at reverting pro-tumor inflammation and stimulating the antitumor immune components are being actively searched, and the anticancer effects of many candidate drugs have been linked to their ability to modulate the immune system. Marine organisms constitute a rich reservoir of new bioactive molecules; some of them have already been exploited for pharmaceutical use, whereas many others are undergoing clinical or preclinical investigations for the treatment of different diseases, including cancer. In this review, we will discuss the immune-modulatory properties of marine compounds for their potential use in cancer prevention and treatment and as possible tools in the context of cancer immunotherapy.
Collapse
Affiliation(s)
- Cristina Florean
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, L-2540 Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, L-2540 Luxembourg
| | - Marc Diederich
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
48
|
Carpes RDM, Corrêa Fernandes D, Coelho MGP, Creed JC, Fleury BG, Garden SJ, Felzenszwalb I. Anti-inflammatory potential of invasive sun corals (Scleractinia: Tubastraea spp.) from Brazil: alternative use for management? ACTA ACUST UNITED AC 2020; 72:633-647. [PMID: 31981225 DOI: 10.1111/jphp.13232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/01/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVES The objective was to analyse the anti-inflammatory potential of the invasive coral species Tubastraea coccinea and Tubastraea tagusensis. METHODS Methanolic extracts, fractions and synthesized compounds were evaluated for their anti-inflammatory ability, and their composition was elucidated through chemical analysis. KEY FINDINGS The genus Tubastraea (Order Scleractinia, Family Dendrophylliidae) (known as sun corals) presents compounds with pharmacological value. The introduction of these azooxanthellate hard corals into Brazil, initially in Rio de Janeiro state, occurred through their fouling of oil and gas platforms from the Campos oil Basin. The two invasive species have successfully expanded along the Brazilian coast and threaten endemic species and biodiversity. The HPLC-MS and GC-MS data suggest the presence of aplysinopsin analogues (alkaloids). Anti-inflammatory activity was observed in all samples tested in in-vivo assays, especially in T. coccinea. The ethyl acetate fraction from this sample was more effective in in-vitro assays for anti-inflammatory activity. Depending on the concentration, this fraction showed cytotoxic responses. CONCLUSIONS These species have potential pharmacological use, and considering their invasive nature, this study presents a potential alternative use, which may enhance the management of this biological invasion.
Collapse
Affiliation(s)
- Raphael de Mello Carpes
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Daniele Corrêa Fernandes
- Laboratory of Applied Biochemistry and Biochemistry of Proteins and Natural Products, Department of Biochemistry, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marsen Garcia Pinto Coelho
- Laboratory of Applied Biochemistry and Biochemistry of Proteins and Natural Products, Department of Biochemistry, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Joel Christopher Creed
- Department of Ecology, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Beatriz Grosso Fleury
- Department of Ecology, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Simon John Garden
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Israel Felzenszwalb
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
49
|
Shellmycin A-D, Novel Bioactive Tetrahydroanthra-γ-Pyrone Antibiotics from Marine Streptomyces sp. Shell-016. Mar Drugs 2020; 18:md18010058. [PMID: 31963176 PMCID: PMC7024178 DOI: 10.3390/md18010058] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/07/2020] [Accepted: 01/12/2020] [Indexed: 12/11/2022] Open
Abstract
Four novel bioactive tetrahydroanthra-γ-pyrone compounds, shellmycin A-D (1-4), were isolated from the marine Streptomyces sp. shell-016 derived from a shell sediment sample collected from Binzhou Shell Dike Island and Wetland National Nature Reserve, China. The structures of these four compounds were established by interpretation of 1D and 2D NMR and HR-MS data, in which the absolute configuration of 1 was confirmed by single crystal X-ray diffraction, and compound 3 and 4 are a pair of stereoisomers. Compound 1-4 exhibited cytotoxic activity against five cancer cell lines with the IC50 value from 0.69 μM to 26.3 μM. Based on their structure-activity relationship, the putative biosynthetic pathways of these four compounds were also discussed.
Collapse
|
50
|
Olajide OA, Sarker SD. Anti-inflammatory natural products. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2020:153-177. [DOI: 10.1016/bs.armc.2020.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|