1
|
Watanabe H, Fujishima F, Yamazaki Y, Imamura M, Hijioka S, Hara K, Kuwahara T, Yatabe Y, Sakamoto K, Shiga H, Kawaguchi T, Suzuki H, Kanbayashi Y, Ohkoshi A, Shimada M, Niikawa H, Sato M, Fujio A, Masui T, Kasai Y, Ota H, Ozawa H, Endo H, Unno M, Sasano H, Suzuki T. GLP- 1R status using validated monoclonal antibody in 689 cases of neuroendocrine neoplasm and its correlation with somatostatin receptor scintigraphy, insulin production, and histological grades. Virchows Arch 2025:10.1007/s00428-025-04098-2. [PMID: 40281248 DOI: 10.1007/s00428-025-04098-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/19/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025]
Abstract
Radiolabeled glucagon-like peptide 1 (GLP- 1) analog scintigraphy is a new, high-sensitivity imaging method for detecting small insulinomas. Somatostatin receptor scintigraphy (SRS) is an established method for detecting gastroenteropancreatic neuroendocrine tumors. However, small benign insulinomas are difficult to detect using SRS. Furthermore, GLP- 1 receptor (GLP- 1R) expression and SRS results may be inversely correlated. We identified 689 neuroendocrine neoplasms, including pancreatic neuroendocrine tumors (PanNETs) and neuroendocrine neoplasms originating from non-pancreatic sites, and performed GLP- 1R immunostaining. Among the non-insulinoma PanNETs, immunohistochemical insulin or proinsulin positive cases were categorized as Inspos, and both negative cases as Insneg. High prevalence of GLP- 1R expression was detected in PanNETs and duodenal NETs (34% and 53%, respectively). Some pulmonary NETs were GLP- 1R positive (9%). In contrast, neither GI-NEC excluding one case nor pulmonary NEC exhibited GLP- 1R expression. The percentage of GLP- 1R positive cases for Inspos, Insneg, and insulinoma was 31%, 0%, and 84%, respectively. Among PanNETs, GLP- 1R positive cases showed higher expression of insulin and proinsulin than negative cases. SRS-positive patients showed lower expression levels of insulin, proinsulin, and GLP- 1R than SRS-negative patients. The expression in PanNETs and duodenal NETs may be derived from the expression in their normal counterparts. Insulinoma and Inspos cases showed GLP- 1R expression. Furthermore, as GLP- 1R-positive patients showed significantly higher expression of insulin and proinsulin than GLP- 1R negative patients, GLP- 1R may also be associated with neoplastic insulin production and GLP- 1 analog scintigraphy may detect subclinical insulinomas. In addition, SRS-negative cases showed significantly higher GLP- 1R expression than SRS-positive cases. These results suggest the application potential of GLP- 1 analog scintigraphy in combination with SRS as a detection tool.
Collapse
Affiliation(s)
- Hirofumi Watanabe
- Department of Pathology, Tohoku University Hospital, 1 - 1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980 - 8574, Japan
| | - Fumiyoshi Fujishima
- Department of Pathology, Tohoku University Hospital, 1 - 1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980 - 8574, Japan.
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Hospital, 1 - 1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980 - 8574, Japan
| | - Masayuki Imamura
- Department of Surgery, Kansai Electric Power Hospital, Osaka, Japan
| | - Susumu Hijioka
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center, Tokyo, Japan
| | - Kazuo Hara
- Department of Gastroenterology, Aichi Cancer Center Hospital, Aichi, Japan
| | - Takamichi Kuwahara
- Department of Gastroenterology, Aichi Cancer Center Hospital, Aichi, Japan
| | - Yasushi Yatabe
- Department of Pathology and Clinical Laboratories, National Cancer Center, Tokyo, Japan
| | | | - Hisashi Shiga
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | | | - Hiroyoshi Suzuki
- Department of Diagnostic Pathology, South Miyagi Medical Center, Miyagi, Japan
| | - Yumi Kanbayashi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Akira Ohkoshi
- Department of Otorhinolaryngology, Head and Neck Surgery, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Muneaki Shimada
- Department of Gynecology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Hiromichi Niikawa
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan
| | - Mami Sato
- Department of Breast and Endocrine Surgery, Tohoku University Hospital, Miyagi, Japan
| | - Atsushi Fujio
- Department of Surgery, Graduate School of Medicine, Tohoku University, Miyagi, Japan
| | - Toshihiko Masui
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yosuke Kasai
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hideki Ota
- Department of Diagnostic Radiology, Tohoku University Hospital, Miyagi, Japan
| | - Hiroshi Ozawa
- Department of Orthopaedic Surgery, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Hidenori Endo
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Michiaki Unno
- Department of Surgery, Graduate School of Medicine, Tohoku University, Miyagi, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Hospital, 1 - 1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980 - 8574, Japan
| | - Takashi Suzuki
- Department of Pathology, Tohoku University Hospital, 1 - 1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980 - 8574, Japan
| |
Collapse
|
2
|
Neves FR, Martins AL, Oliveira RC, Martins R. Characterization of the Pancreatic Neuroendocrine Neoplasm Immune Microenvironment. Cancer Med 2025; 14:e70798. [PMID: 40145271 PMCID: PMC11947738 DOI: 10.1002/cam4.70798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/01/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
INTRODUCTION A tumor is composed of more than tumoral cells. In recent years, there has been an increase in interest and knowledge of the tumor microenvironment (TME). METHODS The TME is an integral part of the tumor, composed of several cells: immune, stromal, and endothelial, among others, thus offering a wide range of tumor interactions and multiple possibilities for targeted therapies and environment modulation. While the TME in pancreatic ductal adenocarcinoma is widely studied, it is not very true for the TME of pancreatic neuroendocrine neoplasms (PNENs). DISCUSSION AND CONCLUSION The incidence of PNENs is increasing and, therefore, it is important to comprehend their biology for the evolution of efficient therapies since many of the PNENs develop metastasis, including the G1 PNENs. This paper focuses on a review of the role of the TME in PNENs.
Collapse
Affiliation(s)
| | | | | | - Rui Martins
- Instituto Português de Oncologia de CoimbraCoimbraPortugal
- Faculdade de Medicina da Universidade de CoimbraCoimbraPortugal
| |
Collapse
|
3
|
Karatug Kacar A, Bulutay P, Aylar D, Celikten M, Bolkent S. Characterization and comparison of insulinoma tumor model and pancreatic damage caused by the tumor, and identification of possible markers. Mol Biol Rep 2024; 51:109. [PMID: 38227104 DOI: 10.1007/s11033-023-08942-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/17/2023] [Indexed: 01/17/2024]
Abstract
Insulinoma is a neuroendocrine tumor. It arises from the uncontrolled proliferation of pancreatic β cells. In this study, we created an insulinoma tumor model in nude mice. INS-1 cells were injected in two different ways, subcutaneously (S.C.) or intraperitoneally (I.P.). Body weight, tumor weight, and size were measured. ELISA kits were used analyze to Glucose, insulin, and CA19-9 levels in serum, pancreas, and tumor tissues. KCNN4, KCNK1, GLUT2, IR, HSP70, HSF1, and HSP90 levels were analyzed by western blotting of membrane and/or cytosolic fractions of tumor and pancreas tissue. Tumor formation occurred in nude mice, but it did not occur in Wistar albino rats. The tumor has neuroendocrine cell morphology. Insulin and CA19-9 levels increased in pancreas tissue. In tumor tissue, KCNN4 levels were higher in both membrane and cytosolic fractions, while KCNK1 levels were lower in the membrane fraction of the S.C. group. HSP70 levels were also lower in the S.C. group. In pancreas tissue, KCNK1 levels were lower in the membrane fraction of the S.C. and I.P. groups. GLUT2 levels increased in both groups according to the control group, while IR levels decreased in the S.C. group compared to the control group. However, HSF1 levels increased in the I.P. group, while HSP90 decreased in the S.C. group in pancreatic tissues. The S.C. group is a more suitable insulinoma tumor model. KCNN4, KCNK1, and HSP70 proteins may be important biomarkers in the diagnosis and treatment of insulinoma.
Collapse
Affiliation(s)
- Ayse Karatug Kacar
- Faculty of Science, Department of Biology, Istanbul University, 34134- Vezneciler, Istanbul, Turkey.
| | - Pinar Bulutay
- School of Medicine, Department of Pathology, Koç University, Istanbul, Turkey
| | - Dilara Aylar
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Mert Celikten
- Institute of Health Science, Department of Anatomy, Medipol University, Istanbul, Turkey
| | - Sehnaz Bolkent
- Faculty of Science, Department of Biology, Istanbul University, 34134- Vezneciler, Istanbul, Turkey
| |
Collapse
|
4
|
Xie Y, Wang Y, Pei W, Chen Y. Theranostic in GLP-1R molecular imaging: challenges and emerging opportunities. Front Mol Biosci 2023; 10:1210347. [PMID: 37780209 PMCID: PMC10540701 DOI: 10.3389/fmolb.2023.1210347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023] Open
Abstract
Theranostic in nuclear medicine combines diagnostic imaging and internal irradiation therapy using different therapeutic nuclear probes for visual diagnosis and precise treatment. GLP-1R is a popular receptor target in endocrine diseases, non-alcoholic steatohepatitis, tumors, and other areas. Likewise, it has also made breakthroughs in the development of molecular imaging. It was recognized that GLP-1R imaging originated from the study of insulinoma and afterwards was expanded in application including islet transplantation, pancreatic β-cell mass measurement, and ATP-dependent potassium channel-related endocrine diseases. Fortunately, GLP-1R molecular imaging has been involved in ischemic cardiomyocytes and neurodegenerative diseases. These signs illustrate the power of GLP-1R molecular imaging in the development of medicine. However, it is still limited to imaging diagnosis research in the current molecular imaging environment. The lack of molecular-targeted therapeutics related report hinders its radiology theranostic. In this article, the current research status, challenges, and emerging opportunities for GLP-1R molecular imaging are discussed in order to open a new path for theranostics and to promote the evolution of molecular medicine.
Collapse
Affiliation(s)
- Yang Xie
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| | - Yudi Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| | - Wenjie Pei
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| |
Collapse
|
5
|
Egal ESA, Jacenik D, Soares HP, Beswick EJ. Translational challenges in pancreatic neuroendocrine tumor immunotherapy. Biochim Biophys Acta Rev Cancer 2021; 1876:188640. [PMID: 34695532 PMCID: PMC10695297 DOI: 10.1016/j.bbcan.2021.188640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/19/2021] [Accepted: 10/18/2021] [Indexed: 12/28/2022]
Abstract
Pancreatic neuroendocrine tumors are rare types of pancreatic cancer formed from islet cells of pancreas. Clinical presentation of pancreatic neuroendocrine tumors depends on both tumor progression and hormone secretion status, which generate several complications in both diagnosis and treatment. Despite numerous strategies, treatment of patients with pancreatic neuroendocrine tumors still needs improvement. It is suggested that immune response modulation may be essential in the regulation of pancreatic neuroendocrine tumor progression and patient's symptomology. Accumulating evidence indicates that immunotherapy seems to be a promising treatment option for patients with pancreatic neuroendocrine tumors. Nevertheless, several challenges in pre-clinical and clinical studies are present. This review provides knowledge about microenvironment of pancreatic neuroendocrine tumors including significance of cytokine and chemokine as well as specific immune cell types. Additionally, in vitro and in vivo models of pancreatic neuroendocrine tumors and translational challenges are highlighted.
Collapse
Affiliation(s)
- Erika Said Abu Egal
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, UT, Salt Lake City, United States
| | - Damian Jacenik
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, UT, Salt Lake City, United States; Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute at the University of Utah, UT, Salt Lake City, United States; Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Heloisa Prado Soares
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute at the University of Utah, UT, Salt Lake City, United States.
| | - Ellen J Beswick
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, UT, Salt Lake City, United States
| |
Collapse
|
6
|
Felber VB, Wester HJ. Small peptide-based GLP-1R ligands: an approach to reduce the kidney uptake of radiolabeled GLP-1R-targeting agents? EJNMMI Radiopharm Chem 2021; 6:29. [PMID: 34432147 PMCID: PMC8387526 DOI: 10.1186/s41181-021-00136-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/04/2021] [Indexed: 11/23/2022] Open
Abstract
Aim Elevated kidney uptake in insulinoma patients remains a major limitation of radiometallated exendin-derived ligands of the glucagon-like peptide 1 receptor (GLP-1R). Based on the previously published potent GLP-1R-activating undecapeptide 1, short-chained GLP-1R ligands were developed to investigate whether kidney uptake can be reduced by means of direct 18F-labeling (nuclide-based accelerated renal excretion) or the reduction of the overall ligand charge (ligand-based reduced kidney uptake). Materials & methods GLP-1R ligands were prepared according to optimized standard protocols via solid-phase peptide synthesis (SPPS) or, when not practicable, via fragment coupling in solution. Synthesis of (2‘-Et, 4‘-OMe)4, 4’-L-biphenylalanine ((2′-Et, 4′-OMe)BIP), required for the preparation of 1, was accomplished by Suzuki-Miyaura cross-coupling. In vitro experiments were performed using stably transfected GLP-1R+ HEK293-hGLP-1R cells. Results In contrast to the three reference ligands glucagon-like peptide 1 (GLP-1, IC50 = 23.2 ± 12.2 nM), [Nle14, Tyr(3-I)40]exendin-4 (IC50 = 7.63 ± 2.78 nM) and [Nle14, Tyr40]exendin-4 (IC50 = 9.87 ± 1.82 nM), the investigated GLP-1R-targeting small peptides (9–15 amino acids), including lead peptide 1, exhibited only medium to low affinities (IC50 > 189 nM). Only SiFA-tagged undecapeptide 5 (IC50 = 189 ± 35 nM) revealed a higher affinity than 1 (IC50 = 669 ± 242 nM). Conclusion The investigated small peptides, including lead peptide 1, could not compete with favorable in vitro characteristics of glucagon-like peptide 1 (GLP-1), [Nle14, Tyr(3-I)40]exendin-4 and [Nle14, Tyr40]exendin-4. The auspicious EC50 values of 1 provided by the literature could not be transferred to competitive binding experiments. Therefore, the use of 1 as a basic scaffold for the design of further GLP-1R-targeting radioligands cannot be recommended. Further investigations might include the scaffold of 5, although substantial optimizations concerning affinity and lipophilicity would be required. In sum, GLP-1R-targeting radioligands with reduced kidney uptake could not be obtained in this work, which emphasizes the need for further ligands addressing this particular issue. Supplementary Information The online version contains supplementary material available at 10.1186/s41181-021-00136-x.
Collapse
Affiliation(s)
- Veronika Barbara Felber
- Chair of Pharmaceutical Radiochemistry, Technical University of Munich, Walther-Meißner-Str. 3, 85748, Garching, Germany.
| | - Hans-Jürgen Wester
- Chair of Pharmaceutical Radiochemistry, Technical University of Munich, Walther-Meißner-Str. 3, 85748, Garching, Germany
| |
Collapse
|
7
|
Boss M, Rottenburger C, Brenner W, Blankenstein O, Prasad V, Prasad S, de Coppi P, Kühnen P, Buitinga M, Nuutila P, Otonkoski T, Hussain K, Brom M, Eek A, Bomanji JB, Shah P, Gotthardt M. 68Ga-NODAGA-exendin-4 PET improves the detection of focal congenital hyperinsulinism. J Nucl Med 2021; 63:310-315. [PMID: 34215672 PMCID: PMC8805776 DOI: 10.2967/jnumed.121.262327] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/05/2021] [Indexed: 11/18/2022] Open
Abstract
Surgery with curative intent can be offered to congenital hyperinsulinism (CHI) patients, provided that the lesion is focal. Radiolabeled exendin-4 specifically binds the glucagonlike peptide 1 receptor on pancreatic β-cells. In this study, we compared the performance of 18F-DOPA PET/CT, the current standard imaging method for CHI, and PET/CT with the new tracer 68Ga-NODAGA-exendin-4 in the preoperative detection of focal CHI. Methods: Nineteen CHI patients underwent both 18F-DOPA PET/CT and 68Ga-NODAGA-exendin-4 PET/CT before surgery. The images were evaluated in 3 settings: a standard clinical reading, a masked expert reading, and a joint reading. The target (lesion)-to-nontarget (normal pancreas) ratio was determined using SUVmax. Image quality was rated by pediatric surgeons in a questionnaire. Results: Fourteen of 19 patients having focal lesions underwent surgery. On the basis of clinical readings, the sensitivity of 68Ga-NODAGA-exendin-4 PET/CT (100%; 95% CI, 77%–100%) was higher than that of 18F-DOPA PET/CT (71%; 95% CI, 42%–92%). Interobserver agreement between readings was higher for 68Ga-NODAGA-exendin-4 than for 18F-DOPA PET/CT (Fleiss κ = 0.91 vs. 0.56). 68Ga-NODAGA-exendin-4 PET/CT provided significantly (P = 0.021) higher target-to-nontarget ratios (2.02 ± 0.65) than did 18F-DOPA PET/CT (1.40 ± 0.40). On a 5-point scale, pediatric surgeons rated 68Ga-NODAGA-exendin-4 PET/CT as superior to 18F-DOPA PET/CT. Conclusion: For the detection of focal CHI, 68Ga-NODAGA-exendin-4 PET/CT has higher clinical sensitivity and better interobserver correlation than 18F-DOPA PET/CT. Better contrast and image quality make 68Ga-NODAGA-exendin-4 PET/CT superior to 18F-DOPA PET/CT in surgeons’ intraoperative quest for lesion localization.
Collapse
Affiliation(s)
- Marti Boss
- Radboud University Medical Center, Netherlands
| | | | | | | | | | | | - Paolo de Coppi
- Great Ormond Street Hospital for Children NHS Foundation Trust, London
| | | | | | | | | | | | | | | | | | - Pratik Shah
- Great Ormond Street Hospital for Children NHS Foundation Trust
| | | |
Collapse
|
8
|
Eriksson O, Velikyan I, Haack T, Bossart M, Evers A, Lorenz K, Laitinen I, Larsen PJ, Plettenburg O, Johansson L, Pierrou S, Wagner M. Drug Occupancy Assessment at the Glucose-Dependent Insulinotropic Polypeptide Receptor by Positron Emission Tomography. Diabetes 2021; 70:842-853. [PMID: 33547046 DOI: 10.2337/db20-1096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/17/2021] [Indexed: 11/13/2022]
Abstract
Targeting of the glucose-dependent insulinotropic polypeptide receptor (GIPR) is an emerging strategy in antidiabetic drug development. The aim of this study was to develop a positron emission tomography (PET) radioligand for the GIPR to enable the assessment of target distribution and drug target engagement in vivo. The GIPR-selective peptide S02-GIP was radiolabeled with 68Ga. The resulting PET tracer [68Ga]S02-GIP-T4 was evaluated for affinity and specificity to human GIPR (huGIPR). The in vivo GIPR binding of [68Ga]S02-GIP-T4 as well as the occupancy of a drug candidate with GIPR activity were assessed in nonhuman primates (NHPs) by PET. [68Ga]S02-GIP-T4 bound with nanomolar affinity and high selectivity to huGIPR in overexpressing cells. In vivo, pancreatic binding in NHPs could be dose-dependently inhibited by coinjection of unlabeled S02-GIP-T4. Finally, subcutaneous pretreatment with a high dose of a drug candidate with GIPR activity led to a decreased pancreatic binding of [68Ga]S02-GIP-T4, corresponding to a GIPR drug occupancy of almost 90%. [68Ga]S02-GIP-T4 demonstrated a safe dosimetric profile, allowing for repeated studies in humans. In conclusion, [68Ga]S02-GIP-T4 is a novel PET biomarker for safe, noninvasive, and quantitative assessment of GIPR target distribution and drug occupancy.
Collapse
Affiliation(s)
- Olof Eriksson
- Antaros Medical AB, Mölndal, Sweden
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Irina Velikyan
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
- PET Centre, Centre for Medical Imaging, Uppsala University Hospital, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Migliari S, Sammartano A, Scarlattei M, Baldari G, Janota B, Bonadonna RC, Ruffini L. Feasibility of a scale-down production of [68Ga]Ga-NODAGA-Exendin-4 in a hospital based radiopharmacy. Curr Radiopharm 2021; 15:63-75. [PMID: 33687908 DOI: 10.2174/1874471014666210309151930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glucagon-like peptide 1 receptor (GLP-1R) is preferentially expressed in β-cells, but it is highly expressed in human insulinomas and gastrinomas. Several GLP-1 receptor-avid radioligands have been developed to image insulin-secreting tumors or to provide a quantitative in vivo biomarker of pancreatic β-cell mass. Exendin-4 is a high affinity ligand of the GLP1-R, which is a candidate for being labeled with a PET isotope and used for imaging purposes. OBJECTIVE Here, we report the development and validation results of a semi manual procedure to label [Lys40,Nle14(Ahx-NODAGA)NH2]exendin-4, with Ga-68. METHODS A 68Ge/68Ga Generator (GalliaPharma®,Eckert and Ziegler) was eluted with 0.1M HCl on an automated synthesis module (Scintomics GRP®). The peptide contained in the kit vial (Radioisotope Center POLATOM) in different amounts (10-20-30 µg) was reconstituted with 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethansulfonic acid (HEPES) solution and 68GaCl3 (400-900 MBq), followed by 10 min incubation at 95°C. The reaction solution was then purified through an Oasis HLB column. The radiopharmaceutical product was tested for quality controls (CQs), in accordance with the European Pharmacopoeia standards. RESULTS The synthesis of 68Ga]Ga-NODAGA-Exendin-4 provided optimal results with 10 µg of peptide, getting the best radiochemical yield (23.53 ± 2.4 %), molar activity (100 GBq/µmol) and radiochemical purity (91.69 %). CONCLUSION The study developed an imaging tool [68Ga]Ga-NODAGA-Exendin-4, avoiding pharmacological effects of exendin-4, for the clinical community.
Collapse
Affiliation(s)
- Silvia Migliari
- Nuclear Medicine and Molecular Imaging Department, University Hospital of Parma, via Gramsci 14, 43126 Parma. Italy
| | - Antonino Sammartano
- Nuclear Medicine and Molecular Imaging Department, University Hospital of Parma, via Gramsci 14, 43126 Parma. Italy
| | - Maura Scarlattei
- Nuclear Medicine and Molecular Imaging Department, University Hospital of Parma, via Gramsci 14, 43126 Parma. Italy
| | - Giorgio Baldari
- Nuclear Medicine and Molecular Imaging Department, University Hospital of Parma, via Gramsci 14, 43126 Parma. Italy
| | - Barbara Janota
- National Centre for Nuclear Research Radioisotope Centre POLATOM, Otwock. Poland
| | - Riccardo C Bonadonna
- Division of Endocrinology and Metabolic Diseases, Department of Medicine and Surgery, University of Parma School of Medicine and University Hospital of Parma, Parma. Italy
| | - Livia Ruffini
- Nuclear Medicine and Molecular Imaging Department, University Hospital of Parma, via Gramsci 14, 43126 Parma. Italy
| |
Collapse
|
10
|
Murakami T, Fujimoto H, Inagaki N. Non-invasive Beta-cell Imaging: Visualization, Quantification, and Beyond. Front Endocrinol (Lausanne) 2021; 12:714348. [PMID: 34248856 PMCID: PMC8270651 DOI: 10.3389/fendo.2021.714348] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/14/2021] [Indexed: 01/07/2023] Open
Abstract
Pancreatic beta (β)-cell dysfunction and reduced mass play a central role in the development and progression of diabetes mellitus. Conventional histological β-cell mass (BCM) analysis is invasive and limited to cross-sectional observations in a restricted sampling area. However, the non-invasive evaluation of BCM remains elusive, and practical in vivo and clinical techniques for β-cell-specific imaging are yet to be established. The lack of such techniques hampers a deeper understanding of the pathophysiological role of BCM in diabetes, the implementation of personalized BCM-based diabetes management, and the development of antidiabetic therapies targeting BCM preservation and restoration. Nuclear medical techniques have recently triggered a major leap in this field. In particular, radioisotope-labeled probes using exendin peptides that include glucagon-like peptide-1 receptor (GLP-1R) agonist and antagonist have been employed in positron emission tomography and single-photon emission computed tomography. These probes have demonstrated high specificity to β cells and provide clear images accurately showing uptake in the pancreas and transplanted islets in preclinical in vivo and clinical studies. One of these probes, 111indium-labeled exendin-4 derivative ([Lys12(111In-BnDTPA-Ahx)]exendin-4), has captured the longitudinal changes in BCM during the development and progression of diabetes and under antidiabetic therapies in various mouse models of type 1 and type 2 diabetes mellitus. GLP-1R-targeted imaging is therefore a promising tool for non-invasive BCM evaluation. This review focuses on recent advances in non-invasive in vivo β-cell imaging for BCM evaluation in the field of diabetes; in particular, the exendin-based GLP-1R-targeted nuclear medicine techniques.
Collapse
Affiliation(s)
- Takaaki Murakami
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroyuki Fujimoto
- Radioisotope Research Center, Agency of Health, Safety and Environment, Kyoto University, Kyoto, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
- *Correspondence: Nobuya Inagaki,
| |
Collapse
|
11
|
Buitinga M, Cohrs CM, Eter WA, Claessens-Joosten L, Frielink C, Bos D, Sandker G, Brom M, Speier S, Gotthardt M. Noninvasive Monitoring of Glycemia-Induced Regulation of GLP-1R Expression in Murine and Human Islets of Langerhans. Diabetes 2020; 69:2246-2252. [PMID: 32843570 DOI: 10.2337/db20-0616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/20/2020] [Indexed: 11/13/2022]
Abstract
Glucagon-like peptide 1 receptor (GLP-1R) imaging with radiolabeled exendin has proven to be a powerful tool to quantify β-cell mass (BCM) in vivo. As GLP-1R expression is thought to be influenced by glycemic control, we examined the effect of blood glucose (BG) levels on GLP-1R-mediated exendin uptake in both murine and human islets and its implications for BCM quantification. Periods of hyperglycemia significantly reduced exendin uptake in murine and human islets, which was paralleled by a reduction in GLP-1R expression. Detailed mapping of the tracer uptake and insulin and GLP-1R expression conclusively demonstrated that the observed reduction in tracer uptake directly correlates to GLP-1R expression levels. Importantly, the linear correlation between tracer uptake and β-cell area was maintained in spite of the reduced GLP-1R expression levels. Subsequent normalization of BG levels restored absolute tracer uptake and GLP-1R expression in β-cells and the observed loss in islet volume was halted. This manuscript emphasizes the potency of nuclear imaging techniques to monitor receptor regulation noninvasively. Our findings have significant implications for clinical practice, indicating that BG levels should be near-normalized for at least 3 weeks prior to GLP-1R agonist treatment or quantitative radiolabeled exendin imaging for BCM analysis.
Collapse
Affiliation(s)
- Mijke Buitinga
- Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, the Netherlands
- Department of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
- Department of Nutrition and Movement Sciences, Maastricht University, Maastricht, the Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Christian M Cohrs
- Paul Langerhans Institute Dresden of Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, München-Neuherberg, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Wael A Eter
- Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, the Netherlands
| | | | - Cathelijne Frielink
- Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Desirée Bos
- Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Gerwin Sandker
- Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Maarten Brom
- Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Stephan Speier
- Paul Langerhans Institute Dresden of Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, München-Neuherberg, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Martin Gotthardt
- Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, the Netherlands
| |
Collapse
|
12
|
Christ E, Antwi K, Fani M, Wild D. Innovative imaging of insulinoma: the end of sampling? A review. Endocr Relat Cancer 2020; 27:R79-R92. [PMID: 31951592 PMCID: PMC7040495 DOI: 10.1530/erc-19-0476] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/17/2020] [Indexed: 12/16/2022]
Abstract
Receptors for the incretin glucagon-like peptide-1 (GLP-1R) have been found overexpressed in selected types of human tumors and may, therefore, play an increasingly important role in endocrine gastrointestinal tumor management. In particular, virtually all benign insulinomas express GLP-1R in high density. Targeting GLP-1R with indium-111, technetium-99m or gallium-68-labeled exendin-4 offers a new approach that permits the successful localization of small benign insulinomas. It is likely that this new non-invasive technique has the potential to replace the invasive localization of insulinomas by selective arterial stimulation and venous sampling. In contrast to benign insulinomas, malignant insulin-secreting neuroendocrine tumors express GLP-1R in only one-third of the cases, while they more often express the somatostatin subtype 2 receptors. Importantly, one of the two receptors appears to be always overexpressed. In special cases of endogenous hyperinsulinemic hypoglycemia (EHH), that is, in the context of MEN-1 or adult nesidioblastosis GLP-1R imaging is useful whereas in postprandial hypoglycemia in the context of bariatric surgery, GLP-1R imaging is probably not helpful. This review focuses on the potential use of GLP-1R imaging in the differential diagnosis of EHH.
Collapse
Affiliation(s)
- Emanuel Christ
- Division of Endocrinology, Diabetology and Metabolism, University Hospital of Basel, University of Basel, Basel, Switzerland
- Center for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel Switzerland
| | - Kwadwo Antwi
- Clinic of Radiology and Nuclear Medicine, University Hospital, Basel, Switzerland
| | - Melpomeni Fani
- Clinic of Radiology and Nuclear Medicine, University Hospital, Basel, Switzerland
| | - Damian Wild
- Center for Neuroendocrine and Endocrine Tumors, University Hospital Basel, Basel Switzerland
- Clinic of Radiology and Nuclear Medicine, University Hospital, Basel, Switzerland
| |
Collapse
|
13
|
Boss M, Bos D, Frielink C, Sandker G, Ekim S, Marciniak C, Pattou F, van Dam G, van Lith S, Brom M, Gotthardt M, Buitinga M. Targeted Optical Imaging of the Glucagonlike Peptide 1 Receptor Using Exendin-4-IRDye 800CW. J Nucl Med 2020; 61:1066-1071. [PMID: 31924726 PMCID: PMC7383075 DOI: 10.2967/jnumed.119.234542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/13/2019] [Indexed: 01/10/2023] Open
Abstract
The treatment of choice for insulinomas and focal lesions in congenital hyperinsulinism (CHI) is surgery. However, intraoperative detection can be challenging. This challenge could be overcome with intraoperative fluorescence imaging, which provides real-time lesion detection with a high spatial resolution. Here, a novel method for targeted near-infrared (NIR) fluorescence imaging of glucagonlike peptide 1 receptor (GLP-1R)–positive lesions, using the GLP-1 agonist exendin-4 labeled with IRDye 800CW, was examined in vitro and in vivo. Methods: A competitive binding assay was performed using Chinese hamster lung (CHL) cells transfected with GLP-1R. Tracer biodistribution was determined in BALB/c nude mice bearing subcutaneous CHL-GLP-1R xenografts. In vivo NIR fluorescence imaging of CHL-GLP-1R xenografts was performed. Localization of the tracer in the pancreatic islets of BALB/c nude mice was examined using fluorescence microscopy. Laparoscopic imaging was performed to detect the fluorescent signal of the tracer in the pancreas of mini pigs. Results: Exendin-4-IRDye 800CW binds GLP-1R with a half-maximal inhibitory concentration of 3.96 nM. The tracer accumulates in CHL-GLP-1R xenografts. Subcutaneous CHL-GLP-1R xenografts were visualized using in vivo NIR fluorescence imaging. The tracer accumulates specifically in the pancreatic islets of mice, and a clear fluorescent signal was detected in the pancreas of mini pigs. Conclusion: These data provide the first in vivo evidence of the feasibility of targeted fluorescence imaging of GLP-1R–positive lesions. Intraoperative lesion delineation using exendin-4-IRDye 800CW could benefit open as well as laparoscopic surgical procedures for removal of insulinomas and focal lesions in CHI.
Collapse
Affiliation(s)
- Marti Boss
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Desiree Bos
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cathelijne Frielink
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerwin Sandker
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Selen Ekim
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Camille Marciniak
- Department of General and Endocrine Surgery, University Hospital 2 Lille, Lille, France
| | - Francois Pattou
- Department of General and Endocrine Surgery, University Hospital 2 Lille, Lille, France
| | - Go van Dam
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands; and
| | - Sanne van Lith
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maarten Brom
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martin Gotthardt
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mijke Buitinga
- Department of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Velikyan I, Eriksson O. Advances in GLP-1 receptor targeting radiolabeled agent development and prospective of theranostics. Theranostics 2020; 10:437-461. [PMID: 31903131 PMCID: PMC6929622 DOI: 10.7150/thno.38366] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022] Open
Abstract
In the light of theranostics/radiotheranostics and prospective of personalized medicine in diabetes and oncology, this review presents prior and current advances in the development of radiolabeled imaging and radiotherapeutic exendin-based agents targeting glucagon-like peptide-1 receptor. The review covers chemistry, preclinical, and clinical evaluation. Such critical aspects as structure-activity-relationship, stability, physiological potency, kidney uptake, and dosimetry are discussed.
Collapse
Affiliation(s)
- Irina Velikyan
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Fujita N, Fujimoto H, Hamamatsu K, Murakami T, Kimura H, Toyoda K, Saji H, Inagaki N. Noninvasive longitudinal quantification of β-cell mass with [ 111In]-labeled exendin-4. FASEB J 2019; 33:11836-11844. [PMID: 31370679 PMCID: PMC6902711 DOI: 10.1096/fj.201900555rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/09/2019] [Indexed: 01/09/2023]
Abstract
Currently, quantifying β-cell mass (BCM) requires harvesting the pancreas. In this study, we investigated a potential noninvasive method to quantify BCM changes longitudinally using [Lys12(111In-BnDTPA-Ahx)]exendin-4 ([111In]-Ex4) and single-photon emission computed tomography (SPECT). We used autoradiography and transgenic mice expressing green fluorescent protein under the control of mouse insulin 1 gene promotor to evaluate the specificity of [111In]-Ex4 toward β cells. Using nonobese diabetic (NOD) mice, we injected [111In]-Ex4 (3.0 MBq) intravenously and performed SPECT 30 min later, repeating this at a 2-wk interval. After the second scan, we harvested the pancreas and calculated BCM from immunohistochemically stained pancreatic sections. Specific accumulation of [111In]-Ex4 in β cells was confirmed by autoradiography, with a significant correlation (r = 0.94) between the fluorescent and radioactive signal intensities. The radioactive signal from the pancreas in the second SPECT scan significantly correlated (r = 0.89) with BCM calculated from the immunostained pancreatic sections. We developed a regression formula to estimate BCM from the radioactive signals from the pancreas in SPECT scans. BCM can be quantified longitudinally and noninvasively by SPECT imaging with [111In]-Ex4. This technique successfully demonstrated longitudinal changes in BCM in NOD mice before and after onset of hyperglycemia.-Fujita, N., Fujimoto, H., Hamamatsu, K., Murakami, T., Kimura, H., Toyoda, K., Saji, H., Inagaki, N. Noninvasive longitudinal quantification of β-cell mass with [111In]-labeled exendin-4.
Collapse
Affiliation(s)
- Naotaka Fujita
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Fujimoto
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Radioisotope Research Center, Agency for Health, Safety, and Environment, Kyoto University, Kyoto, Japan
| | - Keita Hamamatsu
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takaaki Murakami
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Kimura
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kentaro Toyoda
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideo Saji
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Abstract
Persistent hyperinsulinemic hypoglycemia in adults is most commonly caused by insulinomas, which pose a diagnostic challenge to physicians, surgeons, and radiologists and require multimodality imaging for precise localization and staging. PET tracers such as F-FDOPA and glucagon-like peptide 1 receptor analogs have been used for imaging insulinomas. Glucagon-like peptide 1 receptor analogs have recently shown promising results in preoperative localization of these tumors, as all insulinomas express glucagon-like peptide 1 receptors. Ga-DOTA-Exendin PET and MRI done in the present case helped in precise localization and management of the culprit lesion, whereas contrast-enhanced CT and F-FDOPA PET failed to do so.
Collapse
|
17
|
Fersing C, Bouhlel A, Cantelli C, Garrigue P, Lisowski V, Guillet B. A Comprehensive Review of Non-Covalent Radiofluorination Approaches Using Aluminum [ 18F]fluoride: Will [ 18F]AlF Replace 68Ga for Metal Chelate Labeling? Molecules 2019; 24:E2866. [PMID: 31394799 PMCID: PMC6719958 DOI: 10.3390/molecules24162866] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022] Open
Abstract
Due to its ideal physical properties, fluorine-18 turns out to be a key radionuclide for positron emission tomography (PET) imaging, for both preclinical and clinical applications. However, usual biomolecules radiofluorination procedures require the formation of covalent bonds with fluorinated prosthetic groups. This drawback makes radiofluorination impractical for routine radiolabeling, gallium-68 appearing to be much more convenient for the labeling of chelator-bearing PET probes. In response to this limitation, a recent expansion of the 18F chemical toolbox gave aluminum [18F]fluoride chemistry a real prominence since the late 2000s. This approach is based on the formation of an [18F][AlF]2+ cation, complexed with a 9-membered cyclic chelator such as NOTA, NODA or their analogs. Allowing a one-step radiofluorination in an aqueous medium, this technique combines fluorine-18 and non-covalent radiolabeling with the advantage of being very easy to implement. Since its first reports, [18F]AlF radiolabeling approach has been applied to a wide variety of potential PET imaging vectors, whether of peptidic, proteic, or small molecule structure. Most of these [18F]AlF-labeled tracers showed promising preclinical results and have reached the clinical evaluation stage for some of them. The aim of this report is to provide a comprehensive overview of [18F]AlF labeling applications through a description of the various [18F]AlF-labeled conjugates, from their radiosynthesis to their evaluation as PET imaging agents.
Collapse
Affiliation(s)
- Cyril Fersing
- Institut de Recherche en Cancérologie de Montpellier (IRCM), University of Montpellier, INSERM U1194, Montpellier Cancer Institute (ICM), 34298 Montpellier, France.
- Nuclear Medicine Department, Montpellier Cancer Institute (ICM), University of Montpellier, 208 Avenue des Apothicaires, 34298 Montpellier CEDEX 5, France.
| | - Ahlem Bouhlel
- CERIMED, Aix-Marseille University, 13005 Marseille, France
- Centre de recherche en CardioVasculaire et Nutrition (C2VN), Aix-Marseille University, INSERM 1263, INRA 1260, 13385 Marseille, France
| | - Christophe Cantelli
- Institut de Recherche en Cancérologie de Montpellier (IRCM), University of Montpellier, INSERM U1194, Montpellier Cancer Institute (ICM), 34298 Montpellier, France
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques, 34093 Montpellier CEDEX, France
| | - Philippe Garrigue
- CERIMED, Aix-Marseille University, 13005 Marseille, France
- Centre de recherche en CardioVasculaire et Nutrition (C2VN), Aix-Marseille University, INSERM 1263, INRA 1260, 13385 Marseille, France
- Department of Nuclear Medicine, Aix-Marseille University, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13385 Marseille, France
| | - Vincent Lisowski
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques, 34093 Montpellier CEDEX, France
| | - Benjamin Guillet
- CERIMED, Aix-Marseille University, 13005 Marseille, France
- Centre de recherche en CardioVasculaire et Nutrition (C2VN), Aix-Marseille University, INSERM 1263, INRA 1260, 13385 Marseille, France
- Department of Nuclear Medicine, Aix-Marseille University, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13385 Marseille, France
| |
Collapse
|
18
|
Oliveira MC, Correia JDG. Biomedical applications of radioiodinated peptides. Eur J Med Chem 2019; 179:56-77. [PMID: 31238251 DOI: 10.1016/j.ejmech.2019.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 02/08/2023]
Abstract
The overexpression of peptide receptors in certain tumors as compared to endogeneous expression levels represents the molecular basis for the design of peptide-based tools for targeted nuclear imaging and therapy. Receptor targeting with radiolabelled peptides became a very important imaging and/or therapeutic approach in nuclear medicine and oncology. A great variety of peptides has been radiolabelled with clinical relevant radionuclides, such as radiometals and radiohalogens. However, to the best of our knowledge concise and updated reviews providing information about the biomedical application of radioiodinated peptides are still missing. This review outlines the synthetic efforts in the preparation of radioiodinated peptides highlighting the importance of radioiodine in nuclear medicine, giving an overview of the most relevant radioiodination strategies that have been employed and describes relevant examples of their use in the biomedical field.
Collapse
Affiliation(s)
- Maria Cristina Oliveira
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal.
| | - João D G Correia
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal.
| |
Collapse
|
19
|
Kang NY, Soetedjo AAP, Amirruddin NS, Chang YT, Eriksson O, Teo AKK. Tools for Bioimaging Pancreatic β Cells in Diabetes. Trends Mol Med 2019; 25:708-722. [PMID: 31178230 DOI: 10.1016/j.molmed.2019.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 12/18/2022]
Abstract
When diabetes is diagnosed, the majority of insulin-secreting pancreatic β cells are already dysfunctional or destroyed. This β cell dysfunction/destruction usually takes place over many years, making timely detection and clinical intervention difficult. For this reason, there is immense interest in developing tools to bioimage β cell mass and/or function noninvasively to facilitate early diagnosis of diabetes as well as to assist the development of novel antidiabetic therapies. Recent years have brought significant progress in β cell imaging that is now inching towards clinical applicability. We explore here the need to bioimage human β cells noninvasively in various types of diabetes, and we discuss current and emerging tools for bioimaging β cells. Further developments in this field are expected to facilitate β cell imaging in diabetes.
Collapse
Affiliation(s)
- Nam-Young Kang
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, 11 Biopolis Way, 02-02 Helios, 138667, Singapore; New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Chembok-ro (1115-1 Dongnae-dong), Dong-gu, Daegu City 41061, Republic of Korea.
| | | | - Nur Shabrina Amirruddin
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Proteos, 138673, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore
| | - Young-Tae Chang
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, 11 Biopolis Way, 02-02 Helios, 138667, Singapore; Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea; Center for Self-assembly and Complexity, Institute for Basic Science (IBS), 77 Hyogok-dong, Nam-gu, Pohang 37673, Republic of Korea
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala SE-752 36, Sweden
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Proteos, 138673, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore; School of Biological Sciences, Nanyang Technological University, 637551, Singapore.
| |
Collapse
|
20
|
von Hacht JL, Erdmann S, Niederstadt L, Prasad S, Wagener A, Exner S, Beindorff N, Brenner W, Grötzinger C. Increasing molar activity by HPLC purification improves 68Ga-DOTA-NAPamide tumor accumulation in a B16/F1 melanoma xenograft model. PLoS One 2019; 14:e0217883. [PMID: 31163066 PMCID: PMC6548402 DOI: 10.1371/journal.pone.0217883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose Melanocortin receptor 1 (MC1R) is overexpressed in melanoma and may be a molecular target for imaging and peptide receptor radionuclide therapy. 68Gallium (68Ga) labeling of DOTA-conjugated peptides is an established procedure in the clinic for use in positron emission tomography (PET) imaging. Aim of this study was to compare a standard labeling protocol against the 68Ga-DOTA peptide purified from the excess of unlabeled peptide. Procedures The MC1R ligand DOTA-NAPamide was labeled with 68Ga using a standard clinical protocol. Radioactive peptide was separated from the excess of unlabeled DOTA-NAPamide by HPLC. Immediately after the incubation of peptide and 68Ga (95°C, 15 min), the reaction was loaded on a C18 column and separated by a water/acetonitrile gradient, allowing fractionation in less than 20 minutes. Radiolabeled products were compared in biodistribution studies and PET imaging using nude mice bearing MC1R-expressing B16/F1 xenograft tumors. Results In biodistribution studies, non-purified 68Ga-DOTA-NAPamide did not show significant uptake in the tumor at 1 h post injection (0.78% IA/g). By the additional HPLC step, the molar activity was raised around 10,000-fold by completely removing unlabeled peptide. Application of this rapid purification strategy led to a more than 8-fold increase in tumor uptake (7.0% IA/g). The addition of various amounts of unlabeled DOTA-NAPamide to the purified product led to a blocking effect and decreased specific tumor uptake, similar to the result seen with non-purified radiopeptide. PET imaging was performed using the same tracer preparations. Purified 68Ga-DOTA-NAPamide, in comparison, showed superior tumor uptake. Conclusions We demonstrated that chromatographic separation of radiolabeled from excess unlabeled peptide is technically feasible and beneficial, even for short-lived isotopes such as 68Ga. Unlabeled peptide molecules compete with receptor binding sites in the target tissue. Purification of the radiopeptide therefore improved tumor uptake.
Collapse
Affiliation(s)
- Jan Lennart von Hacht
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sarah Erdmann
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lars Niederstadt
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sonal Prasad
- Berlin Experimental Radionuclide Imaging Center (BERIC), Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Asja Wagener
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Samantha Exner
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nicola Beindorff
- Berlin Experimental Radionuclide Imaging Center (BERIC), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Winfried Brenner
- Berlin Experimental Radionuclide Imaging Center (BERIC), Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Berlin, Germany
| | - Carsten Grötzinger
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Berlin, Germany
- Molecular Cancer Research Center (MKFZ), Charité - Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
21
|
Velikyan I, Haack T, Bossart M, Evers A, Laitinen I, Larsen P, Plettenburg O, Johansson L, Pierrou S, Wagner M, Eriksson O. First-in-class positron emission tomography tracer for the glucagon receptor. EJNMMI Res 2019; 9:17. [PMID: 30771019 PMCID: PMC6377692 DOI: 10.1186/s13550-019-0482-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/25/2019] [Indexed: 11/12/2022] Open
Abstract
Abstract The glucagon receptor (GCGR) is emerging as an important target in anti-diabetic therapy, especially as part of the pharmacology of dual glucagon-like peptide-1/glucagon (GLP-1/GCG) receptor agonists. However, currently, there are no suitable biomarkers that reliably demonstrate GCG receptor target engagement. Methods Two potent GCG receptor peptide agonists, S01-GCG and S02-GCG, were labeled with positron emission tomography (PET) radionuclide gallium-68. The GCG receptor binding affinity and specificity of the resulting radiopharmaceuticals [68Ga]Ga-DO3A-S01-GCG and [68Ga]Ga-DO3A-S02-GCG were evaluated in HEK-293 cells overexpressing the human GCG receptor and on frozen hepatic sections from human, non-human primate, and rat. In in vivo biodistribution, binding specificity and dosimetry were assessed in rat. Results [68Ga]Ga-DO3A-S01-GCG in particular demonstrated GCG receptor-mediated binding in cells and liver tissue with affinity in the nanomolar range required for imaging. [68Ga]Ga-DO3A-S01-GCG binding was not blocked by co-incubation of a GLP-1 agonist. In vivo binding in rat liver was GCG receptor specific with low non-specific binding throughout the body. Moreover, the extrapolated human effective doses, predicted from rat biodistribution data, allow for repeated PET imaging potentially also in combination with GLP-1R radiopharmaceuticals. Conclusion [68Ga]Ga-DO3A-S01-GCG thus constitutes a first-in-class PET tracer targeting the GCG receptor, with suitable properties for clinical development. This tool has potential to provide direct quantitative evidence of GCG receptor occupancy in humans. Electronic supplementary material The online version of this article (10.1186/s13550-019-0482-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irina Velikyan
- PET Centre, Centre for Medical Imaging, Uppsala University Hospital, Uppsala, Sweden.,Section of Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Torsten Haack
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Martin Bossart
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Andreas Evers
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Iina Laitinen
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Philip Larsen
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Oliver Plettenburg
- Institute of Medicinal Chemistry, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,Institute of Organic Chemistry, Leibniz Universität Hannover, Hannover, Germany
| | - Lars Johansson
- Antaros Medical AB, Uppsala Science Park, Dag Hammarskjölds Väg 14B, Mölndal, SE-751 83, Uppsala, Sweden
| | - Stefan Pierrou
- Antaros Medical AB, Uppsala Science Park, Dag Hammarskjölds Väg 14B, Mölndal, SE-751 83, Uppsala, Sweden
| | - Michael Wagner
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926, Frankfurt am Main, Germany.
| | - Olof Eriksson
- Antaros Medical AB, Uppsala Science Park, Dag Hammarskjölds Väg 14B, Mölndal, SE-751 83, Uppsala, Sweden. .,Science For Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
22
|
Wei W, Ehlerding EB, Lan X, Luo QY, Cai W. Molecular imaging of β-cells: diabetes and beyond. Adv Drug Deliv Rev 2019; 139:16-31. [PMID: 31378283 DOI: 10.1016/j.addr.2018.06.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/27/2018] [Accepted: 06/26/2018] [Indexed: 02/09/2023]
Abstract
Since diabetes is becoming a global epidemic, there is a great need to develop early β-cell specific diagnostic techniques for this disorder. There are two types of diabetes (i.e., type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM)). In T1DM, the destruction of pancreatic β-cells leads to reduced insulin production or even absolute insulin deficiency, which consequently results in hyperglycemia. Actually, a central issue in the pathophysiology of all types of diabetes is the relative reduction of β-cell mass (BCM) and/or impairment of the function of individual β-cells. In the past two decades, scientists have been trying to develop imaging techniques for noninvasive measurement of the viability and mass of pancreatic β-cells. Despite intense scientific efforts, only two tracers for positron emission tomography (PET) and one contrast agent for magnetic resonance (MR) imaging are currently under clinical evaluation. β-cell specific imaging probes may also allow us to precisely and specifically visualize transplanted β-cells and to improve transplantation outcomes, as transplantation of pancreatic islets has shown promise in treating T1DM. In addition, some of these probes can be applied to the preoperative detection of hidden insulinomas as well. In the present review, we primarily summarize potential tracers under development for imaging β-cells with a focus on tracers for PET, SPECT, MRI, and optical imaging. We will discuss the advantages and limitations of the various imaging probes and extend an outlook on future developments in the field.
Collapse
|
23
|
68Ga DOTA-Exendin PET/CT for Detection of Insulinoma in a Patient With Persistent Hyperinsulinemic Hypoglycemia. Clin Nucl Med 2018; 43:e285-e286. [PMID: 29877881 DOI: 10.1097/rlu.0000000000002155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Insulinomas are the most common functioning pancreatic neuroendocrine tumors and the leading cause of persistent hypoglycemia with hyperinsulinemia in adults. Glucagon-like-peptide-1 (GLP) receptor analogs are the latest agents being used in the detection of insulinomas, with initial reports suggesting high sensitivity due to universal GLP1 receptor expression on these tumors. PET/CT imaging in this patient using Ga DOTA-Exendin, a GLP receptor analog, proved useful for accurate localization of the culprit lesion, aiding in the definitive management of the patient.
Collapse
|
24
|
Brom M, Joosten L, Frielink C, Peeters H, Bos D, van Zanten M, Boerman O, Gotthardt M. Validation of 111In-Exendin SPECT for the Determination of the β-Cell Mass in BioBreeding Diabetes-Prone Rats. Diabetes 2018; 67:2012-2018. [PMID: 30045920 DOI: 10.2337/db17-1312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 07/12/2018] [Indexed: 11/13/2022]
Abstract
The changes in β-cell mass (BCM) during the development and progression of diabetes could potentially be measured by radionuclide imaging using radiolabeled exendin. In this study, we investigated the potential of 111In-diethylenetriaminepentaacetic acid-exendin-3 (111In-exendin) in a rat model that closely mimics the development of type 1 diabetes (T1D) in humans: BioBreeding diabetes-prone (BBDP) rats. BBDP rats of 4-18 weeks of age were injected intravenously with 111In-exendin, and single-photon emission computed tomography (SPECT) images were acquired. The accumulation of the radiotracer was measured as well as the BCM and grade of insulitis by histology. 111In-exendin accumulated specifically in the islets, resulting in a linear correlation with the BCM (%) (Pearson r = 0.89, P < 0.0001, and r = 0.64 for SPECT). Insulitis did not have an influence on this correlation. These results indicate that 111In-exendin is a promising tracer to determine the BCM during the development of T1D, irrespective of the degree of insulitis.
Collapse
Affiliation(s)
- Maarten Brom
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lieke Joosten
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cathelijne Frielink
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hanneke Peeters
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Desirée Bos
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Monica van Zanten
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Otto Boerman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Martin Gotthardt
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
25
|
Wurzer A, Pollmann J, Schmidt A, Reich D, Wester HJ, Notni J. Molar Activity of Ga-68 Labeled PSMA Inhibitor Conjugates Determines PET Imaging Results. Mol Pharm 2018; 15:4296-4302. [PMID: 30011372 DOI: 10.1021/acs.molpharmaceut.8b00602] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Radiopharmaceuticals targeting the enzyme prostate-specific membrane antigen (PSMA; synonyms: glutamate carboxypeptidase II, NAALADase; EC 3.4.17.21) have recently emerged as powerful agents for diagnosis and therapy (theranostics) of prostate carcinoma (PCa). The radiation doses for therapeutic application of such compounds are limited by substantial uptakes in kidneys and salivary glands, with excess doses reportedly leading to radiotoxicity-related adverse effects, such as kidney insufficiency or xenostomia. On the basis of the triazacyclononane-triphosphinate (TRAP) chelator, monomeric to trimeric conjugates of the PSMA inhibitor motif lysine-urea-glutamic acid (KuE) were synthesized by means of Cu(I)-mediated (CuAAC) or 5-aza-dibenzocyclooctyne (DBCO)-driven, strain-promoted click chemistry (SPAAC), which were labeled with gallium-68 for application in positron emission tomography (PET), and characterized in terms of PSMA affinity (determined in cellular displacement assays against I-125-BA) and lipophilicity (expressed as log D). Using subcutaneous murine LNCaP (PSMA-positive human prostate carcinoma) xenografts, the influence of ligand multiplicity, affinity, polarity, and molar activity (i.e., mass dose) on the uptakes in tumor, kidney, salivary, and background (muscle) was analyzed by means of region-of-interest (ROI) based quantification of small-animal PET imaging data. As expected, trimerization of the KuE motif resulted in high PSMA affinities (IC50 ranging from 6.0-1.5 nM). Of all parameters, molar activity/cold mass had the most pronounced influence on PET uptakes. Because accumulation in nontumor tissues was effected to a larger extent than tumor uptakes, lower molar activities resulted in substantially better tumor-to-organ ratios. For example, for one trimer, 68Ga-AhxKuE3 (IC50 = 1.5 ± 0.3 nM, log D = -3.8 ± 0.1), a higher overall amount of active compound (12 pmol vs 2 nmol, equivalent to molar activities of 1200 and 8 MBq/nmol) resulted in a remarkable reduction of the kidney-to-tumor ratio from 11.4 to 1.4, respectively, at 60 min p.i. Our study suggests that, for PSMA-targeting radiopharmaceuticals, molar activity has a more pronounced influence on small-animal PET imaging results than structural or in vitro parameters.
Collapse
Affiliation(s)
- Alexander Wurzer
- Pharmaceutical Radiochemistry , Technische Universität München , Walther-Meißner-Straße 3 , D-85748 Garching , Germany
| | - Julia Pollmann
- Pharmaceutical Radiochemistry , Technische Universität München , Walther-Meißner-Straße 3 , D-85748 Garching , Germany
| | - Alexander Schmidt
- Pharmaceutical Radiochemistry , Technische Universität München , Walther-Meißner-Straße 3 , D-85748 Garching , Germany
| | - Dominik Reich
- Pharmaceutical Radiochemistry , Technische Universität München , Walther-Meißner-Straße 3 , D-85748 Garching , Germany
| | - Hans-Jürgen Wester
- Pharmaceutical Radiochemistry , Technische Universität München , Walther-Meißner-Straße 3 , D-85748 Garching , Germany
| | - Johannes Notni
- Pharmaceutical Radiochemistry , Technische Universität München , Walther-Meißner-Straße 3 , D-85748 Garching , Germany
| |
Collapse
|
26
|
Babič A, Vinet L, Chellakudam V, Janikowska K, Allémann E, Lange N. Squalene-PEG-Exendin as High-Affinity Constructs for Pancreatic Beta-Cells. Bioconjug Chem 2018; 29:2531-2540. [PMID: 29869878 DOI: 10.1021/acs.bioconjchem.8b00186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Novel drug delivery systems targeting native, transplanted, or cancerous beta-cells are of utmost importance. Herein, we present new exendin-4 derivatives with modified unnatural amino acids at strategic positions within the polypeptide sequence. The modified peptides allowed modular orthogonal chemical modifications to attach imaging agents and amphiphilic squalene-PEG groups. The resulting conjugates, SQ-PEG-ExC1-Cy5 and SQ-PEG-ExC40-Cy5 fluorescence probes, display low nanomolar affinity to GLP-1R in fluorescence-based binding assays with EC50 at 1.1 ± 0.2 and 0.8 ± 0.2 nM, respectively. Naturally expressing GLP-1R MIN6 cells and recombinantly transfected CHL-GLP-1R positive cells were specifically targeted by all of the new beta-cell probes in vitro. Specific islet targeting was observed after i.v. injection of SQ-PEG-ExC1-Cy5 with SQ-PEG in normoglycemic mice ex vivo. Semiquantitative biodistribution analysis by epifluorescence indicated prolonged blood half-life (3.8 h) for the amphiphilic Ex conjugate. Liver and pancreas were identified as main biodistribution organs for SQ-PEG-ExC1-Cy5.
Collapse
Affiliation(s)
- Andrej Babič
- School of Pharmaceutical Sciences Geneva-Lausanne , University of Geneva, University of Lausanne , 1211 , Geneva , Switzerland
| | - Laurent Vinet
- Institute for Molecular and Translational Imaging , University of Geneva , 1211 , Geneva , Switzerland
| | - Vineetha Chellakudam
- School of Pharmaceutical Sciences Geneva-Lausanne , University of Geneva, University of Lausanne , 1211 , Geneva , Switzerland
| | - Karolina Janikowska
- School of Pharmaceutical Sciences Geneva-Lausanne , University of Geneva, University of Lausanne , 1211 , Geneva , Switzerland
| | - Eric Allémann
- School of Pharmaceutical Sciences Geneva-Lausanne , University of Geneva, University of Lausanne , 1211 , Geneva , Switzerland
| | - Norbert Lange
- School of Pharmaceutical Sciences Geneva-Lausanne , University of Geneva, University of Lausanne , 1211 , Geneva , Switzerland
| |
Collapse
|
27
|
Gallo M, Ruggeri RM, Muscogiuri G, Pizza G, Faggiano A, Colao A. Diabetes and pancreatic neuroendocrine tumours: Which interplays, if any? Cancer Treat Rev 2018; 67:1-9. [PMID: 29746922 DOI: 10.1016/j.ctrv.2018.04.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 04/15/2018] [Accepted: 04/17/2018] [Indexed: 01/15/2023]
Abstract
Pancreatic neuroendocrine tumours (PanNETs) represent an uncommon type of pancreatic neoplasm, whose incidence is increasing worldwide. As per exocrine pancreatic cancer, a relationship seems to exist between PanNETs and glycaemic alterations. Diabetes mellitus (DM) or impaired glucose tolerance often occurs in PanNET patients as a consequence of hormonal hypersecretion by the tumour, specifically affecting glucose metabolism, or due to tumour mass effects. On the other hand, pre-existing DM may represent a risk factor for developing PanNETs and is likely to worsen the prognosis of such patients. Moreover, the surgical and/or pharmacological treatment of the tumour itself may impair glucose tolerance, as well as antidiabetic therapies may impact tumour behaviour and patients outcome. Differently from exocrine pancreatic tumours, few data are available for PanNETs as yet on this issue. In the present review, the bidirectional association between glycaemic disorders and PanNETs has been extensively examined, since the co-existence of both diseases in the same individual represents a further challenge for the clinical management of PanNETs.
Collapse
Affiliation(s)
- Marco Gallo
- Oncological Endocrinology Unit, Department of Medical Sciences, University of Turin, AOU Città della Salute e della Scienza di Torino, Turin, Italy.
| | - Rosaria Maddalena Ruggeri
- Department of Clinical and Experimental Medicine, Unit of Endocrinology, University of Messina, Italy
| | | | - Genoveffa Pizza
- Unit of Internal Medicine, Landolfi Hospital, Solofra, Avellino, Italy
| | - Antongiulio Faggiano
- Department of Clinical Medicine and Surgery, University "Federico II", Naples, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, University "Federico II", Naples, Italy
| |
Collapse
|
28
|
Willekens SMA, Joosten L, Boerman OC, Brom M, Gotthardt M. Characterization of 111In-labeled Glucose-Dependent Insulinotropic Polypeptide as a Radiotracer for Neuroendocrine Tumors. Sci Rep 2018; 8:2948. [PMID: 29440684 PMCID: PMC5811606 DOI: 10.1038/s41598-018-21259-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/31/2018] [Indexed: 12/04/2022] Open
Abstract
Somatostatin receptor targeting is considered the standard nuclear medicine technique for visualization of neuroendocrine tumors (NET). Since not all NETs over-express somatostatin receptors, the search for novel targets, visualizing these NETs, is ongoing. Many NETs, expressing low somatostatin receptor levels, express glucose-dependent insulinotropic polypeptide (GIP) receptors (GIPR). Here, we evaluated the performance of [Lys37(DTPA)]N-acetyl-GIP1-42, a newly synthesized GIP analogue to investigate whether NET imaging via GIPR targeting is feasible. Therefore, [Lys37(DTPA)]N-acetyl-GIP1-42 was radiolabeled with 111In with specific activity up to 1.2 TBq/µmol and both in vitro and in vivo receptor targeting properties were examined. In vitro, [Lys37(111In-DTPA)]N-acetyl-GIP1-42 showed receptor-mediated binding to BHK-GIPR positive cells, NES2Y cells and isolated islets. In vivo, both NES2Y and GIPR-transfected BHK tumors were visualized on SPECT/CT. Furthermore, co-administration of an excess unlabeled GIP1-42 lowered tracer uptake from 0.7 ± 0.2%ID/g to 0.6 ± 0.01%ID/g (p = 0.78) in NES2Y tumors and significantly lowered tracer uptake from 3.3 ± 0.8 to 0.8 ± 0.2%ID/g (p = 0.0001) in GIPR-transfected BHK tumors. In conclusion, [Lys37(111In-DTPA)]N-acetyl-GIP1-42 shows receptor-mediated binding in various models. Furthermore, both GIPR-transfected BHK tumors and NES2Y tumors were visible on SPECT/CT using this tracer. Therefore, [Lys37(111In-DTPA)]N-acetyl-GIP1-42 SPECT seems promising for visualization of somatostatin receptor negative NETs.
Collapse
Affiliation(s)
- Stefanie M A Willekens
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands. .,Division of Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University Hospitals and KU Leuven, Leuven, Belgium.
| | - Lieke Joosten
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Otto C Boerman
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Maarten Brom
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Martin Gotthardt
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
29
|
Dialer LO, Jodal A, Schibli R, Ametamey SM, Béhé M. Radiosynthesis and evaluation of an 18F-labeled silicon containing exendin-4 peptide as a PET probe for imaging insulinoma. EJNMMI Radiopharm Chem 2018; 3:1. [PMID: 29503858 PMCID: PMC5824708 DOI: 10.1186/s41181-017-0036-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/14/2017] [Indexed: 12/05/2022] Open
Abstract
Background Analogues of exendin-4 have been radiolabeled for imaging the glucagon-like peptide type 1 receptors (GLP-1R) which are overexpressed in insulinoma. The aim of this research was to synthesize an 18F–labeled silicon containing exendin-4 peptide (18F-2) and to evaluate its in vitro and in vivo behavior in CHL-GLP-1 receptor positive tumor-bearing mice. 18F–labeled silicon containing exendin-4 peptide (18F-2) was prepared via one-step nucleophilic substitution of a silane precursor with 18F–fluoride in the presence of acetic acid and K222. 18F-2 was then administered to tumor-bearing mice for PET imaging and ex vivo biodistribution experiments. Results 18F-2 was produced in a radiochemical yield (decay corrected) of 1.5% and a molar activity of max. 16 GBq/μmol. The GLP-1R positive tumors were clearly visualized by PET imaging. Biodistribution studies showed reduced uptake of 18F-2 in the kidneys compared to radiometal labeled exendin-4 derivatives. The radiotracer showed specific tumour uptake which remained steady over 2 h. Conclusions This exendin-4 analogue, 18F-2, is a potential probe for imaging GLP-1R positive tumors.
Collapse
Affiliation(s)
- Lukas O Dialer
- 1Center for Radiopharmaceutical Sciences (CRS) of ETH, PSI and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Hönggerberg, ETH Zurich, Zurich, Switzerland
| | - Andreas Jodal
- 2Center for Radiopharmaceutical Sciences (CRS), Research Department Biology and Chemistry, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Roger Schibli
- 1Center for Radiopharmaceutical Sciences (CRS) of ETH, PSI and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Hönggerberg, ETH Zurich, Zurich, Switzerland.,2Center for Radiopharmaceutical Sciences (CRS), Research Department Biology and Chemistry, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Simon M Ametamey
- 1Center for Radiopharmaceutical Sciences (CRS) of ETH, PSI and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Hönggerberg, ETH Zurich, Zurich, Switzerland
| | - Martin Béhé
- 2Center for Radiopharmaceutical Sciences (CRS), Research Department Biology and Chemistry, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| |
Collapse
|
30
|
Joosten L, Brom M, Peeters H, Heskamp S, Béhé M, Boerman O, Gotthardt M. Enhanced Specific Activity by Multichelation of Exendin-3 Leads To Improved Image Quality and In Vivo Beta Cell Imaging. Mol Pharm 2017; 15:486-494. [PMID: 29226686 PMCID: PMC6150723 DOI: 10.1021/acs.molpharmaceut.7b00853] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) targeting using radiolabeled exendin is a promising approach to noninvasively visualize and determine beta cell mass (BCM), which could help to unravel the pathophysiology of diabetes. However, saturation of the GLP-1R on beta cells occurs at low peptide doses, since the number of receptors expressed under physiological conditions is low. Therefore, tracers with high specific activities are required to sensitively image small variations in BCM. Here, we describe a novel exendin-3-based radiotracer with multiple chelators and determine its potential for in vivo beta cell imaging. Exendin-3 was modified by adding six lysine residues C-terminally conjugated with one, two, or six DTPA moieties. All compounds were labeled with 111In and their GLP-1R affinity was determined in vitro using GLP-1R expressing cells. The in vivo behavior of the 111In-labeled tracers was examined in BALB/c nude mice with a subcutaneous GLP-1R expressing tumor (INS-1). Brown Norway rats were used for SPECT visualization of the pancreatic BCM. Addition of six lysine and six DTPA residues (hexendin(40-45)) resulted in a 7-fold increase in specific activity (from 0.73 GBq/nmol to 5.54 GBq/nmol). IC50 values varied between 5.2 and 69.5 nM. All compounds with two or six lysine and DTPA residues had a significantly lower receptor affinity than [Lys40(DTPA)]exendin-3 (4.4 nM, p < 0.05). The biodistribution in mice revealed no significant decrease in pancreatic uptake after addition of six lysine and DTPA molecules. Hexendin(40-45) showed a 6-fold increase in absolute 111In uptake in the pancreas of Brown Norway rats compared to [Lys40(DTPA)]exendin-3 (182.7 ± 42.3 kBq vs 28.8 ± 6.0 kBq, p < 0.001). Visualization of the pancreas on SPECT was improved using hexendin(40-45), due to the higher count rate, achieved at the same peptide dose. In conclusion, hexendin(40-45) showed an improved visualization of the pancreas with SPECT. This tracer holds promise to sensitively and specifically detect small variations in BCM.
Collapse
Affiliation(s)
- Lieke Joosten
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center , PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Maarten Brom
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center , PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Hanneke Peeters
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center , PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Sandra Heskamp
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center , PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Martin Béhé
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut , 5232 Villigen, Switzerland
| | - Otto Boerman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center , PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Martin Gotthardt
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center , PO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
31
|
Eriksson O, Rosenström U, Selvaraju RK, Eriksson B, Velikyan I. Species differences in pancreatic binding of DO3A-VS-Cys 40-Exendin4. Acta Diabetol 2017; 54:1039-1045. [PMID: 28891030 PMCID: PMC5643362 DOI: 10.1007/s00592-017-1046-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/30/2017] [Indexed: 02/06/2023]
Abstract
AIMS Radiolabeled Exendin-4 has been proposed as suitable imaging marker for pancreatic beta cell mass quantification mediated by Glucagon-like peptide-1 receptor (GLP-1R). However, noticeable species variations in basal pancreatic uptake as well as uptake reduction degree due to selective beta cell ablation were observed. METHODS In vitro and ex vivo autoradiography studies of pancreas were performed using [177Lu]Lu-DO3A-VS-Cys40-Exendin4, in order to investigate the mechanism of uptake as well as the islet uptake contrast in mouse, rat, pig, and non-human primate. The autoradiography results were compared to the in vivo pancreatic uptake as assessed by [68Ga]Ga-DO3A-VS-Cys40-Exendin4 Positron Emission Tomography (PET) in the same species. In vitro, ex vivo, and in vivo data formed the basis for calculating the theoretical in vivo contribution of each pancreatic compartment. RESULTS [177Lu]Lu-DO3A-VS-Cys40-Exendin4 displayed the highest islet-to-exocrine pancreas ratio (IPR) in rat (IPR 45) followed by non-human primate and mouse at similar levels (IPR approximately 5) while pigs exhibited negligible IPR (1.1). In vivo pancreas uptake was mainly GLP-1R mediated in all species, but the magnitude of uptake under basal physiology varied significantly in decreasing order: non-human primate, mouse, pig, and rat. The theoretical calculation of islet contribution to the total pancreatic PET signal predicted the in vivo observation of differences in pancreatic uptake of [68Ga]Ga-DO3A-VS-Cys40-Exendin4. CONCLUSIONS IPR as well as the exocrine GLP-1R density is the main determinants of the species variability in pancreatic uptake. Thus, the IPR in human is an important factor for assessing the potential of GLP-1R as an imaging biomarker for pancreatic beta cells.
Collapse
Affiliation(s)
- Olof Eriksson
- Department of Medicinal Chemistry, Uppsala University, Dag Hammarskjölds väg 14C, 3tr, SE-751 83, Uppsala, Sweden.
| | - Ulrika Rosenström
- Department of Medicinal Chemistry, Uppsala University, Dag Hammarskjölds väg 14C, 3tr, SE-751 83, Uppsala, Sweden
| | - Ram K Selvaraju
- Department of Medicinal Chemistry, Uppsala University, Dag Hammarskjölds väg 14C, 3tr, SE-751 83, Uppsala, Sweden
| | - Barbro Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Irina Velikyan
- Department of Medicinal Chemistry, Uppsala University, Dag Hammarskjölds väg 14C, 3tr, SE-751 83, Uppsala, Sweden.
| |
Collapse
|
32
|
Yang CT, Ghosh KK, Padmanabhan P, Langer O, Liu J, Halldin C, Gulyás BZ. PET probes for imaging pancreatic islet cells. Clin Transl Imaging 2017. [DOI: 10.1007/s40336-017-0251-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Charron CL, Hickey JL, Nsiama TK, Cruickshank DR, Turnbull WL, Luyt LG. Molecular imaging probes derived from natural peptides. Nat Prod Rep 2017; 33:761-800. [PMID: 26911790 DOI: 10.1039/c5np00083a] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: up to the end of 2015.Peptides are naturally occurring compounds that play an important role in all living systems and are responsible for a range of essential functions. Peptide receptors have been implicated in disease states such as oncology, metabolic disorders and cardiovascular disease. Therefore, natural peptides have been exploited as diagnostic and therapeutic agents due to the unique target specificity for their endogenous receptors. This review discusses a variety of natural peptides highlighting their discovery, endogenous receptors, as well as their derivatization to create molecular imaging agents, with an emphasis on the design of radiolabelled peptides. This review also highlights methods for discovering new and novel peptides when knowledge of specific targets and endogenous ligands are not available.
Collapse
Affiliation(s)
- C L Charron
- Department of Chemistry, The University of Western Ontario, London, Canada.
| | - J L Hickey
- Department of Chemistry, The University of Western Ontario, London, Canada.
| | - T K Nsiama
- London Regional Cancer Program, Lawson Health Research Institute, London, Canada
| | - D R Cruickshank
- Department of Chemistry, The University of Western Ontario, London, Canada.
| | - W L Turnbull
- Department of Chemistry, The University of Western Ontario, London, Canada.
| | - L G Luyt
- Department of Chemistry, The University of Western Ontario, London, Canada. and Departments of Oncology and Medical Imaging, The University of Western Ontario, London, Canada and London Regional Cancer Program, Lawson Health Research Institute, London, Canada
| |
Collapse
|
34
|
Joosten L, Brom M, Schäfer MKH, Boerman OC, Weihe E, Gotthardt M. Preclinical evaluation of PAC1 targeting with radiolabeled Maxadilan. Sci Rep 2017; 7:1751. [PMID: 28496188 PMCID: PMC5431918 DOI: 10.1038/s41598-017-01852-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 04/05/2017] [Indexed: 01/15/2023] Open
Abstract
There is an ongoing search for new tracers to optimize imaging of beta cell-derived tumors (insulinomas). The PAC1 receptor, expressed by insulinomas, can be used for targeting of these tumors. Here, we investigated whether radiolabeled maxadilan could be used for insulinoma imaging. Maxadilan was C- or N-terminally conjugated with DTPA (termed maxadilan-DPTA or DTPA-maxadilan respectively). BALB/c nude mice bearing subcutaneous INS-1 tumors were injected with either In-111-labeled maxadilan-DTPA or In-111-DTPA-maxadilan. Biodistribution studies were carried out at 1, 2 and 4 hours after injection and SPECT/CT imaging 1 and 4 hours after injection of maxadilan-DTPA-111In. Radiolabeling of maxadilan-DTPA (680 MBq/nmol) was more efficient than of DTPA-maxadilan (55 MBq/nmol). Conjugation with DTPA slightly reduced receptor binding affinity in vitro: IC50 values were 3.2, 21.0 and 21.0 nM for maxadilan, natIn-DTPA-maxadilan and maxadilan-DTPA-natIn respectively. Upon i.v. injection maxadilan-DTPA-111In accumulated specifically in INS-1 tumors (7.30 ± 1.87%ID/g) and in the pancreas (3.82 ± 0.22%ID/g). INS-1 tumors were clearly visualized by small animal SPECT/CT. In conclusion, this study showed that the high affinity of maxadilan to the PAC1 receptor was maintained after DTPA conjugation. Furthermore, radiolabeled maxadilan-DTPA accumulated specifically in INS-1 tumors and, therefore, may qualify as a useful tracer to image insulinomas.
Collapse
Affiliation(s)
- Lieke Joosten
- Department of Radiology and Nuclear Medicine, Radboud university medical center, PO Box 9101, 6500, HB, Nijmegen, The Netherlands.
| | - Maarten Brom
- Department of Radiology and Nuclear Medicine, Radboud university medical center, PO Box 9101, 6500, HB, Nijmegen, The Netherlands
| | - Martin K H Schäfer
- Institute of Anatomy and Cell Biology, Dept. of Molecular Neuroscience, Philipps University of Marburg, Robert-Koch-Strasse 8, 35037, Marburg, Germany
| | - Otto C Boerman
- Department of Radiology and Nuclear Medicine, Radboud university medical center, PO Box 9101, 6500, HB, Nijmegen, The Netherlands
| | - Eberhard Weihe
- Institute of Anatomy and Cell Biology, Dept. of Molecular Neuroscience, Philipps University of Marburg, Robert-Koch-Strasse 8, 35037, Marburg, Germany
| | - Martin Gotthardt
- Department of Radiology and Nuclear Medicine, Radboud university medical center, PO Box 9101, 6500, HB, Nijmegen, The Netherlands
| |
Collapse
|
35
|
Fani M, Peitl PK, Velikyan I. Current Status of Radiopharmaceuticals for the Theranostics of Neuroendocrine Neoplasms. Pharmaceuticals (Basel) 2017; 10:E30. [PMID: 28295000 PMCID: PMC5374434 DOI: 10.3390/ph10010030] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 02/06/2023] Open
Abstract
Nuclear medicine plays a pivotal role in the management of patients affected by neuroendocrine neoplasms (NENs). Radiolabeled somatostatin receptor analogs are by far the most advanced radiopharmaceuticals for diagnosis and therapy (radiotheranostics) of NENs. Their clinical success emerged receptor-targeted radiolabeled peptides as an important class of radiopharmaceuticals and it paved the way for the investigation of other radioligand-receptor systems. Besides the somatostatin receptors (sstr), other receptors have also been linked to NENs and quite a number of potential radiolabeled peptides have been derived from them. The Glucagon-Like Peptide-1 Receptor (GLP-1R) is highly expressed in benign insulinomas, the Cholecystokinin 2 (CCK2)/Gastrin receptor is expressed in different NENs, in particular medullary thyroid cancer, and the Glucose-dependent Insulinotropic Polypeptide (GIP) receptor was found to be expressed in gastrointestinal and bronchial NENs, where interestingly, it is present in most of the sstr-negative and GLP-1R-negative NENs. Also in the field of sstr targeting new discoveries brought into light an alternative approach with the use of radiolabeled somatostatin receptor antagonists, instead of the clinically used agonists. The purpose of this review is to present the current status and the most innovative strategies for the diagnosis and treatment (theranostics) of neuroendocrine neoplasms using a cadre of radiolabeled regulatory peptides targeting their receptors.
Collapse
Affiliation(s)
- Melpomeni Fani
- Division of Radiopharmaceutical Chemistry, University Hospital of Basel, 4031 Basel, Switzerland.
| | - Petra Kolenc Peitl
- Department of Nuclear Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia.
| | - Irina Velikyan
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden.
| |
Collapse
|
36
|
Läppchen T, Tönnesmann R, Eersels J, Meyer PT, Maecke HR, Rylova SN. Radioiodinated Exendin-4 Is Superior to the Radiometal-Labelled Glucagon-Like Peptide-1 Receptor Probes Overcoming Their High Kidney Uptake. PLoS One 2017; 12:e0170435. [PMID: 28103285 PMCID: PMC5245897 DOI: 10.1371/journal.pone.0170435] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/04/2017] [Indexed: 11/19/2022] Open
Abstract
GLP-1 receptors are ideal targets for preoperative imaging of benign insulinoma and for quantifying the beta cell mass. The existing clinical tracers targeting GLP-1R are all agonists with low specific activity and very high kidney uptake. In order to solve those issues we evaluated GLP-1R agonist Ex-4 and antagonist Ex(9-39) radioiodinated at Tyr40 side by side with [Nle14,Lys40(Ahx-DOTA-68Ga)NH2]Ex-4 (68Ga-Ex-4) used in the clinic. The Kd, Bmax, internalization and binding kinetics of [Nle14,125I-Tyr40-NH2]Ex-4 and [Nle14,125I-Tyr40-NH2]Ex(9-39) were studied in vitro using Ins-1E cells. Biodistribution and imaging studies were performed in nude mice bearing Ins-1E xenografts. In vitro evaluation demonstrated high affinity binding of the [Nle14,125I-Tyr40-NH2]Ex-4 agonist to the Ins-1E cells with fast internalization kinetics reaching a plateau after 30 min. The antagonist [Nle14,125I-Tyr40-NH2]Ex(9-39) did not internalize and had a 4-fold higher Kd value compared to the agonist. In contrast to [Nle14,125I-Tyr40-NH2]Ex(9-39), which showed low and transient tumor uptake, [Nle14,125I-Tyr40-NH2]Ex-4 demonstrated excellent in vivo binding properties with tumor uptake identical to that of 68Ga-Ex-4, but substantially lower kidney uptake resulting in a tumor-to-kidney ratio of 9.7 at 1 h compared to 0.3 with 68Ga-Ex-4. Accumulation of activity in thyroid and stomach for both peptides, which was effectively blocked by irenat, confirms that in vivo deiodination is the mechanism behind the low kidney retention of iodinated peptides. The 124I congener of [Nle14,125I-Tyr40-NH2]Ex-4 demonstrated a similar favourable biodistribution profile in the PET imaging studies in contrast to the typical biodistribution pattern of [Nle14,Lys40(Ahx-DOTA-68Ga)NH2]Ex-4. Our results demonstrate that iodinated Ex-4 is a very promising tracer for imaging of benign insulinomas. It solves the problem of high kidney uptake of the radiometal-labelled tracers by improving the tumor-to-kidney ratio measured for [Nle14,Lys40(Ahx-DOTA-68Ga)NH2]Ex-4 by 32 fold.
Collapse
Affiliation(s)
- Tilman Läppchen
- Department of Nuclear Medicine, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- Department of Nuclear Medicine, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Roswitha Tönnesmann
- Department of Nuclear Medicine, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Jos Eersels
- Department of Radiology and Nuclear Medicine, VU University Medical Centre, Amsterdam, The Netherlands
| | - Philipp T. Meyer
- Department of Nuclear Medicine, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Helmut R. Maecke
- Department of Nuclear Medicine, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Svetlana N. Rylova
- Department of Nuclear Medicine, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail:
| |
Collapse
|
37
|
Kimura H, Matsuda H, Ogawa Y, Fujimoto H, Toyoda K, Fujita N, Arimitsu K, Hamamatsu K, Yagi Y, Ono M, Inagaki N, Saji H. Development of 111In-labeled exendin(9-39) derivatives for single-photon emission computed tomography imaging of insulinoma. Bioorg Med Chem 2017; 25:1406-1412. [PMID: 28089587 DOI: 10.1016/j.bmc.2016.12.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/28/2016] [Accepted: 12/31/2016] [Indexed: 10/20/2022]
Abstract
Insulinoma is a tumor derived from pancreatic β-cells, and the resulting hyperinsulinemia leads to characteristic hypoglycemia. Recent studies have reported the frequent overexpression of glucagon-like peptide-1 receptor (GLP-1R) in human insulinomas, suggesting that the binding of a radiolabeled compound to GLP-1R is useful for the imaging of such tumors. Exendin(9-39), a fragment peptide of exendin-3 and -4, binds GLP-1R with high affinity and acts as an antagonist. Accordingly, radiolabeled exendin(9-39) derivatives have also been investigated as insulinoma imaging probes that might be less likely to induce hypoglycemia. In this study, we synthesized a novel indium-111 (111In)-benzyl-diethylenetriaminepentaacetic acid (111In-BnDTPA)-conjugated exendin(9-39), 111In-BnDTPA-exendin(9-39), and evaluated its utility as a probe for the SPECT imaging of insulinoma. natIn-BnDTPA-exendin(9-39) exhibited a high affinity for GLP-1R (IC50=2.5nM), stability in plasma, and a specific activity that improved following reactions with a solvent and solubilizer. Regarding the in vivo biodistribution of 111In-BnDTPA-exendin(9-39) in INS-1 tumor-bearing mice, high uptake levels were observed in tumors (14.6%ID/g at 15min), with corresponding high tumor-to-blood (T/B), tumor-to-muscle (T/M), and tumor-to-pancreas (T/P) ratios (T/B=2.55, T/M=22.7, T/P=2.7 at 1h). The pre-administration of excess nonradioactive exendin(9-39) significantly reduced accumulation in both the tumor and pancreas (76% and 68% inhibition, respectively) at 1h after 111In-BnDTPA-exendin(9-39) injection, indicating that the GLP-1R mediated a majority of 111In-BnDTPA-exendin(9-39) uptake in the tumor and pancreas. Finally, 111In-BnDTPA-exendin(9-39) SPECT/CT studies in mice yielded clear images of tumors at 30min post-injection. These results suggest that 111In-BnDTPA-exendin(9-39) could be a useful SPECT molecular imaging probe for the detection and exact localization of insulinomas.
Collapse
Affiliation(s)
- Hiroyuki Kimura
- Department of Patho-Functional Bioanalysis, Kyoto University Graduate School of Pharmaceutical Sciences, 46-29, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| | - Hirokazu Matsuda
- Department of Patho-Functional Bioanalysis, Kyoto University Graduate School of Pharmaceutical Sciences, 46-29, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; Research & Development Division, Arkray, Inc., Yousuien-nai, 59 Gansuin-cho, Kamigyo-ku, Kyoto 602-0008, Japan
| | - Yu Ogawa
- Department of Patho-Functional Bioanalysis, Kyoto University Graduate School of Pharmaceutical Sciences, 46-29, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Fujimoto
- Department of Diabetes and Clinical Nutrition, Kyoto University Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kentaro Toyoda
- Department of Diabetes and Clinical Nutrition, Kyoto University Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Naotaka Fujita
- Department of Diabetes and Clinical Nutrition, Kyoto University Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kenji Arimitsu
- Department of Patho-Functional Bioanalysis, Kyoto University Graduate School of Pharmaceutical Sciences, 46-29, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Keita Hamamatsu
- Department of Diabetes and Clinical Nutrition, Kyoto University Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yusuke Yagi
- Department of Patho-Functional Bioanalysis, Kyoto University Graduate School of Pharmaceutical Sciences, 46-29, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Kyoto University Graduate School of Pharmaceutical Sciences, 46-29, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Nobuya Inagaki
- Department of Diabetes and Clinical Nutrition, Kyoto University Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hideo Saji
- Department of Patho-Functional Bioanalysis, Kyoto University Graduate School of Pharmaceutical Sciences, 46-29, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
38
|
Tabacchi E, Nanni C, Bossert I, Maffione AM, Fanti S. Diagnostic Applications of Nuclear Medicine: Pancreatic Cancer. NUCLEAR ONCOLOGY 2017:749-775. [DOI: 10.1007/978-3-319-26236-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
39
|
Jodal A, Schibli R, Béhé M. Targets and probes for non-invasive imaging of β-cells. Eur J Nucl Med Mol Imaging 2016; 44:712-727. [PMID: 28025655 PMCID: PMC5323463 DOI: 10.1007/s00259-016-3592-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/01/2016] [Indexed: 12/16/2022]
Abstract
β-cells, located in the islets of the pancreas, are responsible for production and secretion of insulin and play a crucial role in blood sugar regulation. Pathologic β-cells often cause serious medical conditions affecting blood glucose level, which severely impact life quality and are life-threatening if untreated. With 347 million patients, diabetes is one of the most prevalent diseases, and will continue to be one of the largest socioeconomic challenges in the future. The diagnosis still relies mainly on indirect methods like blood sugar measurements. A non-invasive diagnostic imaging modality would allow direct evaluation of β-cell mass and would be a huge step towards personalized medicine. Hyperinsulinism is another serious condition caused by β-cells that excessively secrete insulin, like for instance β-cell hyperplasia and insulinomas. Treatment options with drugs are normally not curative, whereas curative procedures usually consist of the resection of affected regions for which, however, an exact localization of the foci is necessary. In this review, we describe potential tracers under development for targeting β-cells with focus on radiotracers for PET and SPECT imaging, which allow the non-invasive visualization of β-cells. We discuss either the advantages or limitations for the various tracers and modalities. This article concludes with an outlook on future developments and discuss the potential of new imaging probes including dual probes that utilize functionalities for both a radioactive and optical moiety as well as for theranostic applications.
Collapse
Affiliation(s)
- Andreas Jodal
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, 5232, Villigen, Switzerland.,Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Martin Béhé
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, 5232, Villigen, Switzerland.
| |
Collapse
|
40
|
Mikkola K, Yim CB, Lehtiniemi P, Kauhanen S, Tarkia M, Tolvanen T, Nuutila P, Solin O. Low kidney uptake of GLP-1R-targeting, beta cell-specific PET tracer, 18F-labeled [Nle 14,Lys 40]exendin-4 analog, shows promise for clinical imaging. EJNMMI Res 2016; 6:91. [PMID: 27957723 PMCID: PMC5153397 DOI: 10.1186/s13550-016-0243-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/29/2016] [Indexed: 01/06/2023] Open
Abstract
Background Several radiometal-labeled, exendin-based tracers that target glucagon-like peptide-1 receptors (GLP-1R) have been intensively explored for β cell imaging. The main obstacle has been the high uptake of tracer in the kidneys. This study aimed to develop a novel GLP1-R-specific tracer, with fluorine-18 attached to exendin-4, to label β cells for clinical imaging with PET (positron emission tomography). We hypothesized that this tracer would undergo reduced kidney uptake. 18F-labeled [Nle14,Lys40]exendin-4 analog ([18F]exendin-4) was produced via Cu-catalyzed click chemistry. The biodistribution of [18F]exendin-4 was assessed with ex vivo organ γ-counting and in vivo PET imaging. We also tested the in vivo stability of the radiotracer. The localization of 18F radioactivity in rat and human pancreatic tissue sections was investigated with autoradiography. Receptor specificity was assessed with unlabeled exendin-3. Islet labeling was confirmed with immunohistochemistry. The doses of radiation in humans were estimated based on biodistribution results in rats. Results [18F]exendin-4 was synthesized with high yield and high specific activity. Results showed specific, sustained [18F]exendin-4 uptake in pancreatic islets. In contrast to previous studies that tested radiometal-labeled exendin-based tracers, we observed rapid renal clearance of [18F]exendin-4. Conclusions [18F]exendin-4 showed promise as a tracer for clinical imaging of pancreatic β cells, due to its high specific uptake in native β cells and its concomitant low kidney radioactivity uptake.
Collapse
Affiliation(s)
- Kirsi Mikkola
- Turku PET Centre, University of Turku, Turku, Finland. .,MediCity Research Laboratory, University of Turku, Turku, Finland.
| | - Cheng-Bin Yim
- Turku PET Centre, University of Turku, Turku, Finland.,Turku PET Centre, Åbo Akademi University, Turku, Finland
| | | | - Saila Kauhanen
- Turku PET Centre, University of Turku, Turku, Finland.,Division of Digestive Surgery and Urology, Turku University Hospital, Turku, Finland
| | - Miikka Tarkia
- Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Tuula Tolvanen
- Turku PET Centre, University of Turku, Turku, Finland.,Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland.,Department of Endocrinology, Turku University Hospital, Turku, Finland
| | - Olof Solin
- Turku PET Centre, University of Turku, Turku, Finland.,Accelerator Laboratory, Åbo Akademi University, Turku, Finland.,Department of Chemistry, University of Turku, Turku, Finland
| |
Collapse
|
41
|
Graaf CD, Donnelly D, Wootten D, Lau J, Sexton PM, Miller LJ, Ahn JM, Liao J, Fletcher MM, Yang D, Brown AJH, Zhou C, Deng J, Wang MW. Glucagon-Like Peptide-1 and Its Class B G Protein-Coupled Receptors: A Long March to Therapeutic Successes. Pharmacol Rev 2016; 68:954-1013. [PMID: 27630114 PMCID: PMC5050443 DOI: 10.1124/pr.115.011395] [Citation(s) in RCA: 259] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The glucagon-like peptide (GLP)-1 receptor (GLP-1R) is a class B G protein-coupled receptor (GPCR) that mediates the action of GLP-1, a peptide hormone secreted from three major tissues in humans, enteroendocrine L cells in the distal intestine, α cells in the pancreas, and the central nervous system, which exerts important actions useful in the management of type 2 diabetes mellitus and obesity, including glucose homeostasis and regulation of gastric motility and food intake. Peptidic analogs of GLP-1 have been successfully developed with enhanced bioavailability and pharmacological activity. Physiologic and biochemical studies with truncated, chimeric, and mutated peptides and GLP-1R variants, together with ligand-bound crystal structures of the extracellular domain and the first three-dimensional structures of the 7-helical transmembrane domain of class B GPCRs, have provided the basis for a two-domain-binding mechanism of GLP-1 with its cognate receptor. Although efforts in discovering therapeutically viable nonpeptidic GLP-1R agonists have been hampered, small-molecule modulators offer complementary chemical tools to peptide analogs to investigate ligand-directed biased cellular signaling of GLP-1R. The integrated pharmacological and structural information of different GLP-1 analogs and homologous receptors give new insights into the molecular determinants of GLP-1R ligand selectivity and functional activity, thereby providing novel opportunities in the design and development of more efficacious agents to treat metabolic disorders.
Collapse
Affiliation(s)
- Chris de Graaf
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Dan Donnelly
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Denise Wootten
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Jesper Lau
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Patrick M Sexton
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Laurence J Miller
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Jung-Mo Ahn
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Jiayu Liao
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Madeleine M Fletcher
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Dehua Yang
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Alastair J H Brown
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Caihong Zhou
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Jiejie Deng
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| | - Ming-Wei Wang
- Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
| |
Collapse
|
42
|
Brom M, Franssen GM, Joosten L, Gotthardt M, Boerman OC. The effect of purification of Ga-68-labeled exendin on in vivo distribution. EJNMMI Res 2016; 6:65. [PMID: 27518873 PMCID: PMC4987764 DOI: 10.1186/s13550-016-0221-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/04/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ga-labeled radiotracers are increasingly used for PET imaging. During the labeling procedure, formation of (68)Ga-colloid may occur. Upon i.v. injection, (68)Ga-colloid will accumulate rapidly in the liver, spleen, and bone marrow, resulting in reduced target-to-background ratios. In this study, we applied a thin layer chromatography (TLC) method to measure colloid content and we studied the effect of the purification method on the in vivo characteristics of (68)Ga-labeled DOTA-exendin-3. DOTA-exendin-3 was labeled with (68)Ga, and the colloid content was measured by TLC on silica gel ITLC with two mobile phases. The labeling mixture was purified by gel filtration on a 5-ml G25M column, by reversed-phase high-performance liquid chromatography (RP-HPLC) using a C8 column or by solid phase extraction (SPE) on an HLB cartridge. The in vivo characteristics of the preparations were determined in BALB/c nude mice, and PET images were acquired 1 h p.i. using a microPET scanner. In these studies, unpurified (68)Ga-DOTA-exendin-3 and (111)In-DOTA-exendin-3 were used as a reference. RESULTS The colloid content of (111)In-DOTA-exendin-3 and unpurified, gel filtration, RP-HPLC- and SPE-purified (68)Ga-DOTA exendin-3 was <3, 7, 9, <3, and <3 %, respectively. Unpurified (68)Ga-DOTA exendin-3 showed high liver and spleen uptake. Gel filtration partly removed (68)Ga-colloid from the preparation, resulting in moderate liver and spleen SPE-purified (68)Ga-DOTA exendin-3 showed very low liver and spleen uptake, that was similar to that of RP-HPLC purified (68)Ga-DOTA exendin-3. CONCLUSIONS We showed that the colloid content can be measured by TLC and that solid phase extraction and HPLC completely remove (68)Ga-colloid from (68)Ga-labeled tracer preparations, resulting in very low liver and spleen uptake. This study clearly shows the importance of removal of (68)Ga-colloid from preparations.
Collapse
Affiliation(s)
- Maarten Brom
- Department of Radiology and Nuclear Medicine, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Gerben M Franssen
- Department of Radiology and Nuclear Medicine, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Lieke Joosten
- Department of Radiology and Nuclear Medicine, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Martin Gotthardt
- Department of Radiology and Nuclear Medicine, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Otto C Boerman
- Department of Radiology and Nuclear Medicine, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
43
|
Abbas A, Beamish C, McGirr R, Demarco J, Cockburn N, Krokowski D, Lee TY, Kovacs M, Hatzoglou M, Dhanvantari S. Characterization of 5-(2- 18F-fluoroethoxy)-L-tryptophan for PET imaging of the pancreas. F1000Res 2016; 5:1851. [PMID: 27909574 PMCID: PMC5112576 DOI: 10.12688/f1000research.9129.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/04/2016] [Indexed: 12/23/2022] Open
Abstract
Purpose: In diabetes, pancreatic beta cell mass declines significantly prior to onset of fasting hyperglycemia. This decline may be due to endoplasmic reticulum (ER) stress, and the system L amino acid transporter LAT1 may be a biomarker of this process. In this study, we used 5-(2-
18F-fluoroethoxy)-L-tryptophan (
18F-L-FEHTP) to target LAT1 as a potential biomarker of beta cell function in diabetes. Procedures: Uptake of
18F-L-FEHTP was determined in wild-type C57BL/6 mice by
ex vivo biodistribution. Both dynamic and static positron emission tomography (PET) images were acquired in wild-type and Akita mice, a model of ER stress-induced diabetes, as well as in mice treated with streptozotocin (STZ). LAT1 expression in both groups of mice was evaluated by immunofluorescence microscopy. Results: Uptake of
18F-L-FEHTP was highest in the pancreas, and static PET images showed highly specific pancreatic signal. Time-activity curves showed significantly reduced
18F-L-FEHTP uptake in Akita mice, and LAT1 expression was also reduced. However, mice treated with STZ, in which beta cell mass was reduced by 62%, showed no differences in
18F-L-FEHTP uptake in the pancreas, and there was no significant correlation of
18F-L-FEHTP uptake with beta cell mass. Conclusions: 18F-L-FEHTP is highly specific for the pancreas with little background uptake in kidney or liver. We were able to detect changes in LAT1 in a mouse model of diabetes, but these changes did not correlate with beta cell function or mass. Therefore,
18F-L-FEHTP PET is not a suitable method for the noninvasive imaging of changes in beta cell function during the progression of diabetes.
Collapse
Affiliation(s)
- Ahmed Abbas
- Department of Medical Biophysics, Western University, London, ON, N6A 5C1, Canada
| | - Christine Beamish
- Metabolism and Diabetes Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada
| | - Rebecca McGirr
- Metabolism and Diabetes Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada; Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada
| | - John Demarco
- Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada
| | - Neil Cockburn
- Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada
| | - Dawid Krokowski
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ting-Yim Lee
- Department of Medical Biophysics, Western University, London, ON, N6A 5C1, Canada; Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada
| | - Michael Kovacs
- Department of Medical Biophysics, Western University, London, ON, N6A 5C1, Canada; Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Savita Dhanvantari
- Department of Medical Biophysics, Western University, London, ON, N6A 5C1, Canada; Metabolism and Diabetes Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada; Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 5C1, Canada
| |
Collapse
|
44
|
Abbas A, Beamish C, McGirr R, Demarco J, Cockburn N, Krokowski D, Lee TY, Kovacs M, Hatzoglou M, Dhanvantari S. Characterization of 5-(2- 18F-fluoroethoxy)-L-tryptophan for PET imaging of the pancreas. F1000Res 2016; 5:1851. [PMID: 27909574 PMCID: PMC5112576 DOI: 10.12688/f1000research.9129.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/04/2016] [Indexed: 10/29/2023] Open
Abstract
Purpose: In diabetes, pancreatic beta cell mass declines significantly prior to onset of fasting hyperglycemia. This decline may be due to endoplasmic reticulum (ER) stress, and the system L amino acid transporter LAT1 may be a biomarker of this process. In this study, we used 5-(2- 18F-fluoroethoxy)-L-tryptophan ( 18F-L-FEHTP) to target LAT1 as a potential biomarker of beta cell function in diabetes. Procedures: Uptake of 18F-L-FEHTP was determined in wild-type C57BL/6 mice by ex vivo biodistribution. Both dynamic and static positron emission tomography (PET) images were acquired in wild-type and Akita mice, a model of ER stress-induced diabetes, as well as in mice treated with streptozotocin (STZ). LAT1 expression in both groups of mice was evaluated by immunofluorescence microscopy. Results: Uptake of 18F-L-FEHTP was highest in the pancreas, and static PET images showed highly specific pancreatic signal. Time-activity curves showed significantly reduced 18F-L-FEHTP uptake in Akita mice, and LAT1 expression was also reduced. However, mice treated with STZ, in which beta cell mass was reduced by 62%, showed no differences in 18F-L-FEHTP uptake in the pancreas, and there was no significant correlation of 18F-L-FEHTP uptake with beta cell mass. Conclusions:18F-L-FEHTP is highly specific for the pancreas with little background uptake in kidney or liver. We were able to detect changes in LAT1 in a mouse model of diabetes, but these changes did not correlate with beta cell function or mass. Therefore, 18F-L-FEHTP PET is not a suitable method for the noninvasive imaging of changes in beta cell function during the progression of diabetes.
Collapse
Affiliation(s)
- Ahmed Abbas
- Department of Medical Biophysics, Western University, London, ON, N6A 5C1, Canada
| | - Christine Beamish
- Metabolism and Diabetes Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada
| | - Rebecca McGirr
- Metabolism and Diabetes Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada
- Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada
| | - John Demarco
- Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada
| | - Neil Cockburn
- Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada
| | - Dawid Krokowski
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ting-Yim Lee
- Department of Medical Biophysics, Western University, London, ON, N6A 5C1, Canada
- Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada
| | - Michael Kovacs
- Department of Medical Biophysics, Western University, London, ON, N6A 5C1, Canada
- Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Savita Dhanvantari
- Department of Medical Biophysics, Western University, London, ON, N6A 5C1, Canada
- Metabolism and Diabetes Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada
- Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 5C1, Canada
| |
Collapse
|
45
|
Eriksson O, Laughlin M, Brom M, Nuutila P, Roden M, Hwa A, Bonadonna R, Gotthardt M. In vivo imaging of beta cells with radiotracers: state of the art, prospects and recommendations for development and use. Diabetologia 2016; 59:1340-1349. [PMID: 27094935 DOI: 10.1007/s00125-016-3959-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/23/2016] [Indexed: 12/15/2022]
Abstract
Radiotracer imaging is characterised by high in vivo sensitivity, with a detection limit in the lower picomolar range. Therefore, radiotracers represent a valuable tool for imaging pancreatic beta cells. High demands are made of radiotracers for in vivo imaging of beta cells. Beta cells represent only a small fraction of the volume of the pancreas (usually 1-3%) and are scattered in the tiny islets of Langerhans throughout the organ. In order to be able to measure a beta cell-specific signal, one has to rely on highly specific tracer molecules because current in vivo imaging technologies do not allow the resolution of single islets in humans non-invasively. Currently, a considerable amount of preclinical data are available for several radiotracers and three are under clinical evaluation. We summarise the current status of the evaluation of these tracer molecules and put forward recommendations for their further evaluation.
Collapse
Affiliation(s)
- Olof Eriksson
- Preclinical PET Platform, Department of Medical Chemistry, Uppsala University, Dag Hammarskjölds väg 14C, 3tr, SE-751 83, Uppsala, Sweden.
- Turku PET Centre, University of Turku, Turku, Finland.
- Department of Biosciences, Åbo Akademi University, Turku, Finland.
| | - Maren Laughlin
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Maarten Brom
- Department of Radiology and Nuclear Medicine, Radboud university medical center, PO Box 9101, 6500HB, Nijmegen, the Netherlands
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany
| | - Albert Hwa
- JDRF, Discovery Research, New York, NY, USA
| | - Riccardo Bonadonna
- Division of Endocrinology, Department of Clinical and Experimental Medicine, University of Parma and AOU of Parma, Parma, Italy
| | - Martin Gotthardt
- Department of Radiology and Nuclear Medicine, Radboud university medical center, PO Box 9101, 6500HB, Nijmegen, the Netherlands.
| |
Collapse
|
46
|
Notni J, Steiger K, Hoffmann F, Reich D, Schwaiger M, Kessler H, Wester HJ. Variation of Specific Activities of 68Ga-Aquibeprin and 68Ga-Avebetrin Enables Selective PET Imaging of Different Expression Levels of Integrins α5β1 and αvβ3. J Nucl Med 2016; 57:1618-1624. [DOI: 10.2967/jnumed.116.173948] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/29/2016] [Indexed: 12/22/2022] Open
|
47
|
Laurent D, Vinet L, Lamprianou S, Daval M, Filhoulaud G, Ktorza A, Wang H, Sewing S, Juretschke HP, Glombik H, Meda P, Boisgard R, Nguyen DL, Stasiuk GJ, Long NJ, Montet X, Hecht P, Kramer W, Rutter GA, Hecksher-Sørensen J. Pancreatic β-cell imaging in humans: fiction or option? Diabetes Obes Metab 2016; 18:6-15. [PMID: 26228188 DOI: 10.1111/dom.12544] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/02/2015] [Accepted: 07/28/2015] [Indexed: 01/02/2023]
Abstract
Diabetes mellitus is a growing worldwide epidemic disease, currently affecting 1 in 12 adults. Treatment of disease complications typically consumes ∼10% of healthcare budgets in developed societies. Whilst immune-mediated destruction of insulin-secreting pancreatic β cells is responsible for Type 1 diabetes, both the loss and dysfunction of these cells underly the more prevalent Type 2 diabetes. The establishment of robust drug development programmes aimed at β-cell restoration is still hampered by the absence of means to measure β-cell mass prospectively in vivo, an approach which would provide new opportunities for understanding disease mechanisms and ultimately assigning personalized treatments. In the present review, we describe the progress towards this goal achieved by the Innovative Medicines Initiative in Diabetes, a collaborative public-private consortium supported by the European Commission and by dedicated resources of pharmaceutical companies. We compare several of the available imaging methods and molecular targets and provide suggestions as to the likeliest to lead to tractable approaches. Furthermore, we discuss the simultaneous development of animal models that can be used to measure subtle changes in β-cell mass, a prerequisite for validating the clinical potential of the different imaging tracers.
Collapse
Affiliation(s)
- D Laurent
- Biomarker Department, Clinical Imaging, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - L Vinet
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - S Lamprianou
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - M Daval
- Metabolic Diseases Department, Servier Research Institute, Suresnes, France
| | - G Filhoulaud
- Metabolic Diseases Department, Servier Research Institute, Suresnes, France
| | - A Ktorza
- Metabolic Diseases Department, Servier Research Institute, Suresnes, France
| | - H Wang
- Roche Pharma Research and Early Development, Innovation Center Basel, Basel, Switzerland
| | - S Sewing
- Roche Pharma Research and Early Development, Innovation Center Basel, Basel, Switzerland
| | - H-P Juretschke
- Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | - H Glombik
- Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | - P Meda
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - R Boisgard
- Commissariat à l'Energie Atomique, Equipe d'Imagerie Moléculaire Expérimentale, Orsay, France
| | - D L Nguyen
- Commissariat à l'Energie Atomique, Equipe d'Imagerie Moléculaire Expérimentale, Orsay, France
| | - G J Stasiuk
- Department of Chemistry, Imperial College London, London, UK
| | - N J Long
- Department of Chemistry, Imperial College London, London, UK
| | - X Montet
- Department of Radiology, Geneva University Hospital, Geneva, Switzerland
| | - P Hecht
- IMIDIA Project Office, Graz, Austria
| | - W Kramer
- Scientific Consultant for Sanofi Deutschland GmbH, Frankfurt am Main, Germany
| | - G A Rutter
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | | |
Collapse
|
48
|
Mathijs I, Xavier C, Peleman C, Caveliers V, Brom M, Gotthardt M, Herrera PL, Lahoutte T, Bouwens L. A standardized method for in vivo mouse pancreas imaging and semiquantitative β cell mass measurement by dual isotope SPECT. Mol Imaging Biol 2015; 17:58-66. [PMID: 25070262 DOI: 10.1007/s11307-014-0771-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE In order to evaluate future β cell tracers in vivo, we aimed to develop a standardized in vivo method allowing semiquantitative measurement of a prospective β cell tracer within the pancreas. PROCEDURES 2-[(123)I]Iodo-L-phenylalanine ([(123)I]IPA) and [Lys(40)([(111)In]DTPA)]exendin-3 ([(111)In]Ex3) pancreatic uptake and biodistribution were evaluated using SPECT, autoradiography, and an ex vivo biodistribution study in a controlled unilaterally nephrectomized mouse β cell depletion model. Semiquantitative measurement of the imaging results was performed using [(123)I]IPA to delineate the pancreas and [(111)In]Ex3 as a β cell tracer. RESULTS The uptake of [(123)I]IPA was highest in the pancreas. Aside from the kidneys, the uptake of [(111)In]Ex3 was highest in the pancreas and lungs. Autoradiography showed only uptake of [(111)In]Ex3 in insulin-expressing cells. Semiquantitative measurement of [(111)In]Ex3 in the SPECT images based on the delineation of the pancreas with [(123)I]IPA showed a high correlation with the [(111)In]Ex3 uptake data of the pancreas obtained by dissection. A strong positive correlation was observed between the relative insulin positive area and the pancreas-to-blood ratios of [(111)In]Ex3 uptake as determined by counting with a gamma counter and the semiquantitative analysis of the SPECT images. CONCLUSIONS [(123)I]IPA is a promising tracer to delineate pancreatic tissue on SPECT images. It shows a high uptake in the pancreas as compared to other abdominal tissues. This study also demonstrates the feasibility and accuracy to measure the β cell mass in vivo in an animal model of diabetes.
Collapse
Affiliation(s)
- Iris Mathijs
- Cell Differentiation Unit, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium,
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bauman A, Valverde IE, Fischer CA, Vomstein S, Mindt TL. Development of 68Ga- and 89Zr-Labeled Exendin-4 as Potential Radiotracers for the Imaging of Insulinomas by PET. J Nucl Med 2015; 56:1569-74. [PMID: 26251418 DOI: 10.2967/jnumed.115.159186] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/27/2015] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Clinical studies have demonstrated the potential of radiometallated exendin-4 derivatives for the imaging of glucagonlike peptide-1 receptor-overexpressing insulinomas. Recently investigated exendin-4 derivatives were radiolabeled with the SPECT isotopes 99mTc or 111In. Despite promising results, the low spatial resolution associated with SPECT and the occasional need to perform imaging several days after injection for the demarcation of insulinomas from the kidneys represent current limitations. The aim of this work was the development of exendin-4 derivatives for the imaging of insulinomas by high-resolution PET at early or late time points after injection of the radiotracer. METHODS An exendin-4 derivative conjugated to desferrioxamine (DFO) was used for radiolabeling with the PET isotopes 68Ga and 89Zr. Both radiotracers were evaluated in vitro with RIN-m5F cells for their cell internalization properties as well as affinities and specificities toward the glucagonlike peptide-1 receptor. Serum stabilities of the radiopeptides were assessed in blood serum, and their distribution coefficient was determined by the shake-flask method. Biodistribution experiments were performed with nude mice bearing RIN-m5F xenografts. For all experiments, clinically evaluated [Lys40-(AHX-DTPA-111In)NH2]exendin-4 was used as a reference compound. RESULTS [Lys40-(AHX-DFO)NH2]exendin-4 was labeled with 89Zr and 68Ga in high radiochemical yield and purity. In vitro experiments showed favorable cell uptake and receptor affinity for [Lys40-(AHX-DFO-68Ga)NH2]exendin-4, and [Lys40-(AHX-DFO-89Zr)NH2]exendin-4 and [Lys40-(AHX-DTPA-111In)NH2]exendin-4 performed similarly well. In biodistribution experiments, [Lys40-(AHX-DFO-68Ga)NH2]exendin-4 exhibited a significantly enhanced tumor uptake 1 h after injection in comparison to the other 2 radiotracers. Tumor uptake of [Lys40-(AHX-DFO-89Zr)NH2]exendin-4 was comparable to that of [Lys40-(AHX-DTPA-111In)NH2]exendin-4 at 1-48 h after injection. All compounds showed a fast blood clearance and low accumulation in receptor-negative organs and tissue with the exception of the kidneys, a known characteristic for exendin-4-based radiotracers. CONCLUSION 68Ga- and 89Zr-radiolabeled [Lys40-(AHX-DFO)NH2]exendin-4 exhibit characteristics comparable or superior to the clinically tested reference compound [Lys40-(AHX-DTPA-111In)NH2]exendin-4 and, thus, represent potential new tracers for the imaging of insulinomas by PET.
Collapse
Affiliation(s)
- Andreas Bauman
- Division of Radiopharmaceutical Chemistry, University of Basel Hospital, Basel, Switzerland
| | - Ibai E Valverde
- Division of Radiopharmaceutical Chemistry, University of Basel Hospital, Basel, Switzerland
| | - Christiane A Fischer
- Division of Radiopharmaceutical Chemistry, University of Basel Hospital, Basel, Switzerland
| | - Sandra Vomstein
- Division of Radiopharmaceutical Chemistry, University of Basel Hospital, Basel, Switzerland
| | - Thomas L Mindt
- Division of Radiopharmaceutical Chemistry, University of Basel Hospital, Basel, Switzerland
| |
Collapse
|
50
|
Li D, Huang Z, Chen S, Hu Z, Li WH. GLP-1 Receptor Mediated Targeting of a Fluorescent Zn(2+) Sensor to Beta Cell Surface for Imaging Insulin/Zn(2+) Release. Bioconjug Chem 2015; 26:1443-50. [PMID: 26121325 DOI: 10.1021/acs.bioconjchem.5b00332] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The pancreatic islet beta cell plays an essential role in maintaining the normal blood glucose level by releasing insulin. Loss of functional beta cell mass leads to diabetes—a disease affecting ∼9% of the population worldwide. There has been great interest and intense effort in developing imaging probes for monitoring islet beta cells, and glucagon-like peptide-1 receptor (GLP-1R) has emerged as a valuable biomarker for targeting beta cells. However, efforts thus far in GLP-1R mediated beta cell labeling and imaging has largely, if not exclusively, focused on developing imaging probes for monitoring beta cell mass, and few studies have investigated imaging beta cell function (insulin release) through GLP-1R. We now report the design and synthesis of a bioconjugate, ZIMIR-Ex4(9-39), that consists of a fluorescent Zn(2+) sensor and a truncated exendin 4 peptide for imaging insulin/Zn(2+) release in islet beta cells. In vitro, the conjugate bound to Zn(2+) with high affinity and displayed a robust fluorescence enhancement upon Zn(2+) chelation. When added to beta cells at submicromolar concentration, ZIMIR-Ex4(9-39) rapidly labeled cell surface in minutes to report the dynamics of insulin/Zn(2+) release with high spatiotemporal resolution. Future explorations of this approach may lead to probes for tracking beta cell function using different imaging modalities.
Collapse
Affiliation(s)
- Daliang Li
- †Departments of Cell Biology and of Biochemistry, ‡Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9039, United States
| | - ZhiJiang Huang
- †Departments of Cell Biology and of Biochemistry, ‡Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9039, United States
| | - Shiuhwei Chen
- †Departments of Cell Biology and of Biochemistry, ‡Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9039, United States
| | - Zeping Hu
- †Departments of Cell Biology and of Biochemistry, ‡Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9039, United States
| | - Wen-hong Li
- †Departments of Cell Biology and of Biochemistry, ‡Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9039, United States
| |
Collapse
|