1
|
Yin Y, Wang C, Liang H, Ji Y, Zhao D, Wang L, Shi W, Wang X, Gao Y, Liu B. Design, synthesis, and biological evaluation of 2,3-dihydro-1H-pyrrolo[3,4-c]pyridin-1-one derivatives as potent hematopoietic progenitor kinase 1 (HPK1) inhibitors. Bioorg Chem 2025; 161:108554. [PMID: 40347769 DOI: 10.1016/j.bioorg.2025.108554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025]
Affiliation(s)
- Yuan Yin
- Chia Tai Tianqing Pharmaceutical Group Co., Ltd, Jiangsu Key Laboratory of Antiviral Drug Research, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Chengqi Wang
- Chia Tai Tianqing Pharmaceutical Group Co., Ltd, Jiangsu Key Laboratory of Antiviral Drug Research, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Huan Liang
- Chia Tai Tianqing Pharmaceutical Group Co., Ltd, Jiangsu Key Laboratory of Antiviral Drug Research, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Yanpeng Ji
- Chia Tai Tianqing Pharmaceutical Group Co., Ltd, Jiangsu Key Laboratory of Antiviral Drug Research, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Damin Zhao
- Chia Tai Tianqing Pharmaceutical Group Co., Ltd, Jiangsu Key Laboratory of Antiviral Drug Research, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Lilong Wang
- Chia Tai Tianqing Pharmaceutical Group Co., Ltd, Jiangsu Key Laboratory of Antiviral Drug Research, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Wei Shi
- Chia Tai Tianqing Pharmaceutical Group Co., Ltd, Jiangsu Key Laboratory of Antiviral Drug Research, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Xiaojin Wang
- Chia Tai Tianqing Pharmaceutical Group Co., Ltd, Jiangsu Key Laboratory of Antiviral Drug Research, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Yong Gao
- Chia Tai Tianqing Pharmaceutical Group Co., Ltd, Jiangsu Key Laboratory of Antiviral Drug Research, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China.
| | - Baomin Liu
- Chia Tai Tianqing Pharmaceutical Group Co., Ltd, Jiangsu Key Laboratory of Antiviral Drug Research, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China.
| |
Collapse
|
2
|
Wan B, Liang L, Zhong K, Ma Y, Wang H, Wang Z, Sun S, Lu T, Chen Y, Zhu Y. Structure-Guided Optimization of 2-Aminoquinazoline Hematopoietic Progenitor Kinase 1 Inhibitors for Improved Oral Bioavailability and Synergistic Antitumor Immunity. J Med Chem 2025; 68:10439-10460. [PMID: 40325350 DOI: 10.1021/acs.jmedchem.5c00762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Hematopoietic progenitor kinase 1 (HPK1), a pivotal T-cell immunity suppressor, offers transformative potential to overcome immune checkpoint resistance, yet existing inhibitors fail to balance potency, selectivity, and pharmacokinetics. We developed a spatially resolved strategy within a unified chemical framework of our 2-aminoquinazoline core, integrating (1) high-affinity engagement of the HPK1 hinge-region subpocket (Leu23/Phe93/Gly95) through bidentate hydrogen bonding and hydrophobic packing with (2) strategic occupation of a solvent-exposed allosteric site to sterically block CYP3A4/2C9/2D6-mediated oxidative metabolism. Optimized compound 39 demonstrated subnanomolar binding affinity (IC50 = 0.70 nM) with moderate selectivity, combined with high metabolic stability in human liver microsomes (CLint < 1 mL/min/kg) and favorable oral bioavailability (>100%) in mice. In CT26 models, compound 39 synergized with anti-PD-1 (60% tumor growth inhibition) by expanding IFN-γ+CD8+ tumor-infiltrating lymphocytes (7-fold) and enhancing splenic IFN-γ production (3-fold). This work validates 2-aminoquinazolines as a novel HPK1 chemotype addressing metabolic instability─a key hurdle in kinase drug discovery.
Collapse
Affiliation(s)
- Boheng Wan
- School of Science, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
| | - Li Liang
- School of Science, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
| | - Kaihong Zhong
- School of Science, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
| | - Yiran Ma
- School of Science, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
| | - Hui Wang
- School of Science, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
| | - Ziang Wang
- School of Science, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
| | - Shilong Sun
- School of Science, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
| | - Tao Lu
- School of Science, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
| | - Yadong Chen
- School of Science, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
| | - Yong Zhu
- School of Science, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
| |
Collapse
|
3
|
Yuan YH, Mao JY, Yue JF, He ML, Hui Z, Yin H, Wang J, Ye XY. Updated patent review for hematopoietic progenitor kinase (HPK1) inhibitors and degraders (2021-present). Expert Opin Ther Pat 2025; 35:387-408. [PMID: 39950624 DOI: 10.1080/13543776.2025.2462834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 01/29/2025] [Indexed: 02/18/2025]
Abstract
INTRODUCTION Hematopoietic progenitor cell kinase (HPK1) is a serine/threonine kinase of MAP4K family. It negatively regulates T cell receptor and B cell signal transduction. The loss of HPK1 kinase function increases the secretion of cytokines and enhances T cell signal transduction, virus clearance and tumor growth inhibition. Therefore, HPK1 is considered as a promising drug target for tumor immunotherapy. AREA COVERED This article surveys the patents published since 2021 aiming to analyze the structural features of scaffolds and the patent landscape. It also discusses the recent clinical developments and provides perspectives on the challenges and the future directions. EXPERT OPINION HPK1 kinase is a viable drug target, and there is an increasing number of clinical studies on HPK1 inhibitors. In the clinical research of HPK1 inhibitors, there are mainly two ways: monotherapy and combination therapy. In recent years, HPK1 degraders derived from PROTAC technology have shown promises along with HPK1 inhibitors. It is hopeful that small molecule inhibitors or degraders targeting HPK1 will gain FDA approval for treatment of human diseases in the near future. DATABASES SEARCHED AND INCLUSIVE DATES A rapid survey of literature reports using keyword 'HPK1' in SciFinder® search engine yielded about 180 papers since 2021.
Collapse
Affiliation(s)
- Ying-Hui Yuan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jia-Ying Mao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Ji-Fan Yue
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Meng-Lan He
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zi Hui
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Hang Yin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Jianshe Wang
- Drug Discovery, Hangzhou Purple Crystal Pharma, Hangzhou, Zhejiang, China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Mao J, Zhou L, Wu Y, Wang K, Ye X, Wang T, Yang J, Tong J, Miao Q, Jiang S, Xiao Y, Zhang K. Discovery of 1,2,4-benzotriazine derivatives as new hematopoietic progenitor kinase 1 (HPK1) inhibitors. Bioorg Chem 2025; 156:108158. [PMID: 39826501 DOI: 10.1016/j.bioorg.2025.108158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/26/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Hematopoietic progenitor kinase 1 (HPK1), which negatively regulates immune signaling, has emerged as an attractive small-molecule drug target for tumor immunotherapy. Herein, we report the discovery of the 1,2,4-benzotriazine derivatives as new potent HPK1 inhibitors. Notably, compound A29 exhibited improved HPK1 inhibitory activity relative to compound 1 in the ADP-Glo kinase assay (IC50 = 2.70 and 13.6 nM, respectively). The pronounced inhibitory activity of A29 against downstream p-SLP76 in Jurkat T cells (IC50 = 8.1 nM) as well as the ability to induce the production of interleukin 2 (IL-2) in human peripheral blood mononuclear cells (PBMCs) confirmed its cellular target engagement and immune stimulatory effect. Consistently, this lead compound significantly enhanced T-cell killing ability against murine colon cancer cells CT26 or MC38 in a co-culture system. Furthermore, A29 was efficacious in a CT26 xenograft mouse model alone, and significantly enhanced the antitumor efficacy of an anti-PD-1 antibody. This work provides a promising lead for the development of effective HPK1 inhibitors for tumor immunotherapy.
Collapse
Affiliation(s)
- Jie Mao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lixin Zhou
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yuxing Wu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kaizhen Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiuquan Ye
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tianyu Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jiamei Yang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Tong
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qi Miao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Sheng Jiang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Yibei Xiao
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Kuojun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
5
|
Peng J, Ding X, Shih PY, Meng Q, Ding X, Zhang M, Aliper A, Ren F, Lu H, Zhavoronkov A. Discovery of 1(2H)-phthalazinone and 1(2H)-isoquinolinone derivatives as potent hematopoietic progenitor kinase 1 (HPK1) inhibitors. Eur J Med Chem 2024; 279:116877. [PMID: 39303515 DOI: 10.1016/j.ejmech.2024.116877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Although immune checkpoint inhibitors (ICIs) have been a revelation for treating several cancers, an unmet need remains to broaden ICI therapeutic scope and increase their response rates in clinical trials. Hematopoietic progenitor kinase 1 (HPK1) is a negative regulator of T cell activation and has previously been identified as a promising target for immunotherapy. Herein, we report the discovery of a series of HPK1 inhibitors with novel 1(2H)-phthalazinone and 1(2H)-isoquinolinone scaffolds. Among them, compound 24 demonstrated potent in vitro activity (HPK1 IC50 value of 10.4 nM) and cellular activity (pSLP76 EC50 = 41 nM & IL-2 EC50 = 108 nM). Compound 24 exhibited favorable mouse and rat pharmacokinetic profiles with reasonable oral exposure. Compound 24 showed potent in vivo anti-tumor activity in a CT26 syngeneic tumor model with 95 % tumor growth inhibition in combination with anti-PD-1.
Collapse
Affiliation(s)
- Jingjing Peng
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China
| | - Xiaoyu Ding
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China
| | - Pei-Yu Shih
- Insilico Medicine Taiwan Ltd, Suite 1303, No. 333, Sec. 1, Keelung Rd, Xinyi District, Taipei, 110, Taiwan
| | - Qingyuan Meng
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China
| | - Xiao Ding
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China
| | - Man Zhang
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China
| | - Alex Aliper
- Insilico Medicine AI Limited, Masdar City, Abu Dhabi 145748, United Arab Emirates
| | - Feng Ren
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China
| | - Hongfu Lu
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China.
| | - Alex Zhavoronkov
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China; Insilico Medicine AI Limited, Masdar City, Abu Dhabi 145748, United Arab Emirates.
| |
Collapse
|
6
|
Duan Y, Guo Z, Zhong W, Chen J, Xu S, Liu J, Xu J. An updated review of small-molecule HPK1 kinase inhibitors (2016-present). Future Med Chem 2024; 16:2431-2450. [PMID: 39582317 PMCID: PMC11622775 DOI: 10.1080/17568919.2024.2420630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is a serine-threonine kinase specific to hematopoiesis and a member of the MAP4K family of Ste20-related protein kinases. Targeting HPK1 to ameliorate T cell exhaustion and enhance T cell functions is a promising strategy for clinical immunotherapies. Numerous studies have reported the progress in developing effective HPK1 inhibitors and elucidating their mechanisms of action. However, most inhibitors affect multiple signaling pathways, resulting in unintended side effects that limit their clinical development and application. Herein, we reviewed HPK1-related signaling pathways, clinical candidates and recent advances in small-molecule inhibitors targeting HPK1. Additionally, we present our perspectives on current challenges and potential future research field, hoping to provide inspiration for the development of novel HPK1 inhibitors.
Collapse
Affiliation(s)
- Yiping Duan
- Department of Medicinal Chemistry, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu, 211198, Peoples Republic China
| | - Zhichao Guo
- Department of Medicinal Chemistry, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu, 211198, Peoples Republic China
| | - Wenyi Zhong
- Department of Organic Chemistry, China Pharmaceutical University, School of Science, Nanjing, Jiangsu, 211198, Peoples Republic China
| | - Jichao Chen
- Nanjing University Chinese Medicine, School of Pharmacy, Nanjing, Jiangsu, 210023, Peoples Republic China
| | - Shengtao Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu, 211198, Peoples Republic China
| | - Jie Liu
- Department of Organic Chemistry, China Pharmaceutical University, School of Science, Nanjing, Jiangsu, 211198, Peoples Republic China
| | - Jinyi Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu, 211198, Peoples Republic China
| |
Collapse
|
7
|
Peng J, Ding X, Chen CXJ, Shih PY, Meng Q, Ding X, Zhang M, Aliper A, Ren F, Lu H, Zhavoronkov A. Design, Synthesis, and Biological Evaluation of a Series of Spiro Analogues as Novel HPK1 Inhibitors. ACS Med Chem Lett 2024; 15:2032-2041. [PMID: 39563821 PMCID: PMC11571053 DOI: 10.1021/acsmedchemlett.4c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/08/2024] [Accepted: 10/24/2024] [Indexed: 11/21/2024] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1) negatively affects T cell activation and proliferation and is a promising target for immunotherapy. Although HPK1 inhibitors have shown promising efficacy in preclinical models, none have been approved for clinical use. One significant challenge in developing an HPK1 inhibitor is the difficulty in designing a potent inhibitor with good kinase selectivity and pharmacokinetic properties. Here, we report a series of spiro HPK1 inhibitors with good potency and selectivity. Specifically, compound 16 exhibited potent HPK1 inhibition (IC50 = 2.67 nM), adequate selectivity toward the MAP4K family (>100-fold), and good selectivity against selected kinases (>300-fold). Compound 16 demonstrated moderate in vivo clearance and reasonable oral exposure in mice and rats. Notably, compound 16 possessed good antitumor efficacy in the CT26 murine colon cancer and a synergistic effect when combined with anti-PD-1. These exciting preclinical results support the continued development of this class of HPK1 inhibitors.
Collapse
Affiliation(s)
- Jingjing Peng
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Xiaoyu Ding
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Celia X J Chen
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Pei-Yu Shih
- Insilico Medicine Taiwan Ltd, Taipei 110, Taiwan
| | - Qingyuan Meng
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Xiao Ding
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Man Zhang
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Alex Aliper
- Insilico Medicine AI Limited, Masdar City, Abu Dhabi 145748, UAE
| | - Feng Ren
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Hongfu Lu
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Alex Zhavoronkov
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
- Insilico Medicine AI Limited, Masdar City, Abu Dhabi 145748, UAE
| |
Collapse
|
8
|
Mowat J, Carretero R, Leder G, Aiguabella Font N, Neuhaus R, Berndt S, Günther J, Friberg A, Schäfer M, Briem H, Raschke M, Miyatake Ondozabal H, Buchmann B, Boemer U, Kreft B, Hartung IV, Offringa R. Discovery of BAY-405: An Azaindole-Based MAP4K1 Inhibitor for the Enhancement of T-Cell Immunity against Cancer. J Med Chem 2024; 67:17429-17453. [PMID: 39331123 PMCID: PMC11472321 DOI: 10.1021/acs.jmedchem.4c01325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Mitogen-activated protein kinase kinase kinase kinase 1 (MAP4K1) is a serine/threonine kinase that acts as an immune checkpoint downstream of T-cell receptor stimulation. MAP4K1 activity is enhanced by prostaglandin E2 (PGE2) and transforming growth factor beta (TGFβ), immune modulators commonly present in the tumor microenvironment. Therefore, its pharmacological inhibition is an attractive immuno-oncology concept for inducing therapeutic T-cell responses in cancer patients. Here, we describe the systematic optimization of azaindole-based lead compound 1, resulting in the discovery of potent and selective MAP4K1 inhibitor 38 (BAY-405) that displays nanomolar potency in biochemical and cellular assays as well as in vivo exposure after oral dosing. BAY-405 enhances T-cell immunity and overcomes the suppressive effect of PGE2 and TGFβ. Treatment of tumor-bearing mice shows T-cell-dependent antitumor efficacy. MAP4K1 inhibition in conjunction with PD-L1 blockade results in a superior antitumor impact, illustrating the complementarity of the single agent treatments.
Collapse
Affiliation(s)
| | - Rafael Carretero
- Bayer
AG, Pharmaceutical R&D, 13342 Berlin, Germany
- DKFZ-Bayer
Joint Immunotherapeutics Laboratory, German Cancer Research Center, Heidelberg 69120, Germany
| | | | | | - Roland Neuhaus
- DKFZ-Bayer
Joint Immunotherapeutics Laboratory, German Cancer Research Center, Heidelberg 69120, Germany
| | | | | | | | | | - Hans Briem
- Bayer
AG, Pharmaceutical R&D, 13342 Berlin, Germany
| | | | | | | | - Ulf Boemer
- Bayer
AG, Pharmaceutical R&D, 13342 Berlin, Germany
| | | | | | - Rienk Offringa
- DKFZ-Bayer
Joint Immunotherapeutics Laboratory, German Cancer Research Center, Heidelberg 69120, Germany
- Division
of Molecular Oncology of Gastrointestinal Tumors, Department of Surgery, University Hospital Heidelberg, Heidelberg 69120, Germany
| |
Collapse
|
9
|
Chen L, Zhang B, Zhou P, Duan Y, He C, Zhong W, Wang T, Xu S, Chen J, Yao H, Xu J. Design, synthesis, and biological evaluation of novel HPK1 inhibitors possessing 3-cyano-quinoline moiety. Bioorg Chem 2024; 153:107814. [PMID: 39299176 DOI: 10.1016/j.bioorg.2024.107814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/31/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
Hematopoietic progenitor kinase 1 (HPK1), a negative regulator of T cell receptor signaling, plays a crucial role in multiple cellular immune responses. Emerging researches have demonstrated that inhibiting HPK1 kinase function enhances T cells' ability to recognize tumor antigens and boosts anti-tumor immune responses. As a result, HPK1 has become a promising target for tumor immunotherapy. Herein, we report the design, synthesis, and biological evaluation of a series of novel HPK1 inhibitors featuring a 3-cyano-quinoline scaffold. Among these, compound 3a was identified as the most potent HPK1 inhibitor (HPK1 IC50 = 48 nM). It effectively inhibited SLP76 phosphorylation, enhanced IL-2 cytokine secretion, and reversed PGE2-induced immunosuppression in Jurkat cells. In addition, compound 3a exhibited favorable metabolic stability in mouse liver microsomes and plasma. Overall, this work provides a structurally novel lead compound for the development of HPK1 inhibitors.
Collapse
Affiliation(s)
- Long Chen
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Baixue Zhang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Pijun Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yiping Duan
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chen He
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wenyi Zhong
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Tianyi Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Shengtao Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jichao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Hong Yao
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Jinyi Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
10
|
Wu M, Wu Y, Jin Y, Mao X, Zeng S, Yu H, Zhang J, Jin Y, Wu Y, Xu T, Chen Y, Wang Y, Yao X, Che J, Huang W, Dong X. Discovery of an Exceptionally Orally Bioavailable and Potent HPK1 PROTAC with Enhancement of Antitumor Efficacy of Anti-PD-L1 Therapy. J Med Chem 2024; 67:13852-13878. [PMID: 39084610 DOI: 10.1021/acs.jmedchem.4c00644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
HPK1, a well-known negative regulator of T cell receptors, can cause T cell dysfunction when abnormally activated. In this study, a PROTAC C3 was designed and synthesized by optimizing the physicochemical properties of the warhead, linker, and CRBN ligand. C3 demonstrated significant HPK1 degradation with a DC50 of 21.26 nM, excellent oral absorption with a Cmax of 10,899.92 ng/mL, and a bioavailability (F %) of 81.7%. C3 also showed degradation selectivity and potent immune activation effects. Proteomic and WB analyses revealed that immune-activating effect of C3 is attributed to the inhibition of SLP76 and NF-κB signaling pathways, as well as the enhancement of MAPK signaling pathway transduction. In vivo efficacy study demonstrated that oral administration of C3 in combination with anti-PDL1 antibody significantly inhibited tumor growth (tumor growth inhibition = 65.58%). These findings suggest that C3, a novel HPK1 PROTAC, holds promise as a therapeutic agent for tumor immunotherapy.
Collapse
Affiliation(s)
- Mingfei Wu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yiquan Wu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuyuan Jin
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 310058, P. R. China
| | - Xinfei Mao
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shenxin Zeng
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 310058, P. R. China
| | - Hengyuan Yu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jingyu Zhang
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuheng Jin
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yizhe Wu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Tengfei Xu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yong Chen
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuwei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Xiaojun Yao
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau 999078, P. R. China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Wenhai Huang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 310058, P. R. China
| | - Xiaowu Dong
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 310058, P. R. China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, P. R. China
| |
Collapse
|
11
|
Choi WS, Kwon H, Yi E, Lee H, Kim JM, Park HJ, Choi EJ, Choi ME, Sung YH, Won CH, Sung CO, Kim HS. HPK1 Dysregulation-Associated NK Cell Dysfunction and Defective Expansion Promotes Metastatic Melanoma Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400920. [PMID: 38828677 PMCID: PMC11304315 DOI: 10.1002/advs.202400920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/10/2024] [Indexed: 06/05/2024]
Abstract
Distant metastasis, the leading cause of cancer death, is efficiently kept in check by immune surveillance. Studies have uncovered peripheral natural killer (NK) cells as key antimetastatic effectors and their dysregulation during metastasis. However, the molecular mechanism governing NK cell dysfunction links to metastasis remains elusive. Herein, MAP4K1 encoding HPK1 is aberrantly overexpressed in dysfunctional NK cells in the periphery and the metastatic site. Conditional HPK1 overexpression in NK cells suffices to exacerbate melanoma lung metastasis but not primary tumor growth. Conversely, MAP4K1-deficient mice are resistant to metastasis and further protected by combined immune-checkpoint inhibitors. Mechanistically, HPK1 restrains NK cell cytotoxicity and expansion via activating receptors. Likewise, HPK1 limits human NK cell activation and associates with melanoma NK cell dysfunction couples to TGF-β1 and patient response to immune checkpoint therapy. Thus, HPK1 is an intracellular checkpoint controlling NK-target cell responses, which is dysregulated and hijacked by tumors during metastatic progression.
Collapse
Affiliation(s)
- Woo Seon Choi
- Department of MicrobiologyStem Cell Immunomodulation Research CenterAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Hyung‐Joon Kwon
- Department of MicrobiologyStem Cell Immunomodulation Research CenterAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Eunbi Yi
- Department of MicrobiologyStem Cell Immunomodulation Research CenterAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Haeun Lee
- Department of MicrobiologyStem Cell Immunomodulation Research CenterAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Jung Min Kim
- Department of MicrobiologyStem Cell Immunomodulation Research CenterAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Hyo Jin Park
- Department of MicrobiologyStem Cell Immunomodulation Research CenterAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Eun Ji Choi
- Department of DermatologyAsan Institute for Life SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Myoung Eun Choi
- Department of DermatologyAsan Institute for Life SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Young Hoon Sung
- Department of Cell and Genetic EngineeringAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Chong Hyun Won
- Department of DermatologyAsan Institute for Life SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Chang Ohk Sung
- Department of PathologyAsan Medical Institute of Convergence Science and TechnologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| | - Hun Sik Kim
- Department of MicrobiologyStem Cell Immunomodulation Research CenterAsan Medical CenterUniversity of Ulsan College of MedicineSeoul05505Republic of Korea
| |
Collapse
|
12
|
Ahn MJ, Kim EH, Choi Y, Chae CH, Kim P, Kim SH. Novel hematopoietic progenitor kinase 1 inhibitor KHK-6 enhances T-cell activation. PLoS One 2024; 19:e0305261. [PMID: 38923962 PMCID: PMC11207149 DOI: 10.1371/journal.pone.0305261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Inhibiting the functional role of negative regulators in immune cells is an effective approach for developing immunotherapies. The serine/threonine kinase hematopoietic progenitor kinase 1 (HPK1) involved in the T-cell receptor signaling pathway attenuates T-cell activation by inducing the degradation of SLP-76 through its phosphorylation at Ser-376, reducing the immune response. Interestingly, several studies have shown that the genetic ablation or pharmacological inhibition of HPK1 kinase activity improves the immune response to cancers by enhancing T-cell activation and cytokine production; therefore, HPK1 could be a promising druggable target for T-cell-based cancer immunotherapy. To increase the immune response against cancer cells, we designed and synthesized KHK-6 and evaluated its cellular activity to inhibit HPK1 and enhance T-cell activation. KHK-6 inhibited HPK1 kinase activity with an IC50 value of 20 nM and CD3/CD28-induced phosphorylation of SLP-76 at Ser-376 Moreover, KHK-6 significantly enhanced CD3/CD28-induced production of cytokines; proportion of CD4+ and CD8+ T cells that expressed CD69, CD25, and HLA-DR markers; and T-cell-mediated killing activity of SKOV3 and A549 cells. In conclusion, KHK-6 is a novel ATP-competitive HPK1 inhibitor that blocks the phosphorylation of HPK1 downstream of SLP-76, enhancing the functional activation of T cells. In summary, our study showed the usefulness of KHK-6 in the drug discovery for the HPK1-inhibiting immunotherapy.
Collapse
Affiliation(s)
- Min Jeong Ahn
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea
| | - Eun Hye Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Yunha Choi
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Medicinal Chemistry & Pharmacology, University of Science and Technology, Daejeon, Republic of Korea
| | - Chong Hak Chae
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Pilho Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Medicinal Chemistry & Pharmacology, University of Science and Technology, Daejeon, Republic of Korea
| | - Seong Hwan Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
13
|
Zeng S, Jin Y, Xia H, Shang Y, Li Y, Wang Z, Huang W. Discovery of highly efficient CRBN-recruiting HPK1-PROTAC as a potential chemical tool for investigation of scaffolding roles in TCR signaling. Bioorg Chem 2024; 143:107016. [PMID: 38086239 DOI: 10.1016/j.bioorg.2023.107016] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/24/2024]
Abstract
Hematopoietic progenitor kinase 1 (HPK1, MAP4K1) is a promising target for immune-oncology therapy. It has been recently demonstrated that loss of HPK1 kinase activity can enhance T cell receptor (TCR) signaling. However, many essential functions mediated by the HPK1 scaffolding role are still beyond the reach of any kinase inhibitor. Proteolysis targeting chimera (PROTAC) has emerged as a promising strategy for pathogenic proteins degradation with the characteristics of rapid, reversible, and low-cost versus RNA interference or DNA knock-out technology. Herein we first disclosed the design, synthesis, and evaluation of a series of thalidomide-based PROTAC molecules and identified B1 as a highly efficient HPK1 degrader with DC50 value of 1.8 nM. Further mechanism investigation demonstrated that compound B1 inhibits phosphorylation of the SLP76 protein with IC50 value of 496.1 nM, and confirmed that B1 is a bona fide HPK1-PROTAC degrader. Thus, this study provides a basis for HPK1 degraders development and the candidate could be used as a potential chemical tool for further investigation of the kinase-independent signaling of HPK1 in TCR.
Collapse
Affiliation(s)
- Shenxin Zeng
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, PR China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China.
| | - Yuyuan Jin
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, PR China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China
| | - Heye Xia
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, PR China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China
| | - Yanwei Shang
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, PR China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China
| | - Yingzhou Li
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, PR China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China
| | - Zunyuan Wang
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, PR China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China
| | - Wenhai Huang
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, PR China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, Hangzhou, Zhejiang 311399 PR China.
| |
Collapse
|
14
|
Zhang J, Ren Z, Hu Y, Shang S, Wang R, Ma J, Zhang Z, Wu M, Wang F, Yu J, Chen D. High HPK1 +PD-1 +TIM-3 +CD8 + T cells infiltration predicts poor prognosis to immunotherapy in NSCLC patients. Int Immunopharmacol 2024; 127:111363. [PMID: 38101218 DOI: 10.1016/j.intimp.2023.111363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
At present the efficacy of immune checkpoint inhibitors (ICIs) remains limited. The lack of responsiveness in certain patients may be attributed to CD8+ T cell exhaustion within the tumor microenvironment (TME). Hematopoietic progenitor kinase 1 (HPK1) has been identified as a mediator of T cell dysfunction, leading to our hypothesis that HPK1 positive exhausted CD8+ T cells could serve as a predictor for ICIs' efficacy in NSCLC patients, and potentially indicate key cellular subset causing ICIs resistance. Here, we retrospectively collected tumor tissue samples from 36 NSCLC patients who underwent first-line immunotherapy. Using multiplex immunohistochemistry, we visualized various PD-1+CD8+ T cell subsets and explore biomarkers for response. The analysis endpoints included overall response rate (ORR), progression free survival (PFS), and overall survival (OS), correlating them with levels of cell infiltration or effective density. We found that the proportion of PD-1+CD8+ T cell subsets did not align with predictions for ORR, PFS, and OS. Conversely, a high infiltration of HPK1+PD-1+TIM-3+CD8+ T cells was identified as an independent risk factor for both PFS (P = 0.019) and OS (P = 0.03). These cells were found to express the highest levels of Granzyme B, and the secretion of Granzyme B in CD8+ T cell subsets was related to TCF-1. In conclusion, these data suggest that a high infiltration of HPK1+PD-1+TIM-3+CD8+ T cells correlates with poor clinical outcomes in NSCLC patients receiving immunotherapy. These cells may represent terminally exhausted T cells that fail to respond to ICIs, thereby laying the groundwork for the potential integration of HPK1 inhibitors with immunotherapy to enhance treatment strategy.
Collapse
Affiliation(s)
- Jingxin Zhang
- Shandong University Cancer Center, Jinan, Shandong, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ziyuan Ren
- Shandong University Cancer Center, Jinan, Shandong, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yun Hu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shijie Shang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ruiyang Wang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jiachun Ma
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zengfu Zhang
- Shandong University Cancer Center, Jinan, Shandong, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Meng Wu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Fei Wang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- Shandong University Cancer Center, Jinan, Shandong, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| | - Dawei Chen
- Shandong University Cancer Center, Jinan, Shandong, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
15
|
Schlicher L, Green LG, Romagnani A, Renner F. Small molecule inhibitors for cancer immunotherapy and associated biomarkers - the current status. Front Immunol 2023; 14:1297175. [PMID: 38022587 PMCID: PMC10644399 DOI: 10.3389/fimmu.2023.1297175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Following the success of cancer immunotherapy using large molecules against immune checkpoint inhibitors, the concept of using small molecules to interfere with intracellular negative regulators of anti-tumor immune responses has emerged in recent years. The main targets for small molecule drugs currently include enzymes of negative feedback loops in signaling pathways of immune cells and proteins that promote immunosuppressive signals within the tumor microenvironment. In the adaptive immune system, negative regulators of T cell receptor signaling (MAP4K1, DGKα/ζ, CBL-B, PTPN2, PTPN22, SHP1), co-receptor signaling (CBL-B) and cytokine signaling (PTPN2) have been preclinically validated as promising targets and initial clinical trials with small molecule inhibitors are underway. To enhance innate anti-tumor immune responses, inhibitory immunomodulation of cGAS/STING has been in the focus, and inhibitors of ENPP1 and TREX1 have reached the clinic. In addition, immunosuppressive signals via adenosine can be counteracted by CD39 and CD73 inhibition, while suppression via intratumoral immunosuppressive prostaglandin E can be targeted by EP2/EP4 antagonists. Here, we present the status of the most promising small molecule drug candidates for cancer immunotherapy, all residing relatively early in development, and the potential of relevant biomarkers.
Collapse
Affiliation(s)
- Lisa Schlicher
- Cancer Cell Targeted Therapy, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Luke G. Green
- Therapeutic Modalities, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Andrea Romagnani
- Cancer Cell Targeted Therapy, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Florian Renner
- Cancer Cell Targeted Therapy, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| |
Collapse
|
16
|
Zhou L, Ye X, Wang K, Shen H, Wang T, Zhang X, Jiang S, Xiao Y, Zhang K. Discovery of diaminotriazine carboxamides as potent inhibitors of hematopoetic progenitor kinase 1. Bioorg Chem 2023; 138:106682. [PMID: 37339563 DOI: 10.1016/j.bioorg.2023.106682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023]
Abstract
Hematopoietic progenitor kinase 1 (HPK1), a member of mitogen-activated protein kinase kinase kinase kinase (MAP4K) family of Ste20 serine/threonine kinases, is a negative regulator of T-cell receptor (TCR) signaling. Inactivating HPK1 kinase has been reported to be sufficient to elicit antitumor immune response. Therefore, HPK1 has attracted much attention as a promising target for tumor immunotherapy. A few of HPK1 inhibitors have been reported, and none of them have been approved for clinical applications. Hence, more effective HPK1 inhibitors are needed. Herein, a series of structurally novel diaminotriazine carboxamides were rationally designed, synthesized and evaluated for their inhibitory activity against HPK1 kinase. Most of them exhibited potent inhibitory potency against HPK1 kinase. In particular, compound 15b showed more robust HPK1 inhibitory activity than that of 11d developed by Merck in kinase activity assay (IC50 = 3.1 and 8.2 nM, respectively). The significant inhibitory potency against SLP76 phosphorylation in Jurkat T cells further confirmed the efficacy of compound 15b. In human peripheral blood mononuclear cell (PBMC) functional assays, compound 15b more significantly induced the production of interleukin 2 (IL-2) and interferon γ (IFN-γ) relative to 11d. Furthermore, 15b alone or in combination with anti-PD-1 antibodies showed potent in vivo antitumor efficacy in MC38 tumor-bearing mice. Compound 15b represents a promising lead for the development of effective HPK1 small-molecule inhibitors.
Collapse
Affiliation(s)
- Lixin Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiuquan Ye
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kaizhen Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hongtao Shen
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tianyu Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangyu Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Sheng Jiang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Yibei Xiao
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Kuojun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
17
|
Laletin V, Bernard PL, Costa da Silva C, Guittard G, Nunes JA. Negative intracellular regulators of T-cell receptor (TCR) signaling as potential antitumor immunotherapy targets. J Immunother Cancer 2023; 11:e005845. [PMID: 37217244 PMCID: PMC10231026 DOI: 10.1136/jitc-2022-005845] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Immunotherapy strategies aim to mobilize immune defenses against tumor cells by targeting mainly T cells. Co-inhibitory receptors or immune checkpoints (ICPs) (such as PD-1 and CTLA4) can limit T cell receptor (TCR) signal propagation in T cells. Antibody-based blocking of immune checkpoints (immune checkpoint inhibitors, ICIs) enable escape from ICP inhibition of TCR signaling. ICI therapies have significantly impacted the prognosis and survival of patients with cancer. However, many patients remain refractory to these treatments. Thus, alternative approaches for cancer immunotherapy are needed. In addition to membrane-associated inhibitory molecules, a growing number of intracellular molecules may also serve to downregulate signaling cascades triggered by TCR engagement. These molecules are known as intracellular immune checkpoints (iICPs). Blocking the expression or the activity of these intracellular negative signaling molecules is a novel field of action to boost T cell-mediated antitumor responses. This area is rapidly expanding. Indeed, more than 30 different potential iICPs have been identified. Over the past 5 years, several phase I/II clinical trials targeting iICPs in T cells have been registered. In this study, we summarize recent preclinical and clinical data demonstrating that immunotherapies targeting T cell iICPs can mediate regression of solid tumors including (membrane associated) immune-checkpoint inhibitor refractory cancers. Finally, we discuss how these iICPs are targeted and controlled. Thereby, iICP inhibition is a promising strategy opening new avenues for future cancer immunotherapy treatments.
Collapse
Affiliation(s)
- Vladimir Laletin
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Pierre-Louis Bernard
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Cathy Costa da Silva
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Geoffrey Guittard
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Jacques A Nunes
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| |
Collapse
|
18
|
Wu F, Li H, An Q, Sun Y, Yu J, Cao W, Sun P, Diao X, Meng L, Xu S. Discovery of 7H-Pyrrolo[2,3-d]pyrimidine Derivatives as potent hematopoietic progenitor kinase 1 (HPK1) inhibitors. Eur J Med Chem 2023; 254:115355. [PMID: 37062169 DOI: 10.1016/j.ejmech.2023.115355] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 04/18/2023]
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is predominantly expressed in hematopoietic cells and is a negative regulator of T cell receptor (TCR) signaling. Recent studies have demonstrated that HPK1 is a promising therapeutic target for cancer immunotherapy. However, despite significant progress in the development of HPK1 inhibitors, none of them has been approved for cancer therapy. Development of HPK1 inhibitors with a structurally distinct scaffold is still needed. Herein, we describe the design and synthesis of a series of HPK1 inhibitors with a 7H-pyrrolo[2,3-d]pyrimidine scaffold, exemplified by 31. Compound 31 showed potent inhibitory activity against HPK1 with an IC50 value of 3.5 nM and favorable selectivity within a panel of kinases. It also potently inhibited the phosphorylation level of SLP76, a substrate of HPK1, and enhanced the IL-2 secretion in Jurkat cells (human T cell leukemia). Our findings provide new clues for further optimization and development to generate HPK1 inhibitors for cancer immunotherapy.
Collapse
Affiliation(s)
- Feifei Wu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Science, 19 Yuquan Road, Beijing, 100049, China
| | - Huiyu Li
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Science, 19 Yuquan Road, Beijing, 100049, China
| | - Qi An
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yaoliang Sun
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Jinghua Yu
- Shanghai Center for Drug Metabolism and Pharmacokinetics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Wenting Cao
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Pu Sun
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xingxing Diao
- Shanghai Center for Drug Metabolism and Pharmacokinetics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Linghua Meng
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Science, 19 Yuquan Road, Beijing, 100049, China.
| | - Shilin Xu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Science, 19 Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
19
|
Gallego RA, Bernier L, Chen H, Cho-Schultz S, Chung L, Collins M, Del Bel M, Elleraas J, Costa Jones C, Cronin CN, Edwards M, Fang X, Fisher T, He M, Hoffman J, Huo R, Jalaie M, Johnson E, Johnson TW, Kania RS, Kraus M, Lafontaine J, Le P, Liu T, Maestre M, Matthews J, McTigue M, Miller N, Mu Q, Qin X, Ren S, Richardson P, Rohner A, Sach N, Shao L, Smith G, Su R, Sun B, Timofeevski S, Tran P, Wang S, Wang W, Zhou R, Zhu J, Nair SK. Design and Synthesis of Functionally Active 5-Amino-6-Aryl Pyrrolopyrimidine Inhibitors of Hematopoietic Progenitor Kinase 1. J Med Chem 2023; 66:4888-4909. [PMID: 36940470 DOI: 10.1021/acs.jmedchem.2c02038] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
Immune activating agents represent a valuable class of therapeutics for the treatment of cancer. An area of active research is expanding the types of these therapeutics that are available to patients via targeting new biological mechanisms. Hematopoietic progenitor kinase 1 (HPK1) is a negative regulator of immune signaling and a target of high interest for the treatment of cancer. Herein, we present the discovery and optimization of novel amino-6-aryl pyrrolopyrimidine inhibitors of HPK1 starting from hits identified via virtual screening. Key components of this discovery effort were structure-based drug design aided by analyses of normalized B-factors and optimization of lipophilic efficiency.
Collapse
Affiliation(s)
- Rebecca A Gallego
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Louise Bernier
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Hui Chen
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Sujin Cho-Schultz
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Loanne Chung
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Michael Collins
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Matthew Del Bel
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Jeff Elleraas
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Cinthia Costa Jones
- Oncology Research Unit, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Ciaran N Cronin
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Martin Edwards
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Xu Fang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Timothy Fisher
- Oncology Research Unit, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Mingying He
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Jacqui Hoffman
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Ruiduan Huo
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Mehran Jalaie
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Eric Johnson
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Ted W Johnson
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Robert S Kania
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Manfred Kraus
- Oncology Research Unit, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Jennifer Lafontaine
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Phuong Le
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Tongnan Liu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Michael Maestre
- La Jolla Laboratories, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Jean Matthews
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Michele McTigue
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Nichol Miller
- Oncology Research Unit, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Qiming Mu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xulong Qin
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Shijian Ren
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Paul Richardson
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Allison Rohner
- Oncology Research Unit, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Neal Sach
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Li Shao
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Graham Smith
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Ruirui Su
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Bin Sun
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Sergei Timofeevski
- Oncology Research Unit, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Phuong Tran
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Shuiwang Wang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Wei Wang
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Ru Zhou
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Jinjiang Zhu
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Sajiv K Nair
- Oncology Medicinal Chemistry, Pfizer Worldwide Research and Development, 10770 Science Center Drive, La Jolla, California 92121, United States
| |
Collapse
|
20
|
Shi H, Tang H, Li Y, Chen D, Liu T, Chen Y, Wang X, Chen L, Wang Y, Xie H, Xiong B. Development of a series of quinazoline-2,5-diamine derivatives as potent hematopoietic progenitor kinase 1 (HPK1) inhibitors. Eur J Med Chem 2023; 248:115064. [PMID: 36621137 DOI: 10.1016/j.ejmech.2022.115064] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is a serine/threonine kinase that serves as the negative regulator of multiple immune signaling pathways. Genetic studies using HPK1 knockout and kinase-dead mice suggested that inhibiting HPK1 either alone or in combination with immune checkpoint blockade could be a promising strategy in cancer immunotherapy. Herein, we report the design, synthesis and structure-activity relationship (SAR) study of a series of potent HPK1 inhibitors bearing quinazoline-2,5-diamine scaffold. Three rounds of SAR exploration led to the identification of 9h, the most potent compound in this series which harbors a 2-methyl-1,2,3,4-tetrahydroisoquinolin-7-yl substituent. Further biological assessments using human immune cells demonstrated that 9h could strongly inhibit downstream phosphorylation, augment interleukin-2 (IL-2) production and reverse prostaglandin E2 (PGE2)-induced immune suppression. Overall, our study on these quinazoline-2,5-diamine derivatives provided not only a tool compound for the community to help with elucidating the HPK1 pharmacology, but also a reliable reference for subsequent development of HPK1 inhibitors.
Collapse
Affiliation(s)
- Huanyu Shi
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Haotian Tang
- Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Yan Li
- Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Danqi Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Tongchao Liu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yuting Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Xin Wang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Lin Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Ying Wang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Hua Xie
- Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China.
| | - Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
21
|
Ge H, Tang C, Pan Y, Yao X. Theoretical Studies on Selectivity of HPK1/JAK1 Inhibitors by Molecular Dynamics Simulations and Free Energy Calculations. Int J Mol Sci 2023; 24:ijms24032649. [PMID: 36768974 PMCID: PMC9916865 DOI: 10.3390/ijms24032649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 02/01/2023] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is a negative regulator of T cell receptor, which has been regarded as a potential target for immunotherapy. Yu et al. observed the off-target effect of the high-throughput screening HPK1 kinase inhibitor hits on JAK1 kinase. The off-target effect is usually due to the lack of specificity of the drug, resulting in toxic side effects. Therefore, exploring the mechanisms to selectively inhibit HPK1 is critical for developing effective and safe inhibitors. In this study, two indazole compounds as HPK1 inhibitors with different selectivity towards JAK1 were used to investigate the selectivity mechanism using multiple computational methods, including conventional molecular dynamics simulations, binding free energy calculations and umbrella sampling simulations. The results indicate that the salt bridge between the inhibitor and residue Asp101 of HPK1 favors their selectivity towards HPK1 over JAK1. Information obtained from this study can be used to discover and design more potent and selective HPK1 inhibitors for immunotherapy.
Collapse
|
22
|
Wang MS, Wang ZZ, Li ZL, Gong Y, Duan CX, Cheng QH, Huang W, Yang GF. Discovery of Macrocycle-Based HPK1 Inhibitors for T-Cell-Based Immunotherapy. J Med Chem 2023; 66:611-626. [PMID: 36542759 DOI: 10.1021/acs.jmedchem.2c01551] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is a negative regulator of T-cell activation, and targeting HPK1 is considered a promising strategy for improving responses to antitumor immune therapies. The biggest challenge of HPK1 inhibitor design is to achieve a higher selectivity to GLK, an HPK1 homology protein as a positive regulator of T-cell activation. Herein, we report the design of a series of macrocycle-based HPK1 inhibitors via a conformational constraint strategy. The identified candidate compound 5i exhibited HPK1 inhibition with an IC50 value of 0.8 nM and 101.3-fold selectivity against GLK. Compound 5i also displayed good oral bioavailability (F = 27-49%) in mice and beagles and favorable metabolic stability (T1/2 > 186.4 min) in human liver microsomes. More importantly, compound 5i demonstrated a clear synergistic effect with anti-PD-1 in both MC38 (MSI) and CT26 (MSS) syngeneic tumor mouse models. These results showed that compound 5i has a great potential in immunotherapy.
Collapse
Affiliation(s)
- Ming-Shu Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. of China
| | - Zhi-Zheng Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. of China
| | - Zi-Long Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. of China
| | - Yi Gong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. of China
| | - Cheng-Xiang Duan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. of China
| | - Qian-Hui Cheng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. of China
| | - Wei Huang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. of China
| |
Collapse
|
23
|
de Lima SCG, Fantacini DMC, Furtado IP, Rossetti R, Silveira RM, Covas DT, de Souza LEB. Genome Editing for Engineering the Next Generation of Advanced Immune Cell Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1429:85-110. [PMID: 37486518 DOI: 10.1007/978-3-031-33325-5_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Our current genetic engineering capacity through synthetic biology and genome editing is the foundation of a revolution in biomedical science: the use of genetically programmed cells as therapeutics. The prime example of this paradigm is the adoptive transfer of genetically engineered T cells to express tumor-specific receptors, such as chimeric antigen receptors (CARs) or engineered T-cell receptors (TCR). This approach has led to unprecedented complete remission rates in patients with otherwise incurable hematological malignancies. However, this approach is still largely ineffective against solid tumors, which comprise the vast majority of neoplasms. Also, limitations associated with the autologous nature of this therapy and shared markers between cancer cells and T cells further restrict the access to these therapies. Here, we described how cutting-edge genome editing approaches have been applied to unlock the full potential of these revolutionary therapies, thereby increasing therapeutic efficacy and patient accessibility.
Collapse
Affiliation(s)
- Sarah Caroline Gomes de Lima
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Izadora Peter Furtado
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafaela Rossetti
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Roberta Maraninchi Silveira
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Dimas Tadeu Covas
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucas Eduardo Botelho de Souza
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
24
|
Zhou L, Wang T, Zhang K, Zhang X, Jiang S. The development of small-molecule inhibitors targeting HPK1. Eur J Med Chem 2022; 244:114819. [DOI: 10.1016/j.ejmech.2022.114819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022]
|
25
|
Decreased Jumonji Domain-Containing 3 at the Promoter Downregulates Hematopoietic Progenitor Kinase 1 Expression and Cytoactivity of T Follicular Helper Cells from Systemic Lupus Erythematosus Patients. J Immunol Res 2022; 2022:3690892. [PMID: 36213329 PMCID: PMC9534702 DOI: 10.1155/2022/3690892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/15/2022] [Indexed: 11/19/2022] Open
Abstract
T follicular helper (Tfh) cells are overactivated in systemic lupus erythematosus (SLE) patients and contribute to excessive immunity. Hematopoietic progenitor kinase 1 (HPK1), as an inhibitor of T cells, is underexpressed in SLE Tfh cells and consequently induces autoimmunity. However, the reason for downregulation of HPK1 in SLE Tfh cells remains elusive. By combining chromatin immunoprecipitation with quantitative polymerase chain reaction assays, it was found that histone H3 lysine 27 trimethylation (H3K27me3) at the HPK1 promoter in SLE Tfh cells elevated greatly. We also confirmed jumonji domain-containing 3 (JMJD3) binding at the HPK1 promoter in SLE Tfh cells reduced profoundly. Knocking down JMJD3 in normal Tfh cells with siRNA alleviated enrichments of JMJD3, H3K4me3, and mixed-lineage leukemia (MLL) 1 at the HPK1 promoter and increased H3K27me3 number in the region. HPK1 expression was lowered, while Tfh cell proliferation activity, IL-21 and IFNγ secretions in the supernatants of Tfh cells, and IgG1 and IgG3 concentrations in the supernatants of Tfh-B cell cocultures all upregulated markedly. In contrast, elevating JMJD3 amount in SLE Tfh cells by JMJD3-overexpressed plasmid showed opposite effects. The abundances of H3K4me3 and MLL1 at the HPK1 promoter in SLE Tfh cells were greatly attenuated. Our results suggest that deficient JMJD3 binding at the promoter dampens HPK1 expression in SLE Tfh cells, thus making Tfh cells overactive, and ultimately results in onset of SLE.
Collapse
|
26
|
Offringa R, Kötzner L, Huck B, Urbahns K. The expanding role for small molecules in immuno-oncology. Nat Rev Drug Discov 2022; 21:821-840. [PMID: 35982333 DOI: 10.1038/s41573-022-00538-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2022] [Indexed: 02/07/2023]
Abstract
The advent of immune checkpoint inhibition (ICI) using antibodies against PD1 and its ligand PDL1 has prompted substantial efforts to develop complementary drugs. Although many of these are antibodies directed against additional checkpoint proteins, there is an increasing interest in small-molecule immuno-oncology drugs that address intracellular pathways, some of which have recently entered clinical trials. In parallel, small molecules that target pro-tumorigenic pathways in cancer cells and the tumour microenvironment have been found to have immunostimulatory effects that synergize with the action of ICI antibodies, leading to the approval of an increasing number of regimens that combine such drugs. Combinations with small molecules targeting cancer metabolism, cytokine/chemokine and innate immune pathways, and T cell checkpoints are now under investigation. This Review discusses the recent milestones and hurdles encountered in this area of drug development, as well as our views on the best path forward.
Collapse
Affiliation(s)
- Rienk Offringa
- Department of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Germany. .,DKFZ-Bayer Immunotherapeutics Laboratory, German Cancer Research Center, Heidelberg, Germany. .,Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany.
| | - Lisa Kötzner
- Merck Healthcare KGaA, Healthcare R&D, Discovery and Development Technologies, Darmstadt, Germany
| | - Bayard Huck
- EMD Serono, Healthcare R&D, Discovery and Development Technologies, Billerica, MA, USA
| | - Klaus Urbahns
- EMD Serono, Healthcare R&D, Discovery and Development Technologies, Billerica, MA, USA.
| |
Collapse
|
27
|
Zhu Q, Chen N, Tian X, Zhou Y, You Q, Xu X. Hematopoietic Progenitor Kinase 1 in Tumor Immunology: A Medicinal Chemistry Perspective. J Med Chem 2022; 65:8065-8090. [PMID: 35696642 DOI: 10.1021/acs.jmedchem.2c00172] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hematopoietic progenitor kinase 1 (HPK1), a hematopoietic cell-restricted member of the serine/threonine Ste20-related protein kinases, is a negative regulator of the T cell receptor, B cell receptor, and dendritic cells. Loss of HPK1 kinase function increases cytokine secretion and enhances T cell signaling, virus clearance, and tumor growth inhibition. Therefore, HPK1 is considered a promising target for tumor immunotherapy. Several HPK1 inhibitors have been reported to regulate T cell function. In addition, HPK1-targeting PROTACs, which can induce the degradation of HPK1, have also been developed. Here, we provide an overview of research concerning HPK1 protein structure, function, and inhibitors and propose perspectives and insights for the future development of agents targeting HPK1.
Collapse
Affiliation(s)
- Qiangsheng Zhu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Nannan Chen
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xinjian Tian
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yeling Zhou
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - QiDong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoli Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
28
|
Malchow S, Korepanova A, Panchal SC, McClure RA, Longenecker KL, Qiu W, Zhao H, Cheng M, Guo J, Klinge KL, Trusk P, Pratt SD, Li T, Kurnick MD, Duan L, Shoemaker AR, Gopalakrishnan SM, Warder SE, Shotwell JB, Lai A, Sun C, Osuma AT, Pappano WN. The HPK1 Inhibitor A-745 Verifies the Potential of Modulating T Cell Kinase Signaling for Immunotherapy. ACS Chem Biol 2022; 17:556-566. [PMID: 35188729 DOI: 10.1021/acschembio.1c00819] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is an MAP4K family member within the Ste20-like serine/threonine branch of the kinome. HPK1 expression is limited to hematopoietic cells and has a predominant role as a negative regulator of T cell function. Because of the central/dominant role in negatively regulating T cell function, HPK1 has long been in the center of interest as a potential pharmacological target for immune therapy. The development of a small molecule HPK1 inhibitor remains challenging because of the need for high specificity relative to other kinases, including additional MAP4K family members, that are required for efficient immune cell activation. Here, we report the identification of the selective and potent HPK1 chemical probe, A-745. In unbiased cellular kinase-binding assays, A-745 demonstrates an excellent cellular selectivity binding profile within pharmacologically relevant concentrations. This HPK1 selectivity translates to an in vitro immune cell activation phenotype reminiscent of Hpk1-deficient and Hpk1-kinase-dead T cells, including augmented proliferation and cytokine production. The results from this work give a path forward for further developmental efforts to generate additional selective and potent small molecule HPK1 inhibitors with the pharmacological properties for immunotherapy.
Collapse
Affiliation(s)
- Sven Malchow
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Alla Korepanova
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Sanjay C. Panchal
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Ryan A. McClure
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | | | - Wei Qiu
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Hongyu Zhao
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Min Cheng
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Jun Guo
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Kelly L. Klinge
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Patricia Trusk
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Steven D. Pratt
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Tao Li
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Matthew D. Kurnick
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Lishu Duan
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Alex R. Shoemaker
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | | | - Scott E. Warder
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - J. Brad Shotwell
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Albert Lai
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Chaohong Sun
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Augustine T. Osuma
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| | - William N. Pappano
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States
| |
Collapse
|
29
|
Zhang H, Xie Y, Huang J, Luo D, Zhang Q. Reduced expression of hematopoietic progenitor kinase 1 in T follicular helper cells causes autoimmunity of systemic lupus erythematosus. Lupus 2021; 31:28-38. [PMID: 34968152 DOI: 10.1177/09612033211062524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUD T follicular helper (Tfh) cells have been discovered to be the main CD4+ T cells assisting B cells to produce antibody. They are over activated in patients with systemic lupus erythematosus (SLE) and consequently lead to excessive immunity. Hematopoietic progenitor kinase 1 (HPK1) negatively regulates T cell-mediated immune responses and TCR signal. This study aimed to investigate the roles of HPK1 in SLE Tfh cells. METHODS HPK1 mRNA and protein levels in Tfh cells were measured by real-time quantitative PCR and western blot analysis, respectively. The production of IL-21, B cell-activating factor (BAFF), interferon γ (IFNγ), IL-17A, IgM, IgG1, IgG2, and IgG3 were analyzed using enzyme linked immunosorbent assay. Tfh cells proliferation was evaluated with 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RESULTS HPK1 mRNA and protein levels were significantly reduced in SLE Tfh cells, and negatively correlated with SLE disease activity index (SLEDAI) and Systemic Lupus International Collaborating Clinics/American College of Rheumatology (SLICC/ACR) Damage Index for SLE (SDI). Knocking down HPK1 with siRNA in normal Tfh cells greatly elevated Tfh cells proliferation and secretions of IL-21, BAFF, IFNγ, IgG1, IgG2, and IgG3. There were no marked alterations in IL-17A and IgM productions. The opposite effects were observed in SLE Tfh cells transfected with HPK1 overexpressing plasmid: Tfh cells proliferation and productions of IL-21, BAFF, IFNγ, IgG1, IgG2, and IgG3 were all alleviated. And there were no significant changes in IL-17A and IgM levels. CONCLUSION Our results suggest for the first time that inhibited expression of HPK1 in SLE Tfh cells leading to Tfh cells overactivation and B cells overstimulation, subsequently, the onset and progression of SLE.
Collapse
Affiliation(s)
- Huilin Zhang
- Clinical Nursing Teaching and Research Section, 70566Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuming Xie
- Department of Dermatology, 70566Second Xiangya Hospital, Central South University, Changsha, China
| | - Junke Huang
- Department of Dermatology, 70566Second Xiangya Hospital, Central South University, Changsha, China
| | - Danhong Luo
- Department of Dermatology, Fifth People's Hospital of Hainan Province, Haikou, China
| | - Qing Zhang
- Department of Dermatology, 70566Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
30
|
Yu EC, Methot JL, Fradera X, Lesburg CA, Lacey BM, Siliphaivanh P, Liu P, Smith DM, Xu Z, Piesvaux JA, Kawamura S, Xu H, Miller JR, Bittinger M, Pasternak A. Identification of Potent Reverse Indazole Inhibitors for HPK1. ACS Med Chem Lett 2021; 12:459-466. [PMID: 33738073 DOI: 10.1021/acsmedchemlett.0c00672] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic progenitor kinase (HPK1), a negative regulator of TCR-mediated T-cell activation, has been recognized as a novel antitumor immunotherapy target. Structural optimization of kinase inhibitor 4 through a systematic two-dimensional diversity screen of pyrazolopyridines led to the identification of potent and selective compounds. Crystallographic studies with HPK1 revealed a favorable water-mediated interaction with Asp155 and a salt bridge to Asp101 with optimized heterocyclic solvent fronts that were critical for enhanced potency and selectivity. Computational studies of model systems revealed differences in torsional profiles that allowed for these beneficial protein-ligand interactions. Further optimization of molecular properties led to identification of potent and selective reverse indazole inhibitor 36 that inhibited phosphorylation of adaptor protein SLP76 in human PBMC and exhibited low clearance with notable bioavailability in in vivo rat studies.
Collapse
Affiliation(s)
- Elsie C. Yu
- Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts, 02115, United States
| | - Joey L. Methot
- Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts, 02115, United States
| | - Xavier Fradera
- Computational and Structural Chemistry, Merck & Co., Inc., Boston, Massachusetts, 02115, United States
| | - Charles A. Lesburg
- Computational and Structural Chemistry, Merck & Co., Inc., Boston, Massachusetts, 02115, United States
| | - Brian M. Lacey
- Quantitative Biosciences, Merck & Co., Inc., Boston, Massachusetts, 02115, United States
| | - Phieng Siliphaivanh
- Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts, 02115, United States
| | - Ping Liu
- External Discovery Chemistry, Merck & Co Inc., Rahway, New Jersey, 07065, United States
| | - Dustin M. Smith
- Pharmacokinetics and Drug Metabolism, Merck & Co., Inc., Boston, Massachusetts, 02115, United States
| | - Zangwei Xu
- Quantitative Biosciences, Merck & Co., Inc., Boston, Massachusetts, 02115, United States
| | - Jennifer A. Piesvaux
- Quantitative Biosciences, Merck & Co., Inc., Boston, Massachusetts, 02115, United States
| | - Shuhei Kawamura
- Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts, 02115, United States
| | - Haiyan Xu
- Quantitative Biosciences, Merck & Co., Inc., Boston, Massachusetts, 02115, United States
| | - J. Richard Miller
- Quantitative Biosciences, Merck & Co., Inc., Boston, Massachusetts, 02115, United States
| | - Mark Bittinger
- Oncology Early Discovery, Merck & Co., Inc., Boston, Massachusetts, 02115, United States
| | - Alexander Pasternak
- Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts, 02115, United States
| |
Collapse
|
31
|
You D, Hillerman S, Locke G, Chaudhry C, Stromko C, Murtaza A, Fan Y, Koenitzer J, Chen Y, Briceno S, Bhadra R, Duperret E, Gullo-Brown J, Gao C, Zhao D, Feder J, Curtin J, Degnan AP, Kumi G, Wittman M, Johnson BM, Parrish KE, Gokulrangan G, Morrison J, Quigley M, Hunt JT, Salter-Cid L, Lees E, Sanjuan MA, Liu J. Enhanced antitumor immunity by a novel small molecule HPK1 inhibitor. J Immunother Cancer 2021; 9:jitc-2020-001402. [PMID: 33408094 PMCID: PMC7789447 DOI: 10.1136/jitc-2020-001402] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
Background Hematopoietic progenitor kinase 1 (HPK1 or MAP4K1) has been demonstrated as a negative intracellular immune checkpoint in mediating antitumor immunity in studies with HPK1 knockout and kinase dead mice. Pharmacological inhibition of HPK1 is desirable to investigate the role of HPK1 in human immune cells with therapeutic implications. However, a significant challenge remains to identify a small molecule inhibitor of HPK1 with sufficient potency, selectivity, and other drug-like properties suitable for proof-of-concept studies. In this report, we identified a novel, potent, and selective HPK1 small molecule kinase inhibitor, compound K (CompK). A series of studies were conducted to investigate the mechanism of action of CompK, aiming to understand its potential application in cancer immunotherapy. Methods Human primary T cells and dendritic cells (DCs) were investigated with CompK treatment under conditions relevant to tumor microenvironment (TME). Syngeneic tumor models were used to assess the in vivo pharmacology of CompK followed by human tumor interrogation ex vivo. Results CompK treatment demonstrated markedly enhanced human T-cell immune responses under immunosuppressive conditions relevant to the TME and an increased avidity of the T-cell receptor (TCR) to recognize viral and tumor-associated antigens (TAAs) in significant synergy with anti-PD1. Animal model studies, including 1956 sarcoma and MC38 syngeneic models, revealed improved immune responses and superb antitumor efficacy in combination of CompK with anti-PD-1. An elevated immune response induced by CompK was observed with fresh tumor samples from multiple patients with colorectal carcinoma, suggesting a mechanistic translation from mouse model to human disease. Conclusion CompK treatment significantly improved human T-cell functions, with enhanced TCR avidity to recognize TAAs and tumor cytolytic activity by CD8+ T cells. Additional benefits include DC maturation and priming facilitation in tumor draining lymph node. CompK represents a novel pharmacological agent to address cancer treatment resistance.
Collapse
Affiliation(s)
- Dan You
- Oncology Discovery, Bristol-Myers Squibb Co, Princeton, New Jersey, USA
| | - Stephen Hillerman
- Oncology Discovery, Bristol-Myers Squibb Co, Princeton, New Jersey, USA
| | - Gregory Locke
- Oncology Discovery, Bristol-Myers Squibb Co, Princeton, New Jersey, USA
| | - Charu Chaudhry
- Oncology Discovery, Johnson and Johnson Limited, Spring House, Pennsylvania, USA
| | - Caitlyn Stromko
- Oncology Discovery, Bristol-Myers Squibb Co, Princeton, New Jersey, USA
| | - Anwar Murtaza
- Oncology Discovery, Bristol-Myers Squibb Co, Princeton, New Jersey, USA
| | - Yi Fan
- Oncology Discovery, Bristol-Myers Squibb Co, Princeton, New Jersey, USA
| | | | - Yali Chen
- Oncology Discovery, Bristol-Myers Squibb Co, Princeton, New Jersey, USA
| | - Stephanie Briceno
- Oncology Discovery, Bristol-Myers Squibb Co, Princeton, New Jersey, USA
| | | | | | | | - Chan Gao
- Oncology Discovery, Bristol-Myers Squibb Co, Princeton, New Jersey, USA
| | - Dandan Zhao
- Oncology Discovery, Bristol-Myers Squibb Co, Princeton, New Jersey, USA
| | - John Feder
- Oncology Discovery, Bristol-Myers Squibb Co, Princeton, New Jersey, USA
| | - Joshua Curtin
- Oncology Discovery, Johnson and Johnson Limited, Spring House, Pennsylvania, USA
| | - Andrew P Degnan
- Oncology Discovery, Bristol-Myers Squibb Co, Princeton, New Jersey, USA
| | - Godwin Kumi
- Oncology Discovery, Bristol-Myers Squibb Co, Princeton, New Jersey, USA
| | - Mark Wittman
- Oncology Discovery, Bristol-Myers Squibb Co, Cambridge, Massachusetts, USA
| | - Benjamin M Johnson
- Oncology Discovery, Bristol-Myers Squibb Co, Cambridge, Massachusetts, USA
| | - Karen E Parrish
- Oncology Discovery, Bristol-Myers Squibb Co, Princeton, New Jersey, USA
| | | | - John Morrison
- Oncology Discovery, Bristol-Myers Squibb Co, Princeton, New Jersey, USA
| | - Michael Quigley
- Oncology Discovery, Gilead Sciences Inc, Foster City, California, USA
| | - John T Hunt
- Oncology Discovery, Bristol-Myers Squibb Co, Princeton, New Jersey, USA
| | | | - Emma Lees
- Oncology Discovery, Bristol-Myers Squibb Co, Cambridge, Massachusetts, USA
| | - Miguel A Sanjuan
- Oncology Discovery, Bristol-Myers Squibb Co, Princeton, New Jersey, USA
| | - Jinqi Liu
- Oncology Discovery, Bristol-Myers Squibb Co, Princeton, New Jersey, USA
| |
Collapse
|
32
|
He S, Cai T, Yuan J, Zheng X, Yang W. Lipid Metabolism in Tumor-Infiltrating T Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1316:149-167. [PMID: 33740249 DOI: 10.1007/978-981-33-6785-2_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
T cells recognize "foreign" antigens and induce durable humoral and cellular immune responses, which are indispensable for defending pathogens, as well as maintaining the integrity and homeostasis of tissues and organs. T cells are the major immune cell population in the tumor microenvironment which play a critical role in the antitumor immune response and cancer immune surveillance. Defective immune response of tumor-infiltrating T cells is the main cause of cancer immune evasion. The antitumor response of T cells is affected by multiple factors in the tumor microenvironment, including immunosuppressive cells, immune inhibitory cytokines, tumor-derived suppressive signals like PD-L1, immnuogenicity of tumor cells, as well as metabolic factors like hypoxia and nutrient deprivation. Abundant studies in past decades have proved the metabolic regulations of the immune response of T cells and the tumor-infiltrating T cells. In this chapter, we will discuss the regulations of the antitumor response of tumor-infiltrating T cells by lipid metabolism, which is one of the main components of metabolic regulation.
Collapse
Affiliation(s)
- Shangwen He
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ting Cai
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Juanjuan Yuan
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaojun Zheng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wei Yang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
33
|
Lau WL, Pearce B, Malakian H, Rodrigo I, Xie D, Gao M, Marsilio F, Chang C, Ruzanov M, Muckelbauer JK, Newitt JA, Lipovšek D, Sheriff S. Using yeast surface display to engineer a soluble and crystallizable construct of hematopoietic progenitor kinase 1 (HPK1). Acta Crystallogr F Struct Biol Commun 2021; 77:22-28. [PMID: 33439152 PMCID: PMC7805552 DOI: 10.1107/s2053230x20016015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/08/2020] [Indexed: 02/11/2023] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is an intracellular kinase that plays an important role in modulating tumor immune response and thus is an attractive target for drug discovery. Crystallization of the wild-type HPK1 kinase domain has been hampered by poor expression in recombinant systems and poor solubility. In this study, yeast surface display was applied to a library of HPK1 kinase-domain variants in order to select variants with an improved expression level and solubility. The HPK1 variant with the most improved properties contained two mutations, crystallized readily in complex with several small-molecule inhibitors and provided valuable insight to guide structure-based drug design. This work exemplifies the benefit of yeast surface display towards engineering crystallizable proteins and thus enabling structure-based drug discovery.
Collapse
Affiliation(s)
- Wai L. Lau
- Biologics Discovery, Bristol-Myers Squibb Research and Development, 100 Binney Street, Cambridge, MA 02142, USA
| | - Bradley Pearce
- Molecular Structure and Design, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Heather Malakian
- Biologics Discovery, Bristol-Myers Squibb Research and Development, 100 Binney Street, Cambridge, MA 02142, USA
| | - Iyoncy Rodrigo
- Protein Science, Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - Dianlin Xie
- Protein Science, Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - Mian Gao
- Protein Science, Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - Frank Marsilio
- Protein Science, Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - Chiehying Chang
- Molecular Structure and Design, Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - Max Ruzanov
- Molecular Structure and Design, Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - Jodi K. Muckelbauer
- Molecular Structure and Design, Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - John A. Newitt
- Protein Science, Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ 08543-4000, USA
| | - Daša Lipovšek
- Biologics Discovery, Bristol-Myers Squibb Research and Development, 100 Binney Street, Cambridge, MA 02142, USA
| | - Steven Sheriff
- Molecular Structure and Design, Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ 08543-4000, USA
| |
Collapse
|
34
|
Wang Y, Zhang K, Georgiev P, Wells S, Xu H, Lacey BM, Xu Z, Laskey J, Mcleod R, Methot JL, Bittinger M, Pasternak A, Ranganath S. Pharmacological inhibition of hematopoietic progenitor kinase 1 positively regulates T-cell function. PLoS One 2020; 15:e0243145. [PMID: 33270695 PMCID: PMC7714195 DOI: 10.1371/journal.pone.0243145] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1), a hematopoietic cell-specific Ste20-related serine/threonine kinase, is a negative regulator of signal transduction in immune cells, including T cells, B cells, and dendritic cells (DCs). In mice, HPK1 deficiency subverts inhibition of the anti-tumor immune response and is associated with functional augmentation of anti-tumor T cells. We have used a potent, small molecule HPK1 inhibitor, Compound 1, to investigate the effects of pharmacological intervention of HPK1 kinase activity in immune cells. Compound 1 enhanced Th1 cytokine production in T cells and fully reverted immune suppression imposed by the prostaglandin E2 (PGE2) and adenosine pathways in human T cells. Moreover, the combination of Compound 1 with pembrolizumab, a humanized monoclonal antibody against the programmed cell death protein 1 (PD-1), demonstrated a synergistic effect, resulting in enhanced interferon (IFN)-γ production. Collectively, our results suggest that blocking HPK1 kinase activity with small molecule inhibitors alone or in combination with checkpoint blockade may be an attractive approach for the immunotherapy of cancer.
Collapse
Affiliation(s)
- Yun Wang
- Department of Oncology Early Discovery, Merck & Co., Inc., Boston, Massachusetts, United States of America
| | - Kelvin Zhang
- Department of Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, Massachusetts, United States of America
| | - Peter Georgiev
- Department of Oncology Early Discovery, Merck & Co., Inc., Boston, Massachusetts, United States of America
| | - Steven Wells
- Department of Oncology Early Discovery, Merck & Co., Inc., Boston, Massachusetts, United States of America
| | - Haiyan Xu
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, Massachusetts, United States of America
| | - Brian M. Lacey
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, Massachusetts, United States of America
| | - Zangwei Xu
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, Massachusetts, United States of America
| | - Jason Laskey
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, Massachusetts, United States of America
| | - Robbie Mcleod
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, Massachusetts, United States of America
| | - Joey L. Methot
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts, United States of America
| | - Mark Bittinger
- Department of Oncology Early Discovery, Merck & Co., Inc., Boston, Massachusetts, United States of America
| | - Alexander Pasternak
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts, United States of America
- * E-mail: (AP); (SR)
| | - Sheila Ranganath
- Department of Oncology Early Discovery, Merck & Co., Inc., Boston, Massachusetts, United States of America
- * E-mail: (AP); (SR)
| |
Collapse
|
35
|
Si J, Shi X, Sun S, Zou B, Li Y, An D, Lin X, Gao Y, Long F, Pang B, Liu X, Liu T, Chi W, Chen L, Dimitrov DS, Sun Y, Du X, Yin W, Gao G, Min J, Wei L, Liao X. Hematopoietic Progenitor Kinase1 (HPK1) Mediates T Cell Dysfunction and Is a Druggable Target for T Cell-Based Immunotherapies. Cancer Cell 2020; 38:551-566.e11. [PMID: 32860752 DOI: 10.1016/j.ccell.2020.08.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 05/17/2020] [Accepted: 07/31/2020] [Indexed: 01/02/2023]
Abstract
Ameliorating T cell exhaustion and enhancing effector function are promising strategies for the improvement of immunotherapies. Here, we show that the HPK1-NFκB-Blimp1 axis mediates T cell dysfunction. High expression of MAP4K1 (which encodes HPK1) correlates with increased T cell exhaustion and with worse patient survival in several cancer types. In MAP4K1KO mice, tumors grow slower than in wild-type mice and infiltrating T cells are less exhausted and more active and proliferative. We further show that genetic depletion, pharmacological inhibition, or proteolysis targeting chimera (PROTAC)-mediated degradation of HPK1 improves the efficacy of CAR-T cell-based immunotherapies in diverse preclinical mouse models of hematological and solid tumors. These strategies are more effective than genetically depleting PD-1 in CAR-T cells. Thus, we demonstrate that HPK1 is a mediator of T cell dysfunction and an attractive druggable target to improve immune therapy responses.
Collapse
Affiliation(s)
- Jingwen Si
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Human Brain Protection, Tsinghua University, 100084 Beijing, China; Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Xiangjun Shi
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Human Brain Protection, Tsinghua University, 100084 Beijing, China
| | - Shuhao Sun
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Human Brain Protection, Tsinghua University, 100084 Beijing, China
| | - Bin Zou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060 Guangzhou, China
| | - Yaopeng Li
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Human Brain Protection, Tsinghua University, 100084 Beijing, China
| | - Dongjie An
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Human Brain Protection, Tsinghua University, 100084 Beijing, China
| | - Xingyu Lin
- Zhuhai Yufan Biotechnologies Co., Ltd, Zhuhai, 519000 Guangdong, China
| | - Yan Gao
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Human Brain Protection, Tsinghua University, 100084 Beijing, China; Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, 100026 Beijing, China
| | - Fei Long
- Xi'an Yufan Biotechnologies Co., Ltd, Xi'an, 710032 Shaanxi, China
| | - Bo Pang
- Department of Clinical Laboratory, Guang'an Men Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China
| | - Xing Liu
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan, China
| | - Tian Liu
- Department of Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangdong, 510010 Guangzhou, China
| | - Wenna Chi
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Human Brain Protection, Tsinghua University, 100084 Beijing, China
| | - Ligong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Human Brain Protection, Tsinghua University, 100084 Beijing, China
| | - Dimiter S Dimitrov
- Center for Antibody Therapeutics, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Yan Sun
- Lanzhou Institute of Husbandry and Pharmaceutical Science of CAAS, Lanzhou, 730050 Gansu, China
| | - Xinru Du
- Department of Orthopaedics, Beijing Chao-Yang Hospital, Capita Medical University, 100020 Beijing, China
| | - Wen Yin
- Department of Transfusion Medicine, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032 Shaanxi, China
| | - Guangxun Gao
- Department of Hematology, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032 Shaanxi, China
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060 Guangzhou, China.
| | - Xuebin Liao
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Human Brain Protection, Tsinghua University, 100084 Beijing, China.
| |
Collapse
|
36
|
Ernst MPT, Broeders M, Herrero-Hernandez P, Oussoren E, van der Ploeg AT, Pijnappel WWMP. Ready for Repair? Gene Editing Enters the Clinic for the Treatment of Human Disease. Mol Ther Methods Clin Dev 2020; 18:532-557. [PMID: 32775490 PMCID: PMC7393410 DOI: 10.1016/j.omtm.2020.06.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present an overview of clinical trials involving gene editing using clustered interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9), transcription activator-like effector nucleases (TALENs), or zinc finger nucleases (ZFNs) and discuss the underlying mechanisms. In cancer immunotherapy, gene editing is applied ex vivo in T cells, transgenic T cell receptor (tTCR)-T cells, or chimeric antigen receptor (CAR)-T cells to improve adoptive cell therapy for multiple cancer types. This involves knockouts of immune checkpoint regulators such as PD-1, components of the endogenous TCR and histocompatibility leukocyte antigen (HLA) complex to generate universal allogeneic CAR-T cells, and CD7 to prevent self-destruction in adoptive cell therapy. In cervix carcinoma caused by human papillomavirus (HPV), E6 and E7 genes are disrupted using topically applied gene editing machinery. In HIV infection, the CCR5 co-receptor is disrupted ex vivo to generate HIV-resistant T cells, CAR-T cells, or hematopoietic stem cells. In β-thalassemia and sickle cell disease, hematopoietic stem cells are engineered ex vivo to induce the production of fetal hemoglobin. AAV-mediated in vivo gene editing is applied to exploit the liver for systemic production of therapeutic proteins in hemophilia and mucopolysaccharidoses, and in the eye to restore splicing of the CEP920 gene in Leber's congenital amaurosis. Close consideration of safety aspects and education of stakeholders will be essential for a successful implementation of gene editing technology in the clinic.
Collapse
Affiliation(s)
- Martijn P T Ernst
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Mike Broeders
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Pablo Herrero-Hernandez
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Esmee Oussoren
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Ans T van der Ploeg
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - W W M Pim Pijnappel
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| |
Collapse
|
37
|
Sawasdikosol S, Burakoff S. A perspective on HPK1 as a novel immuno-oncology drug target. eLife 2020; 9:55122. [PMID: 32896273 PMCID: PMC7478889 DOI: 10.7554/elife.55122] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
In this perspective review, the role Hematopoietic Progenitor Kinase 1 (HPK1) in tumor immunity will be reviewed, with special emphasis on how T cells are negatively-regulated at different junctures of cancer-immunity cycle by this regulatory kinase. The review will highlight the strengths and weaknesses of HPK1 as a candidate target for novel immuno-oncology (IO) drug development that is centered on the use of small molecule kinase inhibitor to modulate the immune response against cancer. Such a therapeutic approach, if proven successful, could supplement the cancer cell-centric standard of care therapies in order to fully meet the therapeutic needs of cancer patients.
Collapse
Affiliation(s)
- Sansana Sawasdikosol
- Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Hess Center for Science and Medicine, New York, United States
| | - Steven Burakoff
- Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Hess Center for Science and Medicine, New York, United States
| |
Collapse
|
38
|
Lacey BM, Xu Z, Chai X, Laskey J, Fradera X, Mittal P, Mishra S, Piesvaux J, Saradjian P, Shaffer L, Vassileva G, Gerdt C, Wang Y, Ferguson H, Smith DM, Ballard J, Wells S, Jain R, Mueller U, Addona G, Kariv I, Methot JL, Bittinger M, Ranganath S, Mcleod R, Pasternak A, Miller JR, Xu H. Development of High-Throughput Assays for Evaluation of Hematopoietic Progenitor Kinase 1 Inhibitors. SLAS DISCOVERY 2020; 26:88-99. [PMID: 32844715 DOI: 10.1177/2472555220952071] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hematopoietic progenitor kinase 1 (HPK1), also referred to as mitogen-activated protein kinase kinase kinase kinase 1 (MAP4K1), is a serine/threonine kinase that negatively regulates T-cell signaling by phosphorylating Ser376 of Src homology 2 (SH2) domain-containing leukocyte protein of 76 kDa (SLP-76), a critical mediator of T-cell receptor activation. HPK1 loss of function mouse models demonstrated enhanced immune cell activation and beneficial antitumor activity. To enable discovery and functional characterization of high-affinity small-molecule HPK1 inhibitors, we have established high-throughput biochemical, cell-based, and novel pharmacodynamic (PD) assays. Kinase activity-based time-resolved fluorescence energy transfer (TR-FRET) assays were established as the primary biochemical approach to screen for potent inhibitors and assess selectivity against members of MAP4K and other closely related kinases. A proximal target engagement (TE) assay quantifying pSLP-76 levels as a readout and a distal assay measuring IL-2 secretion as a functional response were established using human peripheral blood mononuclear cells (PBMCs) from two healthy donors. Significant correlations between biochemical and cellular assays as well as excellent correlation between the two donors for the cellular assays were observed. pSLP-76 levels were further used as a PD marker in the preclinical murine model. This effort required the development of a novel ultrasensitive single-molecule array (SiMoA) assay to monitor pSLP-76 changes in mouse spleen.
Collapse
Affiliation(s)
- Brian M Lacey
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| | - Zangwei Xu
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| | - Xiaomei Chai
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| | - Jason Laskey
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| | - Xavier Fradera
- Department of Computational and Structural Chemistry, Merck & Co., Inc., Boston, MA, USA
| | - Payal Mittal
- Department of Oncology Early Discovery, Merck & Co., Inc., Boston, MA, USA
| | - Sasmita Mishra
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| | - Jennifer Piesvaux
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| | - Peter Saradjian
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| | - Lynsey Shaffer
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| | - Galya Vassileva
- Department of Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, MA, USA
| | - Catherine Gerdt
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| | - Yun Wang
- Department of Oncology Early Discovery, Merck & Co., Inc., Boston, MA, USA
| | - Heidi Ferguson
- Department of Preclinical Development, Merck & Co., Inc., Boston, MA, USA
| | | | | | - Steven Wells
- Department of Oncology Early Discovery, Merck & Co., Inc., Boston, MA, USA
| | - Rishabh Jain
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| | - Uwe Mueller
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| | - George Addona
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| | - Ilona Kariv
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| | - Joey L Methot
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, MA, USA
| | - Mark Bittinger
- Department of Oncology Early Discovery, Merck & Co., Inc., Boston, MA, USA
| | - Sheila Ranganath
- Department of Oncology Early Discovery, Merck & Co., Inc., Boston, MA, USA
| | - Robbie Mcleod
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| | | | - J Richard Miller
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| | - Haiyan Xu
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| |
Collapse
|
39
|
Johnson E, McTigue M, Gallego RA, Johnson TW, Timofeevski S, Maestre M, Fisher TS, Kania R, Sawasdikosol S, Burakoff S, Cronin CN. Multiple conformational states of the HPK1 kinase domain in complex with sunitinib reveal the structural changes accompanying HPK1 trans-regulation. J Biol Chem 2019; 294:9029-9036. [PMID: 31018963 DOI: 10.1074/jbc.ac119.007466] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/17/2019] [Indexed: 01/26/2023] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1 or MAP4K1) is a Ser/Thr kinase that operates via the c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) signaling pathways to dampen the T-cell response and antitumor immunity. Accordingly, selective HPK1 inhibition is considered a means to enhance antitumor immunity. Sunitinib, a multi-receptor tyrosine kinase (RTK) inhibitor approved for the management of gastrointestinal stromal tumors (GISTs), renal cell carcinoma (RCC), and pancreatic cancer, has been reported to inhibit HPK1 in vitro In this report, we describe the crystal structures of the native HPK1 kinase domain in both nonphosphorylated and doubly phosphorylated states, in addition to a double phosphomimetic mutant (T165E,S171E), each complexed with sunitinib at 2.17-3.00-Å resolutions. The native nonphosphorylated cocrystal structure revealed an inactive dimer in which the activation loop of each monomer partially occupies the ATP- and substrate-binding sites of the partner monomer. In contrast, the structure of the protein with a doubly phosphorylated activation loop exhibited an active kinase conformation with a greatly reduced monomer-monomer interface. Conversely, the phosphomimetic mutant cocrystal structure disclosed an alternative arrangement in which the activation loops are in an extended domain-swapped configuration. These structural results indicate that HPK1 is a highly dynamic kinase that undergoes trans-regulation via dimer formation and extensive intramolecular and intermolecular remodeling of the activation segment.
Collapse
Affiliation(s)
- Eric Johnson
- From the La Jolla Laboratories, Pfizer Worldwide Research and Development, San Diego, California 92121 and
| | - Michele McTigue
- From the La Jolla Laboratories, Pfizer Worldwide Research and Development, San Diego, California 92121 and
| | - Rebecca A Gallego
- From the La Jolla Laboratories, Pfizer Worldwide Research and Development, San Diego, California 92121 and
| | - Ted W Johnson
- From the La Jolla Laboratories, Pfizer Worldwide Research and Development, San Diego, California 92121 and
| | - Sergei Timofeevski
- From the La Jolla Laboratories, Pfizer Worldwide Research and Development, San Diego, California 92121 and
| | - Michael Maestre
- From the La Jolla Laboratories, Pfizer Worldwide Research and Development, San Diego, California 92121 and
| | - Timothy S Fisher
- From the La Jolla Laboratories, Pfizer Worldwide Research and Development, San Diego, California 92121 and
| | - Robert Kania
- From the La Jolla Laboratories, Pfizer Worldwide Research and Development, San Diego, California 92121 and
| | - Sansana Sawasdikosol
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Steven Burakoff
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Ciarán N Cronin
- From the La Jolla Laboratories, Pfizer Worldwide Research and Development, San Diego, California 92121 and
| |
Collapse
|
40
|
Liu J, Curtin J, You D, Hillerman S, Li-Wang B, Eraslan R, Xie J, Swanson J, Ho CP, Oppenheimer S, Warrack BM, McNaney CA, Nelson DM, Blum J, Kim T, Fereshteh M, Reily M, Shipkova P, Murtaza A, Sanjuan M, Hunt JT, Salter-Cid L. Critical role of kinase activity of hematopoietic progenitor kinase 1 in anti-tumor immune surveillance. PLoS One 2019; 14:e0212670. [PMID: 30913212 PMCID: PMC6435129 DOI: 10.1371/journal.pone.0212670] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 02/07/2019] [Indexed: 01/05/2023] Open
Abstract
Immunotherapy has fundamentally changed the landscape of cancer treatment. Despite the encouraging results with the checkpoint modulators, response rates vary widely across tumor types, with a majority of patients exhibiting either primary resistance without a significant initial response to treatment or acquired resistance with subsequent disease progression. Hematopoietic progenitor kinase 1 (HPK1) is predominantly expressed in hematopoietic cell linages and serves as a negative regulator in T cells and dendritic cells (DC). While HPK1 gene knockout (KO) studies suggest its role in anti-tumor immune responses, the involvement of kinase activity and thereof its therapeutic potential remain unknown. To investigate the potential of pharmacological intervention using inhibitors of HPK1, we generated HPK1 kinase dead (KD) mice which carry a single loss-of-function point mutation in the kinase domain and interrogated the role of kinase activity in immune cells in the context of suppressive factors or the tumor microenvironment (TME). Our data provide novel findings that HKP1 kinase activity is critical in conferring suppressive functions of HPK1 in a wide range of immune cells including CD4+, CD8+, DC, NK to Tregs, and inactivation of kinase domain was sufficient to elicit robust anti-tumor immune responses. These data support the concept that an HPK1 small molecule kinase inhibitor could serve as a novel agent to provide additional benefit in combination with existing immunotherapies, particularly to overcome resistance to current treatment regimens.
Collapse
Affiliation(s)
- Jinqi Liu
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Joshua Curtin
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Dan You
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Stephen Hillerman
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Bifang Li-Wang
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Rukiye Eraslan
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Jenny Xie
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Jesse Swanson
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Ching-Ping Ho
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Simone Oppenheimer
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Bethanne M. Warrack
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Colleen A. McNaney
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - David M. Nelson
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Jordan Blum
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Taeg Kim
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Mark Fereshteh
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Michael Reily
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Petia Shipkova
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Anwar Murtaza
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Miguel Sanjuan
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - John T. Hunt
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Luisa Salter-Cid
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| |
Collapse
|
41
|
Sawasdikosol S, Burakoff S. The Structure of HPK1 Kinase Domain: To Boldly Go Where No Immuno-Oncology Drugs Have Gone Before. Structure 2019; 27:1-3. [DOI: 10.1016/j.str.2018.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Hernandez S, Qing J, Thibodeau RH, Du X, Park S, Lee HM, Xu M, Oh S, Navarro A, Roose-Girma M, Newman RJ, Warming S, Nannini M, Sampath D, Kim JM, Grogan JL, Mellman I. The Kinase Activity of Hematopoietic Progenitor Kinase 1 Is Essential for the Regulation of T Cell Function. Cell Rep 2018; 25:80-94. [DOI: 10.1016/j.celrep.2018.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/12/2018] [Accepted: 09/07/2018] [Indexed: 01/20/2023] Open
|
43
|
Zhang Q, Ding S, Zhang H. Interactions between hematopoietic progenitor kinase 1 and its adaptor proteins. Mol Med Rep 2017; 16:6472-6482. [DOI: 10.3892/mmr.2017.7494] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/31/2017] [Indexed: 11/06/2022] Open
|
44
|
Wang J, Song L, Yang S, Zhang W, Lu P, Li S, Li H, Wang L. HPK1 positive expression associated with longer overall survival in patients with estrogen receptor-positive invasive ductal carcinoma‑not otherwise specified. Mol Med Rep 2017; 16:4634-4642. [PMID: 28765906 PMCID: PMC5647019 DOI: 10.3892/mmr.2017.7131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 04/19/2017] [Indexed: 12/27/2022] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1) belongs to the mitogen activated protein kinase kinase kinase kinase (MAP4K) family of serine/threonine kinases, which have been associated with the incidence and progression of a variety of gastrointestinal malignant tumors in humans. However, the potential association between HPK1 expression and breast cancer, particularly invasive ductal carcinoma-not otherwise specified (IDC-NOS) development, has not yet been examined. To address this gap, the present study aimed to evaluate HPK1 expression in IDC-NOS samples and to determine a relationship with clinical prognostic indicators, such as the expression levels of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2), as well as overall survival of the patients with IDC-NOS. HPK1 mRNA and protein expression in samples from 148 patients with IDC-NOS were detected using immunohistochemistry, western blotting and reverse transcription-quantitative polymerase chain reaction. A total of 54 out of 148 (36.5%) samples were HPK1-positive, and 100 out of 148 (67.6%) were ER-positive. Of the latter, 28% (28/100) were HPK1-positive, and a significant negative association of HPK1 expression with ER positivity was observed (P=0.002; r=−0.254). In addition, 43.2% (64/148) and 32.4% (48/100) of IDC-NOS tissues were PR- or HER2-positive, respectively; however, neither indicator correlated with HPK1 (P=0.109 and P=0.558, respectively). HPK1 expression, axillary lymph node metastasis and tumor-node-metastasis (TNM) stage were identified as independent factors of overall survival (OS) in the ER-positive group (P<0.05), and HPK1 positivity was associated with increased OS (P=0.048). HPK1 mRNA levels did not differ between IDC-NOS and normal adjacent breast tissues, whereas HPK1 protein levels were lower in IDC-NOS (P<0.05). These results suggested that HPK1 protein may be a potentially effective IDC-NOS therapeutic target.
Collapse
Affiliation(s)
- Jiaojiao Wang
- Department of Ultrasonography, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lijie Song
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Sen Yang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Weijie Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Pengwei Lu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shenglei Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Huixiang Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Liuxing Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
45
|
Navas VH, Cuche C, Alcover A, Di Bartolo V. Serine Phosphorylation of SLP76 Is Dispensable for T Cell Development but Modulates Helper T Cell Function. PLoS One 2017; 12:e0170396. [PMID: 28107427 PMCID: PMC5249077 DOI: 10.1371/journal.pone.0170396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 01/04/2017] [Indexed: 12/26/2022] Open
Abstract
The adapter protein SLP76 is a key orchestrator of T cell receptor (TCR) signal transduction. We previously identified a negative feedback loop that modulates T cell activation, involving phosphorylation of Ser376 of SLP76 by the hematopoietic progenitor kinase 1 (HPK1). However, the physiological relevance of this regulatory mechanism was still unknown. To address this question, we generated a SLP76-S376A-expressing knock-in mouse strain and investigated the effects of Ser376 mutation on T cell development and function. We report here that SLP76-S376A-expressing mice exhibit normal thymocyte development and no detectable phenotypic alterations in mature T cell subsets or other lymphoid and myeloid cell lineages. Biochemical analyses revealed that mutant T cells were hypersensitive to TCR stimulation. Indeed, phosphorylation of several signaling proteins, including SLP76 itself, phospholipase Cγ1 and the protein kinases AKT and ERK1/2, was increased. These modifications correlated with increased Th1-type and decreased Th2-type cytokine production by SLP76-S376A T cells, but did not result in significant changes of proliferative capacity nor activation-induced cell death susceptibility. Hence, our results reveal that SLP76-Ser376 phosphorylation does not mediate all HPK1-dependent regulatory effects in T cells but it fine-tunes helper T cell responses.
Collapse
Affiliation(s)
- Victor H. Navas
- Lymphocyte Cell Biology Unit, Institut Pasteur, Paris, France
- CNRS URA 1961, Paris, France
- Université "Pierre et Marie Curie", Paris, France
| | - Céline Cuche
- Lymphocyte Cell Biology Unit, Institut Pasteur, Paris, France
- CNRS URA 1961, Paris, France
- INSERM U1221, Paris, France
| | - Andres Alcover
- Lymphocyte Cell Biology Unit, Institut Pasteur, Paris, France
- CNRS URA 1961, Paris, France
- INSERM U1221, Paris, France
| | - Vincenzo Di Bartolo
- Lymphocyte Cell Biology Unit, Institut Pasteur, Paris, France
- CNRS URA 1961, Paris, France
- INSERM U1221, Paris, France
- * E-mail:
| |
Collapse
|
46
|
Hematopoietic progenitor kinase 1 (HPK1) is required for LFA-1–mediated neutrophil recruitment during the acute inflammatory response. Blood 2013; 121:4184-94. [DOI: 10.1182/blood-2012-08-451385] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Key Points
Hematopoietic progenitor kinase 1 (HPK1) regulates LFA-1 affinity and thereby controls adhesion and postadhesion functions of neutrophils. Hematopoietic progenitor kinase 1 (HPK1) is critically involved in neutrophil trafficking during acute inflammation.
Collapse
|
47
|
Abstract
Identifying the appropriate drug targets for the development of a novel anti-tumor immunotherapy is one of the most risky steps in the drug development cycle. We have identified a hematopoietic cell-restricted serine/threonine kinase, hematopoietic progenitor kinase 1 (HPK1), as a possible target for therapeutic intervention. Targeted disruption of HPK1 alleles confers T cells with an elevated Th1 cytokine production in response to TCR engagement. HPK1 (-/-) T cells proliferate more rapidly than the haplotype-matched wild-type counterpart and are resistant to prostaglandin E2 (PGE(2))-mediated suppression. Most strikingly, mice that received adoptive transfer of HPK1 (-/-) T cells became resistant to lung tumor growth. Also, the loss of HPK1 from dendritic cells (DCs) endows them with superior antigen presentation ability, enabling HPK1 (-/-) DCs to elicit a more potent anti-tumor immune response when used as cancer vaccine. It is probable that blocking the HPK1 kinase activity with a small molecule inhibitor may activate the superior anti-tumor activity of both cell types, resulting in a synergistic amplification of anti-tumor potential. Given that HPK1 is not expressed in any major organs, it is less likely that an inhibitor of HPK1 kinase activity would cause any serious side effects.
Collapse
|
48
|
Lasserre R, Cuche C, Blecher-Gonen R, Libman E, Biquand E, Danckaert A, Yablonski D, Alcover A, Di Bartolo V. Release of serine/threonine-phosphorylated adaptors from signaling microclusters down-regulates T cell activation. ACTA ACUST UNITED AC 2011; 195:839-53. [PMID: 22105350 PMCID: PMC3257567 DOI: 10.1083/jcb.201103105] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Serine/threonine phosphorylation of the T cell adaptor proteins SLP76 and GADS by HPK1 induces their release from signaling microclusters and subsequent termination of the T cell response. Antigen recognition within immunological synapses triggers and sustains T cell activation by nucleating protein microclusters that gather T cell receptors (TCRs), kinases, and adaptors. Dissipation of these microclusters results in signal termination, but how this process is regulated is unclear. In this paper, we reveal that release of the adaptors SLP76 and GADS from signaling microclusters is induced by the serine/threonine protein kinase HPK1 and that phosphorylation of GADS plays a major role in this process. We found that HPK1 was recruited into microclusters and triggered their dissipation by inducing the phosphorylation of a threonine-containing motif of GADS, together with the previously described serine phosphorylation of SLP76. These events induced the cooperative binding of 14-3-3 proteins to SLP76–GADS complexes, leading to their uncoupling from the transmembrane adaptor LAT and consequently reducing microcluster persistence and activation-induced gene transcription. These results demonstrate that serine/threonine phosphorylation of multiple TCR-proximal effectors controls the stability of signaling microclusters, thereby determining the intensity of T cell responses.
Collapse
Affiliation(s)
- Rémi Lasserre
- Lymphocyte Cell Biology Unit, Department of Immunology, Imagopole, Institut Pasteur, F-75015 Paris, Cedex 15, France
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhang Q, Long H, Liao J, Zhao M, Liang G, Wu X, Zhang P, Ding S, Luo S, Lu Q. Inhibited expression of hematopoietic progenitor kinase 1 associated with loss of jumonji domain containing 3 promoter binding contributes to autoimmunity in systemic lupus erythematosus. J Autoimmun 2011; 37:180-9. [PMID: 22014533 DOI: 10.1016/j.jaut.2011.09.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 09/20/2011] [Indexed: 11/28/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by T cell overactivation and B cell hyper-stimulation. Hematopoietic progenitor kinase 1 (HPK1, also called MAP4K1) negatively regulates T cell-mediated immune responses. However, the role of HPK1 and the mechanisms that regulate HPK1 expression in SLE remain poorly understood. Using chromatin immunoprecipitation (ChIP) microarray data, we identified markedly increased histone H3 lysine 27 trimethylation (H3K27me3) enrichment at the HPK1 promoter of SLE CD4+ T cells relative to controls, and confirmed this observation using ChIP and real-time PCR experiments. We further found that HPK1 mRNA and protein levels were significantly decreased in CD4+ T cells of patients with SLE, and that this decrease was not caused by exposure to standard SLE medications. Down-regulating HPK1 in healthy CD4+ T cells significantly accelerated T cell proliferation and production of IFNγ and IgG. Consistent with these findings, overexpressing HPK1 in SLE CD4+ T cells caused a significant decrease in T cell reactivity. In addition, we observed a striking decrease in jumonji domain containing 3 (JMJD3) binding, but no marked change in enhancer of zeste homolog 2 (EZH2) binding, at the HPK1 promoter region in SLE CD4+ T cells compared to healthy controls. SiRNA knock down of JMJD3 in healthy CD4+ T cells led to decreased JMJD3 binding and increased H3K27me3 enrichment at the HPK1 promoter region, thus inhibiting the expression of HPK1. Concordantly, plasmid-induced overexpression of JMJD3 in SLE CD4+ T cells led to increased JMJD3 binding, decreased H3K27me3 enrichment, and up-regulated HPK1 expression. Our results show for the first time that inhibited HPK1 expression in SLE CD4+ T cells is associated with loss of JMJD3 binding and increased H3K27me3 enrichment at the HPK1 promoter, contributing to T cell overactivation and B cell overstimulation in SLE. These findings suggest that HPK1 may serve as a novel target for effective SLE therapy.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan 410011, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Patzak IM, Königsberger S, Suzuki A, Mak TW, Kiefer F. HPK1 competes with ADAP for SLP-76 binding and via Rap1 negatively affects T-cell adhesion. Eur J Immunol 2010; 40:3220-5. [DOI: 10.1002/eji.201040313] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|