1
|
Lim YJ, Lim MS, Lee JJ, Bae H, Baek YJ, Kim GS, An Y, Kim SK, Yu D. Evaluation of clinical and immunological responses to recombinant canine interleukin-15 therapy in dogs with cancer: A pilot study. Vet Immunol Immunopathol 2025; 283:110923. [PMID: 40203669 DOI: 10.1016/j.vetimm.2025.110923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/06/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025]
Abstract
Interleukin-15 (IL-15) is a pleiotropic cytokine that plays a pivotal role in innate and adaptive immunity. Therefore, it is a promising therapeutic agent for cancer treatment. Despite growing interest in the use of IL-15 as an immunotherapeutic agent, there have been very few reports on its immunological and clinical effects in canine cancers. In this study, we generated recombinant canine IL-15 (rcIL-15) and evaluated its clinical and immunomodulatory effects in combination with metronomic cyclophosphamide in 15 canines with various tumor types. The treatment outcomes were assessed in a prospective clinical trial. Low-dose cyclophosphamide (12.5 mg/m2, PO, SID) was continuously administered for 8 weeks. Starting on day 14, after administering cyclophosphamide, rcIL-15 (20 μg/kg daily) was injected intravenously for 8 days. The disease control rate for combination therapy was 66.6 %, with the most notable partial response accounting for 33.3 % of hematological malignancies. The adverse events were minimal and primarily of grade 1 severity. Moreover, rcIL-15 administration led to significant elevations in anticancer lymphocyte subsets, such as natural killer and cytotoxic T cells, along with increased Ki-67 expression, indicating cellular proliferation. These changes were correlated with improved clinical outcomes. Our findings underscore the therapeutic potential and safety of combining rcIL-15 and metronomic cyclophosphamide for the treatment of various canine cancers.
Collapse
Affiliation(s)
- Y J Lim
- Department of Integrated Life Science and Technology, Kongju National University, Yesan-gun, Chungnam, Republic of Korea; Department of Companion and Laboratory Animal Science, College of Industrial Science, Kongju National University, Yesan-gun, Chungnam, Republic of Korea.
| | - M S Lim
- Vaxcell-Bio Therapeutics Co., Ltd., Hwasun, Jeollanamdo, Republic of Korea.
| | - J J Lee
- Vaxcell-Bio Therapeutics Co., Ltd., Hwasun, Jeollanamdo, Republic of Korea; Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea.
| | - H Bae
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea.
| | - Y J Baek
- Department of Applied, College of Industrial Science, Kongju National University, Yesan-gun, Chungnam, Republic of Korea.
| | - G S Kim
- Department of Companion and Laboratory Animal Science, College of Industrial Science, Kongju National University, Yesan-gun, Chungnam, Republic of Korea; Research Institute for Natural Products, Kongju National University, Yesan-gun, Chungnam, Republic of Korea.
| | - Y An
- Department of Applied, College of Industrial Science, Kongju National University, Yesan-gun, Chungnam, Republic of Korea.
| | - S K Kim
- Department of Integrated Life Science and Technology, Kongju National University, Yesan-gun, Chungnam, Republic of Korea; Department of Companion and Laboratory Animal Science, College of Industrial Science, Kongju National University, Yesan-gun, Chungnam, Republic of Korea; Vaxcell-Bio Therapeutics Co., Ltd., Hwasun, Jeollanamdo, Republic of Korea; Department of Applied, College of Industrial Science, Kongju National University, Yesan-gun, Chungnam, Republic of Korea; Research Institute for Natural Products, Kongju National University, Yesan-gun, Chungnam, Republic of Korea.
| | - D Yu
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
2
|
Larsson K, Adra J, Klint L, Linderholm B. Metronomic chemotherapy using capecitabine and cyclophosphamide in metastatic breast cancer - efficacy, tolerability and quality of life results from the phase II METRO trial. Breast 2024; 78:103795. [PMID: 39236341 PMCID: PMC11404084 DOI: 10.1016/j.breast.2024.103795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Chemotherapy is commonly used in metastatic breast cancer (MBC) to prolong life and improve quality of life (QoL). The optimal dosing and sequencing beyond the second line of treatment are unknown and pose a risk of overtreatment. Continuous low oral doses of metronomic chemotherapy using capecitabine 500 mg three times daily and cyclophosphamide 50 mg once daily (MCT-CX) may be an effective and tolerable treatment option for patients with MBC. METHODS In this open-label, single-arm single-centre phase II trial patients with MBC received MCT-CX until disease progression or unacceptable toxicity. The primary endpoint was the clinical benefit rate (CBR), defined as the proportion of participants with a best overall response of complete (CR) or partial response (PR) at any time, or stable disease (SD) for ≥24 weeks according to radiological evaluation. Toxicity was assessed according to the Common Toxicity Criteria v 4.0. QoL was assessed with the EORTC-30 questionnaire. RESULTS In total, 40 patients were included. Most participants (72 %) presented with visceral disease and received MCT-CX beyond the second line (58 %). The CBR was 45 % (8 PR and 10 SD ≥ 24 weeks). Toxicities were low grade with hand-foot syndrome being the most common. There was no significant change in QoL over the first 24 weeks. CONCLUSION MCT-CX is a plausible treatment option in far advanced breast cancer, with almost half of trial participants responding to treatment without QoL impairments.
Collapse
Affiliation(s)
- Karolina Larsson
- Department of Oncology, Sahlgrenska University Hospital, Sweden; Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Jamila Adra
- Department of Oncology, Sahlgrenska University Hospital, Sweden
| | - Leif Klint
- Department of Oncology, Sahlgrenska University Hospital, Sweden; Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Barbro Linderholm
- Department of Oncology, Sahlgrenska University Hospital, Sweden; Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
3
|
Wu Z, Zhang Y, Gong Y, Hu J. Knowledge landscape of Treg research in breast cancer: a bibliometric and visual analysis. Front Oncol 2024; 14:1448714. [PMID: 39664195 PMCID: PMC11631855 DOI: 10.3389/fonc.2024.1448714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/28/2024] [Indexed: 12/13/2024] Open
Abstract
Background Regulatory T (Treg) cells play a strategic role in maintaining immune homeostasis and their functions are closely linked to the development of different diseases, including cancer. This study aims to investigate the evolution patterns and popular research topics of Treg cells through bibliometric analysis. Method The Web of Science Core Collection database was used to extract publications related to Treg cells, which were then subjected to bibliometric analysis and visualization through VOSviewer, CiteSpace, and R software. Results Between 2003 and 2023, a total of 666 articles were published. China and the United States had the highest citation counts, with Fudan University, Shanghai Jiao Tong University, and Tarbiat Modares University being the leading research institutions. Beckhove Philipp from the German Cancer Research Center and the National Center for Tumor Diseases in Heidelberg, and Christophe from the Cancer Research Center of Lyon, were the most prolific authors. Sakaguchi Shimon from the Immunology Frontier Research Center at Osaka University was the most cited author. "Frontiers in Immunology" published the most articles, while "Journal of Immunology" received the highest co-citations. Key terms in Treg research include immunotherapy, tumor microenvironment, prognosis, immunosuppression, and PD-L1. Among these, immunotherapy, prognosis, PD-L1, and immunosuppression have emerged as focal points of research in recent years. Conclusion With active collaboration worldwide, research on Treg cells is rapidly advancing. Focusing on Treg cells as a potential target for cancer treatment shows great promise for future research, especially in terms of practical applications. This could offer valuable direction and fresh perspectives for further exploration of Treg cells in the medical field.
Collapse
Affiliation(s)
- Zankai Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanting Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Gong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jin Hu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Lopes CDH, Braganca Xavier C, Torrado C, Veneziani AC, Megid TBC. A Comprehensive Exploration of Agents Targeting Tumor Microenvironment: Challenges and Future Perspectives. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2024; 7:283-299. [PMID: 39524466 PMCID: PMC11541921 DOI: 10.36401/jipo-24-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 11/16/2024]
Abstract
The tumor microenvironment (TME) encompasses the complex and diverse surroundings in which tumors arise. Emerging insights highlight the TME's critical role in tumor development, progression, metastasis, and treatment response. Consequently, the TME has attracted significant research and clinical interest, leading to the identification of numerous novel therapeutic targets. Advances in molecular technologies now enable detailed genomic and transcriptional analysis of cancer cells and the TME and the integration of microenvironmental data to the tumor genomic landscape. This comprehensive review discusses current progress in targeting the TME for drug development, addressing associated challenges, strategies for modulating the pro-tumor microenvironment, and the discovery of new targets.
Collapse
Affiliation(s)
| | | | - Carlos Torrado
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | |
Collapse
|
5
|
Delahousse J, Molina L, Paci A. "Cyclophosphamide and analogues; a matter of dose and schedule for dual anticancer activities". Cancer Lett 2024; 598:217119. [PMID: 39002693 DOI: 10.1016/j.canlet.2024.217119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Cyclophosphamide and ifosfamide are major alkylating agents but their therapeutics uses are limiting by the toxicity due to several toxicities. Indeed conventional chemotherapies are generally used with the maximum tolerated dose. In contrast, metronomic schedule aims to get a minimum dose for efficacy with a good safety. Depending on the dose, their mechanisms of action are different and offer a dual activity: at high dose, cyclophosphamide is mainly used in graft conditioning for its immunosuppressive properties, while at metronomic dose it is used as an immunoactive agent. Currently, at metronomic dose, cyclophosphamide is studied in clinic against various types of cancer, alone or in combination with others anticancer drugs (anti-angiogenic, immune-modulating agents, immune checkpoints blockers, vaccines, radiotherapy, others conventional anticancer agents), as a nth-line or first-line treatment. More than three quarters of clinical studies show promising results, mostly in breast, ovarian and prostate cancers. Taking advantage of the immune system, use dual antitumor action's chemotherapy is clearly a therapeutic strategy that deserves to be confirmed in order to improve the efficacy/toxicity balance of anticancer treatments, and to use CPM or analogues as a standard of care.
Collapse
Affiliation(s)
| | - Leonardo Molina
- Gustave Roussy, Department of Pharmacology, Villejuif, France
| | - Angelo Paci
- Gustave Roussy, Department of Pharmacology, Villejuif, France; Pharmacokinetics Department, Faculté de Pharmacie, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
6
|
Akimova T, Wang L, Bartosh Z, Christensen LM, Eruslanov E, Singhal S, Aishwarya V, Hancock WW. Antisense targeting of FOXP3+ Tregs to boost anti-tumor immunity. Front Immunol 2024; 15:1426657. [PMID: 39234236 PMCID: PMC11371716 DOI: 10.3389/fimmu.2024.1426657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Our goal is to improve the outcomes of cancer immunotherapy by targeting FOXP3+ T-regulatory (Treg) cells with a next generation of antisense oligonucleotides (ASO), termed FOXP3 AUMsilence ASO. We performed in vitro experiments with human healthy donor PBMC and clinical samples from patients with lung cancer, mesothelioma and melanoma, and tested our approach in vivo using ASO FOXP3 in syngeneic murine cancer models and in humanized mice. ASO FOXP3 had no effects on cell viability or cell division, did not affect expression of other FOXP members, but decreased expression of FOXP3 mRNA in PBMC by 54.9% and in cancer samples by 64.7%, with corresponding 41.0% (PBMC) and 60.0% (cancer) decreases of Treg numbers (all p<0.0001). Hence, intratumoral Treg were more sensitive to the effects of ASO FOXP3 than peripheral blood Tregs. Isolated human Treg, incubated with ASO FOXP3 for 3.5 hours, had significantly impaired suppressive function (66.4%) versus Scramble control. In murine studies, we observed a significant inhibition of tumor growth, while 13.6% (MC38) to 22% (TC1) of tumors were completely resorbed, in conjunction with ~50% decrease of Foxp3 mRNA by qPCR and decreased numbers of intratumoral Tregs. In addition, there were no changes in FOXP3 mRNA expression or in the numbers of Tregs in draining lymph nodes and in spleens of tumor bearing mice, confirming that intratumoral Treg had enhanced sensitivity to ASO FOXP3 in vivo compared to other Treg populations. ASO FOXP3 Treg targeting in vivo and in vitro was accompanied by significant downregulation of multiple exhaustion markers, and by increased expression of perforin and granzyme-B by intratumoral T cells. To conclude, we report that targeting the key Treg transcription factor FOXP3, with ASO FOXP3, has a powerful anti-tumoral effect and enhances T cell response in vitro and in vivo.
Collapse
Affiliation(s)
- Tatiana Akimova
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- AUM Biotech, LLC., Philadelphia, PA, United States
| | - Liqing Wang
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Zhanna Bartosh
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- AUM Biotech, LLC., Philadelphia, PA, United States
| | - Lanette M. Christensen
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Evgeniy Eruslanov
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Sunil Singhal
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | | | - Wayne W. Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
7
|
Zhao Y, Wang S, Lv S, Liu X, Li W, Song Y, Rong D, Zheng P, Huang H, Zheng H. Combined oral low-dose cyclophosphamide endocrine therapy may improve clinical response among patients with metastatic breast cancer via Tregs in TLSs. Sci Rep 2024; 14:13432. [PMID: 38862586 PMCID: PMC11166640 DOI: 10.1038/s41598-024-64042-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Despite limited research on refractory and/or endocrine therapy failure in elderly metastatic breast cancer (MBC) patients, a prior study showed that low-dose oral cyclophosphamide (CY) can improve the overall survival rate of MBC patients, possibly through the immunoregulation of regulatory T cells (Tregs). We preliminarily investigated the combination of endocrine therapy (ET) with oral low-dose CY as salvage therapy in elderly patients via peripheral blood regulatory T-cell analyses. In addition, we evaluated the associations of tumor tertiary lymphoid structures (TLSs) with therapeutic outcomes. HR+/HER2- advanced breast cancer patients who received low-dose CY combined with ET or ET only from April 2015 to August 2021 were enrolled in this retrospective study. The primary outcome was the clinical control rate (CCR), and the secondary outcome was progression-free survival (PFS). Circulating T lymphocyte subpopulations represented by Tregs were monitored during treatment by flow cytometry methods. TLSs wereconfirmed by hematoxylin-eosin staining of pretreatment specimens, and CD3, CD4, and Foxp3 were detected using Opal multicolor immunofluorescence. A total of 85 patients who received CY + ET and 50 patients who received ET only were enrolled, the percentage of patients who received CCR was 73% (62/85) vs. 70% (45/50), and the objective response rate (ORR) was 28% (24/85) vs. 24% (12/50). No deaths occurred during the study period. The mean PFS time was 13 vs. 11 months (P = 0.03). In the CY + ET group, decreases in CD4+/CD25+/Foxp3+ T cells (P < 0.001) were favorable for both clinical control and prolonged PFS (P < 0.001). Compared with patients without TLSs, those with TLSs were more likely to have better clinical control and PFS (mean time = 6 months), and a greater number of Treg cells during TLS pretreatment correlated with longer PFS (P = 0.043). Oral low-dose CY combined with standard ET exerts immunological effects by decreasing Treg levels to achieve improved clinical responses. Moreover, patients with TLSs might benefit more from such therapy than those without TLSs, and a high Treg cell count in TLSs before treatment predicts better therapeutic efficacy.
Collapse
Affiliation(s)
- Yuze Zhao
- Department of Medical Oncology, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Rd, Beijing, 100038, China
| | - Shuo Wang
- Department of Medical Oncology, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Rd, Beijing, 100038, China
| | - Shuzhen Lv
- Breast Department, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Xiaojun Liu
- Department of Pathology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Weiping Li
- Department of Pharmacology, Shanxi Medical University Fenyang College, Fenyang, 032200, China
| | - Yuguang Song
- Department of Medical Oncology, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Rd, Beijing, 100038, China
| | - Dongwen Rong
- Department of Medical Oncology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Peiming Zheng
- Department of Pathology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Hongyan Huang
- Department of Medical Oncology, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Rd, Beijing, 100038, China.
| | - Huixia Zheng
- Department of Pathology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
8
|
Wu HL, Zhou HX, Chen LM, Wang SS. Metronomic chemotherapy in cancer treatment: new wine in an old bottle. Theranostics 2024; 14:3548-3564. [PMID: 38948068 PMCID: PMC11209710 DOI: 10.7150/thno.95619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/26/2024] [Indexed: 07/02/2024] Open
Abstract
Over the past two decades, metronomic chemotherapy has gained considerable attention and has demonstrated remarkable success in the treatment of cancer. Through chronic administration and low-dose regimens, metronomic chemotherapy is associated with fewer adverse events but still effectively induces disease control. The identification of its antiangiogenic properties, direct impact on cancer cells, immunomodulatory effects on the tumour microenvironment, and metabolic reprogramming ability has established the intrinsic multitargeted nature of this therapeutic approach. Recently, the utilization of metronomic chemotherapy has evolved from salvage treatment for metastatic disease to adjuvant maintenance therapy for high-risk cancer patients, which has been prompted by the success of several substantial phase III trials. In this review, we delve into the mechanisms underlying the antitumour effects of metronomic chemotherapy and provide insights into potential combinations with other therapies for the treatment of various malignancies. Additionally, we discuss health-economic advantages and candidates for the utilization of this treatment option.
Collapse
Affiliation(s)
| | | | | | - Shu-sen Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China
| |
Collapse
|
9
|
Butterfield LH, Najjar YG. Immunotherapy combination approaches: mechanisms, biomarkers and clinical observations. Nat Rev Immunol 2024; 24:399-416. [PMID: 38057451 PMCID: PMC11460566 DOI: 10.1038/s41577-023-00973-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
The approval of the first immune checkpoint inhibitors provided a paradigm shift for the treatment of malignancies across a broad range of indications. Whereas initially, single-agent immune checkpoint inhibition was used, increasing numbers of patients are now treated with combination immune checkpoint blockade, where non-redundant mechanisms of action of the individual agents generally lead to higher response rates. Furthermore, immune checkpoint therapy has been combined with various other therapeutic modalities, including chemotherapy, radiotherapy and other immunotherapeutics such as vaccines, adoptive cellular therapies, cytokines and others, in an effort to maximize clinical efficacy. Currently, a large number of clinical trials test combination therapies with an immune checkpoint inhibitor as a backbone. However, proceeding without inclusion of broad, if initially exploratory, biomarker investigations may ultimately slow progress, as so far, few combinations have yielded clinical successes based on clinical data alone. Here, we present the rationale for combination therapies and discuss clinical data from clinical trials across the immuno-oncology spectrum. Moreover, we discuss the evolution of biomarker approaches and highlight the potential new directions that comprehensive biomarker studies can yield.
Collapse
Affiliation(s)
- Lisa H Butterfield
- University of California San Francisco, Microbiology and Immunology, San Francisco, CA, USA.
| | | |
Collapse
|
10
|
Basar OY, Mohammed S, Qoronfleh MW, Acar A. Optimizing cancer therapy: a review of the multifaceted effects of metronomic chemotherapy. Front Cell Dev Biol 2024; 12:1369597. [PMID: 38813084 PMCID: PMC11133583 DOI: 10.3389/fcell.2024.1369597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Metronomic chemotherapy (MCT), characterized by the continuous administration of chemotherapeutics at a lower dose without prolonged drug-free periods, has garnered significant attention over the last 2 decades. Extensive evidence from both pre-clinical and clinical settings indicates that MCT induces distinct biological effects than the standard Maximum Tolerated Dose (MTD) chemotherapy. The low toxicity profile, reduced likelihood of inducing acquired therapeutic resistance, and low cost of MCT render it an attractive chemotherapeutic regimen option. One of the most prominent aspects of MCT is its anti-angiogenesis effects. It has been shown to stimulate the expression of anti-angiogenic molecules, thereby inhibiting angiogenesis. In addition, MCT has been shown to decrease the regulatory T-cell population and promote anti-tumor immune response through inducing dendritic cell maturation and increasing the number of cytotoxic T-cells. Combination therapies utilizing MCT along with oncolytic virotherapy, radiotherapy or other chemotherapeutic regimens have been studied extensively. This review provides an overview of the current status of MCT research and the established mechanisms of action of MCT treatment and also offers insights into potential avenues of development for MCT in the future.
Collapse
Affiliation(s)
- Oyku Yagmur Basar
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| | - Sawsan Mohammed
- Qatar University, QU Health, College of Medicine, Doha, Qatar
| | - M. Walid Qoronfleh
- Q3 Research Institute (QRI), Research and Policy Division, Ypsilanti, MI, United States
| | - Ahmet Acar
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| |
Collapse
|
11
|
Saleh RO, Ibrahim FM, Pallathadka H, Kaur I, Ahmad I, Ali SHJ, Redhee AH, Ghildiyal P, Jawad MA, Alsaadi SB. Nucleic acid vaccines-based therapy for triple-negative breast cancer: A new paradigm in tumor immunotherapy arena. Cell Biochem Funct 2024; 42:e3992. [PMID: 38551221 DOI: 10.1002/cbf.3992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 04/02/2024]
Abstract
Nucleic acid vaccines (NAVs) have the potential to be economical, safe, and efficacious. Furthermore, just the chosen antigen in the pathogen is the target of the immune responses brought on by NAVs. Triple-negative breast cancer (TNBC) treatment shows great promise for nucleic acid-based vaccines, such as DNA (as plasmids) and RNA (as messenger RNA [mRNA]). Moreover, cancer vaccines offer a compelling approach that can elicit targeted and long-lasting immune responses against tumor antigens. Bacterial plasmids that encode antigens and immunostimulatory molecules serve as the foundation for DNA vaccines. In the 1990s, plasmid DNA encoding the influenza A nucleoprotein triggered a protective and targeted cytotoxic T lymphocyte (CTL) response, marking the first instance of DNA vaccine-mediated immunity. Similarly, in vitro transcribed mRNA was first successfully used in animals in 1990. At that point, mice were given an injection of the gene encoding the mRNA sequence, and the researchers saw the production of a protein. We begin this review by summarizing our existing knowledge of NAVs. Next, we addressed NAV delivery, emphasizing the need to increase efficacy in TNBC.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Fatma M Ibrahim
- Community Health Nursing, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
- Geriatric Nursing, Mansoura University, Mansoura, Egypt
| | | | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Saad Hayif Jasim Ali
- Department of Medical Laboratory, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Huseen Redhee
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Salim B Alsaadi
- Department of Pharmaceutics, Al-Hadi University College, Baghdad, Iraq
| |
Collapse
|
12
|
Harrer DC, Lüke F, Pukrop T, Ghibelli L, Gerner C, Reichle A, Heudobler D. Peroxisome proliferator-activated receptorα/γ agonist pioglitazone for rescuing relapsed or refractory neoplasias by unlocking phenotypic plasticity. Front Oncol 2024; 13:1289222. [PMID: 38273846 PMCID: PMC10808445 DOI: 10.3389/fonc.2023.1289222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
A series of seven clinical trials on relapsed or refractory (r/r) metastatic neoplasias followed the question: Are networks of ligand-receptor cross-talks that support tumor-specific cancer hallmarks, druggable with tumor tissue editing approaches therapeutically exploiting tumor plasticity? Differential recombinations of pioglitazone, a dual peroxisome-proliferator activated receptorα/γ (PPARα/γ) agonist, with transcriptional modulators, i.e., all-trans retinoic acid, interferon-α, or dexamethasone plus metronomic low-dose chemotherapy (MCT) or epigenetic modeling with azacitidine plus/minus cyclooxygenase-2 inhibition initiated tumor-specific reprogramming of cancer hallmarks, as exemplified by inflammation control in r/r melanoma, renal clear cell carcinoma (RCCC), Hodgkin's lymphoma (HL) and multisystem Langerhans cell histiocytosis (mLCH) or differentiation induction in non-promyelocytic acute myeloid leukemia (non-PML AML). Pioglitazone, integrated in differentially designed editing schedules, facilitated induction of tumor cell death as indicated by complete remission (CR) in r/r non-PML AML, continuous CR in r/r RCCC, mLCH, and in HL by addition of everolimus, or long-term disease control in melanoma by efficaciously controlling metastasis, post-therapy cancer repopulation and acquired cell-resistance and genetic/molecular-genetic tumor cell heterogeneity (M-CRAC). PPARα/γ agonists provided tumor-type agnostic biomodulatory efficacy across different histologic neoplasias. Tissue editing techniques disclose that wide-ranging functions of PPARα/γ agonists may be on-topic focused for differentially unlocking tumor phenotypes. Low-dose MCT facilitates targeted reprogramming of cancer hallmarks with transcriptional modulators, induction of tumor cell death, M-CRAC control and editing of non-oncogene addiction. Thus, pioglitazone, integrated in tumor tissue editing protocols, is an important biomodulatory drug for addressing urgent therapeutic problems, such as M-CRAC in relapsed or refractory tumor disease.
Collapse
Affiliation(s)
- Dennis Christoph Harrer
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Regensburg, Germany
| | - Lina Ghibelli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
13
|
Zaki HM, Ali KM, Abd Allah MYY, Abouelnaga AM, Abdraboh ME, Hussein O. Metronomic cyclophosphamide and metformin inhibited tumor growth and repopulated tumor-infiltrating lymphocytes in an experimental carcinoma model. BMC Res Notes 2024; 17:4. [PMID: 38167322 PMCID: PMC10759693 DOI: 10.1186/s13104-023-06651-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Metformin is a widely used antidiabetic biguanide. Retrospective data demonstrated the association of metformin use with survival benefit in multiple tumor types. Interest in repurposing metformin to treat cancer has not been translated into encouraging clinical benefit. In animal models, metformin activated cytotoxic T cells and exerted an immune-mediated anticancer effect. The current research was conducted to investigate the possible therapeutic benefit of metformin in combination with metronomic cyclophosphamide in an experimental cancer model. Ehrlich ascites carcinoma was injected into the subcutaneous tissue to induce solid tumors in syngeneic mice. Exponential solid tumor growth ensued and was effectively arrested with the administration of a cytotoxic dose of parenteral cyclophosphamide. Alternatively, oral metformin and continuous, low-dose cyclophosphamide significantly inhibited tumor growth relative to untreated mice. The drug combination was well tolerated. Histopathological examination of the tumor showed an increased number of tumor-infiltrating lymphocytes and enhanced expression of granzyme B by this drug combination. The current data suggests a potential role of metformin and metronomic chemotherapy that warrants further investigation.
Collapse
Affiliation(s)
- Heba Mohamed Zaki
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Khadiga Mohamed Ali
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | | | | | | | - Osama Hussein
- Surgical Oncology Department, Faculty of Medicine, Mansoura University Oncology Center, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
14
|
Chamorro DF, Somes LK, Hoyos V. Engineered Adoptive T-Cell Therapies for Breast Cancer: Current Progress, Challenges, and Potential. Cancers (Basel) 2023; 16:124. [PMID: 38201551 PMCID: PMC10778447 DOI: 10.3390/cancers16010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Breast cancer remains a significant health challenge, and novel treatment approaches are critically needed. This review presents an in-depth analysis of engineered adoptive T-cell therapies (E-ACTs), an innovative frontier in cancer immunotherapy, focusing on their application in breast cancer. We explore the evolving landscape of chimeric antigen receptor (CAR) and T-cell receptor (TCR) T-cell therapies, highlighting their potential and challenges in targeting breast cancer. The review addresses key obstacles such as target antigen selection, the complex breast cancer tumor microenvironment, and the persistence of engineered T-cells. We discuss the advances in overcoming these barriers, including strategies to enhance T-cell efficacy. Finally, our comprehensive analysis of the current clinical trials in this area provides insights into the future possibilities and directions of E-ACTs in breast cancer treatment.
Collapse
Affiliation(s)
- Diego F. Chamorro
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; (D.F.C.); (L.K.S.)
| | - Lauren K. Somes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; (D.F.C.); (L.K.S.)
| | - Valentina Hoyos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; (D.F.C.); (L.K.S.)
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
15
|
Joaquin Garcia A, Rediti M, Venet D, Majjaj S, Kammler R, Munzone E, Gianni L, Thürlimann B, Laáng I, Colleoni M, Loi S, Viale G, Regan MM, Buisseret L, Rothé F, Sotiriou C. Differential Benefit of Metronomic Chemotherapy Among Triple-Negative Breast Cancer Subtypes Treated in the IBCSG Trial 22-00. Clin Cancer Res 2023; 29:4908-4919. [PMID: 37733800 DOI: 10.1158/1078-0432.ccr-23-1267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/19/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
PURPOSE To explore whether specific triple-negative breast cancer (TNBC) molecular subtypes are predictive for a benefit from maintenance low-dose cyclophosphamide and methotrexate (CM) in the adjuvant IBCSG 22-00 phase III clinical trial. EXPERIMENTAL DESIGN RNA sequencing was performed on a selection of 347 TNBC formalin-fixed paraffin-embedded (FFPE) tumor samples following a case-cohort-like sampling. TNBC subtypes were computed on gene expression data. The association between TNBC subtypes and treatment outcome was assessed using a Cox proportional-hazards interaction test. RESULTS Immunomodulatory (IM) and basal-like/immune activated (BLIA) molecular subtypes showed a significant survival benefit when treated with low-dose CM [disease-free survival (DFS): HR, 0.5; 95% confidence interval (CI), 0.28-0.89; Pinteraction = 0.018 and HR, 0.49; 95% CI, 0.27-0.9; Pinteraction = 0.021]. Moreover, a high expression of regulatory T-cell immune signature was associated with a better prognosis in the CM arm, in line with a potential immunomodulating role of cyclophosphamide. In contrast, a worse outcome was observed in tumors with a mesenchymal (M) subtype treated with low-dose CM (DFS: HR, 1.9; 95% CI, 1.2-3; Pinteraction = 0.0044). CONCLUSIONS Our results show a differential benefit of low-dose CM therapy across different TNBC subtypes. Low-dose CM therapy could be considered as a potential strategy for TNBC tumors with IM subtype in the early-disease setting.
Collapse
Affiliation(s)
- Andrea Joaquin Garcia
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Mattia Rediti
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - David Venet
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Samira Majjaj
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Roswitha Kammler
- Translational Research Coordination International Breast Cancer Study Group, Division of ETOP IBCSG Partners Foundation, Bern, Switzerland
| | | | - Lorenzo Gianni
- Department of Medical Oncology, Ospedale Infermi, Rimini, AUSL della Romagna, Italy
| | | | - István Laáng
- National Institute of Oncology, Budapest, Hungary
| | - Marco Colleoni
- International Breast Cancer Study Group, Division of Medical Senology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Sherene Loi
- International Breast Cancer Study Group, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Meredith M Regan
- International Breast Cancer Study Group Statistical Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Laurence Buisseret
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Françoise Rothé
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
16
|
Jiang XT, Liu Q. mRNA vaccination in breast cancer: current progress and future direction. J Cancer Res Clin Oncol 2023; 149:9435-9450. [PMID: 37100972 PMCID: PMC10132791 DOI: 10.1007/s00432-023-04805-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
Messenger RNA (mRNA) vaccination has proven to be highly successful in combating Coronavirus disease 2019 (COVID-19) and has recently sparked tremendous interest. This technology has been a popular topic of research over the past decade and is viewed as a promising treatment strategy for cancer immunotherapy. However, despite being the most prevalent malignant disease for women worldwide, breast cancer patients have limited access to immunotherapy benefits. mRNA vaccination has the potential to convert cold breast cancer into hot and expand the responders. Effective mRNA vaccine design for in vivo function requires consideration of vaccine targets, mRNA structures, transport vectors, and injection routes. This review provides an overview of pre-clinical and clinical data on various mRNA vaccination platforms used for breast cancer treatment and discusses potential approaches to combine appropriate vaccination platforms or other immunotherapies to improve mRNA vaccine therapy efficacy for breast cancer.
Collapse
Affiliation(s)
- Xiao-Ting Jiang
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Qiang Liu
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China.
| |
Collapse
|
17
|
Chaurasia M, Singh R, Sur S, Flora SJS. A review of FDA approved drugs and their formulations for the treatment of breast cancer. Front Pharmacol 2023; 14:1184472. [PMID: 37576816 PMCID: PMC10416257 DOI: 10.3389/fphar.2023.1184472] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/23/2023] [Indexed: 08/15/2023] Open
Abstract
Breast cancer is one of the most diagnosed solid cancers globally. Extensive research has been going on for decades to meet the challenges of treating solid tumors with selective compounds. This article aims to summarize the therapeutic agents which are either being used or are currently under approval for use in the treatment or mitigation of breast cancer by the US FDA, to date. A structured search of bibliographic databases for previously published peer-reviewed research papers on registered molecules was explored and data was sorted in terms of various categories of drugs used in first line/adjuvant therapy for different stages of breast cancer. We included more than 300 peer-reviewed papers, including both research and reviews articles, in order to provide readers an useful comprehensive information. A list of 39 drugs are discussed along with their current status, dose protocols, mechanism of action, pharmacokinetics, possible side effects, and marketed formulations. Another interesting aspect of the article included focusing on novel formulations of these drugs which are currently in clinical trials or in the process of approval. This exhaustive review thus shall be a one-stop solution for researchers who are working in the areas of formulation development for these drugs.
Collapse
Affiliation(s)
| | | | | | - S. J. S. Flora
- Era College of Pharmacy, Era University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
18
|
Hieber C, Grabbe S, Bros M. Counteracting Immunosenescence-Which Therapeutic Strategies Are Promising? Biomolecules 2023; 13:1085. [PMID: 37509121 PMCID: PMC10377144 DOI: 10.3390/biom13071085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Aging attenuates the overall responsiveness of the immune system to eradicate pathogens. The increased production of pro-inflammatory cytokines by innate immune cells under basal conditions, termed inflammaging, contributes to impaired innate immune responsiveness towards pathogen-mediated stimulation and limits antigen-presenting activity. Adaptive immune responses are attenuated as well due to lowered numbers of naïve lymphocytes and their impaired responsiveness towards antigen-specific stimulation. Additionally, the numbers of immunoregulatory cell types, comprising regulatory T cells and myeloid-derived suppressor cells, that inhibit the activity of innate and adaptive immune cells are elevated. This review aims to summarize our knowledge on the cellular and molecular causes of immunosenescence while also taking into account senescence effects that constitute immune evasion mechanisms in the case of chronic viral infections and cancer. For tumor therapy numerous nanoformulated drugs have been developed to overcome poor solubility of compounds and to enable cell-directed delivery in order to restore immune functions, e.g., by addressing dysregulated signaling pathways. Further, nanovaccines which efficiently address antigen-presenting cells to mount sustained anti-tumor immune responses have been clinically evaluated. Further, senolytics that selectively deplete senescent cells are being tested in a number of clinical trials. Here we discuss the potential use of such drugs to improve anti-aging therapy.
Collapse
Affiliation(s)
- Christoph Hieber
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
19
|
Postel-Vinay S, Lam VK, Ros W, Bauer TM, Hansen AR, Cho DC, Stephen Hodi F, Schellens JHM, Litton JK, Aspeslagh S, Autio KA, Opdam FL, McKean M, Somaiah N, Champiat S, Altan M, Spreafico A, Rahma O, Paul EM, Ahlers CM, Zhou H, Struemper H, Gorman SA, Watmuff M, Yablonski KM, Yanamandra N, Chisamore MJ, Schmidt EV, Hoos A, Marabelle A, Weber JS, Heymach JV. First-in-human phase I study of the OX40 agonist GSK3174998 with or without pembrolizumab in patients with selected advanced solid tumors (ENGAGE-1). J Immunother Cancer 2023; 11:jitc-2022-005301. [PMID: 36927527 PMCID: PMC10030671 DOI: 10.1136/jitc-2022-005301] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND The phase I first-in-human study ENGAGE-1 evaluated the humanized IgG1 OX40 agonistic monoclonal antibody GSK3174998 alone (Part 1 (P1)) or in combination with pembrolizumab (Part 2 (P2)) in patients with advanced solid tumors. METHODS GSK3174998 (0.003-10 mg/kg) ± pembrolizumab (200 mg) was administered intravenously every 3 weeks using a continuous reassessment method for dose escalation. Primary objectives were safety and tolerability; secondary objectives included pharmacokinetics, immunogenicity, pharmacodynamics, and clinical activity. RESULTS 138 patients were enrolled (45 (P1) and 96 (P2, including 3 crossovers)). Treatment-related adverse events occurred in 51% (P1) and 64% (P2) of patients, fatigue being the most common (11% and 24%, respectively). No dose-toxicity relationship was observed, and maximum-tolerated dose was not reached. Dose-limiting toxicities (P2) included Grade 3 (G3) pleural effusion and G1 myocarditis with G3 increased troponin. GSK3174998 ≥0.3 mg/kg demonstrated pharmacokinetic linearity and >80% receptor occupancy on circulating T cells; 0.3 mg/kg was selected for further evaluation. Limited clinical activity was observed for GSK3174998 (P1: disease control rate (DCR) ≥24 weeks 9%) and was not greater than that expected for pembrolizumab alone (P2: overall response rate 8%, DCR ≥24 weeks 28%). Multiplexed immunofluorescence data from paired biopsies suggested that increased infiltration of natural killer (NK)/natural killer T (NKT) cells and decreased regulatory T cells (Tregs) in the tumor microenvironment may contribute to clinical responses: CD16+CD56-CD134+ NK /NKT cells and CD3+CD4+FOXP3+CD134+ Tregs exhibited the largest magnitude of change on treatment, whereas CD3+CD8+granzyme B+PD-1+CD134+ cytotoxic T cells were the least variable. Tumor gene expression profiling revealed an upregulation of inflammatory responses, T-cell proliferation, and NK cell function on treatment with some inflammatory cytokines upregulated in peripheral blood. However, target engagement, evidenced by pharmacologic activity in peripheral blood and tumor tissue, did not correlate with clinical efficacy. The low number of responses precluded identifying a robust biomarker signature predictive of response. CONCLUSIONS GSK3174998±pembrolizumab was well tolerated over the dose range tested and demonstrated target engagement. Limited clinical activity does not support further development of GSK3174998±pembrolizumab in advanced cancers. TRIAL REGISTRATION NUMBER NCT02528357.
Collapse
Affiliation(s)
- Sophie Postel-Vinay
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Vincent K Lam
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Willeke Ros
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Todd M Bauer
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
| | - Aaron R Hansen
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Daniel C Cho
- New York Medical College, Valhalla, New York, USA
| | - F Stephen Hodi
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jan H M Schellens
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Jennifer K Litton
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sandrine Aspeslagh
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Karen A Autio
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Frans L Opdam
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | | | - Neeta Somaiah
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Stephane Champiat
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Mehmet Altan
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anna Spreafico
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Osama Rahma
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Elaine M Paul
- GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | | | - Helen Zhou
- GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | | | | | | | | | | | | | | | - Axel Hoos
- GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Aurelien Marabelle
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Jeffrey S Weber
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - John V Heymach
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
20
|
The Combination of Immune Checkpoint Blockade with Tumor Vessel Normalization as a Promising Therapeutic Strategy for Breast Cancer: An Overview of Preclinical and Clinical Studies. Int J Mol Sci 2023; 24:ijms24043226. [PMID: 36834641 PMCID: PMC9964596 DOI: 10.3390/ijms24043226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have a modest clinical activity when administered as monotherapy against breast cancer (BC), the most common malignancy in women. Novel combinatorial strategies are currently being investigated to overcome resistance to ICIs and promote antitumor immune responses in a greater proportion of BC patients. Recent studies have shown that the BC abnormal vasculature is associated with immune suppression in patients, and hampers both drug delivery and immune effector cell trafficking to tumor nests. Thus, strategies directed at normalizing (i.e., at remodeling and stabilizing) the immature, abnormal tumor vessels are receiving much attention. In particular, the combination of ICIs with tumor vessel normalizing agents is thought to hold great promise for the treatment of BC patients. Indeed, a compelling body of evidence indicates that the addition of low doses of antiangiogenic drugs to ICIs substantially improves antitumor immunity. In this review, we outline the impact that the reciprocal interactions occurring between tumor angiogenesis and immune cells have on the immune evasion and clinical progression of BC. In addition, we overview preclinical and clinical studies that are presently evaluating the therapeutic effectiveness of combining ICIs with antiangiogenic drugs in BC patients.
Collapse
|
21
|
Wang AX, Ong XJ, D’Souza C, Neeson PJ, Zhu JJ. Combining chemotherapy with CAR-T cell therapy in treating solid tumors. Front Immunol 2023; 14:1140541. [PMID: 36949946 PMCID: PMC10026332 DOI: 10.3389/fimmu.2023.1140541] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Chemotherapy has long been a standard treatment for a wide range of malignancies, where patients typically undergo multiple rounds of chemotherapy regimens to control tumor growth. In the clinic, the chemotherapy drugs cyclophosphamide and fludarabine are commonly used prior to Chimeric Antigen Receptor T (CAR-T) cell therapy to lymphodeplete and improve CAR-T cell engraftment. In this review, we discuss the use of chemotherapy in combination with CAR-T cell therapy. We also show that chemotherapy can deplete immunosuppressive cells, promote a pro-inflammatory tumor microenvironment, disrupt tumor stroma, and improve CAR-T cell recruitment to the tumor. Although the combination of chemotherapy plus CAR-T cell therapy is promising, certain aspects of chemotherapy also pose a challenge. In addition, the combined therapeutic effect may be heavily dependent on the dose and the treatment schedule. Thus, we also discussed the obstacles to effective clinical outcomes of the combination therapy.
Collapse
Affiliation(s)
- Arthur Xuan Wang
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Xiao Jing Ong
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Criselle D’Souza
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Melbourne, VIC, Australia
| | - Paul J. Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Melbourne, VIC, Australia
| | - Joe Jiang Zhu
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Melbourne, VIC, Australia
- *Correspondence: Joe Jiang Zhu,
| |
Collapse
|
22
|
Liu S, Li J, Gu L, Wu K, Xing H. Nanoparticles for Chemoimmunotherapy Against Triple-Negative Breast Cancer. Int J Nanomedicine 2022; 17:5209-5227. [PMID: 36388877 PMCID: PMC9651025 DOI: 10.2147/ijn.s388075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) exhibits high recurrence and mortality rates because of the lack of effective treatment targets. Surgery and traditional chemotherapy are the primary treatment options. Immunotherapy shows high potential for treating various cancers but exhibits limited efficacy against TNBC as a monotherapy. Chemoimmunotherapy has broad prospects for applications for cancer treatment conferred through the synergistic immunomodulatory and anti-tumor effects of chemotherapy and immunotherapeutic strategies. However, improving the efficacy of synergistic therapy and reducing the side effects of multiple drugs remain to be the main challenges in chemoimmunotherapy against TNBC. Nanocarriers can target both cancer and immune cells, promote drug accumulation, and show minimal toxicity, making them ideal delivery systems for chemotherapeutic and immunotherapeutic agents. In this review, we introduce the immunomodulatory effects of chemotherapy and combined mechanisms of chemoimmunotherapy, followed by a summary of nanoparticle-mediated chemoimmunotherapeutic strategies used for treating TNBC. This up-to-date synthesis of relevant findings in the field merits contemplation, while considering avenues of investigation to enable advances in the field.
Collapse
Affiliation(s)
- Siyan Liu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jing Li
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Lin Gu
- Breast Surgery, Jilin Province Tumor Hospital, Changchun, People’s Republic of China
| | - Kunzhe Wu
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Hua Xing
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
23
|
Shan F, Somasundaram A, Bruno TC, Workman CJ, Vignali DAA. Therapeutic targeting of regulatory T cells in cancer. Trends Cancer 2022; 8:944-961. [PMID: 35853825 PMCID: PMC9588644 DOI: 10.1016/j.trecan.2022.06.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/24/2022]
Abstract
The success of immunotherapy in oncology underscores the vital role of the immune system in cancer development. Regulatory T cells (Tregs) maintain a fine balance between autoimmunity and immune suppression. They have multiple roles in the tumor microenvironment (TME) but act particularly in suppressing T cell activation. This review focuses on the detrimental and sometimes beneficial roles of Tregs in tumors, our current understanding of recruitment and stabilization of Tregs within the TME, and current Treg-targeted therapeutics. Research identifying subpopulations of Tregs and their respective functions and interactions within the complex networks of the TME will be crucial to develop the next generation of immunotherapies. Through these advances, Treg-targeted immunotherapy could have important implications for the future of oncology.
Collapse
Affiliation(s)
- Feng Shan
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Ashwin Somasundaram
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA.
| |
Collapse
|
24
|
Pepe FF, Cazzaniga ME, Baroni S, Riva F, Cicchiello F, Capici S, Cogliati V, Maggioni C, Cordani N, Cerrito MG, Malandrin S. Immunomodulatory effects of metronomic vinorelbine (mVRL), with or without metronomic capecitabine (mCAPE), in hormone receptor positive (HR+)/HER2-negative metastatic breast cancer (MBC) patients: final results of the exploratory phase 2 Victor-5 study. BMC Cancer 2022; 22:956. [PMID: 36068484 PMCID: PMC9446532 DOI: 10.1186/s12885-022-10031-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
Tregs are able of suppressing tumor-specific effector cells, such as lymphocytes CD8+, CD4+ and Natural Killer cells. Different drugs, especially different schedules of administration, like metronomic chemotherapy (mCHT), seem to be able to increase anticancer immunity, by acting on downregulation of Tregs. Most of the data available regarding the immunomodulating effect of mCHT have been obtained with Cyclophosphamide (CTX). Aim of the present study was to explore the effects of mVRL and mCAPE administration, alone or in combination, on T cells. Observation of 13 metastatic breast cancer patients lasted controlling for 56 days, where Treg frequencies and function, spontaneous anti-tumor T-cell responses were monitored, as well as the clinical outcome. No depletion in Treg absolute numbers, or percentage of T lymphocytes, was observed. Only in 5 patients, a modest and transient depletion of Tregs was observed during the first 14 days of treatment. To better describe the effect on Tregs, we subsequently looked at the variations in Memory, Naïve and Activated Treg subpopulations: we observed a trend in reduction for memory Treg (Treg MEM) and an increase for Treg Naïve (Treg NAIVE) and Treg Activated (Treg ACT) components. We finally analyzed the average trend of Treg in the Treg depleted patients and non-depleted ones, without fiding any significant differences. The trend of the Treg MEM appeared different, showing a reduction during the first 14 days, followed by an increase at the levels before treatment at Day 56 in the group of depleted patients and a progressive substantial reduction in the group of non-depleted patients along the entire course of treatment. Opposed to the data known, treatment with mVRL w/o mCAPE did not show any effect on Tregs.
Collapse
Affiliation(s)
- F F Pepe
- Phase 1 Research Centre, ASST Monza, Monza, Italy
| | - M E Cazzaniga
- Phase 1 Research Centre, ASST Monza, Monza, Italy. .,School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy.
| | - S Baroni
- School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - F Riva
- Oncology Unit, ASST Monza, Monza, Italy
| | | | - S Capici
- Phase 1 Research Centre, ASST Monza, Monza, Italy
| | - V Cogliati
- Phase 1 Research Centre, ASST Monza, Monza, Italy
| | | | - N Cordani
- School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - M G Cerrito
- School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | | |
Collapse
|
25
|
Shenasa E, Stovgaard ES, Jensen MB, Asleh K, Riaz N, Gao D, Leung S, Ejlertsen B, Laenkholm AV, Nielsen TO. Neither Tumor-Infiltrating Lymphocytes nor Cytotoxic T Cells Predict Enhanced Benefit from Chemotherapy in the DBCG77B Phase III Clinical Trial. Cancers (Basel) 2022; 14:cancers14153808. [PMID: 35954471 PMCID: PMC9367267 DOI: 10.3390/cancers14153808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Apart from the direct killing of cancer cells, cyclophosphamide-based chemotherapy has been shown to induce an antitumor immune response, and is being used in combination with immunotherapies in cancer care. We assessed the interaction of chemotherapy with immune biomarkers expressed on primary tumor tissue from a randomized phase III clinical trial, and confirmed that the presence of tumor-infiltrating lymphocytes is linked to improved survival in premenopausal women with high-risk breast cancer, regardless of their treatment allocation. However, immune biomarkers including tumor-infiltrating lymphocytes do not predict extra benefit from cyclophosphamide chemotherapy. This finding applies across the major molecular subgroups, including non-luminal and basal breast cancers that tend to be more immunogenic, and are often considered the most suitable subsets for receiving immunotherapy. Abstract Recent studies have shown that immune infiltrates in the tumor microenvironment play a role in response to therapy, with some suggesting that patients with immunogenic tumors may receive increased benefit from chemotherapies. We evaluated this hypothesis in early breast cancer by testing the interaction between immune biomarkers and chemotherapy using materials from DBCG77B, a phase III clinical trial where high-risk premenopausal women were randomized to receive chemotherapy or no chemotherapy. Tissue microarrays were evaluated for tumor-infiltrating lymphocytes (TILs) assessed morphologically on hematoxylin and eosin-stained slides, and by immunohistochemistry for CD8, FOXP3, LAG-3, PD-1 and PD-L1. Following REMARK reporting guidelines, data analyses were performed according to a prespecified statistical plan, using 10-year invasive disease-free survival as the endpoint. Differences in survival probabilities between biomarker groups were evaluated by Kaplan–Meier and Cox proportional hazard ratio analyses and prediction for treatment benefit by an interaction test. Our results showed that stromal TILs were associated with an improved prognosis (HR = 0.93; p-value = 0.03), consistent with previous studies. However, none of the immune biomarkers predicted benefit from chemotherapy in the full study set nor within major breast cancer subtypes. Our study indicates that primary tumors with higher immune infiltration do not derive extra benefit from cyclophosphamide-based cytotoxic chemotherapy.
Collapse
Affiliation(s)
- Elahe Shenasa
- Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver V6H 3Z6, BC, Canada
| | | | - Maj-Britt Jensen
- Danish Breast Cancer Cooperative Group, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Karama Asleh
- Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver V6H 3Z6, BC, Canada
| | - Nazia Riaz
- Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver V6H 3Z6, BC, Canada
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, Karachi 74800, Pakistan
| | - Dongxia Gao
- Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver V6H 3Z6, BC, Canada
| | - Samuel Leung
- Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver V6H 3Z6, BC, Canada
| | - Bent Ejlertsen
- Danish Breast Cancer Cooperative Group, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Anne-Vibeke Laenkholm
- Department of Surgical Pathology, Zealand University Hospital, 4000 Roskilde, Denmark
| | - Torsten O. Nielsen
- Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver V6H 3Z6, BC, Canada
- Correspondence:
| |
Collapse
|
26
|
Howard FM, Pearson AT, Nanda R. Clinical trials of immunotherapy in triple-negative breast cancer. Breast Cancer Res Treat 2022; 195:1-15. [PMID: 35834065 PMCID: PMC9338129 DOI: 10.1007/s10549-022-06665-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 06/23/2022] [Indexed: 01/12/2023]
Abstract
PURPOSE Immunotherapy has started to transform the treatment of triple-negative breast cancer (TNBC), in part due to the unique immunogenicity of this breast cancer subtype. This review summarizes clinical studies of immunotherapy in advanced and early-stage TNBC. FINDINGS Initial studies of checkpoint blockade monotherapy demonstrated occasional responses, especially in patients with untreated programmed death-ligand 1 (PD-L1) positive advanced TNBC, but failed to confirm a survival advantage over chemotherapy. Nonetheless, pembrolizumab monotherapy has tumor agnostic approval for microsatellite instability-high or high tumor mutational burden cancers, and thus can be considered for select patients with advanced TNBC. Combination chemoimmunotherapy approaches have been more successful, and pembrolizumab is approved for PD-L1 positive advanced TNBC in combination with chemotherapy. This success has been translated to the curative setting, where pembrolizumab is now approved in combination with neoadjuvant chemotherapy for high-risk early-stage TNBC. CONCLUSION Immunotherapy has been a welcome addition to the growing armamentarium for TNBC, but responses remain limited to a subset of patients. Innovative strategies are under investigation in an attempt to induce immune responses in resistant tumors-with regimens incorporating small-molecule inhibitors, novel immune checkpoint targets, and intratumoral injections that directly alter the tumor microenvironment. As the focus shifts toward the use of immunotherapy for early-stage TNBC, it will be critical to identify those who derive the most benefit from treatment, given the potential for irreversible autoimmune toxicity and the lack of predictive accuracy of PD-L1 expression in the early-stage setting.
Collapse
Affiliation(s)
- Frederick M Howard
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medicine & Biological Sciences, 5841 S. Maryland Ave MC 2115, Chicago, IL, 60637, USA.
| | - Alexander T Pearson
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medicine & Biological Sciences, 5841 S. Maryland Ave MC 2115, Chicago, IL, 60637, USA
| | - Rita Nanda
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medicine & Biological Sciences, 5841 S. Maryland Ave MC 2115, Chicago, IL, 60637, USA
| |
Collapse
|
27
|
Lüke F, Harrer DC, Pantziarka P, Pukrop T, Ghibelli L, Gerner C, Reichle A, Heudobler D. Drug Repurposing by Tumor Tissue Editing. Front Oncol 2022; 12:900985. [PMID: 35814409 PMCID: PMC9270020 DOI: 10.3389/fonc.2022.900985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
The combinatory use of drugs for systemic cancer therapy commonly aims at the direct elimination of tumor cells through induction of apoptosis. An alternative approach becomes the focus of attention if biological changes in tumor tissues following combinatory administration of regulatorily active drugs are considered as a therapeutic aim, e.g., differentiation, transdifferentiation induction, reconstitution of immunosurveillance, the use of alternative cell death mechanisms. Editing of the tumor tissue establishes new biological 'hallmarks' as a 'pressure point' to attenuate tumor growth. This may be achieved with repurposed, regulatorily active drug combinations, often simultaneously targeting different cell compartments of the tumor tissue. Moreover, tissue editing is paralleled by decisive functional changes in tumor tissues providing novel patterns of target sites for approved drugs. Thus, agents with poor activity in non-edited tissue may reveal new clinically meaningful outcomes. For tissue editing and targeting edited tissue novel requirements concerning drug selection and administration can be summarized according to available clinical and pre-clinical data. Monoactivity is no pre-requisite, but combinatory bio-regulatory activity. The regulatorily active dose may be far below the maximum tolerable dose, and besides inhibitory active drugs stimulatory drug activities may be integrated. Metronomic scheduling often seems to be of advantage. Novel preclinical approaches like functional assays testing drug combinations in tumor tissue are needed to select potential drugs for repurposing. The two-step drug repurposing procedure, namely establishing novel functional systems states in tumor tissues and consecutively providing novel target sites for approved drugs, facilitates the systematic identification of drug activities outside the scope of any original clinical drug approvals.
Collapse
Affiliation(s)
- Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Dennis Christoph Harrer
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Pan Pantziarka
- The George Pantziarka TP53 Trust, London, United Kingdom
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Regensburg, Germany
| | - Lina Ghibelli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
28
|
Howard FM, Villamar D, He G, Pearson AT, Nanda R. The emerging role of immune checkpoint inhibitors for the treatment of breast cancer. Expert Opin Investig Drugs 2022; 31:531-548. [PMID: 34569400 PMCID: PMC8995399 DOI: 10.1080/13543784.2022.1986002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Breast cancer has traditionally been viewed as immunogenically 'cold,' but two immune checkpoint inhibitors have been approved in combination with chemotherapy for PD-L1 positive advanced triple-negative breast cancer (TNBC), and pembrolizumab was also recently approved for early stage TNBC. As the landscape is rapidly evolving, a comprehensive review of checkpoint inhibitors in breast cancer is needed to aid clinicians in selecting appropriate candidates for therapy, and to highlight ongoing promising studies in this area and topics in need of further investigation. AREA COVERED This review summarizes the latest evidence from completed and ongoing trials of immune checkpoint inhibitors. Ongoing studies were identified using a search of ClinicalTrials.gov with the term 'breast cancer' along with specific checkpoint inhibitor agents. EXPERT OPINION A number of novel combination strategies are under investigation to enhance response and overcome resistance to immunotherapy, with promising preliminary data from checkpoint inhibitors targeting TIGIT, combinations with small molecule inhibitors such as lenvatinib, and injectable agents directly influencing the immune microenvironment. As immunotherapy enters into the curative setting, biomarkers predictive of immunotherapy benefit are needed, as PD-L1 status has not been a helpful discriminator in completed trials in early-stage breast cancer.
Collapse
Affiliation(s)
| | - Dario Villamar
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Gong He
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | - Rita Nanda
- Department of Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
29
|
Zhang J, Pan S, Jian C, Hao L, Dong J, Sun Q, Jin H, Han X. Immunostimulatory Properties of Chemotherapy in Breast Cancer: From Immunogenic Modulation Mechanisms to Clinical Practice. Front Immunol 2022; 12:819405. [PMID: 35069604 PMCID: PMC8766762 DOI: 10.3389/fimmu.2021.819405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BC) is the most common malignancy among females. Chemotherapy drugs remain the cornerstone of treatment of BC and undergo significant shifts over the past 100 years. The advent of immunotherapy presents promising opportunities and constitutes a significant complementary to existing therapeutic strategies for BC. Chemotherapy as a cytotoxic treatment that targets proliferation malignant cells has recently been shown as an effective immune-stimulus in multiple ways. Chemotherapeutic drugs can cause the release of damage-associated molecular patterns (DAMPs) from dying tumor cells, which result in long-lasting antitumor immunity by the key process of immunogenic cell death (ICD). Furthermore, Off-target effects of chemotherapy on immune cell subsets mainly involve activation of immune effector cells including natural killer (NK) cells, dendritic cells (DCs), and cytotoxic T cells, and depletion of immunosuppressive cells including Treg cells, M2 macrophages and myeloid-derived suppressor cells (MDSCs). Current mini-review summarized recent large clinical trials regarding the combination of chemotherapy and immunotherapy in BC and addressed the molecular mechanisms of immunostimulatory properties of chemotherapy in BC. The purpose of our work was to explore the immune-stimulating effects of chemotherapy at the molecular level based on the evidence from clinical trials, which might be a rationale for combinations of chemotherapy and immunotherapy in BC.
Collapse
Affiliation(s)
- Jinguo Zhang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuaikang Pan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Chen Jian
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Li Hao
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Jie Dong
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Qingqing Sun
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongwei Jin
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Xinghua Han
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
30
|
Emerging photodynamic nanotherapeutics for inducing immunogenic cell death and potentiating cancer immunotherapy. Biomaterials 2022; 282:121433. [DOI: 10.1016/j.biomaterials.2022.121433] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/21/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
|
31
|
Liu J, Wang X, Deng Y, Yu X, Wang H, Li Z. Research Progress on the Role of Regulatory T Cell in Tumor Microenvironment in the Treatment of Breast Cancer. Front Oncol 2021; 11:766248. [PMID: 34868991 PMCID: PMC8636122 DOI: 10.3389/fonc.2021.766248] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is a complex ecosystem comprised of cancer cells, stromal cells, and immune cells. Analysis of the composition of TME is essential to assess the prognosis of patients with breast cancer (BC) and the efficacy of different regimes. Treg plays a crucial role in the microenvironment of breast cancer subtypes, and its function contributes to the development and progression of BC by suppressing anti-tumor immunity directly or indirectly through multiple mechanisms. In addition, conventional treatments, such as anthracycline-based neoadjuvant chemotherapy, and neo-therapies, such as immune-checkpoint blockades, have a significant impact on the absence of Tregs in BC TME, thus gaining additional anti-tumor effect to some extent. Strikingly, Treg in BC TME revealed the predicted efficacy of some therapeutic strategies. All these results suggest that we can manipulate the abundance of Treg to achieve the ultimate effect of both conventional and novel treatments. In this review, we discuss new insights into the characteristics of Treg in BC TME, the impact of different regiments on Treg, and the possibilities of Treg as a predictive marker of efficacy for certain treatments.
Collapse
Affiliation(s)
- Jianyu Liu
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xueying Wang
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuhan Deng
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin Yu
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hongbin Wang
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhigao Li
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
32
|
Lai V, Neshat SY, Rakoski A, Pitingolo J, Doloff JC. Drug delivery strategies in maximizing anti-angiogenesis and anti-tumor immunity. Adv Drug Deliv Rev 2021; 179:113920. [PMID: 34384826 DOI: 10.1016/j.addr.2021.113920] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022]
Abstract
Metronomic chemotherapy has been shown to elicit anti-tumor immune response and block tumor angiogenesis distinct from that observed with maximal tolerated dose (MTD) therapy. This review delves into the mechanisms behind anti-tumor immunity and seeks to identify the differential effect of dosing regimens, including daily low-dose and medium-dose intermittent chemotherapy (MEDIC), on both innate and adaptive immune populations involved in observed anti-tumor immune response. Given reports of VEGF/VEGFR blockade antagonizing anti-tumor immunity, drug choice, dose, and selective delivery determined by advanced formulations/vehicles are highlighted as potential sources of innovation for identifying anti-angiogenic modalities that may be combined with metronomic regimens without interrupting key immune players in the anti-tumor response. Engineered drug delivery mechanisms that exhibit extended and local release of anti-angiogenic agents both alone and in combination with chemotherapeutic treatments have also been demonstrated to elicit a potent and potentially systemic anti-tumor immune response, favoring tumor regression and stasis over progression. This review examines this interplay between various cancer models, the host immune response, and select anti-cancer agents depending on drug dosing, scheduling/regimen, and delivery modality.
Collapse
Affiliation(s)
- Victoria Lai
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sarah Y Neshat
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Amanda Rakoski
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - James Pitingolo
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joshua C Doloff
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, Division of Cancer Immunology, Sidney Kimmel Comprehensive Cancer Center and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
33
|
Schmidt M, Heimes AS. Immunomodulating Therapies in Breast Cancer-From Prognosis to Clinical Practice. Cancers (Basel) 2021; 13:4883. [PMID: 34638367 PMCID: PMC8507771 DOI: 10.3390/cancers13194883] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/26/2021] [Accepted: 09/26/2021] [Indexed: 12/20/2022] Open
Abstract
The role of the immune system in breast cancer has been debated for decades. The advent of technologies such as next generation sequencing (NGS) has elucidated the crucial interplay between somatic mutations in tumors leading to neoantigens and immune responses with increased tumor-infiltrating lymphocytes and improved prognosis of breast cancer patients. In particular, triple-negative breast cancer (TNBC) has a higher mutational burden compared to other breast cancer subtypes. In addition, higher levels of tumor-associated antigens suggest that immunotherapies are a promising treatment option, specifically for TNBC. Indeed, higher concentrations of tumor-infiltrating lymphocytes are associated with better prognosis and response to chemotherapy in TNBC. An important target within the cancer immune cell cycle is the "immune checkpoint". Immune checkpoint inhibitors (ICPis) block the interaction of certain cell surface proteins that act as "brakes" on immune responses. Recent studies have shown that ICPis improve survival in both early and advanced TNBC. However, this comes at the price of increased toxicity, particularly immune-mediated toxicity. As an alternative approach, individualized mRNA vaccination strategies against tumor-associated neoantigens represent another promising approach leading to neoantigen-specific immune responses. These novel strategies should help to improve treatment outcomes, especially for patients with triple negative breast cancer.
Collapse
Affiliation(s)
- Marcus Schmidt
- Department of Obstetrics and Gynecology, University Medical Center Mainz, 55131 Mainz, Germany;
| | | |
Collapse
|
34
|
Kim R, Kin T. Current and Future Therapies for Immunogenic Cell Death and Related Molecules to Potentially Cure Primary Breast Cancer. Cancers (Basel) 2021; 13:cancers13194756. [PMID: 34638242 PMCID: PMC8507525 DOI: 10.3390/cancers13194756] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary How a cure for primary breast cancer after (neo)adjuvant therapy can be achieved at the molecular level remains unclear. Immune activation by anticancer drugs may contribute to the eradication of residual tumor cells by postoperative (neo)adjuvant chemotherapy. In addition, chemotherapy-induced immunogenic cell death (ICD) may result in long-term immune activation by memory effector T cells, leading to the curing of primary breast cancer. In this review, we discuss the molecular mechanisms by which anticancer drugs induce ICD and immunogenic modifications for antitumor immunity and targeted therapy against damage-associated molecular patterns. Our aim was to gain a better understanding of how to eradicate residual tumor cells treated with anticancer drugs and cure primary breast cancer by enhancing antitumor immunity with immune checkpoint inhibitors and vaccines. Abstract How primary breast cancer can be cured after (neo)adjuvant therapy remains unclear at the molecular level. Immune activation by anticancer agents may contribute to residual tumor cell eradication with postsurgical (neo)adjuvant chemotherapy. Chemotherapy-induced immunogenic cell death (ICD) may result in long-term immune activation with memory effector T cells, leading to a primary breast cancer cure. Anthracycline and taxane treatments cause ICD and immunogenic modulations, resulting in the activation of antitumor immunity through damage-associated molecular patterns (DAMPs), such as adenosine triphosphate, calreticulin, high mobility group box 1, heat shock proteins 70/90, and annexin A1. This response may eradicate residual tumor cells after surgical treatment. Although DAMP release is also implicated in tumor progression, metastasis, and drug resistance, thereby representing a double-edged sword, robust immune activation by anticancer agents and the subsequent acquisition of long-term antitumor immune memory can be essential components of the primary breast cancer cure. This review discusses the molecular mechanisms by which anticancer drugs induce ICD and immunogenic modifications for antitumor immunity and targeted anti-DAMP therapy. Our aim was to improve the understanding of how to eradicate residual tumor cells treated with anticancer drugs and cure primary breast cancer by enhancing antitumor immunity with immune checkpoint inhibitors and vaccines.
Collapse
Affiliation(s)
- Ryungsa Kim
- Department of Breast Surgery, Hiroshima Mark Clinic, 1-4-3F, 2-Chome Ohte-machi, Naka-ku, Hiroshima 730-0051, Japan
- Correspondence:
| | - Takanori Kin
- Department of Breast Surgery, Hiroshima City Hospital, 7-33, Moto-machi, Naka-ku, Hiroshima 730-8518, Japan;
| |
Collapse
|
35
|
Krejcik J, Barnkob MB, Nyvold CG, Larsen TS, Barington T, Abildgaard N. Harnessing the Immune System to Fight Multiple Myeloma. Cancers (Basel) 2021; 13:4546. [PMID: 34572773 PMCID: PMC8467095 DOI: 10.3390/cancers13184546] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) is a heterogeneous plasma cell malignancy differing substantially in clinical behavior, prognosis, and response to treatment. With the advent of novel therapies, many patients achieve long-lasting remissions, but some experience aggressive and treatment refractory relapses. So far, MM is considered incurable. Myeloma pathogenesis can broadly be explained by two interacting mechanisms, intraclonal evolution of cancer cells and development of an immunosuppressive tumor microenvironment. Failures in isotype class switching and somatic hypermutations result in the neoplastic transformation typical of MM and other B cell malignancies. Interestingly, although genetic alterations occur and evolve over time, they are also present in premalignant stages, which never progress to MM, suggesting that genetic mutations are necessary but not sufficient for myeloma transformation. Changes in composition and function of the immune cells are associated with loss of effective immune surveillance, which might represent another mechanism driving malignant transformation. During the last decade, the traditional view on myeloma treatment has changed dramatically. It is increasingly evident that treatment strategies solely based on targeting intrinsic properties of myeloma cells are insufficient. Lately, approaches that redirect the cells of the otherwise suppressed immune system to take control over myeloma have emerged. Evidence of utility of this principle was initially established by the observation of the graft-versus-myeloma effect in allogeneic stem cell-transplanted patients. A variety of new strategies to harness both innate and antigen-specific immunity against MM have recently been developed and intensively tested in clinical trials. This review aims to give readers a basic understanding of how the immune system can be engaged to treat MM, to summarize the main immunotherapeutic modalities, their current role in clinical care, and future prospects.
Collapse
Affiliation(s)
- Jakub Krejcik
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
- Haematology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Mike Bogetofte Barnkob
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark
| | - Charlotte Guldborg Nyvold
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Haematology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, 5000 Odense, Denmark
| | - Thomas Stauffer Larsen
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
- Haematology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Torben Barington
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark
| | - Niels Abildgaard
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
- Haematology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| |
Collapse
|
36
|
Su NW, Chen YJ. Metronomic Therapy in Oral Squamous Cell Carcinoma. J Clin Med 2021; 10:jcm10132818. [PMID: 34206730 PMCID: PMC8269021 DOI: 10.3390/jcm10132818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/26/2022] Open
Abstract
Metronomic therapy is characterized by drug administration in a low-dose, repeated, and regular manner without prolonged drug-free interval. The two main anticancer mechanisms of metronomic therapy are antiangiogenesis and immunomodulation, which have been demonstrated in several delicate in vitro and in vivo experiments. In contrast to the traditional maximum tolerated dose (MTD) dosing of chemotherapy, metronomic therapy possesses comparative efficacy but greatlydecreases the incidence and severity of treatment side-effects. Clinical trials of metronomic anticancer treatment have revealed promising results in a variety cancer types and specific patient populations such as the elderly and pediatric malignancies. Oral cavity squamous cell carcinoma (OCSCC) is an important health issue in many areas around the world. Long-term survival is about 50% in locally advanced disease despite having high-intensity treatment combined surgery, radiotherapy, and chemotherapy. In this article, we review and summarize the essence of metronomic therapy and focus on its applications in OCSCC treatment.
Collapse
Affiliation(s)
- Nai-Wen Su
- Department of Internal Medicine, Division of Hematology and Medical Oncology, MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei City 10449, Taiwan;
- Department of Nursing, MacKay Junior College of Medicine, Nursing and Management, Taipei City 112021, Taiwan
| | - Yu-Jen Chen
- Department of Nursing, MacKay Junior College of Medicine, Nursing and Management, Taipei City 112021, Taiwan
- Department of Radiation Oncology, Mackay Memorial Hospital, No. 45, Minsheng Rd., Tamsui District, New Taipei City 25160, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
- Correspondence: ; Tel.: +886-2-2809-4661
| |
Collapse
|
37
|
Español A, Salem A, Sanchez Y, Sales ME. Breast cancer: Muscarinic receptors as new targets for tumor therapy. World J Clin Oncol 2021; 12:404-428. [PMID: 34189066 PMCID: PMC8223712 DOI: 10.5306/wjco.v12.i6.404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/26/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
The development of breast cancer is a complex process that involves the participation of different factors. Several authors have demonstrated the overexpression of muscarinic acetylcholine receptors (mAChRs) in different tumor tissues and their role in the modulation of tumor biology, positioning them as therapeutic targets in cancer. The conventional treatment for breast cancer involves surgery, radiotherapy, and/or chemotherapy. The latter presents disadvantages such as limited specificity, the appearance of resistance to treatment and other side effects. To prevent these side effects, several schedules of drug administration, like metronomic therapy, have been developed. Metronomic therapy is a type of chemotherapy in which one or more drugs are administered at low concentrations repetitively. Recently, two chemotherapeutic agents usually used to treat breast cancer have been considered able to activate mAChRs. The combination of low concentrations of these chemotherapeutic agents with muscarinic agonists could be a useful option to be applied in breast cancer treatment, since this combination not only reduces tumor cell survival without affecting normal cells, but also decreases pathological neo-angiogenesis, the expression of drug extrusion proteins and the cancer stem cell fraction. In this review, we focus on the previous evidences that have positioned mAChRs as relevant therapeutic targets in breast cancer and analyze the effects of administering muscarinic agonists in combination with conventional chemotherapeutic agents in a metronomic schedule.
Collapse
Affiliation(s)
- Alejandro Español
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Agustina Salem
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Yamila Sanchez
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - María Elena Sales
- Laboratory of Immunopharmacology and Tumor Biology, CEFYBO CONICET University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| |
Collapse
|
38
|
Lüke F, Harrer DC, Menhart K, Wolff D, Holler E, Hellwig D, Herr W, Grube M, Vogelhuber M, Reichle A, Heudobler D. Biomodulatory Treatment Regimen, MEPED, Rescues Relapsed and Refractory Classic Hodgkin's Disease. Front Pharmacol 2021; 12:599561. [PMID: 34220492 PMCID: PMC8249731 DOI: 10.3389/fphar.2021.599561] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Current combined intensive chemotherapy and radiation regimens yield excellent survival rates in advanced classic Hodgkin’s lymphoma (cHL). However, acute toxicity in elderly, comorbid patients can be challenging and long-term survival in refractory patients remains poor. Patients and Methods: We report on six patients with r/r HL, three patients with long-term follow-up, three newly treated, after biomodulatory therapy. All patients received MEPED (treosulfan 250 mg p.o. daily, everolimus 15 mg p.o. daily to achieve serum trough levels of 15 ng/ml, pioglitazone 45 mg p.o. daily, etoricoxib 60 mg p.o. daily and dexamethasone 0.5 mg p.o. daily). Patients had either received every at that time approved systemic treatment or were ineligible for standard treatment, including immune checkpoint inhibition (ICPi) due to prior demyelinating autoimmune polyneuropathy, myasthenia gravis and previous allogeneic hematopoietic-stem-cell transplant (alloHSCT). Medication was administered continuously from day 1. One patient with relapse after alloHSCT received trofosfamide 50 mg daily instead of treosulfan to avoid risk of increased myelotoxicity. The patients were treated in individual healing attempts outside a clinical trial after institutional review board approval. 18F-fluoro-2-deoxy-d-glucose positron emission tomography combined with computed tomography scan (FDG-PET/CT) was performed to monitor treatment and follow-up. Results: In the three newly treated patients, CT scans showed partial remissions after 2–5 months on MEPED treatment. Two patients had achieved PET Deauville score 2 and 3, while the third remained positive at Deauville score 5. One patient achieving PR became eligible for alloHSCT, while the other two patients continued treatment with MEPED. All patients eventually achieved continuous complete remission (cCR), one after consecutive alloHSCT, one after discontinuing MEPED consolidation for >1 year and one on on-going MEPED consolidation, respectively. Only one patient experienced Grade 3 toxicity (bacterial pneumonia) requiring temporary discontinuation of MEPED for 10 days. All three previously published patients received allo HSCT for consolidation and have achieved cCR. Conclusions: MEPED is well tolerated with low toxicity and highly efficacious in relapsed/refractory cHL, including severely comorbid patients. Due to its immunomodulatory components, MEPED might also have a synergistic potential when combined with ICPi but requires further evaluation within a clinical trial.
Collapse
Affiliation(s)
- Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Dennis C Harrer
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Karin Menhart
- Department of Nuclear Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Daniel Wolff
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Ernst Holler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Dirk Hellwig
- Department of Nuclear Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Matthias Grube
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Martin Vogelhuber
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| |
Collapse
|
39
|
Heudobler D, Schulz C, Fischer JR, Staib P, Wehler T, Südhoff T, Schichtl T, Wilke J, Hahn J, Lüke F, Vogelhuber M, Klobuch S, Pukrop T, Herr W, Held S, Beckers K, Bouche G, Reichle A. A Randomized Phase II Trial Comparing the Efficacy and Safety of Pioglitazone, Clarithromycin and Metronomic Low-Dose Chemotherapy with Single-Agent Nivolumab Therapy in Patients with Advanced Non-small Cell Lung Cancer Treated in Second or Further Line (ModuLung). Front Pharmacol 2021; 12:599598. [PMID: 33796020 PMCID: PMC8007965 DOI: 10.3389/fphar.2021.599598] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Most non-small cell lung cancers occur in elderly and frequently comorbid patients. Therefore, it is necessary to evaluate the efficacy of biomodulatory active therapy regimen, concertedly interfering with tumor-associated homeostatic pathways to achieve tumor control paralleled by modest toxicity profiles. Patients and Methods: The ModuLung trial is a national, multicentre, prospective, open-label, randomized phase II trial in patients with histologically confirmed stage IIIB/IV squamous (n = 11) and non-squamous non-small cell (n = 26) lung cancer who failed first-line platinum-based chemotherapy. Patients were randomly assigned on a 1:1 ratio to the biomodulatory or control group, treated with nivolumab. Patients randomized to the biomodulatory group received an all-oral therapy consisting of treosulfan 250 mg twice daily, pioglitazone 45 mg once daily, clarithromycin 250 mg twice daily, until disease progression or unacceptable toxicity. Results: The study had to be closed pre-maturely due to approval of immune checkpoint inhibitors (ICi) in first-line treatment. Thirty-seven patients, available for analysis, were treated in second to forth-line. Progression-free survival (PFS) was significantly inferior for biomodulation (N = 20) vs. nivolumab (N = 17) with a median PFS (95% confidence interval) of 1.4 (1.2-2.0) months vs. 1.6 (1.4-6.2), respectively; with a hazard ratio (95% confidence interval) of 1.908 [0.962; 3.788]; p = 0.0483. Objective response rate was 11.8% with nivolumab vs. 5% with biomodulation, median follow-up 8.25 months. The frequency of grade 3-5 treatment related adverse events was 29% with nivolumab and 10% with biomodulation. Overall survival (OS), the secondary endpoint, was comparable in both treatment arms; biomodulation with a median OS (95% confidence interval) of 9.4 (6.0-33.0) months vs. nivolumab 6.9 (4.6-24.0), respectively; hazard ratio (95% confidence interval) of 0.733 [0.334; 1.610]; p = 0.4368. Seventy-five percent of patients in the biomodulation arm received rescue therapy with checkpoint inhibitors. Conclusions: This trial shows that the biomodulatory therapy was inferior to nivolumab on PFS. However, the fact that OS was similar between groups gives rise to the hypothesis that the well-tolerable biomodulatory therapy may prime tumor tissues for efficacious checkpoint inhibitor therapy, even in very advanced treatment lines where poor response to ICi might be expected with increasing line of therapy.
Collapse
Affiliation(s)
- Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany.,Bavarian Center for Cancer Research, Regensburg, Germany
| | - Christian Schulz
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | | | - Peter Staib
- Euregio Cancer Center Eschweiler, Eschweiler, Germany
| | - Thomas Wehler
- Department of Hematology, Oncology, Palliative Care, Pneumology, Evangelisches Krankenhaus Hamm, Hamm, Germany.,Lungenklinik Hemer, Hemer, Germany
| | - Thomas Südhoff
- Department of Hematology and Oncology, Klinikum Passau, Passau, Germany
| | - Thomas Schichtl
- Medizinisches Versorgungszentrum Weiden, Weiden in der Oberpfalz, Bavaria, Germany
| | | | - Joachim Hahn
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Martin Vogelhuber
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Sebastian Klobuch
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany.,Bavarian Center for Cancer Research, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | | | | | | | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
40
|
Salas-Benito D, Pérez-Gracia JL, Ponz-Sarvisé M, Rodriguez-Ruiz ME, Martínez-Forero I, Castañón E, López-Picazo JM, Sanmamed MF, Melero I. Paradigms on Immunotherapy Combinations with Chemotherapy. Cancer Discov 2021; 11:1353-1367. [PMID: 33712487 DOI: 10.1158/2159-8290.cd-20-1312] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/21/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022]
Abstract
Checkpoint inhibitors are being added to standard-of-care chemotherapy in multiple clinical trials. Success has been reported in non-small and small cell lung carcinomas and urothelial, head and neck, gastric, and esophageal cancers, and promising results are already available in triple-negative breast and pancreatic malignancies. The potential mechanisms of synergy include immunogenic tumor cell death, antiangiogenesis, selective depletion of myeloid immunosuppressive cells, and lymphopenia, which reduces regulatory T cells and makes room for proliferation of effector T cells. However, chemotherapy regimens have not been optimized for such combinations, perhaps explaining some recent clinical trial disappointments. Approaches to make the most of chemoimmunotherapy include neoadjuvant and adjuvant schemes.Significance: Immunotherapy of cancer based on PD-1/PD-L1 blockade has prompted a revolution in cancer clinical management. Evidence in phase III clinical trials already supports combinations of immunotherapy with standard-of-care chemotherapy for a number of malignant diseases. This review focuses on such evidence and provides an overview of the potential synergistic mechanisms of action and the opportunities to optimize chemoimmunotherapy regimens.
Collapse
Affiliation(s)
- Diego Salas-Benito
- Oncology Department, Clínica Universidad de Navarra, Pamplona, Spain. .,Clinical Trials Unit, Clínica Universidad de Navarra, Pamplona, Spain
| | - José L Pérez-Gracia
- Oncology Department, Clínica Universidad de Navarra, Pamplona, Spain.,Clinical Trials Unit, Clínica Universidad de Navarra, Pamplona, Spain
| | - Mariano Ponz-Sarvisé
- Oncology Department, Clínica Universidad de Navarra, Pamplona, Spain.,Clinical Trials Unit, Clínica Universidad de Navarra, Pamplona, Spain
| | - María E Rodriguez-Ruiz
- Oncology Department, Clínica Universidad de Navarra, Pamplona, Spain.,Clinical Trials Unit, Clínica Universidad de Navarra, Pamplona, Spain
| | | | - Eduardo Castañón
- Oncology Department, Clínica Universidad de Navarra, Pamplona, Spain.,Clinical Trials Unit, Clínica Universidad de Navarra, Pamplona, Spain
| | - José M López-Picazo
- Oncology Department, Clínica Universidad de Navarra, Pamplona, Spain.,Clinical Trials Unit, Clínica Universidad de Navarra, Pamplona, Spain
| | - Miguel F Sanmamed
- Oncology Department, Clínica Universidad de Navarra, Pamplona, Spain.,Clinical Trials Unit, Clínica Universidad de Navarra, Pamplona, Spain.,Center for Medical Applied Research (CIMA), Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Biomedical Research Network in Oncology (CIBERONC), Pamplona, Spain
| | - Ignacio Melero
- Clinical Trials Unit, Clínica Universidad de Navarra, Pamplona, Spain. .,Center for Medical Applied Research (CIMA), Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Biomedical Research Network in Oncology (CIBERONC), Pamplona, Spain.,Immunology Department, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
41
|
Cook AM, McDonnell A, Millward MJ, Creaney J, Hasani A, McMullen M, Meniawy T, Robinson BWS, Lake RA, Nowak AK. A phase 1b clinical trial optimizing regulatory T cell depletion in combination with platinum-based chemotherapy in thoracic cancers. Expert Rev Anticancer Ther 2021; 21:465-474. [PMID: 33509005 DOI: 10.1080/14737140.2021.1882308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: Single-agent cyclophosphamide can deplete regulatory T-cells (Treg). We aimed to determine optimal dosing and scheduling of oral cyclophosphamide, alongside pemetrexed-based chemotherapy, to deplete Treg in mesothelioma or non-small-cell lung cancer patients.Methods: 31 Patients received pemetrexed ± cisplatin or carboplatin on day 1 of a 21-day cycle (maximum 6 cycles). From cycle two, patients received cyclophosphamide, 50 mg/day, with intrapatient escalation to maximum 100/150 mg/day alternately. Immunological changes were examined by flow cytometry. Primary endpoint was Treg proportion of CD4+ T-cells, with doses tailored to target Treg nadir <4%.Results: Reduction in Treg proportion was observed on day 8 of all cycles, and was not augmented by cyclophosphamide. Few patients achieved the <4% Treg target. Treg proliferation reached nadir one week after chemotherapy, and peaked on day 1 of the subsequent cycle. Efficacy parameters were similar to chemotherapy alone. Seventeen percent of patients ceased cyclophosphamide due to toxicity.Conclusions: Specific Treg depletion to the degree seen with single-agent cyclophosphamide was not observed during pemetrexed-based chemotherapy. This study highlights the poor evidence basis for use of cyclophosphamide as an immunotherapeutic in combination with chemotherapy, and the importance of detailed flow cytometry studies.Trial registration: Clinical trial registration: www.anzctr.org.au identifier is ACTRN12609000260224.
Collapse
Affiliation(s)
- Alistair M Cook
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Crawley, Australia.,National Centre for Asbestos Related Diseases, University of Western Australia, Crawley, Australia
| | - Alison McDonnell
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Crawley, Australia.,National Centre for Asbestos Related Diseases, University of Western Australia, Crawley, Australia
| | - Michael J Millward
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Crawley, Australia.,Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Jenette Creaney
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Crawley, Australia.,National Centre for Asbestos Related Diseases, University of Western Australia, Crawley, Australia
| | - Arman Hasani
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Michelle McMullen
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Tarek Meniawy
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Crawley, Australia.,National Centre for Asbestos Related Diseases, University of Western Australia, Crawley, Australia.,Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Bruce W S Robinson
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Crawley, Australia.,National Centre for Asbestos Related Diseases, University of Western Australia, Crawley, Australia.,Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Richard A Lake
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Crawley, Australia.,National Centre for Asbestos Related Diseases, University of Western Australia, Crawley, Australia
| | - Anna K Nowak
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Crawley, Australia.,National Centre for Asbestos Related Diseases, University of Western Australia, Crawley, Australia.,Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia.,Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Nedlands, Australia
| |
Collapse
|
42
|
The role of regulatory T cells in the pathogenesis and treatment of prostate cancer. Life Sci 2021; 284:119132. [PMID: 33513396 DOI: 10.1016/j.lfs.2021.119132] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/10/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Despite developments in the treatment of various cancers, prostate cancer is one of the deadliest diseases known to men. Systemic therapies such as androgen deprivation, chemotherapy, and radiation therapy have not been very successful in treating this disease. Numerous studies have shown that there is a direct relationship between cancer progression and inhibition of anti-tumor immune responses that can lead to progression of various malignancies, including prostate cancer. Interestingly, CD4+CD25+FoxP3+ regulatory T cells significantly accumulate and increase in draining lymph nodes and PBMCs of patients with prostate cancer and other solid tumors. In vivo and in vitro studies have shown that Tregs can suppress anti-tumor responses, which is directly related to the increased risk of cancer recurrence. Tregs are essential for preserving self-tolerance and inhibiting extra immune responses harmful to the host. Since the tumor-related antigens are mainly self-antigens, Tregs could play a major role in tumor progression. Accordingly, it has discovered that prostate cancer patients with higher Tregs have poor prognosis and low survival rates. However, anti-tumor responses can be reinforced by suppression of Tregs with using monoclonal antibodies against CD25 and CTLA-4. Therefore, depleting Tregs or suppressing their functions could be one of the effective ways for prostate cancer immunotherapy. The purpose of this review is to investigate the role of Treg cells in the progression of prostate cancer and to evaluate effective strategies for the treatment of prostate cancer by regulating Treg cells.
Collapse
|
43
|
Efficacy and tolerability of metronomic chemotherapy in patients with metastatic breast cancer - an international experience in West Sweden and in the South of Ireland. Cancer Treat Res Commun 2020; 25:100237. [PMID: 33248390 DOI: 10.1016/j.ctarc.2020.100237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Metronomic chemotherapy (MCT) is the continuous administration of low dose chemotherapy. It has significant clinical efficacy with minimal toxicity as compared to conventional chemotherapy regimens. Thus represents an attractive treatment modality in selected patients with advanced breast cancer. METHODS Patients who received MCT in the form of Capecitabine/Cyclophosphamide for the treatment of advanced breast cancer between May 2014 and October 2018 in Sahlgrenska University Hospital in Sweden and in Cork University Hospital, University Hospital Kerry and the South Infirmary-Victoria University Hospital in Ireland were identified. Medical records were retrospectively reviewed to collect data. All survival analyses were described by Kaplan-Meier curves and analysed with log-rank tests. The primary end-point was time on treatment, used as a surrogate marker for efficacy. RESULTS 148 patients were identified (84 - Sweden, 64 - Ireland), with a median age of 64.2 (range 31-89). The overall mean time on treatment for all patients in both countries is 9.05 months (range 0.36 - 67.21). In patients with bone only disease the mean time on treatment was 10.1 months (range 0.7 - 67.2), compared to patients with visceral disease of 8.91 months (range 0.36 - 39.77). Treatment was ended in the majority of patients because of progression of disease, representing 108 patients (72.9%). CONCLUSION This is an observational, retrospective study demonstrating the real world effectiveness of MCT in the treatment of advanced breast cancer. In this cohort of unselected pre-treated patients, the efficacy of MCT was comparable with the survival outcomes of landmark clinical trials.
Collapse
|
44
|
Sanna G, Pestrin M, Moretti E, Biagioni C, De Santo I, Gabellini S, Galardi F, McCartney A, Biganzoli L. A Dose-finding Study of Metronomic Oral Vinorelbine in Combination With Oral Cyclophosphamide and Bevacizumab in Patients With Advanced Breast Cancer. Clin Breast Cancer 2020; 21:e332-e339. [PMID: 33353853 DOI: 10.1016/j.clbc.2020.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Metronomic chemotherapy can induce disease control in patients with metastatic breast cancer (MBC) and has better safety profiles than conventional chemotherapy. Evidence suggests that cytotoxics can be anti-angiogenic in pre-clinical models and may have synergistic effects when combined with anti-vascular endothelial growth factor therapies. PATIENTS AND METHODS Patients pretreated with ≥ 1 prior line of therapy for MBC received oral cyclophosphamide 50 mg daily in combination with oral vinorelbine at escalating doses of 20 mg (V20), 30 mg (V30), and 40 mg (V40) 3 times per week, and intravenous bevacizumab 15 mg/kg every 3 weeks. Patients with human epidermal growth factor receptor 2-positive disease were given the same regimen plus standard trastuzumab. Doses were escalated when 3 patients completed 3 treatment cycles of V20 and V30, without experiencing dose-limiting toxicities. The recommended dose was then tested in a further 6 patients. Circulating tumour cells and circulating endothelial cells (CEC) were measured in 30 mL of whole blood samples at baseline, after cycle 1, and at the disease progression. RESULTS Fifteen patients were recruited from June 2013 to October 2015. The median age was 61 years (range, 29-72 years); 80% had estrogen receptor-positive and 33% had human epidermal growth factor receptor 2-positive disease. At least 67% had visceral metastases, and 80% had received ≥ 2 lines of prior treatment. No dose-limiting toxicities were observed at the 3 dose-levels, making V40 the recommended dose. Overall 8 (53%) patients developed grade 2 adverse events (arthralgia, n = 3 [20%]; asthenia, n = 2 [13%]; diarrhea, n = 2 [13%]; leukopenia, n = 2 [13%]). Bevacizumab was associated with grade 3 hypertension (n = 3 [20%]). Stable disease as best response was observed in 11 (73.3%) patients. The clinical benefit rate was 66.6% (10/15 patients). The median time to progression was 6.9 months. At baseline, CECs were more commonly detectable than circulating tumor cells; however, no statistical correlation was found between CEC kinetics and response. CONCLUSION A metronomic vinorelbine dose of 40 mg combined with cyclophosphamide and bevacizumab is a promising treatment regimen in pretreated patients with MBC.
Collapse
Affiliation(s)
- Giuseppina Sanna
- Medical Oncology Department, Nuovo Ospedale-Santo Stefano Instituto Toscano Tumori, Prato, Italy.
| | - Marta Pestrin
- Oncologia Medica, Azienda Sanitaria Universitaria Giuliano Isontina, Gorizia, Italy
| | - Erica Moretti
- Medical Oncology Department, Nuovo Ospedale-Santo Stefano Instituto Toscano Tumori, Prato, Italy
| | | | - Irene De Santo
- Oncologia Medica, Ospedale Misericordia di Grosseto, Grosseto, Italy
| | - Stefano Gabellini
- Medical Oncology Department, Nuovo Ospedale-Santo Stefano Instituto Toscano Tumori, Prato, Italy
| | - Francesca Galardi
- Sandro Pitigliani Translational Research Unit, Hospital of Prato, Prato, Italy
| | - Amelia McCartney
- Medical Oncology Department, Nuovo Ospedale-Santo Stefano Instituto Toscano Tumori, Prato, Italy
| | - Laura Biganzoli
- Medical Oncology Department, Nuovo Ospedale-Santo Stefano Instituto Toscano Tumori, Prato, Italy
| |
Collapse
|
45
|
Massa C, Karn T, Denkert C, Schneeweiss A, Hanusch C, Blohmer JU, Zahm DM, Jackisch C, van Mackelenbergh M, Thomalla J, Marme F, Huober J, Müller V, Schem C, Mueller A, Stickeler E, Biehl K, Fasching PA, Untch M, Loibl S, Weber K, Seliger B. Differential effect on different immune subsets of neoadjuvant chemotherapy in patients with TNBC. J Immunother Cancer 2020; 8:jitc-2020-001261. [PMID: 33199511 PMCID: PMC7670944 DOI: 10.1136/jitc-2020-001261] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 01/03/2023] Open
Abstract
Background Triple-negative breast cancer (TNBC) is the most aggressive form of breast cancer (BC). Due to the absence of targets such as HER2 or hormone receptors, early TNBC is treated with surgery and chemotherapy. Since TNBC is also considered the most immunogenic type of BC with tumor infiltrating lymphocytes that are predictive for chemotherapy response and prognostic for patients′ survival, many different immunotherapeutic strategies are currently explored in clinical trials for the treatment of this disease. In order to efficiently combine chemotherapy with immunotherapy, it is important to evaluate the effect of chemotherapy on immune cells in vivo. Methods Peripheral blood was taken from 56 patients with TNBC undergoing neoadjuvant chemotherapy with nanoparticle albumin-bound paclitaxel (Nab-Pac) followed by epirubicin and cyclophosphamide (EC) at three different time points. Multicolor flow cytometry was used to characterize the immune cell composition and functional properties along neoadjuvant chemotherapy. Results Whereas the first phase of the neoadjuvant chemotherapy did not significantly alter the patients′ immune cell composition, after the second phase of chemotherapeutic administration most B cells (>90%) were lost and the frequency of natural killer (NK) cells and CD4+ T lymphocytes decreased approximately to 50%. In contrast, the frequency of CD8+ T cells were less affected. Conclusions Despite late consequences of Nab-Pac cannot be ruled out, these data suggest that different chemotherapeutics might have distinct effects on the immune cell repertoire and that different immune cell populations exhibit a specific susceptibility to these chemotherapies with B and NK cells being more affected than T cells. This might also have an impact on the combination of chemotherapies with immunotherapies. Trial registration number NCT02685059.
Collapse
Affiliation(s)
- Chiara Massa
- Insitute of Medical Immunology, Martin Luther University Halle Wittenberg, Halle, Sachsen-Anhalt, Germany
| | - Thomas Karn
- Department of Obstetrics and Gynecology, Goethe University Frankfurt, Frankfurt am Main, Hessen, Germany
| | - Carsten Denkert
- Institute of Pathology, Philipps-Universitat Marburg, Marburg, Hessen, Germany
| | - Andreas Schneeweiss
- Nationales Centrum für Tumorerkrankungen, Deutsches Krebsforschungszentrum, Heidelberg, Baden-Württemberg, Germany
| | | | - Jens-Uwe Blohmer
- Brustzentrum, Charite Universitatsmedizin Berlin, Berlin, Germany
| | | | - Christian Jackisch
- Department of Obstetrics and Gynecology, Sana Klinikum Offenbach GmbH, Offenbach, Hessen, Germany
| | - Marion van Mackelenbergh
- Department of Obstetrics and Gynecology, Universitätsklinikum Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Jörg Thomalla
- Praxis für Hämatologie und Onkologie Koblenz, Koblenz, Germany
| | - Frederik Marme
- Universitätsfrauenklinik, Universität Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - Jens Huober
- Universitätsklinikum Ulm, Ulm, Baden-Württemberg, Germany
| | - Volkmar Müller
- Department of Obstetrics and Gynecology, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Hamburg, Germany
| | | | - Anja Mueller
- Insitute of Medical Immunology, Martin Luther University Halle Wittenberg, Halle, Sachsen-Anhalt, Germany
| | - Elmar Stickeler
- Department of Obstetrics and Gynecology, Uniklinik RWTH Aachen, Aachen, Nordrhein-Westfalen, Germany
| | - Katharina Biehl
- Insitute of Medical Immunology, Martin Luther University Halle Wittenberg, Halle, Sachsen-Anhalt, Germany
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Michael Untch
- Department of Obstetrics and Gynecology, HELIOS Klinikum Berlin-Buch, Berlin, Germany
| | - Sibylle Loibl
- Department of Medicine and Research, German Breast Group, Neu-Isenburg, Hessen, Germany
| | - Karsten Weber
- Department of Medicine and Research, German Breast Group, Neu-Isenburg, Hessen, Germany
| | - Barbara Seliger
- Insitute of Medical Immunology, Martin Luther University Halle Wittenberg, Halle, Sachsen-Anhalt, Germany
| |
Collapse
|
46
|
Zhang T, Duan F, Su D, Ma L, Yang J, Shi B, He X, Ma R, Sun S, Yao X. Analysis of the Heterogeneity of CD4 +CD25 + T Cell TCR β CDR3 Repertoires in Breast Tumor Tissues, Lung Metastatic Tissues, and Spleens from 4T1 Tumor-Bearing BALB/c Mice. J Immunol Res 2020; 2020:3184190. [PMID: 33029539 PMCID: PMC7532420 DOI: 10.1155/2020/3184190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/15/2020] [Accepted: 08/24/2020] [Indexed: 02/05/2023] Open
Abstract
To study the homogeneity and heterogeneity of CD4+CD25+ T cells receptor β-chain complementarity determining region 3 (TCR β CDR3) repertoires in breast tumor tissues, lung metastatic tissues, and spleens from 4T1 tumor-bearing BALB/c mice. We used high-throughput sequencing to analyze the characteristics and changes of CD4+CD25+ TCR β CDR3 repertoires among tumor tissues, lung metastatic tissues, and spleens. The diversity of the CD4+CD25+ TCR β CDR3 repertoires in breast tumor tissue was similar to that of lung metastatic tissues and less pronounced than that of spleen tissues. Breast tumor tissues and lung metastatic tissues had a greater number of high-frequency CDR3 sequences and intermediate-frequency CDR3 sequences than those of spleens. The proportion of unique productive CDR3 sequences in breast tumor tissues and lung metastatic tissues was significantly greater than that in the spleens. The diversity and frequency of the CDR3 repertoires remained homogeneous in breast tumors and lung metastatic tissues and showed great heterogeneity in the spleens, which suggested that the breast tissues and lung metastatic tissues have characteristics of CD4+CD25+ T cells that relate to the tumor microenvironment. However, the number and characteristics of overlapping CDR3 sequences suggested that there were some different CD4+CD25+ T cells in tumors and in the circulatory immune system. The study may be used to further explore the characteristics of the CDR3 repertoires and determine the source of the CD4+CD25+ T cells in the breast cancer microenvironment.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/immunology
- Breast Neoplasms/pathology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Clonal Evolution/genetics
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/immunology
- Disease Models, Animal
- Female
- Genetic Variation
- Lung Neoplasms/immunology
- Lung Neoplasms/secondary
- Mice
- Mice, Inbred BALB C
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Recombination, Genetic
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Teng Zhang
- Department of Breast Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China 563000
- Department of Immunology, Research Center for Medicine & Biology, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, Guizhou, China 563000
| | - Fangfang Duan
- Department of Immunology, Research Center for Medicine & Biology, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, Guizhou, China 563000
| | - Danhua Su
- Department of Immunology, Research Center for Medicine & Biology, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, Guizhou, China 563000
| | - Long Ma
- Department of Immunology, Research Center for Medicine & Biology, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, Guizhou, China 563000
| | - Jiezuan Yang
- Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China 310003
| | - Bin Shi
- Department of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China 563000
| | - Xiaoyan He
- Department of Immunology, Research Center for Medicine & Biology, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, Guizhou, China 563000
| | - Rui Ma
- Department of Immunology, Research Center for Medicine & Biology, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, Guizhou, China 563000
| | - Suhong Sun
- Department of Breast Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China 563000
| | - Xinsheng Yao
- Department of Immunology, Research Center for Medicine & Biology, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, Guizhou, China 563000
| |
Collapse
|
47
|
Orlandi P, Banchi M, Alì G, Di Desidero T, Fini E, Fontanini G, Bocci G. Active metronomic vinorelbine schedules decrease plasma interleukin-2 levels in mice with Lewis lung carcinoma. J Chemother 2020; 33:198-202. [PMID: 32930084 DOI: 10.1080/1120009x.2020.1819069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The aim of our study was to investigate the effects of metronomic vinorelbine (mVNR) in a tumor model of Lewis Lung (LL) cancer in immunocompetent C57BL/6 mice, looking at the plasma levels of interleukin-2 (IL-2) and interleukin-8 (IL-8). mVNR caused a concentration-dependent antiproliferative effect in vitro on LL/2 cells. The in vivo experiment showed the significant antitumor effects of mVNR at the dose of 4 mg/Kg and 5 mg/Kg, 3 times/week, and the significant dose-dependent decrease of IL-2 concentrations in plasma samples. Conversely, such an effect was not observed for IL-8. A significant decrease in microvessel density was also found at both the active mVNR doses. In conclusion, our study confirmed the activity of mVNR in an immunocompetent model of lung carcinoma and suggest multiple mechanisms of action, including the modulation of IL-2 levels.
Collapse
Affiliation(s)
- Paola Orlandi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Pisa, Italy
| | - Marta Banchi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Pisa, Italy
| | - Greta Alì
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e Dell'Area Critica, Università di Pisa
| | - Teresa Di Desidero
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Pisa, Italy
| | - Elisabetta Fini
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Pisa, Italy
| | - Gabriella Fontanini
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e Dell'Area Critica, Università di Pisa
| | - Guido Bocci
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Pisa, Italy
| |
Collapse
|
48
|
Gordon B, Gadi VK. The Role of the Tumor Microenvironment in Developing Successful Therapeutic and Secondary Prophylactic Breast Cancer Vaccines. Vaccines (Basel) 2020; 8:vaccines8030529. [PMID: 32937885 PMCID: PMC7565925 DOI: 10.3390/vaccines8030529] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer affects roughly one in eight women over their lifetime and is a leading cause of cancer-related death in women. While outcomes have improved in recent years, prognosis remains poor for patients who present with either disseminated disease or aggressive molecular subtypes. Cancer immunotherapy has revolutionized the treatment of several cancers, with therapeutic vaccines aiming to direct the cytotoxic immune program against tumor cells showing particular promise. However, these results have yet to translate to breast cancer, which remains largely refractory from such approaches. Recent evidence suggests that the breast tumor microenvironment (TME) is an important and long understudied barrier to the efficacy of therapeutic vaccines. Through an improved understanding of the complex and biologically diverse breast TME, it may be possible to advance new combination strategies to render breast carcinomas sensitive to the effects of therapeutic vaccines. Here, we discuss past and present efforts to advance therapeutic vaccines in the treatment of breast cancer, the molecular mechanisms through which the TME contributes to the failure of such approaches, as well as the potential means through which these can be overcome.
Collapse
Affiliation(s)
- Benjamin Gordon
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL 60612, USA
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL 60612, USA
- Correspondence:
| | - Vijayakrishna K. Gadi
- Division of Hematology and Oncology, University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
49
|
Delahousse J, Skarbek C, Desbois M, Perfettini JL, Chaput N, Paci A. Oxazaphosphorines combined with immune checkpoint blockers: dose-dependent tuning between immune and cytotoxic effects. J Immunother Cancer 2020; 8:jitc-2020-000916. [PMID: 32784216 PMCID: PMC7418776 DOI: 10.1136/jitc-2020-000916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2020] [Indexed: 11/18/2022] Open
Abstract
Background Oxazaphosphorines (cyclophosphamide (CPA), ifosfamide (IFO)) are major alkylating agents of polychemotherapy protocols but limiting their toxicity and increasing their efficacy could be of major interest. Oxazaphosphorines are prodrugs that require an activation by cytochrome P450 (CYP). CPA is mainly metabolized (>80%) to phosphoramide mustard while only 10%–50% of IFO is transformed in the alkylating entity, isophosphoramide mustard and 50%–90% of IFO release chloroacetaldehyde, a nephrotoxic and neurotoxic metabolite. Geranyloxy-IFO (G-IFO) was reported as a preactivated IFO to circumvent the toxic pathway giving directly the isophosphoramide mustard without CYP metabolization. The similarity in structure of CPA and IFO and the similarity in metabolic balance of CPA and G-IFO have led us to explore immunomodulatory effect of these components in mice and to investigate the combination of these oxazaphosphorines with immune checkpoint blockers (ICB). Methods The investigation of the immunomodulatory properties of IFO and G-IFO compared with CPA has been conducted through immune cell phenotyping by flow cytometry and analysis of the cytokine profile of T cells after ex-vivo restimulation. T cell-mediated antitumor efficacy was confirmed in CD4+ and CD8+ T cell-depleted mice. A combination of oxazaphosphorines with an anti-programmed cell death 1 (PD-1) antibody has been studied in MCA205 tumor-bearing mice. Results Studies on a MCA205 mouse model have demonstrated a dose-dependent effect of IFO and G-IFO on T cell immunity. These components in particular favored Th1 polarization when used at low dose (150 and eq. 100 mg/kg, respectively). Antitumor activity at low dose was abolished in mice depleted in CD4+ and CD8+ T cells. G-IFO at low dose (eq. 100 mg/kg) in combination with anti-PD-1 antidody showed high synergistic antitumor efficacy compared with IFO. Conclusion Oxazaphosphorines are characterized by a dual mechanism of antitumor action; low-dose schedules should be preferred in combination with ICB, and dose escalation was found to have better utility in polychemotherapy protocols where a conventional direct cytotoxic anticancer effect is needed. G-IFO, the novel oxazaphosphorine drug, has shown a better metabolic index compared with IFO as its metabolization gives mainly the alkylating mustard as CPA (and not IFO) and a best potential in combination with ICB.
Collapse
Affiliation(s)
- Julia Delahousse
- Molecular Radiotherapy and Innovative Therapeutics, Unité Mixte de Recherche 1030 INSERM, Gustave Roussy, F-94805, Villejuif, France.,Vectorology and Anticancer Therapies, Unité Mixte de Recherche 8203 Centre National de la Recherche Scientifique, Gustave Roussy, F-94805, Villejuif, France
| | - Charles Skarbek
- Vectorology and Anticancer Therapies, Unité Mixte de Recherche 8203 Centre National de la Recherche Scientifique, Gustave Roussy, F-94805, Villejuif, France
| | - Mélanie Desbois
- Laboratoire d'immunomonitoring En Oncologie, Gustave Roussy, F-94805, Villejuif, France
| | - Jean-Luc Perfettini
- Molecular Radiotherapy and Innovative Therapeutics, Unité Mixte de Recherche 1030 INSERM, Gustave Roussy, F-94805, Villejuif, France
| | - Nathalie Chaput
- Laboratoire d'immunomonitoring En Oncologie, Gustave Roussy, F-94805, Villejuif, France.,Laboratory of Genetic Instability and Oncogenesis, Unité Mixte de Recherche 8200 Centre National de la Recherche Scientifique, Gustave Roussy Institute, F-94805, Villejuif, France.,Faculté de Pharmacie, Université Paris-Saclay, F-92296, Chatenay-Malabry, France
| | - Angelo Paci
- Molecular Radiotherapy and Innovative Therapeutics, Unité Mixte de Recherche 1030 INSERM, Gustave Roussy, F-94805, Villejuif, France .,Faculté de Pharmacie, Université Paris-Saclay, F-92296, Chatenay-Malabry, France.,Pharmacology Department, Gustave Roussy, Villejuif, France
| |
Collapse
|
50
|
Repurposing Food and Drug Administration-Approved Drugs to Promote Antitumor Immunity. ACTA ACUST UNITED AC 2020; 25:88-99. [PMID: 30896530 DOI: 10.1097/ppo.0000000000000368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
There has been a major resurgence of interest in immune-based approaches to treat cancer, based largely on the success of checkpoint inhibitors (anti-cytotoxic T-lymphocyte-associated antigen 4, anti-programmed cell death 1, and anti-programmed cell death ligand 1 antibodies) in several malignancies. However, not all tumors respond to checkpoint therapy, and there is clearly a need for additional approaches for enhancing tumor immunity. We summarize the critical elements necessary for mounting an efficacious T-cell response to a tumor. We cite drugs approved by the Food and Drug Administration for no-cancer indications that could be repurposed and used as part of an antitumor immune cocktail. We also list cancer drugs not initially intended to impact tumor immunity (soft repurposing) but that have been found to modulate the immune system. We highlight those drugs that might be used in combination with checkpoint inhibitors to increase response rates and survival of cancer patients. Our focus will be on drugs for which there are limited but existing human data. We cite supporting mechanistic mouse data as well. Repurposing drugs to modulate antitumor immunity is an opportunity to rapidly bring new, effective, and affordable treatments to cancer patients.
Collapse
|