1
|
Milković L, Mlinarić M, Lučić I, Čipak Gašparović A. The Involvement of Peroxiporins and Antioxidant Transcription Factors in Breast Cancer Therapy Resistance. Cancers (Basel) 2023; 15:5747. [PMID: 38136293 PMCID: PMC10741870 DOI: 10.3390/cancers15245747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/16/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Breast cancer is still the leading cause of death in women of all ages. The reason for this is therapy resistance, which leads to the progression of the disease and the formation of metastases. Multidrug resistance (MDR) is a multifactorial process that leads to therapy failure. MDR involves multiple processes and many signaling pathways that support each other, making it difficult to overcome once established. Here, we discuss cellular-oxidative-stress-modulating factors focusing on transcription factors NRF2, FOXO family, and peroxiporins, as well as their possible contribution to MDR. This is significant because oxidative stress is a consequence of radiotherapy, chemotherapy, and immunotherapy, and the activation of detoxification pathways could modulate the cellular response to therapy and could support MDR. These proteins are not directly responsible for MDR, but they support the survival of cancer cells under stress conditions.
Collapse
Affiliation(s)
| | | | | | - Ana Čipak Gašparović
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (L.M.); (M.M.); (I.L.)
| |
Collapse
|
2
|
Datta S, Ghosh S, Bishayee A, Sinha D. Flexion of Nrf2 by tea phytochemicals: A review on the chemopreventive and chemotherapeutic implications. Pharmacol Res 2022; 182:106319. [PMID: 35732198 DOI: 10.1016/j.phrs.2022.106319] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 01/11/2023]
Abstract
Nuclear factor erythroid 2 [NF-E2]-related factor 2 (Nrf2), the redox-sensitive transcription factor, plays a key role in stress-defense and detoxification. Nrf2 is tightly controlled by its negative regulator cum sensor Kelch-[ECH]-associated protein 1 (Keap1). Nrf2 is well known for its dual nature owing to its cancer preventive and cancer promoting abilities. Modulation of this biphasic nature of Nrf2 signaling by phytochemicals may be a potential cancer preventive and anticancer therapeutic strategy. Phytocompounds may either act as Nrf2-activator or Nrf2-inhibitor depending on their differential concentration and varied cellular environment. Tea is not just the most popular global beverage with innumerable health-benefits but has well-established chemopreventive and chemotherapeutic effects. Various types of tea infusions contain a wide range of bioactive compounds, such as polyphenolic catechins and flavonols, which are endowed with potent antioxidant properties. Despite of their rapid biotransformation and poor bioavailability, regular tea consumption is risk-reductive for several cancer forms. Tea catechins show their dual Nrf2-modulatory effect by directly acting on Nrf2-Keap1 or their upstream regulators and downstream effectors in a highly case-specific manner. In this review, we have tried to present a comprehensive evaluation of the Nrf2-mediated chemopreventive and chemotherapeutic applications of tea in various preclinical cancer models, the Nrf2-modulatory mechanisms, and the limitations which need to be addressed in future research.
Collapse
Affiliation(s)
- Suchisnigdha Datta
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata - 700 026, West Bengal, India
| | - Sukanya Ghosh
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata - 700 026, West Bengal, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata - 700 026, West Bengal, India.
| |
Collapse
|
3
|
Kumar H, Kumar RM, Bhattacharjee D, Somanna P, Jain V. Role of Nrf2 Signaling Cascade in Breast Cancer: Strategies and Treatment. Front Pharmacol 2022; 13:720076. [PMID: 35571115 PMCID: PMC9098811 DOI: 10.3389/fphar.2022.720076] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 03/31/2022] [Indexed: 12/30/2022] Open
Abstract
Breast cancer is the second leading cancer among all types of cancers. It accounts for 12% of the total cases of cancers. The complex and heterogeneous nature of breast cancer makes it difficult to treat in advanced stages. The expression of various enzymes and proteins is regulated by several molecular pathways. Oxidative stress plays a vital role in cellular events that are generally regulated by nuclear factor erythroid 2-related factor 2 (Nrf2). The exact mechanism of Nrf2 behind cytoprotective and antioxidative properties is still under investigation. In healthy cells, Nrf2 expression is lower, which maintains antioxidative stress; however, cancerous cells overexpress Nrf2, which is associated with various phenomena, such as the development of drug resistance, angiogenesis, development of cancer stem cells, and metastasis. Aberrant Nrf2 expression diminishes the toxicity and potency of therapeutic anticancer drugs and provides cytoprotection to cancerous cells. In this article, we have discussed the attributes associated with Nrf2 in the development of drug resistance, angiogenesis, cancer stem cell generation, and metastasis in the specific context of breast cancer. We also discussed the therapeutic strategies employed against breast cancer exploiting Nrf2 signaling cascades.
Collapse
Affiliation(s)
| | | | | | | | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| |
Collapse
|
4
|
Bevinakoppamath S, Ramachandra SC, Yadav AK, Basavaraj V, Vishwanath P, Prashant A. Understanding the Emerging Link Between Circadian Rhythm, Nrf2 Pathway, and Breast Cancer to Overcome Drug Resistance. Front Pharmacol 2022; 12:719631. [PMID: 35126099 PMCID: PMC8807567 DOI: 10.3389/fphar.2021.719631] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
The levels of different molecules in the cell are rhythmically cycled by the molecular clock present at the cellular level. The circadian rhythm is closely linked to the metabolic processes in the cells by an underlying mechanism whose intricacies need to be thoroughly investigated. Nevertheless, Nrf2 has been identified as an essential bridge between the circadian clock and cellular metabolism and is activated by the by-product of cellular metabolism like hydrogen peroxide. Once activated it binds to the specific DNA segments and increases the transcription of several genes that play a crucial role in the normal functioning of the cell. The central clock located in the suprachiasmatic nucleus of the anterior hypothalamus synchronizes the timekeeping in the peripheral tissues by integrating the light-dark input from the environment. Several studies have demonstrated the role of circadian rhythm as an effective tumor suppressor. Tumor development is triggered by the stimulation or disruption of signaling pathways at the cellular level as a result of the interaction between cells and environmental stimuli. Oxidative stress is one such external stimulus that disturbs the prooxidant/antioxidant equilibrium due to the loss of control over signaling pathways which destroy the bio-molecules. Altered Nrf2 expression and impaired redox balance are associated with various cancers suggesting that Nrf2 targeting may be used as a novel therapeutic approach for treating cancers. On the other hand, Nrf2 has also been shown to enhance the resistance of cancer cells to chemotherapeutic agents. We believe that maximum efficacy with minimum side effects for any particular therapy can be achieved if the treatment strategy regulates the circadian rhythm. In this review, we discuss the various molecular mechanisms interlinking the circadian rhythm with the Nrf2 pathway and contributing to breast cancer pathogenesis, we also talk about how these two pathways work in close association with the cell cycle which is another oscillatory system, and whether this interplay can be exploited to overcome drug resistance during chemotherapy.
Collapse
Affiliation(s)
- Supriya Bevinakoppamath
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Shobha Chikkavaddaragudi Ramachandra
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Anshu Kumar Yadav
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Vijaya Basavaraj
- Department of Pathology, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Prashant Vishwanath
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Akila Prashant
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
- Special Interest Group-Human Genomics and Rare Disorders, JSS Academy of Higher Education and Research, Mysore, India
- *Correspondence: Akila Prashant,
| |
Collapse
|
5
|
Sanches LJ, Marinello PC, da Silva Brito WA, Lopes NMD, Luiz RC, Cecchini R, Cecchini AL. Metformin pretreatment reduces effect to dacarbazine and suppresses melanoma cell resistance. Cell Biol Int 2021; 46:73-82. [PMID: 34506671 DOI: 10.1002/cbin.11700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/24/2021] [Accepted: 09/05/2021] [Indexed: 11/11/2022]
Abstract
Oxidative stress role on metformin process of dacarbazine (DTIC) inducing resistance of B16F10 melanoma murine cells are investigated. To induce resistance to DTIC, murine melanoma cells were exposed to increasing concentrations of dacarabazine (DTIC-res group). Metformin was administered before and during the induction of resistance to DTIC (MET-DTIC). The oxidative stress parameters of the DTIC-res group showed increased levels of malondialdehyde (MDA), thiol, and reduced nuclear p53, 8-hydroxy-2'-deoxyguanosine (8-OH-DG), nuclear factor kappa B (NF-ĸB), and Nrf2. In presence of metformin in the resistant induction process to DTIC, (MET-DTIC) cells had increased antioxidant thiols, MDA, nuclear p53, 8-OH-DG, Nrf2, and reducing NF-ĸB, weakening the DTIC-resistant phenotype. The exclusive administration of metformin (MET group) also induced the cellular resistance to DTIC. The MET group presented high levels of total thiols, MDA, and reduced percentage of nuclear p53. It also presented reduced nuclear 8-OH-DG, NF-ĸB, and Nrf2 when compared with the control. Oxidative stress and the studied biomarkers seem to be part of the alterations evidenced in DTIC-resistant B16F10 cells. In addition, metformin administration is able to play a dual role according to the experimental protocol, preventing or inducing a DTIC-resistant phenotype. These findings should help future research with the aim of investigating DTIC resistance in melanoma.
Collapse
Affiliation(s)
- Larissa J Sanches
- Department of Pathological Sciences, Laboratory of Molecular Pathology, Londrina State University, UEL, Londrina, Parana, Brazil
| | - Poliana C Marinello
- Department of Pathological Sciences, Laboratory of Molecular Pathology, Londrina State University, UEL, Londrina, Parana, Brazil
| | - Walison A da Silva Brito
- Department of Pathological Sciences, Laboratory of Molecular Pathology, Londrina State University, UEL, Londrina, Parana, Brazil.,Leibniz-Institute for Plasma Science and Technology (INP Greifswald), ZIK plasmatis "Plasma Redox Effects", Greifswald, Germany
| | - Natália M D Lopes
- Department of Pathological Sciences, Laboratory of Molecular Pathology, Londrina State University, UEL, Londrina, Parana, Brazil
| | - Rodrigo C Luiz
- Department of Pathological Sciences, Laboratory of Pathophysiology and Free radicals, Londrina State University, UEL, Londrina, Parana, Brazil
| | - Rubens Cecchini
- Department of Pathological Sciences, Laboratory of Pathophysiology and Free radicals, Londrina State University, UEL, Londrina, Parana, Brazil
| | - Alessandra L Cecchini
- Department of Pathological Sciences, Laboratory of Molecular Pathology, Londrina State University, UEL, Londrina, Parana, Brazil
| |
Collapse
|
6
|
Involvement of NRF2 in Breast Cancer and Possible Therapeutical Role of Polyphenols and Melatonin. Molecules 2021; 26:molecules26071853. [PMID: 33805996 PMCID: PMC8038098 DOI: 10.3390/molecules26071853] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is defined as a disturbance in the prooxidant/antioxidant balance in favor of the former and a loss of control over redox signaling processes, leading to potential biomolecular damage. It is involved in the etiology of many diseases, varying from diabetes to neurodegenerative diseases and cancer. Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor and reported as one of the most important oxidative stress regulators. Due to its regulatory role in the expression of numerous cytoprotective genes involved in the antioxidant and anti-inflammatory responses, the modulation of NRF2 seems to be a promising approach in the prevention and treatment of cancer. Breast cancer is the prevalent type of tumor in women and is the leading cause of death among female cancers. Oxidative stress-related mechanisms are known to be involved in breast cancer, and therefore, NRF2 is considered to be beneficial in its prevention. However, its overactivation may lead to a negative clinical impact on breast cancer therapy by causing chemoresistance. Some known “oxidative stress modulators”, such as melatonin and polyphenols, are suggested to play an important role in the prevention and treatment of cancer, where the activation of NRF2 is reported as a possible underlying mechanism. In the present review, the potential involvement of oxidative stress and NRF2 in breast cancer will be reviewed, and the role of the NRF2 modulators—namely, polyphenols and melatonin—in the treatment of breast cancer will be discussed.
Collapse
|
7
|
Talebi M, Talebi M, Farkhondeh T, Mishra G, İlgün S, Samarghandian S. New insights into the role of the Nrf2 signaling pathway in green tea catechin applications. Phytother Res 2021; 35:3078-3112. [PMID: 33569875 DOI: 10.1002/ptr.7033] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/13/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022]
Abstract
Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a transcriptional signaling pathway that plays a crucial role in numerous clinical complications. Pivotal roles of Nrf2 have been proved in cancer, autoimmune diseases, neurodegeneration, cardiovascular diseases, diabetes mellitus, renal injuries, respiratory conditions, gastrointestinal disturbances, and general disorders related to oxidative stress, inflammation, apoptosis, gelatinolysis, autophagy, and fibrogenesis processes. Green tea catechins as a rich source of phenolic compounds can deal with various clinical problems and manifestations. In this review, we attempted to focus on intervention between green tea catechins and Nrf2. Green tea catechins especially epigallocatechin gallate (EGCG) elucidated the protective role of Nrf2 and its downstream molecules in various disorders through Keap-1, HO-1, NQO-1, GPx, GCLc, GCLm, NF-kB cross-link, kinases, and apoptotic proteins. Subsequently, we compiled an updated expansions of the Nrf2 role as a gate to manage and protect different disorders and feasible indications of green tea catechins through this signaling pathway. The present review highlighted recent evidence-based data in silico, in vitro, and in vivo studies on an outline for future clinical trials.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Talebi
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA.,Department of Research & Development, Viatris Pharmaceuticals Inc., San Antonio, Texas, USA
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran.,Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Gaurav Mishra
- Institute of Medical Sciences, Faculty of Ayurveda, Department of Medicinal Chemistry, Banaras Hindu University, Varanasi, India
| | - Selen İlgün
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
8
|
Majumder D, Nath P, Debnath R, Maiti D. Understanding the complicated relationship between antioxidants and carcinogenesis. J Biochem Mol Toxicol 2020; 35:e22643. [PMID: 32996240 DOI: 10.1002/jbt.22643] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 07/09/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS) are generated as by-product of cellular respiration and also due to the exposure of various xenobiotics, whereas mitochondrial electron transport chain is considered as the main source of ROS generation. The sequential addition to molecular oxygen gives rise to various forms of ROS like superoxide anion, peroxide, hydroxyl radical, hydroxyl ion, and so forth. However, the uncontrolled level of ROS generation and accumulation alters the body homeostasis. Excessive generation of ROS leads to oxidative stress and various kinds of diseases including cancer. To counteract ROS, enzymatic and nonenzymatic antioxidants' armory is available in our body. Apart from endogenous antioxidants, we are also consuming various exogenous antioxidants. Antioxidants protect us from ROS-mediated damages and inhibit ROS-induced carcinogenesis. Recent studies have revealed that antioxidants could also act as tumor-promoting agents. Various anticancer drugs are used to kill the cancer cells through the generation of oxidative stress in them, but the cancer cells can counteract the effect with the help of various endogenous as well as exogenous antioxidants. Our review will summarize the multifaceted relationship between antioxidants and carcinogenesis, and it will help to create new directions in antioxidant-based chemotherapy.
Collapse
Affiliation(s)
- Debabrata Majumder
- Department of Human Physiology, Immunology Microbiology Lab, Tripura University, Suryamaninagar, Tripura, India
| | - Priyatosh Nath
- Department of Human Physiology, Immunology Microbiology Lab, Tripura University, Suryamaninagar, Tripura, India
| | - Rahul Debnath
- Department of Human Physiology, Immunology Microbiology Lab, Tripura University, Suryamaninagar, Tripura, India
| | - Debasish Maiti
- Department of Human Physiology, Immunology Microbiology Lab, Tripura University, Suryamaninagar, Tripura, India
| |
Collapse
|
9
|
Yi Z, Chen X, Chen G, Deng Z, Tong Q, Sun Z, Ma X, Su W, Ma L, Ran Y, Li X. General Nanomedicine Platform by Solvent-Mediated Disassembly/Reassembly of Scalable Natural Polyphenol Colloidal Spheres. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37914-37928. [PMID: 32805962 DOI: 10.1021/acsami.0c11650] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The current strategy using the assembly of medicines and active functional molecules to develop nanomedicines often requires both molecules to have a specific matched chemical molecular structure; however, this is often difficult to predict, execute, and control in practical applications. Herein, we reported a general solvent-mediated disassembly/reassembly strategy for preparing nanomedicines based on epigallocatechin gallate (EGCG) active molecules. The polyphenol colloidal spheres (CSs) were self-assembled from molecular condensed EGCG in aqueous solution but disassembled in organic solvents and reassembled in aqueous solution. The solvent-mediated disassembly and reassembly capability of CSs gave rise to the active binding of condensed EGCG to various hydrophilic and hydrophobic guest molecules. The maximum encapsulation and drug-loading rate of reassembled CSs/DOX were 90 and 44%, respectively, and the nanomedicines could reverse drug resistance of tumor cells and exhibit enhanced therapeutic effects for breast cancer. Last but not least, 37.3 g of polyphenol CSs was massively produced at one time with a yield of 74.6%, laying a solid foundation for the practical applications of reassembled nanomedicines. The present strategy leading to a general nanomedicines platform was concise and highly efficient for both hydrophilic and hydrophobic drugs, making a breakthrough for low loading dilemma of current nanomedicines, and would open up a new direction for the preparation of nanocarriers, nanocomposites, and nanomedicines from natural polyphenols.
Collapse
Affiliation(s)
- Zeng Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Xiangyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Guangcan Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Zhiwen Deng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Qiulan Tong
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Zhe Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Xiaomin Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Wen Su
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Lei Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Yaqin Ran
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Xudong Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
10
|
Kuran D, Pogorzelska A, Wiktorska K. Breast Cancer Prevention-Is there a Future for Sulforaphane and Its Analogs? Nutrients 2020; 12:nu12061559. [PMID: 32471217 PMCID: PMC7352481 DOI: 10.3390/nu12061559] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/30/2022] Open
Abstract
Breast cancer is the most prevalent type of cancer among women worldwide. There are several recommended methods of breast cancer prevention, including chemoprevention. There are several approved drugs used to prevent breast cancer occurrence or recurrence and metastasizing. There are also a number of new substances undergoing clinical trials and at the stage of initial study. Studies suggest that dietary factors play a crucial role in breast cancer etiology. Epidemiological studies indicate that in particular vegetables from the Brassicaceae family are a rich source of chemopreventive substances, with sulforaphane (SFN) being one of the most widely studied and characterized. This review discusses potential applicability of SFN in breast cancer chemoprevention. A comprehensive review of the literature on the impact of SFN on molecular signalling pathways in breast cancer and breast untransformed cells is presented. The presented results of in vitro and in vivo studies show that this molecule has a potential to act as a preventive molecule either to prevent disease development or recurrence and metastasizing, and as a compound protecting normal cells against the toxic effects of cytostatics. Finally, the still scanty attempts to develop an improved analog are also presented and discussed.
Collapse
Affiliation(s)
- Dominika Kuran
- Department of Pharmacology, National Medicines Institute, 00-725 Warsaw, Poland;
| | - Anna Pogorzelska
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, 00-725 Warsaw, Poland;
| | - Katarzyna Wiktorska
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, 00-725 Warsaw, Poland;
- OncoBoost Ltd., 02-089 Warsaw, Poland
- Correspondence:
| |
Collapse
|
11
|
Reszka E, Lesicka M, Wieczorek E, Jabłońska E, Janasik B, Stępnik M, Konecki T, Jabłonowski Z. Dysregulation of Redox Status in Urinary Bladder Cancer Patients. Cancers (Basel) 2020; 12:cancers12051296. [PMID: 32455559 PMCID: PMC7280975 DOI: 10.3390/cancers12051296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023] Open
Abstract
The alteration of redox homeostasis constitutes an important etiological feature of common human malignancies. We investigated DNA damage, selenium (Se) levels and the expression of cytoprotective genes involved in (1) the KEAP1/NRF2/ARE pathway, (2) selenoprotein synthesis, and (3) DNA methylation and histone deacetylation as putative key players in redox status dysregulation in the blood of urinary bladder cancer (UBC) patients. The study involved 122 patients and 115 control individuals. The majority of patients presented Ta and T1 stages. UBC recurrence occurred within 0.13 to 29.02 months. DNA damage and oxidative DNA damage were significantly higher in the patients compared to the controls, while plasma Se levels were significantly reduced in the cases compared to the controls. Of the 25 investigated genes, elevated expression in the peripheral blood leukocytes in patients was observed for NRF2, GCLC, MMP9 and SEP15, while down-regulation was found for KEAP1, GSR, HMOX1, NQO1, OGG1, SEPW1, DNMT1, DNMT3A and SIRT1. After Bonferroni correction, an association was found with KEAP1, OGG1, SEPW1 and DNMT1. Early recurrence was associated with the down-regulation of PRDX1 and SRXN1 at the time of diagnosis. Peripheral redox status is significantly dysregulated in the blood of UBC patients. DNA strand breaks and PRDX1 and SRXN1 expression may provide significant predictors of UBC recurrence.
Collapse
Affiliation(s)
- Edyta Reszka
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland; (M.L.); (E.W.); (E.J.)
- Correspondence: ; Tel.: +48-42-631-46-27
| | - Monika Lesicka
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland; (M.L.); (E.W.); (E.J.)
| | - Edyta Wieczorek
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland; (M.L.); (E.W.); (E.J.)
| | - Ewa Jabłońska
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland; (M.L.); (E.W.); (E.J.)
| | - Beata Janasik
- Department of Biological Monitoring, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland;
| | - Maciej Stępnik
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland;
| | - Tomasz Konecki
- Ist Urology Clinic, Medical University of Lodz, 90-549 Lodz, Poland; (T.K.); (Z.J.)
| | - Zbigniew Jabłonowski
- Ist Urology Clinic, Medical University of Lodz, 90-549 Lodz, Poland; (T.K.); (Z.J.)
| |
Collapse
|
12
|
Calcabrini C, Maffei F, Turrini E, Fimognari C. Sulforaphane Potentiates Anticancer Effects of Doxorubicin and Cisplatin and Mitigates Their Toxic Effects. Front Pharmacol 2020; 11:567. [PMID: 32425794 PMCID: PMC7207042 DOI: 10.3389/fphar.2020.00567] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
The success of cancer therapy is often compromised by the narrow therapeutic index of many anticancer drugs and the occurrence of drug resistance. The association of anticancer therapies with natural compounds is an emerging strategy to improve the pharmaco-toxicological profile of cancer chemotherapy. Sulforaphane, a phytochemical found in cruciferous vegetables, targets multiple pathways involved in cancer development, as recorded in different cancers such as breast, brain, blood, colon, lung, prostate, and so forth. As examples to make the potentialities of the association chemotherapy raise, here we highlight and critically analyze the information available for two associations, each composed by a paradigmatic anticancer drug (cisplatin or doxorubicin) and sulforaphane.
Collapse
Affiliation(s)
- Cinzia Calcabrini
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, Italy
| | - Francesca Maffei
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, Italy
| | - Eleonora Turrini
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, Italy
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, Italy
| |
Collapse
|
13
|
Jabbarzadeh Kaboli P, Afzalipour Khoshkbejari M, Mohammadi M, Abiri A, Mokhtarian R, Vazifemand R, Amanollahi S, Yazdi Sani S, Li M, Zhao Y, Wu X, Shen J, Cho CH, Xiao Z. Targets and mechanisms of sulforaphane derivatives obtained from cruciferous plants with special focus on breast cancer - contradictory effects and future perspectives. Biomed Pharmacother 2019; 121:109635. [PMID: 31739165 DOI: 10.1016/j.biopha.2019.109635] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most common type of cancer among women. Therefore, discovery of new and effective drugs with fewer side effects is necessary to treat it. Sulforaphane (SFN) is an organosulfur compound obtained from cruciferous plants, such as broccoli and mustard, and it has the potential to treat breast cancer. Hence, it is vital to find out how SFN targets certain genes and cellular pathways in treating breast cancer. In this review, molecular targets and cellular pathways of SFN are described. Studies have shown SFN inhibits cell proliferation, causes apoptosis, stops cell cycle and has anti-oxidant activities. Increasing reactive oxygen species (ROS) produces oxidative stress, activates inflammatory transcription factors, and these result in inflammation leading to cancer. Increasing anti-oxidant potential of cells and discovering new targets to reduce ROS creation reduces oxidative stress and it eventually reduces cancer risks. In short, SFN effectively affects histone deacetylases involved in chromatin remodeling, gene expression, and Nrf2 anti-oxidant signaling. This review points to the potential of SFN to treat breast cancer as well as the importance of other new cruciferous compounds, derived from and isolated from mustard, to target Keap1 and Akt, two key regulators of cellular homeostasis.
Collapse
Affiliation(s)
- Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou, 646000, Sichuan, PR China; Drug Discovery Research Group, Parham Academy of Biomedical Sciences, The Heritage B-16-10, Selangor, 43300, Malaysia.
| | | | - Mahsa Mohammadi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ardavan Abiri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Roya Mokhtarian
- Drug Discovery Research Group, Parham Academy of Biomedical Sciences, The Heritage B-16-10, Selangor, 43300, Malaysia
| | - Reza Vazifemand
- Laboratory of Virology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, 43400, Malaysia
| | - Shima Amanollahi
- Drug Discovery Research Group, Parham Academy of Biomedical Sciences, The Heritage B-16-10, Selangor, 43300, Malaysia; School of Mathematical, Physical, and Natural Sciences, University of Florence, Firenze, 50134, Italy
| | - Shaghayegh Yazdi Sani
- Drug Discovery Research Group, Parham Academy of Biomedical Sciences, The Heritage B-16-10, Selangor, 43300, Malaysia
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou, 646000, Sichuan, PR China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou, 646000, Sichuan, PR China.
| |
Collapse
|
14
|
Negrette-Guzmán M. Combinations of the antioxidants sulforaphane or curcumin and the conventional antineoplastics cisplatin or doxorubicin as prospects for anticancer chemotherapy. Eur J Pharmacol 2019; 859:172513. [PMID: 31260654 DOI: 10.1016/j.ejphar.2019.172513] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
Drugs used in clinical oncology have narrow therapeutic indices with adverse toxicity often involving oxidative damage. Chemoresistance to these conventional antineoplastics is usually mediated by oxidative stress-upregulated pathways such as those of nuclear factor-kappa B (NF-κB) and hypoxia-inducible factor-1 alpha (HIF-1α). Accordingly, the use of antioxidants in combinational approaches has begun to be considered for fighting cancer because of both the protective role against adverse effects and the ability to sensitize chemoresistant cancer cells. Nuclear factor erythroid 2-related factor 2 (Nrf2) has been identified as a mediator of the cytoprotection but it is not regularly associated with tumor chemosensitization. However, some Nrf2 inducers could be exerting cytoprotective and chemosensitizing roles through a simple integrated mechanism in which the cellular level of reactive oxygen species is controlled, thus inhibiting the oxidative damage in non-target tissues and the tumor chemoresistance mediated by NF-κB or HIF-1α. As examples to show the general idea of this antioxidant combination chemotherapy, this review explores the preclinical information available for four combinations, each composed by a paradigmatic oncological drug (cisplatin or doxorubicin) and a recognized antioxidant (sulforaphane or curcumin). The issues for translating these outcomes to clinical trials are briefly discussed.
Collapse
Affiliation(s)
- Mario Negrette-Guzmán
- Centro de Investigaciones en Enfermedades Tropicales (CINTROP), Departamento de Ciencias Básicas, Escuela de Medicina, Facultad de Salud, Universidad Industrial de Santander, Bucaramanga, 68002, Colombia.
| |
Collapse
|
15
|
Metformin prevention of doxorubicin resistance in MCF-7 and MDA-MB-231 involves oxidative stress generation and modulation of cell adaptation genes. Sci Rep 2019; 9:5864. [PMID: 30971831 PMCID: PMC6458149 DOI: 10.1038/s41598-019-42357-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/28/2019] [Indexed: 01/12/2023] Open
Abstract
Metformin was shown to sensitize multidrug resistant breast cancer cells; however, the mechanisms involved in this capacity need to be clarified. We investigated oxidative stress and inflammatory-related pathways during the induction of doxorubicin resistance in MCF-7 and MDA-MB-231 human breast cancer cells (DOX-res group), and evaluated metformin-induced cellular responses that resulted in the prevention of doxorubicin resistance (Met-DOX group). Microarray analysis demonstrated that DOX-res changed the expression of genes involved in oxidative stress (OS) and the TGF- β1 pathway. The DOX-res group presented increased thiols and reduced lipoperoxidation, increased levels of nitric oxide, nuclear NF-kB and Nrf2, and reduced nuclear p53 labelling. Analysis of the TGF-β1 signaling pathway by RT-PCR array showed that DOX-res developed adaptive responses, such as resistance against apoptosis and OS. Metformin treatment modified gene expression related to OS and the IFN-α signaling pathway. The Met-DOX group was more sensitive to DOX-induced OS, presented lower levels of nitric oxide, nuclear NF-kB and Nrf2, and increased nuclear p53. Analysis of the IFN-α signaling pathway showed that Met-DOX presented more sensitivity to apoptosis and OS. Our findings indicate that metformin is a promising tool in the prevention of chemoresistance in patients with breast cancer submitted to doxorubicin-based treatments.
Collapse
|
16
|
Almeida M, Soares M, Ramalhinho AC, Moutinho JF, Breitenfeld L. Prognosis of hormone-dependent breast cancer seems to be influenced by KEAP1, NRF2 and GSTM1 genetic polymorphisms. Mol Biol Rep 2019; 46:3213-3224. [PMID: 30941643 DOI: 10.1007/s11033-019-04778-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/21/2019] [Indexed: 01/10/2023]
Abstract
Influence of Glutathione S-transferase Mu1 (GSTM1) has long been studied in breast cancer and GSTM1 null genotype was correlated with breast cancer risk. Nuclear factor-erythroid 2-related factor-2 (NRF2) is a transcription factor that forms a complex with Kelch-like ECH-associated protein-1 (KEAP1). Recent studies have demonstrated that expression of these proteins is deregulated in several malignancies. Thus, in the present study we aim to distinguish GSTM1 heterozygous from wild type genotype in breast cancer patients and evaluate the presence and clinical significance of NRF2 and KEAP1 polymorphisms, alone or in association, with breast cancer prognosis, in cases confirmed to have GSTM1-present genotype. Study population consisted in 52 patients with breast cancer. Genomic DNA was extracted, GSTM1 was genotyped through multiplex PCR and gene dose was evaluated through real-time PCR. All cases were sequenced, through Sanger sequencing, for specific regions of NRF2 and KEAP1. Genotyping and clinicopathological data were correlated and statistical analysis was performed. GSTM1 wild type was identified in 1 case and 26 cases were identified as heterozygous, these data were correlated with Human Epidermal growth factor Receptor 2 (HER2) status (p value = 0.017). We also verified that most cancers diagnosed at younger ages had the presence of KEAP1 and/or NRF2 polymorphisms. The association of GSTM1 heterozygous genotype with rs1048290 and rs35652124 seems to be associated with HER2+ (p < 0.05). Our results suggest that GSTM1 * 1/0 genotype and the cumulative presence of at least one allele mutated in KEAP1 and/or NRF2 polymorphisms might be associated with worse prognosis for breast cancer patients.
Collapse
Affiliation(s)
- Micaela Almeida
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Mafalda Soares
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Ana Cristina Ramalhinho
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.,Centro Hospitalar Cova da Beira, E.P.E. Quinta do Alvito, 6200-251, Covilhã, Portugal
| | - José Fonseca Moutinho
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.,Centro Hospitalar Cova da Beira, E.P.E. Quinta do Alvito, 6200-251, Covilhã, Portugal
| | - Luiza Breitenfeld
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| |
Collapse
|
17
|
Briones-Herrera A, Eugenio-Pérez D, Reyes-Ocampo JG, Rivera-Mancía S, Pedraza-Chaverri J. New highlights on the health-improving effects of sulforaphane. Food Funct 2018; 9:2589-2606. [PMID: 29701207 DOI: 10.1039/c8fo00018b] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this paper, we review recent evidence about the beneficial effects of sulforaphane (SFN), which is the most studied member of isothiocyanates, on both in vivo and in vitro models of different diseases, mainly diabetes and cancer. The role of SFN on oxidative stress, inflammation, and metabolism is discussed, with emphasis on those nuclear factor E2-related factor 2 (Nrf2) pathway-mediated mechanisms. In the case of the anti-inflammatory effects of SFN, the point of convergence seems to be the downregulation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), with the consequent amelioration of other pathogenic processes such as hypertrophy and fibrosis. We emphasized that SFN shows opposite effects in normal and cancer cells at many levels; for instance, while in normal cells it has protective actions, in cancer cells it blocks the induction of factors related to the malignity of tumors, diminishes their development, and induces cell death. SFN is able to promote apoptosis in cancer cells by many mechanisms, the production of reactive oxygen species being one of the most relevant ones. Given its properties, SFN could be considered as a phytochemical at the forefront of natural medicine.
Collapse
Affiliation(s)
- Alfredo Briones-Herrera
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | | | | | | |
Collapse
|
18
|
Bose C, Awasthi S, Sharma R, Beneš H, Hauer-Jensen M, Boerma M, Singh SP. Sulforaphane potentiates anticancer effects of doxorubicin and attenuates its cardiotoxicity in a breast cancer model. PLoS One 2018; 13:e0193918. [PMID: 29518137 PMCID: PMC5843244 DOI: 10.1371/journal.pone.0193918] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/20/2018] [Indexed: 11/19/2022] Open
Abstract
Breast cancer is the most common malignancy in women of the Western world. Doxorubicin (DOX) continues to be used extensively to treat early-stage or node-positive breast cancer, human epidermal growth factor receptor-2 (HER2)-positive breast cancer, and metastatic disease. We have previously demonstrated in a mouse model that sulforaphane (SFN), an isothiocyanate isolated from cruciferous vegetables, protects the heart from DOX-induced toxicity and damage. However, the effects of SFN on the chemotherapeutic efficacy of DOX in breast cancer are not known. Present studies were designed to investigate whether SFN alters the effects of DOX on breast cancer regression while also acting as a cardioprotective agent. Studies on rat neonatal cardiomyocytes and multiple rat and human breast cancer cell lines revealed that SFN protects cardiac cells but not cancer cells from DOX toxicity. Results of studies in a rat orthotopic breast cancer model indicated that SFN enhanced the efficacy of DOX in regression of tumor growth, and that the DOX dosage required to treat the tumor could be reduced when SFN was administered concomitantly. Additionally, SFN enhanced mitochondrial respiration in the hearts of DOX-treated rats and reduced cardiac oxidative stress caused by DOX, as evidenced by the inhibition of lipid peroxidation, the activation of NF-E2-related factor 2 (Nrf2) and associated antioxidant enzymes. These studies indicate that SFN not only acts synergistically with DOX in cancer regression, but also protects the heart from DOX toxicity through Nrf2 activation and protection of mitochondrial integrity and functions.
Collapse
Affiliation(s)
- Chhanda Bose
- University of Arkansas for Medical Sciences, Department of Geriatrics, Little Rock, Arkansas, United States of America
| | - Sanjay Awasthi
- Texas Tech Health Sciences Center, Division of Hematology & Oncology, Department of Internal Medicine, Lubbock, Texas, United States of America
| | - Rajendra Sharma
- University of Arkansas for Medical Sciences, Department of Pharmacology and Toxicology, Little Rock, Arkansas, United States of America
| | - Helen Beneš
- University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences, Little Rock, Arkansas, United States of America
| | - Martin Hauer-Jensen
- University of Arkansas for Medical Sciences, Division of Radiation Health, Little Rock, Arkansas, United States of America
| | - Marjan Boerma
- University of Arkansas for Medical Sciences, Division of Radiation Health, Little Rock, Arkansas, United States of America
| | - Sharda P. Singh
- Texas Tech Health Sciences Center, Division of Hematology & Oncology, Department of Internal Medicine, Lubbock, Texas, United States of America
- University of Arkansas for Medical Sciences, Department of Pharmacology and Toxicology, Little Rock, Arkansas, United States of America
- Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, United States of America
| |
Collapse
|
19
|
Saeed M, Naveed M, Arif M, Kakar MU, Manzoor R, Abd El-Hack ME, Alagawany M, Tiwari R, Khandia R, Munjal A, Karthik K, Dhama K, Iqbal HMN, Dadar M, Sun C. Green tea (Camellia sinensis) and l-theanine: Medicinal values and beneficial applications in humans-A comprehensive review. Biomed Pharmacother 2017; 95:1260-1275. [PMID: 28938517 DOI: 10.1016/j.biopha.2017.09.024] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/03/2017] [Accepted: 09/06/2017] [Indexed: 02/05/2023] Open
Abstract
Green tea (Camellia sinensis) is a famous herb, and its extract has been extensively used in traditional Chinese medicinal system. In this context, several studies have revealed its health benefits and medicinal potentialities for several ailments. With ever increasing scientific knowledge, search for safer, potential and novel type of health-related supplements quest, scientists are re-directing their research interests to explore natural resources i.e. medicinal herbs/plant derived compounds. Green tea consumption has gained a special attention and popularity in the modern era of changing lifestyle. The present review is aimed to extend the current knowledge by highlighting the importance and beneficial applications of green tea in humans for safeguarding various health issues. Herein, we have extensively reviewed, analyzed, and compiled salient information on green tea from the authentic published literature available in PubMed and other scientific databases. Scientific literature evidenced that owing to the bioactive constituents including caffeine, l-theanine, polyphenols/flavonoids and other potent molecules, green tea has many pharmacological and physiological functions. It possesses multi-beneficial applications in treating various disorders of humans. This review also provides in-depth insights on the medicinal values of green tea which will be useful for researchers, medical professionals, veterinarians, nutritionists, pharmacists and pharmaceutical industry. Future research emphasis and promotional avenues are needed to explore its potential therapeutic applications for designing appropriate pharmaceuticals, complementary medicines, and effective drugs as well as popularize and propagate its multidimensional health benefits.
Collapse
Affiliation(s)
- Muhammad Saeed
- College of Animal Science and Technology, NW A&F University, Yangling, Shaanxi, 712100, China; Institute of Animal Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Naveed
- Department of Clinical Pharmacy, School of Basic Medicine, and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, China; Department of Urology Surgery, Aviation General Hospital, Beijing, 100012, China
| | - Muhammad Arif
- Department of Animal Sciences, University College of Agriculture, University of Sargodha, 40100, Pakistan
| | - Mohib Ullah Kakar
- Faculty of Marine Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, 3800, Pakistan
| | - Robina Manzoor
- Faculty of Marine Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, 3800, Pakistan
| | | | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281 001, India
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, 462 026 M.P., India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, 462 026 M.P., India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Madhavaram Milk Colony, Chennai, Tamil Nadu, 600051, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP 64849, Mexico
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Chao Sun
- College of Animal Science and Technology, NW A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
20
|
Pan H, Wang H, Jia Y, Wang Q, Li L, Wu Q, Chen L. VPA and MEL induce apoptosis by inhibiting the Nrf2-ARE signaling pathway in TMZ-resistant U251 cells. Mol Med Rep 2017; 16:908-914. [PMID: 28560379 DOI: 10.3892/mmr.2017.6621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 02/23/2017] [Indexed: 11/05/2022] Open
Abstract
Chemoresistance is the primary obstacle to effective treatment of glioblastoma, the most lethal brain tumor. Our previous study demonstrated that Nf-E2 related factor 2 (Nrf2), a traditional cytoprotective transcription factor, was overexpressed in gliomas and promoted malignancy. The present study aimed to investigate the expression levels of Nrf2‑antioxidant response element (ARE) signaling pathway genes in temozolomide (TMZ)‑resistant U251 human glioblastoma cells (U251‑TMZ). Additionally, the effect of valproic acid (VPA) and melatonin (MEL) on Nrf2 expression in U251‑TMZ cells and their association with chemoresistance was investigated. The results of the present study indicated that the expression levels of components of the Nrf2‑ARE signaling pathway were increased in U251‑TMZ cells compared with U251 parent cells. Silencing of Nrf2 by transfection with small interfering RNA restored the chemosensitivity of U251‑TMZ cells. The Nrf2 inhibitors VPA and MEL successfully reduced Nrf2 expression and survival in U251‑TMZ cells treated with TMZ, accompanied by increased reactive oxygen species levels and apoptosis. Therefore, VPA and MEL may be potential chemotherapeutic sensitizers for the treatment of chemoresistant glioblastoma.
Collapse
Affiliation(s)
- Hao Pan
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yue Jia
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Qiang Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Liwen Li
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Qi Wu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Longbang Chen
- Department of Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
21
|
Done AJ, Traustadóttir T. Nrf2 mediates redox adaptations to exercise. Redox Biol 2016; 10:191-199. [PMID: 27770706 PMCID: PMC5078682 DOI: 10.1016/j.redox.2016.10.003] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 12/11/2022] Open
Abstract
The primary aim of this review is to summarize the current literature on the effects of acute exercise and regular exercise on nuclear factor erythroid 2-related factor 2 (Nrf2) activity and downstream targets of Nrf2 signaling. Nrf2 (encoded in humans by the NFE2L2 gene) is the master regulator of antioxidant defenses, a transcription factor that regulates expression of more than 200 cytoprotective genes. Increasing evidence indicates that Nrf2 signaling plays a key role in how oxidative stress mediates the beneficial effects of exercise. Episodic increases in oxidative stress induced through bouts of acute exercise stimulate Nrf2 activation and when applied repeatedly, as with regular exercise, leads to upregulation of endogenous antioxidant defenses and overall greater ability to counteract the damaging effects of oxidative stress. The evidence of Nrf2 activation in response to exercise across variety of tissues may be an important mechanism of how exercise exerts its well-known systemic effects that are not limited to skeletal muscle and myocardium. Additionally there are emerging data that results from animal studies translate to humans.
Collapse
Affiliation(s)
- Aaron J Done
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Tinna Traustadóttir
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.
| |
Collapse
|
22
|
Tian Y, Wu K, Liu Q, Han N, Zhang L, Chu Q, Chen Y. Modification of platinum sensitivity by KEAP1/NRF2 signals in non-small cell lung cancer. J Hematol Oncol 2016; 9:83. [PMID: 27601007 PMCID: PMC5012055 DOI: 10.1186/s13045-016-0311-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/25/2016] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The objective of this study was to evaluate the effect of platinum-based drugs on nuclear-factor erythroid2 like 2 (NRF2) signaling in non-small cell lung cancer cell lines with or without Kelch-like ECH-associated protein 1 (KEAP1) mutations and to determine the role of NRF2 and KEAP1 on platinum-based drug treatment. METHODS We used real-time PCR to assess relative mRNA expression and used western blotting and immunofluorescence assays to assess protein expression. Small interfering RNA and shuttle plasmids were used to modulate the expression of NRF2, wild-type KEAP1, and mutant KEAP1. Drug sensitivity to platinum-based drugs was evaluated with Cell Count Kit-8. RESULTS We found that platinum-based therapies modified the NRF2 signaling pathway differently in KEAP1-mutated non-small cell lung cancer (NSCLC) cell lines compared with wild-type KEAP1 cell lines. The reactive degree of NRF2 signaling also varies between nedaplatin and cisplatin. The modification of NRF2 or KEAP1 expression in NSCLC cell lines disrupted downstream gene expression and cell sensitivity to platinum-based drugs. Finally, gene expression data retrieved from The Cancer Genome Atlas (TCGA) consortium indicated that KEAP1 mutation significantly affects NRF2 signaling activity in patients with NSCLC. CONCLUSIONS Our findings suggest that NRF2 signaling plays an indispensable role in NSCLC cell sensitivity to platinum-based treatments and provides a rationale for using NRF2 as a specific biomarker for predicting which patients will be most likely to benefit from platinum-based treatment.
Collapse
Affiliation(s)
- Yijun Tian
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Qian Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Na Han
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Li Zhang
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Yuan Chen
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
23
|
Bai X, Chen Y, Hou X, Huang M, Jin J. Emerging role of NRF2 in chemoresistance by regulating drug-metabolizing enzymes and efflux transporters. Drug Metab Rev 2016; 48:541-567. [PMID: 27320238 DOI: 10.1080/03602532.2016.1197239] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemoresistance is a disturbing barrier in cancer therapy, which always results in limited therapeutic options and unfavorable prognosis. Nuclear factor E2-related factor 2 (NRF2) controls the expression of genes encoding cytoprotective enzymes and transporters that protect against oxidative stress and electrophilic injury to maintain intrinsic redox homeostasis. However, recent studies have demonstrated that aberrant activation of NRF2 due to genetic and/or epigenetic mutations in tumor contributes to the high expression of phase I and phase II drug-metabolizing enzymes, phase III transporters, and other cytoprotective proteins, which leads to the decreased therapeutic efficacy of anticancer drugs through biotransformation or extrusion during chemotherapy. Therefore, a better understanding of the role of NRF2 in regulation of these enzymes and transporters in tumors is necessary to find new strategies that improve chemotherapeutic efficacy. In this review, we summarized the recent findings about the chemoresistance-promoting role of NRF2, NRF2-regulated phase I and phase II drug-metabolizing enzymes, phase III drug efflux transporters, and other cytoprotective genes. Most importantly, the potential of NRF2 was proposed to counteract drug resistance in cancer treatment.
Collapse
Affiliation(s)
- Xupeng Bai
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| | - Yibei Chen
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| | - Xiangyu Hou
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| | - Min Huang
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| | - Jing Jin
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| |
Collapse
|
24
|
Butt MS, Ahmad RS, Sultan MT, Qayyum MMN, Naz A. Green tea and anticancer perspectives: updates from last decade. Crit Rev Food Sci Nutr 2016; 55:792-805. [PMID: 24915354 DOI: 10.1080/10408398.2012.680205] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Green tea is the most widely consumed beverage besides water and has attained significant attention owing to health benefits against array of maladies, e.g., obesity, diabetes mellitus, cardiovascular disorders, and cancer insurgence. The major bioactive molecules are epigallocatechin-3-gallate, epicatechin, epicatechin-3-gallate, epigallocatechin, etc. The anticarcinogenic and antimutagenic activities of green tea were highlighted some years ago. Several cohort studies and controlled randomized trials suggested the inverse association of green tea consumption and cancer prevalence. Cell culture and animal studies depicted the mechanisms of green tea to control cancer insurgence, i.e., induction of apoptosis to control cell growth arrest, altered expression of cell-cycle regulatory proteins, activation of killer caspases, and suppression of nuclear factor kappa-B activation. It acts as carcinoma blocker by modulating the signal transduction pathways involved in cell proliferation, transformation, inflammation, and metastasis. However, results generated from some research interventions conducted in different groups like smokers and nonsmokers, etc. contradicted with aforementioned anticancer perspectives. In this review paper, anticancer perspectives of green tea and its components have been described. Recent findings and literature have been surfed and arguments are presented to clarify the ambiguities regarding anticancer perspectives of green tea and its component especially against colon, skin, lung, prostate, and breast cancer. The heading of discussion and future trends is limelight of the manuscript. The compiled manuscript provides new avenues for researchers to be explored in relation to green tea and its bioactive components.
Collapse
Affiliation(s)
- Masood Sadiq Butt
- a National Institute of Food Science and Technology , University of Agriculture , Faisalabad , Pakistan
| | | | | | | | | |
Collapse
|
25
|
Mohammad RM, Muqbil I, Lowe L, Yedjou C, Hsu HY, Lin LT, Siegelin MD, Fimognari C, Kumar NB, Dou QP, Yang H, Samadi AK, Russo GL, Spagnuolo C, Ray SK, Chakrabarti M, Morre JD, Coley HM, Honoki K, Fujii H, Georgakilas AG, Amedei A, Niccolai E, Amin A, Ashraf SS, Helferich WG, Yang X, Boosani CS, Guha G, Bhakta D, Ciriolo MR, Aquilano K, Chen S, Mohammed SI, Keith WN, Bilsland A, Halicka D, Nowsheen S, Azmi AS. Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol 2015; 35 Suppl:S78-S103. [PMID: 25936818 PMCID: PMC4720504 DOI: 10.1016/j.semcancer.2015.03.001] [Citation(s) in RCA: 596] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 12/15/2022]
Abstract
Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer.
Collapse
Affiliation(s)
- Ramzi M Mohammad
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States; Interim translational Research Institute, Hamad Medical Corporation, Doha, Qatar.
| | - Irfana Muqbil
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada
| | - Clement Yedjou
- C-SET, [Jackson, #229] State University, Jackson, MS, United States
| | - Hsue-Yin Hsu
- Department of Life Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Markus David Siegelin
- Department of Pathology and Cell Biology, Columbia University, New York City, NY, United States
| | - Carmela Fimognari
- Dipartimento di Scienze per la Qualità della Vita Alma Mater Studiorum-Università di Bologna, Italy
| | - Nagi B Kumar
- Moffit Cancer Center, University of South Florida College of Medicine, Tampa, FL, United States
| | - Q Ping Dou
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States; Departments of Pharmacology and Pathology, Karmanos Cancer Institute, Detroit MI, United States
| | - Huanjie Yang
- The School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | | | - Gian Luigi Russo
- Institute of Food Sciences National Research Council, Avellino, Italy
| | - Carmela Spagnuolo
- Institute of Food Sciences National Research Council, Avellino, Italy
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Mrinmay Chakrabarti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - James D Morre
- Mor-NuCo, Inc, Purdue Research Park, West Lafayette, IN, United States
| | - Helen M Coley
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Japan
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Japan
| | - Alexandros G Georgakilas
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou 15780, Athens, Greece
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, university of florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, university of florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, UAE University, United Arab Emirates; Faculty of Science, Cairo University, Egypt
| | - S Salman Ashraf
- Department of Chemistry, College of Science, UAE University, United Arab Emirates
| | - William G Helferich
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Xujuan Yang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Chandra S Boosani
- Department of BioMedical Sciences, School of Medicine Creighton University, Omaha NE, United States
| | - Gunjan Guha
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | - Dipita Bhakta
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | | | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Italy
| | - Sophie Chen
- Ovarian and Prostate Cancer Research Trust Laboratory, Guildford, Surrey, United Kingdom
| | - Sulma I Mohammed
- Department of Comparative Pathobiology and Purdue University Center for Cancer Research, Purdue, West Lafayette, IN, United States
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Ireland
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Ireland
| | - Dorota Halicka
- Department of Pathology, New York Medical College, Valhalla, NY, United States
| | - Somaira Nowsheen
- Mayo Graduate School, Mayo Medical School, Mayo Clinic Medical Scientist Training Program, Rochester, MN, United States
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| |
Collapse
|
26
|
Li B, Kim DS, Yadav RK, Kim HR, Chae HJ. Sulforaphane prevents doxorubicin-induced oxidative stress and cell death in rat H9c2 cells. Int J Mol Med 2015; 36:53-64. [PMID: 25936432 PMCID: PMC4494600 DOI: 10.3892/ijmm.2015.2199] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 04/22/2015] [Indexed: 12/18/2022] Open
Abstract
Sulforaphane, a natural isothiocyanate compound found in cruciferous vegetables, has been shown to exert cardioprotective effects during ischemic heart injury. However, the effects of sulforaphane on cardiotoxicity induced by doxorubicin are unknown. Thus, in the present study, H9c2 rat myoblasts were pre-treated with sulforaphane and its effects on cardiotoxicity were then examined. The results revealed that the pre-treatment of H9c2 rat myoblasts with sulforaphane decreased the apoptotic cell number (as shown by trypan blue exclusion assay) and the expression of pro-apoptotic proteins (Bax, caspase-3 and cytochrome c; as shown by western blot analysis and immunostaining), as well as the doxorubicin-induced increase in mitochondrial membrane potential (measured by JC-1 assay). Furthermore, sulforaphane increased the mRNA and protein expression of heme oxygenase-1 (HO-1, measured by RT-qPCR), which consequently reduced the levels of reactive oxygen species (ROS, measured using MitoSOX Red reagent) in the mitochondria which were induced by doxorubicin. The cardioprotective effects of sulforaphane were found to be mediated by the activation of the Kelch-like ECH-associated protein 1 (Keap1)/NF-E2-related factor-2 (Nrf2)/antioxidant-responsive element (ARE) pathway, which in turn mediates the induction of HO-1. Taken together, the findings of this study demonstrate that sulforaphane prevents doxorubicin-induced oxidative stress and cell death in H9c2 cells through the induction of HO-1 expression.
Collapse
Affiliation(s)
- Bo Li
- Department of Pharmacology and Institute of Cardiovascular Research, School of Medicine, Chonbuk National University, Jeonju, Chonbuk 561-180, Republic of Korea
| | - Do Sung Kim
- Department of Pharmacology and Institute of Cardiovascular Research, School of Medicine, Chonbuk National University, Jeonju, Chonbuk 561-180, Republic of Korea
| | - Raj Kumar Yadav
- Department of Pharmacology and Institute of Cardiovascular Research, School of Medicine, Chonbuk National University, Jeonju, Chonbuk 561-180, Republic of Korea
| | - Hyung Ryong Kim
- Department of Dental Pharmacology and Wonkwang Biomaterial Implant Research Institute, School of Dentistry, Wonkwang University, Iksan, Chonbuk 570-749, Republic of Korea
| | - Han Jung Chae
- Department of Pharmacology and Institute of Cardiovascular Research, School of Medicine, Chonbuk National University, Jeonju, Chonbuk 561-180, Republic of Korea
| |
Collapse
|
27
|
Lim HJ, Crowe P, Yang JL. Current clinical regulation of PI3K/PTEN/Akt/mTOR signalling in treatment of human cancer. J Cancer Res Clin Oncol 2015; 141:671-89. [PMID: 25146530 DOI: 10.1007/s00432-014-1803-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/08/2014] [Indexed: 01/14/2023]
Abstract
PURPOSE PTEN is an essential tumour suppressor gene which encodes a phosphatase protein that antagonises the PI3K/Akt/mTOR antiapoptotic pathway. Impairment of this tumour suppressor pathway potentially becomes a causal factor for development of malignancies. This review aims to assess current understanding of mechanisms of dysfunction involving the PI3K/PTEN/Akt/mTOR pathway linked to tumorigenesis and evaluate the evidence for targeted therapy directed at this signalling axis. METHODS Relevant articles in scientific databases were identified using a combination of search terms, including "malignancies", "targeted therapy", "PTEN", and "combination therapy". These databases included Medline, Embase, Cochrane Review, Pubmed, and Scopus. RESULTS PI3K/PTEN expression is frequently deregulated in a majority of malignancies through genetic, epigenetic, and post-transcriptional modifications. This contributes to the upregulation of the PI3K/Akt/mTOR pathway which has been the focus of intense clinical studies. Targeted agents aimed at this pathway offer a novel treatment approach in a variety of haematologic malignancies and solid tumours. Compared to single-agent use, greater response rates were obtained in combination regimens, supporting further investigation of suitable drug combinations in a broad spectrum of malignancies. CONCLUSION Activation of the PI3K/PTEN/Akt/mTOR pathway is implicated both in the pathogenesis of malignancies and development of resistance to anticancer therapies. Therefore, PI3K/Akt/mTOR inhibitors are a promising therapeutic option, in association with systemic cytotoxic and biological therapies, to enable sustained clinical outcomes in cancer treatment. Therapeutic strategies could be tailored according to appropriate biomarkers and patient-specific mutation profiles to maximise benefit of combination therapies.
Collapse
Affiliation(s)
- Hui Jun Lim
- Adult Cancer Program, Sarcoma and Nano-oncology Group, Faculty of Medicine, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Room 209, Randwick, Sydney, NSW, 2052, Australia
| | | | | |
Collapse
|
28
|
Hartikainen JM, Tengström M, Winqvist R, Jukkola-Vuorinen A, Pylkäs K, Kosma VM, Soini Y, Mannermaa A. KEAP1 Genetic Polymorphisms Associate with Breast Cancer Risk and Survival Outcomes. Clin Cancer Res 2015; 21:1591-601. [PMID: 25589623 DOI: 10.1158/1078-0432.ccr-14-1887] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 01/07/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Defective oxidative stress response may increase cancer susceptibility. In tumors, these rescue mechanisms may cause chemo- and radioresistance impacting patient outcome. We previously showed that genetic variation in the nuclear factor erythroid 2-related factor 2 (NFE2L2) is associated with breast cancer risk and prognosis. Here we further studied this pathway by investigating Kelch-like ECH-associated protein 1 (KEAP1). EXPERIMENTAL DESIGN Five tagging SNPs in the KEAP1 gene were genotyped in 996 breast cancer cases and 880 controls from two Finnish case-control sets. KEAP1 protein expression was studied in 373 invasive breast cancer tumors. RESULTS rs34197572 genotype TT was associated with increased risk of breast cancer in the KBCP samples [P = 1.8×10(-4); OR, 7.314; confidence interval (CI), 2.185-24.478]. rs11085735 allele A was associated with lower KEAP1 protein expression (P = 0.040; OR,= 3.545) and high nuclear NRF2 expression (P = 0.009; OR, 2.445) and worse survival in all invasive cases (P = 0.023; HR, 1.634). When including treatment data, rs11085735 was associated with recurrence-free survival (RFS; P = 0.020; HR, 1.545) and breast cancer-specific survival (P = 0.016; HR, 1.683) and rs34197572 with overall survival (P = 0.045; HR, 1.304). rs11085735 associated with RFS also among tamoxifen-treated cases (P = 0.003; HR, 3.517). Among radiotherapy-treated cases, overall survival was associated with rs34197572 (P = 0.018; HR, 1.486) and rs8113472 (P = 0.025; HR, 1.455). RFS was associated with rs9676881 (P = 0.024; HR, 1.452) and rs1048290 (P = 0.020; HR, 1.468) among all invasive cases and among estrogen receptor (ER)-positive tamoxifen-treated cases (P = 0.018; HR, 2.407 and P = 0.015; HR, 2.476, respectively). CONCLUSIONS The present findings suggest that the investigated SNPs have effects related to oxidative stress induced by cancer treatment, supporting involvement of the NRF2/KEAP1 pathway in breast cancer susceptibility and patient outcome.
Collapse
Affiliation(s)
- Jaana M Hartikainen
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, and Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland.
| | - Maria Tengström
- School of Medicine, Institute of Clinical Medicine, Oncology, University of Eastern Finland, Kuopio, Finland. Cancer Center, Kuopio University Hospital, Kuopio, Finland
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Department of Clinical Chemistry and Biocenter Oulu, University of Oulu, Oulu, Finland. Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre NordLab, Oulu, Finland
| | - Arja Jukkola-Vuorinen
- Department of Oncology, University of Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Department of Clinical Chemistry and Biocenter Oulu, University of Oulu, Oulu, Finland. Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre NordLab, Oulu, Finland
| | - Veli-Matti Kosma
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, and Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland. Imaging Center, Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Ylermi Soini
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, and Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland. Imaging Center, Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Arto Mannermaa
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, and Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland. Imaging Center, Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
29
|
The role of reactive oxygen species and subsequent DNA-damage response in the emergence of resistance towards resveratrol in colon cancer models. Cell Death Dis 2014; 5:e1533. [PMID: 25412311 PMCID: PMC4260744 DOI: 10.1038/cddis.2014.486] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 09/10/2014] [Accepted: 09/26/2014] [Indexed: 12/25/2022]
Abstract
In spite of the novel strategies to treat colon cancer, mortality rates associated
with this disease remain consistently high. Tumour recurrence has been linked to the
induction of resistance towards chemotherapy that involves cellular events that
enable cancer cells to escape cell death. Treatment of colon cancer mainly implicates
direct or indirect DNA-damaging agents and increased repair or tolerances towards
subsequent lesions contribute to generate resistant populations. Resveratrol (RSV), a
potent chemosensitising polyphenol, might share common properties with
chemotherapeutic drugs through its indirect DNA-damaging effects reported in
vitro. In this study, we investigated how RSV exerts its anticancer effects
in models of colon cancer with a particular emphasis on the DNA-damage response (DDR;
PIKKs-Chks-p53 signalling cascade) and its cellular consequences. We showed in
vitro and in vivo that colon cancer models could progressively
escape the repeated pharmacological treatments with RSV. We observed for the first
time that this response was correlated with transient activation of the DDR, of
apoptosis and senescence. In vitro, a single treatment with RSV induced a
DDR correlated with S-phase delay and apoptosis, but prolonged treatments led to
transient micronucleations and senescence phenotypes associated with
polyploidisation. Ultimately, stable resistant populations towards RSV displaying
higher degrees of ploidy and macronucleation as compared to parental cells emerged.
We linked these transient effects and resistance emergence to the abilities of these
cells to progressively escape RSV-induced DNA damage. Finally, we demonstrated that
this DNA damage was triggered by an overproduction of reactive oxygen species (ROS)
against which cancer cells could adapt under prolonged exposure to RSV. This study
provides a pre-clinical analysis of the long-term effects of RSV and highlights ROS
as main agents in RSV's indirect DNA-damaging properties and consequences in
terms of anticancer response and potent resistance emergence.
Collapse
|
30
|
Reszka E, Jablonowski Z, Wieczorek E, Jablonska E, Krol MB, Gromadzinska J, Grzegorczyk A, Sosnowski M, Wasowicz W. Polymorphisms of NRF2 and NRF2 target genes in urinary bladder cancer patients. J Cancer Res Clin Oncol 2014; 140:1723-31. [PMID: 24919441 PMCID: PMC4160566 DOI: 10.1007/s00432-014-1733-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/31/2014] [Indexed: 02/06/2023]
Abstract
PURPOSE NRF2 transcription factor is involved in modulation of various antioxidant and metabolic genes and, therefore, may modulate anti-carcinogenic potential. Association between polymorphisms of NRF2 and five NRF2-regulated genes and urinary bladder cancer (BC) risk was analyzed. METHODS The study group included 244 BC patients, while the control group comprised 365 individuals with no evidence of malignancy. Genotyping of GSTM1 (deletion), GSTT1 (deletion), GSTA1 -69C/T (rs3957357), GSTP1 Ile105Val (rs1695), SOD2 Ala16Val (rs4880) and NRF2 -617C/A (rs6721961) in blood genomic DNA was performed by means of real-time PCR assays. The associations between gene polymorphism and BC risk were computed by logistic regression. RESULTS The frequency of GSTA1, GSTP1, SOD2 and NRF2 genotypes did not differ in both groups. A significantly higher BC risk was associated with GSTM1 null genotype after adjusting to age, sex and smoking habit (OR 1.85, 95 % CI 1.30-2.62; P = 0.001). GSTT1 null (OR 0.50, 95 % CI 0.31-0.81; P = 0.005) and GSTP1 Val105Val (OR 0.52, 95 % CI 0.27-0.98; P = 0.04) genotypes were associated with reduced BC risk separately or in combination (OR 0.24, 95 % CI 0.11-0.51; P < 0.0001) (P heterogeneity = 0.01). Combined GSTT1 null and SOD2 with at least one 16Val allele among never smokers encompass reduced BC risk (OR 0.14, 95 % CI 0.03-0.63; P = 0.01) (P heterogeneity = 0.04). CONCLUSIONS This study supports hypothesis that GSTM1 null genotype may be a moderate BC risk factor. The gene-gene and gene-environment interactions associated with combined GSTP1/GSTT1 and combined GSTT1/SOD2 genetic polymorphisms along with cigarette smoking habit may play a significant role in BC risk modulation.
Collapse
Affiliation(s)
- Edyta Reszka
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, Teresy St. 8, 91-348, Lodz, Poland,
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Chen B, Zhang Y, Wang Y, Rao J, Jiang X, Xu Z. Curcumin inhibits proliferation of breast cancer cells through Nrf2-mediated down-regulation of Fen1 expression. J Steroid Biochem Mol Biol 2014; 143:11-8. [PMID: 24486718 DOI: 10.1016/j.jsbmb.2014.01.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 01/16/2014] [Accepted: 01/21/2014] [Indexed: 12/13/2022]
Abstract
Curcumin can inhibit cell proliferation of breast cancer, but the mechanism for this inhibition remains unclear. Over-expression of Flap endonuclease 1 (Fen1), a DNA repair-specific nuclease, is involved in the development of breast cancer. Nrf2 is a master regulator of cellular antioxidant defense systems. Curcumin can induce the expression of Nrf2 in both non-breast cancer cells and breast cancer cells. However, whether curcumin-induced inhibition of breast cancer cell proliferation may involve Nrf2-mediated Fen1 expression is not yet understood. In this study, we demonstrated that curcumin inhibited Fen1-dependent proliferation of MCF-7 cells and significantly induced Nrf2 protein expression while inhibiting Fen1 protein expression. Curcumin could down-regulate Fen1 gene expression in a Nrf2-dependent manner. Further investigation revealed that curcumin could lead to Nrf2 translocation from the cytoplasm to the nucleus and decrease Fen1 promoter activity by decreasing the recruitment of Nrf2 to the Fen1 promoter. These data suggest that curcumin may inhibit the proliferation of breast cancer cells through Nrf2-mediated down-regulation of Fen1 expression, which may be a new mechanism of curcumin-induced tumor growth inhibition.
Collapse
Affiliation(s)
- Bin Chen
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing 400038, China
| | - Youzhi Zhang
- Department of Integrative Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yang Wang
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing 400038, China
| | - Jun Rao
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing 400038, China
| | - Xiaomei Jiang
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing 400038, China
| | - Zihui Xu
- Department of Integrative Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
32
|
Arsenic inhibits autophagic flux, activating the Nrf2-Keap1 pathway in a p62-dependent manner. Mol Cell Biol 2013; 33:2436-46. [PMID: 23589329 DOI: 10.1128/mcb.01748-12] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Nrf2-Keap1 signaling pathway is a protective mechanism promoting cell survival. Activation of the Nrf2 pathway by natural compounds has been proven to be an effective strategy for chemoprevention. Interestingly, a cancer-promoting function of Nrf2 has recently been observed in many types of tumors due to deregulation of the Nrf2-Keap1 axis, which leads to constitutive activation of Nrf2. Here, we report a novel mechanism of Nrf2 activation by arsenic that is distinct from that of chemopreventive compounds. Arsenic deregulates the autophagic pathway through blockage of autophagic flux, resulting in accumulation of autophagosomes and sequestration of p62, Keap1, and LC3. Thus, arsenic activates Nrf2 through a noncanonical mechanism (p62 dependent), leading to a chronic, sustained activation of Nrf2. In contrast, activation of Nrf2 by sulforaphane (SF) and tert-butylhydroquinone (tBHQ) depends upon Keap1-C151 and not p62 (the canonical mechanism). More importantly, SF and tBHQ do not have any effect on autophagy. In fact, SF and tBHQ alleviate arsenic-mediated deregulation of autophagy. Collectively, these findings provide evidence that arsenic causes prolonged activation of Nrf2 through autophagy dysfunction, possibly providing a scenario similar to that of constitutive activation of Nrf2 found in certain human cancers. This may represent a previously unrecognized mechanism underlying arsenic toxicity and carcinogenicity in humans.
Collapse
|
33
|
The involvement of NRF2 in lung cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:746432. [PMID: 23577226 PMCID: PMC3614183 DOI: 10.1155/2013/746432] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/20/2013] [Accepted: 02/26/2013] [Indexed: 12/22/2022]
Abstract
Nuclear factor, erythroid-derived 2, like 2 (NRF2) is a key regulator of antioxidants and cellular stress responses. The role of NRF2 in pulmonary neoplasia, a diverse disease for which few biomarkers exist, is complicated and appears to depend on several main factors including the existence of activating mutations in NRF2 and/or loss of function mutations in KEAP1 and the stage of carcinogenesis studied, particularly in the mouse models tested. Therapeutic strategies for lung cancer targeting NRF2 have observed mixed results, both anti- and protumorigenic effects; however, these differences seem to reflect the mutation status of NRF2 or KEAP1. In this paper, we will discuss the studies on human NRF2 and the mechanisms proposed, several mouse models using various mice deficient in NRF2, as well as xenograft models, and the chemotherapeutic strategies using the NRF2 pathway.
Collapse
|
34
|
Lau A, Whitman SA, Jaramillo MC, Zhang DD. Arsenic-mediated activation of the Nrf2-Keap1 antioxidant pathway. J Biochem Mol Toxicol 2012. [PMID: 23188707 DOI: 10.1002/jbt.21463] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Arsenic is present in the environment and has become a worldwide health concern due to its toxicity and carcinogenicity. However, the specific mechanism(s) by which arsenic elicits its toxic effects has yet to be fully elucidated. The transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) has been recognized as the master regulator of a cellular defense mechanism against toxic insults. This review highlights studies demonstrating that arsenic activates the Nrf2-Keap1 antioxidant pathway by a distinct mechanism from that of natural compounds such as sulforaphane (SF) found in broccoli sprouts or tert-butylhyrdoquinone (tBHQ), a natural antioxidant commonly used as a food preservative. Evidence also suggests that arsenic prolongs Nrf2 activation and may mimic constitutive activation of Nrf2, which has been found in several human cancers due to disruption of the Nrf2-Keap1 axis. The current literature strongly suggests that activation of Nrf2 by arsenic potentially contributes to, rather than protects against, arsenic toxicity and carcinogenicity. The mechanism(s) by which known Nrf2 activators, such as the natural chemopreventive compounds SF and lipoic acid, protect against the deleterious effects caused by arsenic will also be discussed. These findings will provide insight to further understand how arsenic promotes a prolonged Nrf2 response, which will lead to the identification of novel molecular markers and development of rational therapies for the prevention or intervention of arsenic-induced diseases. The National Institute of Environmental Health Science (NIEHS) Outstanding New Environmental Scientist (ONES) award has provided the opportunity to review the progress both in the fields of arsenic toxicology and Nrf2 biology. Much of the funding has led to (1) the novel discovery that arsenic activates the Nrf2 pathway by a mechanism different to that of other Nrf2 activators, such as sulforaphane and tert-butylhydroquinone, (2) activation of Nrf2 by chemopreventive compounds protects against arsenic toxicity and carcinogenicity both in vitro and in vivo, (3) constitutive activation of Nrf2 by disrupting Keap1-mediated negative regulation contributes to cancer and chemoresistance, (4) p62-mediated sequestration of Keap1 activates the Nrf2 pathway, and (5) arsenic-mediated Nrf2 activation may be through a p62-dependent mechanism. All of these findings have been published and are discussed in this review. This award has laid the foundation for my laboratory to further investigate the molecular mechanism(s) that regulate the Nrf2 pathway and how it may play an integral role in arsenic toxicity. Moreover, understanding the biology behind arsenic toxicity and carcinogenicity will help in the discovery of potential strategies to prevent or control arsenic-mediated adverse effects.
Collapse
Affiliation(s)
- Alexandria Lau
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
35
|
Hartikainen JM, Tengström M, Kosma VM, Kinnula VL, Mannermaa A, Soini Y. Genetic Polymorphisms and Protein Expression of NRF2 and Sulfiredoxin Predict Survival Outcomes in Breast Cancer. Cancer Res 2012; 72:5537-46. [DOI: 10.1158/0008-5472.can-12-1474] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Thakur VS, Gupta K, Gupta S. The chemopreventive and chemotherapeutic potentials of tea polyphenols. Curr Pharm Biotechnol 2012; 13:191-9. [PMID: 21466438 DOI: 10.2174/138920112798868584] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Revised: 08/10/2010] [Accepted: 08/11/2010] [Indexed: 01/12/2023]
Abstract
Tea is the second most consumed beverage in the world reported to have multiple health benefits. Preventive and therapeutic benefits of tea polyphenols include enhanced general well being and anti-neoplastic effects. The pharmacologic action of tea is often attributed to various catechins present therein. Experiments conducted in cancer cell lines and animal models demonstrate that tea polyphenols protect against cellular damage caused by oxidative stress and altered immunity. Tea polyphenols modify various metabolic and signaling pathways in the regulation of proliferation, apoptosis, angiogenesis, and metastasis and therefore restrict clonal expansion of cancer cells. Tea polyphenols have been shown to reactivate tumor suppressors, block the unlimited replicative potential of cancer cells, and physically bind to nucleic acids involved in epigenetic alterations of gene regulation. Remarkable interest in green tea as a potential chemopreventive agent has been generated since recent epigenetic data showed that tea polyphenols have the potential to reverse epigenetic modifications which might otherwise be carcinogenic. Like green tea, black tea may also possess chemopreventive and chemotherapeutic potential; however, there is still not enough evidence available to make any conclusive statements. Here we present a brief description of tea polyphenols and discuss the findings of various in vitro and in vivo studies of the anticancer effects of tea polyphenols. Detailed discussion of various studies related to epigenetic changes caused by tea polyphenols leading to prevention of oncogenesis or cancer progression is included. Finally, we discuss on the scope and development of tea polyphenols in cancer prevention and therapy.
Collapse
Affiliation(s)
- Vijay S Thakur
- Department of Urology & Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
37
|
Myers CR. The effects of chromium(VI) on the thioredoxin system: implications for redox regulation. Free Radic Biol Med 2012; 52:2091-107. [PMID: 22542445 PMCID: PMC3955998 DOI: 10.1016/j.freeradbiomed.2012.03.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/09/2012] [Accepted: 03/09/2012] [Indexed: 01/01/2023]
Abstract
Hexavalent chromium [Cr(VI)] compounds are highly redox active and have long been recognized as potent cytotoxins and carcinogens. The intracellular reduction of Cr(VI) generates reactive Cr intermediates, which are themselves strong oxidants, as well as superoxide, hydrogen peroxide, and hydroxyl radical. These probably contribute to the oxidative damage and effects on redox-sensitive transcription factors that have been reported. However, the identification of events that initiate these signaling changes has been elusive. More recent studies show that Cr(VI) causes irreversible inhibition of thioredoxin reductase (TrxR) and oxidation of thioredoxin (Trx) and peroxiredoxin (Prx). Mitochondrial Trx2/Prx3 are more sensitive to Cr(VI) treatment than cytosolic Trx1/Prx1, although both compartments show thiol oxidation with higher doses or longer treatments. Thiol redox proteomics demonstrate that Trx2, Prx3, and Trx1 are among the most sensitive proteins in cells to Cr(VI) treatment. Their oxidation could therefore represent initiating events that have widespread implications for protein thiol redox control and for multiple aspects of redox signaling. This review summarizes the effects of Cr(VI) on the TrxR/Trx system and how these events could influence a number of downstream redox signaling systems that are influenced by Cr(VI) exposure. Some of the signaling events discussed include the activation of apoptosis signal regulating kinase and MAP kinases (p38 and JNK) and the modulation of a number of redox-sensitive transcription factors including AP-1, NF-κB, p53, and Nrf2.
Collapse
Affiliation(s)
- Charles R Myers
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
38
|
Filomeni G, Piccirillo S, Rotilio G, Ciriolo MR. p38(MAPK) and ERK1/2 dictate cell death/survival response to different pro-oxidant stimuli via p53 and Nrf2 in neuroblastoma cells SH-SY5Y. Biochem Pharmacol 2012; 83:1349-57. [PMID: 22342995 DOI: 10.1016/j.bcp.2012.02.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 12/21/2022]
Abstract
Redox changes are often reported as causative of neoplastic transformation and chemoresistance, but are also exploited as clinical tools to selectively kill tumor cells. We previously demonstrated that gastrointestinal-derived tumor histotypes are resistant to ROS-based treatments by means of the redox activation of Nrf2, but highly sensitive to disulfide stressors triggering apoptosis via the redox induction of Trx1/p38(MAPK)/p53 signaling pathway. Here, we provide evidence that neuroblastoma SH-SY5Y has a complete opposite behavior, being sensitive to H₂O₂, but resistant to the glutathione (GSH)-oxidizing molecule diamide. Consistent with these observations, the apoptotic pathway activated upon H₂O₂ treatment relies upon Trx1 oxidation, and is mediated by the p38(MAPK)/p53 signaling axis. Pre-treatment with different antioxidants, pharmacological inhibitor of p38(MAPK), or small interfering RNA against p53 rescue cell viability. On the contrary, cell survival to diamide relies upon redox activation of Nrf2, in a way independent on Keap1 oxidation, but responsive to ERK1/2 activation. Chemical inhibition of GSH neo-synthesis or ERK1/2 phosphorylation, as well as overexpression of the dominant-negative form of Nrf2 sensitizes cells to diamide toxicity. In the searching for the molecular determinant(s) unifying these phenomena, we found that SH-SY5Y cells show high GSH levels, but exhibit very low GPx activity. This feature allows to efficiently buffer disulfide stress, but leaves them being vulnerable to H₂O₂-mediated insult. The increase of GPx activity by means of selenium supplementation or GPx1 ectopic expression completely reverses death phenotype, indicating that the response of tumor cells to diverse oxidative stimuli deeply involves the entire GSH redox system.
Collapse
Affiliation(s)
- Giuseppe Filomeni
- Department of Biology, University of Rome "Tor Vergata", via della Ricerca Scientifica, 00133 Rome, Italy
| | | | | | | |
Collapse
|
39
|
Granado-Serrano AB, Martín MA, Bravo L, Goya L, Ramos S. Quercetin modulates Nrf2 and glutathione-related defenses in HepG2 cells: Involvement of p38. Chem Biol Interact 2011; 195:154-64. [PMID: 22197970 DOI: 10.1016/j.cbi.2011.12.005] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 11/16/2011] [Accepted: 12/08/2011] [Indexed: 02/06/2023]
Abstract
Dietary flavonoid quercetin has been suggested as a cancer chemopreventive agent, but the mechanisms of action remain unclear. This study investigated the influence of quercetin on p38-MAPK and the potential regulation of the nuclear transcription factor erythroid-2p45-related factor (Nrf2) and the cellular antioxidant/detoxifying defense system related to glutathione (GSH) by p38 in HepG2 cells. Incubation of HepG2 cells with quercetin at a range of concentrations (5-50μM) for 4 or 18h induced a differential effect on the modulation of p38 and Nrf2 in HepG2 cells, 50μM quercetin showed the highest activation of p38 at 4h of treatment and values of p38 similar to those of control cells after 18 h of incubation, together with the inhibition of Nrf2 at both incubation times. Quercetin (50μM) induced a time-dependent activation of p38, which was in concert with a transient stimulation of Nrf2 to provoke its inhibition afterward. Quercetin also increased GSH content, mRNA levels of glutamylcysteine-synthetase (GCS) and expression and/or activity of glutathione-peroxidase, glutathione-reductase and GCS after 4h of incubation, and glutathione-S-transferase after 18h of exposure. Further studies with the p38 specific inhibitor SB203580 showed that the p38 blockage restored the inhibited Nrf2 transcription factor and the enzymatic expression and activity of antioxidant/detoxificant enzymes after 4h exposure. In conclusion, p38-MAPK is involved in the mechanisms of the cell response to quercetin through the modulation of Nrf2 and glutathione-related enzymes in HepG2 cells.
Collapse
Affiliation(s)
- Ana Belén Granado-Serrano
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition-ICTAN (Former Instituto del Frío), Consejo Superior de Investigaciones Científicas (CSIC), José Antonio Novais 10, Ciudad Universitaria, Madrid, Spain
| | | | | | | | | |
Collapse
|
40
|
Fimognari C, Turrini E, Ferruzzi L, Lenzi M, Hrelia P. Natural isothiocyanates: genotoxic potential versus chemoprevention. Mutat Res 2011; 750:107-131. [PMID: 22178957 DOI: 10.1016/j.mrrev.2011.12.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 12/01/2011] [Accepted: 12/02/2011] [Indexed: 12/12/2022]
Abstract
Isothiocyanates, occurring in many dietary cruciferous vegetables, show interesting chemopreventive activities against several chronic-degenerative diseases, including cancer, cardiovascular diseases, neurodegeneration, diabetes. The electrophilic carbon residue in the isothiocyanate moiety reacts with biological nucleophiles and modification of proteins is recognized as a key mechanism underlying the biological activity of isothiocyanates. The nuclear factor-erythroid-2-related factor 2 system, which orchestrates the expression of a wide array of antioxidant genes, plays a role in the protective effect of isothiocyanates against almost all the pathological conditions reported above. Recent emerging findings suggest a further common mechanism. Chronic inflammation plays a central role in many human diseases and isothiocyanates inhibit the activity of many inflammation components, suppress cyclooxygenase 2, and irreversibly inactivate the macrophage migration inhibitory factor. Due to their electrophilic reactivity, some isothiocyanates are able to form adducts with DNA and induce gene mutations and chromosomal aberrations. DNA damage has been demonstrated to be involved in the pathogenesis of various chronic-degenerative diseases of epidemiological relevance. Thus, the genotoxicity of the isothiocyanates should be carefully considered. In addition, the dose-response relationship for genotoxic compounds does not suggest evidence of a threshold. Thus, chemicals that are genotoxic pose a greater potential risk to humans than non-genotoxic compounds. Dietary consumption levels of isothiocyanates appear to be several orders of magnitude lower than the doses used in the genotoxicity studies and thus it is highly unlikely that such toxicities would occur in humans. However, the beneficial properties of isothiocyanates stimulated an increase of dietary supplements and functional foods with highly enriched isothiocyanate concentrations on the market. Whether such concentrations may exert a potential health risk cannot be excluded with certainty and an accurate evaluation of the toxicological profile of isothiocyanates should be prompted before any major increase in their consumption be recommended or their clinical use suggested.
Collapse
Affiliation(s)
- Carmela Fimognari
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy.
| | - Eleonora Turrini
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Lorenzo Ferruzzi
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Monia Lenzi
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
41
|
Ma X, Zhang J, Liu S, Huang Y, Chen B, Wang D. Nrf2 knockdown by shRNA inhibits tumor growth and increases efficacy of chemotherapy in cervical cancer. Cancer Chemother Pharmacol 2011; 69:485-94. [DOI: 10.1007/s00280-011-1722-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 07/29/2011] [Indexed: 12/19/2022]
|
42
|
Piña Y, Houston SK, Murray TG, Boutrid H, Celdran M, Feuer W, Shi W, Hernandez E, Lampidis TJ. Focal, periocular delivery of 2-deoxy-D-glucose as adjuvant to chemotherapy for treatment of advanced retinoblastoma. Invest Ophthalmol Vis Sci 2010; 51:6149-56. [PMID: 20702830 DOI: 10.1167/iovs.09-5033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
PURPOSE The aim of this study was to evaluate the changes in tumor burden and hypoxia in the LH(BETA)T(AG) retinal tumors after treatment with a focal, single-modality, and combination therapy using periocular carboplatin and 2-deoxy-d-glucose (2-DG). METHODS Seventeen-week-old LH(BETA)T(AG) transgenic mice (n = 25) were treated with periocular injections of varying doses of 2-DG (62.5, 125, 250, 500 mg/kg) to obtain a dose response. Same-aged mice (n = 30) received periocular injections of saline, carboplatin, and 2-DG. Mice were divided into six groups: saline; carboplatin (31.25 μg/20 μL, subtherapeutic dose); 2-DG (250 mg/kg); 2-DG (500 mg/kg); carboplatin (31.25 μg/20 μL) and 2-DG (250 mg/kg); and carboplatin (31.25 μg/20 μL) and 2-DG (500 mg/kg). Injections were administered twice weekly for three consecutive weeks. Eyes were enucleated at 20 weeks of age, snap frozen, and analyzed for hypoxic regions and tumor volume. RESULTS The difference in percentage of hypoxia after treatment with 500 mg/kg 2-DG was statistically significant from the other dose groups (P < 0.015). The difference in tumor burden was statistically significant from the 250 mg/kg dose (P < 0.015) and 500 mg/kg dose (P < 0.001). Highly significant differences were found between the treatment types for tumor burden, percentage of hypoxia, and pimonidazole intensity (P < 0.001). Tumor burden decreased significantly after all forms of treatment (P < 0.001); however, tumor burden became significantly more reduced after treatment with combination therapy of carboplatin and 2-DG than with either treatment alone (P < 0.001). The percentage of hypoxia and pimonidazole intensity decreased after treatment with 2-DG alone and in combination with carboplatin (P < 0.001) in all treatment groups using 2-DG regardless of the 2-DG dose used. There was no percentage reduction of hypoxia after treatment with carboplatin alone (P = 0.25). CONCLUSIONS This study demonstrates the efficacy of focal, periocular 2-DG as an adjunct to carboplatin chemotherapy to decrease both intratumoral hypoxia and tumor burden. Hypoxia is increasingly present in advanced disease of LH(BETA)T(AG) retinal tumors. The use of glycolytic inhibitors as a therapeutic strategy has the potential to enhance current retinoblastoma treatments.
Collapse
Affiliation(s)
- Yolanda Piña
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kleiner-Hancock HE, Shi R, Remeika A, Robbins D, Prince M, Gill JN, Syed Z, Adegboyega P, Mathis JM, Clifford JL. Effects of ATRA combined with citrus and ginger-derived compounds in human SCC xenografts. BMC Cancer 2010; 10:394. [PMID: 20659317 PMCID: PMC2916922 DOI: 10.1186/1471-2407-10-394] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Accepted: 07/26/2010] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND NF-kappaB is a survival signaling transcription factor complex involved in the malignant phenotype of many cancers, including squamous cell carcinomas (SCC). The citrus coumarin, auraptene (AUR), and the ethno-medicinal ginger (Alpinia galanga) phenylpropanoid, 1'-acetoxychavicol acetate (ACA), were previously shown to suppress 12-O-tetradecanoylphorbol-13-acetate (TPA) induced mouse skin tumor promotion. The goal of the present study was to determine whether AUR and ACA are effective either alone or in combination with all-trans retinoic acid (ATRA) for suppressing SCC tumor growth. METHODS We first determined the effects of orally administered ACA (100 mg/kg bw) and AUR (200 mg/kg bw) on lipopolysaccharide (LPS)-induced NF-kappaB activation in NF-kappaB-RE-luc (Oslo) luciferase reporter mice. Dietary administration of AUR and ACA +/- ATRA was next evaluated in a xenograft mouse model. Female SCID/bg mice were fed diets containing the experimental compounds, injected with 1 x 106 SRB12-p9 cells s.c., palpated and weighed twice a week for 28 days following injection. RESULTS Both ACA and AUR suppressed LPS-induced NF-kappaB activation in the report mice. In the xenograft model, AUR (1000 ppm) and ACA (500 ppm) modestly suppressed tumor volume. However, in combination with ATRA at 5, 10, and 30 ppm, ACA 500 ppm significantly inhibited tumor volume by 56%, 62%, and 98%, respectively. The effect of ATRA alone was 37%, 33%, and 93% inhibition, respectively. AUR 1000 ppm and ATRA 10 ppm were not very effective when administered alone, but when combined, strongly suppressed tumor volume by 84%. CONCLUSIONS Citrus AUR may synergize the tumor suppressive effects of ATRA, while ACA may prolong the inhibitory effects of ATRA. Further studies will be necessary to determine whether these combinations may be useful in the control of human SCC.
Collapse
Affiliation(s)
- Heather E Kleiner-Hancock
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Hwy, Shreveport, Louisiana, 71103 USA
- Center for Experimental Cancer Therapeutics, Cancer Prevention & Control Group, Feist-Weiller Cancer Center, 1501 Kings Hwy, Shreveport, LA, 71103 USA
| | - Runhua Shi
- Department of Medicine, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Hwy, Shreveport, Louisiana, 71103 USA
- Center for Experimental Cancer Therapeutics, Cancer Prevention & Control Group, Feist-Weiller Cancer Center, 1501 Kings Hwy, Shreveport, LA, 71103 USA
| | - Angela Remeika
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Hwy, Shreveport, Louisiana, 71103 USA
| | - Delira Robbins
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Hwy, Shreveport, Louisiana, 71103 USA
| | - Misty Prince
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Hwy, Shreveport, Louisiana, 71103 USA
| | - Jennifer N Gill
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Hwy, Shreveport, Louisiana, 71103 USA
| | - Zanobia Syed
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Hwy, Shreveport, Louisiana, 71103 USA
| | - Patrick Adegboyega
- Department of Pathology, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Hwy, Shreveport, Louisiana, 71103 USA
- Center for Experimental Cancer Therapeutics, Cancer Prevention & Control Group, Feist-Weiller Cancer Center, 1501 Kings Hwy, Shreveport, LA, 71103 USA
| | - J Michael Mathis
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Hwy, Shreveport, Louisiana, 71103 USA
- Center for Experimental Cancer Therapeutics, Cancer Prevention & Control Group, Feist-Weiller Cancer Center, 1501 Kings Hwy, Shreveport, LA, 71103 USA
| | - John L Clifford
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Hwy, Shreveport, Louisiana, 71103 USA
- Center for Experimental Cancer Therapeutics, Cancer Prevention & Control Group, Feist-Weiller Cancer Center, 1501 Kings Hwy, Shreveport, LA, 71103 USA
| |
Collapse
|
44
|
Nguyen PM, Park MS, Chow M, Chang JH, Wrischnik L, Chan WK. Benzo[a]pyrene increases the Nrf2 content by downregulating the Keap1 message. Toxicol Sci 2010; 116:549-61. [PMID: 20498004 DOI: 10.1093/toxsci/kfq150] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We employed the suppressive subtractive hybridization to identify 41 up- and downregulated transcripts in Jurkat cells after benzo[a]pyrene (BaP) treatment. Among the 21 downregulated transcripts, we found that BaP suppresses the Keap1 transcript by 7.5-fold. Subsequent analyses revealed that BaP significantly suppresses the Keap1 message and protein levels to about 40 and 60%, respectively, of the vehicle controls in Jurkat cells without reactive oxygen species involvement. In addition, the nuclear Nrf2 (nuclear factor erythroid 2-related factor) protein content is significantly increased by 2.6-fold. The same BaP treatment to Hepa1c1c7 cells also downregulates the Keap1 message and protein levels to a similar extent. When we treated Jurkat cells with 3-(4-morpholinyl)propyl isothiocyanate, which is known to increase the amount of the Nrf2 content, we found that there is no change in the Keap1 message, but the amount of the Keap1 (kelch-like ECH-associated protein 1) protein is reduced to 75% of the vehicle controls. Although both Nrf2 target messages nqo1 and gstp1 are upregulated by BaP in Jurkat cells, only GSTP1 is upregulated at the protein level. Unlike Hepa1c1c7 cells, Jurkat cells have no detectable aryl hydrocarbon receptor and BaP metabolites, minimal CYP1A1 activity, and no quinone oxidoreductase 1 (NQO1) activity. We concluded that BaP, but not its metabolites, increases the amount of the nuclear Nrf2 protein by downregulating the Keap1 message in Jurkat cells.
Collapse
Affiliation(s)
- Phuong Minh Nguyen
- Department of Labour Physiology, Vietnam Military Medical University, Hadong, Hanoi, Vietnam
| | | | | | | | | | | |
Collapse
|
45
|
Buranrat B, Prawan A, Kukongviriyapan U, Kongpetch S, Kukongviriyapan V. Dicoumarol enhances gemcitabine-induced cytotoxicity in high NQO1-expressing cholangiocarcinoma cells. World J Gastroenterol 2010; 16:2362-2370. [PMID: 20480521 PMCID: PMC2874140 DOI: 10.3748/wjg.v16.i19.2362] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 03/05/2010] [Accepted: 03/12/2010] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate whether dicoumarol, a potent inhibitor of NAD(P)H quinone oxidoreductase-1 (NQO1), potentiates gemcitabine to induce cytotoxicity in cholangiocarcinoma cells (CCA) and the role of reactive oxygen generation in sensitizing the cells. METHODS Four human cell lines with different NQO1 activity were used; the human CCA cell lines, KKU-100, KKU-OCA17, KKU-M214, and Chang liver cells. NQO1 activity and mRNA expression were determined. The cells were pretreated with dicoumarol at relevant concentrations before treatment with gemcitabine. Cytotoxicity was determined by staining with fluorescent dyes. Oxidant formation was examined by assay of cellular glutathione levels and reactive oxygen species production by using dihydrofluorescein diacetate. Measurement of mitochondrial transmembrane potential was performed by using JC-1 fluorescent probe. Western blotting analysis was performed to determine levels of survival related proteins. RESULTS Dicoumarol markedly enhanced the cytotoxicity of gemcitabine in KKU-100 and KKU-OCA17, the high NQO1 activity and mRNA expressing cells, but not in the other cells with low NQO1 activity. Dicoumarol induced a marked decrease in cellular redox of glutathione in KKU-100 cells, in contrast to KKU-M214 cells. Dicoumarol at concentrations that inhibited NQO1 activity did not alter mitochondrial transmembrane potential and production of reactive oxygen species. Gemcitabine alone induced activation of NF-kappaB and Bcl-(XL) protein expression. However, gemcitabine and dicoumarol combination induced increased p53 and decreased Bcl-(XL) levels in KKU-100, but not in KKU-M214 cells. CONCLUSION NQO1 may be important in sensitizing cells to anticancer drugs and inhibition of NQO1 may be a strategy for the treatment of CCA.
Collapse
|