1
|
Zhang Y, Guan X, Chai Y, Lu T, An N, Lin X, Liao X. Rational design, optimization, and biological evaluation of novel pyrrolo-pyridone derivatives as potent and orally active Cbl-b inhibitors. Eur J Med Chem 2025; 290:117488. [PMID: 40120499 DOI: 10.1016/j.ejmech.2025.117488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/23/2025] [Accepted: 03/06/2025] [Indexed: 03/25/2025]
Abstract
Casitas B-lineage lymphoma proto-oncogene-b (Cbl-b), a member of the Cbl family of RING finger E3 ubiquitin ligases, plays a critical role in negatively regulating T-cell, natural killer (NK) cell, and B-cell activation. Inhibiting Cbl-b has emerged as a promising immuno-oncology strategy to enhance immune cell function. Here, we describe the rational design and optimization of pyrrolo-pyridone derivatives as potent Cbl-b inhibitors. Using structure-based drug design, we identified key structural elements that enhance binding affinity and inhibitory potency. Notably, compound B2 stands out, showing superior potency in stimulating IL-2 production in T cells and modulating phosphorylation of key proteins in T-cell receptor signaling. Furthermore, B2 demonstrates favorable pharmacokinetics and significantly inhibits tumor growth in vivo, outperforming NX-1607, which is currently in clinical trials.
Collapse
Affiliation(s)
- Yixuan Zhang
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, 100084, China; School of Pharmacy, Bengbu Medical University, Bengbu, 233030, China
| | - Xiangna Guan
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yushuang Chai
- Zhuhai Yufan Biotechnologies Co., Ltd, Zhuhai, Guangdong, China
| | - Tingting Lu
- Zhuhai Yufan Biotechnologies Co., Ltd, Zhuhai, Guangdong, China
| | - Na An
- Zhuhai Yufan Biotechnologies Co., Ltd, Zhuhai, Guangdong, China
| | - Xinyu Lin
- Zhuhai Yufan Biotechnologies Co., Ltd, Zhuhai, Guangdong, China.
| | - Xuebin Liao
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Wang H, Li F, Feng Y, Ma W, Li Y, Zhao X, Wu J, Shi C, Zong L, Li J, Cong J, Wang X. Cbl-b inhibition improves manufacturing efficiency and antitumoral efficacy of anti-CD19 CAR-T cells. Int Immunopharmacol 2025; 147:113971. [PMID: 39752754 DOI: 10.1016/j.intimp.2024.113971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/06/2024] [Accepted: 12/26/2024] [Indexed: 01/29/2025]
Abstract
Chimeric antigen receptor T (CAR-T) cells represent a promising approach for cancer immunotherapy, yet their efficacy is hindered by immunosuppressive signals in the tumor microenvironment. Casitas B-cell lymphoma protein b (Cbl-b) is a key negative regulator of T cell function. This study investigated whether inhibiting Cbl-b enhances the antitumor activity of human CAR-T cells. The Cbl-b inhibitor NX-1607 was shown to significantly improve CAR-T cell production and function. When applied during the manufacturing phase, NX-1607 increased the yield of anti-CD19 CAR-T cells. Treatment during the expansion phase enhanced cytokine secretion and cytotoxic activity. Notably, continuous NX-1607 treatment throughout manufacturing and expansion maximized CAR-T cell yield, cytokine production, and cytotoxicity. In vivo, NX-1607-treated CAR-T cells exhibited superior efficacy against hematological malignancies. These findings highlight Cbl-b as a therapeutic target for enhancing CAR-T cell manufacturing efficiency and antitumor efficacy, underscoring its potential for clinical applications.
Collapse
Affiliation(s)
- Haoqi Wang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, China
| | - Fei Li
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yuanyuan Feng
- Department of Hematology, Anhui Provincial Cancer Hospital, Hefei, China
| | - Wenqiang Ma
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yuanhao Li
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xueqin Zhao
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jingyi Wu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chenxi Shi
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, China
| | - Lu Zong
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jing Li
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Jingjing Cong
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Xuefu Wang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, China; Institute of Clinical Immunology, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
3
|
Dollinger E, Hernandez-Davies J, Felgner J, Jain A, Hwang M, Strahsburger E, Nakajima R, Jasinskas A, Nie Q, Pone EJ, Othy S, Davies DH. Combination adjuvant improves influenza virus immunity by downregulation of immune homeostasis genes in lymphocytes. Immunohorizons 2025; 9:vlae007. [PMID: 39849993 PMCID: PMC11841980 DOI: 10.1093/immhor/vlae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 01/30/2025] Open
Abstract
Adjuvants play a central role in enhancing the immunogenicity of otherwise poorly immunogenic vaccine antigens. Combining adjuvants has the potential to enhance vaccine immunogenicity compared with single adjuvants, although the cellular and molecular mechanisms of combination adjuvants are not well understood. Using the influenza virus hemagglutinin H5 antigen, we define the immunological landscape of combining CpG and MPLA (TLR-9 and TLR-4 agonists, respectively) with a squalene nanoemulsion (AddaVax) using immunologic and transcriptomic profiling. Mice immunized and boosted with recombinant H5 in AddaVax, CpG+MPLA, or AddaVax plus CpG+MPLA (IVAX-1) produced comparable levels of neutralizing antibodies and were equally well protected against the H5N1 challenge. However, after challenge with H5N1 virus, H5/IVAX-1-immunized mice had 100- to 300-fold lower virus lung titers than mice receiving H5 in AddaVax or CpG+MPLA separately. Consistent with enhanced viral clearance, unsupervised expression analysis of draining lymph node cells revealed the combination adjuvant IVAX-1 significantly downregulated immune homeostasis genes, and induced higher numbers of antibody-producing plasmablasts than either AddaVax or CpG+MPLA. IVAX-1 was also more effective after single-dose administration than either AddaVax or CpG+MPLA. These data reveal a novel molecular framework for understanding the mechanisms of combination adjuvants, such as IVAX-1, and highlight their potential for the development of more effective vaccines against respiratory viruses.
Collapse
Affiliation(s)
- Emmanuel Dollinger
- Department of Mathematics, University of California Irvine, Irvine, CA, United States
| | - Jenny Hernandez-Davies
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Jiin Felgner
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Aarti Jain
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Michael Hwang
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Erwin Strahsburger
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Rie Nakajima
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Algimantas Jasinskas
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Qing Nie
- Department of Mathematics, University of California Irvine, Irvine, CA, United States
| | - Egest James Pone
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Shivashankar Othy
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - David Huw Davies
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| |
Collapse
|
4
|
Fusco R, Saedi Z, Capriello I, Lubskyy A, Dömling A. CBL-B - An upcoming immune-oncology target. Expert Opin Ther Pat 2025; 35:47-64. [PMID: 39582379 DOI: 10.1080/13543776.2024.2412567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/01/2024] [Indexed: 11/26/2024]
Abstract
INTRODUCTION The E3 ubiquitin ligase Cbl-b is a novel target in immune-oncology, with critical roles in regulating T-cell activation and signaling pathways. By facilitating the ubiquitination and degradation of key signaling proteins, Cbl-b modulates immune responses, maintaining immune homeostasis and preventing unwarranted T-cell proliferation. The therapeutic potential of Cbl-b as a cancer immunotherapy target is underscored by its contribution to an immunosuppressive tumor microenvironment, with efforts currently underway to develop small-molecule inhibitors. AREAS COVERED We reviewed the small molecules, and antibody-drug conjugates targeting Cbl-b from 2018 to 2024. The patents were gathered through publicly available databases and analyzed with in-house developed cheminformatic workflow, described within the manuscript. EXPERT OPINION Targeting Cbl-b presents a promising approach in immuno-oncology, offering a novel pathway to potentiate the immune system's ability to combat cancer beyond PDL1/PD1 inhibition. The development and clinical advancement of Cbl-b inhibitors, as evidenced by the ongoing trials, mark a significant step toward harnessing this target for therapeutic benefits. Overall, the strategic inhibition of Cbl-b holds substantial promise for improving cancer immunotherapy outcomes, heralding a new era in the fight against cancer.
Collapse
Affiliation(s)
- Riccardo Fusco
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, and Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czechia
| | - Zeinab Saedi
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, and Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czechia
| | - Imma Capriello
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, and Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czechia
| | - Andriy Lubskyy
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, and Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czechia
| | - Alexander Dömling
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, and Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czechia
| |
Collapse
|
5
|
You H, Zhang H, Jin X, Yan Z. Dysregulation of ubiquitination modification in renal cell carcinoma. Front Genet 2024; 15:1453191. [PMID: 39748950 PMCID: PMC11693700 DOI: 10.3389/fgene.2024.1453191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025] Open
Abstract
Renal cell carcinoma (RCC) is a malignant tumor of the renal tubular epithelial cells with a relatively high incidence rate worldwide. A large number of studies have indicated that dysregulation of the ubiquitination, including ubiquitination and dysregulation, is associated with the occurrence and development of RCC. This review focuses on several abnormal signaling pathways caused by E3 ligases and deubiquitinases. Additionally, we discuss research progress in RCC treatment by targeting key enzymes related to ubiquitination modifications.
Collapse
Affiliation(s)
| | | | - Xiaofeng Jin
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang, China
| | - Zejun Yan
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
6
|
Liang J, Lambrecht MJ, Arenzana TL, Aubert-Nicol S, Bao L, Broccatelli F, Cai J, Eidenschenk C, Everett C, Garner T, Gruber F, Haghshenas P, Huestis MP, Hsu PL, Kou P, Jakalian A, Larouche-Gauthier R, Leclerc JP, Leung DH, Martin A, Murray J, Prangley M, Rutz S, Kakiuchi-Kiyota S, Satz AL, Skelton NJ, Steffek M, Stoffler D, Sudhamsu J, Tan S, Wang J, Wang S, Wang Q, Wendorff TJ, Wichert M, Yadav A, Yu C, Wang X. Optimization of a Novel DEL Hit That Binds in the Cbl-b SH2 Domain and Blocks Substrate Binding. ACS Med Chem Lett 2024; 15:864-872. [PMID: 38894924 PMCID: PMC11181488 DOI: 10.1021/acsmedchemlett.4c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
We were attracted to the therapeutic potential of inhibiting Casitas B-lineage lymphoma proto-oncogene-b (Cbl-b), a RING E3 ligase that plays a critical role in regulating the activation of T cells. However, given that only protein-protein interactions were involved, it was unclear whether inhibition by a small molecule would be a viable approach. After screening an ∼6 billion member DNA-encoded library (DEL) using activated Cbl-b, we identified compound 1 as a hit for which the cis-isomer (2) was confirmed by biochemical and surface plasmon resonance (SPR) assays. Our hit optimization effort was greatly accelerated when we obtained a cocrystal structure of 2 with Cbl-b, which demonstrated induced binding at the substrate binding site, namely, the Src homology-2 (SH2) domain. This was quite noteworthy given that there are few reports of small molecule inhibitors that bind to SH2 domains and block protein-protein interactions. Structure- and property-guided optimization led to compound 27, which demonstrated measurable cell activity, albeit only at high concentrations.
Collapse
Affiliation(s)
- Jun Liang
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Michael J. Lambrecht
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Teresita L. Arenzana
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Linda Bao
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Fabio Broccatelli
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jianping Cai
- Roche
Pharma Research and Early Development (pRED), Roche Innovation Center
Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Celine Eidenschenk
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Christine Everett
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Thomas Garner
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Felix Gruber
- Roche
Pharma Research and Early Development (pRED), Roche Innovation Center
Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Pouyan Haghshenas
- Paraza
Pharma, 2525 Avenue Marie-Curie, Montreal, Quebec H4S 2E1, Canada
| | - Malcolm P. Huestis
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Peter L. Hsu
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Ponien Kou
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Araz Jakalian
- Paraza
Pharma, 2525 Avenue Marie-Curie, Montreal, Quebec H4S 2E1, Canada
| | | | | | - Dennis H. Leung
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Aaron Martin
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jeremy Murray
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Madeleine Prangley
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Sascha Rutz
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Alexander Lee Satz
- Roche
Pharma Research and Early Development (pRED), Roche Innovation Center
Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Nicholas J. Skelton
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Micah Steffek
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Daniel Stoffler
- Roche
Pharma Research and Early Development (pRED), Roche Innovation Center
Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jawahar Sudhamsu
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Sophia Tan
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jian Wang
- WuXi
AppTec Co., Ltd. 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, P. R. China
| | - Shouliang Wang
- WuXi
AppTec Co., Ltd. 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, P. R. China
| | - Qiuyue Wang
- WuXi
AppTec Co., Ltd. 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, P. R. China
| | - Timothy J. Wendorff
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Moreno Wichert
- Roche
Pharma Research and Early Development (pRED), Roche Innovation Center
Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Arun Yadav
- Paraza
Pharma, 2525 Avenue Marie-Curie, Montreal, Quebec H4S 2E1, Canada
| | - Christine Yu
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Xiaojing Wang
- Genentech,
Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
7
|
Mfuh AM, Boerth JA, Bommakanti G, Chan C, Chinn AJ, Code E, Fricke PJ, Giblin KA, Gohlke A, Hansel C, Hariparsad N, Hughes SJ, Jin M, Kantae V, Kavanagh SL, Lamb ML, Lane J, Moore R, Puri T, Quinn TR, Reddy I, Robb GR, Robbins KJ, Gancedo Rodrigo M, Schimpl M, Singh B, Singh M, Tang H, Thomson C, Walsh JJ, Ware J, Watson IDG, Ye MW, Wrigley GL, Zhang AX, Zhang Y, Grimster NP. Discovery, Optimization, and Biological Evaluation of Arylpyridones as Cbl-b Inhibitors. J Med Chem 2024; 67:1500-1512. [PMID: 38227216 DOI: 10.1021/acs.jmedchem.3c02083] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Casitas B-lymphoma proto-oncogene-b (Cbl-b), a member of the Cbl family of RING finger E3 ubiquitin ligases, has been demonstrated to play a central role in regulating effector T-cell function. Multiple studies using gene-targeting approaches have provided direct evidence that Cbl-b negatively regulates T, B, and NK cell activation via a ubiquitin-mediated protein modulation. Thus, inhibition of Cbl-b ligase activity can lead to immune activation and has therapeutic potential in immuno-oncology. Herein, we describe the discovery and optimization of an arylpyridone series as Cbl-b inhibitors by structure-based drug discovery to afford compound 31. This compound binds to Cbl-b with an IC50 value of 30 nM and induces IL-2 production in T-cells with an EC50 value of 230 nM. Compound 31 also shows robust intracellular target engagement demonstrated through inhibition of Cbl-b autoubiquitination, inhibition of ubiquitin transfer to ZAP70, and the cellular modulation of phosphorylation of a downstream signal within the TCR axis.
Collapse
Affiliation(s)
- Adelphe M Mfuh
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Jeffrey A Boerth
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Gayathri Bommakanti
- Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | | | - Alex J Chinn
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Erin Code
- Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Patrick J Fricke
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | | | - Andrea Gohlke
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | | | - Niresh Hariparsad
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | | | - Meizhong Jin
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Vasudev Kantae
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | | | - Michelle L Lamb
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Jordan Lane
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Rachel Moore
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Taranee Puri
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Taylor R Quinn
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Iswarya Reddy
- Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | | | - Kevin J Robbins
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Miguel Gancedo Rodrigo
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
- Isomorphic Laboratories, 280 Bishopsgate, London EC2M 4RB, U.K
| | | | - Baljinder Singh
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Meha Singh
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Haoran Tang
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | | | - Jarrod J Walsh
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Jamie Ware
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Iain D G Watson
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Min-Wei Ye
- Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | | | - Andrew X Zhang
- Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Yun Zhang
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Neil P Grimster
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| |
Collapse
|
8
|
Basu B, Kal S, Karmakar S, Basu M, Ghosh MK. E3 ubiquitin ligases in lung cancer: Emerging insights and therapeutic opportunities. Life Sci 2024; 336:122333. [PMID: 38061537 DOI: 10.1016/j.lfs.2023.122333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023]
Abstract
Aim In this review, we have attempted to provide the readers with an updated account of the role of a family of proteins known as E3 ligases in different aspects of lung cancer progression, along with insights into the deregulation of expression of these proteins during lung cancer. A detailed account of the therapeutic strategies involving E3 ligases that have been developed or currently under development has also been provided in this review. MATERIALS AND METHODS: The review article employs extensive literature search, along with differential gene expression analysis of lung cancer associated E3 ligases using the DESeq2 package in R, and the Gene Expression Profiling Interactive Analysis (GEPIA) database (http://gepia.cancer-pku.cn/). Protein expression analysis of CPTAC lung cancer samples was carried out using the UALCAN webtool (https://ualcan.path.uab.edu/index.html). Assessment of patient overall survival (OS) in response to high and low expression of selected E3 ligases was performed using the online Kaplan-Meier plotter (https://kmplot.com/analysis/index.php?p=background). KEY FINDINGS: SIGNIFICANCE: The review provides an in-depth understanding of the role of E3 ligases in lung cancer progression and an up-to-date account of the different therapeutic strategies targeting oncogenic E3 ligases for improved lung cancer management.
Collapse
Affiliation(s)
- Bhaskar Basu
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Satadeepa Kal
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhajit Karmakar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Parganas, PIN -743372, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
9
|
Boerth JA, Chinn AJ, Schimpl M, Bommakanti G, Chan C, Code EL, Giblin KA, Gohlke A, Hansel CS, Jin M, Kavanagh SL, Lamb ML, Lane JS, Larner CJB, Mfuh AM, Moore RK, Puri T, Quinn TR, Ye M, Robbins KJ, Gancedo-Rodrigo M, Tang H, Walsh J, Ware J, Wrigley GL, Reddy IK, Zhang Y, Grimster NP. Discovery of a Novel Benzodiazepine Series of Cbl-b Inhibitors for the Enhancement of Antitumor Immunity. ACS Med Chem Lett 2023; 14:1848-1856. [PMID: 38116444 PMCID: PMC10726479 DOI: 10.1021/acsmedchemlett.3c00439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023] Open
Abstract
Casitas B-lineage lymphoma proto-oncogene-b (Cbl-b) is a RING finger E3 ligase that is responsible for repressing T-cell, natural killer (NK) cell, and B-cell activation. The robust antitumor activity observed in Cbl-b deficient mice arising from elevated T-cell and NK-cell activity justified our discovery effort toward Cbl-b inhibitors that might show therapeutic promise in immuno-oncology, where activation of the immune system can drive the recognition and killing of cancer cells. We undertook a high-throughput screening campaign followed by structure-enabled optimization to develop a novel benzodiazepine series of potent Cbl-b inhibitors. This series displayed nanomolar levels of biochemical potency, as well as potent T-cell activation. The functional activity of this class of Cbl-b inhibitors was further corroborated with ubiquitin-based cellular assays.
Collapse
Affiliation(s)
- Jeffrey A. Boerth
- Medicinal
Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Alex J. Chinn
- Medicinal
Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Marianne Schimpl
- Discovery
Sciences, R&D, The Discovery Centre, AstraZeneca, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Gayathri Bommakanti
- Bioscience,
Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Christina Chan
- DMPK,
Research and Early Development, Oncology R&D, AstraZeneca, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Erin L. Code
- Discovery
Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Kathryn A. Giblin
- Medicinal
Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge
Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Andrea Gohlke
- Discovery
Sciences, R&D, The Discovery Centre, AstraZeneca, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Catherine S. Hansel
- Discovery
Sciences, R&D, The Discovery Centre, AstraZeneca, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Meizhong Jin
- Medicinal
Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Stefan L. Kavanagh
- Clinical
Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, United Kingdom
| | - Michelle L. Lamb
- Medicinal
Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Jordan S. Lane
- Discovery
Sciences, R&D, The Discovery Centre, AstraZeneca, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Carrie J. B. Larner
- Clinical
Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, United Kingdom
| | - Adelphe M. Mfuh
- Medicinal
Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Rachel K. Moore
- High
Throughput Screening, Hit Discovery, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Alderley Park, Macclesfield SK10 4TG, United Kingdom
| | - Taranee Puri
- Medicinal
Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Taylor R. Quinn
- Medicinal
Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Minwei Ye
- Bioscience,
Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Kevin J. Robbins
- Medicinal
Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Miguel Gancedo-Rodrigo
- Discovery
Sciences, R&D, The Discovery Centre, AstraZeneca, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Haoran Tang
- Discovery
Sciences, R&D, The Discovery Centre, AstraZeneca, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Jarrod Walsh
- High
Throughput Screening, Hit Discovery, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Alderley Park, Macclesfield SK10 4TG, United Kingdom
| | - Jamie Ware
- Discovery
Sciences, R&D, The Discovery Centre, AstraZeneca, Cambridge Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Gail L. Wrigley
- Medicinal
Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge
Biomedical Campus, 1 Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Iswarya Karapa Reddy
- Bioscience,
Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Yun Zhang
- Medicinal
Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Neil P. Grimster
- Medicinal
Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| |
Collapse
|
10
|
Niu K, Shi Y, Lv Q, Wang Y, Chen J, Zhang W, Feng K, Zhang Y. Spotlights on ubiquitin-specific protease 12 (USP12) in diseases: from multifaceted roles to pathophysiological mechanisms. J Transl Med 2023; 21:665. [PMID: 37752518 PMCID: PMC10521459 DOI: 10.1186/s12967-023-04540-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/16/2023] [Indexed: 09/28/2023] Open
Abstract
Ubiquitination is one of the most significant post-translational modifications that regulate almost all physiological processes like cell proliferation, autophagy, apoptosis, and cell cycle progression. Contrary to ubiquitination, deubiquitination removes ubiquitin from targeted protein to maintain its stability and thus regulate cellular homeostasis. Ubiquitin-Specific Protease 12 (USP12) belongs to the biggest family of deubiquitinases named ubiquitin-specific proteases and has been reported to be correlated with various pathophysiological processes. In this review, we initially introduce the structure and biological functions of USP12 briefly and summarize multiple substrates of USP12 as well as the underlying mechanisms. Moreover, we discuss the influence of USP12 on tumorigenesis, tumor immune microenvironment (TME), disease, and related signaling pathways. This study also provides updated information on the roles and functions of USP12 in different types of cancers and other diseases, including prostate cancer, breast cancer, lung cancer, liver cancer, cardiac hypertrophy, multiple myeloma, and Huntington's disease. Generally, this review sums up the research advances of USP12 and discusses its potential clinical application value which deserves more exploration in the future.
Collapse
Affiliation(s)
- Kaiyi Niu
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Yanlong Shi
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Qingpeng Lv
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Yizhu Wang
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Jiping Chen
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Wenning Zhang
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Kung Feng
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Yewei Zhang
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China.
| |
Collapse
|
11
|
Laletin V, Bernard PL, Costa da Silva C, Guittard G, Nunes JA. Negative intracellular regulators of T-cell receptor (TCR) signaling as potential antitumor immunotherapy targets. J Immunother Cancer 2023; 11:e005845. [PMID: 37217244 PMCID: PMC10231026 DOI: 10.1136/jitc-2022-005845] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Immunotherapy strategies aim to mobilize immune defenses against tumor cells by targeting mainly T cells. Co-inhibitory receptors or immune checkpoints (ICPs) (such as PD-1 and CTLA4) can limit T cell receptor (TCR) signal propagation in T cells. Antibody-based blocking of immune checkpoints (immune checkpoint inhibitors, ICIs) enable escape from ICP inhibition of TCR signaling. ICI therapies have significantly impacted the prognosis and survival of patients with cancer. However, many patients remain refractory to these treatments. Thus, alternative approaches for cancer immunotherapy are needed. In addition to membrane-associated inhibitory molecules, a growing number of intracellular molecules may also serve to downregulate signaling cascades triggered by TCR engagement. These molecules are known as intracellular immune checkpoints (iICPs). Blocking the expression or the activity of these intracellular negative signaling molecules is a novel field of action to boost T cell-mediated antitumor responses. This area is rapidly expanding. Indeed, more than 30 different potential iICPs have been identified. Over the past 5 years, several phase I/II clinical trials targeting iICPs in T cells have been registered. In this study, we summarize recent preclinical and clinical data demonstrating that immunotherapies targeting T cell iICPs can mediate regression of solid tumors including (membrane associated) immune-checkpoint inhibitor refractory cancers. Finally, we discuss how these iICPs are targeted and controlled. Thereby, iICP inhibition is a promising strategy opening new avenues for future cancer immunotherapy treatments.
Collapse
Affiliation(s)
- Vladimir Laletin
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Pierre-Louis Bernard
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Cathy Costa da Silva
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Geoffrey Guittard
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Jacques A Nunes
- Immunity and Cancer, Cancer Research Centre Marseille, Marseille, France
- Onco-hematology and immuno-oncology (OHIO), Centre de Recherche en Cancérologie de Marseille, Marseille, France
| |
Collapse
|
12
|
Lv J, Qin L, Zhao R, Wu D, Wu Z, Zheng D, Li S, Luo M, Wu Q, Long Y, Tang Z, Tang YL, Luo X, Yao Y, Yang LH, Li P. Disruption of CISH promotes the antitumor activity of human T cells and decreases PD-1 expression levels. Mol Ther Oncolytics 2022; 28:46-58. [PMID: 36654786 PMCID: PMC9827364 DOI: 10.1016/j.omto.2022.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Tumor cells and the immunosuppressive tumor microenvironment suppress the antitumor activity of T cells through immune checkpoints, including the PD-L1/PD-1 axis. Cytokine-inducible SH2-containing protein (CISH), a member of the suppressor of cytokine signaling (SOCS) family, inhibits JAK-STAT and T cell receptor (TCR) signaling in T and natural killer (NK) cells. However, its role in the regulation of immune checkpoints in T cells remains unclear. In this study, we ablated CISH in T cells with CRISPR-Cas9 and found that the sensitivity of T cells to TCR and cytokine stimulation was increased. In addition, chimeric antigen receptor T cells with CISH deficiency exhibited longer survival and higher cytokine secretion and antitumor activity. Notably, PD-1 expression was decreased in activated CISH-deficient T cells in vitro and in vivo. The level of FBXO38, a ubiquitination-regulating protein that reduces PD-1 expression, was elevated in activated T cells after CISH ablation. Hence, this study reveals a mechanism by which CISH promotes PD-1 expression by suppressing the expression of FBXO38 and proposes a new strategy for augmenting the therapeutic effect of CAR-T cells by inhibiting CISH.
Collapse
Affiliation(s)
- Jiang Lv
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Le Qin
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ruocong Zhao
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR 999077, China
| | - Di Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhiping Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Diwei Zheng
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Siyu Li
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Mintao Luo
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiting Wu
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Youguo Long
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhaoyang Tang
- Guangdong Zhaotai InVivo Biomedicine Co., Ltd., Guangzhou 510700, China
| | - Yan-Lai Tang
- Department of Paediatrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xuequn Luo
- Department of Paediatrics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Yao Yao
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Li-Hua Yang
- Department of Paediatrics, Zhujiang Hospital, Southern China Medical University, Guangzhou, Guangdong 510280, China,Corresponding author Li-Hua Yang, Department of Paediatrics, Zhujiang Hospital, Southern China Medical University, Guangzhou, Guangdong 510280, China.
| | - Peng Li
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China,University of Chinese Academy of Sciences, Beijing 100049, China,Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR 999077, China,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China,Corresponding author Peng Li, China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
13
|
Dölz M, Hasiuk M, Gagnon JD, Kornete M, Marone R, Bantug G, Kageyama R, Hess C, Ansel KM, Seyres D, Roux J, Jeker LT. Forced expression of the non-coding RNA miR-17∼92 restores activation and function in CD28-deficient CD4 + T cells. iScience 2022; 25:105372. [PMID: 36388982 PMCID: PMC9646923 DOI: 10.1016/j.isci.2022.105372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 08/12/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
CD28 provides the prototypical costimulatory signal required for productive T-cell activation. Known molecular consequences of CD28 costimulation are mostly based on studies of protein signaling molecules. The microRNA cluster miR-17∼92 is induced by T cell receptor stimulation and further enhanced by combined CD28 costimulation. We demonstrate that transgenic miR-17∼92 cell-intrinsically largely overcomes defects caused by CD28 deficiency. Combining genetics, transcriptomics, bioinformatics, and biochemical miRNA:mRNA interaction maps we empirically validate miR-17∼92 target genes that include several negative regulators of T cell activation. CD28-deficient T cells exhibit derepressed miR-17∼92 target genes during activation. CRISPR/Cas9-mediated ablation of the miR-17∼92 targets Pten and Nrbp1 in naive CD28-/- CD4+ T cells differentially increases proliferation and expression of the activation markers CD25 and CD44, respectively. Thus, we propose that miR-17∼92 constitutes a central mediator for T cell activation, integrating signals by the TCR and CD28 costimulation by dampening multiple brakes that prevent T cell activation.
Collapse
Affiliation(s)
- Marianne Dölz
- Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
- Transplantation Immunology & Nephrology, Basel University Hospital, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Marko Hasiuk
- Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
- Transplantation Immunology & Nephrology, Basel University Hospital, Petersgraben 4, CH-4031 Basel, Switzerland
| | - John D. Gagnon
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mara Kornete
- Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - Romina Marone
- Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
- Transplantation Immunology & Nephrology, Basel University Hospital, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Glenn Bantug
- Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - Robin Kageyama
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christoph Hess
- Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
- Department of Medicine – CITIID, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - K. Mark Ansel
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Denis Seyres
- Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
- Transplantation Immunology & Nephrology, Basel University Hospital, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Julien Roux
- Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Lukas T. Jeker
- Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
- Transplantation Immunology & Nephrology, Basel University Hospital, Petersgraben 4, CH-4031 Basel, Switzerland
| |
Collapse
|
14
|
Recent Discoveries on Marine Organism Immunomodulatory Activities. Mar Drugs 2022; 20:md20070422. [PMID: 35877715 PMCID: PMC9324980 DOI: 10.3390/md20070422] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Marine organisms have been shown to be a valuable source for biologically active compounds for the prevention and treatment of cancer, inflammation, immune system diseases, and other pathologies. The advantage of studying organisms collected in the marine environment lies in their great biodiversity and in the variety of chemical structures of marine natural products. Various studies have focused on marine organism compounds with potential pharmaceutical applications, for instance, as immunomodulators, to treat cancer and immune-mediated diseases. Modulation of the immune system is defined as any change in the immune response that can result in the induction, expression, amplification, or inhibition of any phase of the immune response. Studies very often focus on the effects of marine-derived compounds on macrophages, as well as lymphocytes, by analyzing the release of mediators (cytokines) by using the immunological assay enzyme-linked immunosorbent assay (ELISA), Western blot, immunofluorescence, and real-time PCR. The main sources are fungi, bacteria, microalgae, macroalgae, sponges, mollusks, corals, and fishes. This review is focused on the marine-derived molecules discovered in the last three years as potential immunomodulatory drugs.
Collapse
|
15
|
Skartsis N, Peng Y, Ferreira LMR, Nguyen V, Ronin E, Muller YD, Vincenti F, Tang Q. IL-6 and TNFα Drive Extensive Proliferation of Human Tregs Without Compromising Their Lineage Stability or Function. Front Immunol 2022; 12:783282. [PMID: 35003100 PMCID: PMC8732758 DOI: 10.3389/fimmu.2021.783282] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/29/2021] [Indexed: 01/09/2023] Open
Abstract
Treg therapies are being tested in clinical trials in transplantation and autoimmune diseases, however, the impact of inflammation on Tregs remains controversial. We challenged human Tregs ex-vivo with pro-inflammatory cytokines IL-6 and TNFα and observed greatly enhanced proliferation stimulated by anti-CD3 and anti-CD28 (aCD3/28) beads or CD28 superagonist (CD28SA). The cytokine-exposed Tregs maintained high expression of FOXP3 and HELIOS, demethylated FOXP3 enhancer, and low IFNγ, IL-4, and IL-17 secretion. Blocking TNF receptor using etanercept or deletion of TNF receptor 2 using CRISPR/Cas9 blunted Treg proliferation and attenuated FOXP3 and HELIOS expression. These results prompted us to consider using CD28SA together with IL-6 and TNFα without aCD3/28 beads (beadless) as an alternative protocol for therapeutic Treg manufacturing. Metabolomics profiling revealed more active glycolysis and oxidative phosphorylation, increased energy production, and higher antioxidant potential during beadless Treg expansion. Finally, beadless expanded Tregs maintained suppressive functions in vitro and in vivo. These results demonstrate that human Tregs positively respond to proinflammatory cytokines with enhanced proliferation without compromising their lineage identity or function. This property can be harnessed for therapeutic Treg manufacturing.
Collapse
Affiliation(s)
- Nikolaos Skartsis
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States.,Division of Nephrology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Yani Peng
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Leonardo M R Ferreira
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Vinh Nguyen
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Emilie Ronin
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Yannick D Muller
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Flavio Vincenti
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States.,Division of Nephrology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Qizhi Tang
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States.,Diabetes Center, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
16
|
Gavali S, Liu J, Li X, Paolino M. Ubiquitination in T-Cell Activation and Checkpoint Inhibition: New Avenues for Targeted Cancer Immunotherapy. Int J Mol Sci 2021; 22:10800. [PMID: 34639141 PMCID: PMC8509743 DOI: 10.3390/ijms221910800] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
The advent of T-cell-based immunotherapy has remarkably transformed cancer patient treatment. Despite their success, the currently approved immunotherapeutic protocols still encounter limitations, cause toxicity, and give disparate patient outcomes. Thus, a deeper understanding of the molecular mechanisms of T-cell activation and inhibition is much needed to rationally expand targets and possibilities to improve immunotherapies. Protein ubiquitination downstream of immune signaling pathways is essential to fine-tune virtually all immune responses, in particular, the positive and negative regulation of T-cell activation. Numerous studies have demonstrated that deregulation of ubiquitin-dependent pathways can significantly alter T-cell activation and enhance antitumor responses. Consequently, researchers in academia and industry are actively developing technologies to selectively exploit ubiquitin-related enzymes for cancer therapeutics. In this review, we discuss the molecular and functional roles of ubiquitination in key T-cell activation and checkpoint inhibitory pathways to highlight the vast possibilities that targeting ubiquitination offers for advancing T-cell-based immunotherapies.
Collapse
Affiliation(s)
| | | | | | - Magdalena Paolino
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, 17176 Solna, Sweden; (S.G.); (J.L.); (X.L.)
| |
Collapse
|
17
|
Schanz O, Cornez I, Yajnanarayana SP, David FS, Peer S, Gruber T, Krawitz P, Brossart P, Heine A, Landsberg J, Baier G, Wolf D. Tumor rejection in Cblb -/- mice depends on IL-9 and Th9 cells. J Immunother Cancer 2021; 9:jitc-2021-002889. [PMID: 34272310 PMCID: PMC8287598 DOI: 10.1136/jitc-2021-002889] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Casitas B lymphoma-b (Cbl-b) is a central negative regulator of cytotoxic T and natural killer (NK) cells and functions as an intracellular checkpoint in cancer. In particular, Th9 cells support mast cell activation, promote dendritic cell recruitment, enhance the cytolytic function of cytotoxic T lymphocytes and NK cells, and directly kill tumor cells, thereby contributing to tumor immunity. However, the role of Cbl-b in the differentiation and antitumor function of Th9 cells is not sufficiently resolved. METHODS Using Cblb -/- mice, we investigated the effect of knocking out Cblb on the differentiation process and function of different T helper cell subsets, focusing on regulatory T cell (Treg) and Th9 cells. We applied single-cell RNA (scRNA) sequencing of in vitro differentiated Th9 cells to understand how Cbl-b shapes the transcriptome and regulates the differentiation and function of Th9 cells. We transferred tumor-model antigen-specific Cblb -/- Th9 cells into melanoma-bearing mice and assessed tumor control in vivo. In addition, we blocked interleukin (IL)-9 in melanoma cell-exposed Cblb -/- mice to investigate the role of IL-9 in tumor immunity. RESULTS Here, we provide experimental evidence that Cbl-b acts as a rheostat favoring Tregs at the expense of Th9 cell differentiation. Cblb -/- Th9 cells exert superior antitumor activity leading to improved melanoma control in vivo. Accordingly, blocking IL-9 in melanoma cell-exposed Cblb -/- mice reversed their tumor rejection phenotype. Furthermore, scRNA sequencing of in vitro differentiated Th9 cells from naïve T cells isolated from wildtype and Cblb -/- animals revealed a transcriptomic basis for increased Th9 cell differentiation. CONCLUSION We established IL-9 and Th9 cells as key antitumor executers in Cblb -/- animals. This knowledge may be helpful for the future improvement of adoptive T cell therapies in cancer.
Collapse
Affiliation(s)
- Oliver Schanz
- Oncology, Hematology, Immunoncology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Isabelle Cornez
- Oncology, Hematology, Immunoncology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | | | - Friederike Sophie David
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Bonn, Germany.,Institute of Human Genetics, University Hospital Bonn, Bonn, Germany
| | - Sebastian Peer
- Institute of Translational Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Gruber
- Institute of Translational Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Bonn, Germany
| | - Peter Brossart
- Oncology, Hematology, Immunoncology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Annkristin Heine
- Oncology, Hematology, Immunoncology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | | | - Gottfried Baier
- Institute of Translational Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Oncology, Hematology, Immunoncology and Rheumatology, University Hospital Bonn, Bonn, Germany .,Department of Internal Medicine V, Hematology and Oncology, and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
18
|
Duan S, Pagano M. Ubiquitin ligases in cancer: Functions and clinical potentials. Cell Chem Biol 2021; 28:918-933. [PMID: 33974914 PMCID: PMC8286310 DOI: 10.1016/j.chembiol.2021.04.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023]
Abstract
Ubiquitylation, a highly regulated post-translational modification, controls many cellular pathways that are critical to cell homeostasis. Ubiquitin ligases recruit substrates and promote ubiquitin transfer onto targets, inducing proteasomal degradation or non-degradative signaling. Accumulating evidence highlights the critical role of dysregulated ubiquitin ligases in processes associated with the initiation and progression of cancer. Depending on the substrate specificity and biological context, a ubiquitin ligase can act either as a tumor promoter or as a tumor suppressor. In this review, we focus on the regulatory roles of ubiquitin ligases and how perturbations of their functions contribute to cancer pathogenesis. We also briefly discuss current strategies for targeting or exploiting ubiquitin ligases for cancer therapy.
Collapse
Affiliation(s)
- Shanshan Duan
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA; Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
19
|
Jiang W, Wang D, Wilson BAP, Kang U, Bokesch HR, Smith EA, Wamiru A, Goncharova EI, Voeller D, Lipkowitz S, O’Keefe BR, Gustafson KR. Agelasine Diterpenoids and Cbl-b Inhibitory Ageliferins from the Coralline Demosponge Astrosclera willeyana. Mar Drugs 2021; 19:361. [PMID: 34202500 PMCID: PMC8307156 DOI: 10.3390/md19070361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
An extract of the coralline demosponge Astrosclera willeyana inhibited the ubiquitin ligase activity of the immunomodulatory protein Cbl-b. The bioassay-guided separation of the extract provided ten active compounds, including three new N-methyladenine-containing diterpenoids, agelasines W-Y (1-3), a new bromopyrrole alkaloid, N(1)-methylisoageliferin (4), and six known ageliferin derivatives (5-10). The structures of the new compounds were elucidated from their spectroscopic and spectrometric data, including IR, HRESIMS, and NMR, and by comparison with spectroscopic data in the literature. While all of the isolated compounds showed Cbl-b inhibitory activities, ageliferins (4-10) were the most potent metabolites, with IC50 values that ranged from 18 to 35 μM.
Collapse
Affiliation(s)
- Wei Jiang
- Marine Science & Technology Institute, College of Environmental Science & Engineering, Yangzhou University, Yangzhou 225127, China;
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702-1201, USA; (D.W.); (B.A.P.W.); (U.K.); (H.R.B.); (E.A.S.); (A.W.); (E.I.G.); (B.R.O.)
| | - Dongdong Wang
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702-1201, USA; (D.W.); (B.A.P.W.); (U.K.); (H.R.B.); (E.A.S.); (A.W.); (E.I.G.); (B.R.O.)
| | - Brice A. P. Wilson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702-1201, USA; (D.W.); (B.A.P.W.); (U.K.); (H.R.B.); (E.A.S.); (A.W.); (E.I.G.); (B.R.O.)
| | - Unwoo Kang
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702-1201, USA; (D.W.); (B.A.P.W.); (U.K.); (H.R.B.); (E.A.S.); (A.W.); (E.I.G.); (B.R.O.)
| | - Heidi R. Bokesch
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702-1201, USA; (D.W.); (B.A.P.W.); (U.K.); (H.R.B.); (E.A.S.); (A.W.); (E.I.G.); (B.R.O.)
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702-1201, USA
| | - Emily A. Smith
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702-1201, USA; (D.W.); (B.A.P.W.); (U.K.); (H.R.B.); (E.A.S.); (A.W.); (E.I.G.); (B.R.O.)
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702-1201, USA
| | - Antony Wamiru
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702-1201, USA; (D.W.); (B.A.P.W.); (U.K.); (H.R.B.); (E.A.S.); (A.W.); (E.I.G.); (B.R.O.)
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702-1201, USA
| | - Ekaterina I. Goncharova
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702-1201, USA; (D.W.); (B.A.P.W.); (U.K.); (H.R.B.); (E.A.S.); (A.W.); (E.I.G.); (B.R.O.)
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| | - Donna Voeller
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1578, USA; (D.V.); (S.L.)
| | - Stanley Lipkowitz
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1578, USA; (D.V.); (S.L.)
| | - Barry R. O’Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702-1201, USA; (D.W.); (B.A.P.W.); (U.K.); (H.R.B.); (E.A.S.); (A.W.); (E.I.G.); (B.R.O.)
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Frederick, MD 21702-1201, USA
| | - Kirk R. Gustafson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702-1201, USA; (D.W.); (B.A.P.W.); (U.K.); (H.R.B.); (E.A.S.); (A.W.); (E.I.G.); (B.R.O.)
| |
Collapse
|
20
|
Jayaraman A, Zhou T, Jayaraman S. Histone Modifier Differentially Regulates Gene Expression and Unravels Survival Role of MicroRNA-494 in Jurkat Leukemia. Microrna 2021; 10:39-50. [PMID: 33845753 DOI: 10.2174/2211536610666210412153322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/12/2020] [Accepted: 02/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Although the protein-coding genes are subject to histone hyperacetylation-mediated regulation, it is unclear whether microRNAs are similarly regulated in the T cell leukemia Jurkat. OBJECTIVE To determine whether treatment with the histone modifier Trichostatin A could concurrently alter the expression profiles of microRNAs and protein-coding genes. METHODS Changes in histone hyperacetylation and viability in response to drug treatment were analyzed, respectively, using western blotting and flow cytometry. Paired global expression profiling of microRNAs and coding genes was performed and highly regulated genes validated by qRT-PCR. The interrelationships between the drug-induced miR-494 upregulation, the expression of putative target genes, and T cell receptor-mediated apoptosis were evaluated using qRT-PCR, flow cytometry, and western blotting following lipid-mediated transfection with specific anti-microRNA inhibitors. RESULTS Treatment of Jurkat cells with Trichostatin A resulted in histone hyperacetylation and apoptosis. Global expression profiling indicated prominent upregulation of miR-494 in contrast to differential regulation of many protein-coding and non-coding genes validated by qRT-PCR. Although transfection with synthetic anti-miR-494 inhibitors failed to block drug-induced apoptosis or miR-494 upregulation, it induced the transcriptional repression of the PVRIG gene. Surprisingly, miR-494 inhibition in conjunction with low doses of Trichostatin A enhanced the weak T cell receptor-mediated apoptosis, indicating a subtle pro-survival role of miR-494. Interestingly, this pro-survival effect was overwhelmed by mitogen-mediated T cell activation and higher drug doses, which mediated caspase-dependent apoptosis. CONCLUSION Our results unravel a pro-survival function of miR-494 and its putative interaction with the PVRIG gene and the apoptotic machinery in Jurkat cells.
Collapse
Affiliation(s)
- Arathi Jayaraman
- Dept. of Medicine, the University of Illinois at Chicago, Chicago, IL 60612. United States
| | - Tong Zhou
- Dept. of Medicine, the University of Illinois at Chicago, Chicago, IL 60612. United States
| | - Sundararajan Jayaraman
- Dept. of Medicine, the University of Illinois at Chicago, Chicago, IL 60612. United States
| |
Collapse
|
21
|
Hu X, Wang J, Chu M, Liu Y, Wang ZW, Zhu X. Emerging Role of Ubiquitination in the Regulation of PD-1/PD-L1 in Cancer Immunotherapy. Mol Ther 2021; 29:908-919. [PMID: 33388422 PMCID: PMC7934629 DOI: 10.1016/j.ymthe.2020.12.032] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/09/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
A growing amount of evidence suggests that ubiquitination and deubiquitination of programmed death 1 (PD-1)/programmed death-ligand 1 (PD-L1) play crucial roles in the regulation of PD-1 and PD-L1 protein stabilization and dynamics. PD-1/PD-L1 is a major coinhibitory checkpoint pathway that modulates immune escape in cancer patients, and its engagement and inhibition has significantly reshaped the landscape of tumor clearance. The abnormal ubiquitination and deubiquitination of PD-1/PD-L1 influence PD-1/PD-L1-mediated immunosuppression. In this review, we describe the ubiquitination- and deubiquitination-mediated modulation of PD-1/PD-L1 signaling through a variety of E3 ligases and deubiquitinating enzymes (DUBs). Moreover, we briefly expound on the anticancer potential of some agents that target related E3 ligases, which further modulate the ubiquitination of PD-1/PD-L1 in cancers. Therefore, this review reveals the development of a highly promising therapeutic approach for cancer immunotherapy by targeting PD-1/PD-L1 ubiquitination.
Collapse
Affiliation(s)
- Xiaoli Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Man Chu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Zhi-Wei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
22
|
Zhou X, Sun SC. Targeting ubiquitin signaling for cancer immunotherapy. Signal Transduct Target Ther 2021; 6:16. [PMID: 33436547 PMCID: PMC7804490 DOI: 10.1038/s41392-020-00421-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/29/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer immunotherapy has become an attractive approach of cancer treatment with tremendous success in treating various advanced malignancies. The development and clinical application of immune checkpoint inhibitors represent one of the most extraordinary accomplishments in cancer immunotherapy. In addition, considerable progress is being made in understanding the mechanism of antitumor immunity and characterizing novel targets for developing additional therapeutic approaches. One active area of investigation is protein ubiquitination, a post-translational mechanism of protein modification that regulates the function of diverse immune cells in antitumor immunity. Accumulating studies suggest that E3 ubiquitin ligases and deubiquitinases form a family of potential targets to be exploited for enhancing antitumor immunity in cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA.
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
23
|
Han S, Chung DC, St Paul M, Liu ZQ, Garcia-Batres C, Elford AR, Tran CW, Chapatte L, Ohashi PS. Overproduction of IL-2 by Cbl-b deficient CD4 + T cells provides resistance against regulatory T cells. Oncoimmunology 2020; 9:1737368. [PMID: 32313719 PMCID: PMC7153846 DOI: 10.1080/2162402x.2020.1737368] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/17/2019] [Accepted: 12/26/2019] [Indexed: 12/22/2022] Open
Abstract
Regulatory T cells are integral to the regulation of autoimmune and anti-tumor immune responses. However, several studies have suggested that changes in T cell signaling networks can result in T cells that are resistant to the suppressive effects of regulatory T cells. Here, we investigated the role of Cbl-b, an E3 ubiquitin ligase, in establishing resistance to Treg-mediated suppression. We found that the absence of Cbl-b, a negative regulator of multiple TCR signaling pathways, rendered T cells impartial to Treg suppression by regulating cytokine networks leading to improved anti-tumor immunity despite the presence of Treg cells in the tumor. Specifically, Cbl-b KO CD4+FoxP3− T cells hyper-produced IL-2 and together with IL-2 Rα upregulation served as an essential mechanism to escape suppression by Treg cells. Furthermore, we report that IL-2 serves as the central molecule required for cytokine-induced Treg resistance. Collectively our data emphasize the role of IL-2 as a key mechanism that renders CD4+ T cells resistant to the inhibitory effects of Treg cells.
Collapse
Affiliation(s)
- SeongJun Han
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Douglas C Chung
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michael St Paul
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Zhe Qi Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Carlos Garcia-Batres
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Alisha R Elford
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Charles W Tran
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Laurence Chapatte
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Pamela S Ohashi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Han S, Toker A, Liu ZQ, Ohashi PS. Turning the Tide Against Regulatory T Cells. Front Oncol 2019; 9:279. [PMID: 31058083 PMCID: PMC6477083 DOI: 10.3389/fonc.2019.00279] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
Regulatory T (Treg) cells play crucial roles in health and disease through their immunosuppressive properties against various immune cells. In this review we will focus on the inhibitory role of Treg cells in anti-tumor immunity. We outline how Treg cells restrict T cell function based on our understanding of T cell biology, and how we can shift the equilibrium against regulatory T cells. To date, numerous strategies have been proposed to limit the suppressive effects of Treg cells, including Treg cell neutralization, destabilizing Treg cells and rendering T cells resistant to Treg cells. Here, we focus on key mechanisms which render T cells resistant to the suppressive effects of Treg cells. Lastly, we also examine current limitations and caveats of overcoming the inhibitory activity of Treg cells, and briefly discuss the potential to target Treg cell resistance in the context of anti-tumor immunity.
Collapse
Affiliation(s)
- SeongJun Han
- Princess Margaret Cancer Centre, Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Aras Toker
- Princess Margaret Cancer Centre, Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
| | - Zhe Qi Liu
- Princess Margaret Cancer Centre, Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Pamela S. Ohashi
- Princess Margaret Cancer Centre, Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
From Discovery to Bedside: Targeting the Ubiquitin System. Cell Chem Biol 2018; 26:156-177. [PMID: 30554913 DOI: 10.1016/j.chembiol.2018.10.022] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/21/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022]
Abstract
The ubiquitin/proteasome system is a primary conduit for selective intracellular protein degradation. Since its discovery over 30 years ago, this highly regulated system continues to be an active research area for drug discovery that is exemplified by several approved drugs. Here we review compounds in preclinical testing, clinical trials, and approved drugs, with the aim of highlighting innovative discoveries and breakthrough therapies that target the ubiquitin system.
Collapse
|
26
|
Nanjappa SG, Mudalagiriyappa S, Fites JS, Suresh M, Klein BS. CBLB Constrains Inactivated Vaccine-Induced CD8 + T Cell Responses and Immunity against Lethal Fungal Pneumonia. THE JOURNAL OF IMMUNOLOGY 2018; 201:1717-1726. [PMID: 30054317 DOI: 10.4049/jimmunol.1701241] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 07/12/2018] [Indexed: 12/24/2022]
Abstract
Fungal infections in CD4+ T cell immunocompromised patients have risen sharply in recent years. Although vaccines offer a rational avenue to prevent infections, there are no licensed fungal vaccines available. Inactivated vaccines are safer but less efficacious and require adjuvants that may undesirably bias toward poor protective immune responses. We hypothesized that reducing the TCR signaling threshold could potentiate antifungal CD8+ T cell responses and immunity to inactivated vaccine in the absence of CD4+ T cells. In this study, we show that CBLB, a negative regulator of TCR signaling, suppresses CD8+ T cells in response to inactivated fungal vaccination in a mouse model of CD4+ T cell lymphopenia. Conversely, Cblb deficiency enhanced both the type 1 (e.g., IFN-γ) and type 17 (IL-17A) CD8+ T cell responses to inactivated fungal vaccines and augmented vaccine immunity to lethal fungal pneumonia. Furthermore, we show that immunization with live or inactivated vaccine yeast did not cause detectable pathologic condition in Cblb-/- mice. Augmented CD8+ T cell responses in the absence of CBLB also did not lead to terminal differentiation or adversely affect the expression of transcription factors T-bet, Eomes, and RORγt. Additionally, our adoptive transfer experiments showed that CBLB impedes the effector CD8+ T cell responses in a cell-intrinsic manner. Finally, we showed that ablation of Cblb overcomes the requirement of HIF-1α for expansion of CD8+ T cells upon vaccination. Thus, adjuvants that target CBLB may augment inactivated vaccines and immunity against systemic fungal infections in vulnerable patients.
Collapse
Affiliation(s)
- Som G Nanjappa
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802;
| | | | - J Scott Fites
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - M Suresh
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706
| | - Bruce S Klein
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792.,Department of Internal Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792; and.,Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| |
Collapse
|
27
|
Mercadante ER, Lorenz UM. T Cells Deficient in the Tyrosine Phosphatase SHP-1 Resist Suppression by Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2017; 199:129-137. [PMID: 28550200 DOI: 10.4049/jimmunol.1602171] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/24/2017] [Indexed: 12/19/2022]
Abstract
The balance between activation of T cells and their suppression by regulatory T cells (Tregs) is dysregulated in autoimmune diseases and cancer. Autoimmune diseases feature T cells that are resistant to suppression by Tregs, whereas in cancer, T cells are unable to mount antitumor responses due to the Treg-enriched suppressive microenvironment. In this study, we observed that loss of the tyrosine phosphatase SHP-1, a negative regulator of TCR signaling, renders naive CD4+ and CD8+ T cells resistant to Treg-mediated suppression in a T cell-intrinsic manner. At the intracellular level, SHP-1 controlled the extent of Akt activation, which has been linked to the induction of T cell resistance to Treg suppression. Finally, under conditions of homeostatic expansion, SHP-1-deficient CD4+ T cells resisted Treg suppression in vivo. Collectively, these data establish SHP-1 as a critical player in setting the threshold downstream of TCR signaling and identify a novel function of SHP-1 as a regulator of T cell susceptibility to Treg-mediated suppression in vitro and in vivo. Thus, SHP-1 could represent a potential novel immunotherapeutic target to modulate susceptibility of T cells to Treg suppression.
Collapse
Affiliation(s)
- Emily R Mercadante
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908; and.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908
| | - Ulrike M Lorenz
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908; and .,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
28
|
Mercadante ER, Lorenz UM. Breaking Free of Control: How Conventional T Cells Overcome Regulatory T Cell Suppression. Front Immunol 2016; 7:193. [PMID: 27242798 PMCID: PMC4870238 DOI: 10.3389/fimmu.2016.00193] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/02/2016] [Indexed: 01/10/2023] Open
Abstract
Conventional T (Tcon) cells are crucial in shaping the immune response, whether it is protection against a pathogen, a cytotoxic attack on tumor cells, or an unwanted response to self-antigens in the context of autoimmunity. In each of these immune settings, regulatory T cells (Tregs) can potentially exert control over the Tcon cell response, resulting in either suppression or activation of the Tcon cells. Under physiological conditions, Tcon cells are able to transiently overcome Treg-imposed restraints to mount a protective response against an infectious threat, achieving clonal expansion, differentiation, and effector function. However, evidence has accumulated in recent years to suggest that Tcon cell resistance to Treg-mediated suppression centrally contributes to the pathogenesis of autoimmune disease. Tipping the balance too far in the other direction, cancerous tumors utilize Tregs to establish an overly suppressive microenvironment, preventing antitumor Tcon cell responses. Given the wide-ranging clinical importance of the Tcon/Treg interaction, this review aims to provide a better understanding of what determines whether a Tcon cell is susceptible to Treg-mediated suppression and how perturbations to this finely tuned balance play a role in pathological conditions. Here, we focus in detail on the complex array of factors that confer Tcon cells with resistance to Treg suppression, which we have divided into two categories: (1) extracellular factor-mediated signaling and (2) intracellular signaling molecules. Further, we explore the therapeutic implications of manipulating the phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway, which is proposed to be the convergence point of signaling pathways that mediate Tcon resistance to suppression. Finally, we address important unresolved questions on the timing and location of acquisition of resistance, and the stability of the “Treg-resistant” phenotype.
Collapse
Affiliation(s)
- Emily R Mercadante
- Department of Microbiology Immunology and Cancer Biology, Beirne Carter Center for Immunology Research, University of Virginia , Charlottesville, VA , USA
| | - Ulrike M Lorenz
- Department of Microbiology Immunology and Cancer Biology, Beirne Carter Center for Immunology Research, University of Virginia , Charlottesville, VA , USA
| |
Collapse
|
29
|
Jahan AS, Lestra M, Swee LK, Fan Y, Lamers MM, Tafesse FG, Theile CS, Spooner E, Bruzzone R, Ploegh HL, Sanyal S. Usp12 stabilizes the T-cell receptor complex at the cell surface during signaling. Proc Natl Acad Sci U S A 2016; 113:E705-14. [PMID: 26811477 PMCID: PMC4760780 DOI: 10.1073/pnas.1521763113] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Posttranslational modifications are central to the spatial and temporal regulation of protein function. Among others, phosphorylation and ubiquitylation are known to regulate proximal T-cell receptor (TCR) signaling. Here we used a systematic and unbiased approach to uncover deubiquitylating enzymes (DUBs) that participate during TCR signaling in primary mouse T lymphocytes. Using a C-terminally modified vinyl methyl ester variant of ubiquitin (HA-Ub-VME), we captured DUBs that are differentially recruited to the cytosol on TCR activation. We identified ubiquitin-specific peptidase (Usp) 12 and Usp46, which had not been previously described in this pathway. Stimulation with anti-CD3 resulted in phosphorylation and time-dependent translocation of Usp12 from the nucleus to the cytosol. Usp12(-/-) Jurkat cells displayed defective NFκB, NFAT, and MAPK activities owing to attenuated surface expression of TCR, which were rescued on reconstitution of wild type Usp12. Proximity-based labeling with BirA-Usp12 revealed several TCR adaptor proteins acting as interactors in stimulated cells, of which LAT and Trat1 displayed reduced expression in Usp12(-/-) cells. We demonstrate that Usp12 deubiquitylates and prevents lysosomal degradation of LAT and Trat1 to maintain the proximal TCR complex for the duration of signaling. Our approach benefits from the use of activity-based probes in primary cells without any previous genome modification, and underscores the importance of ubiquitin-mediated regulation to refine signaling cascades.
Collapse
Affiliation(s)
- Akhee S Jahan
- HKU-Pasteur Research Pole and Center for Influenza Research, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Maxime Lestra
- HKU-Pasteur Research Pole and Center for Influenza Research, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Lee Kim Swee
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - Ying Fan
- HKU-Pasteur Research Pole and Center for Influenza Research, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Mart M Lamers
- HKU-Pasteur Research Pole and Center for Influenza Research, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Fikadu G Tafesse
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | | | - Eric Spooner
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - Roberto Bruzzone
- HKU-Pasteur Research Pole and Center for Influenza Research, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong; Department of Cell Biology and Infection, Institut Pasteur, 75015 Paris, France
| | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Sumana Sanyal
- HKU-Pasteur Research Pole and Center for Influenza Research, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong; Department of Cell Biology and Infection, Institut Pasteur, 75015 Paris, France;
| |
Collapse
|
30
|
Lutz-Nicoladoni C, Wolf D, Sopper S. Modulation of Immune Cell Functions by the E3 Ligase Cbl-b. Front Oncol 2015; 5:58. [PMID: 25815272 PMCID: PMC4356231 DOI: 10.3389/fonc.2015.00058] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/24/2015] [Indexed: 01/10/2023] Open
Abstract
Maintenance of immunological tolerance is a critical hallmark of the immune system. Several signaling checkpoints necessary to balance activating and inhibitory input to immune cells have been described so far, among which the E3 ligase Cbl-b appears to be a central player. Cbl-b is expressed in all leukocyte subsets and regulates several signaling pathways in T cells, NK cells, B cells, and different types of myeloid cells. In most cases, Cbl-b negatively regulates activation signals through antigen or pattern recognition receptors and co-stimulatory molecules. In line with this function, cblb-deficient immune cells display lower activation thresholds and cblb knockout mice spontaneously develop autoimmunity and are highly susceptible to experimental autoimmunity. Interestingly, genetic association studies link CBLB-polymorphisms with autoimmunity also in humans. Vice versa, the increased activation potential of cblb-deficient cells renders them more potent to fight against malignancies or infections. Accordingly, several reports have shown that cblb knockout mice reject tumors, which mainly depends on cytotoxic T and NK cells. Thus, targeting Cbl-b may be an interesting strategy to enhance anti-cancer immunity. In this review, we summarize the findings on the molecular function of Cbl-b in different cell types and illustrate the potential of Cbl-b as target for immunomodulatory therapies.
Collapse
Affiliation(s)
- Christina Lutz-Nicoladoni
- Department of Hematology and Oncology, Medical University Innsbruck , Innsbruck , Austria ; Tumor Immunology Laboratory, Tyrolean Cancer Research Institute , Innsbruck , Austria
| | - Dominik Wolf
- Medical Clinic III for Oncology, Haematology and Rheumatology, University Clinic Bonn (UKB) , Bonn , Germany
| | - Sieghart Sopper
- Department of Hematology and Oncology, Medical University Innsbruck , Innsbruck , Austria ; Tumor Immunology Laboratory, Tyrolean Cancer Research Institute , Innsbruck , Austria
| |
Collapse
|
31
|
Marcais A, Blevins R, Graumann J, Feytout A, Dharmalingam G, Carroll T, Amado IF, Bruno L, Lee K, Walzer T, Mann M, Freitas AA, Boothby M, Fisher AG, Merkenschlager M. microRNA-mediated regulation of mTOR complex components facilitates discrimination between activation and anergy in CD4 T cells. ACTA ACUST UNITED AC 2014; 211:2281-95. [PMID: 25311506 PMCID: PMC4203951 DOI: 10.1084/jem.20132059] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Using Dicer-deficient CD4 T cells, Marcais et al. show that microRNAs regulate the expression of mTOR components that are needed to discriminate between activating and anergy-inducing stimuli. T cell receptor (TCR) signals can elicit full activation with acquisition of effector functions or a state of anergy. Here, we ask whether microRNAs affect the interpretation of TCR signaling. We find that Dicer-deficient CD4 T cells fail to correctly discriminate between activating and anergy-inducing stimuli and produce IL-2 in the absence of co-stimulation. Excess IL-2 production by Dicer-deficient CD4 T cells was sufficient to override anergy induction in WT T cells and to restore inducible Foxp3 expression in Il2-deficient CD4 T cells. Phosphorylation of Akt on S473 and of S6 ribosomal protein was increased and sustained in Dicer-deficient CD4 T cells, indicating elevated mTOR activity. The mTOR components Mtor and Rictor were posttranscriptionally deregulated, and the microRNAs Let-7 and miR-16 targeted the Mtor and Rictor mRNAs. Remarkably, returning Mtor and Rictor to normal levels by deleting one allele of Mtor and one allele of Rictor was sufficient to reduce Akt S473 phosphorylation and to reduce co-stimulation–independent IL-2 production in Dicer-deficient CD4 T cells. These results show that microRNAs regulate the expression of mTOR components in T cells, and that this regulation is critical for the modulation of mTOR activity. Hence, microRNAs contribute to the discrimination between T cell activation and anergy.
Collapse
Affiliation(s)
- Antoine Marcais
- Lymphocyte Development Group and Epigenetics Section, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London W12 0NN, England, UK Lymphocyte Development Group and Epigenetics Section, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London W12 0NN, England, UK CIRI, International Center for Infectiology Research, Université de Lyon, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Ecole Normale Supérieure, 69007 Lyon, France
| | - Rory Blevins
- Lymphocyte Development Group and Epigenetics Section, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London W12 0NN, England, UK Lymphocyte Development Group and Epigenetics Section, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London W12 0NN, England, UK
| | - Johannes Graumann
- Department of Proteomics and Signal Transduction, Max-Planck Institute for Biochemistry, 82152 Martinsried, Germany Weill Cornell Medical College in Qatar, Qatar Foundation, Education City, Doha, State of Qatar
| | - Amelie Feytout
- Lymphocyte Development Group and Epigenetics Section, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London W12 0NN, England, UK Lymphocyte Development Group and Epigenetics Section, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London W12 0NN, England, UK
| | - Gopuraja Dharmalingam
- Lymphocyte Development Group and Epigenetics Section, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London W12 0NN, England, UK
| | - Thomas Carroll
- Lymphocyte Development Group and Epigenetics Section, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London W12 0NN, England, UK
| | - Inês F Amado
- Unité de Biologie des Populations Lymphocytaires, Department of Immunology, Institut Pasteur, and Centre National pour la Recherche Scientifique (Centre National de la Recherche Scientifique), URA1961, 75724 Paris, France Graduate Program in Areas of Basic and Applied Biology (GABBA), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Ludovica Bruno
- Lymphocyte Development Group and Epigenetics Section, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London W12 0NN, England, UK Lymphocyte Development Group and Epigenetics Section, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London W12 0NN, England, UK
| | - Keunwook Lee
- Department of Pathology, Microbiology, and Immunology and Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Thierry Walzer
- CIRI, International Center for Infectiology Research, Université de Lyon, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Ecole Normale Supérieure, 69007 Lyon, France
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck Institute for Biochemistry, 82152 Martinsried, Germany
| | - Antonio A Freitas
- Unité de Biologie des Populations Lymphocytaires, Department of Immunology, Institut Pasteur, and Centre National pour la Recherche Scientifique (Centre National de la Recherche Scientifique), URA1961, 75724 Paris, France
| | - Mark Boothby
- Department of Pathology, Microbiology, and Immunology and Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232 Department of Pathology, Microbiology, and Immunology and Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Amanda G Fisher
- Lymphocyte Development Group and Epigenetics Section, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London W12 0NN, England, UK Lymphocyte Development Group and Epigenetics Section, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London W12 0NN, England, UK
| | - Matthias Merkenschlager
- Lymphocyte Development Group and Epigenetics Section, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London W12 0NN, England, UK Lymphocyte Development Group and Epigenetics Section, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London W12 0NN, England, UK
| |
Collapse
|
32
|
Stürner KH, Borgmeyer U, Schulze C, Pless O, Martin R. A multiple sclerosis-associated variant of CBLB links genetic risk with type I IFN function. THE JOURNAL OF IMMUNOLOGY 2014; 193:4439-47. [PMID: 25261476 DOI: 10.4049/jimmunol.1303077] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the CNS, and autoreactive CD4(+) T cells are considered important for its pathogenesis. The etiology of MS involves a complex genetic trait and environmental triggers that include viral infections, particularly the EBV. Among the risk alleles that have repeatedly been identified by genome-wide association studies, three are located near the Casitas B-lineage lymphoma proto-oncogene b gene (CBLB). The CBLB protein (CBL-B) is a key regulator of peripheral immune tolerance by limiting T cell activation and expansion and hence T cell-mediated autoimmunity through its ubiquitin E3-ligase activity. In this study, we show that CBL-B expression is reduced in CD4(+) T cells from relapsing-remitting MS (RR-MS) patients during relapse. The MS risk-related single nucleotide polymorphism of CBLB rs12487066 is associated with diminished CBL-B expression levels and alters the effects of type I IFNs on human CD4(+) T cell proliferation. Mechanistically, the CBLB rs12487066 risk allele mediates increased binding of the transcription factor C/EBPβ and reduced CBL-B expression in human CD4(+) T cells. Our data suggest a role of the CBLB rs12487066 variant in the interactions of a genetic risk factor and IFN function during viral infections in MS.
Collapse
Affiliation(s)
- Klarissa Hanja Stürner
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Uwe Borgmeyer
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Christian Schulze
- Systems Biology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Ole Pless
- Fraunhofer Institute for Molecular Biology and Applied Ecology, ScreeningPort, 22525 Hamburg, Germany; and
| | - Roland Martin
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; Neuroimmunology and MS Research Section, Department of Neurology, University Hospital Zürich, CH-8091 Zürich, Switzerland
| |
Collapse
|
33
|
Wu J, Salva KA, Wood GS. c-CBL E3 ubiquitin ligase is overexpressed in cutaneous T-cell lymphoma: its inhibition promotes activation-induced cell death. J Invest Dermatol 2014; 135:861-868. [PMID: 25140833 PMCID: PMC4324119 DOI: 10.1038/jid.2014.364] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/14/2014] [Accepted: 07/28/2014] [Indexed: 11/17/2022]
Abstract
Mycosis fungoides (MF) and Sezary syndrome (SS) are two major forms of cutaneous T-cell lymphoma (CTCL) characterized by resistance to apoptosis. A central pathway for T-cell apoptosis is activation-induced cell death (AICD) which is triggered through the T-cell receptor (TCR). This results in upregulation of FAS-ligand (FASL) and subsequent apoptosis through the FAS death receptor pathway. It has been known for more than a decade that TCR signaling is defective in CTCL; however, the underlying mechanism has not been apparent. In this report, we show that the E3 ubiquitin ligase, c-CBL, is over-expressed in CTCL and that its knockdown overcomes defective TCR signaling resulting in phosphorylation of PLCg1, calcium influx, ROS generation, up-regulation of FASL and extrinsic pathway apoptosis in CTCL cells expressing adequate FAS. In CTCL cells with suboptimal FAS expression, FAS can be upregulated epigenetically by derepression of the FAS promoter using methotrexate (MTX) which we showed previously has activity as a DNA methylation inhibitor. Using these combined strategies, FAS-low as well as FAS-high CTCL cells can be killed effectively.
Collapse
Affiliation(s)
- Jianqiang Wu
- Department of Dermatology, University of Wisconsin and the Middleton VA Medical Center, Madison, Wisconsin, USA
| | - Katrin A Salva
- Department of Dermatology, University of Wisconsin and the Middleton VA Medical Center, Madison, Wisconsin, USA
| | - Gary S Wood
- Department of Dermatology, University of Wisconsin and the Middleton VA Medical Center, Madison, Wisconsin, USA.
| |
Collapse
|
34
|
Hsu TS, Hsiao HW, Wu PJ, Liu WH, Lai MZ. Deltex1 promotes protein kinase Cθ degradation and sustains Casitas B-lineage lymphoma expression. THE JOURNAL OF IMMUNOLOGY 2014; 193:1672-80. [PMID: 25000980 DOI: 10.4049/jimmunol.1301416] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The generation of T cell anergy is associated with upregulation of ubiquitin E3 ligases including Casitas B-lineage lymphoma (Cbl-b), Itch, gene related to anergy in lymphocyte, and deltex1 (DTX1). These E3 ligases attenuate T cell activation by targeting to signaling molecules. For example, Cbl-b and Itch promote the degradation of protein kinase Cθ (PKCθ) and phospholipase C-γ1 (PLC-γ1) in anergic Th1 cells. How these anergy-associated E3 ligases coordinate during T cell anergy remains largely unknown. In the current study, we found that PKCθ and PLC-γ1 are also downregulated by DTX1. DTX1 interacted with PKCθ and PLC-γ1 and stimulated the degradation of PKCθ and PLC-γ1. T cell anergy-induced proteolysis of PKCθ was prevented in Dtx1(-/-) T cells, supporting the essential role of DTX1 in PKCθ downregulation. Similar to Cbl-b and Itch, DTX1 promoted monoubiquitination of PKCθ. Proteasome inhibitor did not inhibit DTX1-directed PKCθ degradation, but instead DTX1 directed the relocalization of PKCθ into the lysosomal pathway. In addition, DTX1 interacted with Cbl-b and increased the protein levels of Cbl-b. We further demonstrated the possibility that, through the downregulation of PKCθ, DTX1 prevented PKCθ-induced Cbl-b degradation and increased Cbl-b protein stability. Our results suggest the coordination between E3 ligases during T cell anergy; DTX1 acts with Cbl-b to assure a more extensive silencing of PKCθ, whereas DTX1-mediated PKCθ degradation further stabilizes Cbl-b.
Collapse
Affiliation(s)
- Tzu-Sheng Hsu
- Institute of Immunology, National Taiwan University College of Medicine, Taipei 10051, Taiwan, Republic of China; Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China; and
| | - Huey-Wen Hsiao
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China; and
| | - Pei-Jung Wu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China; and Institute of Life Sciences, National Defense Medical College, Taipei, Taiwan 114, Republic of China
| | - Wen-Hsien Liu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China; and
| | - Ming-Zong Lai
- Institute of Immunology, National Taiwan University College of Medicine, Taipei 10051, Taiwan, Republic of China; Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China; and Institute of Life Sciences, National Defense Medical College, Taipei, Taiwan 114, Republic of China
| |
Collapse
|
35
|
Veselits M, Tanaka A, Lipkowitz S, O'Neill S, Sciammas R, Finnegan A, Zhang J, Clark MR. Recruitment of Cbl-b to B cell antigen receptor couples antigen recognition to Toll-like receptor 9 activation in late endosomes. PLoS One 2014; 9:e89792. [PMID: 24651487 PMCID: PMC3961229 DOI: 10.1371/journal.pone.0089792] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 01/27/2014] [Indexed: 12/21/2022] Open
Abstract
Casitas B-lineage lymphoma-b (Cbl-b) is a ubiquitin ligase (E3) that modulates signaling by tagging molecules for degradation. It is a complex protein with multiple domains and binding partners that are not involved in ubiquitinating substrates. Herein, we demonstrate that Cbl-b, but not c-Cbl, is recruited to the clustered B cell antigen receptor (BCR) and that Cbl-b is required for entry of endocytosed BCRs into late endosomes. The E3 activity of Cbl-b is not necessary for BCR endocytic trafficking. Rather, the ubiquitin associated (UBA) domain is required. Furthermore, the Cbl-b UBA domain is sufficient to confer the receptor trafficking functions of Cbl-b on c-Cbl. Cbl-b is also required for entry of the Toll-like receptor 9 (TLR9) into late endosomes and for the in vitro activation of TLR9 by BCR-captured ligands. These data indicate that Cbl-b acts as a scaffolding molecule to coordinate the delivery of the BCR and TLR9 into subcellular compartments required for productively delivering BCR-captured ligands to TLR9.
Collapse
Affiliation(s)
- Margaret Veselits
- Section of Rheumatology, Department of Medicine and Knapp Center for Lupus and Immunological Research, University of Chicago, Chicago, Illinois, United States of America
| | - Azusa Tanaka
- Section of Rheumatology, Department of Medicine and Knapp Center for Lupus and Immunological Research, University of Chicago, Chicago, Illinois, United States of America
| | - Stanley Lipkowitz
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shannon O'Neill
- Integrated Department of Immunology, National Jewish Medical and Research Center and University of Colorado and Health Sciences Center, Denver, Colorado, United States of America
| | - Roger Sciammas
- Section of Rheumatology, Department of Medicine and Knapp Center for Lupus and Immunological Research, University of Chicago, Chicago, Illinois, United States of America
| | - Alison Finnegan
- Department of Immunology and Microbiology, and Department of Internal Medicine, Section of Rheumatology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Jian Zhang
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Marcus R. Clark
- Section of Rheumatology, Department of Medicine and Knapp Center for Lupus and Immunological Research, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
36
|
Kisand K, Peterson P, Laan M. Lymphopenia-induced proliferation in aire-deficient mice helps to explain their autoimmunity and differences from human patients. Front Immunol 2014; 5:51. [PMID: 24592265 PMCID: PMC3923166 DOI: 10.3389/fimmu.2014.00051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/29/2014] [Indexed: 12/23/2022] Open
Abstract
Studies on autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) and its mouse model – both caused by mutant AIRE – have greatly advanced the understanding of thymic processes that generate a self-tolerant T-cell repertoire. Much is now known about the molecular mechanisms by which AIRE induces tissue-specific antigen expression in thymic epithelium, and how this leads to negative selection of auto-reactive thymocytes. However, we still do not understand the processes that lead to the activation of any infrequent naïve auto-reactive T-cells exported by AIRE-deficient thymi. Also, the striking phenotypic differences between APECED and its mouse models have puzzled researchers for years. The aim of this review is to suggest explanations for some of these unanswered questions, based on a fresh view of published experiments. We review evidence that auto-reactive T-cells can be activated by the prolonged neonatal lymphopenia that naturally develops in young Aire-deficient mice due to delayed export of mature thymocytes. Lymphopenia-induced proliferation (LIP) helps to fill the empty space; by favoring auto-reactive T-cells, it also leads to lymphocyte infiltration in the same tissues as in day 3 thymectomized animals. The LIP becomes uncontrolled when loss of Aire is combined with defects in genes responsible for anergy induction and Treg responsiveness, or in signaling from the T-cell receptor and homeostatic cytokines. In APECED patients, LIP is much less likely to be involved in activation of naïve auto-reactive T-cells, as humans are born with a more mature immune system than in neonatal mice. We suggest that human AIRE-deficiency presents with different phenotypes because of additional precipitating factors that compound the defective negative selection of potentially autoaggressive tissue-specific thymocytes.
Collapse
Affiliation(s)
- Kai Kisand
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu , Tartu , Estonia
| | - Pärt Peterson
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu , Tartu , Estonia
| | - Martti Laan
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu , Tartu , Estonia
| |
Collapse
|
37
|
Zhou P, Shaffer DR, Alvarez Arias DA, Nakazaki Y, Pos W, Torres AJ, Cremasco V, Dougan SK, Cowley GS, Elpek K, Brogdon J, Lamb J, Turley SJ, Ploegh HL, Root DE, Love JC, Dranoff G, Hacohen N, Cantor H, Wucherpfennig KW. In vivo discovery of immunotherapy targets in the tumour microenvironment. Nature 2014; 506:52-7. [PMID: 24476824 DOI: 10.1038/nature12988] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 12/31/2013] [Indexed: 02/07/2023]
Abstract
Recent clinical trials showed that targeting of inhibitory receptors on T cells induces durable responses in a subset of cancer patients, despite advanced disease. However, the regulatory switches controlling T-cell function in immunosuppressive tumours are not well understood. Here we show that such inhibitory mechanisms can be systematically discovered in the tumour microenvironment. We devised an in vivo pooled short hairpin RNA (shRNA) screen in which shRNAs targeting negative regulators became highly enriched in murine tumours by releasing a block on T-cell proliferation upon tumour antigen recognition. Such shRNAs were identified by deep sequencing of the shRNA cassette from T cells infiltrating tumour or control tissues. One of the target genes was Ppp2r2d, a regulatory subunit of the PP2A phosphatase family. In tumours, Ppp2r2d knockdown inhibited T-cell apoptosis and enhanced T-cell proliferation as well as cytokine production. Key regulators of immune function can therefore be discovered in relevant tissue microenvironments.
Collapse
Affiliation(s)
- Penghui Zhou
- 1] Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA [2]
| | - Donald R Shaffer
- 1] Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA [2] [3] Jounce Therapeutics, Cambridge, Massachusetts 02138, USA
| | | | - Yukoh Nakazaki
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Wouter Pos
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Alexis J Torres
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | | - Stephanie K Dougan
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Glenn S Cowley
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kutlu Elpek
- 1] Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA [2] Jounce Therapeutics, Cambridge, Massachusetts 02138, USA
| | - Jennifer Brogdon
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, USA
| | - John Lamb
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | | | - Hidde L Ploegh
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - David E Root
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - J Christopher Love
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Glenn Dranoff
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Harvey Cantor
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
38
|
Abstract
The ubiquitin system plays a pivotal role in the regulation of immune responses. This system includes a large family of E3 ubiquitin ligases of over 700 proteins and about 100 deubiquitinating enzymes, with the majority of their biological functions remaining unknown. Over the last decade, through a combination of genetic, biochemical, and molecular approaches, tremendous progress has been made in our understanding of how the process of protein ubiquitination and its reversal deubiquitination controls the basic aspect of the immune system including lymphocyte development, differentiation, activation, and tolerance induction and regulates the pathophysiological abnormalities such as autoimmunity, allergy, and malignant formation. In this review, we selected some of the published literature to discuss the roles of protein-ubiquitin conjugation and deubiquitination in T-cell activation and anergy, regulatory T-cell and T-helper cell differentiation, regulation of NF-κB signaling, and hematopoiesis in both normal and dysregulated conditions. A comprehensive understanding of the relationship between the ubiquitin system and immunity will provide insight into the molecular mechanisms of immune regulation and at the same time will advance new therapeutic intervention for human immunological diseases.
Collapse
Affiliation(s)
- Yoon Park
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Hyung-seung Jin
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Daisuke Aki
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Jeeho Lee
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Yun-Cai Liu
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.
| |
Collapse
|
39
|
T-cell receptor ligation causes Wiskott-Aldrich syndrome protein degradation and F-actin assembly downregulation. J Allergy Clin Immunol 2013; 132:648-655.e1. [PMID: 23684068 DOI: 10.1016/j.jaci.2013.03.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/28/2013] [Accepted: 03/29/2013] [Indexed: 11/23/2022]
Abstract
BACKGROUND Wiskott-Aldrich syndrome protein (WASP) links T-cell receptor (TCR) signaling to the actin cytoskeleton. WASP is normally protected from degradation by the Ca(++)-dependent protease calpain and by the proteasome because of its interaction with the WASP-interacting protein. OBJECTIVE We investigated whether WASP is degraded after TCR ligation and whether its degradation downregulates F-actin assembly caused by TCR ligation. METHODS Primary T cells, Jurkat T cells, and transfected 293T cells were used in immunoprecipitation experiments. Intracellular F-actin content was measured in splenic T cells from wild-type, WASP-deficient, and c-Casitas B-lineage lymphoma (Cbl)-b-deficient mice by using flow cytometry. Calpeptin and MG-132 were used to inhibit calpain and the proteasome, respectively. RESULTS A fraction of WASP in T cells was degraded by calpain and by the ubiquitin-proteasome pathway after TCR ligation. The Cbl-b and c-Cbl E3 ubiquitin ligases associated with WASP after TCR signaling and caused its ubiquitination. Inhibition of calpain and lack of Cbl-b resulted in a significantly more sustained increase in F-actin content after TCR ligation in wild-type T cells but not in WASP-deficient T cells. CONCLUSION TCR ligation causes WASP to be degraded by calpain and to be ubiquitinated by Cbl family E3 ligases, which targets it for destruction by the proteasome. WASP degradation might provide a mechanism for regulating WASP-dependent TCR-driven assembly of F-actin.
Collapse
|
40
|
Chen Z, Luo X, Lu Y, Zhu T, Wang J, Tsun A, Li B. Ubiquitination signals critical to regulatory T cell development and function. Int Immunopharmacol 2013; 16:348-52. [PMID: 23415874 DOI: 10.1016/j.intimp.2013.01.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 01/30/2013] [Indexed: 12/11/2022]
Abstract
Protein ubiquitination has emerged as a crucial modulator of the immune system, participating in the control of T cell differentiation, intracellular signal transduction and the induction of immune tolerance. CD4(+)CD25(+)FOXP3(+) regulatory T cells are a unique subset of cells that mediate central and peripheral immune tolerance. In this review, we highlight our current understanding of the molecular mechanisms and signaling pathways that modulate protein ubiquitination in Treg cells, and how ubiquitination determines Treg cell development and function. Understanding how FOXP3 activity is regulated by ubiquitination and deubiquitination under molecular level will promote regulatory T cell therapy for treating inflammation in autoimmune disease, infection, transplantation and cancer.
Collapse
Affiliation(s)
- Zuojia Chen
- Key Laboratory of Molecular Virology & Immunology, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 411 Hefei Road, Shanghai, 200025, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Moffat JM, Mintern JD, Villadangos JA. Control of MHC II antigen presentation by ubiquitination. Curr Opin Immunol 2013. [DOI: 10.1016/j.coi.2012.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
42
|
ZAP-70 tyrosines 315 and 492 transmit non-genomic glucocorticoid (GC) effects in T cells. Mol Immunol 2013; 53:111-7. [DOI: 10.1016/j.molimm.2012.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/20/2012] [Accepted: 07/21/2012] [Indexed: 01/16/2023]
|
43
|
Impairment of non-muscle myosin IIA in human CD4+ T cells contributes to functional deficits in the elderly. Cell Mol Immunol 2011; 9:86-96. [PMID: 21983869 DOI: 10.1038/cmi.2011.41] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Physiological aging imposes significant alterations in the repertoire of T cells and all associated functions. Although several studies have reported defects upon antigen-induced activation of T cells during aging, the molecular mechanisms that control T-cell receptor (TCR) downmodulation remain to be fully defined. While previous studies have assessed the role of F-actin in regulating activation-induced TCR internalization, few have delineated the roles of motor proteins, such as non-muscle myosin IIA (NMMIIA). In this study, we describe a series of experiments supporting the hypothesis that effective TCR downmodulation requires not only efficient reorganization of the actin cytoskeleton, but also functional NMMIIA. For the first time, we show that CD4(+) T cells from elderly human donors have dysfunctional NMMIIA that contributes to delaying activation-induced TCR internalization and impairing calcium mobilization. Additionally, our results demonstrate that chemical inhibition of NMMIIA in CD4(+) T cells from young donors also results in complete abrogation of TCR internalization, strongly supporting the fundamental role of NMMIIA in modulating this event. Recent observations that the generation of an efficient T-cell response requires migration prompted us to investigate whether NMMIIA also plays a regulatory role in CD4(+) T-cell migration. We show that chemical inhibition of NMMIIA downmodulates chemotactic migration in CD4(+) T cells from both young and elderly donors. Together, these data demonstrate a significant contribution of dysfunctional NMMIIA to TCR-mediated functional defects during aging.
Collapse
|
44
|
|
45
|
Riha P, Rudd CE. CD28 co-signaling in the adaptive immune response. SELF NONSELF 2010; 1:231-240. [PMID: 21487479 DOI: 10.4161/self.1.3.12968] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 07/12/2010] [Indexed: 12/20/2022]
Abstract
T-cell proliferation and function depends on signals from the antigen-receptor complex (TCR/CD3) and by various co-receptors such as CD28 and CTLA-4. The balance of positive and negative signals determines the outcome of the T-cell response to foreign and self-antigen. CD28 is a prominent co-receptor in naïve and memory T-cell responses. Its blockade has been exploited clinically to dampen T-cell responses to self-antigen. Current evidence shows that CD28 both potentiates TCR signaling and engages a unique array of mediators (PI3K, Grb2, FLNa) in the regulation of aspects of T-cell signaling including the transcription factor NFkB. In this mini-review, we provide an up-to-date overview of our understanding of the signaling mechanisms that underlie CD28 function and its potential application to the modulation of reactivity to autoimmunity.
Collapse
Affiliation(s)
- Pavel Riha
- Cell Signaling Section; Department of Pathology; University of Cambridge; Cambridge, UK
| | | |
Collapse
|