1
|
Weng G, Tao J, Liu Y, Qiu J, Su D, Wang R, Luo W, Zhang T. Organoid: Bridging the gap between basic research and clinical practice. Cancer Lett 2023; 572:216353. [PMID: 37599000 DOI: 10.1016/j.canlet.2023.216353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Nowadays, the diagnosis and treatment system of malignant tumors has increasingly tended to be more precise and personalized while the existing tumor models are still unable to fully meet the needs of clinical practice. Notably, the emerging organoid platform has been proven to have huge potential in the field of basic-translational medicine, which is expected to promote a paradigm shift in personalized medicine. Here, given the unique advantages of organoid platform, we mainly explore the prominent role of organoid models in basic research and clinical practice from perspectives of tumor biology, tumorigenic microbes-host interaction, clinical decision-making, and regenerative strategy. In addition, we also put forward some practical suggestions on how to construct a new generation of organoid platform, which is destined to vigorously promote the reform of basic-translational medicine.
Collapse
Affiliation(s)
- Guihu Weng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Jinxin Tao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Yueze Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Dan Su
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Ruobing Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China.
| |
Collapse
|
2
|
Qiu H, Lin DY, Li JY. Screening and identification of dominant monoclonal HepG2 cell strain with 1.3-fold HBV genome. Shijie Huaren Xiaohua Zazhi 2021; 29:934-944. [DOI: 10.11569/wcjd.v29.i16.934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) infection model in vitro is the basis for studying HBV life cycle and pathogenesis and for drug screening. With the clinical anti-HBV therapy entering the new trend of "functional cure" and "complete cure", there is an urgent need for cell models that can stably simulate the transcription mechanism of covalently closed circular DNA (cccDNA) and the role of hepatitis B virus X protein (HBx). The 1.3-fold HBV genome contains all the biological information of HBV. It can start the transcription process by its own promoter, support the formation of cccDNA, and complete viral replication, which is closest to the life cycle of HBV in vivo. Lentivirus transfection is a technology that takes lentivirus as vector and introduces foreign molecules such as DNA and RNA into eukaryotic cells, which can form stable transfection.
AIM To construct a HepG2 cell model with 1.3-fold HBV genome by lentivirus transfection technology, and to screen and identify the dominant monoclonal strain that can stably and efficiently express HBV biomarkers.
METHODS A lentiviral plasmid containing 1.3-fold HBV genome information was constructed, and the recombinant lentivirus culture was used to infect HepG2 cells at the optimal multiplicity of infection (MOI). Blasticidin (BSD) was used to select HepG2 cell strains (1.3-fold HBV-HepG2) stably integrating the 1.3-fold HBV genome, and then the HBV in the cell model was identified by PCR. HepG2 cells stably carrying the 1.3-fold HBV genome were cultured and nine candidate positive monoclones were selected. The flanking sequences of each monoclonal cell were sequenced to determine the insertion position of the corresponding HBV genome in the genome of HepG2 cells. The most dominant monoclones were selected according to the expression levels of HBsAg and HBeAg. The expression levels and stability of HBsAg, HBeAg, HBx, cccDNA, and HBV DNA in HepG2 cells stably carrying the 1.3-fold HBV genome were compared.
RESULTS The lentiviral plasmid plenti-bsd-1.3-fold HBV was used to infect HepG2 cells at an MOI of 30. After 72 h, BSD (final concentration 1 μg/mL) was added for screening. After 15-20 d of continuous culture, stable 1.3-fold HBV-HepG2 cell line was obtained. HBV DNA sequence was then identified by PCR. Among the nine selected candidate positive monoclones, A14, in which the 1.3-fold HBV genome was inserted into the HepG2 genome at 1:166461695-166461715 (named HepGA14), had the highest expression levels of HBsAg and HBeAg at 24.28 IU/mL and 39.62 NCU/mL, respectively. HepGA14 can stably and highly express HBV biomarkers. Compared with HepG2.2.15 cell line, the expression levels of HBx and cccDNA in Hepga14 dominant monoclonal line in 1-20 passages were significantly higher (P < 0.05).
CONCLUSION We have successfully constructed and screened HepGA14, a dominant monoclonal HepG cell strain with HBV 1.3-fold genome, which lays a good foundation for further research of HBV-host relationship and pathogenesis as well as for drug screening.
Collapse
Affiliation(s)
- Hua Qiu
- Guangxi Medical University Affiliated Tumor Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Dong-Yi Lin
- Guangxi Medical University Affiliated Tumor Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jin-Yuan Li
- Guangxi Medical University Affiliated Tumor Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
3
|
Rao S, Hossain T, Mahmoudi T. 3D human liver organoids: An in vitro platform to investigate HBV infection, replication and liver tumorigenesis. Cancer Lett 2021; 506:35-44. [PMID: 33675983 DOI: 10.1016/j.canlet.2021.02.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023]
Abstract
Hepatitis B Virus (HBV) infection is a leading cause of chronic liver cirrhosis and hepatocellular carcinoma (HCC) with an estimated 400 million people infected worldwide. The precise molecular mechanisms underlying HBV replication and tumorigenesis have remained largely uncharacterized due to the lack of a primary cell model to study HBV, a virus that exhibits stringent host species and cell-type specificity. Organoid technology has recently emerged as a powerful tool to investigate human diseases in a primary 3D cell-culture system that maintains the organisation and functionality of the tissue of origin. In this review, we describe the utilisation of human liver organoid platforms to study HBV. We first present the different categories of liver organoids and their demonstrated ability to support the complete HBV replication cycle. We then discuss the potential applications of liver organoids in investigating HBV infection and replication, related tumorigenesis and novel HBV-directed therapies. Liver organoids can be genetically modified, patient-derived, expanded and biobanked, thereby serving as a clinically-relevant, human, primary cell-derived platform to investigate HBV. Finally, we provide insights into the future applications of this powerful technology in the context of HBV-infection and HCC.
Collapse
Affiliation(s)
- Shringar Rao
- Department of Biochemistry, Erasmus University Medical Centre, PO Box 2040, 3000, CA, 9 Rotterdam, the Netherlands
| | - Tanvir Hossain
- Department of Biochemistry, Erasmus University Medical Centre, PO Box 2040, 3000, CA, 9 Rotterdam, the Netherlands
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Centre, PO Box 2040, 3000, CA, 9 Rotterdam, the Netherlands; Department of Pathology, Erasmus University Medical Centre, PO Box 2040, 3000, CA, Rotterdam, the Netherlands; Department of Urology, Erasmus University Medical Centre, PO Box 2040, 3000, CA, Rotterdam, the Netherlands.
| |
Collapse
|
4
|
Duraisamy GS, Bhosale D, Lipenská I, Huvarova I, Růžek D, Windisch MP, Miller AD. Advanced Therapeutics, Vaccinations, and Precision Medicine in the Treatment and Management of Chronic Hepatitis B Viral Infections; Where Are We and Where Are We Going? Viruses 2020; 12:v12090998. [PMID: 32906840 PMCID: PMC7552065 DOI: 10.3390/v12090998] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
The management of chronic hepatitis B virus (CHB) infection is an area of massive unmet clinical need worldwide. In spite of the development of powerful nucleoside/nucleotide analogue (NUC) drugs, and the widespread use of immune stimulators such as interferon-alpha (IFNα) or PEGylated interferon-alpha (PEG-IFNα), substantial improvements in CHB standards of care are still required. We believe that the future for CHB treatment now rests with advanced therapeutics, vaccination, and precision medicine, if all are to bring under control this most resilient of virus infections. In spite of a plethora of active drug treatments, anti-viral vaccinations and diagnostic techniques, the management of CHB infection remains unresolved. The reason for this is the very complexity of the virus replication cycle itself, giving rise to multiple potential targets for therapeutic intervention some of which remain very intractable indeed. Our review is focused on discussing the potential impact that advanced therapeutics, vaccinations and precision medicine could have on the future management of CHB infection. We demonstrate that advanced therapeutic approaches for the treatment of CHB, in the form of gene and immune therapies, together with modern vaccination strategies, are now emerging rapidly to tackle the limitations of current therapeutic approaches to CHB treatment in clinic. In addition, precision medicine approaches are now gathering pace too, starting with personalized medicine. On the basis of this, we argue that the time has now come to accelerate the design and creation of precision therapeutic approaches (PTAs) for CHB treatment that are based on advanced diagnostic tools and nanomedicine, and which could maximize CHB disease detection, treatment, and monitoring in ways that could genuinely eliminate CHB infection altogether.
Collapse
Affiliation(s)
- Ganesh Selvaraj Duraisamy
- Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; (G.S.D.); (D.B.); (I.L.); (I.H.); (D.R.)
| | - Dattatry Bhosale
- Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; (G.S.D.); (D.B.); (I.L.); (I.H.); (D.R.)
| | - Ivana Lipenská
- Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; (G.S.D.); (D.B.); (I.L.); (I.H.); (D.R.)
| | - Ivana Huvarova
- Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; (G.S.D.); (D.B.); (I.L.); (I.H.); (D.R.)
| | - Daniel Růžek
- Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; (G.S.D.); (D.B.); (I.L.); (I.H.); (D.R.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 České Budějovice, Czech Republic
| | - Marc P. Windisch
- Applied Molecular Virology Laboratory, Institut Pasteur Korea, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-400, Korea;
- Division of Bio-Medical Science and Technology, University of Science and Technology, Daejeon 305-350, Korea
| | - Andrew D. Miller
- Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; (G.S.D.); (D.B.); (I.L.); (I.H.); (D.R.)
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, Černá Pole, CZ-61300 Brno, Czech Republic
- KP Therapeutics (Europe) s.r.o., Purkyňova 649/127, CZ-61200 Brno, Czech Republic
- Correspondence:
| |
Collapse
|
5
|
Li J, Li A. Role of microRNA 4717, its effects on programmed cell death protein-1 in hepatitis B infection, and interaction between PDCD1 and miR-4717. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220934604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
It is suggested that programmed cell death protein-1 (PD-1) is involved in hepatitis B virus (HBV) infection, the leading cause of hepatocellular carcinoma globally. This study was multi-aimed, that is, to investigate the role of microRNA (miR) 4717 and its target, PD-1 and to determine how the rs10204525 polymorphism in the 3′ untranslated region (3′UTR) of PD-1 affects its interaction with miR-4717. The expression levels of miR-4717 with various single-nucleotide polymorphisms were measured by reverse transcription–quantitative polymerase chain reaction (RT-qPCR). A total of 54 tissue samples from HBV-infected individuals were collected, genotyped, and categorized into three groups; AA (n = 32), AG (n = 18), and GG (n = 4). The expression levels of gene PDCD1 and its corresponding PD-1 protein were significantly declined in the AA group as compared to AG and GG groups. There was a negative linear association between PDCD1 and miR-4717 in the tissue samples. HEPG2 cells transfected with an miR-4717 mimic or PD-1 small interfering (si)RNA exhibited significantly reduced expression levels of PDCD1 and PD-1, whereas cells transfected with an inhibitor of miR-4717 demonstrated greater expression levels of PDCD1 and PD-1 compared with the scramble control. In addition, cell viability and apoptosis were assessed in cells transfected with an miR-4717 mimic, PD-1 siRNA, or an miR-4717 inhibitor. Results revealed that treatment with the miR-4717 mimic or PD-1 siRNA enhanced viability of cells and reduced apoptosis. The results of this study suggest that rs10204525 polymorphism interferes with the interaction between PD-1 and miR-4717 and therefore induces apoptosis in liver cancer cells.
Collapse
Affiliation(s)
- Junhua Li
- Department of Laboratory, Kuling District People’s Hospital, Dezhou, China
| | - Andong Li
- Department of Laboratory, Dezhou City Hospital, Dezhou, China
| |
Collapse
|
6
|
Goyal A, Ribeiro RM, Perelson AS. The Role of Infected Cell Proliferation in the Clearance of Acute HBV Infection in Humans. Viruses 2017; 9:v9110350. [PMID: 29156567 PMCID: PMC5707557 DOI: 10.3390/v9110350] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 12/17/2022] Open
Abstract
Around 90-95% of hepatitis B virus (HBV) infected adults do not progress to the chronic phase and, instead, recover naturally. The strengths of the cytolytic and non-cytolytic immune responses are key players that decide the fate of acute HBV infection. In addition, it has been hypothesized that proliferation of infected cells resulting in uninfected progeny and/or cytokine-mediated degradation of covalently closed circular DNA (cccDNA) leading to the cure of infected cells are two major mechanisms assisting the adaptive immune response in the clearance of acute HBV infection in humans. We employed fitting of mathematical models to human acute infection data together with physiological constraints to investigate the role of these hypothesized mechanisms in the clearance of infection. Results suggest that cellular proliferation of infected cells resulting in two uninfected cells is required to minimize the destruction of the liver during the clearance of acute HBV infection. In contrast, we find that a cytokine-mediated cure of infected cells alone is insufficient to clear acute HBV infection. In conclusion, our modeling indicates that HBV clearance without lethal loss of liver mass is associated with the production of two uninfected cells upon proliferation of an infected cell.
Collapse
Affiliation(s)
- Ashish Goyal
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Ruy M Ribeiro
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
- Laboratório de Biomatemática, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| | - Alan S Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
7
|
Qin B, Zhou Y, Zhou G, Xu X, Wang Y, Chen J. Substitutions of rtL228 and/or L229 are involved in the regulation of replication and HBsAg secretion in hepatitis B virus, and do not affect susceptibility to nucleos(t)ide analogs. Mol Med Rep 2017; 16:9678-9684. [PMID: 29039614 DOI: 10.3892/mmr.2017.7778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 08/22/2017] [Indexed: 11/05/2022] Open
Abstract
Nucleos(t)ide analogs (NAs) are widely used in the treatment of hepatitis B virus (HBV) and human immunodeficiency virus (HIV). The mutation L210W of HIV‑1 reverse transcriptase (RT) is one of the six principal mutations which confer in vivo resistance to zidovudine. Due to the similar 3D‑structure and high conservation between HIV‑RT and HBV‑RT, the present study aimed to clarify whether corresponding mutations in HBV may decrease its susceptibility to relevant NAs. Mutations including rtL228C/W, rtL229W and rtL228W/L229W were introduced into a HBV replication competent plasmid by fusion polymerase chain reaction. Replication capacity, HBs/e antigen (Ag) levels and susceptibility to NAs were subsequently analyzed in vitro. Single or combination mutations of rtL228 and rtL229 impaired HBV replication. Decreased HBsAg secretion in the supernatant and production in the cell lysate wasobserved with single rtL229W or in combination with rtL228W, while there was no significant difference between wild‑type and mutant HBV with regard to the level of HBeAg in the supernatant and susceptibility to commonly‑used NAs. Substitution mutations of rtL228 and/or L229 in HBV did not alter the susceptibility of the virus to NAs, although replication and HBsAg secretion were affected.
Collapse
Affiliation(s)
- Bo Qin
- Department of Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Yechao Zhou
- Department of Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Guozhong Zhou
- Department of Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Xiuping Xu
- Department of Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Yanan Wang
- Department of Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Jinkun Chen
- Shaoxing Center for Disease Control and Prevention, Shaoxing, Zhejiang 312000, P.R. China
| |
Collapse
|
8
|
Sang X, Wang R, Han Y, Zhang C, Shen H, Yang Z, Xiong Y, Liu H, Liu S, Li R, Yang R, Wang J, Wang X, Bai Z, Xiao X. T cell--associated immunoregulation and antiviral effect of oxymatrine in hydrodynamic injection HBV mouse model. Acta Pharm Sin B 2017; 7:311-318. [PMID: 28540167 PMCID: PMC5430867 DOI: 10.1016/j.apsb.2017.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/05/2017] [Accepted: 01/18/2017] [Indexed: 01/05/2023] Open
Abstract
Although oxymatrine (OMT) has been shown to directly inhibit the replication of hepatitis B virus (HBV) in vitro, limited research has been done with this drug in vivo. In the present study, the antiviral effect of OMT was investigated in an immunocompetent mouse model of chronic HBV infection. The infection was achieved by tail vein injection of a large volume of DNA solution. OMT (2.2, 6.7 and 20 mg/kg) was administered by daily intraperitoneal injection for 6 weeks. The efficacy of OMT was evaluated by the levels of HBV DNA, hepatitis B surface antigen (HBsAg), hepatitis B e antigen (HBeAg) and hepatitis B core antigen (HBcAg). The immunoregulatory activity of OMT was evaluated by serum ELISA and flow cytometry. Results shows that OMT at 20 mg/kg inhibited HBV replication, and it was more efficient than entecavir (ETV) in the elimination of serum HBsAg and intrahepatic HBcAg. In addition, OMT accelerated the production of interferon-γ (IFN-γ) in a dose-dependent manner in CD4+ T cells. Our findings demonstrate the beneficial effects of OMT on the enhancement of immunological function and in the control of HBV antigens. The findings suggest this drug to be a good antiviral therapeutic candidate for the treatment of HBV infection.
Collapse
Key Words
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- CD4+ T cell
- CHB, chronic hepatitis B
- ETV, entecavir
- HBV
- HBV, hepatitis B virus
- HBcAg, hepatitis B core antigen
- HBeAg, hepatitis B e antigen
- HBsAg, hepatitis B surface antigen
- HE, hematoxylin and eosin
- IFN-γ
- IFN-γ, interferon-γ
- IL-4, interleukin-4
- Mouse
- NAs, nucleoside and nucleotide analogs
- OMT, oxymatrine
- Oxymatrine
- TCMs, traditional Chinese medicines
- TNF-α, tumor necrosis factor-α
Collapse
|
9
|
Uchida T, Imamura M, Kan H, Hiraga N, Hayes CN, Tsuge M, Abe-Chayama H, Aikata H, Makokha GN, Miki D, Ochi H, Ishida Y, Tateno C, Chayama K. Usefulness of humanized cDNA-uPA/SCID mice for the study of hepatitis B virus and hepatitis C virus virology. J Gen Virol 2017; 98:1040-1047. [DOI: 10.1099/jgv.0.000726] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Takuro Uchida
- Department of Gastroenterology and Metabolism, Applied Life Science, Institute of Biomedical & Health Science, Hiroshima University, Hiroshima, Japan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Michio Imamura
- Department of Gastroenterology and Metabolism, Applied Life Science, Institute of Biomedical & Health Science, Hiroshima University, Hiroshima, Japan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Hiromi Kan
- Department of Gastroenterology and Metabolism, Applied Life Science, Institute of Biomedical & Health Science, Hiroshima University, Hiroshima, Japan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Nobuhiko Hiraga
- Department of Gastroenterology and Metabolism, Applied Life Science, Institute of Biomedical & Health Science, Hiroshima University, Hiroshima, Japan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - C. Nelson Hayes
- Department of Gastroenterology and Metabolism, Applied Life Science, Institute of Biomedical & Health Science, Hiroshima University, Hiroshima, Japan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Masataka Tsuge
- Department of Gastroenterology and Metabolism, Applied Life Science, Institute of Biomedical & Health Science, Hiroshima University, Hiroshima, Japan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Hiromi Abe-Chayama
- Department of Gastroenterology and Metabolism, Applied Life Science, Institute of Biomedical & Health Science, Hiroshima University, Hiroshima, Japan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Aikata
- Department of Gastroenterology and Metabolism, Applied Life Science, Institute of Biomedical & Health Science, Hiroshima University, Hiroshima, Japan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Grace Naswa Makokha
- Department of Gastroenterology and Metabolism, Applied Life Science, Institute of Biomedical & Health Science, Hiroshima University, Hiroshima, Japan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Daiki Miki
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
- Laboratory for Digestive Diseases, Center for Genomic Medicine, The Institute of Physical and Chemical Research (RIKEN), Hiroshima, Japan
| | - Hidenori Ochi
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
- Laboratory for Digestive Diseases, Center for Genomic Medicine, The Institute of Physical and Chemical Research (RIKEN), Hiroshima, Japan
| | - Yuji Ishida
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
- PhoenixBio Co., Ltd, Higashihiroshima, Japan
| | - Chise Tateno
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
- PhoenixBio Co., Ltd, Higashihiroshima, Japan
| | - Kazuaki Chayama
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
- Department of Gastroenterology and Metabolism, Applied Life Science, Institute of Biomedical & Health Science, Hiroshima University, Hiroshima, Japan
- Laboratory for Digestive Diseases, Center for Genomic Medicine, The Institute of Physical and Chemical Research (RIKEN), Hiroshima, Japan
| |
Collapse
|
10
|
Matsumoto T, Takahashi K, Inuzuka T, Kim SK, Kurosaki T, Kawakami S, Chiba T, Seno H, Marusawa H. Activation of TNF-α-AID axis and co-inhibitory signals in coordination with Th1-type immunity in a mouse model recapitulating hepatitis B. Antiviral Res 2017; 139:138-145. [PMID: 28063995 DOI: 10.1016/j.antiviral.2017.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/28/2016] [Accepted: 01/02/2017] [Indexed: 01/01/2023]
Abstract
Hepatitis B virus (HBV) infection evokes host immune responses that primarily determine the outcome of HBV infection and the clinical features of HBV-associated liver disease. The precise mechanisms by which host factors restrict HBV replication, however, are poorly understood due to the lack of useful animal models that recapitulate immune responses to HBV. Here, we performed comprehensive immunologic gene expression profiling of the liver of a mouse model recapitulating anti-HBV immune response using a high sensitivity direct digital counting system. Anti-HBV cellular immunity with liver inflammation was elicited in mice hydrodynamically injected with a CpG-depleted plasmid encoding hepatitis B surface antigen (HBsAg) gene after preimmunization with HBsAg vaccine. Comprehensive expression analyses revealed the upregulation of Th1-associated genes including tumor necrosis factor (Tnf) and negative regulators of T cell function in the inflamed liver. Interestingly, activation-induced cytidine deaminase (Aicda, termed AID in humans), which reportedly suppresses HBV infection in vitro, was upregulated in hepatocytes in the course of anti-HBV immunity. Hepatocytic expression of Aicda in a Tnf-dependent manner was confirmed by the administration of Tnf antagonist into Aicda-tdTomato mice with anti-HBV immunity. Our findings suggest that activation of Tnf-Aicda axis and co-inhibitory signals to T cells in coordination with Th1-type immunity has critical roles in the immune response against HBV infection.
Collapse
Affiliation(s)
- Tomonori Matsumoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Ken Takahashi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Tadashi Inuzuka
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Soo Ki Kim
- Department of Gastroenterology, Kobe Asahi Hospital, Kobe, 653-0801, Japan
| | - Tomoaki Kurosaki
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, 852-8501, Japan
| | - Shigeru Kawakami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8501, Japan
| | - Tsutomu Chiba
- Graduate School of Advanced Integrated Studies in Human Survivability (Shishu-Kan), Kyoto University, Kyoto, 606-8306, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Hiroyuki Marusawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
11
|
Hossain MG, Ueda K. Investigation of a Novel Hepatitis B Virus Surface Antigen (HBsAg) Escape Mutant Affecting Immunogenicity. PLoS One 2017; 12:e0167871. [PMID: 28045894 PMCID: PMC5207502 DOI: 10.1371/journal.pone.0167871] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/21/2016] [Indexed: 02/07/2023] Open
Abstract
Mutation in the hepatitis B virus surface antigen (HBsAg) may affect the efficiency of diagnostic immunoassays or success of vaccinations using HBsAg. Thus, antigenicity and immunogenicity analyses of the mutated HBsAg are necessary to develop novel diagnostic tools and efficient vaccinations. Here, the in vitro antigenicity of three wild-type HBsAg open reading frames (ORFs) (adr4, W1S [subtype adr] and W3S [subtype adr]) isolated from clinically infected patients and nineteen synthesized single/double/multiple amino acid-substituted mutants were tested with commercial ELISA kits. Immunofluorescence staining of transfected cells and Western blot analysis confirmed that these ORFs were expressed at comparable levels in HEK-293 cells. W1S and adr4 were clearly detected, whereas W3S could not be detected. Using the same commercial immunoassay kit, we found that the single mutants, K120P and D123T, were marginally reactive, whereas W3S-aW1S and the double mutant, K120P/D123T, exhibited antigenicity roughly equivalent to the wild-type wako1S. On the other hand, the single mutants of W1S, P120K and T123D, significantly impaired the reactivity, while W1S-aW3S and the double mutant of W1S, P120K/T123D, resulted in a complete loss of antigenicity. In addition, ELISA revealed reduced HBs antigenicity of two mutants, W1S N146G and W1S Q129R/G145R. These commercial ELISA-based antigenic reactivities of HBsAg were also strongly correlated with the predicted Ai alterations of affected amino acids due to the specific mutation. In conclusion, this study showed for the first time that lysine (K120) and aspartate (D123) simultaneously affected HBsAg antigenicity, leading to diagnostic failure. These findings will improve diagnostic assays and vaccine development.
Collapse
Affiliation(s)
- Md. Golzar Hossain
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Keiji Ueda
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
12
|
Sanada T, Hirata Y, Naito Y, Yamamoto N, Kikkawa Y, Ishida Y, Yamasaki C, Tateno C, Ochiya T, Kohara M. Transmission of HBV DNA Mediated by Ceramide-Triggered Extracellular Vesicles. Cell Mol Gastroenterol Hepatol 2016; 3:272-283. [PMID: 28275693 PMCID: PMC5331779 DOI: 10.1016/j.jcmgh.2016.10.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 10/14/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS An extracellular vesicle (EV) is a nanovesicle that shuttles proteins, nucleic acids, and lipids, thereby influencing cell behavior. A recent crop of reports have shown that EVs are involved in infectious biology, influencing host immunity and playing a role in the viral life cycle. In the present work, we investigated the EV-mediated transmission of hepatitis B virus (HBV) infection. METHODS We investigated the EV-mediated transmission of HBV infection by using a HBV infectious culture system that uses primary human hepatocytes derived from humanized chimeric mice (PXB-cells). Purified EVs were isolated by ultracentrifugation. To analyze the EVs and virions, we used stimulated emission depletion microscopy. RESULTS Purified EVs from HBV-infected PXB-cells were shown to contain HBV DNA and to be capable of transmitting HBV DNA to naive PXB-cells. These HBV-DNA-transmitting EVs were shown to be generated through a ceramide-triggered EV production pathway. Furthermore, we showed that these HBV-DNA-transmitting EVs were resistant to antibody neutralization; stimulated emission depletion microscopy showed that EVs lacked hepatitis B surface antigen, the target of neutralizing antibodies. CONCLUSIONS These findings suggest that EVs harbor a DNA cargo capable of transmitting viral DNA into hepatocytes during HBV infection, representing an additional antibody-neutralization-resistant route of HBV infection.
Collapse
Key Words
- BSA, bovine serum albumin
- ESCRT, endosomal sorting complexes required for transport
- EV, extracellular vesicle
- Extracellular Vesicles
- GEq, genome equivalent
- HA, hemagglutinin
- HBIG, hepatitis B immune globulin
- HBV
- HBV, hepatitis B virus
- HBc, hepatitis B core
- HBcAg, hepatitis B core antigen
- HBsAg, hepatitis B surface antigen
- MVB, multivesicular body
- PBS, phosphate-buffered saline
- PXB-cells, primary human hepatocytes derived from chimeric mice with human liver
- STED, stimulated emission depletion
- Transmission Pathway
- anti-HBs, antibody to hepatitis B surface antigen
- mRNA, messenger RNA
- nSMase, neutral sphingomyelinase
- nts, nucleotides
- qPCR, quantitative real-time polymerase chain reaction
Collapse
Affiliation(s)
- Takahiro Sanada
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Yuichi Hirata
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Yutaka Naito
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Naoki Yamamoto
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Yoshiaki Kikkawa
- Mammalian Genetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Yuji Ishida
- PhoenixBio Co, Ltd, Higashi-Hiroshima, Hiroshima, Japan
| | | | - Chise Tateno
- PhoenixBio Co, Ltd, Higashi-Hiroshima, Hiroshima, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan,Correspondence Address correspondence to: Michinori Kohara, PhD, Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan. fax: (81) 3-5316-3137.Department of Microbiology and Cell BiologyTokyo Metropolitan Institute of Medical Science2-1-6 KamikitazawaSetagaya-kuTokyo 156-8506Japan
| |
Collapse
|
13
|
Billerbeck E, Mommersteeg MC, Shlomai A, Xiao JW, Andrus L, Bhatta A, Vercauteren K, Michailidis E, Dorner M, Krishnan A, Charlton MR, Chiriboga L, Rice CM, de Jong YP. Humanized mice efficiently engrafted with fetal hepatoblasts and syngeneic immune cells develop human monocytes and NK cells. J Hepatol 2016; 65:334-43. [PMID: 27151182 PMCID: PMC4955758 DOI: 10.1016/j.jhep.2016.04.022] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Human liver chimeric mice are useful models of human hepatitis virus infection, including hepatitis B and C virus infections. Independently, immunodeficient mice reconstituted with CD34(+) hematopoietic stem cells (HSC) derived from fetal liver reliably develop human T and B lymphocytes. Combining these systems has long been hampered by inefficient liver reconstitution of human fetal hepatoblasts. Our study aimed to enhance hepatoblast engraftment in order to create a mouse model with syngeneic human liver and immune cells. METHODS The effects of human oncostatin-M administration on fetal hepatoblast engraftment into immunodeficient fah(-/-) mice was tested. Mice were then transplanted with syngeneic human hepatoblasts and HSC after which human leukocyte chimerism and functionality were analyzed by flow cytometry, and mice were challenged with HBV. RESULTS Addition of human oncostatin-M enhanced human hepatoblast engraftment in immunodeficient fah(-/-) mice by 5-100 fold. In contrast to mice singly engrafted with HSC, which predominantly developed human T and B lymphocytes, mice co-transplanted with syngeneic hepatoblasts also contained physiological levels of human monocytes and natural killer cells. Upon infection with HBV, these mice displayed rapid and sustained viremia. CONCLUSIONS Our study provides a new mouse model with improved human fetal hepatoblast engraftment and an expanded human immune cell repertoire. With further improvements, this model may become useful for studying human immunity against viral hepatitis. LAY SUMMARY Important human pathogens such as hepatitis B virus, hepatitis C virus and human immunodeficiency virus only infect human cells which complicates the development of mouse models for the study of these pathogens. One way to make mice permissive for human pathogens is the transplantation of human cells into immune-compromised mice. For instance, the transplantation of human liver cells will allow the infection of these so-called "liver chimeric mice" with hepatitis B virus and hepatitis C virus. The co-transplantation of human immune cells into liver chimeric mice will further allow the study of human immune responses to hepatitis B virus or hepatitis C virus. However, for immunological studies it will be crucial that the transplanted human liver and immune cells are derived from the same human donor. In our study we describe the efficient engraftment of human fetal liver cells and immune cells derived from the same donor into mice. We show that liver co-engraftment resulted in an expanded human immune cell repertoire, including monocytes and natural killer cells in the liver. We further demonstrate that these mice could be infected with hepatitis B virus, which lead to an expansion of natural killer cells. In conclusion we have developed a new mouse model that could be useful to study human immune responses to human liver pathogens.
Collapse
Affiliation(s)
- Eva Billerbeck
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Michiel C. Mommersteeg
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Amir Shlomai
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Jing W. Xiao
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Linda Andrus
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Ankit Bhatta
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Koen Vercauteren
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Marcus Dorner
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Anuradha Krishnan
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Michael R. Charlton
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Luis Chiriboga
- Department of Pathology, New York University Medical Center, New York, NY, USA
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA,Corresponding authors. Address: The Rockefeller University, Laboratory of Virology and Infectious Disease, 1230 York Avenue, Box 64, New York, NY 10065, USA. Tel.: +1 212 327 7009; fax: +1 212 327 7048. (C.M. Rice), (Y.P. de Jong)
| | - Ype P. de Jong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA,Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, NY, USA,Corresponding authors. Address: The Rockefeller University, Laboratory of Virology and Infectious Disease, 1230 York Avenue, Box 64, New York, NY 10065, USA. Tel.: +1 212 327 7009; fax: +1 212 327 7048. (C.M. Rice), (Y.P. de Jong)
| |
Collapse
|
14
|
Thomas E, Liang TJ. Experimental models of hepatitis B and C - new insights and progress. Nat Rev Gastroenterol Hepatol 2016; 13:362-74. [PMID: 27075261 PMCID: PMC5578419 DOI: 10.1038/nrgastro.2016.37] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Viral hepatitis is a major cause of morbidity and mortality, affecting hundreds of millions of people worldwide. Hepatitis-causing viruses initiate disease by establishing both acute and chronic infections, and several of these viruses are specifically associated with the development of hepatocellular carcinoma. Consequently, intense research efforts have been focusing on increasing our understanding of hepatitis virus biology and on improving antiviral therapy and vaccination strategies. Although valuable information on viral hepatitis emerged from careful epidemiological studies on sporadic outbreaks in humans, experimental models using cell culture, rodent and non-human primates were essential in advancing the field. Through the use of these experimental models, improvement in both the treatment and prevention of viral hepatitis has progressed rapidly; however, agents of viral hepatitis are still among the most common pathogens infecting humans. In this Review, we describe the important part that these experimental models have played in the study of viral hepatitis and led to monumental advances in our understanding and treatment of these pathogens. Ongoing developments in experimental models are also described.
Collapse
Affiliation(s)
- Emmanuel Thomas
- Schiff Center for Liver Diseases and Sylvester Cancer Center, Room
PAP514, Papanicolaou Building, 1550 NW 10th Avenue, Miami, Florida 33136, USA
| | - T. Jake Liang
- Liver Diseases Branch, NIH, Building 10-9B16, Bethesda, Maryland
20892–1800, USA
| |
Collapse
|
15
|
Hepatitis B virus receptors and molecular drug targets. Hepatol Int 2016; 10:567-73. [DOI: 10.1007/s12072-016-9718-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 02/18/2016] [Indexed: 12/16/2022]
|
16
|
Li X, Liu G, Chen M, Yang Y, Xie Y, Kong X. A Novel Hydrodynamic Injection Mouse Model of HBV Genotype C for the Study of HBV Biology and the Anti-Viral Activity of Lamivudine. HEPATITIS MONTHLY 2016; 16:e34420. [PMID: 27195013 PMCID: PMC4867405 DOI: 10.5812/hepatmon.34420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/06/2016] [Accepted: 01/15/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Absence of an immunocompetent mouse model of persistent hepatitis B virus (HBV) infection has hindered the research of HBV infection and the development of antiviral medications. OBJECTIVES In the present study, we aimed to develop a novel HBV genotype C mouse model by hydrodynamic injection (HI) and then used it to evaluate the antiviral activity of lamivudine. MATERIALS AND METHODS A quantity of 15 μg of HBV plasmid [pcDNA3.1 (+)-HBV1.3C], adeno-associated virus-HBV1.3C (pAAV-HBV1.3C) or pAAV-HBV1.2A) were injected into male C57BL/6 mice, by HI, accounting for a total of 13 mice per group. Then, lamivudine was administered to mice with sustained HBV viremia, for 4 weeks. Real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry methods were used to detect HBsAg, HBeAg, HBsAb, HBcAg and HBV DNA, in serum or liver of the mice, at indicated time points. RESULTS In 60% of the mice injected with pcDNA3.1 (+)-HBV1.3C, HBsAg, HBeAg, HBcAg and HBV DNA persisted for > 20 weeks in liver, post-injection, with no HBsAb appearance. Meanwhile, no significant inflammation was observed in these mice. Compared with pAAV-HBV1.2A and pAAV-HBV1.3C, pcDNA3.1 (+)-HBV1.3C administration led to higher and longer HBV viremia. Furthermore, serum HBV DNA was significantly reduced by lamivudine, after 4 weeks administration, and returned to the original level, after ceasing administration for 1 week, in the mice. CONCLUSIONS In conclusion, our observations indicated that pcDNA3.1 (+)-HBV1.3C was superior to AAV/HBV plasmid for establishment of persistent HBV infection by HI, in vivo, and this mouse model could be useful for studies of hepatitis virology and for the development of innovatory treatments for HBV infections.
Collapse
Affiliation(s)
- Xiumei Li
- Liver Disease Key Lab, 458 Hospital of PLA, Guangzhou, China
| | - Guangze Liu
- Liver Disease Key Lab, 458 Hospital of PLA, Guangzhou, China
| | - Meijuan Chen
- Liver Disease Key Lab, 458 Hospital of PLA, Guangzhou, China
| | - Yang Yang
- Liver Disease Key Lab, 458 Hospital of PLA, Guangzhou, China
| | - Yong Xie
- Liver Disease Key Lab, 458 Hospital of PLA, Guangzhou, China
| | - Xiangping Kong
- Liver Disease Key Lab, 458 Hospital of PLA, Guangzhou, China
- Corresponding Author: Xiangping Kong, Liver Disease Key Lab, 458 Hospital of PLA, 801 Dongfengdong Road, 510600, Guangzhou, Guangdong, China. Tel: +86-2087395343, Fax: +86-2087371180, E-mail:
| |
Collapse
|
17
|
Interactions of Hepatitis B Virus Infection with Nonalcoholic Fatty Liver Disease: Possible Mechanisms and Clinical Impact. Dig Dis Sci 2015; 60:3513-24. [PMID: 26112990 DOI: 10.1007/s10620-015-3772-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 06/17/2015] [Indexed: 12/19/2022]
Abstract
Hepatitis B virus (HBV) infection is a major etiology of chronic liver disease worldwide. In the past decade, nonalcoholic fatty liver disease (NAFLD) has emerged as a common liver disorder in general population. Accordingly, the patient number of chronic hepatitis B (CHB) concomitant with NAFLD grows rapidly. The present article reviewed the recent studies aiming to explore the relationship between CHB and NAFLD from different aspects, including the relevant pathogenesis of CHB and NAFLD, the intracellular molecular mechanisms overlaying HBV infection and hepatic steatosis, and the observational studies with animal models and clinical cohorts for analyzing the coincidence of the two diseases. It is concluded that although numerous cross-links have been suggested between the molecular pathways in HBV infection and NAFLD pathogenesis, regarding whether HBV infection can substantially interfere with the occurrence of NAFLD or vice versa in the patients, there is still far from a conclusive agreement.
Collapse
|
18
|
Liu X, Yuan L, Yuan Q, Zhang Y, Wu K, Zhang T, Wu Y, Hou W, Wang T, Liu P, Shih JWK, Cheng T, Xia N. Detection and analysis of tupaia hepatocytes via mAbs against tupaia serum albumin. Exp Anim 2015; 65:117-23. [PMID: 26597317 PMCID: PMC4873480 DOI: 10.1538/expanim.15-0086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
On the basis of its close phylogenetic relationship with primates, the development of
Tupaia belangeri as an infection animal model and drug metabolism model
could provide a new option for preclinical studies, especially in hepatitis virus
research. As a replacement for primary human hepatocytes (PHHs), primary tupaia
hepatocytes (PTHs) have been widely used. Similar to human serum albumin, tupaia serum
albumin (TSA) is the most common liver synthesis protein and is an important biomarker for
PTHs and liver function. However, no detection or quantitative method for TSA has been
reported. In this study, mouse monoclonal antibodies (mAbs) 4G5 and 9H3 against TSA were
developed to recognize PTHs, and they did not show cross-reactivity with serum albumin
from common experimental animals, such as the mouse, rat, cow, rabbit, goat, monkey, and
chicken. The two mAbs also exhibited good performance in fluorescence activated cell
sorting (FACS) analysis and immunofluorescence (IF) detection of PTHs. A chemiluminescent
enzyme immune assay method using the two mAbs, with a linear range from 96.89 pg/ml to
49,609.38 pg/ml, was developed for the quantitative detection of TSA. The mAbs and the
CLEIA method provide useful tools for research on TSA and PTHs.
Collapse
Affiliation(s)
- Xuan Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kennedy EM, Kornepati AVR, Cullen BR. Targeting hepatitis B virus cccDNA using CRISPR/Cas9. Antiviral Res 2015; 123:188-92. [PMID: 26476375 DOI: 10.1016/j.antiviral.2015.10.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 12/19/2022]
Abstract
Despite the existence of an excellent prophylactic vaccine and the development of highly effective inhibitors of the viral polymerase, chronic hepatitis B virus (HBV) infection remains a major source of morbidity and mortality, especially in Africa and Asia. A significant problem is that, while polymerase inhibitors can effectively prevent the production of viral genomic DNA from pre-genomic RNA transcripts, they do not prevent the transcription and translation of viral mRNAs from the covalently closed circular DNA (cccDNA) templates present in the nuclei of infected cells. Moreover, because these cccDNAs are highly stable, chronic HBV infections are only very rarely cured by the use of polymerase inhibitors and these drugs clearly cannot entirely prevent the subsequent development of HBV-related morbidities such as cirrhosis and hepatocellular carcinoma. As a result, there has been considerable interest in the possibility of developing treatment approaches that directly target cccDNA for elimination. Here, we discuss recent publications that analyze the ability of the bacterial CRISPR/Cas DNA editing machinery to be repurposed as a tool for the specific cleavage and destruction of HBV cccDNAs in the nuclei of infected cells and consider which steps will be necessary to make CRISPR/Cas targeting of HBV DNA a clinically feasible approach to the treatment of chronic infections in humans. This article forms part of a symposium in Antiviral Research on "An unfinished story: from the discovery of the Australia antigen to the development of new curative therapies for hepatitis B."
Collapse
Affiliation(s)
- Edward M Kennedy
- Department of Molecular Genetics and Microbiology and Center for Virology, Duke University Medical Center, Durham, NC, USA
| | - Anand V R Kornepati
- Department of Molecular Genetics and Microbiology and Center for Virology, Duke University Medical Center, Durham, NC, USA
| | - Bryan R Cullen
- Department of Molecular Genetics and Microbiology and Center for Virology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
20
|
Leng XH, Chen EQ, Du LY, Bai L, Gong DY, Cheng X, Huang FJ, Tang H. Biological characteristics of the A1762T/G1764A mutant strain of hepatitis B virus in vivo. Mol Med Rep 2015; 12:5141-5148. [PMID: 26165271 DOI: 10.3892/mmr.2015.4072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 04/24/2015] [Indexed: 02/05/2023] Open
Abstract
The double nucleotide, A1762T and G1764A exchange (TA mutation), in the hepatitis B virus (HBV) genome basal core promoter (BCP) region is a common viral mutation in patients with chronic HBV infection. This mutation is located in the binding site of hepatocyte nuclear factor 4 (HNF4), and a number of liver‑enriched transcription factors are involved in the regulation of HBV transcription and replication. The aim of the present study was to investigate the biological characteristics of the HBV strain with this mutation, and the effect of HNF4 inhibition on the replication of this strain in vivo. The results indicated that in vivo the HBV strain with the TA mutation supported a higher level of pregenomic RNA transcription and HBV DNA replication, compared with the wild‑type strain. Furthermore, the concentration of serum HBeAg in the TA mutant group was lower than that in the wild‑type strain. Following treatment of the mice with entecavir (ETV) or tenofovir disoproxil fumarate (TDF), the transcription and replication levels of wild‑type and mutant strains were reduced. In the groups treated with TDF, the inhibition effect was more marked. In hepatocytes in which HNF4 expression was specifically inhibited, the level of 3.5 kb mRNA of HBV was reduced compared with that in mouse cells with normal HNF4 expression, and HBV DNA replication levels were also reduced to a greater extent. Furthermore, following liver‑specific knockdown of HNF4, the reduction in variant virus expression was greater than that of the wild‑type virus. In conclusion, the replication capacity of HBV with the TA mutation was increased, and the mutation was associated with a reduction in serum HBeAg levels. This mutant strain remained sensitive to ETV and TDF, and HNF4 supported a higher replication level of TA mutant HBV in vivo.
Collapse
Affiliation(s)
- Xiao-Hua Leng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - En-Qiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ling-Yao Du
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lang Bai
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dao-Ying Gong
- Department of Forensic Pathology, Medical School of Basic and Forensic Sciences, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xing Cheng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fei-Jun Huang
- Department of Forensic Pathology, Medical School of Basic and Forensic Sciences, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
21
|
Chen J, Wu M, Liu K, Zhang W, Li Y, Zhou X, Bai L, Yuan Z. New insights into hepatitis B virus biology and implications for novel antiviral strategies. Natl Sci Rev 2015; 2:296-313. [DOI: 10.1093/nsr/nwv044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2025] Open
Abstract
AbstractHepatitis B virus (HBV), a small DNA virus with a unique replication mode, can cause chronic hepatitis (CHB), which is characterized by the persistence of the viral covalently closed circular DNA that serves as the template for HBV replication and the production of large amounts of secreted HBV surface antigen (HBsAg) that is present in excess of the levels of infectious virus. Despite the success of currently approved antiviral treatments for CHB patients, including interferon and nucleotide analogs, which suppress HBV replication and reduce the risk of CHB-related liver diseases, these therapies fail to eradicate the virus in most of the patients. With the development of the cell and animal models for HBV study, a better understanding of the HBV life cycle has been achieved and a series of novel antiviral strategies that target different stages of HBV replication have been designed to overcome the viral factors that contribute to HBV persistence. Such basic HBV research advancements and therapeutic developments are the subject of this review.
Collapse
Affiliation(s)
- Jieliang Chen
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Min Wu
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Kuancheng Liu
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Institutes of Medical Microbiology and Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Wen Zhang
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yaming Li
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaohui Zhou
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Lu Bai
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Institutes of Medical Microbiology and Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
22
|
Baumert TF, Verrier ER, Nassal M, Chung RT, Zeisel MB. Host-targeting agents for treatment of hepatitis B virus infection. Curr Opin Virol 2015; 14:41-6. [PMID: 26262886 DOI: 10.1016/j.coviro.2015.07.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/16/2015] [Accepted: 07/20/2015] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) infection is a major cause of chronic liver disease, including liver cirrhosis, liver failure and hepatocellular carcinoma (HCC)-the second leading and fastest rising cause of cancer death world-wide. While de novo infection can be efficiently prevented by vaccination and chronic infection can be controlled using antivirals targeting the viral polymerase, the development of efficient antiviral strategies to eliminate the virus and thus to cure infection remains a key unmet medical need. The recent progress in the development of robust infectious HBV cell culture models now enables the investigation of the full viral life cycle, including a more detailed study of the molecular mechanisms of virus-host interactions responsible for viral persistence. The understanding of these virus-host interactions will be instrumental for the development of curative treatments. Host-dependency factors have recently emerged as promising candidates to treat and prevent infection by various pathogens. This review focuses on the potential of host-targeting agents (HTAs) as novel antivirals to treat and cure HBV infection. These include HTAs that inhibit de novo and re-infection, synthesis and spread of cccDNA as well as development of immune-based approaches eliminating or curing infected hepatocytes, including the eradication of viral cccDNA.
Collapse
Affiliation(s)
- Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France; Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, 67000 Strasbourg, France; Liver Center and Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States.
| | - Eloi R Verrier
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Michael Nassal
- Department of Internal Medicine 2/Molecular Biology, University Hospital Freiburg, D-79106 Freiburg, Germany
| | - Raymond T Chung
- Liver Center and Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Mirjam B Zeisel
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
23
|
Wang SH, Chen PJ, Yeh SH. Gender disparity in chronic hepatitis B: Mechanisms of sex hormones. J Gastroenterol Hepatol 2015; 30:1237-45. [PMID: 25708186 DOI: 10.1111/jgh.12934] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/18/2015] [Indexed: 12/18/2022]
Abstract
Hepatitis B virus (HBV) is a common human pathogen transmitted worldwide, and its chronic infection is a well-known risk factor for hepatocellular carcinoma (HCC). The sex disparity of HBV-related liver diseases has been noticed for a long time, which could be attributed to sex hormone effects, other than gender behaviors or environmental impact. This difference is experimentally confirmed in HBV transgenic mice, as well as in immunocompetent mice receiving hydrodynamic delivery of HBV. Androgen and estrogen pathways were identified to play opposite regulations of HBV transcription by targeting viral enhancer I at molecular level. In addition to the direct effects on HBV life cycle, sex hormones may be also involved in the immune response to HBV infection and the progression of associated liver diseases, although the detailed mechanisms are still unclear. Besides, several unaddressed issues such as HBV entry, microRNA profiles, viral integration, and adaptability in which androgen and estrogen axes might be involved are warranted to be delineated. The comprehensive understanding of the sex disparity in HBV virology and pathogenesis will be helpful to provide newly biomarkers for clinical diagnosis and develop novel drugs to manage HBV-related HCC patients.
Collapse
Affiliation(s)
- Sheng-Han Wang
- Department of Microbiology, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Pei-Jer Chen
- Department of Microbiology, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan.,NTU Center for Genomic Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Shiou-Hwei Yeh
- Department of Microbiology, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan.,NTU Center for Genomic Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| |
Collapse
|
24
|
Strick-Marchand H, Dusséaux M, Darche S, Huntington ND, Legrand N, Masse-Ranson G, Corcuff E, Ahodantin J, Weijer K, Spits H, Kremsdorf D, Di Santo JP. A novel mouse model for stable engraftment of a human immune system and human hepatocytes. PLoS One 2015; 10:e0119820. [PMID: 25782010 PMCID: PMC4364106 DOI: 10.1371/journal.pone.0119820] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/16/2015] [Indexed: 01/27/2023] Open
Abstract
Hepatic infections by hepatitis B virus (HBV), hepatitis C virus (HCV) and Plasmodium parasites leading to acute or chronic diseases constitute a global health challenge. The species tropism of these hepatotropic pathogens is restricted to chimpanzees and humans, thus model systems to study their pathological mechanisms are severely limited. Although these pathogens infect hepatocytes, disease pathology is intimately related to the degree and quality of the immune response. As a first step to decipher the immune response to infected hepatocytes, we developed an animal model harboring both a human immune system (HIS) and human hepatocytes (HUHEP) in BALB/c Rag2-/- IL-2Rγc-/- NOD.sirpa uPAtg/tg mice. The extent and kinetics of human hepatocyte engraftment were similar between HUHEP and HIS-HUHEP mice. Transplanted human hepatocytes were polarized and mature in vivo, resulting in 20-50% liver chimerism in these models. Human myeloid and lymphoid cell lineages developed at similar frequencies in HIS and HIS-HUHEP mice, and splenic and hepatic compartments were humanized with mature B cells, NK cells and naïve T cells, as well as monocytes and dendritic cells. Taken together, these results demonstrate that HIS-HUHEP mice can be stably (> 5 months) and robustly engrafted with a humanized immune system and chimeric human liver. This novel HIS-HUHEP model provides a platform to investigate human immune responses against hepatotropic pathogens and to test novel drug strategies or vaccine candidates.
Collapse
Affiliation(s)
- Helene Strick-Marchand
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U668, Paris, France
| | - Mathilde Dusséaux
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U668, Paris, France
| | - Sylvie Darche
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U668, Paris, France
| | - Nicholas D. Huntington
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U668, Paris, France
| | - Nicolas Legrand
- Academic Medical Center at the University of Amsterdam, Amsterdam, The Netherlands
| | - Guillemette Masse-Ranson
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U668, Paris, France
| | - Erwan Corcuff
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U668, Paris, France
| | - James Ahodantin
- Institut National de la Santé et de la Recherche Médicale (INSERM) U845, Faculté de Médecine Paris Descartes, Paris, France
| | - Kees Weijer
- Academic Medical Center at the University of Amsterdam, Amsterdam, The Netherlands
| | - Hergen Spits
- Academic Medical Center at the University of Amsterdam, Amsterdam, The Netherlands
| | - Dina Kremsdorf
- Institut National de la Santé et de la Recherche Médicale (INSERM) U845, Faculté de Médecine Paris Descartes, Paris, France
| | - James P. Di Santo
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U668, Paris, France
- * E-mail:
| |
Collapse
|
25
|
Zuo C, Qiu X, Liu N, Yang D, Xia M, Liu J, Wang X, Zhu H, Xie H, Dan H, Li Q, Wu Q, Burns M, Liu C. Interferon-α and cyclooxygenase-2 inhibitor cooperatively mediates TRAIL-induced apoptosis in hepatocellular carcinoma. Exp Cell Res 2015; 333:316-326. [PMID: 25724899 DOI: 10.1016/j.yexcr.2015.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/29/2015] [Accepted: 02/14/2015] [Indexed: 02/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide. Interferon-alpha (IFN-α) has recently been recognized to harbor therapeutic potential in the prevention and treatment of HCC, but it remains controversial as to whether IFN-α exerts direct cytotoxicity against HCC. Cyclooxygenase-2 (COX-2) is overexpressed in HCC and is considered to play a role in hepatocarcinogenesis. Therefore, we aimed to elucidate the combined effect of a COX-2 inhibitor, celecoxib, and IFN-α on in vitro growth suppression of HCC using the hepatoma cell line HLCZ01 and the in vivo nude mouse xenotransplantation model using HLCZ01 cells. Treatment with celecoxib and IFN-α synergistically inhibited cell proliferation in a dose- and time-dependent manner. Apoptosis was identified by 4׳,6-diamidino-2-phenylindole dihydrochloride and fluorescent staining. IFN-α upregulated the expression of TRAIL, while celecoxib increased the expression of TRAIL receptors. The combined regimen with celecoxib and IFN-α reduced the growth of xenotransplanted HCCs in nude mice. The regulation of IFN-α- and COX-2 inhibitor-induced cell death is impaired in a subset of TRAIL-resistant cells. The molecular mechanisms of HCC cells resistant to TRAIL-induced apoptosis were explored using molecular biological and immunological methods. Interferon-α and the COX-2 inhibitor celecoxib synergistically increased TRAIL-induced apoptosis in hepatocellular carcinoma. These data suggest that IFN-α and celecoxib may offer a novel role with important implications in designing new therapeutics for TRAIL-resistant tumors.
Collapse
Affiliation(s)
- Chaohui Zuo
- Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province, PR China; Department of Pathology, Immunology and Laboratory Medicine and Shands Cancer Center, University of Florida, Gainesville, FL, USA.
| | - Xiaoxin Qiu
- Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province, PR China; Cancer Research Institute, University of South China, Hengyang, Hunan Province, PR China
| | - Nianli Liu
- Cancer Research Institute, University of South China, Hengyang, Hunan Province, PR China
| | - Darong Yang
- Cancer Research Institute, University of South China, Hengyang, Hunan Province, PR China
| | - Man Xia
- Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province, PR China; Department of Pathology, Immunology and Laboratory Medicine and Shands Cancer Center, University of Florida, Gainesville, FL, USA
| | - Jingshi Liu
- Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province, PR China
| | - Xiaohong Wang
- Cancer Research Institute, University of South China, Hengyang, Hunan Province, PR China
| | - Haizhen Zhu
- Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province, PR China; Department of Molecular Medicine, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan Province, PR China
| | - Hailong Xie
- Cancer Research Institute, University of South China, Hengyang, Hunan Province, PR China
| | - Hanguo Dan
- Cancer Research Institute, University of South China, Hengyang, Hunan Province, PR China
| | - Qinglong Li
- Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province, PR China
| | - Qunfeng Wu
- Department of Pathology, Immunology and Laboratory Medicine and Shands Cancer Center, University of Florida, Gainesville, FL, USA
| | - Michael Burns
- Department of Pathology, Immunology and Laboratory Medicine and Shands Cancer Center, University of Florida, Gainesville, FL, USA
| | - Chen Liu
- Department of Pathology, Immunology and Laboratory Medicine and Shands Cancer Center, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
26
|
Abstract
Viral hepatitis is a significant disease afflicting hundreds of millions of people. Hepatitis-causing viruses initiate significant morbidity and mortality by establishing both acute and chronic infections, and several of these viruses are specifically associated with the development of hepatocellular carcinoma (HCC). Consequently, intense research efforts are focused on increasing our understanding of virus biology and on improving antiviral therapy. Even though viral hepatitis can be caused by several viruses from a range of virus families, the discovery of components of the hepatitis B virus (HBV) became a catalyst for the development of diagnostic assays that differentiate between these viruses as well as strategies for novel methods of vaccine development. Improvements in both the treatment and prevention of viral hepatitis are advancing rapidly. However, HBV, along with the associated infection by the hepatitis D virus, is still among the most common pathogens afflicting humans.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/epidemiology
- Carcinoma, Hepatocellular/virology
- Genome, Viral
- Hepatitis B virus/genetics
- Hepatitis Delta Virus/genetics
- Hepatitis, Chronic/virology
- Hepatitis, Viral, Human/epidemiology
- Hepatitis, Viral, Human/history
- Hepatitis, Viral, Human/therapy
- History, 19th Century
- History, 20th Century
- History, 21st Century
- Humans
- Liver Neoplasms/epidemiology
Collapse
Affiliation(s)
- Emmanuel Thomas
- Schiff Center for Liver Diseases, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Masato Yoneda
- Schiff Center for Liver Diseases, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Eugene R Schiff
- Schiff Center for Liver Diseases, University of Miami Miller School of Medicine, Miami, Florida 33136
| |
Collapse
|
27
|
Urban S, Bartenschlager R, Kubitz R, Zoulim F. Strategies to inhibit entry of HBV and HDV into hepatocytes. Gastroenterology 2014; 147:48-64. [PMID: 24768844 DOI: 10.1053/j.gastro.2014.04.030] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/11/2014] [Accepted: 04/21/2014] [Indexed: 02/07/2023]
Abstract
Although there has been much research into the pathogenesis and treatment of hepatitis B virus (HBV) and hepatitis D virus (HDV) infections, we still do not completely understand how these pathogens enter hepatocytes. This is because in vitro infection studies have only been performed in primary human hepatocytes. Development of a polarizable, HBV-susceptible human hepatoma cell line and studies of primary hepatocytes from Tupaia belangeri have provided important insights into the viral and cellular factors involved in virus binding and infection. The large envelope (L) protein on the surface of HBV and HDV particles has many different functions and is required for virus entry. The L protein mediates attachment of virions to heparan sulfate proteoglycans on the surface of hepatocytes. The myristoylated N-terminal preS1 domain of the L protein subsequently binds to the sodium taurocholate cotransporting polypeptide (NTCP, encoded by SLC10A1), the recently identified bona fide receptor for HBV and HDV. The receptor functions of NTCP and virus entry are blocked, in vitro and in vivo, by Myrcludex B, a synthetic N-acylated preS1 lipopeptide. Currently, the only agents available to treat chronic HBV infection target the viral polymerase, and no selective therapies are available for HDV infection. It is therefore important to study the therapeutic potential of virus entry inhibitors, especially when combined with strategies to induce immune-mediated killing of infected hepatocytes.
Collapse
Affiliation(s)
- Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany; German Center for Infection Research, Heidelberg University, Heidelberg, Germany.
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany; German Center for Infection Research, Heidelberg University, Heidelberg, Germany
| | - Ralf Kubitz
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Fabien Zoulim
- INSERM Unité 1052, Cancer Research Center of Lyon, Lyon University, Lyon, France
| |
Collapse
|
28
|
Schuch A, Hoh A, Thimme R. The role of natural killer cells and CD8(+) T cells in hepatitis B virus infection. Front Immunol 2014; 5:258. [PMID: 24917866 PMCID: PMC4042360 DOI: 10.3389/fimmu.2014.00258] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 05/19/2014] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B virus (HBV) infection is one of the main causes of chronic liver diseases that may progress to liver cirrhosis and hepatocellular carcinoma. Host immune responses are important factors that determine whether HBV infection is cleared or persists. Natural killer (NK) cells represent the main effector population of the innate immune system and are abundant in the human liver. Recently, it has been demonstrated that NK cells not only exhibit antiviral functions but may also regulate adaptive immune responses by deletion of HBV-specific CD8+ T cells. It is well-established that HBV-specific CD8+ T cells contribute to virus elimination. However, the mechanisms contributing to CD8+ T cell failure in chronic HBV infection are not well-understood. In this review, we will summarize the current knowledge about NK cells and CD8+ T cells and illustrate their contribution to viral clearance and persistence in HBV infection. Moreover, novel immunological in vitro model systems and techniques to analyze HBV-specific CD8+ T cells, which are barely detectable using current multimer staining methods, will be discussed.
Collapse
Affiliation(s)
- Anita Schuch
- Department of Medicine II, University Hospital of Freiburg , Freiburg , Germany ; Faculty of Biology, University of Freiburg , Freiburg , Germany
| | - Alexander Hoh
- Department of Medicine II, University Hospital of Freiburg , Freiburg , Germany ; Faculty of Biology, University of Freiburg , Freiburg , Germany ; Spemann Graduate School of Biology and Medicine, University of Freiburg , Freiburg , Germany
| | - Robert Thimme
- Department of Medicine II, University Hospital of Freiburg , Freiburg , Germany
| |
Collapse
|
29
|
Bility MT, Cheng L, Zhang Z, Luan Y, Li F, Chi L, Zhang L, Tu Z, Gao Y, Fu Y, Niu J, Wang F, Su L. Hepatitis B virus infection and immunopathogenesis in a humanized mouse model: induction of human-specific liver fibrosis and M2-like macrophages. PLoS Pathog 2014; 10:e1004032. [PMID: 24651854 PMCID: PMC3961374 DOI: 10.1371/journal.ppat.1004032] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 02/12/2014] [Indexed: 12/16/2022] Open
Abstract
The mechanisms of chronic HBV infection and immunopathogenesis are poorly understood due to a lack of a robust small animal model. Here we report the development of a humanized mouse model with both human immune system and human liver cells by reconstituting the immunodeficient A2/NSG (NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl)/SzJ mice with human HLA-A2 transgene) with human hematopoietic stem cells and liver progenitor cells (A2/NSG-hu HSC/Hep mice). The A2/NSG-hu HSC/Hep mouse supported HBV infection and approximately 75% of HBV infected mice established persistent infection for at least 4 months. We detected human immune responses, albeit impaired in the liver, chronic liver inflammation and liver fibrosis in infected animals. An HBV neutralizing antibody efficiently inhibited HBV infection and associated liver diseases in humanized mice. In addition, we found that the HBV mediated liver disease was associated with high level of infiltrated human macrophages with M2-like activation phenotype. Importantly, similar M2-like macrophage accumulation was confirmed in chronic hepatitis B patients with liver diseases. Furthermore, gene expression analysis showed that induction of M2-like macrophage in the liver is associated with accelerated liver fibrosis and necrosis in patients with acute HBV-induced liver failure. Lastly, we demonstrate that HBV promotes M2-like activation in both M1 and M2 macrophages in cell culture studies. Our study demonstrates that the A2/NSG-hu HSC/Hep mouse model is valuable in studying HBV infection, human immune responses and associated liver diseases. Furthermore, results from this study suggest a critical role for macrophage polarization in hepatitis B virus-induced immune impairment and liver pathology.
Collapse
Affiliation(s)
- Moses T. Bility
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (MTB); (LS)
| | - Liang Cheng
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Zheng Zhang
- Center of Infectious Disease, Beijing 302 Hospital, Beijing, China
| | - Yan Luan
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Center for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Department of Pathology, University of Chicago, Chicago, Illinois, United States of America
| | - Feng Li
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Liqun Chi
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Liguo Zhang
- Center for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhengkun Tu
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Translational Medicine, Department of Surgery, Department of Medicine, the First Hospital, Jilin University, Changchun, Jilin, China
| | - Yanhang Gao
- Department of Translational Medicine, Department of Surgery, Department of Medicine, the First Hospital, Jilin University, Changchun, Jilin, China
| | - Yangxin Fu
- Center for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Department of Pathology, University of Chicago, Chicago, Illinois, United States of America
| | - Junqi Niu
- Department of Translational Medicine, Department of Surgery, Department of Medicine, the First Hospital, Jilin University, Changchun, Jilin, China
| | - Fusheng Wang
- Center of Infectious Disease, Beijing 302 Hospital, Beijing, China
| | - Lishan Su
- Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Center for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Department of Translational Medicine, Department of Surgery, Department of Medicine, the First Hospital, Jilin University, Changchun, Jilin, China
- * E-mail: (MTB); (LS)
| |
Collapse
|
30
|
Lv S, Wang J, Dou S, Yang X, Ni X, Sun R, Tian Z, Wei H. Nanoparticles encapsulating hepatitis B virus cytosine-phosphate-guanosine induce therapeutic immunity against HBV infection. Hepatology 2014; 59:385-94. [PMID: 23907803 DOI: 10.1002/hep.26654] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 07/19/2013] [Indexed: 01/16/2023]
Abstract
UNLABELLED Infection with hepatitis B virus (HBV) is the most common cause of liver disease worldwide. However, because the current interferon (IFN)-based treatments have toxic side effects and marginal efficacy, improved antivirals are essential. Here we report that unmethylated cytosine-phosphate-guanosine oligodeoxynucleotides (CpG ODNs) from the HBV genome (HBV-CpG) induced robust expression of IFN-α by plasmacytoid dendritic cells (pDCs) in a Toll-like receptor 9 (TLR9)-dependent manner. We also identified inhibitory guanosine-rich ODNs in the HBV genome (HBV-ODN) that are capable of inhibiting HBV-CpG-induced IFN-α production. Furthermore, nanoparticles containing HBV-CpG, termed NP(HBV-CpG), reversed the HBV-ODN-mediated suppression of IFN-α production and also exerted a strong immunostimulatory effect on lymphocytes. Our results suggest that NP(HBV-CpG) can enhance the immune response to hepatitis B surface antigen (HBsAg) and skew this response toward the Th1 pathway in mice immunized with rHBsAg and NP(HBV-CpG). Moreover, NP(HBV-CpG)-based therapy led to the efficient clearance of HBV and induced an anti-HBsAg response in HBV carrier mice. CONCLUSION Endogenous HBV-CpG ODNs from the HBV genome induce IFN-α production so that nanoparticle-encapsulated HBV-CpG may act as an HBsAg vaccine adjuvant and may also represent a potent therapeutic agent for the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Shujuan Lv
- Institute of Immunology, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China; Department of Microbiology, Anhui Medical University, Hefei, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Wu B, Zou Q, Hu Y, Wang B. Interleukin-22 as a molecular adjuvant facilitates IL-17-producing CD8+ T cell responses against a HBV DNA vaccine in mice. Hum Vaccin Immunother 2013; 9:2133-41. [PMID: 23941891 PMCID: PMC3906397 DOI: 10.4161/hv.26047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/19/2013] [Accepted: 08/05/2013] [Indexed: 01/06/2023] Open
Abstract
Interleukin-22 (IL-22) is mainly produced by activated Th1 cells, Th17 cells and NK cells and promotes anti-microbial defense, pro-inflammatory and tissue remodeling responses. However, its potential use as a vaccine adjuvant has not been tested. In this study, we tested if a DNA construct expressing IL-22 (pVAX-IL-22) could be used as a molecular adjuvant to enhance host immune responses induced by HBV DNA vaccination (pcD-S2). After immunizing mice with pcD-S2 combined with pVAX-IL-22, we didn't find enhancement of HBsAg-specific antibody responses in comparison to mice immunized with pcD-S2 alone. However, there was an enhancement of the level of IL-17 expression in antigen specific CD8(+) cytotoxic T lymphocytes (Tc17). By using CD8 T-cell knockout (KO) and IL-17 KO mice, Tc17 cells were found to be a dominant population driving cytotoxicity. Importantly, there was a correlation between pVAX-IL-22 enhancement of T lymphocytes and a reduction of HBsAg-positive hepatocytes in HBsAg transgenic mice. These results demonstrate that IL-22 might be used as an effective adjuvant to enhance cellular immune responses during HBsAg DNA vaccination since it can induce Tc17 cells to break tolerance in HBsAg transgenic mice.
Collapse
Affiliation(s)
- Bing Wu
- State Key Laboratory for Agro-Biotechnology; College of Biological Science; China Agricultural University; Beijing, P.R. China
| | - Qiang Zou
- State Key Laboratory for Agro-Biotechnology; College of Biological Science; China Agricultural University; Beijing, P.R. China
| | - Yanxin Hu
- College of Veterinary Medicine; China Agricultural University; Beijing, P.R. China
| | - Bin Wang
- State Key Laboratory for Agro-Biotechnology; College of Biological Science; China Agricultural University; Beijing, P.R. China
- Key Laboratory of Medical Molecular Virology of MOH and MOE; Fudan University Shanghai Medical College; Shanghai, P.R. China
| |
Collapse
|
32
|
Krelle AC, Okoli AS, Mendz GL. Huh-7 Human Liver Cancer Cells: A Model System to Understand Hepatocellular Carcinoma and Therapy. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jct.2013.42078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|