1
|
Monsalve DM, Acosta-Ampudia Y, Acosta NG, Celis-Andrade M, Şahin A, Yilmaz AM, Shoenfeld Y, Ramírez-Santana C. NETosis: A key player in autoimmunity, COVID-19, and long COVID. J Transl Autoimmun 2025; 10:100280. [PMID: 40071133 PMCID: PMC11894324 DOI: 10.1016/j.jtauto.2025.100280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
NETosis, the process through which neutrophils release neutrophil extracellular traps (NETs), has emerged as a crucial mechanism in host defense and the pathogenesis of autoimmune responses. During the SARS-CoV-2 pandemic, this process received significant attention due to the central role of neutrophil recruitment and activation in infection control. However, elevated neutrophil levels and dysregulated NET formation have been linked to coagulopathy and endothelial damage, correlating with disease severity and poor prognosis in COVID-19. Moreover, it is known that SARS-CoV-2 can induce persistent low-grade systemic inflammation, known as long COVID, although the underlying causes remain unclear. It has been increasingly acknowledged that excessive NETosis and NET generation contribute to further pathophysiological abnormalities following SARS-CoV-2 infection. This review provides an updated overview of the role of NETosis in autoimmune diseases, but also the relationship between COVID-19 and long COVID with autoimmunity (e.g., latent and overt autoimmunity, molecular mimicry, epitope spreading) and NETosis (e.g., immune responses, NET markers). Finally, we discuss potential therapeutic strategies targeting dysregulated NETosis to mitigate the severe complications of COVID-19 and long COVID.
Collapse
Affiliation(s)
- Diana M. Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Nicolás Guerrero Acosta
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Mariana Celis-Andrade
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Ali Şahin
- Selcuk University, Faculty of Medicine, Konya, Turkiye
| | - Ahsen Morva Yilmaz
- TUBITAK Marmara Research Center (TUBITAK-MAM), Life Sciences, Medical Biotechnology Unit, Kocaeli, Turkiye
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Reichman University, Herzelia, Israel
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
2
|
Lv C, Guo J, Luo R, Li Y, Qian B, Zou X, Wang T, Shen B, Sun W, Gao Y. Taurolidine inhibits influenza virus infection and prevents influenza-induced cytokine storm, vasoconstriction and lung damage. Cell Mol Life Sci 2025; 82:201. [PMID: 40369324 PMCID: PMC12078922 DOI: 10.1007/s00018-025-05636-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 01/12/2025] [Accepted: 02/21/2025] [Indexed: 05/16/2025]
Abstract
Influenza virus causes worldwide outbreaks and seasonal epidemics, posing a severe threat to public health and social development. Effective prevention and treatment of influenza infections remain major challenge for global healthcare. In this study, we observed that taurolidine effectively inhibited the proliferation of several human or animal influenza virus strains and protected mice from lethal-infection. Taurolidine treatment decreased the viral titer in the lungs of infected mice, reduced the ratio of immune cells, and alleviated lung pathology. Additionally, taurolidine treatment attenuated the rise of blood pressure, pulse wave velocity, and pulmonary aortic thickness in a mouse model for influenza virus infection. We also found that taurolidine significantly decreased intracellular Ca2+ concentration and effectively alleviated pulmonary artery vasoconstriction during influenza virus infection. Mechanistically, we observed that vascular smooth muscle contraction signaling pathway was significantly enriched, and taurolidine inhibited the activation of the MLCK/p-MLC pathway. Taking together, these findings confirm the effectiveness of taurolidine as an antiviral agent and highlight its important roles in mitigating host immune cell infiltration and vasoconstriction induced by influenza virus infection.
Collapse
Affiliation(s)
- Chaoxiang Lv
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Jin Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
- College of Life Sciences, Shandong Normal University, Jinan, 250358, China
| | - Rongbo Luo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Yuanguo Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Bingshuo Qian
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Xiaopan Zou
- Breast and Thyroid Surgery, Jilin Province People's Hospital, Changchun, Jilin, 130021, China
| | - Tiecheng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Beilei Shen
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Weiyang Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
- College of Life Sciences, Shandong Normal University, Jinan, 250358, China.
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130122, China.
| |
Collapse
|
3
|
Mokrani D, Timsit JF. Role of Respiratory Viruses in Severe Acute Respiratory Failure. J Clin Med 2025; 14:3175. [PMID: 40364206 PMCID: PMC12072590 DOI: 10.3390/jcm14093175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/25/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025] Open
Abstract
Respiratory viruses are widespread in the community, affecting both the upper and lower respiratory tract. This review provides an updated synthesis of the epidemiology, pathophysiology, clinical impact, and management of severe respiratory viral infections in critically ill patients, with a focus on immunocompetent adults. The clinical presentation is typically nonspecific, making etiological diagnosis challenging. This limitation has been mitigated by the advent of molecular diagnostics-particularly multiplex PCR (mPCR)-which has not only improved pathogen identification at the bedside but also significantly reshaped our understanding of the epidemiology of respiratory viral infections. Routine mPCR testing has revealed that respiratory viruses are implicated in 30-40% of community-acquired pneumonia hospitalizations and are a frequent trigger of acute decompensations in patients with chronic comorbidities. While some viruses follow seasonal patterns, others circulate year-round. Influenza viruses and Pneumoviridae, including respiratory syncytial virus and human metapneumovirus, remain the principal viral pathogens associated with severe outcomes, particularly acute respiratory failure and mortality. Bacterial co-infections are also common and substantially increase both morbidity and mortality. Despite the growing contribution of respiratory viruses to the burden of critical illness, effective antiviral therapies remain limited. Neuraminidase inhibitors remain the cornerstone of treatment for severe influenza, whereas therapeutic options for other respiratory viruses are largely lacking. Optimizing early diagnosis, refining antiviral strategies, and systematically addressing bacterial co-infections are critical to improving outcomes in patients with severe viral pneumonia.
Collapse
Affiliation(s)
- David Mokrani
- Infectious and Intensive Care Unit, Centre Hospitalier Universitaire Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, 75018 Paris, France;
| | - Jean-François Timsit
- Infectious and Intensive Care Unit, Centre Hospitalier Universitaire Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, 75018 Paris, France;
- Infection Antimicrobials Modelling Evolution (IAME), Mixt Research Unit (UMR) 1137, INSERM, Université Paris-Cité, 75018 Paris, France
| |
Collapse
|
4
|
Chaumont A, Martin A, Flamaing J, Wiseman DJ, Vandermeulen C, Jongert E, Doherty TM, Buchy P, Varga SM, Warter L. Host immune response to respiratory syncytial virus infection and its contribution to protection and susceptibility in adults: a systematic literature review. Expert Rev Clin Immunol 2025:1-16. [PMID: 40278893 DOI: 10.1080/1744666x.2025.2494658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/26/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
INTRODUCTION Respiratory syncytial virus (RSV) is an important pathogen in infants, children, older adults, and those with comorbidities. Mechanisms involving viral proteins appear to underlie the ability of RSV to evade and modulate host immunity. We aimed to understand virus- and host-dependent factors regulating the development and severity of RSV infection, as related to the prevention and treatment of RSV-associated disease in adults, through a systematic literature review (SLR). METHODS An SLR was conducted to identify immune mechanisms involved in the protective response to RSV infection in adults, and responses that may contribute to the development of severe disease. Concurrent searches (MEDLINE/Embase) using embase.com identified relevant papers published between 1990 and 19 April 2023. RESULTS Of 1813 records identified, 113 were selected for review. Inclusion criteria were based on relevant patient populations, outcomes, and study methodologies. RSV is common, recurrent, and associated with high morbidity and mortality in older adults and people with underlying chronic diseases. Immune responses differ between younger and older adults. The approval of effective vaccines may protect older individuals from symptomatic RSV infection. CONCLUSIONS We established the complexities of RSV immune response, but further research is required to fully understand anti-RSV immunology.
Collapse
Affiliation(s)
| | | | - Johan Flamaing
- Department of Geriatric Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Dexter J Wiseman
- Department of Respiratory Medicine, Chelsea and Westminster Hospital, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | | | | | | | - Steven M Varga
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
5
|
Huang R, Hu Y, Wang YF, Zhang S, Wang ZG, Pang DW, Liu SL. Targeted Degradation of ZBP1 with Covalent PROTACs for Anti-Inflammatory Treatment of Infections. Angew Chem Int Ed Engl 2025; 64:e202423524. [PMID: 40013409 DOI: 10.1002/anie.202423524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 02/28/2025]
Abstract
Z-DNA binding protein 1 (ZBP1) has emerged as a critical pathogen-sensing protein that upon activation, triggers necroptotic signaling cascades, leading to a potent inflammatory response and potentially causing significant tissue damage. However, available drugs specifically developed for the effective inhibition or degradation of ZBP1 is still lacking so far. In this study, we developed a potent covalent recognition-based PROTAC (C-PROTAC) molecule for the degradation of ZBP1. It consists of a DNA aptamer as the recognition moiety and an E3 enzyme-recruiting unit, connected by a linker containing N-acyl-N-alkyl sulfonamides (NASA) groups. The DNA aptamer specifically binds to ZBP1, while the NASA-containing linker facilitates the formation of a covalent bond between the PROTAC and the target protein. The E3 ligase-recruiting unit then directs the ubiquitin-proteasome system to degrade the ZBP1-PROTAC complex. This approach combines the high specificity of DNA aptamers with the efficiency of covalent binding and the degradation-inducing capabilities of PROTACs, providing a powerful tool for targeted protein degradation. The successful application of this technology to ZBP1 highlights its potential for the selective elimination of disease-associated proteins and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Rentang Huang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine, and Frontiers Science Centre for Cell Responses, Nankai University, Tianjin, 300071, P.R. China
| | - Yusi Hu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine, and Frontiers Science Centre for Cell Responses, Nankai University, Tianjin, 300071, P.R. China
| | - Yi-Fan Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine, and Frontiers Science Centre for Cell Responses, Nankai University, Tianjin, 300071, P.R. China
| | - Shiyu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine, and Frontiers Science Centre for Cell Responses, Nankai University, Tianjin, 300071, P.R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine, and Frontiers Science Centre for Cell Responses, Nankai University, Tianjin, 300071, P.R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine, and Frontiers Science Centre for Cell Responses, Nankai University, Tianjin, 300071, P.R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine, and Frontiers Science Centre for Cell Responses, Nankai University, Tianjin, 300071, P.R. China
| |
Collapse
|
6
|
Bender MJ, Lucas CL. Decoding Immunobiology Through Genetic Errors of Immunity. Annu Rev Immunol 2025; 43:285-311. [PMID: 39952637 DOI: 10.1146/annurev-immunol-082323-124920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Throughout biology, the pursuit of genotype-phenotype relationships has provided foundational knowledge upon which new concepts and hypotheses are built. Genetic perturbation, whether occurring naturally or in experimental settings, is the mainstay of mechanistic dissection in biological systems. The unbiased discovery of causal genetic lesions via forward genetics in patients who have a rare disease elucidates a particularly impactful set of genotype-phenotype relationships. Here, we review the field of genetic errors of immunity, often termed inborn errors of immunity (IEIs), in a framework aimed at highlighting the powerful real-world immunology insights provided collectively and individually by these (approximately) 500 disorders. By conceptualizing essential immune functions in a model of the adaptive arsenal of rapid defenses, we organize IEIs based on immune circuits in which sensors, relays, and executioners cooperate to carry out pathogen clearance functions in an effective yet regulated manner. We review and discuss findings from IEIs that not only reinforce known immunology concepts but also offer surprising phenotypes, prompting an opportunity to refine our understanding of immune system function.
Collapse
Affiliation(s)
- Mackenzie J Bender
- Department of Immunobiology, Yale University, New Haven, Connecticut, USA;
| | - Carrie L Lucas
- Department of Immunobiology, Yale University, New Haven, Connecticut, USA;
| |
Collapse
|
7
|
Pereira De Oliveira R, Droillard C, Devouassoux G, Rosa-Calatrava M. In vitro models to study viral-induced asthma exacerbation: a short review for a key issue. FRONTIERS IN ALLERGY 2025; 6:1530122. [PMID: 40224321 PMCID: PMC11987631 DOI: 10.3389/falgy.2025.1530122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/27/2025] [Indexed: 04/15/2025] Open
Abstract
Asthma is a heterogenous inflammatory bronchial disease involving complex mechanisms, several inflammatory pathways, and multiples cell-type networks. Bronchial inflammation associated to asthma is consecutive to multiple aggressions on epithelium, such as microbiologic, pollutant, and antigenic agents, which are responsible for both T2 and non-T2 inflammatory responses and further airway remodeling. Because asthma physiopathology involves multiple crosstalk between several cell types from different origins (epithelial, mesenchymal, and immune cells) and numerous cellular effectors, no single and/or representative in vitro model is suitable to study the overall of this disease. In this short review, we present and discuss the advantages and limitations of different in vitro models to decipher different aspects of virus-related asthma physiopathology and exacerbation.
Collapse
Affiliation(s)
- Rémi Pereira De Oliveira
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- International Research Laboratory RESPIVIR France - Canada, Centre Hospitalier Universitaire de Québec- Université Laval, Québec, QC, Canada
- International Research Laboratory RESPIVIR France – Canada, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Clément Droillard
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- International Research Laboratory RESPIVIR France - Canada, Centre Hospitalier Universitaire de Québec- Université Laval, Québec, QC, Canada
- International Research Laboratory RESPIVIR France – Canada, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Gilles Devouassoux
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- International Research Laboratory RESPIVIR France - Canada, Centre Hospitalier Universitaire de Québec- Université Laval, Québec, QC, Canada
- International Research Laboratory RESPIVIR France – Canada, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Department of Respiratory Diseases, CIERA, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Lyon et CRISALIS/F-CRIN INSERM Network, Lyon, France
| | - Manuel Rosa-Calatrava
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- International Research Laboratory RESPIVIR France - Canada, Centre Hospitalier Universitaire de Québec- Université Laval, Québec, QC, Canada
- International Research Laboratory RESPIVIR France – Canada, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Virnext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Centre de Recherche en Infectiologie du Centre Hospitalier Universitaire de Québec - Université Laval, Faculté de Médecine, Département de Pédiatrie de l’Université Laval, Québec, QC, Canada
| |
Collapse
|
8
|
Jarrar Y, Alhammadin G, Lee SJ. Genetic Polymorphisms in Cytochrome P450 Enzymes Involved in Vitamin D Metabolism and the Vitamin D Receptor: Their Clinical Relevance. J Pers Med 2025; 15:128. [PMID: 40278307 PMCID: PMC12028346 DOI: 10.3390/jpm15040128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Individual variations in the active form of vitamin D (Vit.D) arise from a combination of dietary intake, sun exposure, and genetic factors, making it complex and challenging to maintain optimal levels. Among Vit.D-related genes, variations in CYP2R1 and CYP27B1 influence Vit.D synthesis, CYP24A1 regulates its inactivation, and the Vit.D receptor (VDR) mediates Vit.D signaling. These genetic variations contribute to substantial differences in Vit.D concentrations and associated clinical effects. However, there has been a lack of comprehensive, simultaneous exploration of these key genes and their clinical implications. This review provides a systematic analysis of genetic variants in Vit.D-related P450 genes identified in human clinical studies, along with in silico predictions of their functional consequences. Since multiple genes seem to influence the body's response to Vit.D, studying just one genetic variant may not fully explain Vit.D deficiency. A comprehensive evaluation of all Vit.D-related genes could offer valuable insights for advancing personalized medicine in Vit.D management. This study provides a foundation for developing a more personalized approach to Vit.D supplementation and regulation, guided by genetic information.
Collapse
Affiliation(s)
- Yazun Jarrar
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-Salt 19117, Jordan;
| | - Ghayda’ Alhammadin
- Department of Pharmaceutical Science, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan;
| | - Su-Jun Lee
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Inje University, Busan 50834, Republic of Korea
| |
Collapse
|
9
|
Beigh SA, Yap A. Anesthetic Management of a Patient With Acute Necrotizing Encephalopathy Type 1. Cureus 2025; 17:e81291. [PMID: 40291183 PMCID: PMC12033971 DOI: 10.7759/cureus.81291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Acute necrotizing encephalopathy (ANE) is a progressive neurodegenerative condition that often arises after exposure to a variety of viruses and systemic infections, including influenza and SARS-CoV-2. It typically presents with developmental delay, seizures, dysarthria, and ataxia. Acute necrotizing encephalopathy type 1 (ANE1) is recurrent, and familial cases have been associated with mutations in the RAN-binding protein 2 (RanBP2) gene. The disease shares symptomatic and pathological resemblance with mitochondrial metabolic disorders. In this case report, we present the anesthetic management of a seven-year-old boy with ANE1 who underwent total hip reconstruction. Literature on the anesthetic management of such patients is sparse, and we discuss the patient's perioperative anesthetic management, including medications, monitoring, and care, along with a literature review.
Collapse
Affiliation(s)
- Shamim A Beigh
- Anesthesiology, Al Jalila Children's Speciality Hospital, Dubai, ARE
| | - Andrea Yap
- Anesthesiology, Al Jalila Children's Speciality Hospital, Dubai, ARE
| |
Collapse
|
10
|
Elizer S, Bhat DP, Velez DA, Sabati A. Pre-operative High-Flow Nasal Cannula and Mechanical Ventilation Decrease Survival following Superior Cavopulmonary Connection. Pediatr Cardiol 2025:10.1007/s00246-025-03800-0. [PMID: 39979608 DOI: 10.1007/s00246-025-03800-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025]
Abstract
To determine if pre-operative high-flow nasal cannula (flow > 2 L per minute) or mechanical ventilation impact post-operative outcomes after the superior cavopulmonary connection. A single-center retrospective review of single-ventricle patients who underwent the superior cavopulmonary connection procedure at a tertiary care center over a 10-year period. Patients who underwent the procedure at greater than 2 years of age were excluded. The groups of interest were those who were on mechanical ventilation or high-flow nasal cannula. Patients in room air or on nasal cannula oxygen served as the control group. A total of 269 consecutive patients were included, of which 44 required high-flow nasal cannula and 17 required mechanical ventilation prior to the superior cavopulmonary connection procedure. Thirty-day post-operative survival was high, with 1 death in both the high-flow nasal cannula and the mechanical ventilation groups. At 1-year post-procedure, the transplant-free survival was lower in the mechanically ventilated group when compared to the high-flow nasal cannula and room air groups (46% vs. 84% vs. 95%, p value < 0.01). The same trend was seen at 5 years (20% vs 78% vs 90%, p value < 0.01). These groups also had worse overall survival, longer post-operative lengths of stay, and longer post-operative intubation durations. Pre-operative respiratory support with high-flow nasal cannula or mechanical ventilation is associated with decreased overall survival and reduced transplant-free survival at 1- and 5-year post-superior cavopulmonary connection.
Collapse
Affiliation(s)
- Sydney Elizer
- Center for Heart Care, Phoenix Children'S Hospital, 1919 E Thomas Rd, Phoenix, AZ, 85016, USA
| | - Deepti P Bhat
- Center for Heart Care, Phoenix Children'S Hospital, 1919 E Thomas Rd, Phoenix, AZ, 85016, USA
| | - Daniel A Velez
- Center for Heart Care, Phoenix Children'S Hospital, 1919 E Thomas Rd, Phoenix, AZ, 85016, USA
| | - Arash Sabati
- Center for Heart Care, Phoenix Children'S Hospital, 1919 E Thomas Rd, Phoenix, AZ, 85016, USA.
| |
Collapse
|
11
|
Asaba CN, Bitazar R, Labonté P, Bukong TN. Bronchoalveolar lavage single-cell transcriptomics reveals immune dysregulations driving COVID-19 severity. PLoS One 2025; 20:e0309880. [PMID: 39928675 PMCID: PMC11809808 DOI: 10.1371/journal.pone.0309880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/30/2024] [Indexed: 02/12/2025] Open
Abstract
The continuous threats posed by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, including the emergence of potentially more infectious and deadly variants, necessitate ongoing studies to uncover novel and detailed mechanisms driving disease severity. Using single-cell transcriptomics, we conducted a secondary data analysis of bronchoalveolar lavage fluid (BALF) from COVID-19 patients of varying severities and healthy controls to comprehensively examine immune responses. We observed significant immune cell alterations correlating with disease severity. In severe cases, macrophages showed upregulation of pro-inflammatory genes TNFα and IL1β, contributing to severe inflammation and tissue damage. Neutrophils exhibited increased activation, marked by S100A8, CXCL8, and IL1β expression, with extended viability and reduced phagocytosis. Genes such as MCL1 and HIF1α supported extended viability, while MSR1 and MRC1 indicated reduced phagocytosis. Enhanced formation of neutrophil extracellular traps (NETs) and reduced clearance, indicated by NET-associated markers, were linked to thrombo-inflammation and organ damage. Both macrophages and neutrophils in severe cases showed impaired efferocytosis, indicated by decreased expression of MSR1 and TREM2 in macrophages and downregulation of FCGR3B in neutrophils, leading to the accumulation of apoptotic cells and exacerbating inflammation. Severe cases were characterized by M1 macrophages with high TNFα and IL1β, while milder cases had M2 macrophages with elevated PPARγ. Dendritic cells (DCs) in severe cases exhibited reduced proportions and attenuated expression of MHC class I genes (HLA-A, HLA-B, HLA-C) and co-stimulatory molecules (CD80, CD86), alongside increased cytochrome c expression, indicating impaired antigen presentation and enhanced apoptosis. NK and T cells in severe cases demonstrated altered receptor and gene expression, with increased activation markers IFNγ and ISG15, suggesting a paradoxical state of activation and exhaustion. This analysis highlights the critical role of dysregulated neutrophil, macrophage, dendritic cell, NK, and T cell responses in severe COVID-19, identifying potential therapeutic targets and providing novel insights into the disease.
Collapse
Affiliation(s)
- Clinton Njinju Asaba
- Armand-Frappier Santé Biotechnologie Research Center, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Razieh Bitazar
- Armand-Frappier Santé Biotechnologie Research Center, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Patrick Labonté
- Armand-Frappier Santé Biotechnologie Research Center, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Terence Ndonyi Bukong
- Armand-Frappier Santé Biotechnologie Research Center, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| |
Collapse
|
12
|
Kim DS, Firoz W, Santana Maldonado CM, Gauger PC, Weir A, Baumgarth N, Rumbeiha WK. One health: Subchronic exposure to low ambient hydrogen sulfide increases mortality of influenza A virus infection in mice. ENVIRONMENTAL RESEARCH 2025; 266:120536. [PMID: 39638025 DOI: 10.1016/j.envres.2024.120536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/29/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
The environment plays an important role in modulating susceptibility and severity of respiratory tract infections. Influenza is a significant zoonotic disease globally. Hydrogen sulfide (H2S), a respiratory tract irritant and toxic gas, is ubiquitous in the environment. The interaction of environmental H2S exposure and influenza is unknown. In this pilot study we tested the hypothesis that subchronic exposure to ambient H2S worsens the outcome of influenza A virus (IAV) infection in mice. Male C57BL6 mice were exposed either to room air (RA), or to 5 or 10 ppm H2S for 2 h, 5 days a week for 5 weeks, followed by a single exposure either to phosphate buffered saline (sham) or a sublethal IAV intranasal dose of 10 plaque-forming units and observed for up to 28 days post inoculation (DPI). 10 ppm H2S alone suppressed growth. Mice challenged with IAV following exposure to 5 or 10 ppm H2S were most severely affected and euthanized on DPI 6 to 7 or DPI 4, respectively. In contrast, mice exposed to RA and challenged with IAV only showed minor weight loss. Viral titer in lung homogenates was 11-fold higher in mice pre-exposed to 5 ppm H2S and challenged with IAV compared to the RA-IAV group on DPI 3. BALF concentrations of TNF-α, IL-6, and IL-10 cytokines were significantly higher in mice exposed to H2S and challenged with IAV compared to sham groups. Lung pathology was most severe in mice exposed to H2S and challenged with IAV. Collectively, the study shows that mice subchronically exposed to low levels of H2S overly reacted to a nonlethal dose of IAV, suffering severe lung injury and mortality. This suggests that communities and workers subchronically exposed to ambient H2S concentrations used in this study or higher are at higher risk for developing very severe IAV infections and mortality.
Collapse
Affiliation(s)
- Dong-Suk Kim
- Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, USA
| | - Wahed Firoz
- Center for Immunology and Infectious Diseases, Department of Pathology, Microbiology and Immunology, UC Davis, USA; Graduate Group in Immunology, UC Davis, USA
| | | | - Phillip C Gauger
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Abigail Weir
- Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, USA
| | - Nicole Baumgarth
- Center for Immunology and Infectious Diseases, Department of Pathology, Microbiology and Immunology, UC Davis, USA; Graduate Group in Immunology, UC Davis, USA; Lyme and Tickborne Diseases Research and Education Institute, W Harry Feinstone Dept. Molecular Microbiology and Immunology, Bloomberg School of Public Health, and Dept. Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, USA
| | - Wilson K Rumbeiha
- Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, USA.
| |
Collapse
|
13
|
Wang F, Chen S, Xia Y, Liu C, Xu Z, Song R, Liu W, Liu T, Chen G, Liu Q. Dual-Engineered Phage Vaccine Platform Facilitates STING Activation for Influenza Protection. ACS APPLIED MATERIALS & INTERFACES 2025; 17:419-429. [PMID: 39723915 DOI: 10.1021/acsami.4c16246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Influenza epidemics remain a global public health challenge. Vaccination with nucleic acid-based vaccines, which trigger strong cellular and humoral immune responses, represents a promising approach for preventing virus infection. However, its effectiveness relies on efficient delivery and an immunoadjuvant. Here, we constructed a gene- and nanoengineered vaccine delivery platform via modifying MnO2 nanoparticles (NPs) onto the surface of the M13 phage, which carried the hemagglutinin stem gene of influenza A virus preceded by a eukaryotic initial transcriptional region. Specifically, the M13 phage protected the inserted nucleic acid vaccine against degradation due to the existence of capsid proteins. MnO2 NPs released Mn2+ ions under the acidic condition of endolysosomes, thereby promoting the cytoplasmic delivery of phage vaccines, which significantly improved the antigen expression. Moreover, Mn2+ acted as a potent adjuvant for dendritic cell maturation by activating the cGAS/STING pathway. Immunization with the engineered phage vaccine induced CD4+ T cell, CD8+ T cell, and humoral immune responses in mice. In infected mouse models, the vaccines ameliorated weight loss, survival rate, lung virus titers, and pulmonary pathologies and conferred full protection against influenza viruses. Collectively, we developed a dual-engineered phage vaccine platform, offering an alternative regimen for optimizing nucleic acid vaccines, which may have broad applications in the rational design of vaccine formulations.
Collapse
Affiliation(s)
- Fei Wang
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, China
| | - Shuhan Chen
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362400, China
| | - Yinhe Xia
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, China
| | - Caihong Liu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhou Xu
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, China
| | - Ruilong Song
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Wenfeng Liu
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, China
| | - Tingting Liu
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225009, China
| | - Gang Chen
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, China
| | - Qingquan Liu
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362400, China
| |
Collapse
|
14
|
Georgakopoulou VE. Insights from respiratory virus co-infections. World J Virol 2024; 13:98600. [PMID: 39722753 PMCID: PMC11551690 DOI: 10.5501/wjv.v13.i4.98600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 10/18/2024] Open
Abstract
Respiratory viral co-infections present significant challenges in clinical settings due to their impact on disease severity and patient outcomes. Current diagnostic methods often miss these co-infections, complicating the epidemiology and management of these cases. Research, primarily conducted in vitro and in vivo, suggests that co-infections can lead to more severe illnesses, increased hospitalization rates, and greater healthcare utilization, especially in high-risk groups such as children, the elderly, and immunocompromised individuals. Common co-infection patterns, risk factors, and their impact on disease dynamics highlight the need for advanced diagnostic techniques and tailored therapeutic strategies. Understanding the virological interactions and immune response modulation during co-infections is crucial for developing effective public health interventions and improving patient outcomes. Future research should focus on the molecular mechanisms of co-infection and the development of specific therapies to mitigate the adverse effects of these complex infections.
Collapse
Affiliation(s)
- Vasiliki E Georgakopoulou
- Department of Pathophysiology, Laiko General Hospital, Medical School of National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
15
|
Kombe Kombe AJ, Fotoohabadi L, Gerasimova Y, Nanduri R, Lama Tamang P, Kandala M, Kelesidis T. The Role of Inflammation in the Pathogenesis of Viral Respiratory Infections. Microorganisms 2024; 12:2526. [PMID: 39770727 PMCID: PMC11678694 DOI: 10.3390/microorganisms12122526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Viral respiratory infections (VRIs) are a leading cause of morbidity and mortality worldwide, making them a significant public health concern. During infection, respiratory viruses, including Influenza virus, SARS-CoV-2, and respiratory syncytial virus (RSV), trigger an antiviral immune response, specifically boosting the inflammatory response that plays a critical role in their pathogenesis. The inflammatory response induced by respiratory viruses can be a double-edged sword since it can be initially induced to be antiviral and protective/reparative from virus-induced injuries. Still, it can also be detrimental to host cells and tissues. However, the mechanisms that differentiate the complex crosstalk between favorable host inflammatory responses and harmful inflammatory responses are poorly understood. This review explores the complex interplay between viral pathogens and the host immune response, mainly focusing on the role of inflammation in the pathogenesis of VRIs. We discuss how inflammation can both contain and exacerbate the progression of viral infections, highlighting potential therapeutic targets and emerging drugs for modulating the aberrant inflammatory responses during VRIs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Theodoros Kelesidis
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine and Infectious Diseases, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
16
|
Martines F, Malta G, Cannizzaro E, Kelly T, Salvago P, Plescia F. Bromelain Supplementation in the Management of Otitis Media with Effusion in Children. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1440. [PMID: 39767869 PMCID: PMC11675012 DOI: 10.3390/children11121440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/04/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND/OBJECTIVES The respiratory system is prone to infectious diseases, especially in children below five years of age. Upper respiratory tract infections in children are often associated with Eustachian tube dysfunction and complicated by otitis media with effusion (OME), an inflammatory process within the middle ear, which can lead to hearing loss. Treatment for these infections involves a combination of medication and symptom relief, depending on the severity and cause of the infection. In recent years, natural therapeutic drugs derived from herbal medicines have been gaining popularity in treating various pathologies. Bromelain, one of the most studied natural compounds, has been investigated extensively due to its numerous pharmacological properties, offering a potential new avenue for treatment. Based on these promising findings, our study was designed to examine the efficacy of supplementation with bromelain in countering symptoms associated with OME. METHODS This study was conducted on data acquired from medical records from the Section of Audiology of the University of Palermo, focusing on the period of January 2022 to June 2023 and selecting 224 children (age range 1-8 years), namely 174 males and 50 females, who were evaluated for presumed OME at the audiology pediatric ambulatory. All patients selected before initiating pharmacological treatment underwent thorough screening regarding the functionality of the tympanic cavities, otoacoustic emissions, the auditory threshold, and the ear canal's integrity. RESULTS The preliminary findings of this study are significant, demonstrating that supplementation with bromelain led to notable improvements in the symptoms accompanying OME after 15 days and 60 days of therapy. Notably, patients who received the bromelain supplement reported reduced mucus secretions and improved auditory function. CONCLUSIONS These results underscore the potential of naturally occurring compounds as adjuvants to standard therapeutic strategies in treating OME.
Collapse
Affiliation(s)
- Francesco Martines
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), Section of Audiology, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (F.M.); (P.S.)
| | - Ginevra Malta
- Department of Health Promotion Sciences, Maternal and Child Care, Internal Medicine and Medical Specialties ‘Giuseppe D’Alessandro’, University of Palermo, Via del Vespro 133, 90127 Palermo, Italy; (G.M.); (E.C.)
| | - Emanuele Cannizzaro
- Department of Health Promotion Sciences, Maternal and Child Care, Internal Medicine and Medical Specialties ‘Giuseppe D’Alessandro’, University of Palermo, Via del Vespro 133, 90127 Palermo, Italy; (G.M.); (E.C.)
| | - Theodoridou Kelly
- Department of Microbiology, Andreas Syggros University Hospital Athens Greece, 10552 Athens, Greece;
| | - Pietro Salvago
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), Section of Audiology, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (F.M.); (P.S.)
| | - Fulvio Plescia
- Department of Health Promotion Sciences, Maternal and Child Care, Internal Medicine and Medical Specialties ‘Giuseppe D’Alessandro’, University of Palermo, Via del Vespro 133, 90127 Palermo, Italy; (G.M.); (E.C.)
| |
Collapse
|
17
|
Dick JK, Sangala JA, Krishna VD, Khaimraj A, Hamel L, Erickson SM, Hicks D, Soigner Y, Covill LE, Johnson AK, Ehrhardt MJ, Ernste K, Brodin P, Koup RA, Khaitan A, Baehr C, Thielen BK, Henzler CM, Skipper C, Miller JS, Bryceson YT, Wu J, John CC, Panoskaltsis-Mortari A, Orioles A, Steiner ME, Cheeran MCJ, Pravetoni M, Hart GT. NK Cell and Monocyte Dysfunction in Multisystem Inflammatory Syndrome in Children. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1452-1466. [PMID: 39392378 PMCID: PMC11533154 DOI: 10.4049/jimmunol.2400395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024]
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a severe complication of SARS-CoV-2 infection characterized by multiorgan involvement and inflammation. Testing of cellular function ex vivo to understand the aberrant immune response in MIS-C is limited. Despite strong Ab production in MIS-C, SARS-CoV-2 nucleic acid testing can remain positive for 4-6 wk postinfection. Therefore, we hypothesized that dysfunctional cell-mediated Ab responses downstream of Ab production may be responsible for delayed clearance of viral products in MIS-C. In MIS-C, monocytes were hyperfunctional for phagocytosis and cytokine production, whereas NK cells were hypofunctional for both killing and cytokine production. The decreased NK cell cytotoxicity correlated with an NK exhaustion marker signature and systemic IL-6 levels. Potentially providing a therapeutic option, cellular engagers of CD16 and SARS-CoV-2 proteins were found to rescue NK cell function in vitro. Taken together, our results reveal dysregulation in Ab-mediated cellular responses of myeloid and NK cells that likely contribute to the immune pathology of this disease.
Collapse
Affiliation(s)
- Jenna K. Dick
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
- Center for Immunology, University of Minnesota, Minneapolis, MN
| | - Jules A. Sangala
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
- Center for Immunology, University of Minnesota, Minneapolis, MN
| | | | - Aaron Khaimraj
- Department of Pharmacology, University of Minnesota, Minneapolis, MN
| | - Lydia Hamel
- Division of Critical Care, Children’s Hospital and Clinics of Minnesota, Minneapolis, MN
| | - Spencer M. Erickson
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Dustin Hicks
- Department of Pharmacology, University of Minnesota, Minneapolis, MN
| | - Yvette Soigner
- Division of Hematology, Oncology, and Transplant, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Laura E. Covill
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Alexander K. Johnson
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
| | - Michael J. Ehrhardt
- Division of Bone Marrow Transplantation and Cellular Therapy, Department of Pediatrics, M Health Fairview Masonic Children’s Hospital, Minneapolis, MN
| | - Keenan Ernste
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Petter Brodin
- Unit for Clinical Pediatrics, Department of Women’s and Children’s Health, Karolinska Institute, Solna, Sweden
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Richard A. Koup
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Alka Khaitan
- Ryan White Center for Pediatric Infectious Diseases & Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Carly Baehr
- Department of Pharmacology, University of Minnesota, Minneapolis, MN
| | - Beth K. Thielen
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
| | | | - Caleb Skipper
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Jeffrey S. Miller
- Center for Immunology, University of Minnesota, Minneapolis, MN
- Division of Hematology, Oncology, and Transplant, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Yenan T. Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Broegelmann Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Jianming Wu
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | - Chandy C. John
- Ryan White Center for Pediatric Infectious Diseases & Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Angela Panoskaltsis-Mortari
- Division of Bone Marrow Transplantation and Cellular Therapy, Department of Pediatrics, M Health Fairview Masonic Children’s Hospital, Minneapolis, MN
| | - Alberto Orioles
- Division of Critical Care, Children’s Hospital and Clinics of Minnesota, Minneapolis, MN
| | - Marie E. Steiner
- Divisions of Pediatric Critical Care and Pediatric Hematology/Oncology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
| | - Maxim C. J. Cheeran
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota, Minneapolis, MN
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA
| | - Geoffrey T. Hart
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
- Center for Immunology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
18
|
Medina MA, Fuentes-Villalobos F, Quevedo C, Aguilera F, Riquelme R, Rioseco ML, Barria S, Pinos Y, Calvo M, Burbulis I, Kossack C, Alvarez RA, Garrido JL, Barria MI. Longitudinal transcriptional changes reveal genes from the natural killer cell-mediated cytotoxicity pathway as critical players underlying COVID-19 progression. eLife 2024; 13:RP94242. [PMID: 39470726 PMCID: PMC11521369 DOI: 10.7554/elife.94242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
Patients present a wide range of clinical severities in response severe acute respiratory syndrome coronavirus 2 infection, but the underlying molecular and cellular reasons why clinical outcomes vary so greatly within the population remains unknown. Here, we report that negative clinical outcomes in severely ill patients were associated with divergent RNA transcriptome profiles in peripheral immune cells compared with mild cases during the first weeks after disease onset. Protein-protein interaction analysis indicated that early-responding cytotoxic natural killer cells were associated with an effective clearance of the virus and a less severe outcome. This innate immune response was associated with the activation of select cytokine-cytokine receptor pathways and robust Th1/Th2 cell differentiation profiles. In contrast, severely ill patients exhibited a dysregulation between innate and adaptive responses affiliated with divergent Th1/Th2 profiles and negative outcomes. This knowledge forms the basis of clinical triage that may be used to preemptively detect high-risk patients before life-threatening outcomes ensue.
Collapse
Affiliation(s)
- Matias A Medina
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
| | | | - Claudio Quevedo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de ConcepciónConcepciónChile
| | - Felipe Aguilera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de ConcepciónConcepciónChile
| | - Raul Riquelme
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
- Hospital Dr. Eduardo Schütz SchroederPuerto MonttChile
| | - Maria Luisa Rioseco
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
- Hospital Dr. Eduardo Schütz SchroederPuerto MonttChile
| | - Sebastian Barria
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
- Hospital Dr. Eduardo Schütz SchroederPuerto MonttChile
| | | | - Mario Calvo
- Instituto de Medicina, Facultad de Medicina, Universidad AustralValdiviaChile
| | - Ian Burbulis
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
| | - Camila Kossack
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
| | - Raymond A Alvarez
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Jose Luis Garrido
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
| | - Maria Ines Barria
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
| |
Collapse
|
19
|
Cinatl J, Wass MN, Michaelis M. Multiple mechanisms enable broad-spectrum activity of the Pelargonium sidoides root extract EPs 7630 against acute respiratory tract infections. Front Pharmacol 2024; 15:1455870. [PMID: 39469622 PMCID: PMC11513585 DOI: 10.3389/fphar.2024.1455870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
There is clinical evidence showing that the Pelargonium sidoides root extract EPs 7630 is a safe and effective treatment for a range of acute infectious respiratory illnesses. Moreover, EPs 7630 has been shown to reduce the use of antibiotics, which is important in the context of rising antibiotic resistance levels. A wide range of mechanisms appears to contribute to the beneficial effects of EPs 7630, e.g. antibacterial, antiviral, immunomodulatory, and epithelial barrier effects. This broad spectrum of pharmacological activities seems to enable the clinical activity of EPs 7630 against multiple respiratory infections. In particular, the combination of antiviral and immunomodulatory effects may enable EPs 7630 to tackle acute viral respiratory infections both in early stages of the disease process, which are driven by virus replication, as well as in later stages, which are caused by an overshooting immune response. Hence, EPs 7630 is a prime example of a plant extract with evidence-based clinical efficacy, including a solid understanding of the underlying mechanisms of action. The example of EPs 7630 demonstrates that plant extracts have a potential role as evidence-based clinical treatments and that they deserve pre-clinical and clinical testing and investigation in the same way as any other drug class.
Collapse
Affiliation(s)
- Jindrich Cinatl
- Interdisciplinary Laboratory for Tumour and Virus Research, Dr Petra Joh Research Institute, Frankfurt am Main, Germany
| | - Mark N. Wass
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Martin Michaelis
- Interdisciplinary Laboratory for Tumour and Virus Research, Dr Petra Joh Research Institute, Frankfurt am Main, Germany
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
20
|
Creusat F, Jouan Y, Gonzalez L, Barsac E, Ilango G, Lemoine R, Soulard D, Hankard A, Boisseau C, Guillon A, Lin Q, de Amat Herbozo C, Sencio V, Winter N, Sizaret D, Trottein F, Si-Tahar M, Briard B, Mallevaey T, Faveeuw C, Baranek T, Paget C. IFN-γ primes bone marrow neutrophils to acquire regulatory functions in severe viral respiratory infections. SCIENCE ADVANCES 2024; 10:eadn3257. [PMID: 39392875 PMCID: PMC11468905 DOI: 10.1126/sciadv.adn3257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/11/2024] [Indexed: 10/13/2024]
Abstract
Neutrophil subsets endowed with regulatory/suppressive properties are widely regarded as deleterious immune cells that can jeopardize antitumoral response and/or antimicrobial resistance. Here, we describe a sizeable fraction of neutrophils characterized by the expression of programmed death-ligand 1 (PD-L1) in biological fluids of humans and mice with severe viral respiratory infections (VRI). Biological and transcriptomic approaches indicated that VRI-driven PD-L1+ neutrophils are endowed with potent regulatory functions and reduced classical antimicrobial properties, as compared to their PD-L1- counterpart. VRI-induced regulatory PD-L1+ neutrophils were generated remotely in the bone marrow in an IFN-γ-dependent manner and were quickly mobilized into the inflamed lungs where they fulfilled their maturation. Neutrophil depletion and PD-L1 blockade during experimental VRI resulted in higher mortality, increased local inflammation, and reduced expression of resolving factors. These findings suggest that PD-L1+ neutrophils are important players in disease tolerance by mitigating local inflammation during severe VRI and that they may constitute relevant targets for future immune interventions.
Collapse
Affiliation(s)
- Florent Creusat
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Youenn Jouan
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
- Service de Médecine Intensive et Réanimation, CHRU de Tours, Tours, France
- Service de Chirurgie Cardiaque et de Réanimation Chirurgicale Cardio-Vasculaire, CHRU de Tours, Tours, France
| | - Loïc Gonzalez
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Emilie Barsac
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Guy Ilango
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Roxane Lemoine
- Université de Tours, Faculté de Médecine de Tours, Tours, France
- Cytometry and Single-cell Immunobiology Core Facility, University of Tours, Tours, France
| | - Daphnée Soulard
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 8204, Université de Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - Antoine Hankard
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Chloé Boisseau
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Antoine Guillon
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
- Service de Médecine Intensive et Réanimation, CHRU de Tours, Tours, France
| | - Qiaochu Lin
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | - Valentin Sencio
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 8204, Université de Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - Nathalie Winter
- INRAe (Institut National de la Recherche pour l'Agriculture, l'Alimentation et l’Environnement), Université de Tours, ISP, 37380 Nouzilly, France
| | - Damien Sizaret
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
- Service d’Anatomie et Cytologie Pathologiques, CHRU de Tours, Tours, France
| | - François Trottein
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 8204, Université de Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - Mustapha Si-Tahar
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Benoit Briard
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Thierry Mallevaey
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Christelle Faveeuw
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 8204, Université de Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - Thomas Baranek
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Christophe Paget
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| |
Collapse
|
21
|
Suri C, Pande B, Sahithi LS, Sahu T, Verma HK. Interplay between Lung Diseases and Viral Infections: A Comprehensive Review. Microorganisms 2024; 12:2030. [PMID: 39458339 PMCID: PMC11510474 DOI: 10.3390/microorganisms12102030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/16/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
The intricate relationship between chronic lung diseases and viral infections is a significant concern in respiratory medicine. We explore how pre-existing lung conditions, including chronic obstructive pulmonary disease, asthma, and interstitial lung diseases, influence susceptibility, severity, and outcomes of viral infections. We also examine how viral infections exacerbate and accelerate the progression of lung disease by disrupting immune responses and triggering inflammatory pathways. By summarizing current evidence, this review highlights the bidirectional nature of these interactions, where underlying lung diseasesincrease vulnerability to viral infections, while these infections, in turn, worsen the clinical course. This review underscores the importance of preventive measures, such as vaccination, early detection, and targeted therapies, to mitigate adverse outcomes in patients with chronic lung conditions. The insights provided aim to inform clinical strategies that can improve patient management and reduce the burden of chronic lung diseases exacerbated by viral infections.
Collapse
Affiliation(s)
- Chahat Suri
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
| | - Babita Pande
- Department of Physiology, All India Institute of Medical Sciences, Raipur 492099, India; (B.P.); (T.S.)
| | | | - Tarun Sahu
- Department of Physiology, All India Institute of Medical Sciences, Raipur 492099, India; (B.P.); (T.S.)
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of Lungs Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Neuherberg, 85764 Munich, Germany
| |
Collapse
|
22
|
Shrwani KJ, Mahallawi WH, Mohana AI, Algaissi A, Dhayhi N, Sharwani NJ, Gadour E, Aldossari SM, Asiri H, Kameli N, Asiri AY, Asiri AM, Sherwani AJ, Cunliffe N, Zhang Q. Mucosal immunity in upper and lower respiratory tract to MERS-CoV. Front Immunol 2024; 15:1358885. [PMID: 39281686 PMCID: PMC11392799 DOI: 10.3389/fimmu.2024.1358885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/15/2024] [Indexed: 09/18/2024] Open
Abstract
INTRODUCTION Middle East respiratory syndrome coronavirus (MERS-CoV) has emerged as a deadly pathogen with a mortality rate of up to 36.2%. MERS-CoV can cause severe respiratory tract disease and multiorgan failure. Therefore, therapeutic vaccines are urgently needed. This intensive review explores the human immune responses and their immunological mechanisms during MERS-CoV infection in the mucosa of the upper and lower respiratory tracts (URT and LRT, respectively). OBJECTIVE The aim of this study is to provide a valuable, informative, and critical summary of the protective immune mechanisms against MERS-CoV infection in the URT/LRT for the purpose of preventing and controlling MERS-CoV disease and designing effective therapeutic vaccines. METHODS In this review, we focus on the immune potential of the respiratory tract following MERS-CoV infection. We searched PubMed, Embase, Web of Science, Cochrane, Scopus, and Google Scholar using the following terms: "MERS-CoV", "B cells", "T cells", "cytokines", "chemokines", "cytotoxic", and "upper and lower respiratory tracts". RESULTS We found and included 152 studies in this review. We report that the cellular innate immune response, including macrophages, dendritic cells, and natural killer cells, produces antiviral substances such as interferons and interleukins to prevent the virus from spreading. In the adaptive and humoral immune responses, CD4+ helper T cells, CD8+ cytotoxic T cells, B cells, and plasma cells protect against MERS-CoV infection in URT and LRT. CONCLUSION The human nasopharynx-associated lymphoid tissue (NALT) and bronchus-associated lymphoid tissue (BALT) could successfully limit the spread of several respiratory pathogens. However, in the case of MERS-CoV infection, limited research has been conducted in humans with regard to immunopathogenesis and mucosal immune responses due to the lack of relevant tissues. A better understanding of the immune mechanisms of the URT and LRT is vital for the design and development of effective MERS-CoV vaccines.
Collapse
Affiliation(s)
- Khalid J. Shrwani
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Public Health Authority, Saudi Center for Disease Prevention and Control (SCDC), Jazan, Saudi Arabia
| | - Waleed H. Mahallawi
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Abdulrhman I. Mohana
- Department of Antimicrobial Resistance, Public Health Authority, Riyadh, Saudi Arabia
| | - Abdullah Algaissi
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
- Emerging and Endemic Infectious Diseases Research Unit, Health Sciences Research Center, Jazan University, Jazan, Saudi Arabia
| | - Nabil Dhayhi
- Department of Pediatrics, King Fahad Central Hospital, Ministry of Health, Gizan, Saudi Arabia
| | - Nouf J. Sharwani
- Department of Surgery, Mohammed bin Nasser Hospital, Ministry of Health, Gizan, Saudi Arabia
| | - Eyad Gadour
- Department of Gastroenterology and Hepatology, King Abdulaziz National Guard Hospital, Ahsa, Saudi Arabia
- Department of Medicine, Faculty of Medicine, Zamzam University College, Khartoum, Sudan
| | - Saeed M. Aldossari
- Medical Laboratory Technology Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hasan Asiri
- Medical Laboratory Department, Prince Mohammed bin Abdulaziz Hospital, Riyadh, Saudi Arabia
| | - Nader Kameli
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Ayad Y. Asiri
- Intensive Care Unit Department, Al Inma Medical Group, Al Hayat National Hospital, Ministry of Health, Riyadh, Saudi Arabia
| | - Abdullah M. Asiri
- Preventive Medicine Assistant Deputyship, Ministry of Health, Riyadh, Saudi Arabia
| | - Alaa J. Sherwani
- Department of Pediatrics, Abu-Arish General Hospital, Ministry of Health, Gizan, Saudi Arabia
| | - Nigel Cunliffe
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Qibo Zhang
- Academic and Research Departments, Section of Immunology, School of Biosciences, University of Surrey, Surrey, United Kingdom
| |
Collapse
|
23
|
Ren X, Song H, Wang Y, Wang Y, Zhang Q, Yue X, Wu Z, Li C, Gao L, Ma C, Liang X. TIPE1 limits virus replication by disrupting PKM2/ HIF-1α/ glycolysis feedback loop. Free Radic Biol Med 2024; 221:52-63. [PMID: 38754745 DOI: 10.1016/j.freeradbiomed.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVE Virus infection is a major threat to human health and remains a significant cause of death to date. Macrophages are important innate immune cells that exhibit indispensable roles in controlling virus replication. It was recently reported that metabolic adaption determines the functional state of macrophages. Thus, to further unravel the crucial factors involving in metabolic adaption of macrophages might provide the potential candidates for optimizing their anti-viral capabilities. METHODS RT-PCR, Western blotting, virus plaque assay and HE were used to evaluate the viral load in virus-infected Tipe1M-KO and Tipe1f/f mice or cultured macrophages. RNA sequencing were performed with Tipe1M-KOor Tipe1f/f BMDMs upon virus infection. Extracellular acidification rate (ECAR) was applied for analyzing glycolysis rate in virus-infected BMDMs. Co-immunoprecipitation (Co-IP) assay and LC-MS/MS were used to determine the potential interacting proteins of TIPE1. RESULTS TIPE1 level was significantly reduced in BMDMs infected with either RNA viruses or DNA virus. Deficiency of Tipe1 in macrophages increased viral load and aggravated tissue damage. Mechanistically, TIPE1 suppressed the glycolytic capacity of macrophages through interacting with PKM2 and promoting its ubiquitination degradation, which in turn decreased HIF1α transcription and viral replication in macrophages. CONCLUSIONS TIPE1 functions as a novel regulator for metabolic reprogramming and virus infection in macrophages.
Collapse
Affiliation(s)
- Xiaolei Ren
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Hui Song
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Yingchun Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Yuzhen Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Qiang Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Xuetian Yue
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Cell Biology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Jinan, Shandong, China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology and Embryology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Jinan, Shandong, China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Jinan, Shandong, China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Jinan, Shandong, China.
| |
Collapse
|
24
|
Chakravarty S, Varghese M, Fan S, Taylor RT, Chakravarti R, Chattopadhyay S. IRF3 inhibits inflammatory signaling pathways in macrophages to prevent viral pathogenesis. SCIENCE ADVANCES 2024; 10:eadn2858. [PMID: 39121222 PMCID: PMC11313863 DOI: 10.1126/sciadv.adn2858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/05/2024] [Indexed: 08/11/2024]
Abstract
Viral inflammation contributes to pathogenesis and mortality during respiratory virus infections. IRF3, a critical component of innate antiviral immune responses, interacts with pro-inflammatory transcription factor NF-κB, and inhibits its activity. This mechanism helps suppress inflammatory gene expression in virus-infected cells and mice. We evaluated the cells responsible for IRF3-mediated suppression of viral inflammation using newly engineered conditional Irf3Δ/Δ mice. Irf3Δ/Δ mice, upon respiratory virus infection, showed increased susceptibility and mortality. Irf3 deficiency caused enhanced inflammatory gene expression, lung inflammation, immunopathology, and damage, accompanied by increased infiltration of pro-inflammatory macrophages. Deletion of Irf3 in macrophages (Irf3MKO) displayed, similar to Irf3Δ/Δ mice, increased inflammatory responses, macrophage infiltration, lung damage, and lethality, indicating that IRF3 in these cells suppressed lung inflammation. RNA-seq analyses revealed enhanced NF-κB-dependent gene expression along with activation of inflammatory signaling pathways in infected Irf3MKO lungs. Targeted analyses revealed activated MAPK signaling in Irf3MKO lungs. Therefore, IRF3 inhibited inflammatory signaling pathways in macrophages to prevent viral inflammation and pathogenesis.
Collapse
Affiliation(s)
- Sukanya Chakravarty
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, OH, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Merina Varghese
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, OH, USA
| | - Shumin Fan
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, OH, USA
| | - Roger Travis Taylor
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, OH, USA
| | - Ritu Chakravarti
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Science, Toledo, OH, USA
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, OH, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
25
|
Martins YA, Guerra-Gomes IC, Rodrigues TS, Tapparel C, Lopez RFV. Enhancing pulmonary delivery and immunomodulation of respiratory diseases through virus-mimicking nanoparticles. J Control Release 2024; 372:417-432. [PMID: 38908758 DOI: 10.1016/j.jconrel.2024.06.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
This study introduces the nanobromhexine lipid particle (NBL) platform designed for effective pulmonary drug delivery. Inspired by respiratory virus transport mechanisms, NBL address challenges associated with mucus permeation and inflammation in pulmonary diseases. Composed of low molecular weight polyethylene glycol-coated lipid nanoparticles with bromhexine hydrochloride, NBL exhibit a size of 118 ± 24 nm, a neutral zeta potential, osmolarity of 358 ± 28 mOsmol/kg, and a pH of 6.5. Nebulizing without leakage and showing no toxicity to epithelial cells, NBL display mucoadhesive properties with a 60% mucin-binding efficiency. They effectively traverse the dense mucus layer of Calu-3 cultures in an air-liquid interface, as supported by a 55% decrease in MUC5AC density and a 29% increase in nanoparticles internalization compared to non-exposed cells. In assessing immunomodulatory effects, NBL treatment in SARS-CoV-2-infected lung cells leads to a 40-fold increase in anti-inflammatory MUC1 gene expression, a proportional reduction in pro-inflammatory IL-6 expression, and elevated anti-inflammatory IL-10 expression. These findings suggest a potential mechanism to regulate the excessive IL-6 expression triggered by virus infection. Therefore, the NBL platform demonstrates promising potential for efficient pulmonary drug delivery and immunomodulation, offering a novel approach to addressing mucus permeation and inflammation in pulmonary diseases.
Collapse
Affiliation(s)
- Yugo Araújo Martins
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil
| | - Isabel Cristina Guerra-Gomes
- Fundação Oswaldo Cruz - FIOCRUZ, Bi-Institutional Translational Medicine Plataform, Ribeirão Preto, SP 14040-030, Brazil
| | - Tamara Silva Rodrigues
- Department of Biochemistry and Imumunology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Renata Fonseca Vianna Lopez
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil.
| |
Collapse
|
26
|
Zimna M, Brzuska G, Salát J, Růžek D, Krol E. Influence of adjuvant type and route of administration on the immunogenicity of Leishmania-derived tick-borne encephalitis virus-like particles - A recombinant vaccine candidate. Antiviral Res 2024; 228:105941. [PMID: 38901737 DOI: 10.1016/j.antiviral.2024.105941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/16/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Tick-borne encephalitis virus (TBEV) is a tick-borne flavivirus that induces severe central nervous system disorders. It has recently raised concerns due to an expanding geographical range and increasing infection rates. Existing vaccines, though effective, face low coverage rates in numerous TBEV endemic regions. Our previous work demonstrated the immunogenicity and full protection afforded by a TBEV vaccine based on virus-like particles (VLPs) produced in Leishmania tarentolae cells in immunization studies in a mouse model. In the present study, we explored the impact of adjuvants (AddaS03™, Alhydrogel®+MPLA) and administration routes (subcutaneous, intramuscular) on the immune response. Adjuvanted groups exhibited significantly enhanced antibody responses, higher avidity, and more balanced Th1/Th2 response. IFN-γ responses depended on the adjuvant type, while antibody levels were influenced by both adjuvant and administration routes. The combination of Leishmania-derived TBEV VLPs with Alhydrogel® and MPLA via intramuscular administration emerged as a highly promising prophylactic vaccine candidate, eliciting a robust, balanced immune response with substantial neutralization potential.
Collapse
MESH Headings
- Animals
- Encephalitis Viruses, Tick-Borne/immunology
- Mice
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Adjuvants, Immunologic/administration & dosage
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Encephalitis, Tick-Borne/prevention & control
- Encephalitis, Tick-Borne/immunology
- Viral Vaccines/immunology
- Viral Vaccines/administration & dosage
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/administration & dosage
- Leishmania/immunology
- Female
- Adjuvants, Vaccine/administration & dosage
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Immunogenicity, Vaccine
- Injections, Intramuscular
- Mice, Inbred BALB C
- Interferon-gamma/immunology
- Th1 Cells/immunology
Collapse
Affiliation(s)
- Marta Zimna
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| | - Gabriela Brzuska
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| | - Jiří Salát
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Hudcova 70, CZ-62100, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005, Ceske Budejovice, Czech Republic.
| | - Daniel Růžek
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Hudcova 70, CZ-62100, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005, Ceske Budejovice, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 735/5, CZ-62500, Brno, Czech Republic.
| | - Ewelina Krol
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| |
Collapse
|
27
|
Corrao S, Raspanti M, Agugliaro F, Gervasi F, Di Bernardo F, Natoli G, Argano C. Safety of High-Dose Vitamin C in Non-Intensive Care Hospitalized Patients with COVID-19: An Open-Label Clinical Study. J Clin Med 2024; 13:3987. [PMID: 38999551 PMCID: PMC11242388 DOI: 10.3390/jcm13133987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Background: Vitamin C has been used as an antioxidant and has been proven effective in boosting immunity in different diseases, including coronavirus disease (COVID-19). An increasing awareness was directed to the role of intravenous vitamin C in COVID-19. Methods: In this study, we aimed to assess the safety of high-dose intravenous vitamin C added to the conventional regimens for patients with different stages of COVID-19. An open-label clinical trial was conducted on patients with COVID-19. One hundred four patients underwent high-dose intravenous administration of vitamin C (in addition to conventional therapy), precisely 10 g in 250 cc of saline solution in slow infusion (60 drops/min) for three consecutive days. At the same time, 42 patients took the standard-of-care therapy. Results: This study showed the safety of high-dose intravenous administration of vitamin C. No adverse reactions were found. When we evaluated the renal function indices and estimated the glomerular filtration rate (eGRF, calculated with the CKD-EPI Creatinine Equation) as the main side effect and contraindication related to chronic renal failure, no statistically significant differences between the two groups were found. High-dose vitamin C treatment was not associated with a statistically significant reduction in mortality and admission to the intensive care unit, even if the result was bound to the statistical significance. On the contrary, age was independently associated with admission to the intensive care unit and in-hospital mortality as well as noninvasive ventilation (N.I.V.) and continuous positive airway pressure (CPAP) (OR 2.17, 95% CI 1.41-3.35; OR 7.50, 95% CI 1.97-28.54; OR 8.84, 95% CI 2.62-29.88, respectively). When considering the length of hospital stay, treatment with high-dose vitamin C predicts shorter hospitalization (OR -4.95 CI -0.21--9.69). Conclusions: Our findings showed that an intravenous high dose of vitamin C is configured as a safe and promising therapy for patients with moderate to severe COVID-19.
Collapse
Affiliation(s)
- Salvatore Corrao
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy; (F.A.); (G.N.); (C.A.)
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Massimo Raspanti
- Cardiology and Intensive Care Unit, A. Aiello Hospital, 91026 Mazzara del Vallo, Italy;
| | - Federica Agugliaro
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy; (F.A.); (G.N.); (C.A.)
| | - Francesco Gervasi
- Specialized Laboratory of Oncology, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy;
| | - Francesca Di Bernardo
- Department of Microbiology and Virology, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy;
| | - Giuseppe Natoli
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy; (F.A.); (G.N.); (C.A.)
| | - Christiano Argano
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy; (F.A.); (G.N.); (C.A.)
| |
Collapse
|
28
|
Ranjbar M, Cusack RP, Whetstone CE, Brister DL, Wattie J, Wiltshire L, Alsaji N, Le Roux J, Cheng E, Srinathan T, Ho T, Sehmi R, O’Byrne PM, Snow-Smith M, Makiya M, Klion AD, Duong M, Gauvreau GM. Immune Response Dynamics and Biomarkers in COVID-19 Patients. Int J Mol Sci 2024; 25:6427. [PMID: 38928133 PMCID: PMC11204302 DOI: 10.3390/ijms25126427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The immune response dynamics in COVID-19 patients remain a subject of intense investigation due to their implications for disease severity and treatment outcomes. We examined changes in leukocyte levels, eosinophil activity, and cytokine profiles in patients hospitalized with COVID-19. METHODS Serum samples were collected within the first 10 days of hospitalization/confirmed infection and analyzed for eosinophil granule proteins (EGP) and cytokines. Information from medical records including comorbidities, clinical symptoms, medications, and complete blood counts were collected at the time of admission, during hospitalization and at follow up approximately 3 months later. RESULTS Serum levels of eotaxin, type 1 and type 2 cytokines, and alarmin cytokines were elevated in COVID-19 patients, highlighting the heightened immune response (p < 0.05). However, COVID-19 patients exhibited lower levels of eosinophils and eosinophil degranulation products compared to hospitalized controls (p < 0.05). Leukocyte counts increased consistently from admission to follow-up, indicative of recovery. CONCLUSION Attenuated eosinophil activity alongside elevated chemokine and cytokine levels during active infection, highlights the complex interplay of immune mediators in the pathogenesis COVID-19 and underscores the need for further investigation into immune biomarkers and treatment strategies.
Collapse
Affiliation(s)
- Maral Ranjbar
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (D.L.B.); (J.W.); (L.W.); (N.A.); (T.H.); (R.S.); (P.M.O.); (M.D.)
| | - Ruth P. Cusack
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (D.L.B.); (J.W.); (L.W.); (N.A.); (T.H.); (R.S.); (P.M.O.); (M.D.)
| | - Christiane E. Whetstone
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (D.L.B.); (J.W.); (L.W.); (N.A.); (T.H.); (R.S.); (P.M.O.); (M.D.)
| | - Danica L. Brister
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (D.L.B.); (J.W.); (L.W.); (N.A.); (T.H.); (R.S.); (P.M.O.); (M.D.)
| | - Jennifer Wattie
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (D.L.B.); (J.W.); (L.W.); (N.A.); (T.H.); (R.S.); (P.M.O.); (M.D.)
| | - Lesley Wiltshire
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (D.L.B.); (J.W.); (L.W.); (N.A.); (T.H.); (R.S.); (P.M.O.); (M.D.)
| | - Nadia Alsaji
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (D.L.B.); (J.W.); (L.W.); (N.A.); (T.H.); (R.S.); (P.M.O.); (M.D.)
| | | | - Eric Cheng
- St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada; (E.C.); (T.S.)
| | - Thivya Srinathan
- St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada; (E.C.); (T.S.)
| | - Terence Ho
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (D.L.B.); (J.W.); (L.W.); (N.A.); (T.H.); (R.S.); (P.M.O.); (M.D.)
- The Research Institute of St. Joe’s Hamilton, Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Roma Sehmi
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (D.L.B.); (J.W.); (L.W.); (N.A.); (T.H.); (R.S.); (P.M.O.); (M.D.)
- The Research Institute of St. Joe’s Hamilton, Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Paul M. O’Byrne
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (D.L.B.); (J.W.); (L.W.); (N.A.); (T.H.); (R.S.); (P.M.O.); (M.D.)
- Hamilton Health Sciences, Hamilton, ON L8N 3Z5, Canada;
- St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada; (E.C.); (T.S.)
| | - Maryonne Snow-Smith
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (M.S.-S.); (M.M.); (A.D.K.)
| | - Michelle Makiya
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (M.S.-S.); (M.M.); (A.D.K.)
| | - Amy D. Klion
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (M.S.-S.); (M.M.); (A.D.K.)
| | - MyLinh Duong
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (D.L.B.); (J.W.); (L.W.); (N.A.); (T.H.); (R.S.); (P.M.O.); (M.D.)
- The Research Institute of St. Joe’s Hamilton, Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON L8N 4A6, Canada
- Population Health Research Institute, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Gail M. Gauvreau
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.R.); (R.P.C.); (C.E.W.); (D.L.B.); (J.W.); (L.W.); (N.A.); (T.H.); (R.S.); (P.M.O.); (M.D.)
| |
Collapse
|
29
|
Gambadauro A, Galletta F, Li Pomi A, Manti S, Piedimonte G. Immune Response to Respiratory Viral Infections. Int J Mol Sci 2024; 25:6178. [PMID: 38892370 PMCID: PMC11172738 DOI: 10.3390/ijms25116178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The respiratory system is constantly exposed to viral infections that are responsible for mild to severe diseases. In this narrative review, we focalized the attention on respiratory syncytial virus (RSV), influenza virus, and severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infections, responsible for high morbidity and mortality in the last decades. We reviewed the human innate and adaptive immune responses in the airways following infection, focusing on a particular population: newborns and pregnant women. The recent Coronavirus disease-2019 (COVID-19) pandemic has highlighted how our interest in viral pathologies must not decrease. Furthermore, we must increase our knowledge of infection mechanisms to improve our future defense strategies.
Collapse
Affiliation(s)
- Antonella Gambadauro
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy; (A.G.); (F.G.); (A.L.P.)
| | - Francesca Galletta
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy; (A.G.); (F.G.); (A.L.P.)
| | - Alessandra Li Pomi
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy; (A.G.); (F.G.); (A.L.P.)
| | - Sara Manti
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy; (A.G.); (F.G.); (A.L.P.)
| | - Giovanni Piedimonte
- Office for Research and Departments of Pediatrics, Biochemistry, and Molecular Biology, Tulane University, New Orleans, LA 70112, USA;
| |
Collapse
|
30
|
Wander K, Fujita M, Mattison S, Gauck M, Duris M, Kiwelu I, Mmbaga BT. Maternal and infant predictors of proinflammatory milk immune activity in Kilimanjaro, Tanzania. Am J Hum Biol 2024; 36:e24061. [PMID: 38429916 DOI: 10.1002/ajhb.24061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/13/2023] [Accepted: 02/24/2024] [Indexed: 03/03/2024] Open
Abstract
OBJECTIVES The immune system of milk (ISOM) creates a mother-infant immune axis that plays an important role in protecting infants against infectious disease (ID). Tradeoffs in the immune system suggest the potential for both protection and harm, so we conceive of two dimensions via which the ISOM impacts infants: promotion of protective activity and control of activity directed at benign targets. High variability in ISOM activity across mother-infant dyads suggests investment the ISOM may have evolved to be sensitive to maternal and/or infant characteristics. We assessed predictors of appropriate and misdirected proinflammatory ISOM activity in an environment of high ID risk, testing predictions drawn from life history theory and other evolutionary perspectives. METHODS We characterized milk in vitro interleukin-6 (IL-6) responses to Salmonella enterica (a target of protective immune activity; N = 96) and Escherichia coli (a benign target; N = 85) among mother-infant dyads in rural Kilimanjaro, Tanzania. We used ordered logistic regression and mixture models to evaluate maternal and infant characteristics as predictors of IL-6 responses. RESULTS In all models, IL-6 responses to S. enterica increased with maternal age and decreased with gravidity. In mixture models, IL-6 responses to E. coli declined with maternal age and increased with gravidity. No other considered variables were consistently associated with IL-6 responses. CONCLUSIONS The ISOM's capacities for appropriate proinflammatory activity and control of misdirected proinflammatory activity increases with maternal age and decreases with gravidity. These findings are consistent with the hypothesis that the mother-infant immune axis has evolved to respond to maternal life history characteristics.
Collapse
Affiliation(s)
- Katherine Wander
- Department of Anthropology, Binghamton University (SUNY), Binghamton, New York, USA
| | - Masako Fujita
- Department of Anthropology, Michigan State University, East Lansing, Michigan, USA
| | - Siobhán Mattison
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, USA
- National Science Foundation, Alexandria, Virginia, USA
| | - Megan Gauck
- Department of Anthropology, Binghamton University (SUNY), Binghamton, New York, USA
| | - Margaret Duris
- Department of Anthropology, Binghamton University (SUNY), Binghamton, New York, USA
| | - Ireen Kiwelu
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
- Kilimanjaro Christian Medical Centre, Kilimanjaro, Tanzania
- Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
| | - Blandina T Mmbaga
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
- Kilimanjaro Christian Medical Centre, Kilimanjaro, Tanzania
- Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
| |
Collapse
|
31
|
Berry GJ, Jhaveri TA, Larkin PMK, Mostafa H, Babady NE. ADLM Guidance Document on Laboratory Diagnosis of Respiratory Viruses. J Appl Lab Med 2024; 9:599-628. [PMID: 38695489 DOI: 10.1093/jalm/jfae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 06/06/2024]
Abstract
Respiratory viral infections are among the most frequent infections experienced worldwide. The COVID-19 pandemic has highlighted the need for testing and currently several tests are available for the detection of a wide range of viruses. These tests vary widely in terms of the number of viral pathogens included, viral markers targeted, regulatory status, and turnaround time to results, as well as their analytical and clinical performance. Given these many variables, selection and interpretation of testing requires thoughtful consideration. The current guidance document is the authors' expert opinion based on the preponderance of available evidence to address key questions related to best practices for laboratory diagnosis of respiratory viral infections including who to test, when to test, and what tests to use. An algorithm is proposed to help laboratories decide on the most appropriate tests to use for the diagnosis of respiratory viral infections.
Collapse
Affiliation(s)
- Gregory J Berry
- Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian-Columbia University Irving Medical Center, New York, NY, United States
| | - Tulip A Jhaveri
- Department of Internal Medicine, Division of Infectious Diseases, University of Mississippi Medical Center, Jackson, MS, United States
| | - Paige M K Larkin
- University of Chicago Pritzker School of Medicine, NorthShore University Health System, Chicago, IL, United States
| | - Heba Mostafa
- Johns Hopkins School of Medicine, Department of Pathology, Baltimore, MD, United States
| | - N Esther Babady
- Clinical Microbiology and Infectious Disease Services, Department of Pathology and Laboratory Medicine and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
32
|
Chia SB, Johnson BJ, Hu J, Vermeulen R, Chadeau-Hyam M, Guntoro F, Montgomery H, Boorgula MP, Sreekanth V, Goodspeed A, Davenport B, Pereira FV, Zaberezhnyy V, Schleicher WE, Gao D, Cadar AN, Papanicolaou M, Beheshti A, Baylin SB, Costello J, Bartley JM, Morrison TE, Aguirre-Ghiso JA, Rincon M, DeGregori J. Respiratory viral infection promotes the awakening and outgrowth of dormant metastatic breast cancer cells in lungs. RESEARCH SQUARE 2024:rs.3.rs-4210090. [PMID: 38645169 PMCID: PMC11030513 DOI: 10.21203/rs.3.rs-4210090/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Breast cancer is the second most common cancer globally. Most deaths from breast cancer are due to metastatic disease which often follows long periods of clinical dormancy1. Understanding the mechanisms that disrupt the quiescence of dormant disseminated cancer cells (DCC) is crucial for addressing metastatic progression. Infection with respiratory viruses (e.g. influenza or SARS-CoV-2) is common and triggers an inflammatory response locally and systemically2,3. Here we show that influenza virus infection leads to loss of the pro-dormancy mesenchymal phenotype in breast DCC in the lung, causing DCC proliferation within days of infection, and a greater than 100-fold expansion of carcinoma cells into metastatic lesions within two weeks. Such DCC phenotypic change and expansion is interleukin-6 (IL-6)-dependent. We further show that CD4 T cells are required for the maintenance of pulmonary metastatic burden post-influenza virus infection, in part through attenuation of CD8 cell responses in the lungs. Single-cell RNA-seq analyses reveal DCC-dependent impairment of T-cell activation in the lungs of infected mice. SARS-CoV-2 infected mice also showed increased breast DCC expansion in lungs post-infection. Expanding our findings to human observational data, we observed that cancer survivors contracting a SARS-CoV-2 infection have substantially increased risks of lung metastatic progression and cancer-related death compared to cancer survivors who did not. These discoveries underscore the significant impact of respiratory viral infections on the resurgence of metastatic cancer, offering novel insights into the interconnection between infectious diseases and cancer metastasis.
Collapse
Affiliation(s)
- Shi B Chia
- University of Colorado Anschutz Medical Campus
| | | | - Junxiao Hu
- University of Colorado Anschutz Medical Campus
| | | | - Marc Chadeau-Hyam
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
| | | | | | | | | | | | | | | | | | | | - Dexiang Gao
- Biostatistics and Bioinformatics Core, University of Colorado Cancer Center
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang Z, Cuthbertson LF, Thomas C, Sallah HJ, Mosscrop LG, Li H, Talts T, Kumar K, Moffatt MF, Tregoning JS. IL-1α is required for T cell-driven weight loss after respiratory viral infection. Mucosal Immunol 2024; 17:272-287. [PMID: 38382577 PMCID: PMC11009121 DOI: 10.1016/j.mucimm.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
Respiratory viral infections remain a major cause of hospitalization and death worldwide. Patients with respiratory infections often lose weight. While acute weight loss is speculated to be a tolerance mechanism to limit pathogen growth, severe weight loss following infection can cause quality of life deterioration. Despite the clinical relevance of respiratory infection-induced weight loss, its mechanism is not yet completely understood. We utilized a model of CD 8+ T cell-driven weight loss during respiratory syncytial virus (RSV) infection to dissect the immune regulation of post-infection weight loss. Supporting previous data, bulk RNA sequencing indicated significant enrichment of the interleukin (IL)-1 signaling pathway after RSV infection. Despite increased viral load, infection-associated weight loss was significantly reduced after IL-1α (but not IL-1β) blockade. IL-1α depletion resulted in a reversal of the gut microbiota changes observed following RSV infection. Direct nasal instillation of IL-1α also caused weight loss. Of note, we detected IL-1α in the brain after either infection or nasal delivery. This was associated with changes in genes controlling appetite after RSV infection and corresponding changes in signaling molecules such as leptin and growth/differentiation factor 15. Together, these findings indicate a lung-brain-gut signaling axis for IL-1α in regulating weight loss after RSV infection.
Collapse
Affiliation(s)
- Ziyin Wang
- Department of Infectious Disease, St. Mary's Campus, Imperial College London, UK
| | | | - Chubicka Thomas
- Department of Infectious Disease, St. Mary's Campus, Imperial College London, UK
| | - Hadijatou J Sallah
- Department of Infectious Disease, St. Mary's Campus, Imperial College London, UK
| | - Lucy G Mosscrop
- Department of Infectious Disease, St. Mary's Campus, Imperial College London, UK
| | - Haoyuan Li
- Department of Infectious Disease, St. Mary's Campus, Imperial College London, UK
| | - Tiina Talts
- Virus Reference Department, Public Health Microbiology, United Kingdom Health Security Agency, London, UK
| | - Kartik Kumar
- National Heart and Lung Institute, Imperial College London, UK
| | | | - John S Tregoning
- Department of Infectious Disease, St. Mary's Campus, Imperial College London, UK.
| |
Collapse
|
34
|
Jonassen TB, Jørgensen SE, Mitchell NH, Mogensen TH, Berg RMG, Ronit A, Plovsing RR. Alveolar cytokines and interferon autoantibodies in COVID-19 ARDS. Front Immunol 2024; 15:1353012. [PMID: 38571960 PMCID: PMC10987806 DOI: 10.3389/fimmu.2024.1353012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Background Type I interferon (IFN-I) and IFN autoantibodies play a crucial role in controlling SARS-CoV-2 infection. The levels of these mediators have only rarely been studied in the alveolar compartment in patients with COVID-19 acute respiratory distress syndrome (CARDS) but have not been compared across different ARDS etiologies, and the potential effect of dexamethasone (DXM) on these mediators is not known. Methods We assessed the integrity of the alveolo-capillary membrane, interleukins, type I, II, and III IFNs, and IFN autoantibodies by studying the epithelial lining fluid (ELF) volumes, alveolar concentration of protein, and ELF-corrected concentrations of cytokines in two patient subgroups and controls. Results A total of 16 patients with CARDS (four without and 12 with DXM treatment), eight with non-CARDS, and 15 healthy controls were included. The highest ELF volumes and protein levels were observed in CARDS. Systemic and ELF-corrected alveolar concentrations of interleukin (IL)-6 appeared to be particularly low in patients with CARDS receiving DXM, whereas alveolar levels of IL-8 were high regardless of DXM treatment. Alveolar levels of IFNs were similar between CARDS and non-CARDS patients, and IFNα and IFNω autoantibody levels were higher in patients with CARDS and non-CARDS than in healthy controls. Conclusions Patients with CARDS exhibited greater alveolo-capillary barrier disruption with compartmentalization of IL-8, regardless of DXM treatment, whereas systemic and alveolar levels of IL-6 were lower in the DXM-treated subgroup. IFN-I autoantibodies were higher in the BALF of CARDS patients, independent of DXM, whereas IFN autoantibodies in plasma were similar to those in controls.
Collapse
Affiliation(s)
- Trine B. Jonassen
- Department of Anesthesiology and Intensive Care, Copenhagen University Hospital-Amager and Hvidovre Hospitals, Hvidovre, Denmark
| | - Sofie E. Jørgensen
- Department of Infectious Diseases, Aarhus University Hospital (AUH), Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Nikki H. Mitchell
- Department of Clinical Biochemistry, Copenhagen University Hospital-Amager and Hvidovre, Hvidovre, Denmark
| | - Trine H. Mogensen
- Department of Infectious Diseases, Aarhus University Hospital (AUH), Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ronan M. G. Berg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Centre for Physical Activity Research, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, United Kingdom
| | - Andreas Ronit
- Department of Infectious Diseases, Copenhagen University Hospital-Amager and Hvidovre Hospitals, Hvidovre, Denmark
| | - Ronni R. Plovsing
- Department of Anesthesiology and Intensive Care, Copenhagen University Hospital-Amager and Hvidovre Hospitals, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Ngo VL, Lieber CM, Kang HJ, Sakamoto K, Kuczma M, Plemper RK, Gewirtz AT. Intestinal microbiota programming of alveolar macrophages influences severity of respiratory viral infection. Cell Host Microbe 2024; 32:335-348.e8. [PMID: 38295788 PMCID: PMC10942762 DOI: 10.1016/j.chom.2024.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/05/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
Susceptibility to respiratory virus infections (RVIs) varies widely across individuals. Because the gut microbiome impacts immune function, we investigated the influence of intestinal microbiota composition on RVI and determined that segmented filamentous bacteria (SFB), naturally acquired or exogenously administered, protected mice against influenza virus (IAV) infection. Such protection, which also applied to respiratory syncytial virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was independent of interferon and adaptive immunity but required basally resident alveolar macrophages (AMs). In SFB-negative mice, AMs were quickly depleted as RVI progressed. In contrast, AMs from SFB-colonized mice were intrinsically altered to resist IAV-induced depletion and inflammatory signaling. Yet, AMs from SFB-colonized mice were not quiescent. Rather, they directly disabled IAV via enhanced complement production and phagocytosis. Accordingly, transfer of SFB-transformed AMs into SFB-free hosts recapitulated SFB-mediated protection against IAV. These findings uncover complex interactions that mechanistically link the intestinal microbiota with AM functionality and RVI severity.
Collapse
Affiliation(s)
- Vu L Ngo
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA
| | - Carolin M Lieber
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA
| | - Hae-Ji Kang
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA
| | - Kaori Sakamoto
- Department of Pathology, University of Georgia College of Veterinary Science, Athens, GA 30602, USA
| | - Michal Kuczma
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA
| | - Richard K Plemper
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA.
| | - Andrew T Gewirtz
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA.
| |
Collapse
|
36
|
Wang H, Wang Y, Zhang D, Li P. Circulating nucleosomes as potential biomarkers for cancer diagnosis and treatment monitoring. Int J Biol Macromol 2024; 262:130005. [PMID: 38331061 DOI: 10.1016/j.ijbiomac.2024.130005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/03/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
Nucleosomes play a crucial role in regulating gene expression through their composition and post-translational modifications. When cells die, intracellular endonucleases are activated and cleave chromatin into oligo- and mono-nucleosomes, which are then released into the body fluids. Studies have shown that the levels of nucleosomes are increased in serum and plasma in various cancer types, suggesting that analysis of circulating nucleosomes can provide an initial assessment of carcinogenesis. However, it should be noted that elevated serum nucleosome levels may not accurately diagnose certain tumor types, as increased cell death may occur in different pathological conditions. Nevertheless, detection of circulating nucleosomes and their histone modifications, along with specific tumor markers, can help diagnose certain types of cancer. Furthermore, monitoring changes in circulating nucleosome levels during chemotherapy or radiotherapy in patients with malignancies can provide valuable insights into clinical outcomes and therapeutic efficacy. The utilization of circulating nucleosomes as biomarkers is an exciting and emerging area of research, with the potential for early detection of various diseases and monitoring of treatment response. Integrating nucleosome-based biomarkers with existing ones may improve the specificity and sensitivity of current assays, offering the possibility of personalized precision medical treatment for patients.
Collapse
Affiliation(s)
- Huawei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China.
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China.
| | - Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China.
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 1 Ningde Road, Qingdao 266073, China.
| |
Collapse
|
37
|
Healey AM, Fenner KN, O'Dell CT, Lawrence BP. Aryl hydrocarbon receptor activation alters immune cell populations in the lung and bone marrow during coronavirus infection. Am J Physiol Lung Cell Mol Physiol 2024; 326:L313-L329. [PMID: 38290163 PMCID: PMC11281796 DOI: 10.1152/ajplung.00236.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
Respiratory viral infections are one of the major causes of illness and death worldwide. Symptoms associated with respiratory infections can range from mild to severe, and there is limited understanding of why there is large variation in severity. Environmental exposures are a potential causative factor. The aryl hydrocarbon receptor (AHR) is an environment-sensing molecule expressed in all immune cells. Although there is considerable evidence that AHR signaling influences immune responses to other immune challenges, including respiratory pathogens, less is known about the impact of AHR signaling on immune responses during coronavirus (CoV) infection. In this study, we report that AHR activation significantly altered immune cells in the lungs and bone marrow of mice infected with a mouse CoV. AHR activation transiently reduced the frequency of multiple cells in the mononuclear phagocyte system, including monocytes, interstitial macrophages, and dendritic cells in the lung. In the bone marrow, AHR activation altered myelopoiesis, as evidenced by a reduction in granulocyte-monocyte progenitor cells and an increased frequency of myeloid-biased progenitor cells. Moreover, AHR activation significantly affected multiple stages of the megakaryocyte lineage. Overall, these findings indicate that AHR activation modulates multiple aspects of the immune response to a CoV infection. Given the significant burden of respiratory viruses on human health, understanding how environmental exposures shape immune responses to infection advances our knowledge of factors that contribute to variability in disease severity and provides insight into novel approaches to prevent or treat disease.NEW & NOTEWORTHY Our study reveals a multifaceted role for aryl hydrocarbon receptor (AHR) signaling in the immune response to coronavirus (CoV) infection. Sustained AHR activation during in vivo mouse CoV infection altered the frequency of mature immune cells in the lung and modulated emergency hematopoiesis, specifically myelopoiesis and megakaryopoiesis, in bone marrow. This provides new insight into immunoregulation by the AHR and extends our understanding of how environmental exposures can impact host responses to respiratory viral infections.
Collapse
Affiliation(s)
- Alicia M Healey
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| | - Kristina N Fenner
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| | - Colleen T O'Dell
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| | - B Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| |
Collapse
|
38
|
Kesika P, Thangaleela S, Sisubalan N, Radha A, Sivamaruthi BS, Chaiyasut C. The Role of the Nuclear Factor-Kappa B (NF-κB) Pathway in SARS-CoV-2 Infection. Pathogens 2024; 13:164. [PMID: 38392902 PMCID: PMC10892479 DOI: 10.3390/pathogens13020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
COVID-19 is a global health threat caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is associated with a significant increase in morbidity and mortality. The present review discusses nuclear factor-kappa B (NF-κB) activation and its potential therapeutical role in treating COVID-19. COVID-19 pathogenesis, the major NF-κB pathways, and the involvement of NF-κB in SARS-CoV-2 have been detailed. Specifically, NF-κB activation and its impact on managing COVID-19 has been discussed. As a central player in the immune and inflammatory responses, modulating NF-κB activation could offer a strategic avenue for managing SARS-CoV-2 infection. Understanding the NF-κB pathway's role could aid in developing treatments against SARS-CoV-2. Further investigations into the intricacies of NF-κB activation are required to reveal effective therapeutic strategies for managing and combating the SARS-CoV-2 infection and COVID-19.
Collapse
Affiliation(s)
- Periyanaina Kesika
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (N.S.)
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Subramanian Thangaleela
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Natarajan Sisubalan
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (N.S.)
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Arumugam Radha
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | | | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
39
|
Decker S, Xiao S, Dillen C, Schumacher CM, Milstone AM, Frieman M, Debes AK. Association of Nirmatrelvir/Ritonavir Treatment and COVID-19-Neutralizing Antibody Titers in a Longitudinal Health Care Worker Cohort. Open Forum Infect Dis 2024; 11:ofad625. [PMID: 38352152 PMCID: PMC10863641 DOI: 10.1093/ofid/ofad625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 02/16/2024] Open
Abstract
Nirmatrelvir/ritonavir (NMV/r) is used for the treatment of coronavirus disease 2019 (COVID-19) infection. However, rebound COVID-19 infections can occur after taking NMV/r. We examined neutralizing antibodies to the severe acute respiratory syndrome coronavirus 2 spike protein before and after infection in people who did and did not take NMV/r to determine if NMV/r impedes the humoral immune response.
Collapse
Affiliation(s)
- Slade Decker
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shaoming Xiao
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Carly Dillen
- Center for Pathogen Research, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Aaron M Milstone
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Matthew Frieman
- Center for Pathogen Research, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Amanda K Debes
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
40
|
Ismail KA, Mukherjee M, Kareta MS, Lopez SMC. Enabling methanol fixation of pediatric nasal wash during respiratory illness for single cell sequencing in comparison with fresh samples. Pediatr Res 2024; 95:835-842. [PMID: 37758866 DOI: 10.1038/s41390-023-02780-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/21/2023] [Accepted: 07/24/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Lower respiratory tract infection (LRTI) including pneumonia, bronchitis, and bronchiolitis is the sixth leading cause of mortality around the world and leading cause of death in children under 5 years. Systemic immune response to viral infection is well characterized. However, there is little data regarding the immune response at the upper respiratory tract mucosa. The upper respiratory mucosa is the site of viral entry, initial replication and the first barrier against respiratory infections. Lower respiratory tract samples can be challenging to obtain and require more invasive procedures. However, nasal wash (NW) samples from the upper respiratory tract can be obtained with minimal discomfort to the patient. METHOD In a pilot study, we developed a protocol using NW samples obtained from hospitalized children with LRTI that enables single cell RNA sequencing (scRNA-seq) after the NW sample is methanol-fixed. RESULTS We found no significant changes in scRNA-seq qualitative and quantitative parameters between methanol-fixed and fresh NW samples. CONCLUSIONS We present a novel protocol to enable scRNA-seq in NW samples from children admitted with LRTI. With the inherent challenges associated with clinical samples, the protocol described allows for processing flexibility as well as multicenter collaboration. IMPACT There are no significant differences in scRNA-seq qualitative and quantitative parameters between methanol fixed and fresh Pediatric Nasal wash samples. The study demonstrates the effectiveness of methanol fixation process on preserving respiratory samples for single cell sequencing. This enables Pediatric Nasal wash specimen for single cell RNA sequencing in pediatric patients with respiratory tract infection and allows processing flexibility and multicenter collaboration.
Collapse
Affiliation(s)
- Khaled A Ismail
- Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD, USA
| | - Malini Mukherjee
- Functional Genomics and Bioinformatics Core, Sioux Falls, SD, USA
| | - Michael S Kareta
- Functional Genomics and Bioinformatics Core, Sioux Falls, SD, USA
- Genetics & Genomics Group, Sanford Research, Sioux Falls, SD, USA
- Department of Pediatrics, Sanford School of Medicine-University of South Dakota, Sioux Falls, SD, USA
| | - Santiago M C Lopez
- Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD, USA.
- Department of Pediatrics, Sanford School of Medicine-University of South Dakota, Sioux Falls, SD, USA.
- Children's Health Specialty Clinic, Sanford Children's Hospital, Sioux Falls, SD, USA.
| |
Collapse
|
41
|
Noh HE, Rha MS. Mucosal Immunity against SARS-CoV-2 in the Respiratory Tract. Pathogens 2024; 13:113. [PMID: 38392851 PMCID: PMC10892713 DOI: 10.3390/pathogens13020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
The respiratory tract, the first-line defense, is constantly exposed to inhaled allergens, pollutants, and pathogens such as respiratory viruses. Emerging evidence has demonstrated that the coordination of innate and adaptive immune responses in the respiratory tract plays a crucial role in the protection against invading respiratory pathogens. Therefore, a better understanding of mucosal immunity in the airways is critical for the development of novel therapeutics and next-generation vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory viruses. Since the coronavirus disease 2019 pandemic, our knowledge of mucosal immune responses in the airways has expanded. In this review, we describe the latest knowledge regarding the key components of the mucosal immune system in the respiratory tract. In addition, we summarize the host immune responses in the upper and lower airways following SARS-CoV-2 infection and vaccination, and discuss the impact of allergic airway inflammation on mucosal immune responses against SARS-CoV-2.
Collapse
Affiliation(s)
- Hae-Eun Noh
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Min-Seok Rha
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
42
|
Ngo VL, Lieber CM, Kang HJ, Sakamoto K, Kuczma M, Plemper RK, Gewirtz AT. Intestinal microbiota programming of alveolar macrophages influences severity of respiratory viral infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.21.558814. [PMID: 37790571 PMCID: PMC10542499 DOI: 10.1101/2023.09.21.558814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Susceptibility to respiratory virus infections (RVIs) varies widely across individuals. Because the gut microbiome impacts immune function, we investigated the influence of intestinal microbiota composition on RVI and determined that segmented filamentous bacteria (SFB), naturally acquired or exogenously administered, protected mice against influenza virus (IAV) infection. Such protection, which also applied to respiratory syncytial virus and SARS-CoV-2, was independent of interferon and adaptive immunity but required basally resident alveolar macrophages (AM). In SFB-negative mice, AM were quickly depleted as RVI progressed. In contrast, AM from SFB-colonized mice were intrinsically altered to resist IAV-induced depletion and inflammatory signaling. Yet, AM from SFB-colonized mice were not quiescent. Rather, they directly disabled IAV via enhanced complement production and phagocytosis. Accordingly, transfer of SFB-transformed AM into SFB-free hosts recapitulated SFB-mediated protection against IAV. These findings uncover complex interactions that mechanistically link the intestinal microbiota with AM functionality and RVI severity. One sentence summary Intestinal segmented filamentous bacteria reprogram alveolar macrophages promoting nonphlogistic defense against respiratory viruses.
Collapse
|
43
|
Imbiakha B, Sahler JM, Buchholz DW, Ezzatpour S, Jager M, Choi A, Monreal IA, Byun H, Adeleke RA, Leach J, Whittaker G, Dewhurst S, Rudd BD, Aguilar HC, August A. Adaptive immune cells are necessary for SARS-CoV-2-induced pathology. SCIENCE ADVANCES 2024; 10:eadg5461. [PMID: 38170764 PMCID: PMC10775995 DOI: 10.1126/sciadv.adg5461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing the ongoing global pandemic associated with morbidity and mortality in humans. Although disease severity correlates with immune dysregulation, the cellular mechanisms of inflammation and pathogenesis of COVID-19 remain relatively poorly understood. Here, we used mouse-adapted SARS-CoV-2 strain MA10 to investigate the role of adaptive immune cells in disease. We found that while infected wild-type mice lost ~10% weight by 3 to 4 days postinfection, rag-/- mice lacking B and T lymphocytes did not lose weight. Infected lungs at peak weight loss revealed lower pathology scores, fewer neutrophils, and lower interleukin-6 and tumor necrosis factor-α in rag-/- mice. Mice lacking αβ T cells also had less severe weight loss, but adoptive transfer of T and B cells into rag-/- mice did not significantly change the response. Collectively, these findings suggest that while adaptive immune cells are important for clearing SARS-CoV-2 infection, this comes at the expense of increased inflammation and pathology.
Collapse
Affiliation(s)
- Brian Imbiakha
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Julie M. Sahler
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - David W. Buchholz
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Shahrzad Ezzatpour
- Department of Microbiology, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY 14853, USA
| | - Mason Jager
- Department of Biomedical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Annette Choi
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Isaac A. Monreal
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Haewon Byun
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Richard Ayomide Adeleke
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Justin Leach
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Gary Whittaker
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Stephen Dewhurst
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Brian D. Rudd
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
- Cornell Institute of Host-Microbe Interactions and Defense; Cornell Center for Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Hector C. Aguilar
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
- Cornell Institute of Host-Microbe Interactions and Defense; Cornell Center for Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Avery August
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
- Cornell Institute of Host-Microbe Interactions and Defense; Cornell Center for Immunology, Cornell University, Ithaca, NY 14853, USA
- Cornell Center for Health Equity, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
44
|
Galanti M, Patiño-Galindo JA, Filip I, Morita H, Galianese A, Youssef M, Comito D, Ligon C, Lane B, Matienzo N, Ibrahim S, Tagne E, Shittu A, Elliott O, Perea-Chamblee T, Natesan S, Rosenbloom DS, Shaman J, Rabadan R. Virome Data Explorer: A web resource to longitudinally explore respiratory viral infections, their interactions with other pathogens and host transcriptomic changes in over 100 people. PLoS Biol 2024; 22:e3002089. [PMID: 38236818 PMCID: PMC10796020 DOI: 10.1371/journal.pbio.3002089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 11/22/2023] [Indexed: 01/22/2024] Open
Abstract
Viral respiratory infections are an important public health concern due to their prevalence, transmissibility, and potential to cause serious disease. Disease severity is the product of several factors beyond the presence of the infectious agent, including specific host immune responses, host genetic makeup, and bacterial coinfections. To understand these interactions within natural infections, we designed a longitudinal cohort study actively surveilling respiratory viruses over the course of 19 months (2016 to 2018) in a diverse cohort in New York City. We integrated the molecular characterization of 800+ nasopharyngeal samples with clinical data from 104 participants. Transcriptomic data enabled the identification of respiratory pathogens in nasopharyngeal samples, the characterization of markers of immune response, the identification of signatures associated with symptom severity, individual viruses, and bacterial coinfections. Specific results include a rapid restoration of baseline conditions after infection, significant transcriptomic differences between symptomatic and asymptomatic infections, and qualitatively similar responses across different viruses. We created an interactive computational resource (Virome Data Explorer) to facilitate access to the data and visualization of analytical results.
Collapse
Affiliation(s)
- Marta Galanti
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Juan Angel Patiño-Galindo
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Ioan Filip
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Haruka Morita
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Angelica Galianese
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Mariam Youssef
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Devon Comito
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Chanel Ligon
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Benjamin Lane
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Nelsa Matienzo
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Sadiat Ibrahim
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Eudosie Tagne
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Atinuke Shittu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Oliver Elliott
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Tomin Perea-Chamblee
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Sanjay Natesan
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Daniel Scholes Rosenbloom
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Jeffrey Shaman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Raul Rabadan
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| |
Collapse
|
45
|
Lotfi A, Hajian P, Abbasi L, Gargari MK, Fard NNG, Naderi D. A Review on Role of Inflammation in Coronavirus Disease. Endocr Metab Immune Disord Drug Targets 2024; 24:1488-1505. [PMID: 38303532 DOI: 10.2174/0118715303265274231204075802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/25/2023] [Accepted: 10/25/2023] [Indexed: 02/03/2024]
Abstract
The respiratory illness known as COVID-19 is caused by the novel coronavirus, SARS-CoV-2. While the precise pathogenic mechanism of COVID-19 remains unclear, the occurrence of a cytokine storm subsequent to viral infection plays a pivotal role in the initiation and advancement of the disease. The infection of SARS-CoV-2 induces a state of immune system hyperactivity, leading to an excessive production of inflammatory cytokines. Consequently, the identification of the various signaling pathways implicated in the inflammation induced by COVID-19 will enable researchers to investigate new targets for therapeutic intervention.
Collapse
Affiliation(s)
| | - Pouran Hajian
- Department of Anesthesiology, Besat Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Laleh Abbasi
- Guilan University of Medical Sciences, Rasht, Iran
| | | | - Najmeh Nameh Goshay Fard
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Delaram Naderi
- Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
46
|
Spadera L, Lugarà M, Spadera M, Conticelli M, Oliva G, Bassi V, Apuzzi V, Calderaro F, Fattoruso O, Guzzi P, D'Amora M, Catapano O, Marra R, Galdo M, Zappalà M, Inui T, Mette M, Vitiello G, Corvino M, Tortoriello G. Adjunctive use of oral MAF is associated with no disease progression or mortality in hospitalized patients with COVID-19 pneumonia: The single-arm COral-MAF1 prospective trial. Biomed Pharmacother 2023; 169:115894. [PMID: 37988850 DOI: 10.1016/j.biopha.2023.115894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023] Open
Abstract
Based on a growing body of evidence that a dysregulated innate immune response mediated by monocytes/macrophages plays a key role in the pathogenesis of COVID-19, a clinical trial was conducted to investigate the therapeutic potential and safety of oral macrophage activating factor (MAF) plus standard of care (SoC) in the treatment of hospitalized patients with COVID-19 pneumonia. Ninety-seven hospitalized patients with confirmed COVID-19 pneumonia were treated with oral MAF and a vitamin D3 supplement, in combination with SoC, in a single-arm, open label, multicentre, phase II clinical trial. The primary outcome measure was a reduction in an intensive care unit transfer rate below 13% after MAF administration. At the end of the study, an additional propensity score matching (PSM) analysis was performed to compare the MAF group with a control group treated with SoC alone. Out of 97 patients treated with MAF, none needed care in the ICU and/or intubation with mechanical ventilation or died during hospitalization. Oxygen therapy was discontinued after a median of nine days of MAF treatment. The median length of viral shedding and hospital stay was 14 days and 18 days, respectively. After PSM, statistically significant differences were found in all of the in-hospital outcomes between the two groups. No mild to serious adverse events were recorded during the study. Notwithstanding the limitations of a single-arm study, which prevented definitive conclusions, a 21-day course of MAF treatment plus SoC was found to be safe and promising in the treatment of hospitalized adult patients with COVID-19 pneumonia. Further research will be needed to confirm these preliminary findings.
Collapse
Affiliation(s)
- Lucrezia Spadera
- Department of Otolaryngology-Head and Neck Surgery, Ospedale del Mare hospital, ASL Napoli 1 Centro, Naples, Italy.
| | - Marina Lugarà
- Department of General Medicine, Ospedale del Mare hospital, ASL Napoli 1 Centro, Naples, Italy
| | - Maria Spadera
- Department of Anesthesiology and Intensive Care, San Giovanni Bosco hospital, ASL Napoli 1 Centro, Naples, Italy
| | - Mariano Conticelli
- Department of Clinical Pathology, Ospedale del Mare Hospital, ASL Napoli 1 Centro, Naples, Italy
| | - Gabriella Oliva
- Department of General Medicine, Ospedale del Mare hospital, ASL Napoli 1 Centro, Naples, Italy
| | - Vincenzo Bassi
- Department of General Medicine, San Giovanni Bosco Hospital, ASL Napoli 1 Centro, Naples, Italy
| | - Valentina Apuzzi
- Department of General Medicine, San Giovanni Bosco Hospital, ASL Napoli 1 Centro, Naples, Italy
| | - Francesco Calderaro
- Department of General Medicine, San Giovanni Bosco Hospital, ASL Napoli 1 Centro, Naples, Italy
| | - Olimpia Fattoruso
- Department of Clinical Pathology, San Giovanni Bosco Hospital, ASL Napoli 1 Centro, Naples, Italy
| | - Pietro Guzzi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Campus Universitario, Germaneto, 88100 Catanzaro, Italy
| | - Maurizio D'Amora
- Department of Laboratory Medicine and Clinical Pathology, San Paolo Hospital, ASL Napoli 1 Centro, Naples, Italy
| | - Oriana Catapano
- Department of Laboratory Medicine and Clinical Pathology, San Paolo Hospital, ASL Napoli 1 Centro, Naples, Italy
| | - Roberta Marra
- Department of Pharmacy, Ospedale del Mare Hospital, ASL Napoli 1 Centro, Naples, Italy
| | - Maria Galdo
- Department of Pharmacy, AORN Ospedali dei Colli Monaldi - Cotugno - C.T.O. Hospital, Naples, Italy
| | - Michele Zappalà
- Department of Medicine, Vesuvio Clinic, ASL Napoli 1 Centro, Naples, Italy
| | - Toshio Inui
- Department of Life System, Institute of Technology and Science, Graduate School, Tokushima University, Tokushima, Japan; Saisei Mirai Cell Processing Center, Osaka, Japan; Saisei Mirai Keihan Clinic, Osaka, Japan; Saisei Mirai Kobe Clinic, Kobe, Japan
| | - Martin Mette
- Saisei Mirai Keihan Clinic, Osaka, Japan; Saisei Mirai Kobe Clinic, Kobe, Japan
| | - Giuseppe Vitiello
- Department of Health Management, Ospedale del Mare hospital, ASL Napoli 1 Centro, Naples, Italy
| | - Maria Corvino
- Department of Health Management, ASL Napoli 1 Centro, Naples, Italy
| | - Giuseppe Tortoriello
- Department of Otolaryngology-Head and Neck Surgery, AORN Ospedali dei Colli Monaldi - Cotugno - C.T.O. Hospital, Naples, Italy
| |
Collapse
|
47
|
Daskou M, Fotooh Abadi L, Gain C, Wong M, Sharma E, Kombe Kombe AJ, Nanduri R, Kelesidis T. The Role of the NRF2 Pathway in the Pathogenesis of Viral Respiratory Infections. Pathogens 2023; 13:39. [PMID: 38251346 PMCID: PMC10819673 DOI: 10.3390/pathogens13010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
In humans, acute and chronic respiratory infections caused by viruses are associated with considerable morbidity and mortality. Respiratory viruses infect airway epithelial cells and induce oxidative stress, yet the exact pathogenesis remains unclear. Oxidative stress activates the transcription factor NRF2, which plays a key role in alleviating redox-induced cellular injury. The transcriptional activation of NRF2 has been reported to affect both viral replication and associated inflammation pathways. There is complex bidirectional crosstalk between virus replication and the NRF2 pathway because virus replication directly or indirectly regulates NRF2 expression, and NRF2 activation can reversely hamper viral replication and viral spread across cells and tissues. In this review, we discuss the complex role of the NRF2 pathway in the regulation of the pathogenesis of the main respiratory viruses, including coronaviruses, influenza viruses, respiratory syncytial virus (RSV), and rhinoviruses. We also summarize the scientific evidence regarding the effects of the known NRF2 agonists that can be utilized to alter the NRF2 pathway.
Collapse
Affiliation(s)
- Maria Daskou
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Leila Fotooh Abadi
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| | - Chandrima Gain
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Wong
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Eashan Sharma
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Arnaud John Kombe Kombe
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| | - Ravikanth Nanduri
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| | - Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.F.A.); (R.N.)
| |
Collapse
|
48
|
Michon M, Müller-Schiffmann A, Lingappa AF, Yu SF, Du L, Deiter F, Broce S, Mallesh S, Crabtree J, Lingappa UF, Macieik A, Müller L, Ostermann PN, Andrée M, Adams O, Schaal H, Hogan RJ, Tripp RA, Appaiah U, Anand SK, Campi TW, Ford MJ, Reed JC, Lin J, Akintunde O, Copeland K, Nichols C, Petrouski E, Moreira AR, Jiang IT, DeYarman N, Brown I, Lau S, Segal I, Goldsmith D, Hong S, Asundi V, Briggs EM, Phyo NS, Froehlich M, Onisko B, Matlack K, Dey D, Lingappa JR, Prasad MD, Kitaygorodskyy A, Solas D, Boushey H, Greenland J, Pillai S, Lo MK, Montgomery JM, Spiropoulou CF, Korth C, Selvarajah S, Paulvannan K, Lingappa VR. A Pan-Respiratory Antiviral Chemotype Targeting a Host Multi-Protein Complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2021.01.17.426875. [PMID: 34931190 PMCID: PMC8687465 DOI: 10.1101/2021.01.17.426875] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We present a novel small molecule antiviral chemotype that was identified by an unconventional cell-free protein synthesis and assembly-based phenotypic screen for modulation of viral capsid assembly. Activity of PAV-431, a representative compound from the series, has been validated against infectious virus in multiple cell culture models for all six families of viruses causing most respiratory disease in humans. In animals this chemotype has been demonstrated efficacious for Porcine Epidemic Diarrhea Virus (a coronavirus) and Respiratory Syncytial Virus (a paramyxovirus). PAV-431 is shown to bind to the protein 14-3-3, a known allosteric modulator. However, it only appears to target the small subset of 14-3-3 which is present in a dynamic multi-protein complex whose components include proteins implicated in viral lifecycles and in innate immunity. The composition of this target multi-protein complex appears to be modified upon viral infection and largely restored by PAV-431 treatment. Our findings suggest a new paradigm for understanding, and drugging, the host-virus interface, which leads to a new clinical therapeutic strategy for treatment of respiratory viral disease.
Collapse
Affiliation(s)
- Maya Michon
- Prosetta Biosciences, San Francisco, CA, USA
| | | | | | | | - Li Du
- Vitalant Research Institute, San Francisco, CA, USA
| | - Fred Deiter
- Veterans Administration Medical Center, San Francisco, CA, USA
| | - Sean Broce
- Prosetta Biosciences, San Francisco, CA, USA
| | | | - Jackelyn Crabtree
- University of Georgia, Animal Health Research Center, Athens, GA, USA
| | | | | | - Lisa Müller
- Institute of Virology, Heinrich Heine University, Düsseldorf, Germany
| | | | - Marcel Andrée
- Institute of Virology, Heinrich Heine University, Düsseldorf, Germany
| | - Ortwin Adams
- Institute of Virology, Heinrich Heine University, Düsseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, Heinrich Heine University, Düsseldorf, Germany
| | - Robert J. Hogan
- University of Georgia, Animal Health Research Center, Athens, GA, USA
| | - Ralph A. Tripp
- University of Georgia, Animal Health Research Center, Athens, GA, USA
| | | | | | | | | | - Jonathan C. Reed
- Dept. of Global Health, University of Washington, Seattle, WA, USA
| | - Jim Lin
- Prosetta Biosciences, San Francisco, CA, USA
| | | | | | | | | | | | | | | | - Ian Brown
- Prosetta Biosciences, San Francisco, CA, USA
| | - Sharon Lau
- Prosetta Biosciences, San Francisco, CA, USA
| | - Ilana Segal
- Prosetta Biosciences, San Francisco, CA, USA
| | | | - Shi Hong
- Prosetta Biosciences, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - John Greenland
- Veterans Administration Medical Center, San Francisco, CA, USA
- University of California, San Francisco, CA, USA
| | - Satish Pillai
- Vitalant Research Institute, San Francisco, CA, USA
- University of California, San Francisco, CA, USA
| | - Michael K. Lo
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joel M. Montgomery
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Carsten Korth
- Institute of Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| | | | | | - Vishwanath R. Lingappa
- Prosetta Biosciences, San Francisco, CA, USA
- University of California, San Francisco, CA, USA
| |
Collapse
|
49
|
Magalhães VG, Lukassen S, Drechsler M, Loske J, Burkart SS, Wüst S, Jacobsen EM, Röhmel J, Mall MA, Debatin KM, Eils R, Autenrieth S, Janda A, Lehmann I, Binder M. Immune-epithelial cell cross-talk enhances antiviral responsiveness to SARS-CoV-2 in children. EMBO Rep 2023; 24:e57912. [PMID: 37818799 DOI: 10.15252/embr.202357912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
The risk of developing severe COVID-19 rises dramatically with age. Schoolchildren are significantly less likely than older people to die from SARS-CoV-2 infection, but the molecular mechanisms underlying this age-dependence are unknown. In primary infections, innate immunity is critical due to the lack of immune memory. Children, in particular, have a significantly stronger interferon response due to a primed state of their airway epithelium. In single-cell transcriptomes of nasal turbinates, we find increased frequencies of immune cells and stronger cytokine-mediated interactions with epithelial cells, resulting in increased epithelial expression of viral sensors (RIG-I, MDA5) via IRF1. In vitro, adolescent peripheral blood mononuclear cells produce more cytokines, priming A549 cells for stronger interferon responses to SARS-CoV-2. Taken together, our findings suggest that increased numbers of immune cells in the airways of children and enhanced cytokine-based interactions with epithelial cells tune the setpoint of the epithelial antiviral system. Our findings shed light on the molecular basis of children's remarkable resistance to COVID-19 and may suggest a novel concept for immunoprophylactic treatments.
Collapse
Affiliation(s)
- Vladimir G Magalhães
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sören Lukassen
- Center for Digital Health, Berlin Institute of Health at the Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Maike Drechsler
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jennifer Loske
- Molecular Epidemiology Unit, Center for Digital Health, Berlin Institute of Health at the Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sandy S Burkart
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Sandra Wüst
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eva-Maria Jacobsen
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Jobst Röhmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner, Berlin, Germany
- Berlin Institute of Health at the Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Roland Eils
- Center for Digital Health, Berlin Institute of Health at the Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner, Berlin, Germany
- Health Data Science Unit, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Stella Autenrieth
- Research Group "Dendritic Cells in Infection and Cancer" (F171), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Aleš Janda
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Irina Lehmann
- Molecular Epidemiology Unit, Center for Digital Health, Berlin Institute of Health at the Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner, Berlin, Germany
| | - Marco Binder
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
50
|
Ramadan Q, Hazaymeh R, Zourob M. Immunity-on-a-Chip: Integration of Immune Components into the Scheme of Organ-on-a-Chip Systems. Adv Biol (Weinh) 2023; 7:e2200312. [PMID: 36866511 DOI: 10.1002/adbi.202200312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/16/2023] [Indexed: 03/04/2023]
Abstract
Studying the immune system in vitro aims to understand how, when, and where the immune cells migrate/differentiate and respond to the various triggering events and the decision points along the immune response journey. It becomes evident that organ-on-a-chip (OOC) technology has a superior capability to recapitulate the cell-cell and tissue-tissue interaction in the body, with a great potential to provide tools for tracking the paracrine signaling with high spatial-temporal precision and implementing in situ real-time, non-destructive detection assays, therefore, enabling extraction of mechanistic information rather than phenotypic information. However, despite the rapid development in this technology, integration of the immune system into OOC devices stays among the least navigated tasks, with immune cells still the major missing components in the developed models. This is mainly due to the complexity of the immune system and the reductionist methodology of the OOC modules. Dedicated research in this field is demanded to establish the understanding of mechanism-based disease endotypes rather than phenotypes. Herein, we systemically present a synthesis of the state-of-the-art of immune-cantered OOC technology. We comprehensively outlined what is achieved and identified the technology gaps emphasizing the missing components required to establish immune-competent OOCs and bridge these gaps.
Collapse
Affiliation(s)
- Qasem Ramadan
- Alfaisal University, Riyadh, 11533, Kingdom of Saudi Arabia
| | - Rana Hazaymeh
- Almaarefa University, Diriyah, 13713, Kingdom of Saudi Arabia
| | | |
Collapse
|