1
|
Liu YH, Lee YL, Han CL, Lo YC, Liao ZA, Shih YS, Lin YW, Peng SW, Lee KY, Ho SC, Wu SM, Lin CW, Chung KF, Chang JH, Chuang HC. ITIH4 alleviates OVA-induced asthma by regulating lung-gut microbiota. Mol Med 2025; 31:204. [PMID: 40410722 PMCID: PMC12102971 DOI: 10.1186/s10020-025-01270-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 05/16/2025] [Indexed: 05/25/2025] Open
Abstract
BACKGROUND Inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4), a Type 2 acute phase protein, is critical for resolving inflammation and promoting tissue repair. While its role in chronic respiratory diseases is recognized, its effects on asthma remain unclear. This study investigated the effects of ITIH4 on the modulation of lung and gut microbiota, the attenuation of allergic inflammation, and the improvement of respiratory outcomes in an asthma mouse model. METHODS Six-week-old male Balb/c mice were divided into five groups: control, ITIH4, ovalbumin (OVA), and two OVA + ITIH4 treatment groups at different doses. Lung function and oxygen saturation were measured, and bronchoalveolar lavage fluid (BALF) was analyzed for white blood cell counts and cytokines. Lung and gut microbiota were profiled using 16 S rRNA gene sequencing, and short-chain fatty acids (SCFAs) were measured using gas chromatography-mass spectrometry (GC-MS). Proteomic profiling of intestinal tissues was conducted to identify ITIH4-associated signaling pathways. RESULTS ITIH4 administration significantly mitigated OVA-induced asthma symptoms by reducing weight loss, airway resistance, and tissue damping (p < 0.05). Histological analysis showed decreased airway wall thickening and lung injury scores (p < 0.05). ITIH4 also lowered BALF eosinophils and lymphocytes, IgE, and Th2 cytokines (IL-4, IL-5, and IL-13) (p < 0.05). ITIH4 treatment modulated microbiome composition, enriching Gram-positive taxa (Nocardioidaceae and Acholeplasmataceae) and depleting Gram-negative Helicobacteraceae (p < 0.05). SCFAs correlated with microbiome alterations, notably reduced 4-methylpentanoic acid levels (p < 0.05). Proteomic analysis revealed a dose-dependent activation of granzyme A signaling and suppression of metabolic and solute transport pathways. CONCLUSIONS ITIH4 ameliorates asthma symptoms by modulating lung and gut microbiota, dampening Th2-driven inflammation, and restoring mucosal immune balance. These findings support ITIH4 as a potential candidate for microbiome-targeted asthma therapy.
Collapse
Affiliation(s)
- Yi-Hsuan Liu
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Li Han
- Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chun Lo
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Zih-An Liao
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Yu-Syuan Shih
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Yi-Wen Lin
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Syue-Wei Peng
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Shu-Chuan Ho
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Cheng-Wei Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, Taipei Medical University, Taipei, Taiwan
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jer-Hwa Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
- National Heart and Lung Institute, Imperial College London, London, UK.
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
2
|
Krasowski R, Kamińska K, Głodek K, Ostrowska J, Zajda K, Pawliczak R, Kleniewska P. The therapeutic potential of vitamin D supplementation in asthma. Pharmacol Rep 2025:10.1007/s43440-025-00734-5. [PMID: 40392518 DOI: 10.1007/s43440-025-00734-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/27/2025] [Accepted: 05/08/2025] [Indexed: 05/22/2025]
Abstract
Recent years have seen a search for more effective forms of asthma therapy, with one possible option being vitamin D supplementation. The main objective of this study was to present the current state of knowledge on the effect of vitamin D supplementation on the course of asthma in children and adults; it also reviews the existing literature on prenatal vitamin D supplementation and asthma status. The search comprised articles, mostly randomized controlled trials (RCTs), included in the PubMed database and published after 2018. Most RCTs conducted on children indicate that vitamin supplementation did not affect the course of the disease, its control, or exacerbations; however, several trials in adults confirm it to have beneficial effects, with an important role being played by vitamin D deficiency. Unfortunately, the studies demonstrated considerable heterogeneity concerning the age and number of participants, dose, duration, and use of guidelines for pharmaceutical drugs, making it difficult to draw clear conclusions. Further, properly designed, large-scale studies with long-term follow-ups are needed.
Collapse
Affiliation(s)
- Rafał Krasowski
- Department of Immunopathology, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, bldg 2 Rm 177, Łódź, 90-752, Poland
| | - Katarzyna Kamińska
- Department of Immunopathology, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, bldg 2 Rm 177, Łódź, 90-752, Poland
| | - Katarzyna Głodek
- Department of Immunopathology, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, bldg 2 Rm 177, Łódź, 90-752, Poland
| | - Joanna Ostrowska
- Department of Immunopathology, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, bldg 2 Rm 177, Łódź, 90-752, Poland
| | - Klaudiusz Zajda
- Department of Immunopathology, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, bldg 2 Rm 177, Łódź, 90-752, Poland
| | - Rafał Pawliczak
- Department of Immunopathology, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, bldg 2 Rm 177, Łódź, 90-752, Poland
| | - Paulina Kleniewska
- Department of Immunopathology, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, bldg 2 Rm 177, Łódź, 90-752, Poland.
| |
Collapse
|
3
|
Liu S, Zheng J, Lan W, Yang Z, Li M, Li J, Yu J, Yang S, Du J, Dong R, Lin Y. Microplastics exposed by respiratory tract and exacerbation of community-acquired pneumonia: The potential influences of respiratory microbiota and inflammatory factors. ENVIRONMENT INTERNATIONAL 2025; 199:109485. [PMID: 40252548 DOI: 10.1016/j.envint.2025.109485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 04/05/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
The relationships between microplastics (MP) exposure through respiratory and exacerbation of community-acquired pneumonia (CAP), as well as the potential influences of respiratory microbiota and inflammatory factors remain unknown in adults. Therefore, we conducted a cross-sectional study involving 50 non-severe CAP (NSCAP) and severe CAP (SCAP) patients to examine the associations of MP exposure in sputum (SP) and bronchoalveolar lavage fluid (BALF) samples with SCAP risk, and the underlying influences of respiratory microbiota and inflammatory factors. The average concentration of total MP was 23.24 μg/g dw and 4.49 μg/g dw in SP and BALF samples, with the detection rates of 98 % and 94 %. Participants who performing housework often or sedentary time ≤ 5h exhibited a higher proportion of high exposure to MP. Multivariable logistic regression and weighted quantile sum regression models showed the significantly positive relationships of single type or overall MP exposure with SCAP risk. Correlation analysis revealed that MP concentrations in BALF samples were significantly associated with multiple respiratory microbiota and inflammatory factors, particularly with the reduction in α-diversity indices of the respiratory microbiota. Our findings demonstrated that respiratory exposure to MP may cause the risk increase of SCAP, along with the alterations of respiratory microbiota and inflammatory factors. It is recommended that patients with CAP should reduce the respiratory exposure to MP for preventing the exacerbation of CAP in clinical practice.
Collapse
Affiliation(s)
- Shaojie Liu
- Department of Clinical Nutrition, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | | | - Wenbin Lan
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Zhiping Yang
- Department of Clinical Nutrition, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Meizhen Li
- Department of Clinical Nutrition, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Jing Li
- Zhongshan Community Health Care Center, Songjiang District, Shanghai 201613, China
| | - Jianguo Yu
- Zhongshan Community Health Care Center, Songjiang District, Shanghai 201613, China
| | - Shuyu Yang
- Nutrilite Health Institute, Shanghai 200023, China
| | - Jun Du
- Nutrilite Health Institute, Shanghai 200023, China
| | - Ruihua Dong
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Yihua Lin
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China.
| |
Collapse
|
4
|
Huang C, He W, Liu L, Han X, Yuan Y, Huang J, Liu F, He Q, Kan H, Chen R, Zhang X, Niu Y. Associations of ambient fine particulate matter with lung function and nasal microbiota: A panel study in asthmatic children. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126084. [PMID: 40113204 DOI: 10.1016/j.envpol.2025.126084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 02/19/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Fine particulate matter (PM2.5) has been associated with an increased risk of asthma. However, the underlying mechanisms through which PM2.5 affects respiratory health in children with asthma remain poorly understood. To address this gap, we performed a panel study to investigate the associations of short-term PM2.5 exposure with lung function and nasal microbiota in asthmatic children. The study included 50 school-aged asthmatic children, who underwent repeated examinations every three months, including lung function testing and nasal swab sample collection. Linear mixed-effect models and the linear discriminant analysis effect size were adopted to evaluate the impacts of PM2.5 on lung function and nasal microbiota. Based on 160 lung function records and 160 nasal samples, we found that per interquartile range increase in PM2.5 concentration at lag 0-72 h was associated with a decrease of 0.09 L (95 % CI: 0.01, 0.16), 0.30 L/s (95 CI: 0.04, 0.57), 0.18 L/s (95 % CI: 0.03, 0.33), and 0.30 L/s (95 % CI: 0.07, 0.53) in forced expiratory volume in 1 s, forced expiratory flow at 50 % and 75 % of forced vital capacity, and the maximal mid-expiratory flow, respectively. Additionally, short-term exposure to PM2.5 was also associated with decreased Chao 1 and Simpson's index, decreased relative abundance in Corynebacterium and Staphylococcus, and increased relative abundance in Muribaculaceae, Ralstonia, and Moraxella. In conclusion, our study demonstrated that short-term exposure to PM2.5 may impair small airway function, reduce nasal microbiota evenness, and induce microbiota dysbiosis in asthmatic children.
Collapse
Affiliation(s)
- Chang Huang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Wen He
- Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Lijuan Liu
- Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Xiao Han
- Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yuan Yuan
- Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Jianfeng Huang
- Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Fang Liu
- Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Qinglin He
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Xiaobo Zhang
- Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai, China.
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Niculescu AG, Mitache MM, Grumezescu AM, Chifiriuc MC, Mihai MM, Tantu MM, Tantu AC, Popa LG, Grigore GA, Cristian RE, Popa MI, Vrancianu CO. From Microbial Ecology to Clinical Challenges: The Respiratory Microbiome's Role in Antibiotic Resistance. Pathogens 2025; 14:355. [PMID: 40333133 PMCID: PMC12030467 DOI: 10.3390/pathogens14040355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 05/09/2025] Open
Abstract
Antibiotic resistance represents a growing public health threat, with airborne drug-resistant strains being especially alarming due to their ease of transmission and association with severe respiratory infections. The respiratory microbiome plays a pivotal role in maintaining respiratory health, influencing the dynamics of antibiotic resistance among airborne pathogenic microorganisms. In this context, this review proposes the exploration of the complex interplay between the respiratory microbiota and antimicrobial resistance, highlighting the implications of microbiome diversity in health and disease. Moreover, strategies to mitigate antibiotic resistance, including stewardship programs, alternatives to traditional antibiotics, probiotics, microbiota restoration techniques, and nanotechnology-based therapeutic interventions, are critically presented, setting an updated framework of current management options. Therefore, through a better understanding of respiratory microbiome roles in antibiotic resistance, alongside emerging therapeutic strategies, this paper aims to shed light on how the global health challenges posed by multi-drug-resistant pathogens can be addressed.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050663 Bucharest, Romania; (G.A.G.)
| | - Mihaela Magdalena Mitache
- Department of Preclinical Disciplines, Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050663 Bucharest, Romania; (G.A.G.)
| | - Mariana Carmen Chifiriuc
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050663 Bucharest, Romania; (G.A.G.)
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- Biological Sciences Division, Romanian Academy, Calea Victoriei 125, Sector 1, 010071 Bucharest, Romania
| | - Mara Madalina Mihai
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Oncologic Dermatology, “Elias” University Emergency Hospital, 010024 Bucharest, Romania
| | - Monica Marilena Tantu
- Department of Medical Assistance and Physical Therapy, Pitesti University Center, Târgu din Vale 1, 110040 Pitești, Romania;
- Faculty of Science, Physical Education and Informatics, National University of Science and Technology, Politehnica, Splaiul Independenței 313, District 6, 060042 Bucharest, Romania
| | - Ana Catalina Tantu
- Doctoral School, University of Medicine and Pharmacy of Craiova, Petru Rareș 2, 200349 Craiova, Romania;
- Emergency Clinical County Hospital of Craiova, Tabaci 1, 200642 Craiova, Romania
| | - Loredana Gabriela Popa
- Microbiology Discipline II, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (L.G.P.); (M.I.P.)
| | - Georgiana Alexandra Grigore
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050663 Bucharest, Romania; (G.A.G.)
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, 060031 Bucharest, Romania
| | - Roxana-Elena Cristian
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050663 Bucharest, Romania; (G.A.G.)
- National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, 060031 Bucharest, Romania
| | - Mircea Ioan Popa
- Microbiology Discipline II, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (L.G.P.); (M.I.P.)
- Preclinical Testing Unit, Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050663 Bucharest, Romania; (G.A.G.)
- National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, 060031 Bucharest, Romania
- Doctoral School, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari 8, District 5, 050474 Bucharest, Romania
| |
Collapse
|
6
|
Chrustek A, Dombrowska-Pali A, Olszewska-Słonina D, Wiktorczyk-Kapischke N, Socha MW, Budzyńska A, Sadowska-Krawczenko I. Human Milk Microbiome from Polish Women Giving Birth via Vaginal Delivery-Pilot Study. BIOLOGY 2025; 14:332. [PMID: 40282197 PMCID: PMC12024558 DOI: 10.3390/biology14040332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025]
Abstract
The human milk (HM) microbiome is variable and depends on maternal, perinatal, and cultural-environmental factors. The diversity of the HM microbiome is crucial in the development of the child. The aim of the study was to assess the prevalence of bacteria (using culture-based methods) of Polish women with normal BMI, giving birth on time through vaginal delivery. METHODS The research material consisted of human milk and swabs from the areola and nipple, before and after breastfeeding, derived from Polish women (n = 86). Classic culture methods were used to obtain multiple bacteria. Species identification of the grown colonies was performed using MALDI TOF MS (Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry). RESULTS 120 species of bacteria were isolated, mainly from the genus Streptococcus and Staphylococcus. Species specific only to human milk were identified (belonging to the following genera: Microbacterium, Shewanella, Psychrobacter, Aeromonas, Serratia, Buttiauxella, Lactobacillus, Bifidobacterium) as well as species specific only to areola and nipple swabs after breastfeeding (Acinetobacter lactucae, Moraxella catarrhalis, Corynebacterium pseudodiphtheriticum, Corynebacterium propinquim). It was confirmed that most species were present in all tested materials collected from one patient. CONCLUSIONS The analysis carried out showed the presence of bacteria in the human milk of Polish women, including strains of lactic acid bacteria. The human milk microbiota may significantly influence the formation of the infant's intestinal microbiota, including some key genera, i.e., Lactobacillus, Bifidobacterium, and Limosilactobacillus, which were also isolated from the tested samples. The data presented here provide new data on culturable bacterial species isolated from breast milk from Polish women giving birth via vaginal delivery and potential routes of transmission from the neonate's oral cavity.
Collapse
Affiliation(s)
- Agnieszka Chrustek
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Curie-Skłodowska 9 St., 85-094 Bydgoszcz, Poland;
| | - Agnieszka Dombrowska-Pali
- Department of Perinatology, Gynecology and Gynecological Oncology, Faculty of Health Sciences, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Łukasiewicza 1 St., 85-821 Bydgoszcz, Poland; (A.D.-P.); (M.W.S.)
| | - Dorota Olszewska-Słonina
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Curie-Skłodowska 9 St., 85-094 Bydgoszcz, Poland;
| | - Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Curie-Skłodowska 9 St., 85-094 Bydgoszcz, Poland; (N.W.-K.); (A.B.)
| | - Maciej W. Socha
- Department of Perinatology, Gynecology and Gynecological Oncology, Faculty of Health Sciences, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Łukasiewicza 1 St., 85-821 Bydgoszcz, Poland; (A.D.-P.); (M.W.S.)
| | - Anna Budzyńska
- Department of Microbiology, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Curie-Skłodowska 9 St., 85-094 Bydgoszcz, Poland; (N.W.-K.); (A.B.)
| | - Iwona Sadowska-Krawczenko
- Department of Neonatology, Faculty of Medicine, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Ujejskiego 75 St., 85-168 Bydgoszcz, Poland;
| |
Collapse
|
7
|
Guo W, Hong E, Ma H, Wang J, Wang Q. Effect of the gut microbiome, skin microbiome, plasma metabolome, white blood cells subtype, immune cells, inflammatory proteins, and inflammatory cytokines on asthma: a two-sample Mendelian randomized study and mediation analysis. Front Immunol 2025; 16:1436888. [PMID: 40191192 PMCID: PMC11968350 DOI: 10.3389/fimmu.2025.1436888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Background Asthma is a chronic inflammatory disorder arising from incompletely understood heterogenic gene-environment interactions. This study aims to investigate causal relationships among gut microbiota, skin microbiota, plasma metabolomics, white blood cells subtype, immune cells, inflammatory proteins, inflammatory cytokines, and asthma. Methods First, two-sample Mendelian randomization analysis was used to identify causal relationships. The summary statistics of 412 gut microbiota traits (N = 7 738), 150 skin microbiota traits (N = 579), 1 400 plasma metabolite traits (N = 8 299), white blood cells subtype counts (N = 746 667), 731 immune cell traits (N = 3 669), 91 circulating inflammatory proteins (N = 14 744), 41 inflammatory cytokine traits (N = 8 293), and asthma traits (N = 244 562) were obtained from publicly available genome-wide association studies. Inverse-variance weighted regression was used as the primary Mendelian randomization method. A series of sensitivity analyses was performed to test the robustness of causal estimates. Subsequently, mediation analysis was performed to identify the pathway from gut or skin microbiota to asthma mediated by plasma metabolites, immune cells, and inflammatory proteins. Results Mendelian randomization revealed the causal effects of 31 gut bacterial features (abundances of 19 bacterial pathways and 12 microbiota), 10 skin bacterial features, 108 plasma metabolites (81 metabolites and 27 ratios), 81 immune cells, five circulating inflammatory proteins, and three inflammatory cytokines and asthma. Moreover, the mediation analysis results supported the mediating effects of one plasma metabolite, five immunophenotypes, and one inflammatory protein on the gut or skin microbiota in asthma pathogenesis. Conclusion The findings of this study support a causal relationship among gut microbiota, skin microbiota, plasma metabolites, immune cells, inflammatory proteins, inflammatory cytokines, and asthma. Mediating pathways through which the above factors may affect asthma were proposed. The biomarkers and mediation pathways identified in this work provide new insights into the mechanism of asthma and contribute to its prevention and treatment.
Collapse
Affiliation(s)
- Wenqian Guo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Er Hong
- Department of Respiratory Medicine, Ningbo Hospital of Traditional Chinese Medicine, Zhejiang University of Chinese Medicine, Ningbo, China
| | - Han Ma
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ji Wang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Du LJ, Che C, Liu Q, Zhang X, Feng N, Chen L, Wang L. The relationship between energy intake and asthma in Americans aged 1-18 years: a cross-sectional study. BMC Pediatr 2025; 25:180. [PMID: 40065274 PMCID: PMC11895307 DOI: 10.1186/s12887-025-05552-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
OBJECTIVE The objective of this study was to investigate the effects of total dietary energy intake on asthma. STUDY SELECTION The study was a retrospective cross-sectional study of Americans aged 1-18 year. Comprehensive demographic, dietary, examination, laboratory, and asthma questionnaire data were collected for each participant. Multivariate logistic regression, restricted triple spline curves, threshold effects, and stratified analyses were used for analysis. RESULTS Of 12,090 participants, 1,893 (15.66%) had a diagnosis of asthma. After accounting for potential confounders, compared with the group with the lowest energy intake (Q1), groups 2 (Q2), groups 3 (Q3), and groups 4 (Q4) had adjusted odds ratios (ORs) of 0.72 (0.62-0.85), 0.63 (0.51-0.77) and 0.55 (0.43-0.7) for asthma. The relationship between total energy intake and asthma showed an L-shaped curve (p = 0.001). The results were further verified by stratification and sensitivity analyses. In the threshold analysis, we found that the saturation effect was reached at a total energy intake of 56.442 kcal/kg/day with an OR of 0.981 (0.973-0.989). CONCLUSION The prevalence of asthma in Americans aged 1-18 years was associated with total dietary energy intake in an L-shaped curve, with a significant turning point found at approximately 56.442 kcal/kg/day.
Collapse
Affiliation(s)
- Lin Jun Du
- The Third People's Hospital of Liaocheng City, Liaocheng, Shandong Province, China
| | - Chao Che
- Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qian Liu
- Jinan Fifth People's Hospital, Jinan, Shandong Province, China
| | - Xiaolan Zhang
- The Third People's Hospital of Liaocheng City, Liaocheng, Shandong Province, China
| | - Ning Feng
- The Third People's Hospital of Liaocheng City, Liaocheng, Shandong Province, China
| | - Lifang Chen
- The Third People's Hospital of Liaocheng City, Liaocheng, Shandong Province, China
| | - Lili Wang
- Maternal and Child Health Center, Chiping District, Liaocheng City, Shandong Province, China.
| |
Collapse
|
9
|
Zhang M, Qin Z, Huang C, Liang B, Zhang X, Sun W. The gut microbiota modulates airway inflammation in allergic asthma through the gut-lung axis related immune modulation: A review. BIOMOLECULES & BIOMEDICINE 2025; 25:727-738. [PMID: 39465678 PMCID: PMC11959394 DOI: 10.17305/bb.2024.11280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/20/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
The human gut microbiota is a vast and complex microbial community. According to statistics, the number of bacteria residing in the human intestinal tract is approximately ten times that of total human cells, with over 1000 different species. The interaction between the gut microbiota and various organ tissues plays a crucial role in the pathogenesis of local and systemic diseases, exerting a significant influence on disease progression. The relationship between the gut microbiota and intestinal diseases, along with its connection to the pulmonary immune environment and the development of lung diseases, is commonly referred to as the "gut-lung axis." The incidence of bronchial asthma is rising globally. With ongoing research on gut microbiota, it is widely believed that intestinal microorganisms and their metabolic products directly or indirectly participate in the occurrence and development of asthma. Based on the gut-lung axis, this review examines recent research suggesting that the intestinal microbiota can influence the occurrence and progression of allergic asthma through the modulation of cytokine immune balance and mucosal integrity. Though the precise immune pathways or microbial species influencing asthma through the gut-lung axis are still under exploration, summarizing the immune modulation through the gut-lung axis in allergic asthma may provide insights for the clinical management of the condition.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Gastroenterology, People’s Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Ziwen Qin
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Chuanjun Huang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Bin Liang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Xiuqing Zhang
- Department of Radiology, Dongying City Dongying District People’s Hospital, Dongying, Shandong Province, China
| | - Weitao Sun
- Department of Respiratory Medicine, Dongying City Dongying District People’s Hospital, Dongying, Shandong Province, China
| |
Collapse
|
10
|
Li R, Mu X, Liu Z, Huang R, Peng X. Association of type 2 diabetes, hypertension, and hyperlipidemia with immune-related adverse events in patients undergoing immune checkpoint inhibitors therapy. Front Immunol 2025; 16:1472197. [PMID: 40124377 PMCID: PMC11925786 DOI: 10.3389/fimmu.2025.1472197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
Aims Immune-related adverse events (irAEs) pose a significant challenge to the clinical use of immune checkpoint inhibitors (ICIs) in cancer immunotherapy. This study aims to determine whether comorbid conditions such as type 2 diabetes (T2DM), hypertension, and hyperlipidemia affect the risk of irAEs in cancer patients receiving ICIs treatments. Materials and methods We conducted a retrospective analysis of clinical data from 3,489 cancer patients treated with ICIs (anti-PD-1, anti-PD-L1, and anti-CTLA-4) at West China Hospital of Sichuan University from 2017 to 2022. Logistic regression models were used to evaluate the associations between T2DM, hypertension, and hyperlipidemia with irAEs. Subgroup analyses assessed irAEs in patients with and without these comorbidities across different cancer types. Additionally, we explored the associations between comorbidities and irAEs affecting different organs. Results The results showed that comorbid T2DM, hypertension, and hyperlipidemia significantly increased the risk of irAEs in all cancer types (T2DM: OR=1.40, 95% CI: 1.12-1.74, p=0.003; hypertension: OR=1.21, 95% CI: 1.00-1.45, p=0.049; hyperlipidemia: OR=1.62, 95% CI: 1.02-2.53, p=0.038). T2DM primarily increased the risk of irAEs in lung cancer patients (OR = 1.50, 95% CI: 1.12-2.01, FDR-adjusted p = 0.036), and all three comorbidities significantly elevated the risk of cardiac irAEs. Conclusions Our study is the first to confirm an association between T2DM, hypertension, and hyperlipidemia and the occurrence of irAEs in cancer patients receiving ICIs therapy. This finding highlights the critical need for clinicians to perform comprehensive evaluations of patients' comorbidities prior to treatment.
Collapse
Affiliation(s)
- Ruidan Li
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoli Mu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zheran Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Rendong Huang
- Hangzhou Linan Guorui Health Industry Investment Co.,Ltd., Hangzhou, China
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Zheng J, Huang Y, Zhang L, Liu T, Zou Y, He L, Guo S. Role of the Gut-Lung Microbiome Axis in Airway Inflammation in OVA-Challenged Mice and the Effect of Azithromycin. J Inflamm Res 2025; 18:2661-2676. [PMID: 40008084 PMCID: PMC11853874 DOI: 10.2147/jir.s506688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Objective This study aimed to investigate the role of the gut-lung microbiome axis in airway inflammation in asthma and to evaluate the effect of azithromycin on this axis, with a focus on the potential mechanism by which azithromycin reduces allergic airway inflammation. Methods Haematoxylin and eosin (H&E) and periodic acid-Schiff (PAS) staining were used to assess pathological changes in the lung tissues of asthmatic mice. Leukocyte cell types in bronchoalveolar lavage fluid (BALF) samples were quantified following Wright-Giemsa staining. Total IgE, OVA-specific IgE, IL-4, IL-6, and IL-17A levels in BALF and total IgE in serum were measured by ELISA. The respiratory and gut microbiota were analysed using 16S rRNA gene sequencing and subsequent taxonomic analysis. Results OVA-challenged asthmatic mice with gut microbiota dysbiosis exhibited alterations in the respiratory microbiota, resulting in further aggravation of airway inflammation. Following faecal microbiota transplantation (FMT) to restore gut microbiota, respiratory microbiota dysbiosis was partially improved, and airway inflammation was significantly alleviated. Furthermore, azithromycin reduced airway inflammation in asthmatic mice, particularly non-eosinophilic inflammation, for which low-dose azithromycin combined with budesonide proved more effective. Azithromycin significantly enhanced the diversity and microbial composition of the gut microbiota and also affected the respiratory microbiota. At the phylum level, azithromycin decreased the abundance of Proteobacteria in the gut microbiota. At the genus level, azithromycin reduced the abundance of Pseudomonas in the respiratory microbiota. Conclusion The gut-lung microbiome axis plays a crucial role in airway inflammation in asthma. Azithromycin may reduce airway inflammation in asthma through modulation of the gut-lung microbiome axis.
Collapse
Affiliation(s)
- Jun Zheng
- Department of Traditional Chinese Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yuying Huang
- Department of Traditional Chinese Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Liang Zhang
- Department of Endocrine, Genetics and Metabolism, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Tiantian Liu
- Department of Traditional Chinese Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Ya Zou
- Department of Traditional Chinese Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Li He
- Department of Traditional Chinese Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Sheng Guo
- Department of Endocrine, Genetics and Metabolism, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
12
|
Bano Y, Shrivastava A, Shukla P, Chaudhary AA, Khan SUD, Khan S. The implication of microbiome in lungs cancer: mechanisms and strategies of cancer growth, diagnosis and therapy. Crit Rev Microbiol 2025; 51:128-152. [PMID: 38556797 DOI: 10.1080/1040841x.2024.2324864] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 04/02/2024]
Abstract
Available evidence illustrates that microbiome is a promising target for the study of growth, diagnosis and therapy of various types of cancer. Lung cancer is a leading cause of cancer death worldwide. The relationship of microbiota and their products with diverse pathologic conditions has been getting large attention. The novel research suggests that the microbiome plays an important role in the growth and progression of lung cancer. The lung microbiome plays a crucial role in maintaining mucosal immunity and synchronizing the stability between tolerance and inflammation. Alteration in microbiome is identified as a critical player in the progression of lung cancer and negatively impacts the patient. Studies suggest that healthy microbiome is essential for effective therapy. Various clinical trials and research are focusing on enhancing the treatment efficacy by altering the microbiome. The regulation of microbiota will provide innovative and promising treatment strategies for the maintenance of host homeostasis and the prevention of lung cancer in lung cancer patients. In the current review article, we presented the latest progress about the involvement of microbiome in the growth and diagnosis of lung cancer. Furthermore, we also assessed the therapeutic status of the microbiome for the management and treatment of lung cancer.
Collapse
Affiliation(s)
- Yasmin Bano
- Department of Biotechnology, College of Life Sciences, Cancer Hospital and research Institute, Gwalior, India
- Centre for Genomics, Molecular and Human Genetics, Jiwaji University, Gwalior, India
| | - Abhinav Shrivastava
- Department of Biotechnology, College of Life Sciences, Cancer Hospital and research Institute, Gwalior, India
| | - Piyush Shukla
- Centre for Genomics, Molecular and Human Genetics, Jiwaji University, Gwalior, India
- Laboratory of Natural Products, Department of Rural Technology and Social Development, Guru Ghasidas University, Bilaspur, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Shahanavaj Khan
- Department of Medical Lab Technology, Indian Institute of Health Technology (IIHT), Deoband, Saharanpur, UP, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, Australia
| |
Collapse
|
13
|
Asri AK, Liu T, Tsai HJ, Wang JY, Wu CD. Environmental exposures related to gut microbiota among children with asthma: a pioneer study in Taiwan. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117793. [PMID: 39892323 DOI: 10.1016/j.ecoenv.2025.117793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/01/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Gut microbiota plays a crucial role in human health and can be influenced by environmental factors. While past studies have examined the impact of the environment on gut microbiota, vulnerable populations have often been overlooked. This study aimed to investigate the association between environmental exposures, air pollution and greenspace, and gut microbiota in asthmatic children. Data were collected during the recovery period for 41 eligible children. Air pollution was estimated using an ensemble learning model that combined regression and machine-learning algorithms, while greenspace was quantified using the normalized difference vegetation index (NDVI) and green land-cover data. The lag effects of exposures were assessed within defined buffer zones surrounding each child's residence. A generalized additive model was applied to examine associations. Results revealed a marginally significant negative association between 1-day lag exposure to NO₂ and gut microbiota indices, such as observed bacteria (Coef.: -1.130; 95 %CI -2.287, 0.027) and bacterial richness (Coef.: -2.420; 95 %CI -4.987, 0.146). The 8-day lagged average exposure to PM2.5 and O₃ also showed negative impacts on bacterial diversity. In contrast, the 1-month lagged average exposure to greenspace was positively associated with microbiota indices. Air pollution and greenspace were also linked to specific bacterial abundances, such as Streptococcus. This study underscores the need for further research on how environmental factors may influence immunity in asthmatic children by altering gut microbiota.
Collapse
Affiliation(s)
- Aji Kusumaning Asri
- Department of Geomatics, National Cheng Kung University, Tainan 701, Taiwan, ROC.
| | - Tsunglin Liu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan, ROC.
| | - Hui-Ju Tsai
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli 350, Taiwan, ROC.
| | - Jiu-Yao Wang
- Department of Allergy and Immunology, China Medical University Children's Hospital, Taichung 404, Taiwan, ROC; Allergy, Immunology, and Microbiome (A.I.M.) Research Center, China Medical University, Taichung 404, Taiwan, ROC.
| | - Chih-Da Wu
- Department of Geomatics, National Cheng Kung University, Tainan 701, Taiwan, ROC; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 35053, Taiwan, ROC; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan, ROC; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC.
| |
Collapse
|
14
|
Wei W, Xie Z, Yan J, Luo R, He J. Progress in research on induced sputum in asthma: a narrative review. J Asthma 2025; 62:189-204. [PMID: 39290080 DOI: 10.1080/02770903.2024.2395383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/01/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024]
Abstract
OBJECTIVE To explore the clinical significance of induced sputum in asthma through a retrospective analysis of induced sputum in patients with asthma. DATA SOURCES The data and references cited in this article were obtained from PubMed, Sci-Hub, and Web of Science. STUDY SELECTION Observational studies with reliable data were selected. CONCLUSIONS The cytological count, -omics, and pathogen detection of induced sputum are helpful for the clinical diagnosis of asthma and in guiding medication choices.
Collapse
Affiliation(s)
- Wenjie Wei
- Department of Respiratory and Critical Care Medicine, Hunan University of Medicine General Hospital, Huaihua, People's Republic of China
| | - Zhihao Xie
- Pediatric Department, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, People's Republic of China
| | - Jun Yan
- Pediatric Department, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, People's Republic of China
| | - Renrui Luo
- Department of Respiratory and Critical Care Medicine, Hunan University of Medicine General Hospital, Huaihua, People's Republic of China
| | - Jianbin He
- Department of Respiratory and Critical Care Medicine, Hunan University of Medicine General Hospital, Huaihua, People's Republic of China
| |
Collapse
|
15
|
Burrows K, Ngai L, Chiaranunt P, Watt J, Popple S, Forde B, Denha S, Olyntho VM, Tai SL, Cao EY, Tejeda-Garibay S, Koenig JFE, Mayer-Barber KD, Streutker CJ, Hoyer KK, Osborne LC, Liu J, O'Mahony L, Mortha A. A gut commensal protozoan determines respiratory disease outcomes by shaping pulmonary immunity. Cell 2025; 188:316-330.e12. [PMID: 39706191 PMCID: PMC11761380 DOI: 10.1016/j.cell.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/07/2024] [Accepted: 11/13/2024] [Indexed: 12/23/2024]
Abstract
The underlying mechanisms used by the intestinal microbiota to shape disease outcomes of the host are poorly understood. Here, we show that the gut commensal protozoan, Tritrichomonas musculis (T.mu), remotely shapes the lung immune landscape to facilitate perivascular shielding of the airways by eosinophils. Lung-specific eosinophilia requires a tripartite immune network between gut-derived inflammatory group 2 innate lymphoid cells and lung-resident T cells and B cells. This network exacerbates the severity of allergic airway inflammation while hindering the systemic dissemination of pulmonary Mycobacterium tuberculosis. The identification of protozoan DNA sequences in the sputum of patients with severe allergic asthma further emphasizes the relevance of commensal protozoa in human disease. Collectively, these findings demonstrate that a commensal protozoan tunes pulmonary immunity via a gut-operated lung immune network, promoting both beneficial and detrimental disease outcomes in response to environmental airway allergens and pulmonary infections.
Collapse
Affiliation(s)
- Kyle Burrows
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Louis Ngai
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Pailin Chiaranunt
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Jacqueline Watt
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sarah Popple
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Brian Forde
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Saven Denha
- Schroeder Allergy and Immunology Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Vitoria M Olyntho
- Schroeder Allergy and Immunology Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Siu Ling Tai
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Eric Yixiao Cao
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Susana Tejeda-Garibay
- Health Sciences Research Institute, University of California Merced, Merced, CA, USA
| | - Joshua F E Koenig
- Schroeder Allergy and Immunology Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Catherine J Streutker
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Katrina K Hoyer
- Health Sciences Research Institute, University of California Merced, Merced, CA, USA
| | - Lisa C Osborne
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Jun Liu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Liam O'Mahony
- Department of Medicine, University College Cork, Cork, Ireland
| | - Arthur Mortha
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
16
|
Dera N, Kosińska-Kaczyńska K, Żeber-Lubecka N, Brawura-Biskupski-Samaha R, Massalska D, Szymusik I, Dera K, Ciebiera M. Impact of Early-Life Microbiota on Immune System Development and Allergic Disorders. Biomedicines 2025; 13:121. [PMID: 39857705 PMCID: PMC11762082 DOI: 10.3390/biomedicines13010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Introduction: The shaping of the human intestinal microbiota starts during the intrauterine period and continues through the subsequent stages of extrauterine life. The microbiota plays a significant role in the predisposition and development of immune diseases, as well as various inflammatory processes. Importantly, the proper colonization of the fetal digestive system is influenced by maternal microbiota, the method of pregnancy completion and the further formation of the microbiota. In the subsequent stages of a child's life, breastfeeding, diet and the use of antibiotics influence the state of eubiosis, which determines proper growth and development from the neonatal period to adulthood. The literature data suggest that there is evidence to confirm that the intestinal microbiota of the infant plays an important role in regulating the immune response associated with the development of allergic diseases. However, the identification of specific bacterial species in relation to specific types of reactions in allergic diseases is the basic problem. Background: The main aim of the review was to demonstrate the influence of the microbiota of the mother, fetus and newborn on the functioning of the immune system in the context of allergies and asthma. Methods: We reviewed and thoroughly analyzed the content of over 1000 articles and abstracts between the beginning of June and the end of August 2024. Over 150 articles were selected for the detailed study. Results: The selection was based on the PubMed National Library of Medicine search engine, using selected keywords: "the impact of intestinal microbiota on the development of immune diseases and asthma", "intestinal microbiota and allergic diseases", "the impact of intrauterine microbiota on the development of asthma", "intrauterine microbiota and immune diseases", "intrauterine microbiota and atopic dermatitis", "intrauterine microbiota and food allergies", "maternal microbiota", "fetal microbiota" and "neonatal microbiota". The above relationships constituted the main criteria for including articles in the analysis. Conclusions: In the present review, we showed a relationship between the proper maternal microbiota and the normal functioning of the fetal and neonatal immune system. The state of eubiosis with an adequate amount and diversity of microbiota is essential in preventing the development of immune and allergic diseases. The way the microbiota is shaped, resulting from the health-promoting behavior of pregnant women, the rational conduct of the medical staff and the proper performance of the diagnostic and therapeutic process, is necessary to maintain the health of the mother and the child. Therefore, an appropriate lifestyle, rational antibiotic therapy as well as the way of completing the pregnancy are indispensable in the prevention of the above conditions. At the same time, considering the intestinal microbiota of the newborn in relation to the genera and phyla of bacteria that have a potentially protective effect, it is worth noting that the use of suitable probiotics and prebiotics seems to contribute to the protective effect.
Collapse
Affiliation(s)
- Norbert Dera
- Department of Obstetrics, Perinatology and Neonatology, Center of Postgraduate Medical Education, 01-809 Warsaw, Poland; (N.D.); (K.K.-K.); (R.B.-B.-S.); (I.S.)
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland; (D.M.); (M.C.)
| | - Katarzyna Kosińska-Kaczyńska
- Department of Obstetrics, Perinatology and Neonatology, Center of Postgraduate Medical Education, 01-809 Warsaw, Poland; (N.D.); (K.K.-K.); (R.B.-B.-S.); (I.S.)
| | - Natalia Żeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Center of Postgraduate Medical Education, 02-781 Warsaw, Poland;
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Robert Brawura-Biskupski-Samaha
- Department of Obstetrics, Perinatology and Neonatology, Center of Postgraduate Medical Education, 01-809 Warsaw, Poland; (N.D.); (K.K.-K.); (R.B.-B.-S.); (I.S.)
| | - Diana Massalska
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland; (D.M.); (M.C.)
- Second Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, 00-189 Warsaw, Poland
| | - Iwona Szymusik
- Department of Obstetrics, Perinatology and Neonatology, Center of Postgraduate Medical Education, 01-809 Warsaw, Poland; (N.D.); (K.K.-K.); (R.B.-B.-S.); (I.S.)
| | - Kacper Dera
- Pediatric Ward, Department of Pediatrics, Center of Postgraduate Medical Education, Bielański Hospital, 01-809 Warsaw, Poland
| | - Michał Ciebiera
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland; (D.M.); (M.C.)
- Second Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, 00-189 Warsaw, Poland
| |
Collapse
|
17
|
Nour TY, Altintaş KH. Obesity after Natural disasters and Associated Risk Factors: A Systematic Review. Disaster Med Public Health Prep 2025; 19:e8. [PMID: 39763199 DOI: 10.1017/dmp.2024.347] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
BACKGROUND Natural disasters occur unexpectedly, leading to long-term consequences like obesity. That contributes to various noncommunicable diseases such as cardiovascular disease, diabetes, and cancer. This review aimed to examine the link between natural disasters and obesity, along with related risk factors. OBJECTIVE This systematic review aimed to examine the relationship between natural disasters and obesity, as well as the associated risk factors. METHODS A thorough search was conducted using electronic databases such as PubMed, Scopus, Web of Science, HINARI, and Google Scholar. Additional articles were manually searched. Studies that reported weight gain and risk factors were included. The quality of the studies was assessed using the Joanna Briggs Institute (JBI) tools. Data were collected from eligible articles and synthesized. RESULTS The participants in this research ranged from 3 months to 67 years old. Of the 17 articles, 11 focused on children, while the 5 focused on adults and 1 on adolescents. All studies followed a cohort design, with follow-up periods varying from 6 months to 15.5 years. Results indicated weight gain post-disaster, with risk factors including sedentary behavior, unhealthy eating habits, maternal high Body Mass Index (BMI), mixed feeding, stress, alcohol consumption, coastal residence, temporary housing, and timing from disaster onset. CONCLUSIONS This research emphasizes the significance of addressing post-disaster obesity as a pivotal aspect of public health, suggesting its integration with immediate priorities such as trauma management. Emphasizing its long-lasting effects across generations, the study offers policymakers valuable insights to develop effective approaches in tackling post-disaster obesity.
Collapse
Affiliation(s)
- Tahir Yousuf Nour
- Institute of Health Science, School of Public Health, Department of Public Health, Jigjiga University, Jigjiga, Ethiopia
- Faculty of Medicine, Department of Public Health, Hacettepe University, Ankara, Türkiye
| | - Kerim Hakan Altintaş
- Faculty of Medicine, Department of Public Health, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
18
|
Deflorin N, Ehlert U, Amiel Castro RT. Associations of Maternal Salivary Cortisol and Psychological Symptoms With Human Milk's Microbiome Composition. BIOPSYCHOSOCIAL SCIENCE AND MEDICINE 2025; 87:33-45. [PMID: 39701568 DOI: 10.1097/psy.0000000000001351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
OBJECTIVE Human milk (HM) is considered the best source of infant nutrition with many benefits for the infant. However, pregnancy changes can lead to increased stress in some women, which might affect HM composition. Although studies have demonstrated a link between maternal psychopathology and child development, it remains unclear how maternal psychobiological changes can be intergenerationally transmitted. We aimed to investigate the associations of maternal stress, depressive symptoms, and anxiety symptoms with the HM microbiome; to analyze these parameters in relation to HM glucocorticoid concentrations; and to explore the influence of HM glucocorticoids on HM bacterial composition. METHODS One hundred women completed psychological questionnaires (e.g., EPDS, STAI, GAS) at 34-36 weeks' gestation and in the early postpartum period and provided saliva at 34-36 and 38 weeks' gestation. HM samples were collected in the early postpartum. Microbiota were analyzed using 16S rRNA amplicon sequencing. RESULTS Birth anxiety was negatively correlated with Alphaproteobacteria (τ = -0.20, FDR = 0.01), whereas in the postpartum period, anxiety symptoms were negatively correlated with different taxa. The sum of postpartum-related symptoms was linked to lower Propionibacteriales. Salivary cortisol AUCg at 34-36 weeks was negatively correlated with Stenotrophomonas (τ = -0.24, FDR = 0.05), whereas HM cortisol was positively correlated with Streptococcus mitis (τ = 0.26, FDR = 0.03) and Gemella haemolysans (τ = 0.24, FDR = 0.02). No associations emerged between psychobiological parameters and HM glucocorticoids. CONCLUSIONS Higher perinatal psychological symptoms and prenatal salivary cortisol AUCg were associated with lower relative abundances of different bacteria, whereas higher HM cortisol was linked to higher Gemella and Streptococcus. These findings suggest a negative association between high maternal psychobiological symptoms and relative abundances of the milk microbiota.
Collapse
Affiliation(s)
- Nadia Deflorin
- From the Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
19
|
Chiu CY, Chiang MH, Kuo CN, Cheng ML, Lin G. Multi-biofluid metabolomics analysis of allergic respiratory rhinitis and asthma in early childhood. World Allergy Organ J 2025; 18:101013. [PMID: 39810829 PMCID: PMC11731466 DOI: 10.1016/j.waojou.2024.101013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 11/01/2024] [Accepted: 11/18/2024] [Indexed: 01/16/2025] Open
Abstract
Background Childhood rhinitis and asthma are allergic respiratory diseases triggered by common allergens, but they affect different parts of the respiratory system, leading to distinct symptoms. However, a comprehensive multi-biofluid metabolomics-based approach to uncover valuable insights into childhood allergies and allergen sensitization remains unaddressed. Methods Seventy-six children, comprising 26 with rhinitis, 26 with asthma, and 24 healthy controls, were enrolled. Fecal, blood, and urine metabolomic analyses using 1H nuclear magnetic resonance (NMR) spectroscopy were conducted. An integrative analysis of their associations with allergen-specific IgE levels in the context of allergic rhinitis and asthma were also assessed. Results The analysis of 228 various biofluid samples revealed strong positive correlations between stool and blood metabolites, while blood metabolites exhibited negative correlations with most urine metabolites. Five and 19 metabolites were significantly different in children with rhinitis and asthma, respectively (P < 0.05). Among them, blood isovaleric acid correlated positively with stool IgE levels in rhinitis, while stool butyric acid and acetic acid in asthma exhibited strong negative correlations with total serum and mite allergen-specific IgE levels (P < 0.01). Blood metabolic profiles appeared to have the highest area under the curve (AUC) of 0.732 for rhinitis, whereas stool metabolic profiles had the highest AUC of 0.799 for asthma. Conclusions Multiple biofluid metabolomics provides comprehensive insights into childhood allergies, with blood profiles associated with allergic rhinitis and fecal profiles linked to asthma. Their short-chain fatty acid metabolites related to IgE levels emphasize the significant role of the gut microbiota in childhood rhinitis and asthma.
Collapse
Affiliation(s)
- Chih-Yung Chiu
- Division of Pediatric Pulmonology, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Meng-Han Chiang
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chieh-Ni Kuo
- Division of Pediatric Pulmonology, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, Taiwan
| | - Mei-Ling Cheng
- Department of Biomedical Sciences, and Metabolomics Core Laboratory, Healthy Aging Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Gigin Lin
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Medical Imaging and Intervention, Imaging Core Laboratory, Institute for Radiological Research, and Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
20
|
Xia Z, Zhao X, Wang L, Huang L, Yang Y, Yin X, He L, Aga Y, Kahaer A, Yang S, Hao L, Chen C. Amelioration of Inflammation in Rats with Experimentally Induced Asthma by Spenceria ramalana Trimen Polyphenols via the PI3K/Akt Signaling Pathway. Int J Mol Sci 2024; 26:165. [PMID: 39796021 PMCID: PMC11720363 DOI: 10.3390/ijms26010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/13/2025] Open
Abstract
Asthma is a chronic inflammatory respiratory disease that affects millions globally and poses a serious public health challenge. Current therapeutic strategies, including corticosteroids, are constrained by variable patient responses and adverse effects. In this study, a polyphenolic extract derived from the Tibetan medicinal plant Spenceria ramalana Trimen (SRT) was employed and shown to improve experimentally (ovalbumin + cigarette smoke, OVA + CS) induced asthma in rats. Initially, the potential therapeutic mechanism of the polyphenolic components in SRT on OVA + CS-induced asthma was predicated by network pharmacology analysis. Subsequently, in vivo experiments identified that SRT polyphenols exhibit significant anti-asthmatic activities, primarily mediated by lowering inflammatory cell counts such as the WBC (white blood cell), eosinophils, and neutrophils, decreasing the expression of inflammatory cytokines (IL-4, IL-5, IL-13, and TNF-α), alleviating lung histological damage (reduced inflammation, collagen deposition, and mucus secretion), and enhancing the epithelial barrier integrity (upregulation of ZO-1, occludin, and claudin-1). Additionally, SRT polyphenols downregulated the PI3K/Akt (Phosphoinositide 3-kinase/protein kinase B) signaling pathway, improved gut microbiota disruption, and regulated fecal metabolites (glucose-6-glutamate, PS (16:0/0:0), 8-aminocaprylic acid, galactonic acid, Ascr#10, 2,3,4,5,6,7-hexahydroxyheptanoic acid, phosphodimethylethanolamine, muramic acid, 9-oxohexadeca-10e-enoic acid, and sedoheptulose) in asthmatic rats. In conclusion, SRT polyphenols exerted multifaceted protective effects against OVA + CS-induced asthma in rats, highlighting their potential value in preventing asthma via the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Zhaobin Xia
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
| | - Xing Zhao
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
| | - Lu Wang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China
| | - Lin Huang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China
| | - Yanwen Yang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China
| | - Xiangyu Yin
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
| | - Luyu He
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
| | - Yuebumo Aga
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
| | - Ankaer Kahaer
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
| | - Shiyu Yang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
| | - Lili Hao
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China
| | - Chaoxi Chen
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.X.); (X.Z.); (L.W.); (L.H.); (Y.Y.); (X.Y.); (L.H.); (Y.A.); (A.K.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
21
|
Gao L, Chen X, Jiang Z, Zhu J, Wang Q. Respiratory Flora Intervention: A New Strategy for the Prevention and Treatment of Occupationally Related Respiratory Allergy in Healthcare Workers. Microorganisms 2024; 12:2653. [PMID: 39770855 PMCID: PMC11728507 DOI: 10.3390/microorganisms12122653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/05/2025] Open
Abstract
Occupational allergic respiratory disease in healthcare workers due to occupational exposure has received widespread attention. At the same time, evidence of altered respiratory flora associated with the development of allergy has been found in relevant epidemiologic studies. It is of concern that the composition of nasopharyngeal flora in healthcare workers differs significantly from that of non-healthcare workers due to occupational factors, with a particularly high prevalence of carriage of pathogenic and drug-resistant bacteria. Recent studies have found that interventions with upper respiratory tract probiotics can significantly reduce the incidence of respiratory allergies and infections. We searched PubMed and other databases to describe the burden of allergic respiratory disease and altered respiratory flora in healthcare workers in this narrative review, and we summarize the mechanisms and current state of clinical research on the use of flora interventions to ameliorate respiratory allergy, with the aim of providing a new direction for protecting the respiratory health of healthcare workers.
Collapse
Affiliation(s)
| | | | | | | | - Qiang Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironment, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China; (L.G.); (X.C.); (Z.J.); (J.Z.)
| |
Collapse
|
22
|
Pérez-Losada M, Castro-Nallar E, García-Huidobro J, Boechat JL, Delgado L, Rama TA, Oliveira M. The nasal mycobiome of individuals with allergic rhinitis and asthma differs from that of healthy controls in composition, structure and function. Front Microbiol 2024; 15:1464257. [PMID: 39741585 PMCID: PMC11685215 DOI: 10.3389/fmicb.2024.1464257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/17/2024] [Indexed: 01/03/2025] Open
Abstract
Allergic rhinitis (AR) and asthma (AS) are two of the most common chronic respiratory diseases and a major public health concern. Multiple studies have demonstrated the role of the nasal bacteriome in AR and AS, but little is known about the airway mycobiome and its potential association to airway inflammatory diseases. Here we used the internal transcriber spacers (ITS) 1 and 2 and high-throughput sequencing to characterize the nasal mycobiome of 339 individuals with AR, AR with asthma (ARAS), AS and healthy controls (CT). Seven to ten of the 14 most abundant fungal genera (Malassezia, Alternaria, Cladosporium, Penicillium, Wallemia, Rhodotorula, Sporobolomyces, Naganishia, Vishniacozyma, and Filobasidium) in the nasal cavity differed significantly (p ≤ 0.049) between AS, AR or ARAS, and CT. However, none of the same genera varied significantly between the three respiratory disease groups. The nasal mycobiomes of AR and ARAS patients showed the highest intra-group diversity, while CT showed the lowest. Alpha-diversity indices of microbial richness and evenness only varied significantly (p ≤ 0.024) between AR or ARAS and CT, while all disease groups showed significant differences (p ≤ 0.0004) in microbial structure (i.e., beta-diversity indices) when compared to CT samples. Thirty metabolic pathways (PICRUSt2) were differentially abundant (Wald's test) between AR or ARAS and CT patients, but only three of them associated with 5-aminoimidazole ribonucleotide (AIR) biosynthesis were over abundant (log2 Fold Change >0.75) in the ARAS group. AIR has been associated to fungal pathogenesis in plants. Spiec-Easi fungal networks varied among groups, but AR and ARAS showed more similar interactions among their members than with those in the CT mycobiome; this suggests chronic respiratory allergic diseases may disrupt fungal connectivity in the nasal cavity. This study contributes valuable fungal data and results to understand the relationships between the nasal mycobiome and allergy-related conditions. It demonstrates for the first time that the nasal mycobiota varies during health and allergic rhinitis (with and without comorbid asthma) and reveals specific taxa, metabolic pathways and fungal interactions that may relate to chronic airway disease.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- Department of Biostatistics and Bioinformatics, Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - Eduardo Castro-Nallar
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
- Centro de Ecología Integrativa, Universidad de Talca, Talca, Chile
| | - Jenaro García-Huidobro
- Centro de Investigaciones Médicas, Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - José Laerte Boechat
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Centro de Investigação em Tecnologias e Serviços de Saúde (CINTESIS@RISE), Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Luis Delgado
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Centro de Investigação em Tecnologias e Serviços de Saúde (CINTESIS@RISE), Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Serviço de Imunoalergologia, Unidade Local de Saúde São João (ULS São João), Porto, Portugal
| | - Tiago Azenha Rama
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Serviço de Imunoalergologia, Unidade Local de Saúde São João (ULS São João), Porto, Portugal
| | - Manuela Oliveira
- UCIBIO, Research Unit on Applied Molecular Biosciences, Forensic Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra, Gandra, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra, Gandra, Portugal
| |
Collapse
|
23
|
Ii R, Noguchi E, Adachi N, Kidoguchi M, Nakamura T, Miyamoto H, Nishihama Y, Nomura A, Takahata J, Kimura Y, Okamoto M, Hirose Y, Tanaka S, Fujieda S, Matsubara A, Tabuchi K. Characterization of microbial diversity and eosinophilic otitis media biomarkers using next-generation sequencing. Auris Nasus Larynx 2024; 51:1073-1080. [PMID: 39531840 DOI: 10.1016/j.anl.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Eosinophilic otitis media (EOM) is a chronic eosinophilic inflammatory disease linked to bronchial asthma and nasal polyps. EOM is often accompanied by tympanic membrane perforation. Although the primary treatment, steroid therapy, is generally effective, its efficacy may be limited in advanced cases, particularly those involving significant thickening of the middle ear mucosa. Despite its clinical importance, details regarding the pathogenesis of EOM have not been elucidated. Our study aimed to characterize the microbiome associated with EOM and explore changes with and without tympanic membrane perforation. METHODS We enrolled 27 patients clinically diagnosed with EOM, 25 controls without middle ear infections, and 10 patients with chronic suppurative otitis media (CSOM) [1] [2]. Specimens were collected by swabbing the middle ear, nasopharynx, and external auditory canal (EAC) of subjects in the EOM and control groups, whereas CSOM specimens were collected only from the middle ear. The V3-V4 regions of the 16S ribosomal RNA genes were amplified and subjected to high-throughput sequencing. We evaluated alpha and beta diversity indices between the EOM and control subjects, followed by Linear discriminant analysis Effect Size (LEfSe) analysis to identify potential biomarkers. Additionally, co-occurrence patterns were analyzed to explore the associated microbial interactions. To assess whether similar biomarkers were identified between the EOM and CSOM subjects, LEfSe analysis was conducted for these two groups. RESULTS Compared with controls, EOM patients were significantly enriched in Nocardioides in the middle ear, nasopharynx, and EAC, highlighting a distinct microbiological feature. Both alpha and beta diversity were significantly reduced in EOM patients with tympanic membrane perforation. When comparing the EOM and CSOM groups, Nocardioides was consistently identified as a significant biomarker for EOM, confirming its distinct association with EOM. In co-occurrence analysis, Nocardioides showed notable positive co-occurrence with several other genera. CONCLUSION This study reports the first detailed exploration of the EOM microbiome and identified Nocardioides as a new biomarker. The significant shift in microbial co-occurrence associated with tympanic membrane perforation may contribute to the disease's refractory nature, suggesting new avenues for understanding and managing EOM.
Collapse
Affiliation(s)
- Rieko Ii
- Department of Otorhinolaryngology, Head and Neck Surgery, Institute of Medicine, University of Tsukuba, Ibaraki, Japan; Department of Medical Genetics, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Emiko Noguchi
- Department of Medical Genetics, Institute of Medicine, University of Tsukuba, Ibaraki, Japan.
| | - Naoto Adachi
- Department of Medical Genetics, Institute of Medicine, University of Tsukuba, Ibaraki, Japan; Division of Otorhinolaryngology and Head & Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Masanori Kidoguchi
- Division of Otorhinolaryngology and Head & Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Takako Nakamura
- Department of Medical Genetics, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hidetaka Miyamoto
- Department of Otorhinolaryngology, Head and Neck Surgery, Institute of Medicine, University of Tsukuba, Ibaraki, Japan; Department of Otorhinolaryngology, Head and Neck Surgery, Kohnodai Hospital, National Center for Global Health and Medicine, Chiba, Japan
| | - Yukiko Nishihama
- Department of Paediatric Environmental Medicine, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Ayami Nomura
- Department of Otorhinolaryngology-Head and Neck Surgery, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Junko Takahata
- Department of Otorhinolaryngology-Head and Neck Surgery, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Yukihiro Kimura
- Division of Otorhinolaryngology and Head & Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Masayuki Okamoto
- Division of Otorhinolaryngology and Head & Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Yuki Hirose
- Department of Otorhinolaryngology, Head and Neck Surgery, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Shuho Tanaka
- Department of Otorhinolaryngology, Head and Neck Surgery, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Shigeharu Fujieda
- Division of Otorhinolaryngology and Head & Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Atsushi Matsubara
- Department of Otorhinolaryngology-Head and Neck Surgery, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Keiji Tabuchi
- Department of Otorhinolaryngology, Head and Neck Surgery, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
24
|
Hillson K, Saglani S, Custovic A. Preschool wheeze and asthma endotypes- implications for future therapy. Expert Rev Respir Med 2024; 18:1025-1039. [PMID: 39655566 DOI: 10.1080/17476348.2024.2440468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION Preschool wheeze and school-aged asthma present a large healthcare burden. Both conditions are now recognized to be heterogeneous, with similar symptom presentation but likely different underlying lung pathology. AREAS COVERED Current treatment options for preschool wheeze are constrained by extrapolations from the management of school-aged children with asthma. While most cases of asthma at school age are caused by classical atopic, eosinophilic, Type-2 driven asthma, only a quarter of preschool children with wheeze fall into this category. Targeting treatment to specific underlying mechanisms resulting in preschool wheeze may alter the progression to school age asthma. Novel biologics have revolutionized the management of severe, treatment-resistant school age asthma, but a limited evidence base limits their use in young children. There are several potential future non-steroid-based treatment options in development, of which bacterial lysates show the most promise. EXPERT OPINION Effective treatment of preschool wheeze may preserve lung function into later life, which may alter the progression trajectory toward school age asthma. Endotype-driven management will enable more effective treatment of both preschool wheeze and school age asthma.
Collapse
Affiliation(s)
- Kushalinii Hillson
- National Heart and Lung Institute, Imperial College London, London, UK
- Paediatric Respiratory Medicine Department, Royal Brompton Hospital, London, UK
| | - Sejal Saglani
- National Heart and Lung Institute, Imperial College London, London, UK
- Paediatric Respiratory Medicine Department, Royal Brompton Hospital, London, UK
- NIHR Imperial Biomedical Research Centre (BRC), London, UK
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
- NIHR Imperial Biomedical Research Centre (BRC), London, UK
| |
Collapse
|
25
|
Huang Y, Wang S, Huang J, Shen Y, Zou L, Liu H. Investigating the Causal Relationship Between Gut Microbiota and Allergic Conjunctivitis: A Two-Sample Mendelian Randomization Study. Ocul Immunol Inflamm 2024; 32:2411-2420. [PMID: 39353056 DOI: 10.1080/09273948.2024.2388202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 10/04/2024]
Abstract
PURPOSE To investigate the causal association between gut microbiota and allergic conjunctivitis. METHODS A two-sample Mendelian randomization (MR) analysis was performed using the summary statistics of gut microbiota (18,340) from MiBio-Gen consortium and allergic conjunctivitis data (n = 218,792) obtained from the IEU Open GWAS project. F-statistics and sensitivity analyses were used to address potential biases and ensure the reliability of our findings. Reverse MR analysis was conducted to assess the possible of reverse causal relationships. RESULTS The inverse variance weighted estimates revealed the protective potential of the phylum Euryarchaeota against allergic conjunctivitis (OR = 0.87, p = 6.17 × 10-4). On the other hand, the genus Christensenellaceae R.7 group (OR = 0.75, p = 2.89 × 10-3), family Peptostreptococcaceae (OR = 0.83, p = 6.22 × 10-3), genus Lachnospiraceae FCS020 group (OR = 0.82, p = 0.02) all showed a suggestive protective association with allergic conjunctivitis. Additionally, sensitivity analysis confirmed the robustness of the above associations. In the reverse MR analysis, no significant causal association was found between gut microbiota and allergic conjunctivitis. CONCLUSION This study has revealed a potential causal correlation between the phylum Euryarchaeota and allergic conjunctivitis, offering new insights to improve prevention and treatment of this condition.
Collapse
Affiliation(s)
- Yuanyang Huang
- Department of Ophthalmology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Wang
- Department of Ophthalmology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinfang Huang
- Department of Ophthalmology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yining Shen
- Department of Ophthalmology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Leilei Zou
- Department of Ophthalmology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Liu
- Department of Ophthalmology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Scicchitano D, Foresto L, Laczny CC, Cinti N, Vitagliano R, Halder R, Morri G, Turroni S, D'Amico F, Palladino G, Fiori J, Wilmes P, Rampelli S, Candela M. A 15-day pilot biodiversity intervention with horses in a farm system leads to gut microbiome rewilding in 10 urban Italian children. One Health 2024; 19:100902. [PMID: 39399231 PMCID: PMC11470462 DOI: 10.1016/j.onehlt.2024.100902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/15/2024] Open
Abstract
To provide some glimpses on the possibility of shaping the human gut microbiome (GM) through probiotic exchange with natural ecosystems, here we explored the impact of 15 days of daily interaction with horses on the GM of 10 urban-living Italian children. Specifically, the children were in close contact with the horses in an "educational farm", where they spent almost 10 h/day interacting with the animals. The children's GM was assessed before and after the horse interaction using metabarcoding sequencing and shotgun metagenomics, along with the horses' skin, oral and fecal microbiomes. Targeted metabolomic analysis for GM-produced beneficial metabolites (i.e., short-chain fatty acids) in the children's feces was also performed. Interaction with horses facilitated the acquisition of health-related traits in the children's GM, such as increased diversity, enhanced butyrate production and an increase in several health-promoting species considered to be next-generation probiotics. Among these, the butyrate producers Facecalibacterium prausnitzii and F. duncaniae and a species belonging to the order Christensenellales. Interaction with horses was also associated with increased proportions of Eggerthella lenta, Gordonibacter pamelae and G. urolithinfaciens, GM components known to play a role in the bioconversion of dietary plant polyphenols into beneficial metabolites. Notably, no increase in potentially harmful traits, including toxin genes, was observed. Overall, our pilot study provides some insights on the existence of possible health-promoting exchanges between children and horses microbiomes. It lays the groundwork for an implemented and more systematic enrollment effort to explore the full complexity of human GM rewilding through exchange with natural ecosystems, aligning with the One Health approach.
Collapse
Affiliation(s)
- Daniel Scicchitano
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, 61032 Fano, Italy
| | - Lucia Foresto
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, 61032 Fano, Italy
| | - Cédric C. Laczny
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Nicoló Cinti
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, 61032 Fano, Italy
| | - Rosalba Vitagliano
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy
| | - Rashi Halder
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Gaja Morri
- Psy D., Psychotherapist, Psychoanalyst, via M. Serenari, 7, 40033 Casalecchio di Reno, Bologna, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy
| | - Federica D'Amico
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy
| | - Giorgia Palladino
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, 61032 Fano, Italy
| | - Jessica Fiori
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy
- Institute of Neurological Sciences of Bologna (IRCCS), Laboratory of Proteomics Metabolomics and Bioanalitical Chemistry, 40124 Bologna, Italy
| | - Paul Wilmes
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Simone Rampelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, 61032 Fano, Italy
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, 61032 Fano, Italy
| |
Collapse
|
27
|
Hu H, Qiu Y, Shen N, Chen H, Zhang J, Wang Y, Shi X, Li M. Effects of Low-Carbohydrate and Low-Fat Diets on Morbidity and Mortality of COPD. Int J Chron Obstruct Pulmon Dis 2024; 19:2443-2455. [PMID: 39575454 PMCID: PMC11578922 DOI: 10.2147/copd.s479602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
Purpose Although low-carbohydrate and low-fat diets improve weight loss, cardiovascular disease, and diabetes, the relationship between these dietary patterns, highlighting macronutrient sources, and chronic obstructive pulmonary disease (COPD) remains unclear. This study aimed to assess the association between low-carbohydrate diets (LCDs) and low-fat diets (LFDs) and the odds of COPD and mortality among people with COPD in the National Health and Nutrition Examination Survey. Patients and Methods Clinical data were extracted from the 2007-2008, 2009-2010, and 2011-2012 National Health and Nutrition Examination Survey (NHANES) cycles that met the inclusion criteria. Multivariable logistic regression was used to evaluate the associations between LCD and LFD scores and COPD, and multivariable Cox proportional hazards regression and restricted cubic spline (RCS) regression were used to assess the relationship between all-cause mortality and LCD and LFD scores. Results Comparing extreme tertiles, multivariable-adjusted odds ratio (OR) were 1 (reference), 1.09 (95% CI, 0.77-1.55), 1.84 (95% CI, 1.09-3.09) (P = 0.045 for trend) for unhealthy LFD scores. After multivariate adjustment, a per 5-point increase in unhealthy LCD score was associated with a 21% higher risk of total mortality (hazard ratio, 1.21; 95% CI, 1.03-1.43); while a per 5-point increase in healthy LFD scores was associated with a 21% lower risk of total mortality (HR, 0.79; 95% CI, 0.67-0.94). Conclusion Higher unhealthy LFD score was associated with an increased odds of COPD. Unhealthy LCD scores were significantly associated with higher total mortality, whereas healthy LFD scores were associated with lower total mortality in patients with COPD.
Collapse
Affiliation(s)
- Huizhong Hu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yuanjie Qiu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Nirui Shen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Huan Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Jia Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yan Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Xiangyu Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
28
|
Smith EE, Biessels GJ, Gao V, Gottesman RF, Liesz A, Parikh NS, Iadecola C. Systemic determinants of brain health in ageing. Nat Rev Neurol 2024; 20:647-659. [PMID: 39375564 PMCID: PMC11926994 DOI: 10.1038/s41582-024-01016-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 10/09/2024]
Abstract
Preservation of brain health is a worldwide priority. The traditional view is that the major threats to the ageing brain lie within the brain itself. Consequently, therapeutic approaches have focused on protecting the brain from these presumably intrinsic pathogenic processes. However, an increasing body of evidence has unveiled a previously under-recognized contribution of peripheral organs to brain dysfunction and damage. Thus, in addition to the well-known impact of diseases of the heart and endocrine glands on the brain, accumulating data suggest that dysfunction of other organs, such as gut, liver, kidney and lung, substantially affects the development and clinical manifestation of age-related brain pathologies. In this Review, a framework is provided to indicate how organ dysfunction can alter brain homeostasis and promote neurodegeneration, with a focus on dementia. We delineate the associations of subclinical dysfunction in specific organs with dementia risk and provide suggestions for public health promotion and clinical management.
Collapse
Affiliation(s)
- Eric E Smith
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.
| | - Geert Jan Biessels
- Department of Neurology, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Virginia Gao
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | | | - Arthur Liesz
- Institute for Stroke and Dementia Research, University Medical Center Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Neal S Parikh
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
29
|
Li H, Dai X, Zhou J, Wang Y, Zhang S, Guo J, Shen L, Yan H, Jiang H. Mitochondrial dynamics in pulmonary disease: Implications for the potential therapeutics. J Cell Physiol 2024; 239:e31370. [PMID: 38988059 DOI: 10.1002/jcp.31370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
Mitochondria are dynamic organelles that continuously undergo fusion/fission to maintain normal cell physiological activities and energy metabolism. When mitochondrial dynamics is unbalanced, mitochondrial homeostasis is broken, thus damaging mitochondrial function. Accumulating evidence demonstrates that impairment in mitochondrial dynamics leads to lung tissue injury and pulmonary disease progression in a variety of disease models, including inflammatory responses, apoptosis, and barrier breakdown, and that the role of mitochondrial dynamics varies among pulmonary diseases. These findings suggest that modulation of mitochondrial dynamics may be considered as a valid therapeutic strategy in pulmonary diseases. In this review, we discuss the current evidence on the role of mitochondrial dynamics in pulmonary diseases, with a particular focus on its underlying mechanisms in the development of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), asthma, pulmonary fibrosis (PF), pulmonary arterial hypertension (PAH), lung cancer and bronchopulmonary dysplasia (BPD), and outline effective drugs targeting mitochondrial dynamics-related proteins, highlighting the great potential of targeting mitochondrial dynamics in the treatment of pulmonary disease.
Collapse
Affiliation(s)
- Hui Li
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, Sichuan, China
| | - Xinyan Dai
- Immunotherapy Laboratory, College of Grassland Resources, Southwest Minzu University, Chengdu, Sichuan, China
| | - Junfu Zhou
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yujuan Wang
- Immunotherapy Laboratory, College of Grassland Resources, Southwest Minzu University, Chengdu, Sichuan, China
| | - Shiying Zhang
- Immunotherapy Laboratory, College of Grassland Resources, Southwest Minzu University, Chengdu, Sichuan, China
| | - Jiacheng Guo
- Immunotherapy Laboratory, College of Grassland Resources, Southwest Minzu University, Chengdu, Sichuan, China
| | - Lidu Shen
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, Sichuan, China
| | - Hengxiu Yan
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, Sichuan, China
| | - Huiling Jiang
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
30
|
Zhou Z, Yang J, Liu Q, Gao J, Ji W. Patho-immunological mechanisms of atopic dermatitis: The role of the three major human microbiomes. Scand J Immunol 2024; 100:e13403. [PMID: 39267301 DOI: 10.1111/sji.13403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/17/2024]
Abstract
Atopic dermatitis (AD) is a genetically predisposed allergic inflammatory dermatosis with chronic, pruritic, and recurrent features. Patients with AD have dry and itchy skin, often accompanied by chronic eczematous lesions, allergic rhinitis, or asthma, which has a considerable impact on their daily lives. With advances in genome sequencing technology, it has been demonstrated that microorganisms are involved in this disease, and the microorganisms associated with AD are attracting considerable research attention. An increasing number of studies conducted in recent years have demonstrated that an imbalanced microbiome in AD patients has substantial impact on disease prognosis, and the causes are closely tied to various immune mechanisms. However, the involvement of microorganisms in the pathogenesis of AD remains poorly understood. In this paper, we review the advances in research on the immunological mechanisms of the skin microbiome, intestinal microbiome, and lung microbiome that are related to AD prognosis and immunotherapy protocols. It is hoped that this approach will lay the foundation for exploring the pathogenesis of and emerging treatments for AD.
Collapse
Affiliation(s)
- Zhaosen Zhou
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Nursing in Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qin Liu
- Department of Nursing in Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jing Gao
- Department of Nursing in Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wenting Ji
- Department of Nursing in Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
31
|
Pérez-Losada M, Castro-Nallar E, García-Huidobro J, Boechat JL, Delgado L, Rama TA, Oliveira M. Characterization of the oral mycobiome of Portuguese with allergic rhinitis and asthma. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100300. [PMID: 39553201 PMCID: PMC11567938 DOI: 10.1016/j.crmicr.2024.100300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Allergic rhinitis and asthma are two prevailing chronic airway diseases and serious public health concerns. Previous research has already described the role of the airway bacteriome in these two diseases, but almost no study so far has explored the mycobiome and its possible association to airway inflammation. Here we sequenced the internal transcribed spacers (ITS) 1 and 2 to characterize the oral mycobiome of 349 Portuguese children and young adults with allergic rhinitis alone (AR) or with asthma (ARAS), asthmatics (AS) and healthy controls (HC). Our genomic analyses showed that the two most abundant fungal phyla (Ascomycota and Basidiomycota) and 3-5 of the 14 most abundant fungal genera (Cladosporium, Aspergillus, Aleurina, Candida and Rhodotorula) in the mouth differed significantly (P ≤ 0.04) between both rhinitic groups and HC. However, none of the same taxa varied significantly between the three respiratory disease groups (AR, ARAS and AS). The oral mycobiomes of respiratory ill patients showed the highest intra-group diversity (microbial richness and evenness), while HC showed the lowest, with all alpha-diversity indices varying significantly (P ≤ 0.0424) between them. Similarly, all disease groups showed significant differences (P ≤ 0.0052) in microbial structure (i.e., beta-diversity indices) when compared to HC samples. Thirty metabolic pathways (PICRUSt2) were differentially abundant (Wald's test) between AR or ARAS and HC patients, but only one of them (D-galactose degradation I) was over abundant (log2 Fold Change >0.75) in the ARAS group. Spiec-Easi fungal networks varied greatly among groups, which suggests chronic respiratory allergic diseases may alter fungal connectivity in the mouth. This study increases our comprehension of the role of the oral mycobiome in allergy-related conditions. It shows for the first time that the oral mycobiota changes during health and allergic rhinitis (with and without asthma comorbidity) and highlights specific taxa, metabolic pathways and fungal interactions that may relate to chronic airway disease.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- Computational Biology Institute, Department of Biostatistics & Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, 20052, USA
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, 4485-661, Portugal
| | - Eduardo Castro-Nallar
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Campus Talca, Avda. Lircay s/n, Talca, Chile
- Centro de Ecología Integrativa, Universidad de Talca, Campus Talca, Avda. Lircay s/n, Talca, Chile
| | - Jenaro García-Huidobro
- Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Facultad de Medicina, Universidad de Talca, Talca, Chile
| | - José Laerte Boechat
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, 4200-319, Portugal
- Centro de Investigação em Tecnologias e Serviços de Saúde (CINTESIS@RISE), Faculdade de Medicina da Universidade do Porto, Porto, 4200-319, Portugal
| | - Luis Delgado
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, 4200-319, Portugal
- Centro de Investigação em Tecnologias e Serviços de Saúde (CINTESIS@RISE), Faculdade de Medicina da Universidade do Porto, Porto, 4200-319, Portugal
- Serviço de Imunoalergologia, Unidade Local de Saúde São João (ULS São João), Porto, 4200-319, Portugal
| | - Tiago Azenha Rama
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, 4200-319, Portugal
- Serviço de Imunoalergologia, Unidade Local de Saúde São João (ULS São João), Porto, 4200-319, Portugal
| | - Manuela Oliveira
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, University Institute of Health Sciences, CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- UCIBIO, Research Unit on Applied Molecular Biosciences, Forensic Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| |
Collapse
|
32
|
Mazumder MHH, Hussain S. Air-Pollution-Mediated Microbial Dysbiosis in Health and Disease: Lung-Gut Axis and Beyond. J Xenobiot 2024; 14:1595-1612. [PMID: 39449427 PMCID: PMC11503347 DOI: 10.3390/jox14040086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Growing evidence suggests physiological and pathological functions of lung and gut microbiomes in various pathologies. Epidemiological and experimental data associate air pollution exposure with host microbial dysbiosis in the lungs and gut. Air pollution through increased reactive oxygen species generation, the disruption of epithelial barrier integrity, and systemic inflammation modulates microbial imbalance. Microbiome balance is crucial in regulating inflammation and metabolic pathways to maintain health. Microbiome dysbiosis is proposed as a potential mechanism for the air-pollution-induced modulation of pulmonary and systemic disorders. Microbiome-based therapeutic approaches are increasingly gaining attention and could have added value in promoting lung health. This review summarizes and discusses air-pollution-mediated microbiome alterations in the lungs and gut in humans and mice and elaborates on their role in health and disease. We discuss and summarize the current literature, highlight important mechanisms that lead to microbial dysbiosis, and elaborate on pathways that potentially link lung and lung microbiomes in the context of environmental exposures. Finally, we discuss the lung-liver-gut axis and its potential pathophysiological implications in air-pollution-mediated pathologies through microbial dysbiosis.
Collapse
Affiliation(s)
- Md Habibul Hasan Mazumder
- Department of Physiology, Pharmacology & Toxicology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Department of Pharmaceutical and Pharmacological Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| | - Salik Hussain
- Department of Physiology, Pharmacology & Toxicology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Department of Microbiology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
33
|
Crestez AM, Nechita A, Daineanu MP, Busila C, Tatu AL, Ionescu MA, Martinez JD, Debita M. Oral Cavity Microbiome Impact on Respiratory Infections Among Children. Pediatric Health Med Ther 2024; 15:311-323. [PMID: 39398897 PMCID: PMC11471117 DOI: 10.2147/phmt.s471588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
Background The respiratory system, traditionally considered antiseptic, harbors a diverse and dynamic bacterial microbiome. Recent advancements in microbiome research have revealed its significant influence on both innate and adaptive immunity, particularly in the context of respiratory infections in children. This article also provides an overview of the types of bacteria that commonly affect the respiratory system, including Streptococcus pneumoniae, Moraxella catarrhalis and Haemophilus influenzae. These bacteria are prevalent in pediatric populations and significantly contribute to the development and severity of respiratory tract infections (RTIs). Purpose This review aims to evaluate the impact of the oral cavity and upper respiratory microbiome on the susceptibility and severity of respiratory infections in pediatric populations. We specifically focus on how early colonization patterns of bacteria such as Moraxella and Streptococcus contribute to the development of respiratory tract infections in children from birth through adolescence. Methods A thorough literature review was performed, focusing on studies publishing between 2004 and 2023. The review included research exploring the role of the upper respiratory microbiome in pediatric populations, with a specific focus on children aged birth to 18 years. Emphasis was placed on microbial characterization, the modulation of immune responses in respiratory tract infections, and the potential therapeutic applications of microbiome-targeted interventions. Results The findings suggest that the composition and disruption of the upper respiratory microbiome significantly influence clinical outcomes in children with respiratory infections. Notably, dysbiosis in the microbiome has been linked to increased susceptibility to repeated infections, highlighting the importance of maintaining microbial balance for optimal respiratory health. Conclusion Understanding the impact of oral cavity and upper respiratory microbiome could lead to improved management and prevention strategies for respiratory infections in children. This review underscores the potential of microbiome modulation, including the use of probiotics as a therapeutic approach to enhance clinical outcomes in pediatric respiratory infections.
Collapse
Affiliation(s)
- Alexandra Mihaela Crestez
- Pediatric Department, “Sf. Ioan” Emergency Clinical Pediatric Hospital, Galați, 800494, România
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galați, 800201, România
| | - Aurel Nechita
- Pediatric Department, “Sf. Ioan” Emergency Clinical Pediatric Hospital, Galați, 800494, România
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galați, 800201, România
| | - Miruna Patricia Daineanu
- Pediatric Department, “Sf. Ioan” Emergency Clinical Pediatric Hospital, Galați, 800494, România
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galați, 800201, România
| | - Camelia Busila
- Pediatric Department, “Sf. Ioan” Emergency Clinical Pediatric Hospital, Galați, 800494, România
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galați, 800201, România
| | - Alin Laurentiu Tatu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galați, 800201, România
- Dermatology Department, “Sfanta Cuvioasa Parascheva” Hospital of Infectious Diseases, Galați, 800179, România
- Multidisciplinary Integrated Center of Dermatological Interface Research MIC-DIR “Dunărea de Jos” University, Galați, 800201, România
| | - Marius Anton Ionescu
- Department of Dermatology, University Hospital Saint Louis, Paris, 75475, France
| | - Jose Dario Martinez
- Department of Internal Medicine, Faculty of Medicine, University Autonomous of Nuevo León, Monterrey, 66455, Mexico
| | - Mihaela Debita
- Department of Infectious Disease, “Sfanta Cuvioasa Parascheva” Hospital of Infectious Diseases, Galați, 800179, România
- Clinical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galați, 800201, România
| |
Collapse
|
34
|
Yang J, Wang J, Shang P, Liu Z, Zhang B, Yang D, Zhang H. Translocation of probiotics via gut-lung axis enhanced pulmonary immunity of weaned piglets exposed to low concentrations of ammonia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116821. [PMID: 39163664 DOI: 10.1016/j.ecoenv.2024.116821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024]
Abstract
OBJECTIVE Lactobacillus salivarius is a probiotic bacteria strain in human and animal diets. The administration of probiotics to weaned piglets may improve their growth by optimizing the gastrointestinal bacterial composition. To further investigate the effect of bacterial communication between the gastrointestinal tract and lungs on bodily immunity, we reared weaned piglets in a low-ammonia gas environment. L. salivarius was supplemented to explore its effects on pulmonary immunity and its potential for bacterial translocation. RESULTS One hundred sixty weaned piglets were allocated to four groups: L. salivarius-supplemented, L. reuteri-supplemented, control, and antibiotic drug (aureomycin)-supplemented. The feeding duration was 28 d. The body weights of piglets administered a strain of Lactobacillus were better than those of the control (P < 0.01). The transcription level of immune factors interleukin 2 (IL-2), IL-4, interferon α (IFN-α), and tumor necrosis factor α (TNF-α) in cells of the ileum and lung was significantly higher (P < 0.01). Lung and ileal mucus tissues were isolated to sequence the bacterial composition, which suggested a higher richness in the lungs at the phylum level, which was not significant in the ileum. Functional bacteria were more abundant in the ileum and lungs. The proportion of the genera of Lactobacillus, Prevotella, Actinobacillus, and Prevotellaceae_ NK3B31_group increased in two tissues, and a lower ratio of Streptococcus, Escherichia-Shigella, and mycoplasma was detected. The correlation between the microbial genus composition and the levels of immune factors suggests that the abundance of Lactobacillus plays the same positive role in the lungs and ileum. Mycoplasmas play a negative role in ileal and pulmonary immunity. More Lactobacillus reuteri and anaerobic probiotic bacteria were detected in the lungs. CONCLUSION The colonization of Lactobacillus salivarius and Lactobacillus reuteri in the membrane of the ileum optimized the ileal microbial composition, enrolled other probiotic bacteria translating to the lung, improved the abundance of pulmonary microbiota, and enhanced immunity after exposure to low concentrations of ammonia.
Collapse
Affiliation(s)
- Jiajun Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu 212400, China; Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jing Wang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu 212400, China
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi 860000, China
| | - Zongliang Liu
- Hefei Zhien Biotechnology Company Limited, National University Science Park, No.602 of Huangshan Road, Hefei, Anhui Province 230001, China
| | - Bo Zhang
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dongsheng Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu 212400, China
| | - Hao Zhang
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
35
|
Agarwal S, Tomar N, Makwana M, Patra S, Chopade BA, Gupta V. Air pollution, dysbiosis and diseases: pneumonia, asthma, COPD, lung cancer and irritable bowel syndrome. Future Microbiol 2024; 19:1497-1513. [PMID: 39345043 PMCID: PMC11492635 DOI: 10.1080/17460913.2024.2401263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024] Open
Abstract
With substantial effects on human health, air pollution has become a major global concern. Air pollution has been linked to numerous gastrointestinal and respiratory diseases with increasing mortalities. The gut and respiratory dysbiosis brought about by air pollution has recently received much attention. This review attempts to provide an overview of the types of air pollutants, their sources, their impact on the respiratory and gut dysbiotic patterns and their correlation with five major diseases including pneumonia, asthma, COPD, lung cancer and irritable bowel syndrome. Deeper insights into the links between pollutants, dysbiosis and disease may pave the way for novel diagnostic biomarkers for prognosis and early detection of these diseases, as well as ways to ease the disease burden.
Collapse
Affiliation(s)
- Shelja Agarwal
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
| | - Nandini Tomar
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
| | - Meet Makwana
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
| | - Sandeep Patra
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
| | - Balu A Chopade
- AKS University, Satna, Madhya Pradesh, India
- Department of Microbiology, Savitribai Phule Pune University, Pune, 411007, Maharashtra, India
| | - Vandana Gupta
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
| |
Collapse
|
36
|
Casali L, Stella GM. The Microbiota in Children and Adolescents with Asthma. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1175. [PMID: 39457140 PMCID: PMC11505771 DOI: 10.3390/children11101175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/20/2024] [Accepted: 09/09/2024] [Indexed: 10/28/2024]
Abstract
The role of the respiratory microbiome has been deeply explored for at least two decades. Its characterization using modern methods is now well-defined, and the impacts of many microorganisms on health and diseases have been elucidated. Moreover, the acquired knowledge in related fields enables patient stratification based on their risk for disease onset, and the microbiome can play a role in defining possible phenotypes. The interplay between the lung and gut microbiomes is crucial in determining the microbial composition and immuno-inflammatory reaction. Asthma is still not a well-defined condition, where hyperreactivity and the immune system play important roles. In this disease, the microbiome is mostly represented by Proteobacteria, Streptococcus, and Veillonella, while Cytomegalovirus and Epstein-Barr viruses are the most prevalent viruses. A mycobiome may also be present. The passage from infancy to adolescence is examined by evaluating both the clinical picture and its relationship with possible variations of the microbiome and its effects on asthma. Otherwise, asthma is considered a heterogeneous disease that often starts in childhood and follows a particular personalized track, where adolescence plays a pivotal role in future prognosis. Under this point of view, the microbiota, with its possible variations due to many factors, both internal and external, can modify its composition; consequently, its inflammatory action and role in the immunological response has obvious consequences on the clinical conditions.
Collapse
Affiliation(s)
- Lucio Casali
- Unit of Respiratory Diseases, University of Perugia, 06121 Perugia, Italy;
| | - Giulia Maria Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy
- Unit of Respiratory Diseases, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
37
|
Qiao C, Bian S, Huang H, Xiao H, Ma L, Han R. Impact of ovalbumin allergy on oral and gut microbiome dynamics in 6-week-old BALB/c mice. Front Microbiol 2024; 15:1439452. [PMID: 39290514 PMCID: PMC11406088 DOI: 10.3389/fmicb.2024.1439452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Background The gut microbiota is known to have a significant impact on the development of food allergy, and several recent studies have suggested that both oral microbiota, which first come into contact with allergenic foods, may have a profound influence on the development of food allergy. Methods In this study, we have established an ovalbumin-sensitive mice model by utilizing ovalbumin as a sensitizing agent. Subsequently, we performed a comprehensive analysis of the gut and oral microbiota in ovalbumin-sensitive mice and the control mice using full-length 16S rRNA sequencing analysis. Results Interestingly, both the gut and oral microbiota of ovalbumin-sensitized mice exhibited significant dysbiosis. The relative abundance of s__Lactobacillus_intestinalis in the gut microbiota of ovalbumin-sensitive mice exhibited a significant decrease, whereas the abundance of s__Agrobacterium_radiobacter and s__Acinetobacter_sp__CIP_56_2 displayed a significant increase. Furthermore, the relative abundance of s__unclassified_g__Staphylococcus, s__Streptococcus_hyointestinalis, and s__unclassified_g__Dechloromonas in the oral microbiota of ovalbumin-sensitive mice revealed a significant decrease. In contrast, the abundance of 63 other species, including s__Proteiniclasticum_ruminis, s__Guggenheimella_bovis, and s__Romboutsia_timonensis, demonstrated a significant increase. The random forest classifier achieved the best accuracy in predicting the outcome of food allergy using three gut and three oral biomarkers, with accuracies of 94.12 and 100%, respectively. Based on the predictions of the PICRUSt2 analysis, the only consistent finding observed across multiple samples from both the groups of mice was a significant up-regulation of the nucleotide-binding oligomerization domain (NOD)-like receptor signaling pathway in the ovalbumin-sensitized mice. Conclusion Our study demonstrates that ovalbumin-sensitized mice experience substantial alterations in both gut and oral microbial composition and structure, and specific strains identified in this study may serve as potential biomarkers for food allergy screening. Moreover, our findings highlight that the oral environment, under the same experimental conditions, exhibited greater precision in detecting a larger number of species. Additionally, it is worth noting that the NOD-like receptor signaling pathway plays a vital role in the pathogenesis of OVA (ovalbumin)-induced allergy. These findings will generate novel concepts and strategies in the realm of food allergy prevention and treatment.
Collapse
Affiliation(s)
- Chuanyue Qiao
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Department of Stomatology, Traditional Chinese Medical Hospital of Huangdao District, Qingdao, China
| | - Shuang Bian
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Hao Huang
- Department of Stomatology, Qingdao Eighth People's Hospital, Qingdao, China
| | - Han Xiao
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Lei Ma
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Rui Han
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| |
Collapse
|
38
|
Chehade M, Hiremath GS, Zevit N, Oliva S, Pela T, Khodzhayev A, Jacob-Nara J, Radwan A. Disease Burden and Spectrum of Symptoms that Impact Quality of Life in Pediatric Patients with Eosinophilic Esophagitis. GASTRO HEP ADVANCES 2024; 3:1054-1068. [PMID: 39529644 PMCID: PMC11550740 DOI: 10.1016/j.gastha.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/05/2024] [Indexed: 11/16/2024]
Abstract
Eosinophilic esophagitis (EoE) is a progressive type 2 inflammatory disease characterized by symptoms related to esophageal dysfunction and significant esophageal eosinophilic infiltration. It can affect patients from infancy through adulthood. Pediatric EoE has a multidimensional impact on the quality of life of both patients and their families. Nonspecific symptoms mimicking other gastrointestinal conditions, such as food refusal, failure to thrive, and feeding difficulties, may profoundly affect young children's eating skills, growth, and psychosocial status, as well as impact family financial conditions. In adolescence, dysphagia and esophageal food impactions often lead to feeding-related anxiety and influence social lives. Delays in diagnosis, arising from lack of awareness among families and clinicians and compensatory eating behaviors, could increase the risk of fibrostenotic complications, which may ultimately add to the symptom burden. Currently available treatment options include proton pump inhibitors, dietary therapies, swallowed topical steroids, esophageal dilation, and biologic therapy. Despite the efficacy of these approaches, disease burden may be further impacted by their limitations, including poor adherence rates, refractory disease, potential long-term safety concerns, and high costs for care. Thus, there is a need for more timely diagnosis in clinical practice and novel targeted disease-modifying therapies better tailored to treat various phenotypes of EoE, aimed at reducing the physical and psychosocial burdens on patients and their caregivers.
Collapse
Affiliation(s)
- Mirna Chehade
- Department of Pediatrics and Medicine, Mount Sinai Center for Eosinophilic Disorders, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Girish S. Hiremath
- Department of Pediatrics, Monroe Carell Jr Children’s Hospital at Vanderbilt, Nashville, Tennessee
| | - Noam Zevit
- Institute of Gastroenterology, Hepatology and Nutrition, Schneider Children's Medical Center of Israel, Petach-Tikva, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Salvatore Oliva
- Pediatric Gastroenterology and Liver Unit, Maternal and Child Health Department, Sapienza University of Rome, Rome, Italy
| | | | | | | | - Amr Radwan
- Regeneron Pharmaceuticals Inc, Tarrytown, New York
| |
Collapse
|
39
|
Ekpruke CD, Alford R, Rousselle D, Babayev M, Sharma S, Parker E, Davis K, Hemmerich C, Rusch DB, Silveyra P. Sex-specific alterations in the gut and lung microbiome of allergen-induced mice. FRONTIERS IN ALLERGY 2024; 5:1451846. [PMID: 39210977 PMCID: PMC11358121 DOI: 10.3389/falgy.2024.1451846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Recent evidence has demonstrated that the microbiome is a driver of the underlying pathophysiological mechanisms of respiratory disease. Studies have indicated that bacterial metabolites produced in the gut and lung can impact lung inflammation and immune cell activity, affecting disease pathology. Despite asthma being a disease with marked sex differences, experimental work linking microbiomes and asthma has not considered the sex variable. Methods To test the hypothesis that the lung and gut microbial composition impacts allergic lung inflammation in a sex-specific manner, we evaluated lung and gut microbiome alterations in a mouse model of allergic inflammation and assessed their association with lung function and inflammation phenotypes. For this, we exposed male and female adult C57BL/6J mice intranasally to 25 µg of a house dust mite extract mix (HDM) daily, or phosphate-buffered saline (PBS) as control, for 5 weeks (n = 4-6/group). DNA from fecal pellets collected before and after the 5-week treatment, and from lung tissue collected at endpoint, was extracted using the ZymoBIOMICS®-96 MagBead DNA Kit and analyzed to determine the 16S microbiome via Targeted Metagenomic Sequencing. Results The HDM treatment induced a sex-specific allergic inflammation phenotype with significantly higher neutrophilia, lymphocytosis, inflammatory gene expression, and histopathological changes in females than males following exposure to HDM, but higher airway hyperresponsiveness (AHR) in males than females. In addition, sex-specific lung gene expression and associated pathways were identified HDM mix after challenge. These changes corresponded to sex-specific alterations in the gut microbiome, where the Firmicutes to Bacteroidetes ratio (F:B) was significantly reduced in fecal samples from only male mice after HDM challenge, and alpha diversity was increased in males, but decreased in females, after 5-weeks of HDM treatment. Discussion Overall, our findings indicate that intranasal allergen challenge triggers sex-specific changes in both gut and lung microbiomes, and induces sex-specific lung inflammation, AHR, and lung inflammatory gene expression pathways, suggesting a contribution of the lung-gut axis in allergic airway disease.
Collapse
Affiliation(s)
- Carolyn Damilola Ekpruke
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States
| | - Rachel Alford
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States
| | - Dustin Rousselle
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States
| | - Maksat Babayev
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States
| | - Shikha Sharma
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States
| | - Erik Parker
- Department of Epidemiology and Biostatistics, Biostatistics Consulting Center, School of Public Health, Indiana University, Bloomington, IN, United States
| | - Kyle Davis
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States
| | - Christopher Hemmerich
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, United States
| | - Douglas B. Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, United States
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN, United States
| |
Collapse
|
40
|
Huang SS, Qiu JY, Li SP, Ma YQ, He J, Han LN, Jiao LL, Xu C, Mao YM, Zhang YM. Microbial signatures predictive of short-term prognosis in severe pneumonia. Front Cell Infect Microbiol 2024; 14:1397717. [PMID: 39157177 PMCID: PMC11327560 DOI: 10.3389/fcimb.2024.1397717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024] Open
Abstract
Objective This retrospective cohort study aimed to investigate the composition and diversity of lung microbiota in patients with severe pneumonia and explore its association with short-term prognosis. Methods A total of 301 patients diagnosed with severe pneumonia underwent bronchoalveolar lavage fluid metagenomic next-generation sequencing (mNGS) testing from February 2022 to January 2024. After applying exclusion criteria, 236 patients were included in the study. Baseline demographic and clinical characteristics were compared between survival and non-survival groups. Microbial composition and diversity were analyzed using alpha and beta diversity metrics. Additionally, LEfSe analysis and machine learning methods were employed to identify key pathogenic microorganism associated with short-term mortality. Microbial interaction modes were assessed through network co-occurrence analysis. Results The overall 28-day mortality rate was 37.7% in severe pneumonia. Non-survival patients had a higher prevalence of hypertension and exhibited higher APACHE II and SOFA scores, higher procalcitonin (PCT), and shorter hospitalization duration. Microbial α and β diversity analysis showed no significant differences between the two groups. However, distinct species diversity patterns were observed, with the non-survival group showing a higher abundance of Acinetobacter baumannii, Klebsiella pneumoniae, and Enterococcus faecium, while the survival group had a higher prevalence of Corynebacterium striatum and Enterobacter. LEfSe analysis identified 29 distinct terms, with 10 potential markers in the non-survival group, including Pseudomonas sp. and Enterococcus durans. Machine learning models selected 16 key pathogenic bacteria, such as Klebsiella pneumoniae, significantly contributing to predicting short-term mortality. Network co-occurrence analysis revealed greater complexity in the non-survival group compared to the survival group, with differences in central genera. Conclusion Our study highlights the potential significance of lung microbiota composition in predicting short-term prognosis in severe pneumonia patients. Differences in microbial diversity and composition, along with distinct microbial interaction modes, may contribute to variations in short-term outcomes. Further research is warranted to elucidate the clinical implications and underlying mechanisms of these findings.
Collapse
Affiliation(s)
- Shen-Shen Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Jia-Yong Qiu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuang-Ping Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Ya-Qing Ma
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Jun He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Li-Na Han
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Long-Long Jiao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Chong Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yi-Min Mao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yong-Mei Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
41
|
Kleniewska P, Pawliczak R. Can probiotics be used in the prevention and treatment of bronchial asthma? Pharmacol Rep 2024; 76:740-753. [PMID: 38951480 PMCID: PMC11294272 DOI: 10.1007/s43440-024-00618-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
Asthma is a lifelong condition with varying degrees of severity and susceptibility to symptom control. Recent studies have examined the effects of individual genus, species, and strains of probiotic microorganisms on the course of asthma. The present review aims to provide an overview of current knowledge on the use of probiotic microorganisms, mainly bacteria of the genus Lactobacillus and Bifidobacterium, in asthma prevention and treatment. Recent data from clinical trials and mouse models of allergic asthma indicate that probiotics have therapeutic potential in this condition. Animal studies indicate that probiotic microorganisms demonstrate anti-inflammatory activity, attenuate airway hyperresponsiveness (AHR), and reduce airway mucus secretion. A randomized, double-blind, placebo-controlled human trials found that combining multi-strain probiotics with prebiotics yielded promising outcomes in the treatment of clinical manifestations of asthma. It appears that probiotic supplementation is safe and significantly reduces the frequency of asthma exacerbations, as well as improved forced expiratory volume and peak expiratory flow parameters, and greater attenuation of inflammation. Due to the small number of available clinical trials, and the use of a wide range of probiotic microorganisms and assessment methods, it is not possible to draw clear conclusions regarding the use of probiotics as asthma treatments.
Collapse
Affiliation(s)
- Paulina Kleniewska
- Department of Immunopathology, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, Łódź, 90-752, Poland.
| | - Rafał Pawliczak
- Department of Immunopathology, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, Łódź, 90-752, Poland
| |
Collapse
|
42
|
Wu Q, Li R, You Y, Cheng W, Li Y, Feng Y, Fan Y, Wang Y. Lung microbiota participated in fibrous microplastics (MPs) aggravating OVA-induced asthma disease in mice. Food Chem Toxicol 2024; 190:114776. [PMID: 38851522 DOI: 10.1016/j.fct.2024.114776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
Environmental pollution is one of the risk factors for asthma. Currently, whether micro-plastics could aggravate asthma, is still unclear. In the air, fibrous MPs are the predominant shape. Since fibrous micro-plastics are reported to be detected in the lower respiratory tract and other body parts, the relationship of fibrous MP and asthma, as well as the potential mechanism is not well investigated. In this study, we produced fibrous MPs, whose lengths and widths were in accordance with the natural environment, and further, investigated the potential adverse effect of which on the asthma in a OVA (ovalbumin)-induced mice model, aiming at exploring the true life hazard of MP to the respiratory system. Following nasal exposure to fibrous MPs, the airway inflammation, mucus hypersecretion and fibrosis were aggravated in asthmatic mice. Fibrous MPs exposure also significantly increased the levels of total IgE, and, cardinal Th2 and Th1 pro-inflammatory cytokines participated in the etiopathogenesis of allergic airway inflammation. In addition, MP fibers exposure induced lung epithelial cells apoptosis, disruption of epithelial barrier integrity and activation of NLRP3 related signaling pathways. Moreover, fibrous MPs significantly altered the bacterial composition at the genus level. Compared to the control group, the relative abundance of Escherichia-Shigella and Uncultured were decreased to 4.47% and 0.15% in OVA group, while Blautia and Prevotella were elevated to 4.96% and 2.94%. For the OVA + MPs group, the relative abundance of Blautia and Uncultured were decreased to 2.27% and 0.006%, while Prevotella was increased to 3.05%. Our study highlights the detrimental effect of fibrous MPs on asthmatic population and facilitates an indication of the latent mechanisms of fibrous MPs induced airway pathology.
Collapse
Affiliation(s)
- Qian Wu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, China
| | - Rui Li
- The Ninth People's Hospital of Shanghai Jiao Tong University School of Medicine, China.
| | - Yifei You
- School of Public Health, Shanghai Jiao Tong University School of Medicine, China
| | - Wei Cheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, China
| | - Yan Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, China
| | - Yan Feng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, China
| | - Yuqin Fan
- The Ninth People's Hospital of Shanghai Jiao Tong University School of Medicine, China
| | - Yan Wang
- The Ninth People's Hospital of Shanghai Jiao Tong University School of Medicine, China.
| |
Collapse
|
43
|
Gómez-García M, Moreno-Jimenez E, Morgado N, García-Sánchez A, Gil-Melcón M, Pérez-Pazos J, Estravís M, Isidoro-García M, Dávila I, Sanz C. The Role of the Gut and Airway Microbiota in Chronic Rhinosinusitis with Nasal Polyps: A Systematic Review. Int J Mol Sci 2024; 25:8223. [PMID: 39125792 PMCID: PMC11311313 DOI: 10.3390/ijms25158223] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
In recent years, there has been growing interest in understanding the potential role of microbiota dysbiosis or alterations in the composition and function of human microbiota in the development of chronic rhinosinusitis with nasal polyposis (CRSwNP). This systematic review evaluated the literature on CRSwNP and host microbiota for the last ten years, including mainly nasal bacteria, viruses, and fungi, following the PRISMA guidelines and using the major scientific publication databases. Seventy original papers, mainly from Asia and Europe, met the inclusion criteria, providing a comprehensive overview of the microbiota composition in CRSwNP patients and its implications for inflammatory processes in nasal polyps. This review also explores the potential impact of microbiota-modulating therapies for the CRSwNP treatment. Despite variability in study populations and methodologies, findings suggest that fluctuations in specific taxa abundance and reduced bacterial diversity can be accepted as critical factors influencing the onset or severity of CRSwNP. These microbiota alterations appear to be implicated in triggering cell-mediated immune responses, cytokine cascade changes, and defects in the epithelial barrier. Although further human studies are required, microbiota-modulating strategies could become integral to future combined CRSwNP treatments, complementing current therapies that mainly target inflammatory mediators and potentially improving patient outcomes.
Collapse
Affiliation(s)
- Manuel Gómez-García
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.G.-G.); (E.M.-J.); (N.M.); (A.G.-S.); (M.G.-M.); (J.P.-P.); (M.I.-G.); (I.D.); (C.S.)
- Pharmacogenetics and Precision Medicine Unit, Clinical Biochemistry Department, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Emma Moreno-Jimenez
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.G.-G.); (E.M.-J.); (N.M.); (A.G.-S.); (M.G.-M.); (J.P.-P.); (M.I.-G.); (I.D.); (C.S.)
- Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain
| | - Natalia Morgado
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.G.-G.); (E.M.-J.); (N.M.); (A.G.-S.); (M.G.-M.); (J.P.-P.); (M.I.-G.); (I.D.); (C.S.)
- Biomedical and Diagnostics Sciences Department, University of Salamanca, 37007 Salamanca, Spain
| | - Asunción García-Sánchez
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.G.-G.); (E.M.-J.); (N.M.); (A.G.-S.); (M.G.-M.); (J.P.-P.); (M.I.-G.); (I.D.); (C.S.)
- Biomedical and Diagnostics Sciences Department, University of Salamanca, 37007 Salamanca, Spain
- Results-Oriented Cooperative Research Networks in Health—Red de Enfermedades Inflamatorias, Carlos III Health Institute, 28220 Madrid, Spain
| | - María Gil-Melcón
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.G.-G.); (E.M.-J.); (N.M.); (A.G.-S.); (M.G.-M.); (J.P.-P.); (M.I.-G.); (I.D.); (C.S.)
- Otorhinolaryngology and Head and Neck Surgery Department, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Jacqueline Pérez-Pazos
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.G.-G.); (E.M.-J.); (N.M.); (A.G.-S.); (M.G.-M.); (J.P.-P.); (M.I.-G.); (I.D.); (C.S.)
- Pharmacogenetics and Precision Medicine Unit, Clinical Biochemistry Department, University Hospital of Salamanca, 37007 Salamanca, Spain
- Centre for Networked Biomedical Research in Cardiovascular Diseases (CIBERCV), Carlos III Health Institute, 28220 Madrid, Spain
| | - Miguel Estravís
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.G.-G.); (E.M.-J.); (N.M.); (A.G.-S.); (M.G.-M.); (J.P.-P.); (M.I.-G.); (I.D.); (C.S.)
- Results-Oriented Cooperative Research Networks in Health—Red de Enfermedades Inflamatorias, Carlos III Health Institute, 28220 Madrid, Spain
| | - María Isidoro-García
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.G.-G.); (E.M.-J.); (N.M.); (A.G.-S.); (M.G.-M.); (J.P.-P.); (M.I.-G.); (I.D.); (C.S.)
- Pharmacogenetics and Precision Medicine Unit, Clinical Biochemistry Department, University Hospital of Salamanca, 37007 Salamanca, Spain
- Results-Oriented Cooperative Research Networks in Health—Red de Enfermedades Inflamatorias, Carlos III Health Institute, 28220 Madrid, Spain
- Medicine Department, University of Salamanca, 37007 Salamanca, Spain
| | - Ignacio Dávila
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.G.-G.); (E.M.-J.); (N.M.); (A.G.-S.); (M.G.-M.); (J.P.-P.); (M.I.-G.); (I.D.); (C.S.)
- Biomedical and Diagnostics Sciences Department, University of Salamanca, 37007 Salamanca, Spain
- Results-Oriented Cooperative Research Networks in Health—Red de Enfermedades Inflamatorias, Carlos III Health Institute, 28220 Madrid, Spain
- Department of Allergy, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Catalina Sanz
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (M.G.-G.); (E.M.-J.); (N.M.); (A.G.-S.); (M.G.-M.); (J.P.-P.); (M.I.-G.); (I.D.); (C.S.)
- Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain
- Results-Oriented Cooperative Research Networks in Health—Red de Enfermedades Inflamatorias, Carlos III Health Institute, 28220 Madrid, Spain
| |
Collapse
|
44
|
Wang Y, Zhang Z, Chen Q, Chen T. Simultaneous application of oral and intravaginal probiotics for Helicobacter pylori and its antibiotic-therapy-induced vaginal dysbacteriosis. NPJ Biofilms Microbiomes 2024; 10:49. [PMID: 38902244 PMCID: PMC11190290 DOI: 10.1038/s41522-024-00521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 06/07/2024] [Indexed: 06/22/2024] Open
Abstract
Helicobacter pylori is a prevalent bacterial pathogen globally, implicated in various gastrointestinal disorders. Current recommended antibiotic therapies for H. pylori infection have been proven to be therapeutically insufficient, with low eradication rates and high recurrence rates. Emerging evidence suggests that antibiotic therapy for H. pylori can lead to gastrointestinal and subsequent vaginal dysbiosis, posing challenges for conventional antibiotic approaches. Thus, this article proposes a novel probiotic therapy involving simultaneous oral and intra-vaginal probiotic administration alongside antibiotics for H. pylori treatment, aiming to enhance eradication rates and mitigate dysbiosis. We begin by providing an overview of gastrointestinal and vaginal microbiota and their interconnectedness through the vagina-gut axis. We then review the efficacy of current antibiotic regimens for H. pylori and discuss how antibiotic treatment impacts the vaginal microenvironment. To explore the feasibility of this approach, we evaluate the effectiveness of oral and intra-vaginal probiotics in restoring normal microbiota in the gastrointestinal and vaginal tracts, respectively. Additionally, we analyze the direct mechanisms by which oral and intra-vaginal probiotics act on their respective tracts and discuss potential cross-tract mechanisms. Considering the potential synergistic therapeutic effects of probiotics in both the gastrointestinal and vaginal tracts, dual-channel probiotic therapy holds promise as a more effective approach for H. pylori eradication and dysbiosis mitigation, presenting a novel concept in the collaborative treatment of gastrointestinal and genital disorders.
Collapse
Affiliation(s)
- Yufan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- National Engineering Research Centre for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Zhenyu Zhang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Qi Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
- National Engineering Research Centre for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
45
|
Marissen J, Reichert L, Härtel C, Fortmann MI, Faust K, Msanga D, Harder J, Zemlin M, Gomez de Agüero M, Masjosthusmann K, Humberg A. Antimicrobial Peptides (AMPs) and the Microbiome in Preterm Infants: Consequences and Opportunities for Future Therapeutics. Int J Mol Sci 2024; 25:6684. [PMID: 38928389 PMCID: PMC11203687 DOI: 10.3390/ijms25126684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Antimicrobial peptides (AMPs) are crucial components of the innate immune system in various organisms, including humans. Beyond their direct antimicrobial effects, AMPs play essential roles in various physiological processes. They induce angiogenesis, promote wound healing, modulate immune responses, and serve as chemoattractants for immune cells. AMPs regulate the microbiome and combat microbial infections on the skin, lungs, and gastrointestinal tract. Produced in response to microbial signals, AMPs help maintain a balanced microbial community and provide a first line of defense against infection. In preterm infants, alterations in microbiome composition have been linked to various health outcomes, including sepsis, necrotizing enterocolitis, atopic dermatitis, and respiratory infections. Dysbiosis, or an imbalance in the microbiome, can alter AMP profiles and potentially lead to inflammation-mediated diseases such as chronic lung disease and obesity. In the following review, we summarize what is known about the vital role of AMPs as multifunctional peptides in protecting newborn infants against infections and modulating the microbiome and immune response. Understanding their roles in preterm infants and high-risk populations offers the potential for innovative approaches to disease prevention and treatment.
Collapse
Affiliation(s)
- Janina Marissen
- Department of Pediatrics, University Hospital Würzburg, 97080 Würzburg, Germany; (J.M.); (L.R.)
- Würzburg Institute of Systems Immunology, Max-Planck Research Group, University of Würzburg, 97078 Würzburg, Germany;
| | - Lilith Reichert
- Department of Pediatrics, University Hospital Würzburg, 97080 Würzburg, Germany; (J.M.); (L.R.)
| | - Christoph Härtel
- Department of Pediatrics, University Hospital Würzburg, 97080 Würzburg, Germany; (J.M.); (L.R.)
- German Center for Infection Research, Site Hamburg-Lübeck-Borstel-Riems, 23538 Lübeck, Germany
| | - Mats Ingmar Fortmann
- Department of Pediatrics, University Hospital Schleswig-Holstein, 23538 Lübeck, Germany; (M.I.F.); (K.F.)
| | - Kirstin Faust
- Department of Pediatrics, University Hospital Schleswig-Holstein, 23538 Lübeck, Germany; (M.I.F.); (K.F.)
| | - Delfina Msanga
- Department of Pediatrics, Bugando Hospital, Catholic University of Health and Allied Sciences, Mwanza 33109, Tanzania;
| | - Jürgen Harder
- Department of Dermatology, Venerology and Allergology, Quincke Research Center, Kiel University, 24105 Kiel, Germany;
| | - Michael Zemlin
- Department of General Pediatrics and Neonatology, Saarland University Medical Center, 66421 Homburg, Germany;
| | - Mercedes Gomez de Agüero
- Würzburg Institute of Systems Immunology, Max-Planck Research Group, University of Würzburg, 97078 Würzburg, Germany;
| | - Katja Masjosthusmann
- Department of General Pediatrics, University Children’s Hospital Münster, 48149 Münster, Germany; (K.M.); (A.H.)
| | - Alexander Humberg
- Department of General Pediatrics, University Children’s Hospital Münster, 48149 Münster, Germany; (K.M.); (A.H.)
| |
Collapse
|
46
|
Azoicai A, Lupu A, Alexoae MM, Starcea IM, Mocanu A, Lupu VV, Mitrofan EC, Nedelcu AH, Tepordei RT, Munteanu D, Mitrofan C, Salaru DL, Ioniuc I. Lung microbiome: new insights into bronchiectasis' outcome. Front Cell Infect Microbiol 2024; 14:1405399. [PMID: 38895737 PMCID: PMC11183332 DOI: 10.3389/fcimb.2024.1405399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
The present treatments for bronchiectasis, which is defined by pathological dilatation of the airways, are confined to symptom relief and minimizing exacerbations. The condition is becoming more common worldwide. Since the disease's pathophysiology is not entirely well understood, developing novel treatments is critically important. The interplay of chronic infection, inflammation, and compromised mucociliary clearance, which results in structural alterations and the emergence of new infection, is most likely responsible for the progression of bronchiectasis. Other than treating bronchiectasis caused by cystic fibrosis, there are no approved treatments. Understanding the involvement of the microbiome in this disease is crucial, the microbiome is defined as the collective genetic material of all bacteria in an environment. In clinical practice, bacteria in the lungs have been studied using cultures; however, in recent years, researchers use next-generation sequencing methods, such as 16S rRNA sequencing. Although the microbiome in bronchiectasis has not been entirely investigated, what is known about it suggests that Haemophilus, Pseudomonas and Streptococcus dominate the lung bacterial ecosystems, they present significant intraindividual stability and interindividual heterogeneity. Pseudomonas and Haemophilus-dominated microbiomes have been linked to more severe diseases and frequent exacerbations, however additional research is required to fully comprehend the role of microbiome in the evolution of bronchiectasis. This review discusses recent findings on the lung microbiota and its association with bronchiectasis.
Collapse
Affiliation(s)
- Alice Azoicai
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ancuta Lupu
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Monica Mihaela Alexoae
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Iuliana Magdalena Starcea
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Adriana Mocanu
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Vasile Valeriu Lupu
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Alin Horatiu Nedelcu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Razvan Tudor Tepordei
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Dragos Munteanu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Costica Mitrofan
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ileana Ioniuc
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
47
|
Paciência I, Sharma N, Hugg TT, Rantala AK, Heibati B, Al-Delaimy WK, Jaakkola MS, Jaakkola JJ. The Role of Biodiversity in the Development of Asthma and Allergic Sensitization: A State-of-the-Science Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:66001. [PMID: 38935403 PMCID: PMC11218706 DOI: 10.1289/ehp13948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Changes in land use and climate change have been reported to reduce biodiversity of both the environment and human microbiota. These reductions in biodiversity may lead to inadequate and unbalanced stimulation of immunoregulatory circuits and, ultimately, to clinical diseases, such as asthma and allergies. OBJECTIVE We summarized available empirical evidence on the role of inner (gut, skin, and airways) and outer (air, soil, natural waters, plants, and animals) layers of biodiversity in the development of asthma, wheezing, and allergic sensitization. METHODS We conducted a systematic search in SciVerse Scopus, PubMed MEDLINE, and Web of Science up to 5 March 2024 to identify relevant human studies assessing the relationships between inner and outer layers of biodiversity and the risk of asthma, wheezing, or allergic sensitization. The protocol was registered in PROSPERO (CRD42022381725). RESULTS A total of 2,419 studies were screened and, after exclusions and a full-text review of 447 studies, 82 studies were included in the comprehensive, final review. Twenty-nine studies reported a protective effect of outer layer biodiversity in the development of asthma, wheezing, or allergic sensitization. There were also 16 studies suggesting an effect of outer layer biodiversity on increasing asthma, wheezing, or allergic sensitization. However, there was no clear evidence on the role of inner layer biodiversity in the development of asthma, wheezing, and allergic sensitization (13 studies reported a protective effect and 15 reported evidence of an increased risk). CONCLUSIONS Based on the reviewed literature, a future systematic review could focus more specifically on outer layer biodiversity and asthma. It is unlikely that association with inner layer biodiversity would have enough evidence for systematic review. Based on this comprehensive review, there is a need for population-based longitudinal studies to identify critical periods of exposure in the life course into adulthood and to better understand mechanisms linking environmental exposures and changes in microbiome composition, diversity, and/or function to development of asthma and allergic sensitization. https://doi.org/10.1289/EHP13948.
Collapse
Affiliation(s)
- Inês Paciência
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Needhi Sharma
- University of California, San Diego, San Diego, California, USA
| | - Timo T. Hugg
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Aino K. Rantala
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Behzad Heibati
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | - Maritta S. Jaakkola
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Jouni J.K. Jaakkola
- Center for Environmental and Respiratory Health Research, Population Health, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Finnish Meteorological Institute, Helsinki, Finland
| |
Collapse
|
48
|
Ekpruke CD, Alford R, Parker E, Silveyra P. Gonadal sex and chromosome complement influence the gut microbiome in a mouse model of allergic airway inflammation. Physiol Genomics 2024; 56:417-425. [PMID: 38640403 PMCID: PMC11368565 DOI: 10.1152/physiolgenomics.00003.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024] Open
Abstract
Evidence abounds that gut microbiome components are associated with sex disparities in the immune system. However, it remains unclear whether the observed sex disparity in asthma incidence is associated with sex-dependent differences in immune-modulating gut microbiota, and/or its influence on allergic airway inflammatory processes. Using a mouse model of house dust mite (HDM)-induced allergic inflammation and the four core genotypes (FCGs) model, we have previously reported sex differences in lung inflammatory phenotypes. Here, we investigated associations of gut microbiomes with these phenotypes by challenging FCG mice [mouse with female sex chromosome and male gonad (XXM), mouse with female sex chromosome and female gonad (XXF), mouse with male sex chromosome and male gonad (XYM), and mouse with male sex chromosome and female gonad (XYF); n = 7/group] with HDM (25 μg) or PBS intranasally for 5 wk and collecting fecal samples. We extracted fecal DNA and analyzed the 16S microbiome via Targeted Metagenomic Sequencing. We compared α and β diversity across genotypes and assessed the Firmicutes/Bacteroidetes (F/B) ratio. When comparing baseline and after exposure for the FCG, we found that the gut F/B ratio was only increased in the XXM genotype. We also found that α diversity was significantly increased in all FCG mice upon HDM challenge, with the highest increase in the XXF, and the lowest in the XXM genotypes. Similarly, β diversity of the microbial community was also affected by challenge in a gonad- and chromosome-dependent manner. In summary, our results indicated that HDM treatment, gonads, and sex chromosomes significantly influence the gut microbial community composition. We concluded that allergic lung inflammation may be affected by the gut microbiome in a sex-dependent manner involving both hormonal and genetic influences.NEW & NOTEWORTHY Recently, the gut microbiome and its role in chronic respiratory disease have been the subject of extensive research and the establishment of its involvement in immune functions. Using the FCG mouse model, our findings revealed the influence of gonads and sex chromosomes on the microbial community structure before and after exposure to HDM. Our data provide a potential new avenue to better understand mediators of sex disparities associated with allergic airway inflammation.
Collapse
Affiliation(s)
- Carolyn Damilola Ekpruke
- Department of Environmental and Occupational Health, School of Public Health Bloomington, Indiana University, Bloomington, Indiana, United States
| | - Rachel Alford
- Department of Environmental and Occupational Health, School of Public Health Bloomington, Indiana University, Bloomington, Indiana, United States
| | - Erik Parker
- Department of Epidemiology and Biostatistics, Biostatistics Consulting Center, School of Public Health, Indiana University, Bloomington, Indiana, United States
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, School of Public Health Bloomington, Indiana University, Bloomington, Indiana, United States
- School of Medicine, Indiana University, Indianapolis, Indiana, United States
| |
Collapse
|
49
|
Xepapadaki P, Megremis S, Rovina N, Wardzyńska A, Pasioti M, Kritikou M, Papadopoulos NG. Exploring the Impact of Airway Microbiome on Asthma Morbidity: A Focus on the "Constructing a 'Eubiosis Reinstatement Therapy' for Asthma-CURE" Project. Pulm Ther 2024; 10:171-182. [PMID: 38814533 PMCID: PMC11282048 DOI: 10.1007/s41030-024-00261-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
The asthma pandemic imposes a huge burden on patients and health systems in both developed and developing countries. Despite available treatments, symptom control is generally suboptimal, and hospitalizations and deaths remain at unacceptably high levels. A pivotal aspect of asthma that warrants further exploration is the influence of the respiratory microbiome and virome in modulating disease activity. A plethora of studies report that the respiratory microbiome is characteristically dysbiotic in asthma. In addition, our data suggest that dysbiosis is also observed on the respiratory virome, partly characterized by the reduced abundance of bacteriophages (phages). Even though phages can naturally infect and control their bacterial prey, phage therapy has been grossly neglected in the Western world, although more recently it is more widely used as a novel tool against bacterial infections. However, it has never been used for tackling microbiome dysbiosis in human non-communicable diseases. This review provides an up-to-date understanding of the microbiome and virome's role within the airways in relation to asthma morbidity. It also advances the rationale and hypothesis for the CURE project. Specifically, the CURE project suggests that managing the respiratory microbiome through phage therapy is viable and may result in restoring eubiosis within the asthmatic airway. This entails controlling immune dysregulation and the clinical manifestation of the disease. To accomplish this goal, it is crucial to predict the effects of introducing specific phage mixtures into the intricate ecology of the airways and devise suitable interventions.
Collapse
Affiliation(s)
- Paraskevi Xepapadaki
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, 41, Fidippidou, 11527, Athens, Greece.
| | - Spyridon Megremis
- Department of Genetics and Genome Biology, Centre for Phage Research, University of Leicester, Leicester, UK
| | - Nikoletta Rovina
- 1st Department of Respiratory Medicine, Sotiria Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | | | - Maria Pasioti
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, 41, Fidippidou, 11527, Athens, Greece
| | - Maria Kritikou
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, 41, Fidippidou, 11527, Athens, Greece
| | - Nikolaos G Papadopoulos
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, 41, Fidippidou, 11527, Athens, Greece
| |
Collapse
|
50
|
Bani Saeid A, De Rubis G, Williams KA, Yeung S, Chellappan DK, Singh SK, Gupta G, Hansbro PM, Shahbazi MA, Gulati M, Kaur IP, Santos HA, Paudel KR, Dua K. Revolutionizing lung health: Exploring the latest breakthroughs and future prospects of synbiotic nanostructures in lung diseases. Chem Biol Interact 2024; 395:111009. [PMID: 38641145 DOI: 10.1016/j.cbi.2024.111009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
The escalating prevalence of lung diseases underscores the need for innovative therapies. Dysbiosis in human body microbiome has emerged as a significant factor in these diseases, indicating a potential role for synbiotics in restoring microbial equilibrium. However, effective delivery of synbiotics to the target site remains challenging. Here, we aim to explore suitable nanoparticles for encapsulating synbiotics tailored for applications in lung diseases. Nanoencapsulation has emerged as a prominent strategy to address the delivery challenges of synbiotics in this context. Through a comprehensive review, we assess the potential of nanoparticles in facilitating synbiotic delivery and their structural adaptability for this purpose. Our review reveals that nanoparticles such as nanocellulose, starch, and chitosan exhibit high potential for synbiotic encapsulation. These offer flexibility in structure design and synthesis, making them promising candidates for addressing delivery challenges in lung diseases. Furthermore, our analysis highlights that synbiotics, when compared to probiotics alone, demonstrate superior anti-inflammatory, antioxidant, antibacterial and anticancer activities. This review underscores the promising role of nanoparticle-encapsulated synbiotics as a targeted and effective therapeutic approach for lung diseases, contributing valuable insights into the potential of nanomedicine in revolutionizing treatment strategies for respiratory conditions, ultimately paving the way for future advancements in this field.
Collapse
Affiliation(s)
- Ayeh Bani Saeid
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kylie A Williams
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Stewart Yeung
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, 144411, India
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India; Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, AV, 9713, Groningen, the Netherlands
| | - Monica Gulati
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Punjab University Chandigarh, India
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, AV, 9713, Groningen, the Netherlands; Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|