1
|
Ugai S, Liu L, Kosumi K, Kawamura H, Hamada T, Mima K, Arima K, Okadome K, Yao Q, Matsuda K, Zhong Y, Mizuno H, Chan AT, Garrett WS, Song M, Giannakis M, Giovannucci EL, Zhang X, Ogino S, Ugai T. Long-term yogurt intake and colorectal cancer incidence subclassified by Bifidobacterium abundance in tumor. Gut Microbes 2025; 17:2452237. [PMID: 39937126 PMCID: PMC11834522 DOI: 10.1080/19490976.2025.2452237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/27/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
Evidence suggests a tumor-suppressive effect of the intake of yogurt, which typically contains Bifidobacterium. We hypothesized that long-term yogurt intake might be associated with colorectal cancer incidence differentially by tumor subgroups according to the amount of tissue Bifidobacterium. We utilized the prospective cohort incident-tumor biobank method and resources of two prospective cohort studies. Inverse probability weighted multivariable Cox proportional hazards regression was used to assess differential associations of yogurt intake with the incidence of colorectal carcinomas subclassified by the abundance of tumor tissue Bifidobacterium. During follow-up of 132,056 individuals, we documented 3,079 incident colorectal cancer cases, including 1,121 with available tissue Bifidobacterium data. The association between long-term yogurt intake and colorectal cancer incidence differed by Bifidobacterium abundance (P heterogeneity = 0.0002). Multivariable-adjusted hazard ratios (HRs) (with 95% confidence intervals) in individuals who consumed ≥2 servings/week (vs. <1 serving/month) of yogurt were 0.80 (0.50-1.28) for Bifidobacterium-positive tumor and 1.09 (0.81-1.46) for Bifidobacterium-negative tumor. This differential association was also observed in a subgroup analysis of proximal colon cancer (P heterogeneity = 0.018). Long-term yogurt intake may be differentially associated with the incidence of proximal colon cancer according to Bifidobacterium abundance, suggesting the antitumor effect of yogurt intake on the specific tumor subgroup.
Collapse
Affiliation(s)
- Satoko Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Li Liu
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Keisuke Kosumi
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hidetaka Kawamura
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Department of Surgery, Fukushima Medical University, Fukushima, Japan
| | - Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kosuke Mima
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kota Arima
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Kazuo Okadome
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Qian Yao
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Kosuke Matsuda
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Yuxue Zhong
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Hiroki Mizuno
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrew T. Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Wendy S. Garrett
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mingyang Song
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marios Giannakis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Edward L. Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xuehong Zhang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Yale University School of Nursing, Orange, CT, USA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cancer Immunology Program, Dana-Farber/Harvard Cancer Center, Boston, MA, USA
- Tokyo Medical and Dental University (Institute of Science Tokyo), Tokyo, Japan
| | - Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
2
|
Liu X, Guan K, Ma Y, Jiang L, Li Q, Liu Y, Mao K, Wang R. Probiotic Combination of Limosilactobacillus fermentum HF07 and Lactococcus lactis HF08 Targeting Gut Microbiota-Secondary Bile Acid Metabolism Ameliorates Inflammation and Intestinal Barrier Dysfunction in Aging Colitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40391947 DOI: 10.1021/acs.jafc.4c12392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
This study investigated the intestinal protective effects of a probiotic mixture (PM) composed of Limosilactobacillus fermentum HF07 and Lactococcus lactis HF08 on d-gal/DSS-induced aging colitis in mice. The PM alleviated age-related colitis symptoms including weight loss, increased disease activity index scores, colonic shortening, and tissue damage. PM supplementation reshaped the gut microbiota by restoring the relative abundances of Lactobacillus, Dubosiella, Odoribacter, and Clostridia_UCG-014, thereby enhancing levels of bile acids (BAs) such as alpha-muricholic acid, isolithocholic acid, and ursodeoxycholic acid. Moreover, transcriptomic analysis revealed that PM administration activated the cAMP pathway through the gut microbiota-secondary BAs axis. Western blot analysis further demonstrated that the effects of anti-inflammatory and intestinal barrier repair induced by PM were associated with downregulation of key proteins in the NLRP3 and RhoA/ROCK pathways, both of which are downstream of the cAMP pathway. Additionally, the role of gut metabolites in mediating these effects via G protein-coupled receptor 5 (TGR5) activation was confirmed through in vitro experiments using Caco-2 cells. These findings provided a comprehensive understanding of how probiotics target intestinal metabolites and leverage the gut microbiota-BAs axis to mitigate age-related gastrointestinal diseases.
Collapse
Affiliation(s)
- Xiaolin Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Kaifang Guan
- School of Medicine and Health, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Ying Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Lin Jiang
- Nutritional Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Qiming Li
- Dairy Nutrition and Function, Key Laboratory of Sichuan Province, New Hope Dairy Company Limited, Chengdu 610023, China
- Sichuan Engineering Laboratory for High-quality Dairy Product Preparation and Quality Control Technology, Chengdu, Sichuan 610000, China
| | - Yuxuan Liu
- Dairy Nutrition and Function, Key Laboratory of Sichuan Province, New Hope Dairy Company Limited, Chengdu 610023, China
| | - Kaidong Mao
- Jiangsu HOWYOU Biotechnology Company Limited, Shanghai 310000, China
| | - Rongchun Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| |
Collapse
|
3
|
Pontes KSDS, Guedes MR, Souza PGD, Neves MFT, Klein MRST. Effects of multi-strain probiotics supplementation on body adiposity and metabolic profile in individuals with hypertension and overweight following an energy-restricted diet: A randomized clinical trial. Clin Nutr 2025; 50:117-127. [PMID: 40409234 DOI: 10.1016/j.clnu.2025.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/21/2025] [Accepted: 05/08/2025] [Indexed: 05/25/2025]
Abstract
BACKGROUND & AIMS Recent evidence suggests that gut microbiota has a potential role in the pathophysiology of obesity and other cardiovascular disease (CVD) risk factors, including hypertension, dyslipidemia, and type 2 diabetes. However, clinical trials evaluating the effects of probiotics supplementation on these outcomes have found inconsistent results, probably due to the wide heterogeneity in trial designs. In addition, there is a lack of studies investigating whether probiotics can enhance the beneficial effects of caloric restriction in individuals with increased risk of CVD as individuals with hypertension and excess body adiposity. Thus, the aim of this study was to evaluate the effects of multi-strain probiotics supplementation on body adiposity, glycemic homeostasis, lipid profile, and serum adipokine levels in individuals with hypertension and excess body weight following an energy restricted diet. METHODS A randomized, double-blind, placebo controlled clinical trial was conducted for 12 weeks. Were included 66 individuals aged between 40 and 65 years; both sexes; body mass index (BMI) ≥ 25 and < 40 kg/m2 and diagnosis of hypertension. Were excluded smokers; individuals using probiotics, prebiotics, symbiotics and antibiotics in the last 3 months; presenting diabetes, chronic kidney disease or liver failure; and pregnant and lactating women. Participants were allocated into 2 groups: group with supplementation of 8 probiotic strains in capsules (3 × 1010 CFU/day) or control group (placebo capsules). Both groups followed a low-calorie diet. Participants underwent anthropometric, body composition (dual-energy radiological absorptiometry) and biochemical (glucose metabolism, lipid profile, adiponectin, and leptin) evaluation at baseline and at the end of the study. RESULTS After 12 weeks of intervention, the probiotics group presented: a) reduction of body weight, BMI, circumferences of waist, hip and neck and waist-to-height ratio; b) decrease in total fat mass (kg); and c) reduction of glycated hemoglobin (HbA1c). In the control group, it was observed: a) significant reduction in all anthropometric variables; b) significant reduction in total fat mass (kg and %), trunk fat mass (kg), visceral fat and load capacity index. In the comparison between groups, there was a higher decrease in HbA1c in the probiotics group (p < 0.05). CONCLUSION Multi-strain probiotics supplementation associated with energy restriction in individuals with excess body weight and hypertension promoted a significant improvement in glucose homeostasis assessed by HbA1c. The clinical trial was registered at www.ensaiosclinicos.gov.br: RBR-7jw4ry.
Collapse
Affiliation(s)
- Karine Scanci da Silva Pontes
- Post Graduate Program in Clinical and Experimental Pathophysiology, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| | - Marcella Rodrigues Guedes
- Post Graduate Program in Clinical and Experimental Pathophysiology, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| | - Priscila Guadagno de Souza
- Post Graduate Program in Food, Nutrition and Health, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
4
|
de Souza de Azevedo PO, de Medeiros Oliveira M, Kuniyoshi TM, Matajira CEC, Frota EG, Dias M, Bermúdez-Puga SA, Pessoa ARS, Piazentin ACM, Mendonça CMN, Pereira WA, Converti A, Domínguez JM, Gierus M, Varani AM, de Souza Oliveira RP. Phenotypic and genomic characterization of bacteriocin-producing lactic acid bacteria with probiotic and biotechnological potential for pathogen control in animal production. N Biotechnol 2025; 88:114-131. [PMID: 40324719 DOI: 10.1016/j.nbt.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 04/03/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025]
Abstract
The emergence of antibiotic-resistant pathogens has raised significant concerns in the poultry industry, driving the search for alternatives to antibiotics as growth promoters in animal feed. Probiotics, particularly those belonging to the Lactic Acid Bacteria (LAB) group, represent a promising solution by mitigating the risk of infectious disease. However, a uniform concentration of probiotic LAB is not suitable for feed additives due to varying growth kinetics. Additionally, the genomic and physiological profiles of the LAB strains involved must be thoroughly evaluated. In this study, we provide an analytical framework to comprehensively assess LAB as potential antibiotic alternatives in poultry farming. Three LAB strains - Pediococcus pentosaceus (isolated from corn silage), Ligilactobacillus salivarius (from the poultry gut) and Lactococcus lactis (from the gut of rainbow trout) - were sequenced and characterized, with a focus on evaluating their probiotic potential and safety at the genomic level. The analyses included co-culturing LAB with pathogens, assessing viable cells, and determining the minimum inhibitory concentration of bacteriocin-like inhibitory substances (BLIS). In addition to demonstrating effective antimicrobial activity against avian pathogens (Salmonella spp., Clostridium spp. and Campylobacter coli), the results revealed notable probiotic traits in all three LAB strains, such as tolerance to bile salts and acidic environment and adhesion to intestinal cells. In conclusion, our analytical framework and results highlighted the potential of the tested LAB strains as biotechnological tools for developing zootechnical additives. These probiotics show promise as viable alternatives to antibiotics for enhancing poultry health and productivity.
Collapse
Affiliation(s)
- Pamela Oliveira de Souza de Azevedo
- Department of Biochemical-Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl 16, São Paulo 05508-900, Brazil; BOKU University, Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology, Department of Agricultural Sciences, Muthgasse 11/I, 1190 Vienna, Austria
| | - Mauro de Medeiros Oliveira
- Department of Agricultural and Environmental Biotechnology, São Paulo State University (UNESP), College of Agricultural and Veterinary Sciences, Jaboticabal, SP 14884-900, Brazil
| | - Taís Mayumi Kuniyoshi
- Department of Biochemical-Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl 16, São Paulo 05508-900, Brazil
| | - Carlos Emilio Cabrera Matajira
- Department of Biochemical-Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl 16, São Paulo 05508-900, Brazil
| | - Elionio Galvão Frota
- Department of Biochemical-Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl 16, São Paulo 05508-900, Brazil
| | - Meriellen Dias
- Department of Biochemical-Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl 16, São Paulo 05508-900, Brazil
| | - Sebastián Armando Bermúdez-Puga
- Department of Biochemical-Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl 16, São Paulo 05508-900, Brazil
| | - Amanda Romana Santos Pessoa
- Department of Biochemical-Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl 16, São Paulo 05508-900, Brazil
| | - Anna Carolina Meireles Piazentin
- Department of Biochemical-Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl 16, São Paulo 05508-900, Brazil
| | - Carlos Miguel Nóbrega Mendonça
- Department of Biochemical-Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl 16, São Paulo 05508-900, Brazil
| | - Wellison Amorim Pereira
- Department of Biochemical-Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl 16, São Paulo 05508-900, Brazil
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, via Opera Pia 15, Genoa 16145, Italy
| | - José Manuel Domínguez
- Industrial Biotechnology and Environmental Engineering Group "BiotecnIA", Chemical Engineering Department, University of Vigo (Campus Ourense), Ourense 32004, Spain.
| | - Martin Gierus
- BOKU University, Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology, Department of Agricultural Sciences, Muthgasse 11/I, 1190 Vienna, Austria
| | - Alessandro M Varani
- Department of Agricultural and Environmental Biotechnology, São Paulo State University (UNESP), College of Agricultural and Veterinary Sciences, Jaboticabal, SP 14884-900, Brazil
| | - Ricardo Pinheiro de Souza Oliveira
- Department of Biochemical-Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 580, Bl 16, São Paulo 05508-900, Brazil.
| |
Collapse
|
5
|
Salvatore MM, Maione A, Buonanno A, Guida M, Andolfi A, Salvatore F, Galdiero E. Biological activities, biosynthetic capacity and metabolic interactions of lactic acid bacteria and yeast strains from traditional home-made kefir. Food Chem 2025; 470:142657. [PMID: 39756085 DOI: 10.1016/j.foodchem.2024.142657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/03/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
Given the widespread industrial and domestic use of probiotic blends based on combinations of lactic acid bacteria (LAB) and yeasts to produce fermented foods or beverages that are supposed to provide health benefits, this study aimed to generate knowledge and concepts on biologically relevant activities, metabolism and metabolic interactions in yeast/LAB communities. For this, the postbiotic capabilities of three probiotic candidates, including two lactic acid bacteria (i.e., Lactococcus lactis subsp. hordniae and Lactococcus lactis subsp. lactis) and the yeast Pichia kudriavzevii, isolated from a traditional home-made kefir, were explored combining an assortment of bioassays with a GC-MS footprint metabolomic strategy. Cell-free supernatants from cultures showed antimicrobial/antioxidant activity and inhibited biofilm formation by Salmonella sp. Several bioactive secondary metabolites (including tyrosol, phenylethyl alcohol, 2,3-butanediol, erythritol, tryptophol, putrescine, cadaverine, 3-phenyllactate, 2-hydroxyisocaproate) were detected which may contribute to the odor and flavour of the fermented products and their effects on human body.
Collapse
Affiliation(s)
- Maria Michela Salvatore
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy.
| | - Angela Maione
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy.
| | - Annalisa Buonanno
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, (NA), Italy
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, (NA), Italy
| | - Francesco Salvatore
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Emilia Galdiero
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
6
|
Sung JY, Deng Z, Kim SW. Antibiotics and Opportunities of Their Alternatives in Pig Production: Mechanisms Through Modulating Intestinal Microbiota on Intestinal Health and Growth. Antibiotics (Basel) 2025; 14:301. [PMID: 40149111 PMCID: PMC11939794 DOI: 10.3390/antibiotics14030301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Antibiotics at subtherapeutic levels have been used in pig diets as antimicrobial growth promoters. However, concerns about antibiotic resistance have increased the demand for alternatives to these antimicrobial growth promoters. This review paper explores the mechanisms through which antimicrobial growth promoters and their alternatives exert their antimicrobial effects. Additionally, this systemic review also covers how modulation of intestinal microbiota by antimicrobial growth promoters or their alternatives affects intestinal health and, subsequently, growth of pigs. The mechanisms and effects of antimicrobial growth promoters and their alternatives on intestinal microbiota, intestinal health, and growth are diverse and inconsistent. Therefore, pig producers should carefully assess which alternative is the most effective for optimizing both profitability and the health status of pigs in their production system.
Collapse
Affiliation(s)
| | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (J.Y.S.); (Z.D.)
| |
Collapse
|
7
|
Yang K, Zhou B, Xu Q, Li Y, Lin J, Zhou Y, Liu M, Zhao J, Zhu Y, Dai X. Comparing the antioxidant effects of single and binary combinations of Lactiplantibacillus plantarum in vitro and in vivo and their application in yogurt. J Dairy Sci 2025; 108:2276-2292. [PMID: 39778801 DOI: 10.3168/jds.2024-25722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
Lactiplantibacillus plantarum have been studied for their antioxidant properties, which can mitigate oxidative stress and improve health outcomes. The study aimed to compare the antioxidant properties of single and binary L. plantarum and their impact on yogurt. Lactiplantibacillus plantarum 847 (Lp-C), L. plantarum 8014 (Lp-G), and their combination were chosen for their in vitro antioxidant potential. In vivo experiments were performed in Drosophila melanogaster and results showed that binary L. plantarum notably improved the survival time, weight, catalase activity and intestinal integrity in H2O2-induced flies. As compared with single L. plantarum treated flies, binary strains improved the survival curve, superoxide dismutase and catalase activities in females, prolonged the average survival time in males, and increased the expression level of keap1, Nrf2, and SOD genes in all sexes. To explore the effect of single and binary L. plantarum on milk fermentation, the physicochemical properties and antioxidant activity of yogurt were detected, and results presented that yogurt fermented with L. plantarum exhibited the improved antioxidant capacity, with the binary strain combination demonstrating superior effects in rheological properties and the later period of yogurt storage. This research offers a foundation for choosing the combinations of lactic acid bacteria with antioxidant properties.
Collapse
Affiliation(s)
- Kun Yang
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Bingjing Zhou
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Qianping Xu
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Yingtong Li
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Junqing Lin
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Yang Zhou
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Mingqi Liu
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Jin Zhao
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Yang Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China.
| | - Xianjun Dai
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China.
| |
Collapse
|
8
|
Tanashat M, Abuelazm M, Abouzid M, Al-Ajlouni YA, Ramadan A, Alsalah S, Sharaf A, Ayman D, Elharti H, Zhana S, Altobaishat O, Abdelazeem B, Jaber F. Efficacy of probiotics regimens for Helicobacter pylori eradication: A systematic review, pairwise, and network meta-analysis of randomized controlled trials. Clin Nutr ESPEN 2025; 65:424-444. [PMID: 39642994 DOI: 10.1016/j.clnesp.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/10/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection increases the risks of chronic gastritis, peptic ulcer diseases, and the incidence of gastric cancer. However, antibiotic resistance and adverse effects led to the emergence of alternative treatments such as probiotics supplementation. This systematic review and network meta-analysis aims to assess the efficacy and safety of incorporating probiotics into the various eradication regimens for H. pylori. METHODS We searched PubMed, Embase, Scopus, Cochrane, and Web of Science from inception to May 2023, for randomized controlled trials (RCTs) comparing standard therapy (triple or quadrable therapy). for H. pylori with or without probiotic supplementation. Dichotomous data was reported using an odds ratio (OR) for intention-to-treat (ITT) and risk ratios (RR) for side effects with a 95 % confidence interval (CI). RESULTS We included 91 RCTs involving 13,680 patients. Adding probiotics to standard treatment was associated with a higher H. pylori eradication rate in the ITT analysis (78.75 % vs 62.43 %, OR = 1.62, 95 % CI: 1.41 to 1.87, P < 0.0001), and per-protocol (PP) analysis (80.33 % vs 72.63 %, OR = 1.60, 95 % CI: 1.34 to 1.91, P < 0.0001). Meanwhile, dyspepsia, gastric ulcer, and peptic ulcer were comparable in both groups. The probiotics group was associated with significantly fewer side effects including, abdominal pain (RR = 0.68, 95 % CI: 0.54 to 0.86), bad taste (RR = 0.64, 95 % CI: 0.53 to 0.78), diarrhea (RR = 0.49, 95 % CI: 0.40 to 0.61), epigastric pain/bloating (RR = 0.76, 95 % CI: 0.65 to 0.88), headache/dizziness (RR = 0.46, 95 % CI: 0.29 to 0.74), (RR = 0.65, 95 % CI: 0.55 to 0.77), or nausea/vomiting (RR = 0.69, 95 % CI: 0.56 to 0.83). The network meta-analysis showed that, compared to the placebo, Bifidobacterium longum had the highest efficacy in eradicating H. pylori (ITT: 81.06 % vs 64.88 %, PP: 88 % vs 75.71 %) (OR = 2.52, 95 % CI: 1.18 to 5.49). CONCLUSION Adding probiotics to standard H. pylori therapy not only increased the rate of eradication but also reduced some of the adverse reactions throughout therapy, particularly nausea, vomiting, diarrhea, abdominal pain, epigastric pain/bloating, and taste issues.
Collapse
Affiliation(s)
| | | | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806, Poznan, Poland; Doctoral School, Poznan University of Medical Sciences, 60-812, Poznan, Poland
| | | | - Alaa Ramadan
- Faculty of Medicine, South Valley University, Qena, Egypt
| | - Sumaya Alsalah
- Ministry of Health, Primary Health Care, University of Bahrain, Manama, Bahrain
| | - Abdulrahman Sharaf
- Department of Clinical Pharmacy, Salmaniya Medical Complex, Government Hospitals, Manama, Bahrain; University of Strathclyde, Glasgow, UK
| | - Dina Ayman
- Faculty of Medicine, Beni Suef University, Beni Suef, Egypt
| | | | - Sara Zhana
- Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Obieda Altobaishat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Basel Abdelazeem
- Department of Cardiology, West Virginia University, Morgantown, WV, USA
| | - Fouad Jaber
- Section of Gastroenterology and Hepatology, Baylor College of Medicine Houston, Texas, USA.
| |
Collapse
|
9
|
Hossainpour H, Khazaei S, Mahmoudi H. The Effect of Probiotics and Microbiota on Nervous System and Mental Illnesses. Cent Nerv Syst Agents Med Chem 2025; 25:109-122. [PMID: 39313893 DOI: 10.2174/0118715249315760240905043415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 09/25/2024]
Abstract
The microbiota that inhabits the gastrointestinal tract has been linked to various gastrointestinal and non-gastrointestinal disorders. Scientists have been studying how the bacteria in our intestines have an effect on our brain and nervous system. This connection is called the "microbiota-gut-brain axis". Given the capacity of probiotics, which are live non-pathogenic microorganisms, to reinstate the normal microbial population within the host and confer advantages, their potential impact has been subjected to scrutiny with regard to neurological and mental conditions. Material sourced for this review included peer-reviewed literature annotated in the PubMed, Web of Science, Scopus, and Google Scholar databases. The result has indicated the integration of probiotics into a child's diet to enhance the neuro-behavioral symptoms. Notwithstanding this, the current data set has been found to be insufficient and inconclusive. The potential utility of probiotics for the prevention or treatment of neurologic and mental disorders has become a subject of substantial interest.
Collapse
Affiliation(s)
- Hadi Hossainpour
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Microbiology, School of Medicine, Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Salman Khazaei
- Department of Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hassan Mahmoudi
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Microbiology, Nahavand School of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
10
|
Kovačec E, Kraigher B, Podnar E, Lories B, Steenackers H, Mandic‐Mulec I. Bacillus subtilis Intraspecies Interactions Shape Probiotic Activity Against Salmonella Typhimurium. Microb Biotechnol 2024; 17:e70065. [PMID: 39718437 PMCID: PMC11667775 DOI: 10.1111/1751-7915.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/23/2024] [Accepted: 11/18/2024] [Indexed: 12/25/2024] Open
Abstract
Commercial probiotics are often formulated as multi-strain cocktails, but the effects of social interactions, particularly between strains of a species, are often neglected, despite their potential to contribute to higher-order interactions where these interactions could affect those with a third party. In this study, we investigated the probiotic potential of a collection of Bacillus subtilis strains against Salmonella Typhimurium in single-strain and mixed cultures. The results indicate a promising probiotic potential of B. subtilis as 38 out of 39 strains significantly inhibited the growth of S. Typhimurium. Next, we tested the effect of mixing B. subtilis strains that differ in their inhibitory potency against S. Typhimurium. The results show that strong inhibition by one strain can be significantly reduced by mixing with a less effective strain. Moreover, mixing similarly effective strains mostly resulted in a decreased growth inhibition of the pathogen. Additionally, we found a group of highly aggressive strains, which completely eliminated other B. subtilis strains in the two-strain mixtures. Overall, this work shows that intraspecies interactions between B. subtilis strains can significantly alter the probiotic effect against S. Typhimurium, which is of great importance for future research on the development of multi-strain probiotics.
Collapse
Affiliation(s)
- Eva Kovačec
- Department of Microbiology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Barbara Kraigher
- Department of Microbiology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Eli Podnar
- Department of Microbiology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Bram Lories
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG)KU LeuvenLeuvenBelgium
| | - Hans Steenackers
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG)KU LeuvenLeuvenBelgium
| | - Ines Mandic‐Mulec
- Department of Microbiology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| |
Collapse
|
11
|
Vittori M, Bove P, Signoretti M, Cipriani C, Gasparoli C, Antonucci M, Carilli M, Maiorino F, Iacovelli V, Petta F, Travaglia S, Panei M, Russo P, Bertolo R. Oral supplementation with probiotics, potassium citrate, and magnesium in reducing crystalluria in stone formers: A phase II study. Urologia 2024; 91:681-686. [PMID: 39206631 DOI: 10.1177/03915603241272146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Crystalluria is an important indicator of renal stone recurrence. Mechanisms underlying urinary stone formation are still not fully understood and raising interests has been giving to intestinal commensal bacteria for their contribute in maintaining urinary solutes equilibrium. The aim of our phase II study was to examine the administration of potassium citrate, magnesium and probiotics in order to reduce crystalluria. MATERIALS AND METHODS Since May 2021, we enrolled 23 patients candidates for ureterorenolithotripsy for calcium oxalate kidney stones with crystalluria and a normal metabolic profile. The analysis was validated by the Institution's Ethical Committee (no. approval STS CE Lazio 1/N-823). At discharge, patients were provided with daily food supplementation for 20 days of 1 billion Lactobacillus paracasei LPC09, 1 billion Lactobacillus plantarum LP01, 1 billion Bifidobacterium breve BR03, potassium (520 mg), citrate (1400 mg), and magnesium (80 mg). Crystalluria was re-assessed at 1, 3, 6, and 12-months follow-up by polarized light microscopy. RESULTS After one month from the oral supplementation, no patient reported crystalluria; at 3 months, among the 20 participants available for re-evaluation, still no patient reported crystalluria. Instead, crystalluria was reported in three patients (15%) at 6 months, and in five patients (25%) at 12 months follow-up. CONCLUSIONS The oral supplementation with Lactobacillus spp. and Bifidobacterium spp. was found able to reduce the prevalence of crystalluria in a cohort of patients with diagnosis of calcium oxalate kidney stones with crystalluria candidate to ureterorenolithotripsy.
Collapse
Affiliation(s)
- Matteo Vittori
- Department of Urology, San Carlo di Nancy Hospital, GVM Care and Research, Rome, Italy
| | - Pierluigi Bove
- Department of Urology, San Carlo di Nancy Hospital, GVM Care and Research, Rome, Italy
- Department of Urology, Tor Vergata University of Rome, Rome, Italy
| | - Marta Signoretti
- Department of Urology, San Carlo di Nancy Hospital, GVM Care and Research, Rome, Italy
| | - Chiara Cipriani
- Department of Urology, San Carlo di Nancy Hospital, GVM Care and Research, Rome, Italy
| | - Cristiano Gasparoli
- Department of Urology, San Carlo di Nancy Hospital, GVM Care and Research, Rome, Italy
| | - Michele Antonucci
- Department of Urology, San Carlo di Nancy Hospital, GVM Care and Research, Rome, Italy
| | - Marco Carilli
- Department of Urology, San Carlo di Nancy Hospital, GVM Care and Research, Rome, Italy
| | - Francesco Maiorino
- Department of Urology, San Carlo di Nancy Hospital, GVM Care and Research, Rome, Italy
| | - Valerio Iacovelli
- Department of Urology, San Carlo di Nancy Hospital, GVM Care and Research, Rome, Italy
| | - Filomena Petta
- Department of Urology, San Carlo di Nancy Hospital, GVM Care and Research, Rome, Italy
| | - Stefano Travaglia
- Department of Urology, San Carlo di Nancy Hospital, GVM Care and Research, Rome, Italy
| | - Massimo Panei
- Department of Urology, San Carlo di Nancy Hospital, GVM Care and Research, Rome, Italy
| | - Pierluigi Russo
- Department of Urology, Catholic University of the Sacred Heart, Agostino Gemelli Hospital, Rome, Italy
| | - Riccardo Bertolo
- Department of Urology, San Carlo di Nancy Hospital, GVM Care and Research, Rome, Italy
- Department of Urology, University of Verona, Verona, Italy
| |
Collapse
|
12
|
Guo C, He S, Le Barz M, Binda S, Wang H. A Mix of Probiotic Strains Prevents Hepatic Steatosis, and Improves Oxidative Stress Status and Gut Microbiota Composition in Obese Mice. Mol Nutr Food Res 2024; 68:e2300672. [PMID: 39420712 DOI: 10.1002/mnfr.202300672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 08/23/2024] [Indexed: 10/19/2024]
Abstract
SCOPE The gut microbiota plays a role in fat accumulation and energy homeostasis. Therefore, probiotic supplementation may improve metabolic parameters and control body weight. METHODS AND RESULTS In this study, mice are fed either a high-fat diet (HFD) or an HFD supplemented with oral gavage of a mixture of three probiotic strains, Bifidobacterium lactis Lafti B94, Lactobacillus plantarum HA-119, and Lactobacillus helveticus Lafti L10 for 7 weeks. It finds that probiotic supplementation modulates body weight gain, food energy efficiency, and fat accumulation caused by the HFD. This probiotic mix prevents liver damage and lipid metabolic disorders in HFD-fed obese mice. The probiotic supplementation significantly downregulates the expression of the proinflammatory cytokines interleukin-1β, tumor necrosis factor-α, and malondialdehyde (MDA) in the liver and upregulated catalase (CAT), superoxide dismutase (SOD), and nuclear respiratory factor 1 (Nrf1) expression. Mice supplemented with the probiotic mix also show different microbiota compositions, with an increase in Clostridia_UCG-014 and Lachnospiraceae_nk4a136_group and a decrease in the Dubosiella genus compared with those in mice fed only an HFD. Finally, the amounts of fecal pentanoic acid and the three bile acid species increase in mice with probiotic supplementation. CONCLUSION Treatment with a combination of a mixture of three probiotic strains, B. lactis Lafti B94, L. plantarum HA-119, and L. helveticus Lafti L10 for 7 weeks, ameliorates the effects of HFD induced obesity in mice.
Collapse
Affiliation(s)
- Chenglin Guo
- Peking University First Hospital, Beijing, China
| | - Shengduo He
- Peking University First Hospital, Beijing, China
| | - Mélanie Le Barz
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, Montreal, QC, Canada
| | - Sylvie Binda
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, Montreal, QC, Canada
| | - Huahong Wang
- Peking University First Hospital, Beijing, China
| |
Collapse
|
13
|
Hodzhev V, Dzhambazov K, Sapundziev N, Encheva M, Todorov S, Youroukova V, Benchev R, Nikolov R, Bogov B, Momekov G, Hadjiev V. High-dose Probiotic Mix of Lactobacillus spp., Bifidobacterium spp., Bacillus coagulans, and Saccharomyces boulardii to Prevent Antibiotic-associated Diarrhea in Adults: A Multicenter, Randomized, Double-blind, Placebo-controlled Trial (SPAADA). Open Forum Infect Dis 2024; 11:ofae615. [PMID: 39529939 PMCID: PMC11551610 DOI: 10.1093/ofid/ofae615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Background Probiotics have been used to prevent antibiotic-associated diarrhea (AAD), but practical guidelines are sparse. This trial evaluated the efficacy and safety of a high-dose, multistrain probiotic mix (Sinquanon), specially designed for prevention of AAD in adults. Methods A phase IV, multicenter, randomized, double-blind, placebo-controlled, parallel-group clinical trial was conducted over 5 months. Participants receiving broad-spectrum antibiotics were administered the specialized probiotic mix or placebo from the first dose of antibiotics until 14 days after the last antibiotic dose. The primary outcome measure was the incidence of AAD. Results In total, 564 participants were randomized (probiotic mix: 285; placebo: 279), of which 9 participants discontinued the trial early (probiotic mix: 3; placebo: 6), had no efficacy data, and were excluded from the efficacy analysis. The 555 remaining participants completed the trial and were included in the efficacy analysis (probiotic mix: 282; placebo: 273). AAD occurred less frequently in the studied probiotic mix versus placebo group (9.2% vs 25.3%, P < .001), resulting in an absolute risk reduction of 16% and a number needed to treat of 6 (95% confidence interval, 4.55-10.49). A significant improvement in the average gastrointestinal quality of life in the studied probiotic mix versus placebo group was also observed. There were no clinically relevant differences in the incidence of adverse events between the studied probiotic mix and the placebo group. Conclusions The specially designed high-dose, multistrain probiotic mix (Sinquanon) demonstrated to be beneficial compared with placebo in the prevention of AAD in adults who received broad-spectrum antibiotics. ClinicalTrialsgov Identifier and URL NCT05607056; https://classic.clinicaltrials.gov/ct2/show/NCT05607056.
Collapse
Affiliation(s)
- Vladimir Hodzhev
- University Hospital for Active Treatment “Sveti Georgi” JSC, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Karen Dzhambazov
- University Hospital for Active Treatment “Sveti Georgi” JSC, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Nikolay Sapundziev
- Department of Neurosurgery and Otorhinolaryngology, Medical University of Varna, Varna, Bulgaria
| | | | - Spiridon Todorov
- University Hospital “Tsaritsa Yoanna-ISUL”, Medical University of Sofia, Sofia, Bulgaria
| | - Vania Youroukova
- Clinic for the treatment of nonspecific pulmonary diseases and physiatry, UMHAT “St. Ivan Rilski”, Medical University of Sofia, Sofia, Bulgaria
| | | | - Rosen Nikolov
- UMHAT “St. Ivan Rilski”, Medical University of Sofia, Sofia, Bulgaria
| | - Boris Bogov
- UMHAT “St. Anna” Department of Internal Diseases, Medical University of Sofia, Sofia, Bulgaria
| | - Georgi Momekov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Veselin Hadjiev
- Research Institute, University of Economics, Varna, Bulgaria
| |
Collapse
|
14
|
da Silva TF, Glória RDA, Americo MF, Freitas ADS, de Jesus LCL, Barroso FAL, Laguna JG, Coelho-Rocha ND, Tavares LM, le Loir Y, Jan G, Guédon É, Azevedo VADC. Unlocking the Potential of Probiotics: A Comprehensive Review on Research, Production, and Regulation of Probiotics. Probiotics Antimicrob Proteins 2024; 16:1687-1723. [PMID: 38539008 DOI: 10.1007/s12602-024-10247-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 10/02/2024]
Abstract
This review provides a comprehensive overview of the current state of probiotic research, covering a wide range of topics, including strain identification, functional characterization, preclinical and clinical evaluations, mechanisms of action, therapeutic applications, manufacturing considerations, and future directions. The screening process for potential probiotics involves phenotypic and genomic analysis to identify strains with health-promoting properties while excluding those with any factor that could be harmful to the host. In vitro assays for evaluating probiotic traits such as acid tolerance, bile metabolism, adhesion properties, and antimicrobial effects are described. The review highlights promising findings from in vivo studies on probiotic mitigation of inflammatory bowel diseases, chemotherapy-induced mucositis, dysbiosis, obesity, diabetes, and bone health, primarily through immunomodulation and modulation of the local microbiota in human and animal models. Clinical studies demonstrating beneficial modulation of metabolic diseases and human central nervous system function are also presented. Manufacturing processes significantly impact the growth, viability, and properties of probiotics, and the composition of the product matrix and supplementation with prebiotics or other strains can modify their effects. The lack of regulatory oversight raises concerns about the quality, safety, and labeling accuracy of commercial probiotics, particularly for vulnerable populations. Advancements in multi-omics approaches, especially probiogenomics, will provide a deeper understanding of the mechanisms behind probiotic functionality, allowing for personalized and targeted probiotic therapies. However, it is crucial to simultaneously focus on improving manufacturing practices, implementing quality control standards, and establishing regulatory oversight to ensure the safety and efficacy of probiotic products in the face of increasing therapeutic applications.
Collapse
Affiliation(s)
- Tales Fernando da Silva
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Rafael de Assis Glória
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Monique Ferrary Americo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andria Dos Santos Freitas
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luis Claudio Lima de Jesus
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Alvarenga Lima Barroso
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Guimarães Laguna
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nina Dias Coelho-Rocha
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Laisa Macedo Tavares
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Yves le Loir
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Gwénaël Jan
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Éric Guédon
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Vasco Ariston de Carvalho Azevedo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
15
|
Ananthan A, Balasubramanian H, Rath C, Muthusamy S, Rao S, Patole S. Lactobacillus rhamnosus GG as a probiotic for preterm infants: a strain specific systematic review and meta-analysis. Eur J Clin Nutr 2024; 78:830-846. [PMID: 39060543 DOI: 10.1038/s41430-024-01474-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
Lactobacillus rhamnosus GG (LGG) is a widely used and extensively researched probiotic. Probiotic effects are considered to be strain specific. We aimed to comprehensively assess the strain-specific effects of LGG in preterm infants. A systematic review of RCTs and non-RCTs to evaluate the effect of LGG in preterm infants. We followed the Cochrane methodology, and preferred reporting items for systematic reviews (PRISMA) statement for conducting and reporting this review. We searched the Cochrane central register of controlled trials, PubMed, EMBASE and CINAHL databases till December 2023. The review was registered in PROSPERO 2022 CRD42022324933. Meta-analysis of data from RCTs that used LGG as the sole probiotic showed significantly lower risk of NEC ≥Stage II [5 RCTs, n = 851, RR:0.50 (95% CI: 0.26, 0.93), P = 0.03] in the LGG group. There was no significant difference in the risk of LOS [7 RCTs, n = 1037, RR:1.08 (95% CI 0.84, 1.39), P = 0.55], mortality [3 RCTs, n = 207, RR: 0.99 (95% CI: 0.42, 2.33), P = 0.99], time to reach full feeds [2 RCTs, n = 19, SMD = 0.11 days (95% CI: -0.22, 0.45), P = 0.51] and duration of hospital stay [3 RCTs, n = 293, SMD: -0.14 days (95% CI: -0.37 to 0.09), P = 0.23]. Meta-analysis of data from non-RCTs showed no significant effect of LGG on NEC, LOS, and mortality. RCTs showed beneficial effects of LGG when used as the sole probiotic in reducing the risk of NEC, whereas observational studies did not. Strain-specific systematic review of LGG provides important data for guiding research and clinical practice.
Collapse
Affiliation(s)
- Anitha Ananthan
- Department of Neonatology, Seth GS Medical College and King Edward Memorial Hospital, Mumbai, India.
| | | | - Chandra Rath
- Department of Neonatology, Joondalup Health Campus, Perth, WA, Australia
| | | | - Shripada Rao
- Department of Neonatology, Joondalup Health Campus, Perth, WA, Australia
- School of Medicine, University of Western Australia, Perth, WA, Australia
| | - Sanjay Patole
- School of Medicine, University of Western Australia, Perth, WA, Australia
- Neonatal Directorate, King Edward Memorial Hospital for Women, Perth, WA, Australia
| |
Collapse
|
16
|
Ding S, Hong Q, Yao Y, Gu M, Cui J, Li W, Zhang J, Zhang C, Jiang J, Hu Y. Meta-analysis of randomized controlled trials of the effects of synbiotics, probiotics, or prebiotics in controlling glucose homeostasis in non-alcoholic fatty liver disease patients. Food Funct 2024; 15:9954-9971. [PMID: 39264166 DOI: 10.1039/d4fo02561j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Background: Probiotics, prebiotics, and synbiotics have been suggested as a possible therapy for non-alcoholic fatty liver disease (NAFLD). However, their efficacy in improving blood glucose levels in NAFLD patients remains uncertain. Objective: The aim of this study was to assess the effects of supplementation with probiotics, prebiotics, or synbiotics on fasting blood glucose (FBG) levels in NAFLD patients. Methods: We searched PubMed, Web of Science, and Google Scholar for relevant trials published up to March 2024. Out of 3369 identified studies, 24 randomized controlled trials (RCTs) were included. Results: Probiotic, prebiotic, or synbiotic supplementation substantially reduced FBG (n = 23; standard mean difference (SMD) = -0.17; 95% confidence interval (CI): -0.30, -0.03; P = 0.02), fasting insulin levels (n = 12; SMD = -0.28; 95% CI: -0.49, -0.07; P = 0.01), and homeostatic model assessment for insulin resistance (HOMA-IR; n = 14; SMD = -0.28; 95% CI: -0.47, -0.09; P = 0.004). However, glycosylated hemoglobin (HbA1c; n = 3; SMD = -0.17; 95% CI: -0.48, 0.13; P = 0.27) was not significantly affected. The FBG-decreasing effect diminished as the body mass index (BMI) of volunteers increased in the baseline. Additionally, the number of probiotic strains and geographic region were shown to significantly affect FBG levels. Conclusion: This meta-analysis indicates that supplementation with probiotics, prebiotics, or synbiotics may aid in controlling glucose homeostasis in patients with NAFLD.
Collapse
Affiliation(s)
- Siqi Ding
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qing Hong
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, 200436, China
| | - Yuanyue Yao
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Minwen Gu
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jie Cui
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Wenhui Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jian Zhang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jinchi Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yonghong Hu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
17
|
Qiao S, Yang J, Yang L. Association between Urinary Flora and Urinary Stones. Urol Int 2024; 109:89-96. [PMID: 39236682 DOI: 10.1159/000540990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Urinary system stones are a common clinical disease, with significant differences in incidence and recurrence rates between different countries and regions. The etiology and pathogenesis of urinary system stones have not been fully elucidated, but many studies have found that some bacteria and fungi that are difficult to detect in urine constitute a unique urinary microbiome. This special urinary microbiome is closely related to the occurrence and development of urinary system stones. By analyzing the urinary microbiome and its metabolic products, early diagnosis and treatment of urinary system stones can be carried out. SUMMARY This article reviews the relationship between the urinary microbiome and urinary system stones, discusses the impact of the microbiome on the formation of urinary system stones and its potential therapeutic value, with the aim of providing a reference for the early diagnosis, prevention, and treatment of urinary system stones. KEY MESSAGES (i) Urinary stones are a common and recurrent disease, and there is no good way to prevent them. (ii) With advances in testing technology, studies have found that healthy human urine also contains various types of bacteria. (iii) Is there a potential connection between the urinary microbiota and urinary stones, and if so, can understanding these connections offer fresh perspectives and strategies for the diagnosis, treatment, and prevention of urinary stones?
Collapse
Affiliation(s)
- Sihang Qiao
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China,
| | - Jianwei Yang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Li Yang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
18
|
Ghafouri-Taleghani F, Tafreshi AS, Doost AH, Tabesh M, Abolhasani M, Amini A, Saidpour A. Effects of Probiotic Supplementation Added to a Weight Loss Program on Anthropometric Measures, Body Composition, Eating Behavior, and Related Hormone Levels in Patients with Food Addiction and Weight Regain After Bariatric Surgery: A Randomized Clinical Trial. Obes Surg 2024; 34:3181-3194. [PMID: 39117856 DOI: 10.1007/s11695-024-07437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
PURPOSE Weight regain after metabolic bariatric surgery is a common problem. Food addiction is an eating disorder that can be one of the reasons for weight regain in these patients. This study aimed to evaluate the effects of probiotic supplementation with a weight loss program and cognitive behavioral therapy (CBT) on anthropometric measures, eating behavior, food addiction, and related hormone levels, in patients with food addiction and weight regain after metabolic bariatric surgery. MATERIALS AND METHODS This randomized, triple-blind, placebo-controlled clinical trial was conducted on patients with food addiction and weight regain after metabolic bariatric surgery. Participants (n = 50) received a weight loss program and CBT plus probiotic, or placebo for 12 weeks. Then, anthropometric measurements, biochemical markers, eating behavior, and food addiction were assessed. RESULTS Weight and body mass index (BMI) decreased significantly in the probiotic group compared to placebo (p = 0.008, p = 0.001, respectively). Fat mass was significantly decreased in the probiotic group (p < 0.001). Moreover, a significant improvement was observed in the probiotic group's eating behavior and food addiction compared to the placebo group (p < 0.001). Serum levels of leptin decreased significantly (p = 0.02), and oxytocin serum levels increased significantly (p = 0.008) in the probiotic group compared to the placebo group. CONCLUSION Adding probiotic supplements to the weight loss program and CBT is superior to the weight loss program and CBT alone in improving weight loss, eating behavior, and food addiction in patients with food addiction and weight regain after metabolic bariatric surgery.
Collapse
Affiliation(s)
- Fateme Ghafouri-Taleghani
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran
| | | | - Azita Hekmat Doost
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran
| | - Mastaneh Tabesh
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Center, Tehran University of Medical Sciences, Tehran, 1136746911, Iran
| | - Maryam Abolhasani
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Center, Tehran University of Medical Sciences, Tehran, 1136746911, Iran
| | - Amin Amini
- Department of Biostatistics, Faculty of Paramedical, Shahid Beheshti University of Medical Sciences, Tehran, 1971653313, Iran
| | - Atoosa Saidpour
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran.
| |
Collapse
|
19
|
Hamed Riveros NF, García-Corredor L, Martínez-Solarte MA, González-Clavijo A. Effect of Bifidobacterium Intake on Body Weight and Body Fat in Overweight and Obese Adult Subjects: A Systematic Review and Meta-Analysis. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:519-531. [PMID: 38498828 DOI: 10.1080/27697061.2024.2320192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
This systematic review aimed to assess the impact of Bifidobacterium genus probiotics on body weight and body composition parameters in overweight and obese individuals. A systematic search for randomized controlled trials was conducted in MEDLINE, EMBASE, LILACS, and Google Scholar databases until April 17, 2023. The inclusion criteria required the trials to involve Bifidobacterium genus probiotics interventions and the evaluation of obesity-related anthropometric and body composition outcomes in overweight or obese subjects. Studies were excluded when involving obese individuals with genetic syndromes or pregnant women, as well as probiotic mixture interventions. The revised Cochrane risk-of-bias tool for randomized trials was utilized to assess the quality of the included studies. A random-effects meta-analysis was performed using the mean difference between endpoint measurements and change from baseline for body mass index, body weight, body fat mass, body fat percentage, waist circumference, waist-to-hip ratio, and visceral fat area. From 1,527 retrieved reports, 11 studies (911 subjects) were included in this review. Bifidobacterium probiotics administration resulted in significant reductions in body fat mass (MD = -0.64 kg, 95% CI: -1.09, -0.18, p = 0.006), body fat percentage (MD = -0.64%, 95% CI: -1.18, -0.11, p = 0.02), waist circumference (MD = -1.39 cm, 95% CI: -1.99, -0.79, p < 0.00001), and visceral fat area (MD = -4.38 cm2, 95% CI: -7.24, -1.52, p = 0.003). No significant differences were observed for body mass index, body weight, or waist-to-hip ratio. This systematic review suggests that Bifidobacterium genus probiotics may contribute to managing overweight and obesity by reducing body fat mass, body fat percentage, waist circumference, and visceral fat area. Further research is required to understand strain and species interactions, optimal dosages, and effective delivery methods for probiotics in obesity management. This review was pre-registered under the PROSPERO record CRD42022370057.
Collapse
Affiliation(s)
| | - Lady García-Corredor
- Departamento de Ciencias Fisiológicas, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | |
Collapse
|
20
|
Xue L, Long S, Cheng B, Song Q, Zhang C, Hansen LHB, Sheng Y, Zang J, Piao X. Dietary Triple-Strain Bacillus-Based Probiotic Supplementation Improves Performance, Immune Function, Intestinal Morphology, and Microbial Community in Weaned Pigs. Microorganisms 2024; 12:1536. [PMID: 39203378 PMCID: PMC11356216 DOI: 10.3390/microorganisms12081536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
Probiotics provide health benefits and are used as feed supplements as an alternative prophylactic strategy to antibiotics. However, the effects of Bacillus-based probiotics containing more than two strains when supplemented to pigs are rarely elucidated. SOLVENS (SLV) is a triple-strain Bacillus-based probiotic. In this study, we investigate the effects of SLV on performance, immunity, intestinal morphology, and microbial community in piglets. A total of 480 weaned pigs [initial body weight (BW) of 8.13 ± 0.08 kg and 28 days of age] were assigned to three treatments in a randomized complete block design: P0: basal diet (CON); P200: CON + 200 mg SLV per kg feed (6.5 × 108 CFU/kg feed); and P400: CON + 400 mg SLV per kg feed (1.3 × 109 CFU/kg feed). Each treatment had 20 replicated pens with eight pigs (four male/four female) per pen. During the 31 d feeding period (Phase 1 = wean to d 14, Phase 2 = d 15 to 31 after weaning), all pigs were housed in a temperature-controlled nursery room (23 to 25 °C). Feed and water were available ad libitum. The results showed that the pigs in the P400 group increased (p < 0.05) average daily gain (ADG) in phase 2 and tended (p = 0.10) to increase ADG overall. The pigs in the P200 and P400 groups tended (p = 0.10) to show improved feed conversion ratios overall in comparison with control pigs. The pigs in the P200 and P400 groups increased (p < 0.05) serum immunoglobulin A, immunoglobulin G, and haptoglobin on d 14, and serum C-reactive protein on d 31. The pigs in the P200 group showed an increased (p < 0.01) villus height at the jejunum, decreased (p < 0.05) crypt depth at the ileum compared with other treatments, and tended (p = 0.09) to have an increased villus-crypt ratio at the jejunum compared with control pigs. The pigs in the P200 and P400 groups showed increased (p < 0.05) goblet cells in the small intestine. Moreover, the pigs in the P400 group showed down-regulated (p < 0.05) interleukin-4 and tumor necrosis factor-α gene expressions, whereas the pigs in the P400 group showed up-regulated occludin gene expression in the ileum. These findings suggest that SLV alleviates immunological reactions, improves intestinal microbiota balance, and reduces weaning stress in piglets. Therefore, SOLVENS has the potential to improve health and performance for piglets.
Collapse
Affiliation(s)
- Lei Xue
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.X.); (S.L.); (B.C.); (Q.S.); (C.Z.)
| | - Shenfei Long
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.X.); (S.L.); (B.C.); (Q.S.); (C.Z.)
| | - Bo Cheng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.X.); (S.L.); (B.C.); (Q.S.); (C.Z.)
| | - Qian Song
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.X.); (S.L.); (B.C.); (Q.S.); (C.Z.)
| | - Can Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.X.); (S.L.); (B.C.); (Q.S.); (C.Z.)
| | | | - Yongshuai Sheng
- Chr. Hansen A/S, Animal and Plant Health & Nutrition, 2970 Hoersholm, Denmark (Y.S.)
| | - Jianjun Zang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.X.); (S.L.); (B.C.); (Q.S.); (C.Z.)
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.X.); (S.L.); (B.C.); (Q.S.); (C.Z.)
- Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing 101206, China
| |
Collapse
|
21
|
Li Y, Zhang JL, Chen JQ, Chen Z, Liu S, Liu J, Huang WJ, Li JZ, Ruan D, Deng JJ, Wang ZL. Integrative Analysis of the Microbiome and Metabolome of Broiler Intestine: Insights into the Mechanisms of Probiotic Action as an Antibiotic Substitute. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10304-5. [PMID: 38904896 DOI: 10.1007/s12602-024-10304-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
Antibiotic substitutes have become a research focus due to restrictions on antibiotic usage. Among the antibiotic substitutes on the market, probiotics have been extensively researched and used. However, the mechanism by which probiotics replace antibiotics remains unclear. In this study, we aimed to investigate this mechanism by comparing the effects of probiotics and antibiotics on broiler growth performance and intestinal microbiota composition. Results shown that both probiotics and antibiotics increased daily weight gain and reduced feed conversion rate in broilers. Analysis of ileum and cecum microorganisms via 16S rRNA gene sequencing revealed that both interventions decreased intestinal microbial diversity. Moreover, the abundance of Bacteroides increased in the mature ileum, while that of Erysipelatoclostridium decreased in the cecum in response to both probiotics and antibiotics. The main metabolites of probiotics and antibiotics in the intestine were found to be organic acids, amino acids, and sugars, which might play comparable roles in growth performance. Furthermore, disaccharides and trisaccharides may be essential components in the ileum that enable probiotics to replace antibiotics. These findings provide important insights into the mechanisms underlying the use of probiotics as antibiotic substitutes in broiler breeding.
Collapse
Affiliation(s)
- Yang Li
- Agro-biological Gene Research Center, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Academy of Agricultural Sciences, No. 20 Jinying Road, Tianhe District, Guangzhou, Guangdong, 510640, China
| | | | - Jia-Qi Chen
- College of Landscape Architecture, Guangdong Polytechnic of Science and Trade, Guangzhou, Guangdong, 510640, China
| | - Zhuang Chen
- Agro-biological Gene Research Center, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Academy of Agricultural Sciences, No. 20 Jinying Road, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Shi Liu
- Agro-biological Gene Research Center, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Academy of Agricultural Sciences, No. 20 Jinying Road, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Jing Liu
- Agro-biological Gene Research Center, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Academy of Agricultural Sciences, No. 20 Jinying Road, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Wen-Jie Huang
- Agro-biological Gene Research Center, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Academy of Agricultural Sciences, No. 20 Jinying Road, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Jia-Zhou Li
- He Yuan Branch of Ling Nan Modern Agricultural Science and Technology Guangdong Provincial Laboratory, Heyuan, 517500, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, No. 1 Dafeng Street, Wushan Road, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Dong Ruan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, No. 1 Dafeng Street, Wushan Road, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Jun-Jin Deng
- Agro-biological Gene Research Center, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Academy of Agricultural Sciences, No. 20 Jinying Road, Tianhe District, Guangzhou, Guangdong, 510640, China.
- He Yuan Branch of Ling Nan Modern Agricultural Science and Technology Guangdong Provincial Laboratory, Heyuan, 517500, China.
| | - Zhi-Lin Wang
- Agro-biological Gene Research Center, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Academy of Agricultural Sciences, No. 20 Jinying Road, Tianhe District, Guangzhou, Guangdong, 510640, China.
| |
Collapse
|
22
|
Shen HT, Fang YT, Tsai WH, Chou CH, Huang MS, Yeh YT, Wu JT, Huang CH, Wang BY, Chang WW. A Lactobacillus Combination Ameliorates Lung Inflammation in an Elastase/LPS-induced Mouse Model of Chronic Obstructive Pulmonary Disease. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10300-9. [PMID: 38865030 DOI: 10.1007/s12602-024-10300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is the world's leading lung disease and lacks effective and specific clinical strategies. Probiotics are increasingly used to support the improvement of the course of inflammatory diseases. In this study, we evaluated the potential of a lactic acid bacteria (LAB) combination containing Limosilactobacillus reuteri GMNL-89 and Lacticaseibacillus paracasei GMNL-133 to decrease lung inflammation and emphysema in a COPD mouse model. This model was induced by intranasal stimulation with elastase and LPS for 4 weeks, followed by 2 weeks of oral LAB administration. The results showed that the LAB combination decreased lung emphysema and reduced inflammatory cytokines (IL-1β, IL-6, TNF-α) in the lung tissue of COPD mice. Microbiome analysis revealed that Bifidobacterium and Akkermansia muciniphila, reduced in the gut of COPD mice, could be restored after LAB treatment. Microbial α-diversity in the lungs decreased in COPD mice but was reversed after LAB administration, which also increased the relative abundance of Candidatus arthromitus in the gut and decreased Burkholderia in the lungs. Furthermore, LAB-treated COPD mice exhibited increased levels of short-chain fatty acids, specifically acetic acid and propionic acid, in the cecum. Additionally, pulmonary emphysema and inflammation negatively correlated with C. arthromitus and Adlercreutzia levels. In conclusion, the combination of L. reuteri GMNL-89 and L. paracasei GMNL-133 demonstrates beneficial effects on pulmonary emphysema and inflammation in experimental COPD mice, correlating with changes in gut and lung microbiota, and providing a potential strategy for future adjuvant therapy.
Collapse
Affiliation(s)
- Huan-Ting Shen
- Department of Pulmonary Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 88, Sec. 1, Fengxing Rd., Tanzi Dist., Taichung City, 427003, Taiwan
| | - Yi-Ting Fang
- Research and Development Department, GenMont Biotech Incorporation, No.8, Nanke 7th Rd., Shanhua Dist., Tainan City, 741014, Taiwan
| | - Wan-Hua Tsai
- Research and Development Department, GenMont Biotech Incorporation, No.8, Nanke 7th Rd., Shanhua Dist., Tainan City, 741014, Taiwan
| | - Chia-Hsuan Chou
- Research and Development Department, GenMont Biotech Incorporation, No.8, Nanke 7th Rd., Shanhua Dist., Tainan City, 741014, Taiwan
| | - Ming-Shyan Huang
- Division of Respiratory and Chest Medicine, Department of Internal Medicine, E-Da Cancer Hospital, No. 1, Yida Rd, Yanchao Dist, Kaohsiung City, 824005, Taiwan
| | - Yao-Tsung Yeh
- Aging and Disease Prevention Research Center, Fooyin University, No. 151, Jinxue Rd., Daliao Dist., Kaohsiung City, 831301, Taiwan
| | - Jiun-Ting Wu
- Division of Respiratory and Chest Medicine, Department of Internal Medicine, E-Da Cancer Hospital, No. 1, Yida Rd, Yanchao Dist, Kaohsiung City, 824005, Taiwan
| | - Cheng-Hsieh Huang
- Aging and Disease Prevention Research Center, Fooyin University, No. 151, Jinxue Rd., Daliao Dist., Kaohsiung City, 831301, Taiwan
| | - Bing-Yen Wang
- Division of Thoracic Surgery, Department of Surgery, Changhua Christian Hospital, No. 135, Nanhsiao Street, Changhua County, 500209, Taiwan.
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City, 402202, Taiwan.
| | - Wen-Wei Chang
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Jianguo N.Rd, Taichung City, 402306, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, No.110, Sec.1, Jianguo N.Rd, Taichung City, 402306, Taiwan.
| |
Collapse
|
23
|
Chen K, Zhou Z, Nie Y, Cao Y, Yang P, Zhang Y, Xu P, Yu Q, Shen Y, Ma W, Jin S, Liu C. Adjunctive efficacy of Bifidobacterium animalis subsp. lactis XLTG11 for functional constipation in children. Braz J Microbiol 2024; 55:1317-1330. [PMID: 38381349 PMCID: PMC11153453 DOI: 10.1007/s42770-024-01276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
Functional constipation (FC) can seriously affect the physical and mental health of children. The goal of this study is to assess the efficacy and safety of Bifidobacterium animalis subsp. lactis XLTG11 in treating FC in children through a randomized, double-blinded, placebo-controlled approach. Eligible children were randomized into either the intervention group (IG, n = 65, receiving conventional treatment with probiotics) or the control group (CG, n = 66, receiving conventional treatment without probiotics). The primary outcome measure was fecal frequency. Fecal gut microbiota analysis and PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) were used to predict gene family abundances based on 16S information. Over the course of treatment, the weekly frequency of feces within each group increased significantly (F = 41.97, p < 0.001). The frequency of feces (times/week (t/w)) in the IG was significantly higher than that in the CG (3.69 ± 2.62 t/w vs.3.18 ± 1.43 t/w, 4.03 ± 2.54 t/w vs. 2.89 ± 1.39 t/w and 3.74 ± 2.36 t/w vs. 2.94 ± 1.18 t/w and 3.45 ± 1.98 vs. 3.17 ± 1.41 t/w for the 1st, 2nd, 3rd, and 4th week after intervention, respectively) (F = 7.60, p = 0.0067). After the intervention, dominate species shifted to Bifidobacterium longum, Bifidobacterium breve, and Escherichia coli in the IG. Additionally, genes related to short-chain fatty acid (SCF) metabolism were upregulated, while methane metabolism was downregulated. Administration of XLTG11 at a dose of 1 × 1010 CFU/day to children increased fecal frequency, induced beneficial changes in gut microbiota, and regulated SCFs and methane metabolism-related genes.
Collapse
Affiliation(s)
- Ke Chen
- Department of Nutrition, School of Medicine, Chengdu Women's & Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Zengyuan Zhou
- Department of Nutrition, School of Medicine, Chengdu Women's & Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Nie
- Department of Child Health Care, Chongzhou Maternal and Child Health Care Hospital, Chengdu, China
| | - Yanmei Cao
- Department of Child Health Care, Dayi Maternal and Child Health Care Hospital, Chengdu, China
| | - Ping Yang
- Department of Child Health Care, Xindu Maternal and Child Health Care Hospital, Chengdu, China
| | - Ying Zhang
- Department of Child Health Care, Jinniu Maternal and Child Health Care Hospital, Chengdu, China
| | - Ping Xu
- Department of Child Health Care, Qingbaijiang Maternal and Child Health Care Hospital, Chengdu, China
| | - Qinghua Yu
- Laboratory of Microbiology, Immunology and Metabolism, Diprobio (Shanghai) Co, Limited, Shanghai, China
| | - Yang Shen
- Laboratory of Microbiology, Immunology and Metabolism, Diprobio (Shanghai) Co, Limited, Shanghai, China
| | - Weiwei Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shanshan Jin
- Department of Nutrition, School of Medicine, Chengdu Women's & Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, USA
| |
Collapse
|
24
|
Zhang Y, Huang A, Li J, Munthali W, Cao S, Putri UMP, Yang L. The Effect of Microbiome-Modulating Agents (MMAs) on Type 1 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2024; 16:1675. [PMID: 38892608 PMCID: PMC11174426 DOI: 10.3390/nu16111675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Gut microbiome-modulating agents (MMAs), including probiotics, prebiotics, postbiotics, and synbiotics, are shown to ameliorate type 1 diabetes (T1D) by restoring the microbiome from dysbiosis. The objective of this systematic review and meta-analysis was to assess the impact of MMAs on hemoglobin A1c (HbA1c) and biomarkers associated with (T1D). A comprehensive search was conducted in PubMed, Web of Science, Embase, Cochrane Library, National Knowledge Infrastructure, WeiPu, and WanFang Data up to 30 November 2023. Ten randomized controlled trials (n = 630) were included, with study quality evaluated using the Cochrane risk-of-bias tool. Random-effect models with standardized mean differences (SMDs) were utilized. MMA supplementation was associated with improvements in HbA1c (SMD = -0.52, 95% CI [-0.83, -0.20]), daily insulin usage (SMD = -0.41, 95% confidence interval (CI) [-0.76, -0.07]), and fasting C-peptide (SMD = 0.99, 95% CI [0.17, 1.81]) but had no effects on FBG, CRP, TNF-α, IL-10, LDL, HDL, and the Shannon index. Subgroup analysis of HbA1c indicated that a long-term intervention (>3 months) might exert a more substantial effect. These findings suggest an association between MMAs and glycemic control in T1D. Further large-scale clinical trials are necessary to confirm these findings with investigations on inflammation and gut microbiota composition while adjusting confounding factors such as diet, physical activity, and the dose and form of MMA intervention.
Collapse
Affiliation(s)
- Ying Zhang
- Xiangya School of Public Health, Central South University, Changsha 410128, China; (Y.Z.)
| | - Aiying Huang
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Jun Li
- School of Psychology, South China Normal University, Guangzhou 510631, China
| | - William Munthali
- Xiangya School of Public Health, Central South University, Changsha 410128, China; (Y.Z.)
| | - Saiying Cao
- Xiangya School of Public Health, Central South University, Changsha 410128, China; (Y.Z.)
| | | | - Lina Yang
- Xiangya School of Public Health, Central South University, Changsha 410128, China; (Y.Z.)
| |
Collapse
|
25
|
Alba C, Carrera M, Álvarez-Calatayud G, Arroyo R, Fernández L, Rodríguez JM. Evaluation of Safety and Beneficial Health Effects of the Human-Milk Strain Bifidobacterium breve DSM32583: An Infant Pilot Trial. Nutrients 2024; 16:1134. [PMID: 38674825 PMCID: PMC11053739 DOI: 10.3390/nu16081134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Human milk promotes the growth of bifidobacteria in the infant gut. Adding bifidobacterial species to infant formula may contribute to increasing their presence in the gut of formula-fed infants. Therefore, the safety and anti-infectious effects of Bifidobacterium breve DSM32583, a breast milk isolate, were assessed in a pilot trial involving 3-month-old infants. The infants were randomly assigned to either the probiotic (PG) or the control (CG) groups. All the infants consumed the same formula, although it was supplemented with the strain (1 × 107 cfu/g of formula) in the PG. Overall, 160 infants (80 per group) finished the intervention. Infants in CG gained more weight compared to PG (p < 0.05), but the weights for age Z-scores at 6 months were within the normal distribution for this age group. The rates of infections affecting the gastrointestinal and respiratory tracts and antibiotic therapy were significantly lower in the PG. The bifidobacterial population and the level of short-chain fatty acids were higher (p < 0.05) in the fecal samples of PG infants. No adverse events related to formula consumption were observed. In conclusion, the administration of an infant formula with B. breve DSM32583 was safe and exerted potential beneficial effects on gut health.
Collapse
Affiliation(s)
- Claudio Alba
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (C.A.); (R.A.)
| | - Marta Carrera
- Centro de Atención Primaria Silvano, Comunidad de Madrid, 28043 Madrid, Spain;
| | | | - Rebeca Arroyo
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (C.A.); (R.A.)
| | - Leónides Fernández
- Department of Galenic Pharmacy and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Juan M. Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (C.A.); (R.A.)
| |
Collapse
|
26
|
Zißler J, Rothhammer V, Linnerbauer M. Gut-Brain Interactions and Their Impact on Astrocytes in the Context of Multiple Sclerosis and Beyond. Cells 2024; 13:497. [PMID: 38534341 PMCID: PMC10968834 DOI: 10.3390/cells13060497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Multiple Sclerosis (MS) is a chronic autoimmune inflammatory disease of the central nervous system (CNS) that leads to physical and cognitive impairment in young adults. The increasing prevalence of MS underscores the critical need for innovative therapeutic approaches. Recent advances in neuroimmunology have highlighted the significant role of the gut microbiome in MS pathology, unveiling distinct alterations in patients' gut microbiota. Dysbiosis not only impacts gut-intrinsic processes but also influences the production of bacterial metabolites and hormones, which can regulate processes in remote tissues, such as the CNS. Central to this paradigm is the gut-brain axis, a bidirectional communication network linking the gastrointestinal tract to the brain and spinal cord. Via specific routes, bacterial metabolites and hormones can influence CNS-resident cells and processes both directly and indirectly. Exploiting this axis, novel therapeutic interventions, including pro- and prebiotic treatments, have emerged as promising avenues with the aim of mitigating the severity of MS. This review delves into the complex interplay between the gut microbiome and the brain in the context of MS, summarizing current knowledge on the key signals of cross-organ crosstalk, routes of communication, and potential therapeutic relevance of the gut microbiome. Moreover, this review places particular emphasis on elucidating the influence of these interactions on astrocyte functions within the CNS, offering insights into their role in MS pathophysiology and potential therapeutic interventions.
Collapse
Affiliation(s)
| | - Veit Rothhammer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | | |
Collapse
|
27
|
Lee C, Kim SW, Verma R, Noh J, Park JC, Park S, Lee H, Park HE, Kim CJ, Byun S, Ko H, Choi S, Kim I, Jeon S, Lee J, Im SH. Probiotic Consortium Confers Synergistic Anti-Inflammatory Effects in Inflammatory Disorders. Nutrients 2024; 16:790. [PMID: 38542701 PMCID: PMC10975258 DOI: 10.3390/nu16060790] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 01/05/2025] Open
Abstract
The composition and diversity of gut microbiota significantly influence the immune system and are linked to various diseases, including inflammatory and allergy disorders. While considerable research has focused on exploring single bacterial species or consortia, the optimal strategies for microbiota-based therapeutics remain underexplored. Specifically, the comparative effectiveness of bacterial consortia versus individual species warrants further investigation. In our study, we assessed the impact of the bacterial consortium MPRO, comprising Lactiplantibacillus plantarum HY7712, Bifidobacterium animalis ssp. lactis HY8002, and Lacticaseibacillus casei HY2782, in comparison to its individual components. The administration of MPRO demonstrated enhanced therapeutic efficacy in experimental models of atopic dermatitis and inflammatory colitis when compared to single strains. MPRO exhibited the ability to dampen inflammatory responses and alter the gut microbial landscape significantly. Notably, MPRO administration led to an increase in intestinal CD103+CD11b+ dendritic cells, promoting the induction of regulatory T cells and the robust suppression of inflammation in experimental disease settings. Our findings advocate the preference for bacterial consortia over single strains in the treatment of inflammatory disorders, carrying potential clinical relevance.
Collapse
Affiliation(s)
- Changhon Lee
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; (C.L.); (S.W.K.); (J.N.); (J.C.P.); (H.L.); (H.E.P.); (C.J.K.); (S.B.); (H.K.)
| | - Seung Won Kim
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; (C.L.); (S.W.K.); (J.N.); (J.C.P.); (H.L.); (H.E.P.); (C.J.K.); (S.B.); (H.K.)
| | - Ravi Verma
- ImmmunoBiome Inc., 77 Cheongam-ro, Nam-gu, Pohang 37673, Republic of Korea; (R.V.); (S.P.); (S.C.); (I.K.)
| | - Jaegyun Noh
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; (C.L.); (S.W.K.); (J.N.); (J.C.P.); (H.L.); (H.E.P.); (C.J.K.); (S.B.); (H.K.)
| | - John Chulhoon Park
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; (C.L.); (S.W.K.); (J.N.); (J.C.P.); (H.L.); (H.E.P.); (C.J.K.); (S.B.); (H.K.)
| | - Sunhee Park
- ImmmunoBiome Inc., 77 Cheongam-ro, Nam-gu, Pohang 37673, Republic of Korea; (R.V.); (S.P.); (S.C.); (I.K.)
| | - Haena Lee
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; (C.L.); (S.W.K.); (J.N.); (J.C.P.); (H.L.); (H.E.P.); (C.J.K.); (S.B.); (H.K.)
| | - Hye Eun Park
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; (C.L.); (S.W.K.); (J.N.); (J.C.P.); (H.L.); (H.E.P.); (C.J.K.); (S.B.); (H.K.)
| | - Chan Johng Kim
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; (C.L.); (S.W.K.); (J.N.); (J.C.P.); (H.L.); (H.E.P.); (C.J.K.); (S.B.); (H.K.)
| | - Seohyun Byun
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; (C.L.); (S.W.K.); (J.N.); (J.C.P.); (H.L.); (H.E.P.); (C.J.K.); (S.B.); (H.K.)
| | - Haeun Ko
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; (C.L.); (S.W.K.); (J.N.); (J.C.P.); (H.L.); (H.E.P.); (C.J.K.); (S.B.); (H.K.)
| | - Seungyeon Choi
- ImmmunoBiome Inc., 77 Cheongam-ro, Nam-gu, Pohang 37673, Republic of Korea; (R.V.); (S.P.); (S.C.); (I.K.)
| | - Inhae Kim
- ImmmunoBiome Inc., 77 Cheongam-ro, Nam-gu, Pohang 37673, Republic of Korea; (R.V.); (S.P.); (S.C.); (I.K.)
| | - Soomin Jeon
- hy Co., Ltd., 22 Giheungdanji-ro 24 beon-gil, Giheung-gu, Yongin 17086, Republic of Korea;
| | - Junglyoul Lee
- hy Co., Ltd., 22 Giheungdanji-ro 24 beon-gil, Giheung-gu, Yongin 17086, Republic of Korea;
| | - Sin-Hyeog Im
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; (C.L.); (S.W.K.); (J.N.); (J.C.P.); (H.L.); (H.E.P.); (C.J.K.); (S.B.); (H.K.)
- ImmmunoBiome Inc., 77 Cheongam-ro, Nam-gu, Pohang 37673, Republic of Korea; (R.V.); (S.P.); (S.C.); (I.K.)
- Institute for Convergence Research and Education, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
28
|
Siu PLK, Choy CT, Chan HHY, Leung RKK, Chan UK, Zhou J, Wong CH, Lee YW, Chan HW, Lo CJY, Tsui JCC, Loo SKF, Tsui SKW. A Novel Multi-Strain E3 Probiotic Formula Improved the Gastrointestinal Symptoms and Quality of Life in Chinese Psoriasis Patients. Microorganisms 2024; 12:208. [PMID: 38276193 PMCID: PMC10820679 DOI: 10.3390/microorganisms12010208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Psoriasis is a chronic immune-mediated inflammatory disease affecting the skin and other systems. Gastrointestinal disease was found to be correlated with psoriasis in previous studies and it can significantly affect the quality of life of psoriasis patients. Despite the importance of the gut microbiome in gut and skin health having already been demonstrated in many research studies, the potential effect of probiotics on GI comorbidities in psoriasis patients is unclear. To investigate the effects of probiotics on functional GI comorbidities including irritable bowel syndrome, functional constipation, and functional diarrhea in psoriasis patients, we conducted a targeted 16S rRNA sequencing and comprehensive bioinformatic analysis among southern Chinese patients to compare the gut microbiome profiles of 45 psoriasis patients over an 8-week course of novel oral probiotics. All the participants were stratified into responders and non-responders according to their improvement in GI comorbidities, which were based on their Bristol Stool Form Scale (BSFS) scores after intervention. The Dermatological Life Quality Index (DLQI) score revealed a significant improvement in quality of life within the responder group (DLQI: mean 10.4 at week 0 vs. mean 15.9 at week 8, p = 0.0366). The proportion of psoriasis patients without GI comorbidity manifestation at week 8 was significantly higher than that at week 0 (week 0: Normal 53.33%, Constipation/Diarrhea 46.67%; week 8: Normal 75.56%, Constipation/Diarrhea 24.44%, p = 0.0467). In addition, a significant difference in the gut microbiome composition between the responders and non-responders was observed according to alpha and beta diversities. Differential abundance analysis revealed that the psoriasis patients exhibited (1) an elevated relative abundance of Lactobacillus acidophilus, Parabacteroides distasonis, and Ruminococcus bromii and (2) a reduced relative abundance of Oscillibacter, Bacteroides vulgatus, Escherichia sp., and Biophila wadsworthia after the 8-week intervention. The responders also exhibited a higher relative abundance of Fusicatenibacter saccharivorans when compared to the non-responders. In summary, our study discovers the potential clinical improvement effects of the novel probiotic formula in improving GI comorbidities and quality of life in psoriasis patients. We also revealed the different gut microbiome composition as well as the gut microbial signatures in the patients who responded to probiotics. These findings could provide insight into the use of probiotics in the management of psoriasis symptoms.
Collapse
Affiliation(s)
- Pui Ling Kella Siu
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
| | - Chi Tung Choy
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
| | - Helen Hoi Yin Chan
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
| | - Ross Ka Kit Leung
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
| | - Un Kei Chan
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
| | - Junwei Zhou
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
| | - Chi Ho Wong
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
| | - Yuk Wai Lee
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
| | - Ho Wang Chan
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
| | - Claudia Jun Yi Lo
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
| | - Joseph Chi Ching Tsui
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
| | - Steven King Fan Loo
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
- Hong Kong Institute of Integrative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Dermatology Centre, CUHK Medical Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Stephen Kwok Wing Tsui
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
29
|
Hedin KA, Mirhakkak MH, Vaaben TH, Sands C, Pedersen M, Baker A, Vazquez-Uribe R, Schäuble S, Panagiotou G, Wellejus A, Sommer MOA. Saccharomyces boulardii enhances anti-inflammatory effectors and AhR activation via metabolic interactions in probiotic communities. THE ISME JOURNAL 2024; 18:wrae212. [PMID: 39488793 PMCID: PMC11631509 DOI: 10.1093/ismejo/wrae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/04/2024]
Abstract
Metabolic exchanges between strains in gut microbial communities shape their composition and interactions with the host. This study investigates the metabolic synergy between potential probiotic bacteria and Saccharomyces boulardii, aiming to enhance anti-inflammatory effects within a multi-species probiotic community. By screening a collection of 85 potential probiotic bacterial strains, we identified two strains that demonstrated a synergistic relationship with S. boulardii in pairwise co-cultivation. Furthermore, we computationally predicted cooperative communities with symbiotic relationships between S. boulardii and these bacteria. Experimental validation of 28 communities highlighted the role of S. boulardii as a key player in microbial communities, significantly boosting the community's cell number and production of anti-inflammatory effectors, thereby affirming its essential role in improving symbiotic dynamics. Based on our observation, one defined community significantly activated the aryl hydrocarbon receptor-a key regulator of immune response-280-fold more effectively than the community without S. boulardii. This study underscores the potential of microbial communities for the design of more effective probiotic formulations.
Collapse
Affiliation(s)
- Karl Alex Hedin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Mohammad H Mirhakkak
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute (Leibniz-HKI), Jena 07745, Germany
| | - Troels Holger Vaaben
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Carmen Sands
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Mikael Pedersen
- National Food Institute, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Adam Baker
- Human Health Biosolution, Novonesis, Hørsholm 2970, Denmark
| | - Ruben Vazquez-Uribe
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
- Center for Microbiology, VIB-KU Leuven, Leuven 3001, Belgium
| | - Sascha Schäuble
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute (Leibniz-HKI), Jena 07745, Germany
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute (Leibniz-HKI), Jena 07745, Germany
- Faculty of Biological Sciences, Institute of Microbiology, Friedrich Schiller University, Jena 07743, Germany
- Jena University Hospital, Friedrich Schiller University, Jena 07743, Germany
- Department of Medicine, University of Hong Kong, Hong Kong (SAR), China
| | - Anja Wellejus
- Human Health Biosolution, Novonesis, Hørsholm 2970, Denmark
| | - Morten Otto Alexander Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| |
Collapse
|
30
|
An R, Wilms E, Gerritsen J, Kim HK, Pérez CS, Besseling-van der Vaart I, Jonkers DM, Rijkers GT, de Vos WM, Masclee AA, Zoetendal EG, Troost FJ, Smidt H. Spatio-temporal dynamics of the human small intestinal microbiome and its response to a synbiotic. Gut Microbes 2024; 16:2350173. [PMID: 38738780 PMCID: PMC11093041 DOI: 10.1080/19490976.2024.2350173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024] Open
Abstract
Although fecal microbiota composition is considered to preserve relevant and representative information for distal colonic content, it is evident that it does not represent microbial communities inhabiting the small intestine. Nevertheless, studies investigating the human small intestinal microbiome and its response to dietary intervention are still scarce. The current study investigated the spatio-temporal dynamics of the small intestinal microbiome within a day and over 20 days, as well as its responses to a 14-day synbiotic or placebo control supplementation in 20 healthy subjects. Microbial composition and metabolome of luminal content of duodenum, jejunum, proximal ileum and feces differed significantly from each other. Additionally, differences in microbiota composition along the small intestine were most pronounced in the morning after overnight fasting, whereas differences in composition were not always measurable around noon or in the afternoon. Although overall small intestinal microbiota composition did not change significantly within 1 day and during 20 days, remarkable, individual-specific temporal dynamics were observed in individual subjects. In response to the synbiotic supplementation, only the microbial diversity in jejunum changed significantly. Increased metabolic activity of probiotic strains during intestinal passage, as assessed by metatranscriptome analysis, was not observed. Nevertheless, synbiotic supplementation led to a short-term spike in the relative abundance of genera included in the product in the small intestine approximately 2 hours post-ingestion. Collectively, small intestinal microbiota are highly dynamic. Ingested probiotic bacteria could lead to a transient spike in the relative abundance of corresponding genera and ASVs, suggesting their passage through the entire gastrointestinal tract. This study was registered to http://www.clinicaltrials.gov, NCT02018900.
Collapse
Affiliation(s)
- Ran An
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Department of Food science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Ellen Wilms
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jacoline Gerritsen
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Winclove Probiotics, Amsterdam, The Netherlands
| | - Hye Kyong Kim
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Celia Seguí Pérez
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Winclove Probiotics, Amsterdam, The Netherlands
- Infectious Diseases & Immunology, University of Utrecht, Utrecht, The Netherland
| | | | - Daisy M.A.E. Jonkers
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ger T. Rijkers
- Science Department, University College Roosevelt, Middelburg, The Netherlands
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Human Microbiomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ad A.M. Masclee
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Erwin G. Zoetendal
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Freddy J. Troost
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Food Innovation and Health, Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Venlo, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
31
|
Wu J, Huang H, Wang L, Gao M, Meng S, Zou S, Feng Y, Feng Z, Zhu Z, Cao X, Li B, Kang G. A tailored series of engineered yeasts for the cell-dependent treatment of inflammatory bowel disease by rational butyrate supplementation. Gut Microbes 2024; 16:2316575. [PMID: 38381494 PMCID: PMC10883098 DOI: 10.1080/19490976.2024.2316575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/17/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
Intestinal microbiota dysbiosis and metabolic disruption are considered essential characteristics in inflammatory bowel disorders (IBD). Reasonable butyrate supplementation can help patients regulate intestinal flora structure and promote mucosal repair. Here, to restore microbiota homeostasis and butyrate levels in the patient's intestines, we modified the genome of Saccharomyces cerevisiae to produce butyrate. We precisely regulated the relevant metabolic pathways to enable the yeast to produce sufficient butyrate in the intestine with uneven oxygen distribution. A series of engineered strains with different butyrate synthesis abilities was constructed to meet the needs of different patients, and the strongest can reach 1.8 g/L title of butyrate. Next, this series of strains was used to co-cultivate with gut microbiota collected from patients with mild-to-moderate ulcerative colitis. After receiving treatment with engineered strains, the gut microbiota and the butyrate content have been regulated to varying degrees depending on the synthetic ability of the strain. The abundance of probiotics such as Bifidobacterium and Lactobacillus increased, while the abundance of harmful bacteria like Candidatus Bacilloplasma decreased. Meanwhile, the series of butyrate-producing yeast significantly improved trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice by restoring butyrate content. Among the series of engineered yeasts, the strain with the second-highest butyrate synthesis ability showed the most significant regulatory and the best therapeutic effect on the gut microbiota from IBD patients and the colitis mouse model. This study confirmed the existence of a therapeutic window for IBD treatment by supplementing butyrate, and it is necessary to restore butyrate levels according to the actual situation of patients to restore intestinal flora.
Collapse
Affiliation(s)
- Jiahao Wu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - He Huang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Lina Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Mengxue Gao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Shuxian Meng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Shaolan Zou
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yuanhang Feng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zeling Feng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhixin Zhu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xiaocang Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Bingzhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| | - Guangbo Kang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| |
Collapse
|
32
|
Zhang M, Li D, Yang X, Wei F, Wen Q, Feng Y, Jin X, Liu D, Guo Y, Hu Y. Integrated multi-omics reveals the roles of cecal microbiota and its derived bacterial consortium in promoting chicken growth. mSystems 2023; 8:e0084423. [PMID: 38018992 PMCID: PMC10734529 DOI: 10.1128/msystems.00844-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/11/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE The improvement of chicken growth performance is one of the major concerns for the poultry industry. Gut microbes are increasingly evidenced to be associated with chicken physiology and metabolism, thereby influencing chicken growth and development. Here, through integrated multi-omics analyses, we showed that chickens from the same line differing in their body weight were very different in their gut microbiota structure and host-microbiota crosstalk; microbes in high body weight (HBW) chickens contributed to chicken growth by regulating the gut function and homeostasis. We also verified that a specific bacterial consortium consisting of isolates from the HBW chickens has the potential to be used as chicken growth promoters. These findings provide new insights into the potential links between gut microbiota and chicken phenotypes, shedding light on future manipulation of chicken gut microbiota to improve chicken growth performance.
Collapse
Affiliation(s)
- Meihong Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Depeng Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xinyue Yang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fuxiao Wei
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qiu Wen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuqing Feng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaolu Jin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
33
|
Jadhav A, Jagtap S, Vyavahare S, Sharbidre A, Kunchiraman B. Reviewing the potential of probiotics, prebiotics and synbiotics: advancements in treatment of ulcerative colitis. Front Cell Infect Microbiol 2023; 13:1268041. [PMID: 38145046 PMCID: PMC10739422 DOI: 10.3389/fcimb.2023.1268041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Inflammatory bowel diseases (IBD) like Crohn's and ulcerative colitis (UC) are multifactorial pathologies caused by environmental factors and genetic background. UC is a chronic inflammatory disorder that specifically targets the colon, resulting in inflammation. Various chemical interventions, including aminosalicylates, corticosteroids, immunomodulators, and biological therapies, have been extensively employed for the purpose of managing symptoms associated with UC. Nevertheless, it is important to note that these therapeutic interventions may give rise to undesirable consequences, including, but not limited to, the potential for weight gain, fluid retention, and heightened vulnerability to infections. Emerging therapeutic approaches for UC are costly due to their chronic nature. Alternatives like synbiotic therapy, combining prebiotics and probiotics, have gained attention for mitigating dysbiosis in UC patients. Prebiotics promote beneficial bacteria proliferation, while probiotics establish a balanced gut microbiota and regulate immune system functionality. The utilisation of synbiotics has been shown to improve the inflammatory response and promote the resolution of symptoms in individuals with UC through the stimulation of beneficial bacteria growth and the enhancement of intestinal barrier integrity. Hence, this review article aims to explore the potential benefits and underlying reasons for incorporating alternative approaches in the management of UC with studies performed using prebiotics, probiotics, and synbiotics to treat ulcerative colitis and to highlight safety and considerations in UC and future perspectives. This will facilitate the utilisation of novel treatment strategies for the safer and more efficacious management of patients with UC.
Collapse
Affiliation(s)
- Apurva Jadhav
- Herbal Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Suresh Jagtap
- Herbal Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Suresh Vyavahare
- Sai Ayurved Medical College, Maharashtra University of Health Sciences, Solapur, Maharashtra, India
| | - Archana Sharbidre
- Department of Zoology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Bipinraj Kunchiraman
- Microbial Biotechnology, Rajiv Gandhi Institute of IT & Biotechnology, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| |
Collapse
|
34
|
Govindhan T, Amirthalingam M, Duraisamy K, Cho JH, Tawata S, Palanisamy S. Fermented cereal-origin gerobiotic cocktails promote healthy longevity in Caenorhabditis elegans. Food Funct 2023; 14:10430-10442. [PMID: 37960884 DOI: 10.1039/d3fo02984k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
There is growing interest in dietary interventions, particularly gerobiotics, that directly target aging. Several single-strain gerobiotics have proven to be beneficial in alleviating aging and age-related functional declines across species, but multistrain/multispecies gerobiotics have been proven even more advantageous due to the potential synergy and additive effects among individual isolates. However, there is very limited research on how multistrain/multispecies gerobiotic combinations or cocktails extend healthy longevity. This study comprehensively analyzed probiotic bacteria from traditionally fermented Barnyard millet and compared their efficacy in promoting healthy longevity under various combinations using Caenorhabditis elegans. We have shown that dramatic lifespan extension can be achieved by combining gerobiotics, and the effect was found to be strictly strain-specific. Among the 120 combinations tested, we identified two synergistic gerobiotic combinations, cocktail 55 (combination of B. licheniformis PS70, L. delbrueckii subsp. bulgaricus PS77, and L. amylovorus PS60) and cocktail 112 (combination of L. delbrueckii subsp. bulgaricus PS77, L. lactis PS10, and P. pentosaceus PS91), extending the mean lifespan of C. elegans by up to 46.2% and 53.1%, respectively. Our mechanistic study showed that the life-promoting effect of cocktail 55 relied on the p38 MAPK-SKN-1 pathway, while cocktail 112 acted on multiple signaling pathways, including IIS, β-catenin, and TGF-β pathways, to achieve its impact on the host. Moreover, feeding gerobiotic cocktails improved several healthspan markers reported to decline with age. These observations showed that the gerobiotic cocktails target different subsets of the gene regulatory network controlling the aging process in C. elegans, thereby extending healthy longevity.
Collapse
Affiliation(s)
| | - Mohankumar Amirthalingam
- PAK Research Center, University of the Ryukyus, Senbaru 1, Nishihara-cho, Okinawa 903-0213, Japan.
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Kalaiselvi Duraisamy
- Division of Applied Bioscience and Biotechnology, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Jeong Hoon Cho
- Department of Biology Education, College of Education, Chosun University, Gwangju 61452, Republic of Korea
| | - Shinkichi Tawata
- PAK Research Center, University of the Ryukyus, Senbaru 1, Nishihara-cho, Okinawa 903-0213, Japan.
| | | |
Collapse
|
35
|
Jang YJ, Min B, Lim JH, Kim BY. In Vitro Evaluation of Probiotic Properties of Two Novel Probiotic Mixtures, Consti-Biome and Sensi-Biome. J Microbiol Biotechnol 2023; 33:1149-1161. [PMID: 37386724 PMCID: PMC10580887 DOI: 10.4014/jmb.2303.03011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023]
Abstract
Changes in the gut microbiome cause recolonization by pathogens and inflammatory responses, leading to the development of intestinal disorders. Probiotics administration has been proposed for many years to reverse the intestinal dysbiosis and to enhance intestinal health. This study aimed to evaluate the inhibitory effects of two newly designed probiotic mixtures, Consti-Biome and Sensi-Biome, on two enteric pathogens Staphylococcus aureus and Escherichia coli that may cause intestinal disorders. Additionally, the study was designed to evaluate whether Consti-Biome and Sensi-Biome could modulate the immune response, produce short-chain fatty acids (SCFAs), and reduce gas production. Consti-Biome and Sensi-Biome showed superior adhesion ratios to HT-29 cells and competitively suppressed pathogen adhesion. Moreover, the probiotic mixtures decreased the levels of pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-6 and IL-1β. Cell-free supernatants (CFSs) were used to investigate the inhibitory effects of metabolites on growth and biofilms of pathogens. Consti-Biome and Sensi-Biome CFSs exhibited antimicrobial and anti-biofilm activity, where microscopic analysis confirmed an increase in the number of dead cells and the structural disruption of pathogens. Gas chromatographic analysis of the CFSs revealed their ability to produce SCFAs, including acetic, propionic, and butyric acid. SCFA secretion by probiotics may demonstrate their potential activities against pathogens and gut inflammation. In terms of intestinal symptoms regarding abdominal bloating and discomfort, Consti-Biome and Sensi-Biome also inhibited gas production. Thus, these two probiotic mixtures have great potential to be developed as dietary supplements to alleviate the intestinal disorders.
Collapse
Affiliation(s)
- You Jin Jang
- R&D Center, Chong Kun Dang Healthcare, Seoul 07249, Republic of Korea
| | - Bonggyu Min
- R&D Center, Chong Kun Dang Healthcare, Seoul 07249, Republic of Korea
| | - Jong Hyun Lim
- R&D Center, Chong Kun Dang Healthcare, Seoul 07249, Republic of Korea
| | - Byung-Yong Kim
- R&D Center, Chong Kun Dang Healthcare, Seoul 07249, Republic of Korea
| |
Collapse
|
36
|
Ma T, Huang W, Li Y, Jin H, Kwok LY, Sun Z, Zhang H. Probiotics alleviate constipation and inflammation in late gestating and lactating sows. NPJ Biofilms Microbiomes 2023; 9:70. [PMID: 37741814 PMCID: PMC10517943 DOI: 10.1038/s41522-023-00434-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023] Open
Abstract
Constipation and systemic inflammation are common in late pregnant and lactating sows, which cause health problems like uteritis, mastitis, dystocia, or even stillbirth, further influencing piglets' survival and growth. Probiotic supplementation can improve such issues, but the beneficial mechanism of relieving constipation and enhancing gut motility remains underexplored. This study aimed to investigate the effects and mechanism of probiotic supplementation in drinking water to late pregnant sows on constipation, inflammation, and piglets' growth performance. Seventy-four sows were randomly allocated to probiotic (n = 36) and control (n = 38) groups. Probiotic treatment significantly relieved sow constipation, enhanced serum IL-4 and IL-10 levels while reducing serum IL-1β, IL-12p40, and TNF-α levels, and increased piglet daily gain and weaning weight. Furthermore, probiotic administration reshaped the sow gut bacteriome and phageome structure/diversity, accompanied by increases in some potentially beneficial bacteria. At 113 days of gestation, the probiotic group was enriched in several gut microbial bioactive metabolites, multiple carbohydrate-active enzymes that degrade pectin and starch, fecal butyrate and acetate, and some serum metabolites involved in vitamin and amino acid metabolism. Our integrated correlation network analysis revealed that the alleviation of constipation and inflammation was associated with changes in the sow gut bacteriome, phageome, bioactive metabolic potential, and metabolism.
Collapse
Affiliation(s)
- Teng Ma
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Weiqiang Huang
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Yalin Li
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Hao Jin
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Lai-Yu Kwok
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Zhihong Sun
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Heping Zhang
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
37
|
Li Y, Tong T, Li P, Peng Y, Zhang M, Liu J, She Y, Li Z, Li Y. Screening of Potential Probiotic Lactobacillaceae and Their Improvement of Type 2 Diabetes Mellitus by Promoting PI3K/AKT Signaling Pathway in db/db Mice. Pol J Microbiol 2023; 72:285-297. [PMID: 37725896 PMCID: PMC10508973 DOI: 10.33073/pjm-2023-028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/09/2023] [Indexed: 09/21/2023] Open
Abstract
The study aimed to isolate Lactobacillaceae strains with in vitro hypoglycemic activity and probiotic properties and to determine their antidiabetic abilities in vivo. Lactiplantibacillus plantarum 22, L. plantarum 25, Limosilactobacillus fermentum 11, and L. fermentum 305 with high in vitro hypoglycemic activity were screened from 23 strains of Lactobacillaceae isolated from human feces and identified by 16S rDNA sequencing. The fasting blood glucose (FBG) of the mice was recorded weekly. After 12 weeks, liver, kidney, and pancreas tissues were stained with hematoxylin and eosin (H&E) to observe histomorphology; the inflammatory factors were assayed by Quantitative Real-time PCR; PI3K and AKT were measured by Western blot; the short-chain fatty acids (SCFAs) were determined by LC-MS/MS. Inhibitory activities of L. plantarum 22, L. plantarum 25, L. fermentum 11, and L. fermentum 305 against α-amylase were 62.29 ± 0.44%, 51.81 ± 3.65%, 58.40 ± 1.68%, and 57.48 ± 5.04%, respectively. Their inhibitory activities to α-glucosidase were 14.89 ± 0.38%, 15.32 ± 0.89%, 52.63 ± 3.07%, and 51.79 ± 1.13%, respectively. Their survival rate after simulated gastrointestinal test were 12.42 ± 2.84%, 9.10 ± 1.12%, 5.86 ± 0.52%, and 8.82 ± 2.50% and their adhesion rates to Caco-2 cell were 6.09 ± 0.39%, 6.37 ± 0.28%, 6.94 ± 0.27%, and 6.91 ± 0.11%, respectively. The orthogonal tests of bacterial powders of the four strains showed that the maximum inhibitory activities to α-amylase and α-glucosidase were 93.18 ± 1.19% and 75.33 ± 2.89%, respectively. The results showed that the mixture of Lactobacillaceae could lower FBG, reduce inflammation, and liver, kidney, and pancreas damage, promote PI3K/AKT signaling pathway, and increase the content of SCFAs. The combination of L. plantarum 22, L. plantarum 25, L. fermentum 11, and L. fermentum 305 can potentially improve type 2 diabetes mellitus (T2DM).
Collapse
Affiliation(s)
- Yueyang Li
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Tong Tong
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Peifan Li
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Yian Peng
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Michael Zhang
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada
- School of Public Health, Anhui University of Science and Technology, Hefei, China
| | - Jia Liu
- Internal Trade Food Science and Technology (Beijing) Co., Ltd., Beijing, China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Science, Beijing, China
| | - Zuming Li
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Yongli Li
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
38
|
Liu N, Yang D, Sun J, Li Y. Probiotic supplements are effective in people with cognitive impairment: a meta-analysis of randomized controlled trials. Nutr Rev 2023; 81:1091-1104. [PMID: 36629438 DOI: 10.1093/nutrit/nuac113] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
CONTEXT Cognitive function is a significant concern among the elderly and has a major negative effect on their quality of life. Probiotics have a positive effect on improving cognition, but the exact nature of the association between probiotic supplements and cognitive function is poorly understood. OBJECTIVE The purpose of this systematic review was to evaluate how probiotic supplements improve cognitive function. DATA SOURCES A systematic search was conducted of the PubMed, Web of Science, the Cochrane Library, Embase, and ClinicalTrials.gov databases for all relevant studies published in English, with no date restrictions. DATA EXTRACTION The estimated, pooled results were analyzed with a standardized mean difference (SMD) and a corresponding 95% confidence interval (95%CI). Publication bias was analyzed by the Egger's and Begg's tests. Funnel plots were also constructed to assess the probability of publication bias. The robustness of the results was tested using the method of sequential removal and cumulation of each trial. DATA ANALYSIS Overall, the pooled SMD showed significant differences between the probiotic and placebo groups (SMD = 0.64; 95%CI, 0.15-1.12), with significant heterogeneity (I2 = 92%). Subgroup analyses showed a significant effect of probiotics on cognition in the studies involving populations with Alzheimer's disease and cognitive impairment (SMD = 1.34; 95%CI, 0.51-2.16; P < 0.01). In addition, subgroup analysis showed that single probiotic strains, receiving probiotic supplements over 12 weeks, and doses >1 × 109 CFU/g were more beneficial for improving cognitive impairment. CONCLUSIONS According to this meta-analysis, probiotic supplementation had a highly significant effect on cognitive function in people with cognitive impairment or Alzheimer's disease. For people without cognitive impairment, probiotic supplementation may be ineffective.
Collapse
Affiliation(s)
- Nanyang Liu
- Department of Geratology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Di Yang
- Hepingli Hospital, Beijing, China
| | - Jiahui Sun
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yapeng Li
- Rehabilitation Therapy Center, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, China
| |
Collapse
|
39
|
Darbandi A, Banar M, Koupaei M, Afifirad R, Asadollahi P, Bafandeh E, Rasooli I, Emamie A, Navidifar T, Owlia P. Clinical efficacy of probiotics in prevention of infectious diseases among hospitalized patients in ICU and non-ICU wards in clinical randomized trials: A systematic review. Health Sci Rep 2023; 6:e1469. [PMID: 37547361 PMCID: PMC10400784 DOI: 10.1002/hsr2.1469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
Background and Aims The present study aimed to review probiotics' clinical efficacy in preventing infectious diseases among hospitalized patients in ICU and non-ICU wards. Methods A search of Medline, EMBASE, The Cochrane Library, Science Direct, Open Grey, and Google Scholar was conducted for eligible publications from 2002 to 2020 following the requirements outlined in the PRISMA guideline. The search strategy was based on the combination of the following terms: "probiotics," "prebiotics," "synbiotics," and "cross-infection." The logical operators "AND" (or the equivalent operator for the databases) and "OR" (e.g., probiotics OR prebiotics OR synbiotics) were used. Results The results indicated that the probiotic consumption caused a significant reduction in antibiotic-associated diarrhea (AAD) and Clostridioides difficile infection (CDI) in 2/8 randomized clinical trials (RCTs) investigating AAD/CDI. Also, 5/12 clinical trials highlighted the considerable effects of probiotics on the reduction or prevention of ventilator associated pneumoniae (VAP), so the mean prevalence of VAP was lower in the probiotic group than in the placebo group. The total rate of nosocomial infections among preterm infants was nonsignificantly higher in the probiotic group compared to the control group. Conclusion This systematic review shows that the administration of probiotics has moderate preventive or mitigating effects on the occurrence of VAP in ICU patients, CDI, AAD, and nosocomial infections among children. Consequently, applying antibiotics along with the proper probiotic species can be advantageous.
Collapse
Affiliation(s)
- Atieh Darbandi
- Molecular Microbiology Research CenterShahed UniversityTehranIran
| | - Maryam Banar
- Department of PathobiologySchool of Public Health, Tehran University of Medical SciencesTehranIran
| | - Maryam Koupaei
- Department of Microbiology and ImmunologySchool of Medicine, Kashan University of Medical SciencesKashanIran
| | - Roghayeh Afifirad
- Department of MicrobiologySchool of Medicine, Tehran University of Medical SciencesTehranIran
| | - Parisa Asadollahi
- Department of MicrobiologyFaculty of Medicine, Ilam University of Medical SciencesIlamIran
| | - Elnaz Bafandeh
- Department of Medical BiotechnologyFaculty of Medicine, Lorestan University of Medical SciencesKhorramabadIran
| | - Iraj Rasooli
- Molecular Microbiology Research Center, Faculty of SciencesShahed UniversityTehranIran
| | - Amir Emamie
- Department of PathobiologySchool of Public Health, Tehran University of Medical SciencesTehranIran
| | | | - Parviz Owlia
- Molecular Microbiology Research CenterShahed UniversityTehranIran
- Molecular Microbiology Research Center, Faculty of SciencesShahed UniversityTehranIran
| |
Collapse
|
40
|
Mao H, Ji W, Yun Y, Zhang Y, Li Z, Wang C. Influence of probiotic supplementation on the growth performance, plasma variables, and ruminal bacterial community of growth-retarded lamb. Front Microbiol 2023; 14:1216534. [PMID: 37577421 PMCID: PMC10413120 DOI: 10.3389/fmicb.2023.1216534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Growth-retarded lambs would reduce the economic incomes of sheep farming. Nutritional interventions are supposed to promote gastrointestinal health and the compensatory growth of growth-retarded lambs. This study evaluated the effects of probiotic supplementation on the growth performance, plasma characteristics and ruminal bacterial community of growth-retarded lambs. Methods Twenty-four 50-days old male Hu lambs, including 8 healthy lambs (13.2 ± 1.17 kg) and 16 growth-retarded lambs (9.46 ± 0.81 kg), were used in this study. The 8 healthy lambs were fed the basal diet and considered the positive control (GN), and the other 16 growth-retarded lambs were randomly assigned into 2 groups (basal diet without probiotic [negative control, GR] and basal diet supplementation with 1 g/kg concentrate feed probiotic [GRP]), with each group having 4 replicate pens. The feeding trial lasted for 60 days with 7 days for adaptation. Results The results showed that dietary supplementation with probiotic increased (p < 0.05) the average daily gain and dry matter intake of growth-retarded lambs. For growth-retarded lambs, supplementation with probiotic increased (p < 0.05) the activities of superoxide dismutase and glutathione peroxidase, as well as the concentrations of growth hormone and immunoglobulin G. Furthermore, the highest (p < 0.05) concentrations of interleukin-6, interferon-gamma and tumor necrosis factor alpha were observed in the GR group. The concentrations of total volatile fatty acids and acetate in growth-retarded lambs were increased by probiotic supplementation (p < 0.05). The relative abundances of Ruminococcus, Succiniclasticum and Acidaminococcus were lower (p < 0.05) in growth-retarded lambs. However, probiotic supplementation increased (p < 0.05) the relative abundances of these three genera. Discussion These results indicate that dietary supplementation with probiotic are promising strategies for improving the growth performance of growth-retarded lambs by enhancing immunity and altering the ruminal microbiota.
Collapse
Affiliation(s)
- Huiling Mao
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Lin'an, China
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
| | - Wenwen Ji
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Lin'an, China
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
| | - Yan Yun
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Lin'an, China
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
| | - Yanfang Zhang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Lin'an, China
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
| | - Zhefeng Li
- Hangzhou Kingtechina Feed Co., Ltd, Hangzhou, China
| | - Chong Wang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Lin'an, China
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Hangzhou, China
| |
Collapse
|
41
|
Hashem NM, Hosny NS, El-Desoky N, Soltan YA, Elolimy AA, Sallam SMA, Abu-Tor ESM. Alginate Nanoencapsulated Synbiotic Composite of Pomegranate Peel Phytogenics and Multi-Probiotic Species as a Potential Feed Additive: Physicochemical, Antioxidant, and Antimicrobial Activities. Animals (Basel) 2023; 13:2432. [PMID: 37570241 PMCID: PMC10417444 DOI: 10.3390/ani13152432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
A synbiotic composed of alginate nanoencapsulated prebiotic (pomegranate peel phytogenics) and multi-species probiotics (Lactococcus lactis, Lactobacillus plantarum, Lactobacillus paracasei, and Saccharomyces cerevisiae) has been developed as a potential eco-friendly alternative to antibiotics. The physicochemical properties of the encapsulated synbiotic were evaluated, and its gastric and storage tolerance, as well as its antioxidant and antimicrobial activity, were tested and compared to that of the non-encapsulated synbiotic (free synbiotic). The results showed that the prebiotic pomegranate peel ethanolic extract contained seven phenolic compounds, with cinnamic being the most abundant (13.26 µL/mL). Sodium alginate-CaCl2 nanocapsules were effective in encapsulating 84.06 ± 1.5% of the prebiotic's phenolic compounds and 98.85 ± 0.57% of the probiotics. The particle size of the alginate-CaCl2 nanoencapsulated synbiotic was 544.5 nm, and the polydispersity index and zeta potential values were 0.593 and -12.3 mV, respectively. Thermogravimetric analysis showed that the alginate-CaCl2 nanoencapsulated synbiotic had high thermal stability at high temperatures, with only 2.31% of its weight being lost within the temperature range of 70-100 °C. The count of viable probiotics in the nanoencapsulated synbiotic was significantly higher than that in the free synbiotic after exposure to gastric acidity and storage for six months at room temperature. The percent inhibition values of the nanoencapsulated synbiotic and ascorbic acid (as a standard antioxidant) were comparable and significantly greater than those of the free synbiotic. The half-maximal inhibitory concentrations (IC50) of the nanoencapsulated synbiotic and ascorbic acid were significantly lower than those of the free synbiotic (3.96 ± 0.42 µg/mL and 4.08 ± 0.79 µg/mL for nanoencapsulated synbiotic and ascorbic acid, respectively, vs. 65.75 ± 2.14 µg/mL for free synbiotic). The nanoencapsulated synbiotic showed the highest significant antimicrobial activity against Escherichia coli (ATCC 8739). Both the nanoencapsulated and free synbiotics showed antimicrobial activity against Staphylococcus aureus (ATCC 6538), similar to that of gentamicin, although the nanoencapsulated synbiotic showed significantly higher inhibition activity compared to the free synbiotic. The nanoencapsulated synbiotic showed antimicrobial activity comparable to gentamicin against Pseudomonas aeruginosa (ATCC 90274), whereas the free synbiotic showed the least antimicrobial activity (p < 0.05). Both synbiotics showed significantly higher antimicrobial activity against Salmonella typhi (ATCC 6539) than gentamicin. Both synbiotics showed antifungal activity against Aspergillus niger and Aspergillus flavus, with a stronger effect observed for the nanoencapsulated synbiotic. However, the activity of both synbiotics was significantly lower than that of fluconazole (an antifungal drug).
Collapse
Affiliation(s)
- Nesrein M. Hashem
- Animal and Fish Production Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt; (N.E.-D.); (Y.A.S.); (S.M.A.S.)
| | - Nourhan S. Hosny
- Livestock Research Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt;
| | - Nagwa El-Desoky
- Animal and Fish Production Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt; (N.E.-D.); (Y.A.S.); (S.M.A.S.)
| | - Yosra A. Soltan
- Animal and Fish Production Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt; (N.E.-D.); (Y.A.S.); (S.M.A.S.)
| | - Ahmed A. Elolimy
- Animal Production Department, National Research Centre, Giza 12622, Egypt;
| | - Sobhy M. A. Sallam
- Animal and Fish Production Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt; (N.E.-D.); (Y.A.S.); (S.M.A.S.)
| | - El-Sayed M. Abu-Tor
- Food Science and Technology Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt;
| |
Collapse
|
42
|
Xiao R, Wang L, Tian P, Jin X, Zhao J, Zhang H, Wang G, Zhu M. The Effect of Probiotic Supplementation on Glucolipid Metabolism in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Nutrients 2023; 15:3240. [PMID: 37513657 PMCID: PMC10383415 DOI: 10.3390/nu15143240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
PURPOSE Type 2 diabetes mellitus (T2DM) is a persistent metabolic condition with an unknown pathophysiology. Moreover, T2DM remains a serious health risk despite advances in medication and preventive care. Randomised controlled trials (RCTs) have provided evidence that probiotics may have positive effects on glucolipid metabolism. Therefore, we performed a meta-analysis of RCTs to measure the effect of probiotic therapy on glucolipid metabolism in patients with T2DM. METHODS With no constraints on the language used in the literature, Excerpta Medica Database, PubMed, the Cochrane Library, and the Web of Science were searched for pertinent RCTs published between the date of creation and 18 August 2022. Stringent inclusion and exclusion criteria were applied by two reviewers to independently examine the literature. The risk of bias associated with the inclusion of the original studies was assessed using the Cochrane risk-of-bias tool, and Stata 15.0 was used to perform the meta-analysis. RESULTS Thirty-seven publications containing a total of 2502 research participants were included in the meta-analysis. The results showed that after a probiotic intervention, the experimental group showed a significant decrease in body mass index (standardised mean difference (SMD) = -0.42, 95% confidence interval (CI) [-0.76, -0.08]), fasting glucose concentration (SMD = -0.73, 95% CI [-0.97, -0.48]), fasting insulin concentration (SMD = -0.67, 95% CI [-0.99, -0.36]), glycated haemoglobin concentration (SMD = -0.55, 95% CI [-0.75, -0.35]), Homeostatic Model Assessment for Insulin Resistance score (SMD = -0.88, 95% CI [-1.17, -0.59]), triglyceride concentration (SMD = -0.30, 95% CI [-0.43, -0.17]), total cholesterol concentration (SMD = -0.27, 95% CI [-0.43, -0.11]), and low-density lipoprotein concentration (SMD = -0.20, 95% CI [-0.37, -0.04]), and an increase in high-density lipoprotein concentration (SMD = 0.31, 95% CI [0.08, 0.54]). Moreover, subgroup analyses showed that patients with a longer intervention time, or those who were treated with multiple strains of probiotics, may benefit more than those with a shorter intervention time or those who were treated with a single probiotic strain, respectively. CONCLUSION Probiotic supplementation improves glucolipid metabolism in patients with T2DM, offering an alternative approach for the treatment of these patients.
Collapse
Affiliation(s)
- Rui Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Xing Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Minmin Zhu
- Department of Anesthesiology and Pain Medicine, Jiangnan University Medical Center, Wuxi 214002, China
| |
Collapse
|
43
|
Zhang C, Sheng Y, Jiang J, Xue Y, Yu L, Tian F, Zhao J, Zhang H, Jin J, Zhai Q. Probiotics supplementation for management of type II diabetes risk factors in adults with polycystic ovarian syndrome: a meta-analysis of randomized clinical trial. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Sun J, Zhang M, Liu W, Liu Y, Zhang D, Fan X, Zhang J, Li T, Lu M. Evaluation of the effectiveness and mechanism of action of the Chang-Kang-Fang formula combined with bifid triple viable capsules on diarrhea-predominant irritable bowel syndrome. Front Microbiol 2023; 14:1160783. [PMID: 37440881 PMCID: PMC10333534 DOI: 10.3389/fmicb.2023.1160783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/23/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction The Chang-Kang-Fang (CKF) formula, a traditional Chinese herbal formula, can decrease serotonin (5-HT) levels and treat irritable bowel syndrome (IBS). Probiotics have a better synergistic effect on diarrhea-predominant IBS (IBS-D) when combined with 5-HT3 receptor antagonists. The present study aimed to elucidate the efficacy and the mechanisms of action of the CKF formula combined with bifid triple viable capsules (PFK) against IBS-D. Methods The rat models of IBS-D were induced by gavage with senna decoction plus restraint stress. The CKF formula, PFK and their combination were administered to the rats. Their effects were evaluated based on general condition of the rats and the AWR score. The levels of 5-HT and fos protein in the colon and hippocampus were measured by immunohistochemistry. The levels of SP and VIP, as well as ZO-1 and occludin in the colon, were determined by enzyme-linked immunosorbent assay and immunohistochemistry. The intestinal microbiota in faeces was analyzed by 16S rRNA high-throughput sequencing. Results The results showed that the oral CKF formula combined with PFK (CKF + PFK) could significantly relieve the symptoms of IBS-D, including elevating the weight rate and decreasing the AWR score. Compared with the MC group, administration of CKF + PFK significantly reduced the expression of fos in the colon and hippocampus and that of 5-HT, SP and VIP in the colon and increased the levels of 5-HT in the hippocampus and ZO-1 and occludin in the colon. The above indexes exhibited statistical significance in the CKF + PFK group relative to those in the other groups. Moreover, treatment with CKF + PFK improved the diversity of intestinal microbiota and the abundance of Firmicutes, Lachnospiraceae and Ruminococcaceae but decreased those of Bacteroidetes and Prevotellaceae. Conclusions The CKF formula combined with PFK may have a synergistic effect on IBS-D by slowing gastrointestinal motility, lowering visceral hypersensitivity, enhancing the intestinal barrier function and modulating the composition of intestinal microbiota.
Collapse
Affiliation(s)
- Jing Sun
- Department of Central laboratory, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, China
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mengqiu Zhang
- School of Third Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Suqian Hospital of Traditional Chinese Medicine, Suqian, China
| | - Wei Liu
- School of Third Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Youqian Liu
- Department of Gastroenterology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Dongjian Zhang
- School of Third Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyu Fan
- Department of Gastroenterology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, China
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian Zhang
- School of Third Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tian Li
- Department of Central laboratory, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Min Lu
- School of Third Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
45
|
Buiatte V, Schultheis M, Lorenzoni AG. Deconstruction of a multi-strain Bacillus-based probiotic used for poultry: an in vitro assessment of its individual components against C. perfringens. BMC Res Notes 2023; 16:117. [PMID: 37349830 DOI: 10.1186/s13104-023-06384-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
OBJECTIVE Probiotics have been used in poultry production to improve the performance and health of chickens raised without antibiotics. The combination of different probiotic strains has been used with the hope of conferring multiple benefits to the host. However, the inclusion of several strains does not necessarily boost benefits. There is a lack of studies that compare the efficacy of multi-strain probiotics to their individual components. In this study, the effects of a Bacillus-based probiotic product mix containing B. coagulans, B. licheniformis, B. pumilus, and B. subtilis against Clostridium perfringens were tested in vitro using a co-culture method. The individual strains and different combinations of the strains used in the product were also tested against C. perfringens. RESULTS The probiotic product mix tested in this study did not show effects against C. perfringens (P = 0.499). When tested individually, the strain of B. subtilis was the most efficient strain to decrease C. perfringens concentrations (P ≤ 0.01), and the addition of other Bacillus species strains significantly decreased its efficacy against C. perfringens. We concluded that the probiotic mix of Bacillus strains used in this study (B. coagulans, B. licheniformis, B. pumilus and B subtilis) was not effective in decreasing C. perfringens concentrations in vitro. However, when deconstructing the probiotic, the strain of B. subtilis alone or combined with the strain of B. licheniformis were effective against C. perfringens. This suggests that the anticlostridial properties of the particular strains of Bacillus used in this study were negatively affected when combined with other Bacillus spp. strains.
Collapse
Affiliation(s)
- Vinicius Buiatte
- Department of Animal Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Maria Schultheis
- College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Alberto Gino Lorenzoni
- Department of Animal Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
46
|
Mishra G, Singh P, Molla M, Yimer YS, Dinda SC, Chandra P, Singh BK, Dagnew SB, Assefa AN, Ewunetie A. Harnessing the potential of probiotics in the treatment of alcoholic liver disorders. Front Pharmacol 2023; 14:1212742. [PMID: 37361234 PMCID: PMC10287977 DOI: 10.3389/fphar.2023.1212742] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
In the current scenario, prolonged consumption of alcohol across the globe is upsurging an appreciable number of patients with the risk of alcohol-associated liver diseases. According to the recent report, the gut-liver axis is crucial in the progression of alcohol-induced liver diseases, including steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Despite several factors associated with alcoholic liver diseases, the complexity of the gut microflora and its great interaction with the liver have become a fascinating area for researchers due to the high exposure of the liver to free radicals, bacterial endotoxins, lipopolysaccharides, inflammatory markers, etc. Undoubtedly, alcohol-induced gut microbiota imbalance stimulates dysbiosis, disrupts the intestinal barrier function, and trigger immune as well as inflammatory responses which further aggravate hepatic injury. Since currently available drugs to mitigate liver disorders have significant side effects, hence, probiotics have been widely researched to alleviate alcohol-associated liver diseases and to improve liver health. A broad range of probiotic bacteria like Lactobacillus, Bifidobacteria, Escherichia coli, Sacchromyces, and Lactococcus are used to reduce or halt the progression of alcohol-associated liver diseases. Several underlying mechanisms, including alteration of the gut microbiome, modulation of intestinal barrier function and immune response, reduction in the level of endotoxins, and bacterial translocation, have been implicated through which probiotics can effectively suppress the occurrence of alcohol-induced liver disorders. This review addresses the therapeutic applications of probiotics in the treatment of alcohol-associated liver diseases. Novel insights into the mechanisms by which probiotics prevent alcohol-associated liver diseases have also been elaborated.
Collapse
Affiliation(s)
- Garima Mishra
- Pharmaceutical Chemistry Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Pradeep Singh
- Pharmaceutical Chemistry Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Mulugeta Molla
- Pharmacology and Toxicology Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Yohannes Shumet Yimer
- Social Pharmacy Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | | | - Phool Chandra
- Department of Pharmacology, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, India
| | | | - Samuel Berihun Dagnew
- Clinical Pharmacy Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Abraham Nigussie Assefa
- Social Pharmacy Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Amien Ewunetie
- Pharmacology and Toxicology Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
47
|
Logoń K, Świrkosz G, Nowak M, Wrześniewska M, Szczygieł A, Gomułka K. The Role of the Microbiome in the Pathogenesis and Treatment of Asthma. Biomedicines 2023; 11:1618. [PMID: 37371713 DOI: 10.3390/biomedicines11061618] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
The role of the microbiome in the pathogenesis and treatment of asthma is significant. The purpose of this article is to show the interplay between asthma and the microbiome, and main areas that require further research are also highlighted. The literature search was conducted using the PubMed database. After a screening process of studies published before May 2023, a total of 128 articles were selected in our paper. The pre-treatment bronchial microbiome in asthmatic patients plays a role in their responsiveness to treatment. Gut microbiota and its dysbiosis can contribute to immune system modulation and the development of asthma. The association between the microbiome and asthma is complex. Further research is necessary to clarify which factors might moderate that relationship. An appropriate gut microbiome and its intestinal metabolites are a protective factor for asthma development. Prebiotics and certain dietary strategies may have a prophylactic or therapeutic effect, but more research is needed to establish final conclusions. Although the evidence regarding probiotics is ambiguous, and most meta-analyses do not support the use of probiotic intake to reduce asthma, several of the most recent studies have provided promising effects. Further studies should focus on the investigation of specific strains and the examination of their mechanistic and genetic aspects.
Collapse
Affiliation(s)
- Katarzyna Logoń
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Gabriela Świrkosz
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Monika Nowak
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Martyna Wrześniewska
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Aleksandra Szczygieł
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| |
Collapse
|
48
|
Xu X, Cui H, Xu J, Yuan Z, Li J, Yang L, Wang S, Liu H, Zhu D. Effects of cold storage time on the quality and active probiotics of yogurt fermented by Bifidobacterium lactis and commercial bacteria Danisco. J Food Sci 2023. [PMID: 37243357 DOI: 10.1111/1750-3841.16601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/13/2023] [Indexed: 05/28/2023]
Abstract
In this study, the commercial bacteria Danisco and Bifidobacterium lactis were used to ferment soy yogurt, and then the quality of yogurt and the number of active probiotics in yogurt during storage were investigated. The results showed that the total number of viable bacteria in soy yogurt increased first and then decreased, but all of them met the standard for the number of viable bacteria in probiotic foods. The content of protein, lipid, and total sugar in soy yogurt decreased gradually with the extension of storage time. The texture, water holding capacity, and rheological properties of soy yogurt were improved within 0-10 days, and there was no significant change after 15 days. However, brightness and whiteness of yogurt were significantly reduced. Based on realizing the reuse of soy whey, this study provided a theoretical basis for the research of the shelf life of soy yogurt. PRACTICAL APPLICATION: This study developed a soy yogurt with good quality and provided a theoretical basis for the study of the shelf life of soy yogurt. In addition, some technical support was provided for the reuse of soy whey.
Collapse
Affiliation(s)
- Xinyue Xu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Huaitian Cui
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Jiaxin Xu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Zhiheng Yuan
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Jun Li
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Lina Yang
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Shengnan Wang
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Danshi Zhu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| |
Collapse
|
49
|
Wang Y, Wang X, Cao XY, Zhu HL, Miao L. Comparative effectiveness of different probiotics supplements for triple helicobacter pylori eradication: a network meta-analysis. Front Cell Infect Microbiol 2023; 13:1120789. [PMID: 37256113 PMCID: PMC10226649 DOI: 10.3389/fcimb.2023.1120789] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/24/2023] [Indexed: 06/01/2023] Open
Abstract
Background Probiotics has been reported as an effective supplement for Helicobacter pylori eradication. However, knowledge of their comparative efficacy is still lacking. Aim In this study, we used network meta-analysis of current probiotics supplement used in standard triple therapy to assess and rank their comparative effectiveness. Methods All randomized controlled trials from three main databases (PubMed, Embase and Cochrane Library) up to April 2022 were collected and filtered to meet our criterion. We used Bayesian network meta-analysis to evaluate the eligible randomized controlled trials and gave a rank for the efficiency and incidence of side effects of each probiotics supplement. The ranking probability for each therapy was assessed by means of surfaces under cumulative ranking values. Subgroup analysis was conducted to evaluate other possible influencing factors. Results 34 eligible randomized controlled trials entered the following meta-analysis, including 9,004 patients randomized to 10 kinds of therapies. Result showed that most probiotics added therapies had better outcomes than triple therapy, among which Bifidobacterium-Lactobacillus and Bifidobacterium-Lactobacillus-Saccharomyces adjuvant therapy could obtain comprehensive benefit with high eradication rate (78.3% and 88.2% respectively), and cause few side effects. Combination of different probiotics, adding probiotics before or after triple therapy and longer duration of probiotics can improve therapeutic effect in H.pylori infected individuals. Conclusion For triple therapy of H.pylori infection, adding probiotics can increase eradication rate and bring protective effect. Considering the overall influence, Bifidobacterium-Lactobacillus or Bifidobacterium-Lactobacillus-Saccharomyces therapy can be a better choice in improving H.pylori eradication process.
Collapse
Affiliation(s)
- Yue Wang
- Medical Centre for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xue Wang
- Medical Centre for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xue-Yan Cao
- Medical Centre for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Han-Long Zhu
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Lin Miao
- Medical Centre for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
50
|
Ghafouri-Taleghani F, Abiri B, Zamanian A, Saidpour A. Effects of probiotic supplementation with weight reducing intervention on anthropometric measures, body composition, eating behavior, and related hormone levels in patients with food addiction and weight regain after bariatric surgery: a study protocol for a randomized clinical trial. BMC Nutr 2023; 9:63. [PMID: 37072872 PMCID: PMC10114428 DOI: 10.1186/s40795-023-00717-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/11/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND One of the unfortunate events after bariatric surgery is the weight regain, which occurs in some patients. Food addiction is an eating disorder related to the brain-intestinal axis and can be effective in weight regain after bariatric surgery. In addition, the gut microbiome plays a vital role in eating behaviors, including food addiction. So, this study will aim to evaluate the effects of probiotic supplementation with a weight-reducing diet and cognitive behavioral therapy on anthropometric measures, body composition, eating behavior, and related hormone levels, leptin, oxytocin, and serotonin, in patients with food addiction and weight regain after bariatric surgery. METHODS We will carry out a triple-blinded randomized clinical trial for 12 weeks to evaluate the effect of probiotic supplementation with a weight-reducing diet and cognitive behavioral therapy on anthropometric measures, body composition, eating behavior, and related hormone levels including leptin, oxytocin, and serotonin, in patients with food addiction and weight regain after bariatric surgery. DISCUSSION Based on the available evidence, probiotic supplementation by modifying the intestinal microbiome can improve food addiction and subsequent weight loss. TRIAL REGISTRATION Iranian Registry of Clinical Trials IRCT20220406054437N1 Registered on 2022-06-01.
Collapse
Affiliation(s)
- Fateme Ghafouri-Taleghani
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnaz Abiri
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Zamanian
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atoosa Saidpour
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|