1
|
Lauletta A, Allenbach Y, Béhin A, Evangelista T, Léonard-Louis S, Garibaldi M, Benveniste O. High prevalence of facioscapulohumeral muscular dystrophy (FSHD) and inflammatory myopathies association: Is there an interplay? J Neurol Sci 2025; 470:123400. [PMID: 39855012 DOI: 10.1016/j.jns.2025.123400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 12/19/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
INTRODUCTION Certain types of muscular dystrophy (MD), notably facioscapulohumeral muscular dystrophy (FSHD), exhibit muscle fiber necrosis with regeneration and a nonspecific inflammatory process. Although rare, the coexistence of MDs and autoimmune myositis has been observed. We hypothesized that, in some circumstances, FSHD may predispose individuals to myositis through muscle damage-induced autoantigen overexpression, contributing to an autoimmune response. METHODS We conducted a retrospective analysis of patient data from neuromuscular disease centers in France and Italy between September 2012 and May 2024. Clinical, immunological, and myopathological features of 1750 myositis patients were comprehensively reviewed. RESULTS Five patients were identified with both FSHD and IIM. Two patients were first diagnosed with FSHD and later developed IIM, while two others initially had IIM followed by an FSHD diagnosis. The fifth patient received simultaneous diagnoses of both conditions. The prevalence of FSHD in the IIM cohort was 1/350, and the prevalence of IIM in the FSHD cohort was 1/40 (p < 0.0001). DISCUSSION Our study showed a high prevalence of FSHD and IIM association compared to the general population, with underlying mechanisms that remain unclear. This association might be more frequent than previously reported, indicating a need for increased clinical awareness. Understanding the interplay between FSHD and autoimmune myositis could reveal insights into the immunopathological processes of these diseases and improve diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Antonio Lauletta
- Neuromuscular Disease Centre, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Sant'Andrea Hospital, Rome, Italy.
| | - Yves Allenbach
- Sorbonne Université, Assistance Publique - Hôpitaux de Paris, Inserm U974, Department of Internal Medicine and Clinical Immunology, Pitié-Salpêtrière University Hospital, Paris, France
| | - Anthony Béhin
- APHP, Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Teresinha Evangelista
- Unité de Morphologie Neuromusculaire, Institut de Myologie, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Sarah Léonard-Louis
- Service de Neuromyologie, GH Pitié-Salpêtrière, University Hospital, 75013 Paris, France
| | - Matteo Garibaldi
- Neuromuscular Disease Centre, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Olivier Benveniste
- Sorbonne Université, Assistance Publique - Hôpitaux de Paris, Inserm U974, Department of Internal Medicine and Clinical Immunology, Pitié-Salpêtrière University Hospital, Paris, France.
| |
Collapse
|
2
|
Stolarski Ł, Patrzałek P, Gerber F, Tokarczyk W, Bialasik-Misiorny M, Kulma M. Clinical Presentation, Diagnosis, and Genetic Insights of Miyoshi Myopathy: A Case Report and Literature Review. Cureus 2024; 16:e68869. [PMID: 39376872 PMCID: PMC11457810 DOI: 10.7759/cureus.68869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 10/09/2024] Open
Abstract
Miyoshi myopathy (MM) is an autosomal recessive dysferlinopathy caused by a mutation in the dysferlin (DYSF) gene on chromosome 2p. Recent findings indicate that MM and Lower Girdle Muscular Dystrophy R2 (LGMD2B) are the same disease. We present the case of a 44-year-old male who first experienced symptoms of MM at the age of 19, initially noticing difficulty climbing stairs and standing on his toes. By the age of 29, he had developed significant calf muscle atrophy and weakness, which led to difficulties with walking. Electromyography and nerve conduction studies showed axonal damage and myogenic features. Genetic testing ruled out Charcot-Marie-Tooth disease but identified a pathogenic variant in the DYSF gene. Laboratory tests revealed elevated creatine kinase levels. Photographs of the patient's lower limbs showed significant calf muscle atrophy. Based on clinical, laboratory, and electrophysiological findings, he was diagnosed with MM. This case highlights the importance of genetic testing in diagnosing muscular dystrophies and underscores the need for continued research into gene and cell therapies. To the best of our knowledge, this is one of the first studies reporting a case of MM in Poland.
Collapse
Affiliation(s)
| | | | | | | | | | - Marek Kulma
- Neurology, Marek Kulma Praktyka Lekarska, Gorzkowice, POL
| |
Collapse
|
3
|
Abstract
Nuclear movement is crucial for the development of many cell types and organisms. Nuclear movement is highly conserved, indicating its necessity for cellular function and development. In addition to mononucleated cells, there are several examples of cells in which multiple nuclei exist within a shared cytoplasm. These multinucleated cells and syncytia have important functions for development and homeostasis. Here, we review a subset of the developmental contexts in which the regulation of the movement and positioning of multiple nuclei are well understood, including pronuclear migration, the Drosophila syncytial blastoderm, the Caenorhabditis elegans hypodermis, skeletal muscle and filamentous fungi. We apply the principles learned from these models to other systems.
Collapse
Affiliation(s)
- Jorel R. Padilla
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | | | - Eric S. Folker
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
4
|
Jou C, Nascimento A, Codina A, Montoya J, López-Gallardo E, Emperador S, Ruiz-Pesini E, Montero R, Natera-de Benito D, Ortez CI, Marquez J, Zelaya MV, Gutierrez-Mata A, Badosa C, Carrera-García L, Expósito-Escudero J, Roldán M, Camara Y, Marti R, Ferrer I, Jimenez-Mallebrera C, Artuch R. Pathological Features in Paediatric Patients with TK2 Deficiency. Int J Mol Sci 2022; 23:ijms231911002. [PMID: 36232299 PMCID: PMC9570075 DOI: 10.3390/ijms231911002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Thymidine kinase (TK2) deficiency causes mitochondrial DNA depletion syndrome. We aimed to report the clinical, biochemical, genetic, histopathological, and ultrastructural features of a cohort of paediatric patients with TK2 deficiency. Mitochondrial DNA was isolated from muscle biopsies to assess depletions and deletions. The TK2 genes were sequenced using Sanger sequencing from genomic DNA. All muscle biopsies presented ragged red fibres (RRFs), and the prevalence was greater in younger ages, along with an increase in succinate dehydrogenase (SDH) activity and cytochrome c oxidase (COX)-negative fibres. An endomysial inflammatory infiltrate was observed in younger patients and was accompanied by an overexpression of major histocompatibility complex type I (MHC I). The immunofluorescence study for complex I and IV showed a greater number of fibres than those that were visualized by COX staining. In the ultrastructural analysis, we found three major types of mitochondrial alterations, consisting of concentrically arranged lamellar cristae, electrodense granules, and intramitochondrial vacuoles. The pathological features in the muscle showed substantial differences in the youngest patients when compared with those that had a later onset of the disease. Additional ultrastructural features are described in the muscle biopsy, such as sarcomeric de-structuration in the youngest patients with a more severe phenotype.
Collapse
Affiliation(s)
- Cristina Jou
- Pathology, Biobank, Pediatric Neurology, Neuromuscular Unit and Clinical Biochemistry Departments, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
- Biomedical Center for Research in Rare Diseases CIBERER-ISCIII, 28029 Madrid, Spain
| | - Andres Nascimento
- Pathology, Biobank, Pediatric Neurology, Neuromuscular Unit and Clinical Biochemistry Departments, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
- Biomedical Center for Research in Rare Diseases CIBERER-ISCIII, 28029 Madrid, Spain
| | - Anna Codina
- Pathology, Biobank, Pediatric Neurology, Neuromuscular Unit and Clinical Biochemistry Departments, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
| | - Julio Montoya
- Biomedical Center for Research in Rare Diseases CIBERER-ISCIII, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria de Aragón (IISA), Universidad de Zaragoza, 50011 Zaragoza, Spain
| | - Ester López-Gallardo
- Biomedical Center for Research in Rare Diseases CIBERER-ISCIII, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria de Aragón (IISA), Universidad de Zaragoza, 50011 Zaragoza, Spain
| | - Sonia Emperador
- Biomedical Center for Research in Rare Diseases CIBERER-ISCIII, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria de Aragón (IISA), Universidad de Zaragoza, 50011 Zaragoza, Spain
| | - Eduardo Ruiz-Pesini
- Biomedical Center for Research in Rare Diseases CIBERER-ISCIII, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria de Aragón (IISA), Universidad de Zaragoza, 50011 Zaragoza, Spain
| | - Raquel Montero
- Pathology, Biobank, Pediatric Neurology, Neuromuscular Unit and Clinical Biochemistry Departments, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
| | - Daniel Natera-de Benito
- Pathology, Biobank, Pediatric Neurology, Neuromuscular Unit and Clinical Biochemistry Departments, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
| | - Carlos I. Ortez
- Pathology, Biobank, Pediatric Neurology, Neuromuscular Unit and Clinical Biochemistry Departments, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
| | - Jesus Marquez
- Pathology, Biobank, Pediatric Neurology, Neuromuscular Unit and Clinical Biochemistry Departments, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
| | - Maria V. Zelaya
- Department of Pathology, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), 31008 Pamplona, Spain
| | - Alfonso Gutierrez-Mata
- Pediatric Neurology Department, Hospital Nacional Niños “Dr Carlos Sáenz Herrera”, San José 267-1005, Costa Rica
| | - Carmen Badosa
- Pathology, Biobank, Pediatric Neurology, Neuromuscular Unit and Clinical Biochemistry Departments, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
| | - Laura Carrera-García
- Pathology, Biobank, Pediatric Neurology, Neuromuscular Unit and Clinical Biochemistry Departments, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
| | - Jesica Expósito-Escudero
- Pathology, Biobank, Pediatric Neurology, Neuromuscular Unit and Clinical Biochemistry Departments, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
| | - Monica Roldán
- Unitat de Microscòpia Confocal i Imatge Cel·lular, Servei de Medicina Genètica i Molecular, Institut Pediàtric de Malaties Rares (IPER), Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Yolanda Camara
- Biomedical Center for Research in Rare Diseases CIBERER-ISCIII, 28029 Madrid, Spain
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Ramon Marti
- Biomedical Center for Research in Rare Diseases CIBERER-ISCIII, 28029 Madrid, Spain
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, 08007 Barcelona, Spain
- Biomedical Center for Research in Neurodegenerative Diseases (CIBERNED), Bellvitge Institute of Biomedical Research (IDI-BELL), Hospitalet de Llobregat, 08007 Barcelona, Spain
- Department of Genetics, Microbiology and Statistics, University of Barcelona, 08007 Barcelona, Spain
| | - Cecilia Jimenez-Mallebrera
- Pathology, Biobank, Pediatric Neurology, Neuromuscular Unit and Clinical Biochemistry Departments, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
- Biomedical Center for Research in Rare Diseases CIBERER-ISCIII, 28029 Madrid, Spain
- Department of Genetics, Microbiology and Statistics, University of Barcelona, 08007 Barcelona, Spain
- Correspondence: (C.J.-M.); (R.A.)
| | - Rafael Artuch
- Pathology, Biobank, Pediatric Neurology, Neuromuscular Unit and Clinical Biochemistry Departments, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
- Biomedical Center for Research in Rare Diseases CIBERER-ISCIII, 28029 Madrid, Spain
- Correspondence: (C.J.-M.); (R.A.)
| |
Collapse
|
5
|
Merve A, Schneider U, Kara E, Papadopoulou C, Stenzel W. Muscle biopsy in myositis: What the rheumatologist needs to know. Best Pract Res Clin Rheumatol 2022; 36:101763. [PMID: 35773136 DOI: 10.1016/j.berh.2022.101763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The appropriate analysis of skeletal muscle tissues is a key element in many diagnostic procedures and can deliver valuable information about the organ that is affected. Although arguably the frequency of muscle biopsy may be declining in certain domains where genetic analysis is now the first line of diagnostic evaluation, it still has an important role in assessment of patients with neuromuscular disorders such as congenital myopathies, muscular dystrophies, metabolic and inflammatory diseases. Here, we have comprehensively discussed the aspects of a modern and fruitful approach to muscle biopsy histopathological studies in rheumatological disorders. We have focussed on the neuromuscular involvement in myositis and its differential diagnoses in both adult and paediatric settings. We have also covered the clinical indications for the biopsy, technical aspects and practical points relevant for the rheumatologists. Finally, we have critically discussed the current and future opportunities that a muscle biopsy may offer and its limitations.
Collapse
Affiliation(s)
- Ashirwad Merve
- Department of Neuropathology, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, University College London Hospitals, London, UK; Department of Histopathology, Great Ormond Street Hospital for Children, London, UK
| | - Udo Schneider
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology, Charitéplatz 1, 10117 Berlin, Germany
| | - Eleanna Kara
- Department of Neuropathology, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, University College London Hospitals, London, UK
| | | | - Werner Stenzel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
6
|
Mohamadian M, Rastegar M, Pasamanesh N, Ghadiri A, Ghandil P, Naseri M. Clinical and Molecular Spectrum of Muscular Dystrophies (MDs) with Intellectual Disability (ID): a Comprehensive Overview. J Mol Neurosci 2022; 72:9-23. [PMID: 34727324 DOI: 10.1007/s12031-021-01933-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022]
Abstract
Muscular dystrophies encompass a wide and heterogeneous subset of hereditary myopathies that manifest by the structural or functional abnormalities in the skeletal muscle. Some pathogenic mutations induce a dysfunction or loss of proteins that are critical for the stability of muscle cells, leading to progressive muscle degradation and weakening. Several studies have well-established cognitive deficits in muscular dystrophies which are mainly due to the disruption of brain-specific expression of affected muscle proteins. We provide a comprehensive overview of the types of muscular dystrophies that are accompanied by intellectual disability by detailed consulting of the main libraries. The current paper focuses on the clinical and molecular evidence about Duchenne, congenital, limb-girdle, and facioscapulohumeral muscular dystrophies as well as myotonic dystrophies. Because these syndromes impose a heavy burden of psychological and financial problems on patients, their families, and the health care community, a thorough examination is necessary to perform timely psychological and medical interventions and thus improve the quality of life.
Collapse
Affiliation(s)
- Malihe Mohamadian
- Cancer Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, 616476515.
| | - Mandana Rastegar
- Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Negin Pasamanesh
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ata Ghadiri
- Department of Immunology, Medical School, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Pegah Ghandil
- Diabetes Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohsen Naseri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
7
|
Sewry CA. Historical aspects of muscle research in the Dubowitz Neuromuscular Centre: the Hammersmith days. Neuromuscul Disord 2021; 31:925-930. [PMID: 34736633 DOI: 10.1016/j.nmd.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Caroline A Sewry
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health 30 Guildford Street, London, WC1N 1EH, United Kingdom; Department of Musculoskeletal Histopathology and the Wolfson Centre for Inherited Neuromuscular Diseases, RJAH Orthopaedic Hospital NHS Trust, Oswestry, SY10 7AG United Kingdom; Department of Cellular Pathology, Salford Royal Hospital NHS Foundation Trust, Northern Care Alliance NHS Group, Stott Lane, Salford M6 8HD United Kingdom.
| |
Collapse
|
8
|
The caveolar-mitochondrial interface: regulation of cellular metabolism in physiology and pathophysiology. Biochem Soc Trans 2020; 48:165-177. [PMID: 32010944 DOI: 10.1042/bst20190388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/15/2022]
Abstract
The plasma membrane is an important cellular organelle that is often overlooked in terms of a primary factor in regulating physiology and pathophysiology. There is emerging evidence to suggest that the plasma membrane serves a greater purpose than a simple barrier or transporter of ions. New paradigms suggest that the membrane serves as a critical bridge to connect extracellular to intracellular communication particularly to regulate energy and metabolism by forming physical and biochemical associations with intracellular organelles. This review will focus on the relationship of a particular membrane microdomain - caveolae - with mitochondria and the particular implication of this to physiology and pathophysiology.
Collapse
|
9
|
Filimonova GN, Migalkin NS. [Morphological characteristics of paravertebral muscles in patients with scoliosis caused by primaryprogressive muscular dystrophies]. Arkh Patol 2019; 81:45-50. [PMID: 31317930 DOI: 10.17116/patol20198103145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To identify the morphological features of paraspinal muscles in patients with spinal pathology caused by progressive muscular dystrophy. SUBJECT AND METHODS The Traumatologic-and-Orthopedic Department of Axial Skeleton Pathology examined patients with scoliotic spinal deformity due to muscular dystrophy: 1) severe Duchenne X-linked muscular dystrophy (n=7); 2) Erb-Roth's autosomal recessive muscular dystrophy (n=2); 3) Landouzy-Dejerine facioscapulohumeral muscular dystrophy (n=2). For histopathological analysis of paraspinal muscles, an excisional biopsy was performed in the region of the apex of the strain angle (the convex side), and the specimens were fixed with 10% neutral formalin. Paraffin sections were stained with hematoxylin and eosin according to the Van Gieson and Masson trichrome staining methods. The preparations were examined using an AxioScope.A1 stereo microscope and an AxioCam digital camera ('Carl Zeiss MicroImaging GmbH', Germany). RESULTS Sluggish moderate paraparesis and grade IV progressive neurogenic thoracolumbar scoliosis were predominant in the clinical picture of the disease. The muscle biopsy specimens were established to have muscle fiber profiles with lost polygonality, increased diameter variability, and centrally positioned or numerous internal nuclei (myophagy) and to be characterized by fiber contractures, fatty degeneration fields, interstitial fibrosis, and signs of axonopathy of intramuscular nerve conductors. The arterial blood vessels were spastic with fibrotic t. media and t. adventicia; the venous bed vessels were dilated, thin-walled, full-blooded, which causes blood corpuscle transudation and numerous hemorrhages. CONCLUSION The identified morphopathological characteristics of muscle tissue in patients with progressive muscular dystrophy are very similar. However, Duchenne muscular dystrophy is the most severe pathology, in which fatty degeneration and sclerotization of muscle tissue and perimysial vessels are most pronounced. To solve this problem, there is a need for the integration of geneticists, biochemists, molecular biologists, pharmacologists, and histologists.
Collapse
Affiliation(s)
- G N Filimonova
- Acad. G.A. Ilizarov Russian Center for Restorative Traumatology and Orthopedics, Ministry of Health of Russia, Kurgan, Russia
| | - N S Migalkin
- Acad. G.A. Ilizarov Russian Center for Restorative Traumatology and Orthopedics, Ministry of Health of Russia, Kurgan, Russia
| |
Collapse
|
10
|
Meznaric M, Fumic K, Leonardis L. Selective screening of late-onset Pompe disease (LOPD) in patients with non-diagnostic muscle biopsies. J Clin Pathol 2019; 72:468-472. [PMID: 30878973 DOI: 10.1136/jclinpath-2018-205446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 02/03/2019] [Accepted: 02/22/2019] [Indexed: 11/04/2022]
Abstract
AIMS As of 2016, there were five patients with Pompe in Slovenia (two infantile, one childhood and two adult onset) with a prevalence of 1:400 000; however, the prevalence of late-onset Pompe disease (LOPD) in some other countries means this ratio could be an underestimate. Since an LOPD muscle biopsy could be unspecific or even normal, the purpose of this study is to assess the prevalence of LOPD in patients with non-diagnostic muscle biopsies. METHODS Six hundred biopsies were recorded at the Neuromuscular Tissue Bank of the University of Ljubljana for the period 2004-2014. All adult patients with non-diagnostic muscle biopsies were invited to the National Slovenian Neuromuscular Centre for dried blood spot testing for LOPD. RESULTS A total of 90 patients (56% of those invited) responded. No patient with LOPD was found. A total of 49 patients (54%) had fixed muscle weakness, 31 (34%) had mild symptoms and no weakness and 10 (11%) had asymptomatic hyperCKemia. Ventilatory insufficiency associated with proximal muscle weakness was found in two patients (2%). No patients exhibited vacuolar myopathy, globular accumulations of glycogen or regions of increased acid phosphatase activity within the sarcoplasm. CONCLUSIONS The study results do not support the hypothesis that LOPD is underestimated in Slovenian patients with non-diagnostic muscle biopsies; this could be consistent with the fact that LOPD is of low prevalence in Slovenia, as is the case in the populations of Finland, French-speaking Belgium, west Sweden and west Denmark.
Collapse
Affiliation(s)
- Marija Meznaric
- Faculty of Medicine, Institute of Anatomy, University of Ljubljana, Ljubljana, Slovenia
| | - Ksenija Fumic
- Department of Laboratory Diagnostics, Division for Laboratory Diagnostics of Inborn Errors of Metabolism, University Hospital Center Zagreb, Zagreb, Croatia.,Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Lea Leonardis
- Division of Neurology, Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
11
|
Lau YS, Xu L, Gao Y, Han R. Automated muscle histopathology analysis using CellProfiler. Skelet Muscle 2018; 8:32. [PMID: 30336774 PMCID: PMC6193305 DOI: 10.1186/s13395-018-0178-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/04/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Histological assessment of skeletal muscle sections is important for the research of muscle physiology and diseases. Quantifiable measures of skeletal muscle often include mean fiber diameter, fiber size distribution, and centrally nucleated muscle fibers. These parameters offer insights into the dynamic adaptation of skeletal muscle cells during repeated cycles of degeneration and regeneration associated with many muscle diseases and injuries. Computational programs designed to obtain these parameters would greatly facilitate such efforts and offer significant advantage over manual image analysis, which is very labor-intensive and often subjective. Here, we describe a customized pipeline termed MuscleAnalyzer for muscle histology analysis based upon CellProfiler, a free, open-source software for measuring and analyzing cell images. RESULTS The MuscleAnalyzer pipeline consists of loading, adjusting, and running a series of image-processing modules provided by CellProfiler. This pipeline was evaluated using wild-type and mdx muscle sections co-stained with laminin (to demarcate the muscle fiber boundaries) and 4',6-diamidino-2-phenylindole (DAPI, to label the nuclei). The immunofluorescence images analyzed using the MuscleAnalyzer pipeline or manually yielded similar results in the number of muscle fibers per image (p = 0.42) and central nucleated fiber (CNF) percentage (p = 0.29) in mdx mice. However, for a total of 67 images, CellProfiler completed the analysis in ~ 10 min on a regular PC while it took an investigator ~ 3 h using the manual approach in order to quantify the number of muscle fibers and CNF. Moreover, the MuscleAnalyzer pipeline also provided the measurement of the cross-sectional area (CSA) and minimal Feret's diameter (MFD) of muscle fibers, and thus fiber size distribution can be plotted. CONCLUSIONS Our data indicate that the MuscleAnalyzer pipeline can efficiently and accurately analyze laminin and DAPI co-stained muscle images in a batch format and provide quantitative measurements for muscle histological properties such as muscle fiber diameters, fiber size distribution, and CNF percentage.
Collapse
Affiliation(s)
- Yeh Siang Lau
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Li Xu
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Yandi Gao
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Renzhi Han
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
12
|
Rossi D, Palmio J, Evilä A, Galli L, Barone V, Caldwell TA, Policke RA, Aldkheil E, Berndsen CE, Wright NT, Malfatti E, Brochier G, Pierantozzi E, Jordanova A, Guergueltcheva V, Romero NB, Hackman P, Eymard B, Udd B, Sorrentino V. A novel FLNC frameshift and an OBSCN variant in a family with distal muscular dystrophy. PLoS One 2017; 12:e0186642. [PMID: 29073160 PMCID: PMC5657976 DOI: 10.1371/journal.pone.0186642] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 10/04/2017] [Indexed: 11/30/2022] Open
Abstract
A novel FLNC c.5161delG (p.Gly1722ValfsTer61) mutation was identified in two members of a French family affected by distal myopathy and in one healthy relative. This FLNC c.5161delG mutation is one nucleotide away from a previously reported FLNC mutation (c.5160delC) that was identified in patients and in asymptomatic carriers of three Bulgarian families with distal muscular dystrophy, indicating a low penetrance of the FLNC frameshift mutations. Given these similarities, we believe that the two FLNC mutations alone can be causative of distal myopathy without full penetrance. Moreover, comparative analysis of the clinical manifestations indicates that patients of the French family show an earlier onset and a complete segregation of the disease. As a possible explanation of this, the two French patients also carry a OBSCN c.13330C>T (p.Arg4444Trp) mutation. The p.Arg4444Trp variant is localized within the OBSCN Ig59 domain that, together with Ig58, binds to the ZIg9/ZIg10 domains of titin at Z-disks. Structural and functional studies indicate that this OBSCN p.Arg4444Trp mutation decreases titin binding by ~15-fold. On this line, we suggest that the combination of the OBSCN p.Arg4444Trp variant and of the FLNC c.5161delG mutation, can cooperatively affect myofibril stability and increase the penetrance of muscular dystrophy in the French family.
Collapse
Affiliation(s)
- Daniela Rossi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena and Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Johanna Palmio
- Neuromuscular Research Center, Tampere University and University Hospital, Tampere, Finland
| | - Anni Evilä
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Lucia Galli
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena and Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Virginia Barone
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena and Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Tracy A. Caldwell
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, United States of America
| | - Rachel A. Policke
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, United States of America
| | - Esraa Aldkheil
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, United States of America
| | - Christopher E. Berndsen
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, United States of America
| | - Nathan T. Wright
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, United States of America
| | - Edoardo Malfatti
- Neuromuscular Morphology Unit, and Reference Center for Neuromuscular Diseases, Myology Institute, Groupe Hospitalier La Pitié-Salpêtrière, Paris, France
| | - Guy Brochier
- Neuromuscular Morphology Unit, and Reference Center for Neuromuscular Diseases, Myology Institute, Groupe Hospitalier La Pitié-Salpêtrière, Paris, France
| | - Enrico Pierantozzi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena and Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Albena Jordanova
- Molecular Neurogenomics Group, University of Antwerp, Antwerp, Belgium
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical University-Sofia, Sofia, Bulgaria
| | | | - Norma Beatriz Romero
- Neuromuscular Morphology Unit, and Reference Center for Neuromuscular Diseases, Myology Institute, Groupe Hospitalier La Pitié-Salpêtrière, Paris, France
| | - Peter Hackman
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Bruno Eymard
- Neuromuscular Morphology Unit, and Reference Center for Neuromuscular Diseases, Myology Institute, Groupe Hospitalier La Pitié-Salpêtrière, Paris, France
| | - Bjarne Udd
- Neuromuscular Research Center, Tampere University and University Hospital, Tampere, Finland
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
- Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| | - Vincenzo Sorrentino
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena and Azienda Ospedaliera Universitaria Senese, Siena, Italy
- * E-mail:
| |
Collapse
|
13
|
Schuelke M, Øien NC, Oldfors A. Myopathology in the times of modern genetics. Neuropathol Appl Neurobiol 2017; 43:44-61. [DOI: 10.1111/nan.12374] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 12/03/2016] [Accepted: 12/23/2016] [Indexed: 12/14/2022]
Affiliation(s)
- M. Schuelke
- Department of Neuropediatrics and NeuroCure Clinical Research Center; Charité-Universitätsmedizin; Berlin Germany
| | - N. C. Øien
- Department of Neuropediatrics and NeuroCure Clinical Research Center; Charité-Universitätsmedizin; Berlin Germany
- Max-Delbrück-Center for Molecular Medicine; Berlin Germany
| | - A. Oldfors
- Department of Pathology and Genetics; Institute of Biomedicine; University of Gothenburg; Gothenburg Sweden
| |
Collapse
|
14
|
Suriyonplengsaeng C, Dejthevaporn C, Khongkhatithum C, Sanpapant S, Tubthong N, Pinpradap K, Srinark N, Waisayarat J. Immunohistochemistry of sarcolemmal membrane-associated proteins in formalin-fixed and paraffin-embedded skeletal muscle tissue: a promising tool for the diagnostic evaluation of common muscular dystrophies. Diagn Pathol 2017; 12:19. [PMID: 28219397 PMCID: PMC5319042 DOI: 10.1186/s13000-017-0610-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/10/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The analysis of fresh frozen muscle specimens is standard following routine muscle biopsy, but this service is not widely available in countries with limited medical facilities, such as Thailand. Nevertheless, immunohistochemistry (IHC) analysis is essential for the diagnosis of patients with a strong clinical suspicion of muscular dystrophy, in the absence of mutations detected by molecular genetics. As the successful labelling of sarcolemmal membrane-associated proteins in formalin-fixed and paraffin-embedded (FFPE) muscle sections using IHC staining has rarely been described, this study aimed to develop a reproducible IHC method for such an analysis. METHODS Thirteen cases were studied from the files of the Department of Pathology, Mahidol University. Diagnoses included three Duchenne muscular dystrophy (DMD), one Becker muscular dystrophy (BMD), one dysferlinopathy, and several not-specified muscular dystrophies. IHC was performed on FFPE sections at different thicknesses (3 μm, 5 μm, and 8 μm) using the heat-mediated antigen retrieval method with citrate/EDTA buffer, followed by an overnight incubation with primary antibodies at room temperature. Antibodies against spectrin, dystrophin (rod domain, C-terminus, and N-terminus), dysferlin, sarcoglycans (α, β, and γ), and β-dystroglycan were used. Frozen sections were tested in parallel for comparative analysis. RESULTS Antibodies labelling spectrin, dystrophin (rod domain and C-terminus), dysferlin, sarcoglycans (α, β, and γ), and β-dystroglycan clearly exhibited sarcolemmal staining in FFPE sections. However, staining of FFPE sections using the antibody directed against the N-terminus of dystrophin was unsuccessful. The absence of labeling for dystrophins and dysferlin in FFPE sections was documented in all three DMD patients and the dysferlinopathy patient. The BMD diagnosis could not be made using IHC in FFPE sections alone because of a lack of staining for the dystrophin N-terminus, indicating a limitation of this method. CONCLUSIONS We developed a reliable and reproducible IHC technique using FFPE muscle. This could become a valuable tool for the diagnosis of some muscular dystrophies, dystrophinopathies, sarcoglycanopathies (LGMD2D, LGMD2E, and LGMD2C), and dysferlinopathy, especially in situations where the analysis of fresh frozen muscle samples is not routinely available.
Collapse
Affiliation(s)
- Chinnawut Suriyonplengsaeng
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400 Thailand
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
| | - Charungthai Dejthevaporn
- Division of Neurology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400 Thailand
| | - Chaiyos Khongkhatithum
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400 Thailand
| | - Suda Sanpapant
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400 Thailand
| | - Nattha Tubthong
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400 Thailand
| | - Koset Pinpradap
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400 Thailand
| | - Nippa Srinark
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400 Thailand
| | - Jariya Waisayarat
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400 Thailand
| |
Collapse
|
15
|
Nishikawa A, Mitsuhashi S, Miyata N, Nishino I. Targeted massively parallel sequencing and histological assessment of skeletal muscles for the molecular diagnosis of inherited muscle disorders. J Med Genet 2016; 54:104-110. [DOI: 10.1136/jmedgenet-2016-104073] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/28/2016] [Accepted: 08/08/2016] [Indexed: 01/04/2023]
|
16
|
Sánchez-Chapul L, Ángel-Muñoz MD, Ruano-Calderón L, Luna-Angulo A, Coral-Vázquez R, Hernández-Hernández Ó, Magaña JJ, León-Hernández SR, Escobar-Cedillo RE, Vargas S. Dysferlin quantification in monocytes for rapid screening for dysferlinopathies. Muscle Nerve 2016; 54:1064-1071. [PMID: 27104310 DOI: 10.1002/mus.25156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2016] [Indexed: 12/15/2022]
Abstract
INTRODUCTION In this study, we determined normal levels of dysferlin expression in CD14+ monocytes by flow cytometry (FC) as a screening tool for dysferlinopathies. METHODS Monocytes from 183 healthy individuals and 29 patients were immunolabeled, run on an FACScalibur flow cytometer, and analyzed by FlowJo software. RESULTS The relative quantity of dysferlin was expressed as mean fluorescence intensity (MFI). Performance of this diagnostic test was assessed by calculating likelihood ratios at different MFI cut-off points, which allowed definition of 4 disease classification groups in a simplified algorithm. CONCLUSION The MFI value may differentiate patients with dysferlinopathy from healthy individuals; it may be a useful marker for screening purposes. Muscle Nerve 54: 1064-1071, 2016.
Collapse
Affiliation(s)
- Laura Sánchez-Chapul
- División de Neurociencias, Instituto Nacional de Rehabilitación (INR), Calz. Mexico-Xochimilco 289, Col. Arenal de Guadalupe, Del. Tlalpan, 14389, Mexico City, Mexico
| | - Miguel Del Ángel-Muñoz
- División de Neurociencias, Instituto Nacional de Rehabilitación (INR), Calz. Mexico-Xochimilco 289, Col. Arenal de Guadalupe, Del. Tlalpan, 14389, Mexico City, Mexico
| | - Luis Ruano-Calderón
- Subdirección de Enseñanza y Capacitación, Investigación y Calidad en Salud, Secretaría de Salud del Estado de Durango (SSED), Durango City, Mexico
| | - Alexandra Luna-Angulo
- División de Neurociencias, Instituto Nacional de Rehabilitación (INR), Calz. Mexico-Xochimilco 289, Col. Arenal de Guadalupe, Del. Tlalpan, 14389, Mexico City, Mexico
| | - Ramón Coral-Vázquez
- Sección de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional (ESM-IPN), Mexico City, Mexico
| | | | - Jonathan J Magaña
- Laboratorio de Medicina Genómica, Servicio de Genética, (INR), Mexico City, Mexico
| | | | | | - Steven Vargas
- Laboratorio de Patología Experimental, Instituto Nacional de Neurología y Neurocirugía (INNN) "Manuel Velasco Suárez", Mexico City, Mexico
| |
Collapse
|
17
|
Holland A, Murphy S, Dowling P, Ohlendieck K. Pathoproteomic profiling of the skeletal muscle matrisome in dystrophinopathy associated myofibrosis. Proteomics 2015; 16:345-66. [PMID: 26256116 DOI: 10.1002/pmic.201500158] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/12/2015] [Accepted: 07/24/2015] [Indexed: 12/14/2022]
Abstract
The gradual accumulation of collagen and associated proteins of the extracellular matrix is a crucial myopathological parameter of many neuromuscular disorders. Progressive tissue damage and fibrosis play a key pathobiochemical role in the dysregulation of contractile functions and often correlates with poor motor outcome in muscular dystrophies. Following a brief introduction into the role of the extracellular matrix in skeletal muscles, we review here the proteomic profiling of myofibrosis and its intrinsic role in X-linked muscular dystrophy. Although Duchenne muscular dystrophy is primarily a disease of the membrane cytoskeleton, one of its most striking histopathological features is a hyperactive connective tissue and tissue scarring. We outline the identification of novel factors involved in the modulation of the extracellular matrix in muscular dystrophy, such as matricellular proteins. The establishment of novel proteomic markers will be helpful in improving the diagnosis, prognosis, and therapy monitoring in relation to fibrotic substitution of contractile tissue. In the future, the prevention of fibrosis will be crucial for providing optimum conditions to apply novel pharmacological treatments, as well as establish cell-based approaches or gene therapeutic interventions. The elimination of secondary abnormalities in the matrisome promises to reduce tissue scarring and the loss of skeletal muscle elasticity.
Collapse
Affiliation(s)
- Ashling Holland
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
18
|
Gupta VA, Beggs AH. Kelch proteins: emerging roles in skeletal muscle development and diseases. Skelet Muscle 2014; 4:11. [PMID: 24959344 PMCID: PMC4067060 DOI: 10.1186/2044-5040-4-11] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/06/2014] [Indexed: 12/11/2022] Open
Abstract
Our understanding of genes that cause skeletal muscle disease has increased tremendously over the past three decades. Advances in approaches to genetics and genomics have aided in the identification of new pathogenic mechanisms in rare genetic disorders and have opened up new avenues for therapeutic interventions by identification of new molecular pathways in muscle disease. Recent studies have identified mutations of several Kelch proteins in skeletal muscle disorders. The Kelch superfamily is one of the largest evolutionary conserved gene families. The 66 known family members all possess a Kelch-repeat containing domain and are implicated in diverse biological functions. In skeletal muscle development, several Kelch family members regulate the processes of proliferation and/or differentiation resulting in normal functioning of mature muscles. Importantly, many Kelch proteins function as substrate-specific adaptors for Cullin E3 ubiquitin ligase (Cul3), a core component of the ubiquitin-proteasome system to regulate the protein turnover. This review discusses the emerging roles of Kelch proteins in skeletal muscle function and disease.
Collapse
Affiliation(s)
- Vandana A Gupta
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115, USA
| | - Alan H Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115, USA
| |
Collapse
|
19
|
Pasqualin LMA, Reed UC, Costa TVMM, Quedas E, Albuquerque MAV, Resende MBD, Rutkowski A, Chadi G, Zanoteli E. Congenital muscular dystrophy with dropped head linked to the LMNA gene in a Brazilian cohort. Pediatr Neurol 2014; 50:400-6. [PMID: 24508248 DOI: 10.1016/j.pediatrneurol.2013.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 11/27/2022]
Abstract
BACKGROUND Congenital muscular dystrophy is a clinically and genetically heterogeneous group of myopathies. Congenital muscular dystrophy related to lamin A/C is rare and characterized by early-onset hypotonia with axial muscle weakness typically presenting with a loss in motor acquisitions within the first year of life and a dropped-head phenotype. METHODS Here we report the clinical and histological characteristics of four unrelated Brazilian patients with dropped-head syndrome and mutations in the LMNA gene. RESULTS All patients had previously described mutations (p.E358K, p.R249W, and p.N39S) and showed pronounced cervical muscle weakness, elevation of serum creatine kinase, dystrophic pattern on muscle biopsy, and respiratory insufficiency requiring ventilatory support. Three of the patients manifested cardiac arrhythmias, and one demonstrated a neuropathic pattern on nerve conduction study. CONCLUSION Although lamin A/C--related congenital muscular dystrophy is a clinically distinct and recognizable phenotype, genotype/phenotype correlation, ability to anticipate onset of respiratory and cardiac involvement, and need for nutritional support remain difficult.
Collapse
Affiliation(s)
- Lívia M A Pasqualin
- Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Umbertina C Reed
- Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Thais V M M Costa
- Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Elisângela Quedas
- Department of Endocrinology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Marco A V Albuquerque
- Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Maria B D Resende
- Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Gerson Chadi
- Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Edmar Zanoteli
- Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
20
|
Mahmood OA, Jiang XM. Limb-girdle muscular dystrophies: where next after six decades from the first proposal (Review). Mol Med Rep 2014; 9:1515-32. [PMID: 24626787 PMCID: PMC4020495 DOI: 10.3892/mmr.2014.2048] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 01/27/2014] [Indexed: 12/13/2022] Open
Abstract
Limb-girdle muscular dystrophies (LGMD) are a heterogeneous group of disorders, which has led to certain investigators disputing its rationality. The mutual feature of LGMD is limb-girdle affection. Magnetic resonance imaging (MRI), perioral skin biopsies, blood-based assays, reverse-protein arrays, proteomic analyses, gene chips and next generation sequencing are the leading diagnostic techniques for LGMD and gene, cell and pharmaceutical treatments are the mainstay therapies for these genetic disorders. Recently, more highlights have been shed on disease biomarkers to follow up disease progression and to monitor therapeutic responsiveness in future trials. In this study, we review LGMD from a variety of aspects, paying specific attention to newly evolving research, with the purpose of bringing this information into the clinical setting to aid the development of novel therapeutic strategies for this hereditary disease. In conclusion, substantial progress in our ability to diagnose and treat LGMD has been made in recent decades, however enhancing our understanding of the detailed pathophysiology of LGMD may enhance our ability to improve disease outcome in subsequent years.
Collapse
Affiliation(s)
- Omar A Mahmood
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xin Mei Jiang
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
21
|
Mamyrova G, Katz JD, Jones RV, Targoff IN, Lachenbruch PA, Jones OY, Miller FW, Rider LG. Clinical and laboratory features distinguishing juvenile polymyositis and muscular dystrophy. Arthritis Care Res (Hoboken) 2014; 65:1969-75. [PMID: 23925923 DOI: 10.1002/acr.22088] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 07/26/2013] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To differentiate juvenile polymyositis (PM) and muscular dystrophy, both of which may present with chronic muscle weakness and inflammation. METHODS We studied 39 patients with probable or definite juvenile PM and 9 patients with muscular dystrophies who were initially misdiagnosed as having juvenile PM. Differences in demographic, clinical, and laboratory results; outcomes; and treatment responses were evaluated by Fisher's exact and rank sum tests. Random forests classification analysis and logistic regression were performed to examine significant differences in multivariable models. RESULTS Clinical features and serum muscle enzyme levels were similar between juvenile PM and dystrophy patients, except 89% of dystrophy patients had muscle atrophy compared with 46% of juvenile PM patients. Dystrophy patients had a longer delay to diagnosis (median 12 versus 4 months) and were less frequently hospitalized than juvenile PM patients (22% versus 74%). No dystrophy patients, but 54% of juvenile PM patients, had a myositis autoantibody. Dystrophy patients more frequently had myopathic features on muscle biopsy, including diffuse variation of myofiber size, fiber hypertrophy, and myofiber fibrosis (44-100% versus 8-53%). Juvenile PM patients more frequently had complex repetitive discharges on electromyography and a complete response to treatment with prednisone or other immunosuppressive agents than dystrophy patients (44% versus 0%). Random forests analysis revealed that the most important features in distinguishing juvenile PM from dystrophies were myositis autoantibodies, clinical muscle atrophy, and myofiber size variation on biopsy. Logistic regression confirmed muscle atrophy, myofiber fibrosis, and hospitalization as significant predictors. CONCLUSION Muscular dystrophy can present similarly to juvenile PM. Selected clinical and laboratory features are helpful in combination in distinguishing these conditions.
Collapse
|
22
|
Pappalardo A, Pitto L, Fiorillo C, Alice Donati M, Bruno C, Santorelli FM. Neuromuscular disorders in zebrafish: state of the art and future perspectives. Neuromolecular Med 2013; 15:405-19. [PMID: 23584918 DOI: 10.1007/s12017-013-8228-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 03/30/2013] [Indexed: 12/22/2022]
Abstract
Neuromuscular disorders are a broad group of inherited conditions affecting the structure and function of the motor system with polymorphic clinical presentation and disease severity. Although individually rare, collectively neuromuscular diseases have an incidence of 1 in 3,000 and represent a significant cause of disability of the motor system. The past decade has witnessed the identification of a large number of human genes causing muscular disorders, yet the underlying pathogenetic mechanisms remain largely unclear, limiting the developing of targeted therapeutic strategies. To overcome this barrier, model systems that replicate the different steps of human disorders are increasingly being developed. Among these, the zebrafish (Danio rerio) has emerged as an excellent organism for studying genetic disorders of the central and peripheral motor systems. In this review, we will encounter most of the available zebrafish models for childhood neuromuscular disorders, providing a brief overview of results and the techniques, mainly transgenesis and chemical biology, used for genetic manipulation. The amount of data collected in the past few years will lead zebrafish to became a common functional tool for assessing rapidly drug efficacy and off-target effects in neuromuscular diseases and, furthermore, to shed light on new etiologies emerging from large-scale massive sequencing studies.
Collapse
Affiliation(s)
- Andrea Pappalardo
- Molecular Medicine, and Neuromuscular Lab, IRCCS Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Salvadori C, Vattemi G, Marini M, Bocchese E, Tomelleri G, Utrilla A, Cantile C. Adult-Onset Muscular Dystrophy in a Cat associated with a Presumptive Alteration in Trafficking of Caveolin-3. J Comp Pathol 2012; 147:253-8. [DOI: 10.1016/j.jcpa.2011.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/19/2011] [Accepted: 12/30/2011] [Indexed: 11/16/2022]
|
24
|
Rivier F, Walther-Louvier U, Chabrier S, Cances C, Espil C, Carneiro M, Echenne B, Meyer P. Myopathies constitutionnelles : place des examens complémentaires. Arch Pediatr 2012. [DOI: 10.1016/s0929-693x(12)71123-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Abstract
Muscle weakness in childhood can be caused by a lesion at any point extending from the motor cortex, brainstem and spinal cord to the anterior horn cell, peripheral nerve, neuromuscular junction and muscle. A comprehensive history and physical examination is essential to aid classification of the neuromuscular disorder and direct gene testing. The more common disorders such as spinal muscular atrophy, Duchenne muscular dystrophy, myotonic dystrophy and facioscapulohumeral dystrophy may be diagnosed on direct gene testing based on the history and clinical examination. The congenital myopathies are classified based on structural abnormalities on muscle biopsy, while protein abnormalities on immunohistochemistry and immunoblotting aid classification of the muscular dystrophies. In this review, we provide an approach to diagnosis of a child with weakness, with a focus on the inherited neuromuscular disorders, and the features on history, examination and investigation that help to distinguish between them.
Collapse
Affiliation(s)
- Manoj P Menezes
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | | |
Collapse
|
26
|
Abstract
Lipomatous myopathy is a degenerative muscle pathology characterized by the substitution of muscle cells with adipose tissue, sporadically reported in cattle, pigs, and rarely in sheep, horses and dogs. This study investigated the pathology of this myopathy in 40 muscle samples collected from regularly slaughtered Piedmontese cattle living in Piedmont region (Italy). None of the animals showed clinical signs of muscular disease. Muscle specimens were submitted to histological and enzymatic investigations. Gross pathology revealed a different grade of infiltration of adipose tissue, involving multiple or single muscles. The most affected regions were the ventral abdomen and the shoulders, especially the cutaneous muscles and the muscles of the thoracic group. Morphological staining revealed an infiltration of adipose tissue varying in distribution and severity, changes in muscle fibre size and increased number of fibres with centrally located nuclei, suggesting muscle degeneration-regeneration. Necrosis and non-suppurative inflammatory cells were also seen. Furthermore, proliferation of connective tissue and non-specific myopathic changes were present. Chemical and physical characteristics of the affected tissue were also evaluated. The authors discuss about the aetiopathogenesis and classification of this muscle disorder whose histological lesions were similar to those reported in human dystrophies.
Collapse
|
27
|
Gómez-Díaz B, Rosas-Vargas H, Roque-Ramírez B, Meza-Espinoza P, Ruano-Calderón LA, Fernández-Valverde F, Escalante-Bautista D, Escobar-Cedillo RE, Sánchez-Chapul L, Vargas-Cañas S, López-Hernández LB, Bahena-Martínez E, Luna-Angulo AB, Canto P, Coral-Vázquez RM. Immunodetection analysis of muscular dystrophies in Mexico. Muscle Nerve 2012; 45:338-45. [DOI: 10.1002/mus.22314] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Current world literature. Curr Opin Rheumatol 2011; 23:620-5. [PMID: 21960037 DOI: 10.1097/bor.0b013e32834ccef6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Barresi R. From proteins to genes: immunoanalysis in the diagnosis of muscular dystrophies. Skelet Muscle 2011; 1:24. [PMID: 21798100 PMCID: PMC3156647 DOI: 10.1186/2044-5040-1-24] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 06/24/2011] [Indexed: 12/23/2022] Open
Abstract
Muscular dystrophies are a large heterogeneous group of inherited diseases that cause progressive muscle weakness and permanent muscle damage. Very few muscular dystrophies show sufficient specific clinical features to allow a definite diagnosis. Because of the currently limited capacity to screen for numerous genes simultaneously, muscle biopsy is a time and cost-effective test for many of these disorders. Protein analysis interpreted in correlation with the clinical phenotype is a useful way of directing genetic testing in many types of muscular dystrophies. Immunohistochemistry and western blot are complementary techniques used to gather quantitative and qualitative information on the expression of proteins involved in this group of diseases. Immunoanalysis has a major diagnostic application mostly in recessive conditions where the absence of labelling for a particular protein is likely to indicate a defect in that gene. However, abnormalities in protein expression can vary from absence to very subtle reduction. It is good practice to test muscle biopsies with antibodies for several proteins simultaneously and to interpret the results in context. Indeed, there is a degree of direct or functional association between many of these proteins that is reflected by the presence of specific secondary abnormalities that are of value, especially when the diagnosis is not straightforward.
Collapse
Affiliation(s)
- Rita Barresi
- NCG Diagnostic & Advisory Service for Rare Neuromuscular Diseases, Muscle Immunoanalysis Unit, Dental Hospital, Richardson Road, Newcastle upon Tyne, UK.
| |
Collapse
|
30
|
Gnocchi VF, Scharner J, Huang Z, Brady K, Lee JS, White RB, Morgan JE, Sun YB, Ellis JA, Zammit PS. Uncoordinated transcription and compromised muscle function in the lmna-null mouse model of Emery- Emery-Dreyfuss muscular dystrophy. PLoS One 2011; 6:e16651. [PMID: 21364987 PMCID: PMC3043058 DOI: 10.1371/journal.pone.0016651] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 12/23/2010] [Indexed: 12/15/2022] Open
Abstract
LMNA encodes both lamin A and C: major components of the nuclear lamina. Mutations in LMNA underlie a range of tissue-specific degenerative diseases, including those that affect skeletal muscle, such as autosomal-Emery-Dreifuss muscular dystrophy (A-EDMD) and limb girdle muscular dystrophy 1B. Here, we examine the morphology and transcriptional activity of myonuclei, the structure of the myotendinous junction and the muscle contraction dynamics in the lmna-null mouse model of A-EDMD. We found that there were fewer myonuclei in lmna-null mice, of which ∼50% had morphological abnormalities. Assaying transcriptional activity by examining acetylated histone H3 and PABPN1 levels indicated that there was a lack of coordinated transcription between myonuclei lacking lamin A/C. Myonuclei with abnormal morphology and transcriptional activity were distributed along the length of the myofibre, but accumulated at the myotendinous junction. Indeed, in addition to the presence of abnormal myonuclei, the structure of the myotendinous junction was perturbed, with disorganised sarcomeres and reduced interdigitation with the tendon, together with lipid and collagen deposition. Functionally, muscle contraction became severely affected within weeks of birth, with specific force generation dropping as low as ∼65% and ∼27% of control values in the extensor digitorum longus and soleus muscles respectively. These observations illustrate the importance of lamin A/C for correct myonuclear function, which likely acts synergistically with myotendinous junction disorganisation in the development of A-EDMD, and the consequential reduction in force generation and muscle wasting.
Collapse
MESH Headings
- Animals
- Cell Nucleus/metabolism
- Cell Nucleus/pathology
- Cell Nucleus/physiology
- Chromatin Assembly and Disassembly/genetics
- Chromatin Assembly and Disassembly/physiology
- Disease Models, Animal
- Growth and Development/genetics
- Intercellular Junctions/metabolism
- Intercellular Junctions/pathology
- Intercellular Junctions/ultrastructure
- Lamin Type A/genetics
- Lamin Type A/metabolism
- Lamin Type A/physiology
- Mice
- Mice, Knockout
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Skeletal/physiology
- Muscle Fibers, Skeletal/ultrastructure
- Muscle Weakness/genetics
- Muscle Weakness/pathology
- Muscles/metabolism
- Muscles/pathology
- Muscles/physiopathology
- Muscular Dystrophy, Emery-Dreifuss/genetics
- Muscular Dystrophy, Emery-Dreifuss/metabolism
- Muscular Dystrophy, Emery-Dreifuss/pathology
- Muscular Dystrophy, Emery-Dreifuss/physiopathology
- RNA Processing, Post-Transcriptional/genetics
- RNA Processing, Post-Transcriptional/physiology
- Transcription, Genetic/physiology
- Weight Loss/genetics
Collapse
Affiliation(s)
- Viola F. Gnocchi
- The Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, United Kingdom
| | - Juergen Scharner
- The Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, United Kingdom
| | - Zhe Huang
- The Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, United Kingdom
| | - Ken Brady
- Centre for Ultrastructural Imaging, King's College London, New Hunt's House, Guy's Campus, London, United Kingdom
| | - Jaclyn S. Lee
- The Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, United Kingdom
| | - Robert B. White
- The Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, United Kingdom
| | - Jennifer E. Morgan
- The Dubowitz Neuromuscular Centre, Institute of Child Health, University College, London, United Kingdom
| | - Yin-Biao Sun
- The Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, United Kingdom
| | - Juliet A. Ellis
- The Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, United Kingdom
| | - Peter S. Zammit
- The Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
Abstract
During the last 10 years it has become apparent that a significant subset of inherited muscular dystrophy is caused by errors in the glycosylation of α-dystroglycan. Many of these dystrophies are also associated with abnormalities of the central nervous system. Dystroglycan has to be fully glycosylated in order bind to its ligands. To date, six genes have been shown to be essential for functional dystroglycan glycosylation and most, if not all, of these genes act in the formation of O-mannosyl glycans. Genetic heterogeneity indicates that other genes are involved in this pathway. Identification of these additional genes would increase our understanding of this specific and essential glycosylation pathway.
Collapse
|
32
|
Sun R, Zhu Y, Feng J, Tian Z, Kuang W, Liu Y, Zhang H, Li S. Polymorphisms of three new microsatellite sites of the dystrophin gene. GENETICS AND MOLECULAR RESEARCH 2011; 10:744-51. [DOI: 10.4238/vol10-2gmr962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Laminopathies: the molecular background of the disease and the prospects for its treatment. Cell Mol Biol Lett 2010; 16:114-48. [PMID: 21225470 PMCID: PMC6275778 DOI: 10.2478/s11658-010-0038-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 12/13/2010] [Indexed: 02/06/2023] Open
Abstract
Laminopathies are rare human degenerative disorders with a wide spectrum of clinical phenotypes, associated with defects in the main protein components of the nuclear envelope, mostly in the lamins. They include systemic disorders and tissue-restricted diseases. Scientists have been trying to explain the pathogenesis of laminopathies and find an efficient method for treatment for many years. In this review, we discuss the current state of knowledge about laminopathies, the molecular mechanisms behind the development of particular phenotypes, and the prospects for stem cell and/or gene therapy treatments.
Collapse
|