1
|
Heneka MT, van der Flier WM, Jessen F, Hoozemanns J, Thal DR, Boche D, Brosseron F, Teunissen C, Zetterberg H, Jacobs AH, Edison P, Ramirez A, Cruchaga C, Lambert JC, Laza AR, Sanchez-Mut JV, Fischer A, Castro-Gomez S, Stein TD, Kleineidam L, Wagner M, Neher JJ, Cunningham C, Singhrao SK, Prinz M, Glass CK, Schlachetzki JCM, Butovsky O, Kleemann K, De Jaeger PL, Scheiblich H, Brown GC, Landreth G, Moutinho M, Grutzendler J, Gomez-Nicola D, McManus RM, Andreasson K, Ising C, Karabag D, Baker DJ, Liddelow SA, Verkhratsky A, Tansey M, Monsonego A, Aigner L, Dorothée G, Nave KA, Simons M, Constantin G, Rosenzweig N, Pascual A, Petzold GC, Kipnis J, Venegas C, Colonna M, Walter J, Tenner AJ, O'Banion MK, Steinert JR, Feinstein DL, Sastre M, Bhaskar K, Hong S, Schafer DP, Golde T, Ransohoff RM, Morgan D, Breitner J, Mancuso R, Riechers SP. Neuroinflammation in Alzheimer disease. Nat Rev Immunol 2025; 25:321-352. [PMID: 39653749 DOI: 10.1038/s41577-024-01104-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 02/20/2025]
Abstract
Increasing evidence points to a pivotal role of immune processes in the pathogenesis of Alzheimer disease, which is the most prevalent neurodegenerative and dementia-causing disease of our time. Multiple lines of information provided by experimental, epidemiological, neuropathological and genetic studies suggest a pathological role for innate and adaptive immune activation in this disease. Here, we review the cell types and pathological mechanisms involved in disease development as well as the influence of genetics and lifestyle factors. Given the decade-long preclinical stage of Alzheimer disease, these mechanisms and their interactions are driving forces behind the spread and progression of the disease. The identification of treatment opportunities will require a precise understanding of the cells and mechanisms involved as well as a clear definition of their temporal and topographical nature. We will also discuss new therapeutic strategies for targeting neuroinflammation, which are now entering the clinic and showing promise for patients.
Collapse
Affiliation(s)
- Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg.
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Jeroen Hoozemanns
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Dietmar Rudolf Thal
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Charlotte Teunissen
- Department of Laboratory Medicine, VUMC Amsterdam, Amsterdam, The Netherlands
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Andreas H Jacobs
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Paul Edison
- Division of Neurology, Department of Brain Sciences, Imperial College London, London, UK
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carlos Cruchaga
- Department of Psychiatry, Washington School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jean-Charles Lambert
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Agustin Ruiz Laza
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Jose Vicente Sanchez-Mut
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Alicante, Spain
| | - Andre Fischer
- Clinic for Psychiatry and Psychotherapy, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
- Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Centre for Neurodegenerative Disease (DZNE), Göttingen, Germany
| | - Sergio Castro-Gomez
- Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Physiology II, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Michael Wagner
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Jonas J Neher
- Biomedical Center Munich, Biochemistry, Medical Faculty, LMU Munich, Munich, Germany
- Neuroimmunology and Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| | - Sim K Singhrao
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Oleg Butovsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kilian Kleemann
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Philip L De Jaeger
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Hannah Scheiblich
- Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Guy C Brown
- Deparment of Biochemistry, University of Cambridge, Cambridge, UK
| | - Gary Landreth
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Miguel Moutinho
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Jaime Grutzendler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Róisín M McManus
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Katrin Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Ising
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Karabag
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Darren J Baker
- Department of Paediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Ophthalmology, NYU Grossman School of Medicine, New York City, NY, USA
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Malu Tansey
- College of Medicine, University of Florida, Gainsville, FL, USA
| | - Alon Monsonego
- Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Guillaume Dorothée
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Hôpital Saint-Antoine, Paris, France
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Gabriela Constantin
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Neta Rosenzweig
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Vascular Neurology, University of Bonn, Bonn, Germany
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO, USA
| | - Carmen Venegas
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Instituto Biosanitario de Granada (ibs.Granada), Granada, Spain
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jochen Walter
- Center of Neurology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Andrea J Tenner
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA
- Department of Neurobiology and Behaviour, University of California Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - M Kerry O'Banion
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Joern R Steinert
- Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Douglas L Feinstein
- Department of NeuroAnesthesia, University of Illinois at Chicago, Chicago, IL, USA
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Kiran Bhaskar
- Department of Molecular Genetics & Microbiology and Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Soyon Hong
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Todd Golde
- Department of Pharmacology and Chemical Biology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
- Department of Neurology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | | | - David Morgan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - John Breitner
- Department of Psychiatry, McGill University Faculty of Medicine, Montreal, Québec, Canada
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sean-Patrick Riechers
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
| |
Collapse
|
2
|
Reijner N, Frigerio I, Bouwman MMA, Boon BDC, Guizard N, Jubault T, Hoozemans JJM, Rozemuller AJM, Bouwman FH, Barkhof F, Gordon E, van de Berg WDJ, Jonkman LE. Clinical phenotypes of Alzheimer's disease: investigating atrophy patterns and their pathological correlates. Alzheimers Res Ther 2025; 17:93. [PMID: 40281562 PMCID: PMC12032798 DOI: 10.1186/s13195-025-01727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/27/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND In Alzheimer's disease (AD), MRI atrophy patterns can distinguish between amnestic (typical) and non-amnestic (atypical) clinical phenotypes and are increasingly used for diagnosis and outcome measures in clinical trials. However, understanding how protein accumulation and other key features of neurodegeneration influence these imaging measurements, are lacking. The current study aimed to assess regional MRI patterns of cortical atrophy across clinical AD phenotypes, and their association with amyloid-beta (Aβ), phosphorylated tau (pTau), neuro-axonal degeneration and microvascular deterioration. METHODS Post-mortem in-situ 3DT1 3 T-MRI data was obtained from 33 AD (17 typical, 16 atypical) and 16 control brain donors. Additionally, ante-mortem 3DT1 3 T-MRI scans of brain donors were collected if available. Regional volumes were obtained from MRI scans using an atlas based parcellation software. Eight cortical brain regions were selected from formalin-fixed right hemispheres of brain donors and then immunostained for Aβ, pTau, neurofilament light, and collagen IV. Group comparisons and volume-pathology associations were analyzed using linear mixed models corrected for age, sex, post-mortem delay, and intracranial volume. RESULTS Compared to controls, both typical and atypical AD showed volume loss in the temporo-occipital cortex, while typical AD showed additional volume loss in the parietal cortex. Posterior cingulate volume was lower in typical AD compared to atypical AD (- 6.9%, p = 0.043). In AD, a global positive association between MRI cortical volume and Aβ load (βs = 0.21, p = 0.010), and a global negative association with NfL load (βs = - 0.18, p = 0.018) were observed. Regionally, higher superior parietal gyrus volume was associated with higher Aβ load in typical AD (βs = 0.47, p = 0.004), lower middle frontal gyrus volume associated with higher NfL load in atypical AD (βs = - 0.50, p < 0.001), and lower hippocampal volume associated with higher COLIV load in typical AD (βs = - 1.69, p < 0.001). Comparing post-mortem with ante-mortem scans showed minimal volume differences at scan-intervals within 2 years, highlighting the translational aspect of this study. CONCLUSION For both clinical phenotypes, cortical volume is affected by Aβ and neuro-axonal damage, but in opposing directions. Differences in volume-pathology relationships between clinical phenotypes are region-specific. The findings of this study could improve the interpretation of MRI datasets in heterogenous AD cohorts, both in research and clinical settings.
Collapse
Affiliation(s)
- Niels Reijner
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam, 1081 HZ, Netherlands.
- Programs of Neurodegeneration, Amsterdam Neuroscience, Boelelaan 1117, Amsterdam, Netherlands.
- Programs of Brain Imaging, Amsterdam Neuroscience, Boelelaan 1117, Amsterdam, Netherlands.
| | - I Frigerio
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam, 1081 HZ, Netherlands
- Programs of Neurodegeneration, Amsterdam Neuroscience, Boelelaan 1117, Amsterdam, Netherlands
- Programs of Brain Imaging, Amsterdam Neuroscience, Boelelaan 1117, Amsterdam, Netherlands
| | - M M A Bouwman
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam, 1081 HZ, Netherlands
- Programs of Neurodegeneration, Amsterdam Neuroscience, Boelelaan 1117, Amsterdam, Netherlands
- Programs of Brain Imaging, Amsterdam Neuroscience, Boelelaan 1117, Amsterdam, Netherlands
| | - B D C Boon
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, USA
| | - N Guizard
- Qynapse, 2 - 10 Rue d'Oradour-Sur-Glane, Paris, 75015, France
| | - T Jubault
- Qynapse, 2 - 10 Rue d'Oradour-Sur-Glane, Paris, 75015, France
| | - J J M Hoozemans
- Programs of Neurodegeneration, Amsterdam Neuroscience, Boelelaan 1117, Amsterdam, Netherlands
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - A J M Rozemuller
- Programs of Neurodegeneration, Amsterdam Neuroscience, Boelelaan 1117, Amsterdam, Netherlands
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - F H Bouwman
- Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - F Barkhof
- Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Institutes of Neurology and Healthcare Engineering, University College London, Gower Street, London, UK
| | - E Gordon
- Qynapse, 2 - 10 Rue d'Oradour-Sur-Glane, Paris, 75015, France
| | - W D J van de Berg
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam, 1081 HZ, Netherlands
- Programs of Neurodegeneration, Amsterdam Neuroscience, Boelelaan 1117, Amsterdam, Netherlands
| | - L E Jonkman
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam, 1081 HZ, Netherlands
- Programs of Neurodegeneration, Amsterdam Neuroscience, Boelelaan 1117, Amsterdam, Netherlands
- Programs of Brain Imaging, Amsterdam Neuroscience, Boelelaan 1117, Amsterdam, Netherlands
| |
Collapse
|
3
|
Koutarapu S, Ge J, Dulewicz M, Srikrishna M, Szadziewska A, Wood J, Blennow K, Zetterberg H, Michno W, Ryan NS, Lashley T, Savas JN, Schöll M, Hanrieder J. Chemical imaging delineates Aβ plaque polymorphism across the Alzheimer's disease spectrum. Nat Commun 2025; 16:3889. [PMID: 40274785 PMCID: PMC12022071 DOI: 10.1038/s41467-025-59085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
Amyloid-beta (Aβ) plaque formation in Alzheimer's disease (AD) pathology is morphologically diverse. Understanding the association of polymorphic Aβ pathology with AD pathogenesis and progression is critical in light of emerging Aβ-targeting therapies. In this work, functional amyloid microscopy enhanced by deep learning was integrated with mass spectrometry imaging to delineate polymorphic plaques and to identify their associated Aβ make-up. In both sporadic AD (n = 12) and familial AD (n = 6), dense-core plaques showed higher levels of Aβ1-40 and N-terminal pyroglutamated Aβx-42 compared to diffuse plaques and plaques in non-demented, amyloid positive individuals (n = 5). Notably, a distinct dense-core plaque subtype, coarse-grained plaque, was observed in AD but not in non-demented, amyloid positive patients. Coarse-grained plaques were more abundant in early onset AD, showed increased neuritic dystrophy and higher levels of Aβ1-40 and Aβ3pE-40, an Aβ-pattern similar to cerebral amyloid angiopathy. The correlative chemical imaging paradigm presented here allowed to link structural and biochemical characteristics of Aβ plaque polymorphism across various AD etiologies.
Collapse
Affiliation(s)
- Srinivas Koutarapu
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Junyue Ge
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maciej Dulewicz
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Meera Srikrishna
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Alicja Szadziewska
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jack Wood
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital Mölndal, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, PR China
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital Mölndal, Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Hong Kong Centre for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Wojciech Michno
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Natalie S Ryan
- UK Dementia Research Institute, University College London, London, UK
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Jeffrey N Savas
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Michael Schöll
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital Mölndal, Mölndal, Sweden.
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK.
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK.
- Department of Neuropsychiatry, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
4
|
Lagarde J, Maiti P, Schonhaut DR, Blazhenets G, Zhang J, Eloyan A, Thangarajah M, Taurone A, Allen IE, Soleimani-Meigooni DN, Zeltzer E, Windon C, Abu Raya M, Vrillon A, Smith K, Shankar R, Amuiri A, Rocha S, Hammers DB, Dage JL, Nudelman KN, Kirby K, Aisen P, Koeppe R, Landau SM, Carrillo MC, Touroutoglou A, Brickhouse M, Vemuri P, Beckett L, Raman R, Atri A, Day GS, Duara R, Graff-Radford NR, Honig LS, Jones DT, Masdeu JC, Mendez MF, Womack K, Musiek E, Onyike CU, Riddle M, Grant IM, Rogalski E, Johnson ECB, Salloway S, Sha S, Turner RS, Wingo TS, Wolk DA, Dickerson BC, Apostolova LG, La Joie R, Rabinovici GD. Amyloid PET in Sporadic Early- Versus Late-Onset Alzheimer's Disease: Comparison of the LEADS and ADNI Cohorts. Ann Neurol 2025. [PMID: 40091774 DOI: 10.1002/ana.27233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/02/2025] [Accepted: 02/20/2025] [Indexed: 03/19/2025]
Abstract
OBJECTIVE Early-onset Alzheimer's disease (EOAD) and late-onset Alzheimer's disease (LOAD) differ in many respects. Here, we address the issue of possible differences in fibrillar amyloid pathology as measured by positron emission tomography (PET), which remains unresolved due to the lack of large-scale comparative studies. METHODS Three hundred ninety-nine cognitively impaired participants younger than 65 years of age from the multicenter Longitudinal Early-onset Alzheimer's Disease Study (LEADS) and 450 cognitively impaired participants older than 65 years from the Alzheimer's Disease Neuroimaging Initiative (ADNI) underwent clinical assessment, brain magnetic resonance imaging (MRI), and amyloid PET and were included in this study. We compared amyloid PET outcomes (positivity rate based on visual read and quantified tracer uptake expressed as Centiloids [CLs]) between the 2 cohorts and studied their association with age, sex, APOE genotype, and cognition. RESULTS The amyloid positivity rate was higher in LEADS (78%, 95% confidence interval [CI] = 74-82) than in ADNI (71%, 95% CI = 67-75, p = 0.02). Lower Mini-Mental State Examination (MMSE) and APOE4 genotype increased the odds of amyloid positivity in both cohorts. Visually positive scans had higher CLs in LEADS (EOAD, mean = 95.3 ± 26.1) than in ADNI (LOAD, mean = 80.9 ± 36.8, p < 0.0001), predominantly in parietal cortex/precuneus, superior temporal, and frontal cortices. In amyloid-positive patients, (1) CLs were higher in female patients in both cohorts; (2) APOE4 carriership was associated with lower CLs in EOAD, which was not observed in LOAD; and (3) correlations between CLs and MMSE scores were significantly stronger in EOAD than in LOAD. INTERPRETATION Differences in the burden of amyloid pathology may contribute to differences in clinical and anatomic patterns in sporadic EOAD and LOAD, and have implications for optimizing therapeutic strategies in each group. ANN NEUROL 2025.
Collapse
Affiliation(s)
- Julien Lagarde
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Piyush Maiti
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Daniel R Schonhaut
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Ganna Blazhenets
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Jiaxiuxiu Zhang
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Ani Eloyan
- Department of Biostatistics, Center for Statistical Sciences, Brown University, Providence, RI
| | - Maryanne Thangarajah
- Department of Biostatistics, Center for Statistical Sciences, Brown University, Providence, RI
| | - Alexander Taurone
- Department of Biostatistics, Center for Statistical Sciences, Brown University, Providence, RI
| | - Isabel Elaine Allen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| | | | - Ehud Zeltzer
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Charles Windon
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Maison Abu Raya
- Department of Neurology, University of California, San Francisco, San Francisco, CA
- Global Brain Health Institute, The university of California, San Francisco, California, CA
| | - Agathe Vrillon
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Karen Smith
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Ranjani Shankar
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Alinda Amuiri
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Salma Rocha
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Dustin B Hammers
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN
| | - Jeffrey L Dage
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN
| | - Kelly N Nudelman
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Kala Kirby
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN
| | - Paul Aisen
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, CA
| | - Robert Koeppe
- Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, MI
| | - Susan M Landau
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA
| | - Maria C Carrillo
- Medical & Scientific Relations Division, Alzheimer's Association, Chicago, IL
| | - Alexandra Touroutoglou
- Frontotemporal Disorders Unit and Massachusetts Alzheimer's Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Michael Brickhouse
- Frontotemporal Disorders Unit and Massachusetts Alzheimer's Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | | | - Laurel Beckett
- Department of Public Health Sciences, University of California, Davis, Davis, CA
| | - Rema Raman
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, CA
| | - Alireza Atri
- Banner Sun Health Research Institute, Sun City, AZ
| | - Gregory S Day
- Department of Neurology, Mayo Clinic, Jacksonville, FL
| | - Ranjan Duara
- Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami, FL
| | | | - Lawrence S Honig
- Taub Institute and Department of Neurology, Columbia University Irving Medical Center, New York, NY
| | | | - Joseph C Masdeu
- Nantz National Alzheimer Center, Houston Methodist and Weill Cornell Medicine, Houston, TX
| | - Mario F Mendez
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA
| | - Kyle Womack
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Erik Musiek
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Chiadi U Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Meghan Riddle
- Department of Neurology, Alpert Medical School, Brown University, Providence, RI
| | - Ian M Grant
- Department of Psychiatry and Behavioral Sciences, Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Emily Rogalski
- Healthy Aging & Alzheimer's Research Care Center, Department of Neurology, University of Chicago, Chicago, IL
| | - Erik C B Johnson
- Department of Neurology, Emory University School of Medicine, Atlanta, GA
| | - Stephen Salloway
- Department of Neurology, Alpert Medical School, Brown University, Providence, RI
| | - Sharon Sha
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA
| | - R Scott Turner
- Department of Neurology, Georgetown University, Washington, DC
| | - Thomas S Wingo
- Department of Neurology, Emory University School of Medicine, Atlanta, GA
- Department of Neurology, UC Davis Alzheimer's Disease Research Center, University of California, Davis, Davis, CA
| | - David A Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit and Massachusetts Alzheimer's Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Liana G Apostolova
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine Indianapolis, Indianapolis, IN
| | - Renaud La Joie
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Gil D Rabinovici
- Department of Neurology, University of California, San Francisco, San Francisco, CA
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
5
|
Thal DR, Poesen K, Vandenberghe R, De Meyer S. Alzheimer's disease neuropathology and its estimation with fluid and imaging biomarkers. Mol Neurodegener 2025; 20:33. [PMID: 40087672 PMCID: PMC11907863 DOI: 10.1186/s13024-025-00819-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
Alzheimer's disease (AD) is neuropathologically characterized by the extracellular deposition of the amyloid-β peptide (Aβ) and the intraneuronal accumulation of abnormal phosphorylated tau (τ)-protein (p-τ). Most frequently, these hallmark lesions are accompanied by other co-pathologies in the brain that may contribute to cognitive impairment, such as vascular lesions, intraneuronal accumulation of phosphorylated transactive-response DNA-binding protein 43 (TDP-43), and/or α-synuclein (αSyn) aggregates. To estimate the extent of these AD and co-pathologies in patients, several biomarkers have been developed. Specific tracers target and visualize Aβ plaques, p-τ and αSyn pathology or inflammation by positron emission tomography. In addition to these imaging biomarkers, cerebrospinal fluid, and blood-based biomarker assays reflecting AD-specific or non-specific processes are either already in clinical use or in development. In this review, we will introduce the pathological lesions of the AD brain, the related biomarkers, and discuss to what extent the respective biomarkers estimate the pathology determined at post-mortem histopathological analysis. It became evident that initial stages of Aβ plaque and p-τ pathology are not detected with the currently available biomarkers. Interestingly, p-τ pathology precedes Aβ deposition, especially in the beginning of the disease when biomarkers are unable to detect it. Later, Aβ takes the lead and accelerates p-τ pathology, fitting well with the known evolution of biomarker measures over time. Some co-pathologies still lack clinically established biomarkers today, such as TDP-43 pathology or cortical microinfarcts. In summary, specific biomarkers for AD-related pathologies allow accurate clinical diagnosis of AD based on pathobiological parameters. Although current biomarkers are excellent measures for the respective pathologies, they fail to detect initial stages of the disease for which post-mortem analysis of the brain is still required. Accordingly, neuropathological studies remain essential to understand disease development especially in early stages. Moreover, there is an urgent need for biomarkers reflecting co-pathologies, such as limbic predominant, age-related TDP-43 encephalopathy-related pathology, which is known to modify the disease by interacting with p-τ. Novel biomarker approaches such as extracellular vesicle-based assays and cryptic RNA/peptides may help to better detect these co-pathologies in the future.
Collapse
Affiliation(s)
- Dietmar Rudolf Thal
- Department of Imaging and Pathology, Laboratory for Neuropathology, Leuven Brain Institute, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium.
| | - Koen Poesen
- Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Rik Vandenberghe
- Department of Neurosciences, Laboratory for Cognitive Neurology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Steffi De Meyer
- Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neurosciences, Laboratory for Cognitive Neurology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Müller D, Röhr D, Boon BD, Wulf M, Arto T, Hoozemans JJ, Marcus K, Rozemuller AJ, Großerueschkamp F, Mosig A, Gerwert K. Label-free Aβ plaque detection in Alzheimer's disease brain tissue using infrared microscopy and neural networks. Heliyon 2025; 11:e42111. [PMID: 40083995 PMCID: PMC11903818 DOI: 10.1016/j.heliyon.2025.e42111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/17/2024] [Accepted: 01/17/2025] [Indexed: 03/16/2025] Open
Abstract
We present a novel method for the label-free detection of amyloid-beta (Aβ) plaques, the key hallmark of Alzheimer's disease, in human brain tissue sections. Conventionally, immunohistochemistry (IHC) is employed for the characterization of Aβ plaques, hindering subsequent analysis. Here, a semi-supervised convolutional neural network (CNN) is trained to detect Aβ plaques in quantum cascade laser infrared (QCL-IR) microscopy images. Laser microdissection (LMD) is then used to precisely extract plaques from snap-frozen, unstained tissue sections. Mass spectrometry-based proteomics reveals a loss of soluble proteins in IHC stained samples. Our method prevents this loss and provides a novel tool that expands the scope of molecular analysis methods to chemically native plaques. Insight into soluble plaque components will complement our understanding of plaques and their role in Alzheimer's disease.
Collapse
Affiliation(s)
- Dajana Müller
- Ruhr University Bochum, Center for Protein Diagnostics (PRODI), Bioinformatics Division, Germany
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Department of Bioinformatics, Germany
| | - Dominik Röhr
- Ruhr University Bochum, Center for Protein Diagnostics (PRODI), Biospectroscopy Division, Germany
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Department of Biophysics, Germany
| | - Baayla D.C. Boon
- Amsterdam UMC, Amsterdam Neuroscience, Department of Pathology, the Netherlands
- Mayo Clinic, Department of Neuroscience, Jacksonville, FL, USA
| | - Maximilian Wulf
- Ruhr University Bochum, Center for Protein Diagnostics (PRODI), Medical Proteome Analysis, Germany
- Ruhr University Bochum, Faculty of Medicine, Medizinisches Proteom-Center, Germany
| | - Thomas Arto
- Ruhr University Bochum, Center for Protein Diagnostics (PRODI), Biospectroscopy Division, Germany
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Department of Biophysics, Germany
| | | | - Katrin Marcus
- Ruhr University Bochum, Center for Protein Diagnostics (PRODI), Medical Proteome Analysis, Germany
- Ruhr University Bochum, Faculty of Medicine, Medizinisches Proteom-Center, Germany
| | | | - Frederik Großerueschkamp
- Ruhr University Bochum, Center for Protein Diagnostics (PRODI), Biospectroscopy Division, Germany
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Department of Biophysics, Germany
| | - Axel Mosig
- Ruhr University Bochum, Center for Protein Diagnostics (PRODI), Bioinformatics Division, Germany
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Department of Bioinformatics, Germany
| | - Klaus Gerwert
- Ruhr University Bochum, Center for Protein Diagnostics (PRODI), Biospectroscopy Division, Germany
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Department of Biophysics, Germany
| |
Collapse
|
7
|
Gopal Ramaswamy V, Ahirwar M, Ryan G, Dugger BN, Al Dalahmah O, Signaevsky M, Purohit DP, Haroutunian V, Finkbeiner S. Generalizable Prediction of Alzheimer Disease Pathologies with a Scalable Annotation Tool and an High-Accuracy Model. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.03.25321603. [PMID: 39974039 PMCID: PMC11838692 DOI: 10.1101/2025.02.03.25321603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Characterizing the cardinal neuropathologies in Alzheimer disease (AD) can be laborious, time consuming, and susceptible to intra- and inter-observer variability. The lack of high throughput unbiased approaches to reliably assess neuropathology hampers efforts to use pathology as a means to link clinical features of AD to molecular pathogenesis in the ever-growing datasets of persons with AD. To remove this roadblock, we designed an annotation tool in addition to a computational pipeline to analyze digital microscopic images of postmortem tissue from persons with AD in a fully automated and unbiased manner in only a fraction of the time taken with conventional approaches and allows neuropathological analyses and lesion quantification at multiple scales. The pipeline includes a Mask Regional-Convolutional Neural Network (Mask R-CNN) we trained to detect, classify, and segment different types of amyloid. To establish ground truth for training and validation, we utilized an existing open source platform, QuPath, and developed a tool to collect consensus annotations of neuropathology experts. The Mask R-CNN identified amyloid pathology in samples (with accuracy: 94.6%, F1: 87.7%, Dice: 81.8%) unrelated to the training dataset, indicating that it detects generalizable pathology features. Its quantitative measurements of amyloid pathology on 298 samples correlated with the severity of AD neuropathology assessed by experts and neuropathologists (CERAD ratings) and estimates of cognitive compromise (Clinical Dementia Ratings (CDR)). Our computational pipeline should enable rapid, unbiased, inexpensive, quantitative, and comprehensive neuropathological analysis of large tissue collections and integration with orthogonal clinical and multi-omic measurements.
Collapse
|
8
|
Tsering W, de la Rosa A, Ruan IY, Philips JL, Bathe T, Villareal JA, Prokop S. Preferential clustering of microglia and astrocytes around neuritic plaques during progression of Alzheimer's disease neuropathological changes. J Neurochem 2025; 169:e16275. [PMID: 39655787 PMCID: PMC11629606 DOI: 10.1111/jnc.16275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/28/2024] [Accepted: 11/17/2024] [Indexed: 12/13/2024]
Abstract
Neuroinflammation plays an important role in the pathological cascade of Alzheimer's disease (AD) along with aggregation of extracellular amyloid-β (Aβ) plaques and intracellular aggregates of tau protein. In animal models of amyloidosis, local immune activation is centered around Aβ plaques, which are usually of uniform morphology, dependent on the transgenic model used. In postmortem human brains a diversity of Aβ plaque morphologies is seen including diffuse plaques (non-neuritic plaques, non-NP), dense-core plaques, cotton-wool plaques, and NP. In a recent study, we demonstrated that during the progression of Alzheimer's disease neuropathologic changes (ADNC), a transformation of non-NP into NP occurs which is tightly linked to the emergence of cortical, but not hippocampal neurofibrillary tangle (NFT) pathology. This highlights the central role of NP in AD pathogenesis as well as brain region-specific differences in NP formation. In order to correlate the transformation of plaque types with local immune activation, we quantified the clustering and phenotype of microglia and accumulation of astrocytes around non-NP and NP during the progression of ADNC. We hypothesize that glial clustering occurs in response to formation of neuritic dystrophy around NP. First, we show that Iba1-positive microglia preferentially cluster around NP. Utilizing microglia phenotypic markers, we furthermore demonstrate that CD68-positive phagocytic microglia show a strong preference to cluster around NP in both the hippocampus and frontal cortex. A similar preferential clustering is observed for CD11c and ferritin-positive microglia in the frontal cortex, while this preference is less pronounced in the hippocampus, highlighting differences between hippocampal and cortical Aβ plaques. Glial fibrillary acidic protein-positive astrocytes showed a clear preference for clustering around NP in both the frontal cortex and hippocampus. These data support the notion that NP are intimately associated with the neuroimmune response in AD and underscore the importance of the interplay of protein deposits and the immune system in the pathophysiology of AD.
Collapse
Affiliation(s)
- Wangchen Tsering
- Center for Translational Research in Neurodegenerative Disease, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
- Department of Neuroscience, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
- McKnight Brain Institute, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Ana de la Rosa
- Center for Translational Research in Neurodegenerative Disease, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Isabelle Y. Ruan
- Center for Translational Research in Neurodegenerative Disease, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Jennifer L. Philips
- Center for Translational Research in Neurodegenerative Disease, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
- Department of Pathology, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Tim Bathe
- Center for Translational Research in Neurodegenerative Disease, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
- Department of Pathology, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Jonathan A. Villareal
- Center for Translational Research in Neurodegenerative Disease, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
- Department of Pathology, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
- McKnight Brain Institute, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
- Department of Pathology, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
- Norman Fixel Institute for Neurological DiseasesUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
9
|
Shukla A, Meena K, Gupta A, Sandhir R. 1H NMR-Based Metabolomic Signatures in Rodent Models of Sporadic Alzheimer's Disease and Metabolic Disorders. ACS Chem Neurosci 2024; 15:4478-4499. [PMID: 39629865 DOI: 10.1021/acschemneuro.4c00510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Alzheimer's disease (AD) is a chronic neurological disorder that impacts the elderly population all over the globe. Evidence suggests association between AD and metabolic disorders such as diabetes mellitus (DM) and obesity (OB). The present study is an attempt to evaluate metabolic alterations in the serum and brain through NMR spectroscopy with the aim to identify shared metabolic signatures. AD was induced in rats by stereotactic intracerebroventricular injection of oligomerized Aβ-42 peptide into the brain. DM and OB were induced by intraperitoneal injection of streptozotocin and feeding rats on a high-fat diet, respectively. The metabolic alterations obtained through 1H NMR spectroscopy were further subjected to multivariate analysis by principal component analysis and partial least-squares discrimination for identification of metabolic signatures. In the serum, the levels of lactate and betaine were increased in AD, DM, and OB rats. On the other hand, the metabolite profile of brain indicated increase in the levels of lactate, N-acetylaspartate, and creatinine in AD, DM, and OB rats. Additionally, the concentration of neurochemicals such as glutamate, GABA, N-acetylglutamate, and myo-inositol were also elevated. The alterations in neurotransmitters and cerebral energy metabolism were accompanied by deficits in cognition assessed by Morris water maze in AD, DM, and OB rats. The perturbed metabolic profiles were accompanied by the presence of pathogenic amyloid deposits visualized by Congo red stain in the brains of AD, DM, and OB rats. Overall, the study identifies common metabolic signatures in AD, DM, and OB that may be involved in etiopathogenesis and also suggests linkages between these three conditions.
Collapse
Affiliation(s)
- Ananya Shukla
- Department of Biochemistry, Hargobind Khorana Block (BMS Block II), Panjab University, Sector-25, Chandigarh 160014, India
| | - Khushbhu Meena
- Centre of Bio-Medical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS) Campus, Lucknow, Uttar Pradesh 226014, India
| | - Ashish Gupta
- Centre of Bio-Medical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS) Campus, Lucknow, Uttar Pradesh 226014, India
| | - Rajat Sandhir
- Department of Biochemistry, Hargobind Khorana Block (BMS Block II), Panjab University, Sector-25, Chandigarh 160014, India
| |
Collapse
|
10
|
Schrempel S, Kottwitz AK, Piechotta A, Gnoth K, Büschgens L, Hartlage-Rübsamen M, Morawski M, Schenk M, Kleinschmidt M, Serrano GE, Beach TG, Rostagno A, Ghiso J, Heneka MT, Walter J, Wirths O, Schilling S, Roßner S. Identification of isoAsp7-Aβ as a major Aβ variant in Alzheimer's disease, dementia with Lewy bodies and vascular dementia. Acta Neuropathol 2024; 148:78. [PMID: 39625512 PMCID: PMC11615120 DOI: 10.1007/s00401-024-02824-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 12/06/2024]
Abstract
The formation of amyloid-β (Aβ) aggregates in brain is a neuropathological hallmark of Alzheimer's disease (AD). However, there is mounting evidence that Aβ also plays a pathogenic role in other types of dementia and that specific post-translational Aβ modifications contribute to its pathogenic profile. The objective of this study was to test the hypothesis that distinct types of dementia are characterized by specific patterns of post-translationally modified Aβ variants. We conducted a comparative analysis and quantified Aβ as well as Aβ with pyroglutamate (pGlu3-Aβ and pGlu11-Aβ), N-truncation (Aβ(4-X)), isoaspartate racemization (isoAsp7-Aβ and isoAsp27-Aβ), phosphorylation (pSer8-Aβ and pSer26-Aβ) or nitration (3NTyr10-Aβ) modification in post mortem human brain tissue from non-demented control subjects in comparison to tissue classified as pre-symptomatic AD (Pre-AD), AD, dementia with Lewy bodies and vascular dementia. Aβ modification-specific immunohistochemical labelings of brain sections from the posterior superior temporal gyrus were examined by machine learning-based segmentation protocols and immunoassay analyses in brain tissue after sequential Aβ extraction were carried out. Our findings revealed that AD cases displayed the highest concentrations of all Aβ variants followed by dementia with Lewy bodies, Pre-AD, vascular dementia and non-demented controls. With both analytical methods, we identified the isoAsp7-Aβ variant as a highly abundant Aβ form in all clinical conditions, followed by Aβ(4-X), pGlu3-Aβ, pGlu11-Aβ and pSer8-Aβ. These Aβ variants were detected in distinct plaque types of compact, coarse-grained, cored and diffuse morphologies and, with varying frequencies, in cerebral blood vessels. The 3NTyr10-Aβ, pSer26-Aβ and isoAsp27-Aβ variants were not found to be present in Aβ plaques but were detected intraneuronally. There was a strong positive correlation between isoAsp7-Aβ and Thal phase and a moderate negative correlation between isoAsp7-Aβ and performance on the Mini Mental State Examination. Furthermore, the abundance of all Aβ variants was highest in APOE 3/4 carriers. In aggregation assays, the isoAsp7-Aβ, pGlu3-Aβ and pGlu11-Aβ variants showed instant fibril formation without lag phase, whereas Aβ(4-X), pSer26-Aβ and isoAsp27-Aβ did not form fibrils. We conclude that targeting Aβ post-translational modifications, and in particular the highly abundant isoAsp7-Aβ variant, might be considered for diagnostic and therapeutic approaches in different types of dementia. Hence, our findings might have implications for current antibody-based therapies of AD.
Collapse
Affiliation(s)
- Sarah Schrempel
- Paul Flechsig Institute - Centre of Neuropathology and Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany
| | - Anna Katharina Kottwitz
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120, Halle (Saale), Germany
- Center for Natural Product-based Therapeutics, Anhalt University of Applied Sciences, 06366, Köthen, Germany
| | - Anke Piechotta
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120, Halle (Saale), Germany
| | - Kathrin Gnoth
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120, Halle (Saale), Germany
- Center for Natural Product-based Therapeutics, Anhalt University of Applied Sciences, 06366, Köthen, Germany
| | - Luca Büschgens
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, 37075, Göttingen, Germany
| | - Maike Hartlage-Rübsamen
- Paul Flechsig Institute - Centre of Neuropathology and Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany
| | - Markus Morawski
- Paul Flechsig Institute - Centre of Neuropathology and Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany
| | - Mathias Schenk
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120, Halle (Saale), Germany
| | - Martin Kleinschmidt
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120, Halle (Saale), Germany
| | - Geidy E Serrano
- Civin Laboratory for Neuropathology, Brain and Body Donation Program, Banner Sun Health Research Institute, 10515 W Santa Fe Drive, Sun City, AZ, 85351, USA
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Brain and Body Donation Program, Banner Sun Health Research Institute, 10515 W Santa Fe Drive, Sun City, AZ, 85351, USA
| | - Agueda Rostagno
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Jorge Ghiso
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
| | - Jochen Walter
- Center of Neurology, Molecular Cell Biology, University Hospital Bonn, 53127, Bonn, Germany
| | - Oliver Wirths
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, 37075, Göttingen, Germany
| | - Stephan Schilling
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120, Halle (Saale), Germany
- Center for Natural Product-based Therapeutics, Anhalt University of Applied Sciences, 06366, Köthen, Germany
| | - Steffen Roßner
- Paul Flechsig Institute - Centre of Neuropathology and Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany.
| |
Collapse
|
11
|
Degl'Innocenti E, Poloni TE, Medici V, Olimpico F, Finamore F, Profka X, Bascarane K, Morrone C, Pastore A, Escartin C, McDonnell LA, Dell'Anno MT. Astrocytic centrin-2 expression in entorhinal cortex correlates with Alzheimer's disease severity. Glia 2024; 72:2158-2177. [PMID: 39145525 DOI: 10.1002/glia.24603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
Astrogliosis is a condition shared by acute and chronic neurological diseases and includes morphological, proteomic, and functional rearrangements of astroglia. In Alzheimer's disease (AD), reactive astrocytes frame amyloid deposits and exhibit structural changes associated with the overexpression of specific proteins, mostly belonging to intermediate filaments. At a functional level, amyloid beta triggers dysfunctional calcium signaling in astrocytes, which contributes to the maintenance of chronic neuroinflammation. Therefore, the identification of intracellular players that participate in astrocyte calcium signaling can help unveil the mechanisms underlying astrocyte reactivity and loss of function in AD. We have recently identified the calcium-binding protein centrin-2 (CETN2) as a novel astrocyte marker in the human brain and, in order to determine whether astrocytic CETN2 expression and distribution could be affected by neurodegenerative conditions, we examined its pattern in control and sporadic AD patients. By immunoblot, immunohistochemistry, and targeted-mass spectrometry, we report a positive correlation between entorhinal CETN2 immunoreactivity and neurocognitive impairment, along with the abundance of amyloid depositions and neurofibrillary tangles, thus highlighting a linear relationship between CETN2 expression and AD progression. CETN2-positive astrocytes were dispersed in the entorhinal cortex with a clustered pattern and colocalized with reactive glia markers STAT3, NFATc3, and YKL-40, indicating a human-specific role in AD-induced astrogliosis. Collectively, our data provide the first evidence that CETN2 is part of the astrocytic calcium toolkit undergoing rearrangements in AD and adds CETN2 to the list of proteins that could play a role in disease evolution.
Collapse
Affiliation(s)
- Elisa Degl'Innocenti
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Tino Emanuele Poloni
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation & ASP Golgi-Redaelli, Abbiategrasso, Italy
| | - Valentina Medici
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation & ASP Golgi-Redaelli, Abbiategrasso, Italy
| | | | | | - Xhulja Profka
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation & ASP Golgi-Redaelli, Abbiategrasso, Italy
| | - Karouna Bascarane
- Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, MIRCen, Fontenay-aux-Roses, France
| | - Castrese Morrone
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
| | - Aldo Pastore
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
- Laboratorio NEST, Scuola Normale Superiore, Pisa, Italy
| | - Carole Escartin
- Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, MIRCen, Fontenay-aux-Roses, France
| | - Liam A McDonnell
- Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
| | | |
Collapse
|
12
|
Perdok A, Van Acker ZP, Vrancx C, Sannerud R, Vorsters I, Verrengia A, Callaerts-Végh Z, Creemers E, Gutiérrez Fernández S, D'hauw B, Serneels L, Wierda K, Chávez-Gutiérrez L, Annaert W. Altered expression of Presenilin2 impacts endolysosomal homeostasis and synapse function in Alzheimer's disease-relevant brain circuits. Nat Commun 2024; 15:10412. [PMID: 39613768 PMCID: PMC11607342 DOI: 10.1038/s41467-024-54777-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024] Open
Abstract
Rare mutations in the gene encoding presenilin2 (PSEN2) are known to cause familial Alzheimer's disease (FAD). Here, we explored how altered PSEN2 expression impacts on the amyloidosis, endolysosomal abnormalities, and synaptic dysfunction observed in female APP knock-in mice. We demonstrate that PSEN2 knockout (KO) as well as the FAD-associated N141IKI mutant accelerate AD-related pathologies in female mice. Both models showed significant deficits in working memory that linked to elevated PSEN2 expression in the hippocampal CA3 region. The mossy fiber circuit of APPxPSEN2KO and APPxFADPSEN2 mice had smaller pre-synaptic compartments, distinct changes in synaptic vesicle populations and significantly impaired long term potentiation compared to APPKI mice. At the cellular level, altered PSEN2 expression resulted in endolysosomal defects and lowered surface expression of synaptic proteins. As PSEN2/γ-secretase is restricted to late endosomes/lysosomes, we propose PSEN2 impacts endolysosomal homeostasis, affecting synaptic signaling in AD-relevant vulnerable brain circuits; which could explain how mutant PSEN2 accelerates AD pathogenesis.
Collapse
Affiliation(s)
- Anika Perdok
- Laboratory for Membrane Trafficking, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium
| | - Zoë P Van Acker
- Laboratory for Membrane Trafficking, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium
| | - Céline Vrancx
- Laboratory for Membrane Trafficking, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium
| | - Ragna Sannerud
- Laboratory for Membrane Trafficking, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium
| | - Inge Vorsters
- Laboratory for Membrane Trafficking, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium
| | - Assunta Verrengia
- Laboratory for Membrane Trafficking, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium
| | - Zsuzsanna Callaerts-Végh
- mINT Animal Behavior Facility, Faculty of Psychology, KU Leuven, Tiensestraat 102, Leuven, Belgium
| | - Eline Creemers
- Electrophysiology Expertise Unit, VIB-Center for Brain and Disease Research, Leuven, Belgium
| | - Sara Gutiérrez Fernández
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium
- Laboratory of Proteolytic Mechanisms mediating Neurodegeneration, Leuven, Belgium
| | - Britt D'hauw
- Electrophysiology Expertise Unit, VIB-Center for Brain and Disease Research, Leuven, Belgium
| | - Lutgarde Serneels
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium
- Mouse Expertise Unit, VIB-Center for Brain and Disease Research, Leuven, Belgium
| | - Keimpe Wierda
- Electrophysiology Expertise Unit, VIB-Center for Brain and Disease Research, Leuven, Belgium
| | - Lucía Chávez-Gutiérrez
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium
- Laboratory of Proteolytic Mechanisms mediating Neurodegeneration, Leuven, Belgium
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB Center for Brain and Disease Research, Leuven, Belgium.
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium.
| |
Collapse
|
13
|
Nixon RA. Autophagy-lysosomal-associated neuronal death in neurodegenerative disease. Acta Neuropathol 2024; 148:42. [PMID: 39259382 PMCID: PMC11418399 DOI: 10.1007/s00401-024-02799-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024]
Abstract
Autophagy, the major lysosomal pathway for degrading damaged or obsolete constituents, protects neurons by eliminating toxic organelles and peptides, restoring nutrient and energy homeostasis, and inhibiting apoptosis. These functions are especially vital in neurons, which are postmitotic and must survive for many decades while confronting mounting challenges of cell aging. Autophagy failure, especially related to the declining lysosomal ("phagy") functions, heightens the neuron's vulnerability to genetic and environmental factors underlying Alzheimer's disease (AD) and other late-age onset neurodegenerative diseases. Components of the global autophagy-lysosomal pathway and the closely integrated endolysosomal system are increasingly implicated as primary targets of these disorders. In AD, an imbalance between heightened autophagy induction and diminished lysosomal function in highly vulnerable pyramidal neuron populations yields an intracellular lysosomal build-up of undegraded substrates, including APP-βCTF, an inhibitor of lysosomal acidification, and membrane-damaging Aβ peptide. In the most compromised of these neurons, β-amyloid accumulates intraneuronally in plaque-like aggregates that become extracellular senile plaques when these neurons die, reflecting an "inside-out" origin of amyloid plaques seen in human AD brain and in mouse models of AD pathology. In this review, the author describes the importance of lysosomal-dependent neuronal cell death in AD associated with uniquely extreme autophagy pathology (PANTHOS) which is described as triggered by lysosomal membrane permeability during the earliest "intraneuronal" stage of AD. Effectors of other cell death cascades, notably calcium-activated calpains and protein kinases, contribute to lysosomal injury that induces leakage of cathepsins and activation of additional death cascades. Subsequent events in AD, such as microglial invasion and neuroinflammation, induce further cytotoxicity. In major neurodegenerative disease models, neuronal death and ensuing neuropathologies are substantially remediable by reversing underlying primary lysosomal deficits, thus implicating lysosomal failure and autophagy dysfunction as primary triggers of lysosomal-dependent cell death and AD pathogenesis and as promising therapeutic targets.
Collapse
Affiliation(s)
- Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Neuroscience Institute, New York University, New York, NY, 10012, USA.
| |
Collapse
|
14
|
Tehrani MJ, Matsuda I, Yamagata A, Kodama Y, Matsunaga T, Sato M, Toyooka K, McElheny D, Kobayashi N, Shirouzu M, Ishii Y. E22G Aβ40 fibril structure and kinetics illuminate how Aβ40 rather than Aβ42 triggers familial Alzheimer's. Nat Commun 2024; 15:7045. [PMID: 39147751 PMCID: PMC11327332 DOI: 10.1038/s41467-024-51294-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/05/2024] [Indexed: 08/17/2024] Open
Abstract
Arctic (E22G) mutation in amyloid-β (Aβ enhances Aβ40 fibril accumulation in Alzheimer's disease (AD). Unlike sporadic AD, familial AD (FAD) patients with the mutation exhibit more Aβ40 in the plaque core. However, structural details of E22G Aβ40 fibrils remain elusive, hindering therapeutic progress. Here, we determine a distinctive W-shaped parallel β-sheet structure through co-analysis by cryo-electron microscopy (cryoEM) and solid-state nuclear magnetic resonance (SSNMR) of in-vitro-prepared E22G Aβ40 fibrils. The E22G Aβ40 fibrils displays typical amyloid features in cotton-wool plaques in the FAD, such as low thioflavin-T fluorescence and a less compact unbundled morphology. Furthermore, kinetic and MD studies reveal previously unidentified in-vitro evidence that E22G Aβ40, rather than Aβ42, may trigger Aβ misfolding in the FAD, and prompt subsequent misfolding of wild-type (WT) Aβ40/Aβ42 via cross-seeding. The results provide insight into how the Arctic mutation promotes AD via Aβ40 accumulation and cross-propagation.
Collapse
Affiliation(s)
- Mohammad Jafar Tehrani
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Isamu Matsuda
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Atsushi Yamagata
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yu Kodama
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Tatsuya Matsunaga
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Dan McElheny
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor St, Chicago, IL, 60607, USA
| | - Naohiro Kobayashi
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Mikako Shirouzu
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yoshitaka Ishii
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan.
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
15
|
Paterno G, Moore BD, Bell BM, Gorion KMM, Ran Y, Prokop S, Golde TE, Giasson BI. Novel Monoclonal Antibody Specific toward Amyloid-β Binds to a Unique Epitope within the N-Terminal Region. Antibodies (Basel) 2024; 13:68. [PMID: 39189239 PMCID: PMC11348109 DOI: 10.3390/antib13030068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
Amyloid-β (Aβ) deposition throughout the neuroaxis is a classical hallmark of several neurodegenerative diseases, most notably Alzheimer's disease (AD). Aβ peptides of varied length and diverse structural conformations are deposited within the parenchyma and vasculature in the brains of individuals with AD. Neuropathologically, Aβ pathology can be assessed using antibodies to label and characterize their features, which in turn leads to a more extensive understanding of the pathological process. In the present study, we generated a novel monoclonal antibody, which we found to be specific for the N-terminal region of Aβ. This antibody reacted to amyloid precursor protein expressed in cultured cells and labels Aβ plaques and cerebral amyloid angiopathy in brain tissue from a mouse model of amyloidosis as well as post-mortem brain tissue from patients diagnosed with AD. This highly specific novel antibody will serve as a unique tool for future studies investigating Aβ deposition in novel mouse models and cross-sectional studies using post-mortem human tissue.
Collapse
Affiliation(s)
- Giavanna Paterno
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.); (B.M.B.); (K.-M.M.G.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Brenda D. Moore
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; (B.D.M.); (Y.R.); (T.E.G.)
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Brach M. Bell
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.); (B.M.B.); (K.-M.M.G.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Kimberly-Marie M. Gorion
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.); (B.M.B.); (K.-M.M.G.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Yong Ran
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; (B.D.M.); (Y.R.); (T.E.G.)
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Todd E. Golde
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; (B.D.M.); (Y.R.); (T.E.G.)
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Benoit I. Giasson
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.); (B.M.B.); (K.-M.M.G.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
16
|
Song F, Kovac V, Mohammadi B, Littau JL, Scharfenberg F, Matamoros Angles A, Vanni I, Shafiq M, Orge L, Galliciotti G, Djakkani S, Linsenmeier L, Černilec M, Hartman K, Jung S, Tatzelt J, Neumann JE, Damme M, Tschirner SK, Lichtenthaler SF, Ricklefs FL, Sauvigny T, Schmitz M, Zerr I, Puig B, Tolosa E, Ferrer I, Magnus T, Rupnik MS, Sepulveda-Falla D, Matschke J, Šmid LM, Bresjanac M, Andreoletti O, Krasemann S, Foliaki ST, Nonno R, Becker-Pauly C, Monzo C, Crozet C, Haigh CL, Glatzel M, Curin Serbec V, Altmeppen HC. Cleavage site-directed antibodies reveal the prion protein in humans is shed by ADAM10 at Y226 and associates with misfolded protein deposits in neurodegenerative diseases. Acta Neuropathol 2024; 148:2. [PMID: 38980441 PMCID: PMC11233397 DOI: 10.1007/s00401-024-02763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
Proteolytic cell surface release ('shedding') of the prion protein (PrP), a broadly expressed GPI-anchored glycoprotein, by the metalloprotease ADAM10 impacts on neurodegenerative and other diseases in animal and in vitro models. Recent studies employing the latter also suggest shed PrP (sPrP) to be a ligand in intercellular communication and critically involved in PrP-associated physiological tasks. Although expectedly an evolutionary conserved event, and while soluble forms of PrP are present in human tissues and body fluids, for the human body neither proteolytic PrP shedding and its cleavage site nor involvement of ADAM10 or the biological relevance of this process have been demonstrated thus far. In this study, cleavage site prediction and generation (plus detailed characterization) of sPrP-specific antibodies enabled us to identify PrP cleaved at tyrosin 226 as the physiological and apparently strictly ADAM10-dependent shed form in humans. Using cell lines, neural stem cells and brain organoids, we show that shedding of human PrP can be stimulated by PrP-binding ligands without targeting the protease, which may open novel therapeutic perspectives. Site-specific antibodies directed against human sPrP also detect the shed form in brains of cattle, sheep and deer, hence in all most relevant species naturally affected by fatal and transmissible prion diseases. In human and animal prion diseases, but also in patients with Alzheimer`s disease, sPrP relocalizes from a physiological diffuse tissue pattern to intimately associate with extracellular aggregated deposits of misfolded proteins characteristic for the respective pathological condition. Findings and research tools presented here will accelerate novel insight into the roles of PrP shedding (as a process) and sPrP (as a released factor) in neurodegeneration and beyond.
Collapse
Affiliation(s)
- Feizhi Song
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Valerija Kovac
- Centre for Immunology and Development, Blood Transfusion Centre of Slovenia (BTCS), Ljubljana, Slovenia
| | - Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jessica L Littau
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | | - Andreu Matamoros Angles
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Ilaria Vanni
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Leonor Orge
- National Institute for Agricultural and Veterinary Research (INIAV), Oeiras, Portugal
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Giovanna Galliciotti
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Salma Djakkani
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Luise Linsenmeier
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Maja Černilec
- Centre for Immunology and Development, Blood Transfusion Centre of Slovenia (BTCS), Ljubljana, Slovenia
| | - Katrina Hartman
- Centre for Immunology and Development, Blood Transfusion Centre of Slovenia (BTCS), Ljubljana, Slovenia
| | - Sebastian Jung
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Jörg Tatzelt
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Ruhr University Bochum, Bochum, Germany
| | - Julia E Neumann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Center for Molecular Neurobiology Hamburg (ZMNH), UKE, Hamburg, Germany
| | - Markus Damme
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Sarah K Tschirner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University Munich, 81675, Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University Munich, 81675, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Berta Puig
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI), UKE, Hamburg, Germany
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, IDIBELL, Hospitalet de Llobregat, Spain
| | - Tim Magnus
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI), UKE, Hamburg, Germany
| | - Marjan S Rupnik
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Diego Sepulveda-Falla
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jakob Matschke
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Lojze M Šmid
- LNPR, Institute of Pathophysiology and Prion Laboratory, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mara Bresjanac
- LNPR, Institute of Pathophysiology and Prion Laboratory, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Olivier Andreoletti
- UMR INRAE ENVT 1225, Interactions Hôtes-Agents Pathogènes, École Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Simote T Foliaki
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - Romolo Nonno
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Cecile Monzo
- Institute for Regenerative Medicine and Biotherapies (IRMB), Neural Stem Cell, MSC and Neurodegenerative Diseases, INSERM, Montpellier, France
| | - Carole Crozet
- Institute for Regenerative Medicine and Biotherapies (IRMB), Neural Stem Cell, MSC and Neurodegenerative Diseases, INSERM, Montpellier, France
| | - Cathryn L Haigh
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Vladka Curin Serbec
- Centre for Immunology and Development, Blood Transfusion Centre of Slovenia (BTCS), Ljubljana, Slovenia.
| | - Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
17
|
Gilbert MAG, Fatima N, Jenkins J, O'Sullivan TJ, Schertel A, Halfon Y, Wilkinson M, Morrema THJ, Geibel M, Read RJ, Ranson NA, Radford SE, Hoozemans JJM, Frank RAW. CryoET of β-amyloid and tau within postmortem Alzheimer's disease brain. Nature 2024; 631:913-919. [PMID: 38987603 PMCID: PMC11269202 DOI: 10.1038/s41586-024-07680-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 06/06/2024] [Indexed: 07/12/2024]
Abstract
A defining pathological feature of most neurodegenerative diseases is the assembly of proteins into amyloid that form disease-specific structures1. In Alzheimer's disease, this is characterized by the deposition of β-amyloid and tau with disease-specific conformations. The in situ structure of amyloid in the human brain is unknown. Here, using cryo-fluorescence microscopy-targeted cryo-sectioning, cryo-focused ion beam-scanning electron microscopy lift-out and cryo-electron tomography, we determined in-tissue architectures of β-amyloid and tau pathology in a postmortem Alzheimer's disease donor brain. β-amyloid plaques contained a mixture of fibrils, some of which were branched, and protofilaments, arranged in parallel arrays and lattice-like structures. Extracellular vesicles and cuboidal particles defined the non-amyloid constituents of β-amyloid plaques. By contrast, tau inclusions formed parallel clusters of unbranched filaments. Subtomogram averaging a cluster of 136 tau filaments in a single tomogram revealed the polypeptide backbone conformation and filament polarity orientation of paired helical filaments within tissue. Filaments within most clusters were similar to each other, but were different between clusters, showing amyloid heterogeneity that is spatially organized by subcellular location. The in situ structural approaches outlined here for human donor tissues have applications to a broad range of neurodegenerative diseases.
Collapse
Affiliation(s)
- Madeleine A G Gilbert
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Nayab Fatima
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Joshua Jenkins
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Thomas J O'Sullivan
- Astbury Biostructure Laboratory CryoEM facility, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Andreas Schertel
- ZEISS Microscopy Customer Center Europe, Carl Zeiss Microscopy GmbH, Oberkochen, Germany
| | - Yehuda Halfon
- Astbury Biostructure Laboratory CryoEM facility, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Martin Wilkinson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Tjado H J Morrema
- Department of Pathology, Unit Neuropathology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Mirjam Geibel
- ZEISS Microscopy Customer Center Europe, Carl Zeiss Microscopy GmbH, Oberkochen, Germany
| | - Randy J Read
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Jeroen J M Hoozemans
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - René A W Frank
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
18
|
Ishiki K, Yamashita K, Watanabe S, Miura M, Kawahira J, Arimatsu Y, Kawasaki K, Iwanaga S, Sato T. The appropriate sample-handling procedure for measuring the plasma β-amyloid level using a fully automated immunoassay. Sci Rep 2024; 14:14266. [PMID: 38902510 PMCID: PMC11190145 DOI: 10.1038/s41598-024-65264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024] Open
Abstract
Plasma β-amyloid (Aβ) assays are a promising tool for Alzheimer's disease diagnosis in clinical practice. To obtain reliable results, establishing an appropriate sample-handling procedure for each analytical platform is warranted. This study proposes an appropriate sample-handling procedure using HISCL analyzer by elucidating the individual/combined effects of pre-analytical parameters on plasma Aβ42/Aβ40 levels. We investigated the effects of various pre-analytical parameters, including storage times for whole blood, plasma, and freezing conditions, on plasma Aβ42/Aβ40 levels, and confirmed if these values met the acceptable criteria. Plasma Aβ42/Aβ40 levels were acceptable in all conditions. We determined our protocol by confirming that plasma Aβ42/Aβ40 levels remained acceptable when combining pre-analytical parameters. We established an appropriate sample-handling protocol that ensures reliable measurement of plasma Aβ42/Aβ40 levels using HISCL analyzer. We believe the Aβ assay, with our protocol, shows promise for aiding AD diagnosis in clinical settings.
Collapse
Affiliation(s)
- Kengo Ishiki
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | - Kazuto Yamashita
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | - Shunsuke Watanabe
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | - Masahiro Miura
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan.
| | - Junko Kawahira
- Reagent Engineering, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | - Yuji Arimatsu
- Reagent Engineering, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | - Kana Kawasaki
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | - Shigeki Iwanaga
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | - Toshiyuki Sato
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| |
Collapse
|
19
|
Koutarapu S, Ge J, Dulewicz M, Srikrishna M, Szadziewska A, Wood J, Blennow K, Zetterberg H, Michno W, Ryan NS, Lashley T, Savas J, Schöll M, Hanrieder J. Chemical signatures delineate heterogeneous amyloid plaque populations across the Alzheimer's disease spectrum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.596890. [PMID: 38895368 PMCID: PMC11185524 DOI: 10.1101/2024.06.03.596890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Amyloid plaque deposition is recognized as the primary pathological hallmark of Alzheimer's disease(AD) that precedes other pathological events and cognitive symptoms. Plaque pathology represents itself with an immense polymorphic variety comprising plaques with different stages of amyloid fibrillization ranging from diffuse to fibrillar, mature plaques. The association of polymorphic Aβ plaque pathology with AD pathogenesis, clinical symptoms and disease progression remains unclear. Advanced chemical imaging tools, such as functional amyloid microscopy combined with MALDI mass spectrometry imaging (MSI), are now enhanced by deep learning algorithms. This integration allows for precise delineation of polymorphic plaque structures and detailed identification of their associated Aβ compositions. We here set out to make use of these tools to interrogate heterogenic plaque types and their associated biochemical architecture. Our findings reveal distinct Aβ signatures that differentiate diffuse plaques from fibrilized ones, with the latter showing substantially higher levels of Aβx-40. Notably, within the fibrilized category, we identified a distinct subtype known as coarse-grain plaques. Both in sAD and fAD brain tissue, coarse grain plaques contained more Aβx-40 and less Aβx-42 compared with cored plaques. The coarse grain plaques in both sAD and fAD also showed higher levels of neuritic content including paired helical filaments (PHF-1)/phosphorylated phospho Tau-immunopositive neurites. Finally, the Aβ peptide content in coarse grain plaques resembled that of vascular Aβ deposits (CAA) though with relatively higher levels of Aβ1-42 and pyroglutamated Aβx-40 and Aβx-42 species in coarse grain plaques. This is the first of its kind study on spatial in situ biochemical characterization of different plaque morphotypes demonstrating the potential of the correlative imaging techniques used that further increase the understanding of heterogeneous AD pathology. Linking the biochemical characteristics of amyloid plaque polymorphisms with various AD etiologies and toxicity mechanisms is crucial. Understanding the connection between plaque structure and disease pathogenesis can enhance our insights. This knowledge is particularly valuable for developing and advancing novel, amyloid-targeting therapeutics.
Collapse
Affiliation(s)
- Srinivas Koutarapu
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Junyue Ge
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Maciej Dulewicz
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Meera Srikrishna
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Alicja Szadziewska
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Jack Wood
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P.R. China
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom
- UK Dementia Research Institute, University College London, London, United Kingdom
- Hong Kong Centre for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Wojciech Michno
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Natalie S Ryan
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jeffrey Savas
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Michael Schöll
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
- SciLife Lab, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
20
|
Fruhwürth S, Zetterberg H, Paludan SR. Microglia and amyloid plaque formation in Alzheimer's disease - Evidence, possible mechanisms, and future challenges. J Neuroimmunol 2024; 390:578342. [PMID: 38640827 DOI: 10.1016/j.jneuroim.2024.578342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 04/21/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive decline that severely affects patients and their families. Genetic and environmental risk factors, such as viral infections, synergize to accelerate the aging-associated neurodegeneration. Genetic risk factors for late-onset AD (LOAD), which accounts for most AD cases, are predominantly implicated in microglial and immune cell functions. As such, microglia play a major role in formation of amyloid beta (Aβ) plaques, the major pathological hallmark of AD. This review aims to provide an overview of the current knowledge regarding the role of microglia in Aβ plaque formation, as well as their impact on morphological and functional diversity of Aβ plaques. Based on this discussion, we seek to identify challenges and opportunities in this field with potential therapeutic implications.
Collapse
Affiliation(s)
- Stefanie Fruhwürth
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, Institute of Neurology, University College London Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, USA
| | - Søren R Paludan
- Department of Rheumatology and Inflammatory Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
21
|
Tsering W, Prokop S. Neuritic Plaques - Gateways to Understanding Alzheimer's Disease. Mol Neurobiol 2024; 61:2808-2821. [PMID: 37940777 PMCID: PMC11043180 DOI: 10.1007/s12035-023-03736-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/21/2023] [Indexed: 11/10/2023]
Abstract
Extracellular deposits of amyloid-β (Aβ) in the form of plaques are one of the main pathological hallmarks of Alzheimer's disease (AD). Over the years, many different Aβ plaque morphologies such as neuritic plaques, dense cored plaques, cotton wool plaques, coarse-grain plaques, and diffuse plaques have been described in AD postmortem brain tissues, but correlation of a given plaque type with AD progression or AD symptoms is not clear. Furthermore, the exact trigger causing the development of one Aβ plaque morphological subtype over the other is still unknown. Here, we review the current knowledge about neuritic plaques, a subset of Aβ plaques surrounded by swollen or dystrophic neurites, which represent the most detrimental and consequential Aβ plaque morphology. Neuritic plaques have been associated with local immune activation, neuronal network dysfunction, and cognitive decline. Given that neuritic plaques are at the interface of Aβ deposition, tau aggregation, and local immune activation, we argue that understanding the exact mechanism of neuritic plaque formation is crucial to develop targeted therapies for AD.
Collapse
Affiliation(s)
- Wangchen Tsering
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, USA.
- Department of Pathology, University of Florida, Gainesville, USA.
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, USA.
| |
Collapse
|
22
|
Everett J, Brooks J, Tjendana Tjhin V, Lermyte F, Hands-Portman I, Plascencia-Villa G, Perry G, Sadler PJ, O’Connor PB, Collingwood JF, Telling ND. Label-Free In Situ Chemical Characterization of Amyloid Plaques in Human Brain Tissues. ACS Chem Neurosci 2024; 15:1469-1483. [PMID: 38501754 PMCID: PMC10995949 DOI: 10.1021/acschemneuro.3c00756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
The accumulation of amyloid plaques and increased brain redox burdens are neuropathological hallmarks of Alzheimer's disease. Altered metabolism of essential biometals is another feature of Alzheimer's, with amyloid plaques representing sites of disturbed metal homeostasis. Despite these observations, metal-targeting disease treatments have not been therapeutically effective to date. A better understanding of amyloid plaque composition and the role of the metals associated with them is critical. To establish this knowledge, the ability to resolve chemical variations at nanometer length scales relevant to biology is essential. Here, we present a methodology for the label-free, nanoscale chemical characterization of amyloid plaques within human Alzheimer's disease tissue using synchrotron X-ray spectromicroscopy. Our approach exploits a C-H carbon absorption feature, consistent with the presence of lipids, to visualize amyloid plaques selectively against the tissue background, allowing chemical analysis to be performed without the addition of amyloid dyes that alter the native sample chemistry. Using this approach, we show that amyloid plaques contain elevated levels of calcium, carbonates, and iron compared to the surrounding brain tissue. Chemical analysis of iron within plaques revealed the presence of chemically reduced, low-oxidation-state phases, including ferromagnetic metallic iron. The zero-oxidation state of ferromagnetic iron determines its high chemical reactivity and so may contribute to the redox burden in the Alzheimer's brain and thus drive neurodegeneration. Ferromagnetic metallic iron has no established physiological function in the brain and may represent a target for therapies designed to lower redox burdens in Alzheimer's disease. Additionally, ferromagnetic metallic iron has magnetic properties that are distinct from the iron oxide forms predominant in tissue, which might be exploitable for the in vivo detection of amyloid pathologies using magnetically sensitive imaging. We anticipate that this label-free X-ray imaging approach will provide further insights into the chemical composition of amyloid plaques, facilitating better understanding of how plaques influence the course of Alzheimer's disease.
Collapse
Affiliation(s)
- James Everett
- School
of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Thornburrow Drive,Stoke-on-Trent,Staffordshire ST4 7QB, U.K.
- School
of Engineering, University of Warwick, Library Road,Coventry CV4 7AL, U.K.
| | - Jake Brooks
- School
of Engineering, University of Warwick, Library Road,Coventry CV4 7AL, U.K.
| | - Vindy Tjendana Tjhin
- School
of Engineering, University of Warwick, Library Road,Coventry CV4 7AL, U.K.
| | - Frederik Lermyte
- School
of Engineering, University of Warwick, Library Road,Coventry CV4 7AL, U.K.
- Department
of Chemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt, Germany
| | - Ian Hands-Portman
- School
of Life Sciences, University of Warwick, Gibbet Hill Campus,Coventry CV4 7AL, U.K.
| | - Germán Plascencia-Villa
- Department
of Developmental and Regenerative Biology, The University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| | - George Perry
- Department
of Developmental and Regenerative Biology, The University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| | - Peter J. Sadler
- Department
of Chemistry, University of Warwick, Library Road,Coventry CV4 7AL, U.K.
| | - Peter B. O’Connor
- Department
of Chemistry, University of Warwick, Library Road,Coventry CV4 7AL, U.K.
| | | | - Neil D. Telling
- School
of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Thornburrow Drive,Stoke-on-Trent,Staffordshire ST4 7QB, U.K.
| |
Collapse
|
23
|
Abstract
Dementia, a prevalent condition among older individuals, has profound societal implications. Extensive research has resulted in no cure for what is perceived as the most common dementing illness: Alzheimer disease (AD). AD is defined by specific brain abnormalities - amyloid-β plaques and tau protein neurofibrillary tangles - that are proposed to actively influence the neurodegenerative process. However, conclusive evidence of amyloid-β toxicity is lacking, the mechanisms leading to the accumulation of plaques and tangles are unknown, and removing amyloid-β has not halted neurodegeneration. So, the question remains, are we making progress towards a solution? The complexity of AD is underscored by numerous genetic and environmental risk factors, and diverse clinical presentations, suggesting that AD is more akin to a syndrome than to a traditional disease, with its pathological manifestation representing a convergence of pathogenic pathways. Therefore, a solution requires a multifaceted approach over a single 'silver bullet'. Improved recognition and classification of conditions that converge in plaques and tangle accumulation and their treatment requires the use of multiple strategies simultaneously.
Collapse
Affiliation(s)
- Amos D Korczyn
- Departments of Neurology, Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel.
| | - Lea T Grinberg
- Departments of Neurology and Pathology, UCSF, San Francisco, CA, USA
- Global Brain Health Institute, UCSF, San Francisco, CA, USA
- Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
24
|
Zhao B, Wei D, Long Q, Chen Q, Wang F, Chen L, Li Z, Li T, Ma T, Liu W, Wang L, Yang C, Zhang X, Wang P, Zhang Z. Altered synaptic currents, mitophagy, mitochondrial dynamics in Alzheimer's disease models and therapeutic potential of Dengzhan Shengmai capsules intervention. J Pharm Anal 2024; 14:348-370. [PMID: 38618251 PMCID: PMC11010627 DOI: 10.1016/j.jpha.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/25/2023] [Accepted: 10/19/2023] [Indexed: 04/16/2024] Open
Abstract
Emerging research suggests a potential association of progression of Alzheimer's disease (AD) with alterations in synaptic currents and mitochondrial dynamics. However, the specific associations between these pathological changes remain unclear. In this study, we utilized Aβ42-induced AD rats and primary neural cells as in vivo and in vitro models. The investigations included behavioural tests, brain magnetic resonance imaging (MRI), liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis, Nissl staining, thioflavin-S staining, enzyme-linked immunosorbent assay, Golgi-Cox staining, transmission electron microscopy (TEM), immunofluorescence staining, proteomics, adenosine triphosphate (ATP) detection, mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) assessment, mitochondrial morphology analysis, electrophysiological studies, Western blotting, and molecular docking. The results revealed changes in synaptic currents, mitophagy, and mitochondrial dynamics in the AD models. Remarkably, intervention with Dengzhan Shengmai (DZSM) capsules emerged as a pivotal element in this investigation. Aβ42-induced synaptic dysfunction was significantly mitigated by DZSM intervention, which notably amplified the frequency and amplitude of synaptic transmission. The cognitive impairment observed in AD rats was ameliorated and accompanied by robust protection against structural damage in key brain regions, including the hippocampal CA3, primary cingular cortex, prelimbic system, and dysgranular insular cortex. DZSM intervention led to increased IDE levels, augmented long-term potential (LTP) amplitude, and enhanced dendritic spine density and length. Moreover, DZSM intervention led to favourable changes in mitochondrial parameters, including ROS expression, MMP and ATP contents, and mitochondrial morphology. In conclusion, our findings delved into the realm of altered synaptic currents, mitophagy, and mitochondrial dynamics in AD, concurrently highlighting the therapeutic potential of DZSM intervention.
Collapse
Affiliation(s)
- Binbin Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- Institute of Gerontology, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Dongfeng Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qinghua Long
- Medical School, Hubei Minzu University, Enshi, Hubei, 445000, China
| | - Qingjie Chen
- HuBei University of Science and Technology, Xianning, Hubei, 437100, China
| | - Fushun Wang
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, 610066, China
| | - Linlin Chen
- Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zefei Li
- Institute of Gerontology, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Tong Li
- Institute of Gerontology, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Tao Ma
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Wei Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Linshuang Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Caishui Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- School of Systems Science, Beijing Normal University, Beijing, 100875, China
| | - Xiaxia Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- BABRI Centre, Beijing Normal University, Beijing, 100875, China
| | - Ping Wang
- Institute of Gerontology, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- BABRI Centre, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
25
|
Kreutzer AG, Parrocha CMT, Haerianardakani S, Guaglianone G, Nguyen JT, Diab MN, Yong W, Perez-Rosendahl M, Head E, Nowick JS. Antibodies Raised Against an Aβ Oligomer Mimic Recognize Pathological Features in Alzheimer's Disease and Associated Amyloid-Disease Brain Tissue. ACS CENTRAL SCIENCE 2024; 10:104-121. [PMID: 38292607 PMCID: PMC10823522 DOI: 10.1021/acscentsci.3c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 02/01/2024]
Abstract
Antibodies that target the β-amyloid peptide (Aβ) and its associated assemblies are important tools in Alzheimer's disease research and have emerged as promising Alzheimer's disease therapies. This paper reports the creation and characterization of a triangular Aβ trimer mimic composed of Aβ17-36 β-hairpins and the generation and study of polyclonal antibodies raised against the Aβ trimer mimic. The Aβ trimer mimic is covalently stabilized by three disulfide bonds at the corners of the triangular trimer to create a homogeneous oligomer. Structural, biophysical, and cell-based studies demonstrate that the Aβ trimer mimic shares characteristics with oligomers of full-length Aβ. X-ray crystallography elucidates the structure of the trimer and reveals that four copies of the trimer assemble to form a dodecamer. SDS-PAGE, size exclusion chromatography, and dynamic light scattering reveal that the trimer also forms higher-order assemblies in solution. Cell-based toxicity assays show that the trimer elicits LDH release, decreases ATP levels, and activates caspase-3/7 mediated apoptosis. Immunostaining studies on brain slices from people who lived with Alzheimer's disease and people who lived with Down syndrome reveal that the polyclonal antibodies raised against the Aβ trimer mimic recognize pathological features including different types of Aβ plaques and cerebral amyloid angiopathy.
Collapse
Affiliation(s)
- Adam G. Kreutzer
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Chelsea Marie T. Parrocha
- Department
of Pharmaceutical Sciences, University of
California Irvine, Irvine, California 92697, United States
| | - Sepehr Haerianardakani
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Gretchen Guaglianone
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Jennifer T. Nguyen
- Department
of Pharmaceutical Sciences, University of
California Irvine, Irvine, California 92697, United States
| | - Michelle N. Diab
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - William Yong
- Department
of Pathology and Laboratory Medicine, University
of California Irvine, Irvine, California 92697, United States
| | - Mari Perez-Rosendahl
- Department
of Pathology and Laboratory Medicine, University
of California Irvine, Irvine, California 92697, United States
| | - Elizabeth Head
- Department
of Pathology and Laboratory Medicine, University
of California Irvine, Irvine, California 92697, United States
| | - James S. Nowick
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Department
of Pharmaceutical Sciences, University of
California Irvine, Irvine, California 92697, United States
| |
Collapse
|
26
|
Kapadia A, Theil S, Opitz S, Villacampa N, Beckert H, Schoch S, Heneka MT, Kumar S, Walter J. Phosphorylation-state dependent intraneuronal sorting of Aβ differentially impairs autophagy and the endo-lysosomal system. Autophagy 2024; 20:166-187. [PMID: 37642583 PMCID: PMC10761119 DOI: 10.1080/15548627.2023.2252300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
ABBREVIATIONS AD: Alzheimer disease; APP: amyloid beta precursor protein; ATG: autophagy related; Aβ: amyloid-β; CTSD: cathepsin D; DAPI: 4',6-diamidino-2-phenylindole; EEA1: early endosome antigen 1; FA: formic acid; GFP: green fluorescent protein; LAMP2: lysosomal-associated membrane protein 2; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAP2: microtubule-associated protein 2; nmAβ: non-modified amyloid-β; npAβ: non-phosphorylated amyloid-β; pAβ: phosphorylated amyloid-β; p-Ser26Aβ: amyloid-β phosphorylated at serine residue 26; p-Ser8Aβ: amyloid-β phosphorylated at serine residue 8; RAB: RAB, member RAS oncogene family; RFP: red fluorescent protein; SQSTM1/p62: sequestome 1; YFP: yellow fluorescent protein.
Collapse
Affiliation(s)
- Akshay Kapadia
- Molecular Cell Biology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Sandra Theil
- Molecular Cell Biology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Sabine Opitz
- Neuroinflammation Unit, German Center for Neurodegenerative Diseases e. V. (DZNE), Bonn, Germany
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Nàdia Villacampa
- Neuroinflammation Unit, German Center for Neurodegenerative Diseases e. V. (DZNE), Bonn, Germany
| | - Hannes Beckert
- Microscopy core facility, University Hospital Bonn, Bonn, Germany
| | - Susanne Schoch
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Michael. T. Heneka
- Neuroinflammation Unit, German Center for Neurodegenerative Diseases e. V. (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Sathish Kumar
- Molecular Cell Biology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Jochen Walter
- Molecular Cell Biology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
27
|
Ichimata S, Yoshida K, Li J, Rogaeva E, Lang AE, Kovacs GG. The molecular spectrum of amyloid-beta (Aβ) in neurodegenerative diseases beyond Alzheimer's disease. Brain Pathol 2024; 34:e13210. [PMID: 37652560 PMCID: PMC10711260 DOI: 10.1111/bpa.13210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023] Open
Abstract
This study investigated the molecular spectrum of amyloid-beta (Aβ) in neurodegenerative diseases beyond Alzheimer's disease (AD). We analyzed Aβ deposition in the temporal cortex and striatum in 116 autopsies, including Lewy body disease (LBD; N = 51), multiple system atrophy (MSA; N = 10), frontotemporal lobar degeneration-TDP-43 (FTLD-TDP; N = 16), and progressive supranuclear palsy (PSP; N = 39). The LBD group exhibited the most Aβ deposition in the temporal cortex and striatum (90/76%, respectively), followed by PSP (69/28%), FTLD-TDP (50/25%), and the MSA group (50/10%). We conducted immunohistochemical analysis using antibodies targeting eight Aβ epitopes in the LBD and PSP groups. Immunohistochemical findings were evaluated semi-quantitatively and quantitatively using digital pathology. Females with LBD exhibited significantly more severe Aβ deposition, particularly Aβ42 and Aβ43 , along with significantly more severe tau pathology. Furthermore, a quantitative analysis of all Aβ peptides in the LBD group revealed an association with the APOE-ε4 genotypes. No significant differences were observed between males and females in the PSP group. Finally, we compared striatal Aβ deposition in cases with LBD (N = 15), AD without α-synuclein pathology (N = 6), and PSP (N = 5). There were no differences in the pan-Aβ antibody (6F/3D)-immunolabeled deposition burden among the three groups, but the deposition burden of peptides with high aggregation capacity, especially Aβ43 , was significantly higher in the AD and LBD groups than in the PSP group. Furthermore, considerable heterogeneity was observed in the composition of Aβ peptides on a case-by-case basis in the AD and LBD groups, whereas it was relatively uniform in the PSP group. Cluster analysis further supported these findings. Our data suggest that the type of concomitant proteinopathies influences the spectrum of Aβ deposition, impacted also by sex and APOE genotypes.
Collapse
Affiliation(s)
- Shojiro Ichimata
- Tanz Centre for Research in Neurodegenerative DiseaseUniversity of TorontoTorontoOntarioCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
- Department of Legal Medicine, Faculty of MedicineUniversity of ToyamaToyamaJapan
| | - Koji Yoshida
- Tanz Centre for Research in Neurodegenerative DiseaseUniversity of TorontoTorontoOntarioCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
- Department of Legal Medicine, Faculty of MedicineUniversity of ToyamaToyamaJapan
| | - Jun Li
- Tanz Centre for Research in Neurodegenerative DiseaseUniversity of TorontoTorontoOntarioCanada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative DiseaseUniversity of TorontoTorontoOntarioCanada
| | - Anthony E. Lang
- Tanz Centre for Research in Neurodegenerative DiseaseUniversity of TorontoTorontoOntarioCanada
- Edmond J Safra Program in Parkinson's Disease and Rossy Program in Progressive Supranuclear PalsyToronto Western HospitalTorontoOntarioCanada
| | - Gabor G. Kovacs
- Tanz Centre for Research in Neurodegenerative DiseaseUniversity of TorontoTorontoOntarioCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
- Edmond J Safra Program in Parkinson's Disease and Rossy Program in Progressive Supranuclear PalsyToronto Western HospitalTorontoOntarioCanada
- Laboratory Medicine Program and Krembil Brain InstituteUniversity Health NetworkTorontoOntarioCanada
| |
Collapse
|
28
|
Li Z, Yin B, Zhang S, Lan Z, Zhang L. Targeting protein kinases for the treatment of Alzheimer's disease: Recent progress and future perspectives. Eur J Med Chem 2023; 261:115817. [PMID: 37722288 DOI: 10.1016/j.ejmech.2023.115817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Alzheimer's disease (AD) is a serious neurodegenerative disease characterized by memory impairment, mental retardation, impaired motor balance, loss of self-care and even death. Among the complex and diverse pathological changes in AD, protein kinases are deeply involved in abnormal phosphorylation of Tau proteins to form intracellular neuronal fiber tangles, neuronal loss, extracellular β-amyloid (Aβ) deposits to form amyloid plaques, and synaptic disturbances. As a disease of the elderly, the growing geriatric population is directly driving the market demand for AD therapeutics, and protein kinases are potential targets for the future fight against AD. This perspective provides an in-depth look at the role of the major protein kinases (GSK-3β, CDK5, p38 MAPK, ERK1/2, and JNK3) in the pathogenesis of AD. At the same time, the development of different protein kinase inhibitors and the current state of clinical advancement are also outlined.
Collapse
Affiliation(s)
- Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Bo Yin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Shuangqian Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhigang Lan
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
29
|
Tsering W, Hery GP, Phillips JL, Lolo K, Bathe T, Villareal JA, Ruan IY, Prokop S. Transformation of non-neuritic into neuritic plaques during AD progression drives cortical spread of tau pathology via regenerative failure. Acta Neuropathol Commun 2023; 11:190. [PMID: 38037144 PMCID: PMC10691154 DOI: 10.1186/s40478-023-01688-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023] Open
Abstract
Extracellular amyloid-β (Aβ) plaques and intracellular aggregates of tau protein in form of neurofibrillary tangles (NFT) are pathological hallmarks of Alzheimer's disease (AD). The exact mechanism how these two protein aggregates interact in AD is still a matter of debate. Neuritic plaques (NP), a subset of Aβ plaques containing dystrophic neurites (DN), are suggested to be unique to AD and might play a role in the interaction of Aβ and tau. Quantifying NP and non-NP in postmortem brain specimens from patients with increasing severity of AD neuropathological changes (ADNC), we demonstrate that the total number of Aβ plaques and NP increase, while the number of non-NP stagnates. Furthermore, investigating the correlation between NP and NFT, we identified unexpected brain region-specific differences when comparing cases with increasingly more severe ADNC. In neocortical regions NFT counts increase in parallel with NP counts during the progression of ADNC, while this correlation is not observed in hippocampus. These data support the notion that non-NP are transformed into NP during the progression of ADNC and indicate that NP might drive cortical NFT formation. Next, using spatial transcriptomics, we analyzed the gene expression profile of the microenvironment around non-NP and NP. We identified an upregulation of neuronal systems and Ca-dependent event pathways around NP compared to non-NP. We speculate that the upregulation of these transcripts may hint at a compensatory mechanism underlying NP formation. Our studies suggest that the transformation of non-NP to NP is a key event in ADNC progression and points to regenerative failure as a potential driving force of this process.
Collapse
Affiliation(s)
- Wangchen Tsering
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- College of Medicine, Mcknight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Gabriela P Hery
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jennifer L Phillips
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kiara Lolo
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Tim Bathe
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, USA
- College of Medicine, Mcknight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Jonathan A Villareal
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Isabelle Y Ruan
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA.
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, USA.
- College of Medicine, Mcknight Brain Institute, University of Florida, Gainesville, FL, USA.
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
30
|
Dreos A, Ge J, Najera F, Tebikachew BE, Perez-Inestrosa E, Moth-Poulsen K, Blennow K, Zetterberg H, Hanrieder J. Investigating New Applications of a Photoswitchable Fluorescent Norbornadiene as a Multifunctional Probe for Delineation of Amyloid Plaque Polymorphism. ACS Sens 2023; 8:1500-1509. [PMID: 36946692 PMCID: PMC10152485 DOI: 10.1021/acssensors.2c02496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/03/2023] [Indexed: 03/23/2023]
Abstract
Amyloid beta (Aβ) plaques are a major pathological hallmark of Alzheimer's disease (AD) and constitute of structurally heterogenic entities (polymorphs) that have been implicated in the phenotypic heterogeneity of AD pathology and pathogenesis. Understanding amyloid aggregation has been a critical limiting factor to gain understanding of AD pathogenesis, ultimately reflected in that the underlying mechanism remains elusive. We identified a fluorescent probe in the form of a turn-off photoswitchable norbornadiene derivative (NBD1) with several microenvironment-sensitive properties that make it relevant for applications within advanced fluorescence imaging, for example, multifunctional imaging. We explored the application of NBD1 for in situ delineation of structurally heterogenic Aβ plaques in transgenic AD mouse models. NBD1 plaque imaging shows characteristic broader emission bands in the periphery and more narrow emission bands in the dense cores of mature cored plaques. Further, we demonstrate in situ photoisomerization of NBD1 to quadricyclane and thermal recovery in single plaques, which is relevant for applications within both functional and super-resolution imaging. This is the first time a norbornadiene photoswitch has been used as a probe for fluorescence imaging of Aβ plaque pathology in situ and that its spectroscopic and switching properties have been studied within the specific environment of senile Aβ plaques. These findings open the way toward new applications of NBD-based photoswitchable fluorescent probes for super-resolution or dual-color imaging and multifunctional microscopy of amyloid plaque heterogeneity. This could allow to visualize Aβ plaques with resolution beyond the diffraction limit, label different plaque types, and gain insights into their physicochemical composition.
Collapse
Affiliation(s)
- Ambra Dreos
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, 43180 Mölndal, Sweden
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina−IBIMA Plataforma Bionand, 29590 Malaga, Spain
| | - Junyue Ge
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, 43180 Mölndal, Sweden
| | - Francisco Najera
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina−IBIMA Plataforma Bionand, 29590 Malaga, Spain
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Behabitu Ergette Tebikachew
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 41296 Gothenburg, Sweden
| | - Ezequiel Perez-Inestrosa
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina−IBIMA Plataforma Bionand, 29590 Malaga, Spain
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Kasper Moth-Poulsen
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 41296 Gothenburg, Sweden
- Institute
of Materials Science of Barcelona, ICMAB-CSIC, Bellaterra, 08193 Barcelona, Spain
- Catalan
Institution for Research and Advanced Studies ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
- Department
of Chemical Engineering, Universitat Politecnica
de Catalunya, EEBE, Eduard
Maristany 10-14, 08019 Barcelona, Spain
| | - Kaj Blennow
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, 43180 Mölndal, Sweden
- Clinical
Neurochemistry Laboratory, Sahlgrenska University
Hospital, 43180 Mölndal, Sweden
| | - Henrik Zetterberg
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, 43180 Mölndal, Sweden
- Clinical
Neurochemistry Laboratory, Sahlgrenska University
Hospital, 43180 Mölndal, Sweden
- Department
of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK
Dementia Research Institute, University
College London, London WC1N 3BG, UK
- Hong
Kong Center for Neurodegenerative Diseases, Hong Kong 1512-1518, China
- UW
Department of Medicine, School of Medicine and Public Health, Madison, Wisconsin 53726, United States
| | - Jörg Hanrieder
- Department
of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, 43180 Mölndal, Sweden
- Department
of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
31
|
Amano A, Sanjo N, Araki W, Anraku Y, Nakakido M, Matsubara E, Tomiyama T, Nagata T, Tsumoto K, Kataoka K, Yokota T. Peripheral administration of nanomicelle-encapsulated anti-Aβ oligomer fragment antibody reduces various toxic Aβ species in the brain. J Nanobiotechnology 2023; 21:36. [PMID: 36721182 PMCID: PMC9888736 DOI: 10.1186/s12951-023-01772-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 01/07/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Although a large amount of evidence has revealed that amyloid β (Aβ), especially Aβ oligomers, protofibrils, and pyroglutamated Aβs, participate primarily in the pathophysiological processes of Alzheimer's disease, most clinical trials of anti-Aβ antibody therapy have never acquired successful efficacy in human clinical trials, partly because peripheral administration of antibody medications was unable to deliver sufficient amounts of the molecules to the brain. Recently, we developed polymeric nanomicelles capable of passing through the blood-brain barrier that function as chaperones to deliver larger amounts of heavy molecules to the brain. Herein, we aimed to evaluate the efficacy of newly developed antibody 6H4 fragments specific to Aβ oligomers encapsulated in polymeric nanomicelles on the development of Alzheimer's disease pathology in Alzheimer's disease model mice at the age of emergence of early Alzheimer's disease pathology. RESULTS During the 10-week administration of 6H4 antibody fragments in polymeric nanomicelles, a significant reduction in the amounts of various toxic Aβ species, such as Aβ oligomers, toxic Aβ conformers, and pyroglutamated Aβs in the brain was observed. In addition, immunohistochemistry indicated inhibition of diameters of Aβ plaques, Aβ-antibody immunoreactive areas, and also plaque core formation. Behavioral analysis of the mice model revealed that the 6H4 fragments-polymeric nanomicelle group was significantly better at maintaining long-term spatial reference memory in the probe and platform tests of the water maze, thereby indicating inhibition of the pathophysiological process of Alzheimer's disease. CONCLUSIONS The results indicated that the strategy of reducing toxic Aβ species in early dementia owing to Alzheimer's disease by providing sufficient antibodies in the brain may modify Alzheimer's disease progression.
Collapse
Affiliation(s)
- Akiko Amano
- grid.265073.50000 0001 1014 9130Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Nobuo Sanjo
- grid.265073.50000 0001 1014 9130Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Wataru Araki
- grid.265073.50000 0001 1014 9130Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Yasutaka Anraku
- grid.26999.3d0000 0001 2151 536XDepartment of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan ,grid.493442.c0000 0004 5936 3316Innovation Center of Nano Medicine, Kawasaki Institute of Industrial Promotion, Kanagawa, Japan
| | - Makoto Nakakido
- grid.26999.3d0000 0001 2151 536XDepartment of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Etsuro Matsubara
- grid.412334.30000 0001 0665 3553Department of Neurology, Oita University, Oita, Japan
| | - Takami Tomiyama
- grid.258799.80000 0004 0372 2033Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Tetsuya Nagata
- grid.265073.50000 0001 1014 9130Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Kouhei Tsumoto
- grid.26999.3d0000 0001 2151 536XDepartment of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XThe Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazunori Kataoka
- grid.493442.c0000 0004 5936 3316Innovation Center of Nano Medicine, Kawasaki Institute of Industrial Promotion, Kanagawa, Japan
| | - Takanori Yokota
- grid.265073.50000 0001 1014 9130Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8510 Japan
| |
Collapse
|
32
|
Ichimata S, Martinez-Valbuena I, Forrest SL, Kovacs GG. Expanding the spectrum of amyloid-β plaque pathology: the Down syndrome associated 'bird-nest plaque'. Acta Neuropathol 2022; 144:1171-1174. [PMID: 36112224 DOI: 10.1007/s00401-022-02500-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 01/26/2023]
Affiliation(s)
- Shojiro Ichimata
- Tanz Centre for Research in Neurodegenerative Disease, Krembil Discovery Tower, University of Toronto, 60 Leonard Ave Toronto On, Toronto, ON, M5T 0S8, Canada.,Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Legal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Ivan Martinez-Valbuena
- Tanz Centre for Research in Neurodegenerative Disease, Krembil Discovery Tower, University of Toronto, 60 Leonard Ave Toronto On, Toronto, ON, M5T 0S8, Canada
| | - Shelley L Forrest
- Tanz Centre for Research in Neurodegenerative Disease, Krembil Discovery Tower, University of Toronto, 60 Leonard Ave Toronto On, Toronto, ON, M5T 0S8, Canada.,Dementia Research Centre, Macquarie Medical School, Faculty of Health and Human Sciences, Macquarie University, Sydney, Australia.,Laboratory Medicine Program & Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, Krembil Discovery Tower, University of Toronto, 60 Leonard Ave Toronto On, Toronto, ON, M5T 0S8, Canada. .,Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, ON, Canada. .,Laboratory Medicine Program & Krembil Brain Institute, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
33
|
Takahashi K, Chambers JK, Takaichi Y, Uchida K. Different Aβ43 deposition patterns in the brains of aged dogs, sea lions, and cats. J Vet Med Sci 2022; 84:1563-1573. [PMID: 36288928 PMCID: PMC9791235 DOI: 10.1292/jvms.22-0386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cerebral amyloid β (Aβ) deposition is a pathological hallmark of Alzheimer's disease (AD). There are several molecular species of Aβ, including Aβ40, Aβ42, and Aβ43, and the pathological roles of Aβ43 have attracted particular attention in recent years. Aβ43 is mainly deposited as senile plaques (SPs) in AD brains, and is known to be more amyloidogenic and neurotoxic than Aβ42 and Aβ40. Aβ40 and Aβ42 deposition have been demonstrated in several animal species, while Aβ43 deposition has not been studied in animals. The brains of sea lions, dogs, and cats exhibit unique age-related Aβ pathologies. In the present study, the deposition patterns of Aβ40, Aβ42, and Aβ43 were examined immunohistochemically in the brains of aged dogs (n=52), sea lions (n=5), and cats (n=17). In dogs, most cerebral amyloid angiopathy (CAA) lesions and primitive SPs were positive for Aβ42, Aβ43, and Aβ40. However, diffuse SPs and capillary CAA lesions were negative for Aβ40. In sea lions, all SPs and most CAA lesions were positive for Aβ42, Aβ43, and Aβ40, while capillary CAA lesions were negative for Aβ40. In cats, Aβ42-immunopositive granular aggregates and arteriole and capillary CAA lesions were positive for Aβ43, but negative for Aβ40. Double-labelling immunohistochemistry revealed the co-localization of Aβ42 and Aβ43. These findings suggest that Aβ43 and Aβ42 are frequently deposited in the brains of Carnivora animals and may play an important role in Aβ pathology.
Collapse
Affiliation(s)
- Kei Takahashi
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| | - James K Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| | - Yuta Takaichi
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
34
|
Abrahamson EE, Kofler JK, Becker CR, Price JC, Newell KL, Ghetti B, Murrell JR, McLean CA, Lopez OL, Mathis CA, Klunk WE, Villemagne VL, Ikonomovic MD. 11C-PiB PET can underestimate brain amyloid-β burden when cotton wool plaques are numerous. Brain 2022; 145:2161-2176. [PMID: 34918018 PMCID: PMC9630719 DOI: 10.1093/brain/awab434] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/02/2021] [Accepted: 10/20/2021] [Indexed: 09/01/2023] Open
Abstract
Individuals with familial Alzheimer's disease due to PSEN1 mutations develop high cortical fibrillar amyloid-β load but often have lower cortical 11C-Pittsburgh compound B (PiB) retention than Individuals with sporadic Alzheimer's disease. We hypothesized this is influenced by limited interactions of Pittsburgh compound B with cotton wool plaques, an amyloid-β plaque type common in familial Alzheimer's disease but rare in sporadic Alzheimer's disease. Histological sections of frontal and temporal cortex, caudate nucleus and cerebellum were obtained from 14 cases with sporadic Alzheimer's disease, 12 cases with familial Alzheimer's disease due to PSEN1 mutations, two relatives of a PSEN1 mutation carrier but without genotype information and three non-Alzheimer's disease cases. Sections were processed immunohistochemically using amyloid-β-targeting antibodies and the fluorescent amyloid stains cyano-PiB and X-34. Plaque load was quantified by percentage area analysis. Frozen homogenates from the same brain regions from five sporadic Alzheimer's disease and three familial Alzheimer's disease cases were analysed for 3H-PiB in vitro binding and concentrations of amyloid-β1-40 and amyloid-β1-42. Nine sporadic Alzheimer's disease, three familial Alzheimer's disease and three non-Alzheimer's disease participants had 11C-PiB PET with standardized uptake value ratios calculated using the cerebellum as the reference region. Cotton wool plaques were present in the neocortex of all familial Alzheimer's disease cases and one sporadic Alzheimer's disease case, in the caudate nucleus from four familial Alzheimer's disease cases, but not in the cerebellum. Cotton wool plaques immunolabelled robustly with 4G8 and amyloid-β42 antibodies but weakly with amyloid-β40 and amyloid-βN3pE antibodies and had only background cyano-PiB fluorescence despite labelling with X-34. Relative to amyloid-β plaque load, cyano-Pittsburgh compound B plaque load was similar in sporadic Alzheimer's disease while in familial Alzheimer's disease it was lower in the neocortex and the caudate nucleus. In both regions, insoluble amyloid-β1-42 and amyloid-β1-40 concentrations were similar in familial Alzheimer's disease and sporadic Alzheimer's disease groups, while 3H-PiB binding was lower in the familial Alzheimer's disease than the sporadic Alzheimer's disease group. Higher amyloid-β1-42 concentration associated with higher 3H-PiB binding in sporadic Alzheimer's disease but not familial Alzheimer's disease. 11C-PiB retention correlated with region-matched post-mortem amyloid-β plaque load; however, familial Alzheimer's disease cases with abundant cotton wool plaques had lower 11C-PiB retention than sporadic Alzheimer's disease cases with similar amyloid-β plaque loads. PiB has limited ability to detect amyloid-β aggregates in cotton wool plaques and may underestimate total amyloid-β plaque burden in brain regions with abundant cotton wool plaques.
Collapse
Affiliation(s)
- Eric E Abrahamson
- Department of Neurology, University of Pittsburgh School of Medicine. Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, Pittsburgh VA Healthcare System, Pittsburgh, PA, USA
| | - Julia K Kofler
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Carl R Becker
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Julie C Price
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Massachusetts General Hospital, A. A. Martinos Center for Biomedical Imaging, Cambridge, MA, USA
| | - Kathy L Newell
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA
| | - Jill R Murrell
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Catriona A McLean
- Victorian Brain Bank, The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Oscar L Lopez
- Department of Neurology, University of Pittsburgh School of Medicine. Pittsburgh, PA, USA
| | - Chester A Mathis
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Victor L Villemagne
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh School of Medicine. Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, Pittsburgh VA Healthcare System, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
35
|
Sanchez-Varo R, Mejias-Ortega M, Fernandez-Valenzuela JJ, Nuñez-Diaz C, Caceres-Palomo L, Vegas-Gomez L, Sanchez-Mejias E, Trujillo-Estrada L, Garcia-Leon JA, Moreno-Gonzalez I, Vizuete M, Vitorica J, Baglietto-Vargas D, Gutierrez A. Transgenic Mouse Models of Alzheimer's Disease: An Integrative Analysis. Int J Mol Sci 2022; 23:5404. [PMID: 35628216 PMCID: PMC9142061 DOI: 10.3390/ijms23105404] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/10/2022] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) constitutes the most prominent form of dementia among elderly individuals worldwide. Disease modeling using murine transgenic mice was first initiated thanks to the discovery of heritable mutations in amyloid precursor protein (APP) and presenilins (PS) genes. However, due to the repeated failure of translational applications from animal models to human patients, along with the recent advances in genetic susceptibility and our current understanding on disease biology, these models have evolved over time in an attempt to better reproduce the complexity of this devastating disease and improve their applicability. In this review, we provide a comprehensive overview about the major pathological elements of human AD (plaques, tauopathy, synaptic damage, neuronal death, neuroinflammation and glial dysfunction), discussing the knowledge that available mouse models have provided about the mechanisms underlying human disease. Moreover, we highlight the pros and cons of current models, and the revolution offered by the concomitant use of transgenic mice and omics technologies that may lead to a more rapid improvement of the present modeling battery.
Collapse
Affiliation(s)
- Raquel Sanchez-Varo
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
| | - Marina Mejias-Ortega
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Juan Jose Fernandez-Valenzuela
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Cristina Nuñez-Diaz
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Laura Caceres-Palomo
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Laura Vegas-Gomez
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Elisabeth Sanchez-Mejias
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Laura Trujillo-Estrada
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Juan Antonio Garcia-Leon
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Ines Moreno-Gonzalez
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Marisa Vizuete
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBIS)-Hospital Universitario Virgen del Rocio/CSIC, 41012 Seville, Spain
| | - Javier Vitorica
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBIS)-Hospital Universitario Virgen del Rocio/CSIC, 41012 Seville, Spain
| | - David Baglietto-Vargas
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Antonia Gutierrez
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| |
Collapse
|
36
|
Chen HH, Eteleeb A, Wang C, Fernandez MV, Budde JP, Bergmann K, Norton J, Wang F, Ebl C, Morris JC, Perrin RJ, Bateman RJ, McDade E, Xiong C, Goate A, Farlow M, Chhatwal J, Schofield PR, Chui H, Harari O, Cruchaga C, Ibanez L. Circular RNA detection identifies circPSEN1 alterations in brain specific to autosomal dominant Alzheimer's disease. Acta Neuropathol Commun 2022; 10:29. [PMID: 35246267 PMCID: PMC8895634 DOI: 10.1186/s40478-022-01328-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/07/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Autosomal-dominant Alzheimer's disease (ADAD) is caused by pathogenic mutations in APP, PSEN1, and PSEN2, which usually lead to an early age at onset (< 65). Circular RNAs are a family of non-coding RNAs highly expressed in the nervous system and especially in synapses. We aimed to investigate differences in brain gene expression of linear and circular transcripts from the three ADAD genes in controls, sporadic AD, and ADAD. METHODS We obtained and sequenced RNA from brain cortex using standard protocols. Linear counts were obtained using the TOPMed pipeline; circular counts, using python package DCC. After stringent quality control (QC), we obtained the counts for PSEN1, PSEN2 and APP genes. Only circPSEN1 passed QC. We used DESeq2 to compare the counts across groups, correcting for biological and technical variables. Finally, we performed in-silico functional analyses using the Circular RNA interactome website and DIANA mirPath software. RESULTS Our results show significant differences in gene counts of circPSEN1 in ADAD individuals, when compared to sporadic AD and controls (ADAD = 21, AD = 253, Controls = 23-ADADvsCO: log2FC = 0.794, p = 1.63 × 10-04, ADADvsAD: log2FC = 0.602, p = 8.22 × 10-04). The high gene counts are contributed by two circPSEN1 species (hsa_circ_0008521 and hsa_circ_0003848). No significant differences were observed in linear PSEN1 gene expression between cases and controls, indicating that this finding is specific to the circular forms. In addition, the high circPSEN1 levels do not seem to be specific to PSEN1 mutation carriers; the counts are also elevated in APP and PSEN2 mutation carriers. In-silico functional analyses suggest that circPSEN1 is involved in several pathways such as axon guidance (p = 3.39 × 10-07), hippo signaling pathway (p = 7.38 × 10-07), lysine degradation (p = 2.48 × 10-05) or Wnt signaling pathway (p = 5.58 × 10-04) among other KEGG pathways. Additionally, circPSEN1 counts were able to discriminate ADAD from sporadic AD and controls with an AUC above 0.70. CONCLUSIONS Our findings show the differential expression of circPSEN1 is increased in ADAD. Given the biological function previously ascribed to circular RNAs and the results of our in-silico analyses, we hypothesize that this finding might be related to neuroinflammatory events that lead or that are caused by the accumulation of amyloid-beta.
Collapse
Affiliation(s)
- Hsiang-Han Chen
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Abdallah Eteleeb
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Ciyang Wang
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Maria Victoria Fernandez
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - John P. Budde
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Kristy Bergmann
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Joanne Norton
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Fengxian Wang
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Curtis Ebl
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - John C. Morris
- Hope Center for Neurological Disorders, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Richard J. Perrin
- Hope Center for Neurological Disorders, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Randall J. Bateman
- Hope Center for Neurological Disorders, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Eric McDade
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Chengjie Xiong
- Division of Biostatistics, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Alison Goate
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Martin Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Jasmeer Chhatwal
- Department of Neurology, Massachusetts General Hospital, Boston, MA USA
| | - Peter R. Schofield
- Neuroscience Research Australia, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Helena Chui
- Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA USA
| | - Oscar Harari
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Hope Center for Neurological Disorders, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Hope Center for Neurological Disorders, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Department of Genetics, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Laura Ibanez
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| | - Dominantly Inherited Alzheimer Network
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, 4444 Forest Park, Campus Box 8134, Saint Louis, MO 63110 USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Hope Center for Neurological Disorders, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Division of Biostatistics, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA USA
- Neuroscience Research Australia, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
- Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA USA
- Department of Genetics, Washington University in Saint Louis School of Medicine, Saint Louis, MO USA
| |
Collapse
|
37
|
Bugiani M, Plug BC, Man JHK, Breur M, van der Knaap MS. Heterogeneity of white matter astrocytes in the human brain. Acta Neuropathol 2022; 143:159-177. [PMID: 34878591 DOI: 10.1007/s00401-021-02391-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/17/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022]
Abstract
Astrocytes regulate central nervous system development, maintain its homeostasis and orchestrate repair upon injury. Emerging evidence support functional specialization of astroglia, both between and within brain regions. Different subtypes of gray matter astrocytes have been identified, yet molecular and functional diversity of white matter astrocytes remains largely unexplored. Nonetheless, their important and diverse roles in maintaining white matter integrity and function are well recognized. Compelling evidence indicate that impairment of normal astrocytic function and their response to injury contribute to a wide variety of diseases, including white matter disorders. In this review, we highlight our current understanding of astrocyte heterogeneity in the white matter of the mammalian brain and how an interplay between developmental origins and local environmental cues contribute to astroglial diversification. In addition, we discuss whether, and if so, how, heterogeneous astrocytes could contribute to white matter function in health and disease and focus on the sparse human research data available. We highlight four leukodystrophies primarily due to astrocytic dysfunction, the so-called astrocytopathies. Insight into the role of astroglial heterogeneity in both healthy and diseased white matter may provide new avenues for therapies aimed at promoting repair and restoring normal white matter function.
Collapse
|
38
|
Mohammadi B, Song F, Matamoros-Angles A, Shafiq M, Damme M, Puig B, Glatzel M, Altmeppen HC. Anchorless risk or released benefit? An updated view on the ADAM10-mediated shedding of the prion protein. Cell Tissue Res 2022; 392:215-234. [PMID: 35084572 PMCID: PMC10113312 DOI: 10.1007/s00441-022-03582-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022]
Abstract
The prion protein (PrP) is a broadly expressed glycoprotein linked with a multitude of (suggested) biological and pathological implications. Some of these roles seem to be due to constitutively generated proteolytic fragments of the protein. Among them is a soluble PrP form, which is released from the surface of neurons and other cell types by action of the metalloprotease ADAM10 in a process termed 'shedding'. The latter aspect is the focus of this review, which aims to provide a comprehensive overview on (i) the relevance of proteolytic processing in regulating cellular PrP functions, (ii) currently described involvement of shed PrP in neurodegenerative diseases (including prion diseases and Alzheimer's disease), (iii) shed PrP's expected roles in intercellular communication in many more (patho)physiological conditions (such as stroke, cancer or immune responses), (iv) and the need for improved research tools in respective (future) studies. Deeper mechanistic insight into roles played by PrP shedding and its resulting fragment may pave the way for improved diagnostics and future therapeutic approaches in diseases of the brain and beyond.
Collapse
Affiliation(s)
- Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Working Group for Interdisciplinary Neurobiology and Immunology (INI Research), Hamburg, Germany
| | - Feizhi Song
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Andreu Matamoros-Angles
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Markus Damme
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Berta Puig
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | |
Collapse
|
39
|
Paasila PJ, Aramideh JA, Sutherland GT, Graeber MB. Synapses, Microglia, and Lipids in Alzheimer's Disease. Front Neurosci 2022; 15:778822. [PMID: 35095394 PMCID: PMC8789683 DOI: 10.3389/fnins.2021.778822] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is characterised by synaptic dysfunction accompanied by the microscopically visible accumulation of pathological protein deposits and cellular dystrophy involving both neurons and glia. Late-stage AD shows pronounced loss of synapses and neurons across several differentially affected brain regions. Recent studies of advanced AD using post-mortem brain samples have demonstrated the direct involvement of microglia in synaptic changes. Variants of the Apolipoprotein E and Triggering Receptors Expressed on Myeloid Cells gene represent important determinants of microglial activity but also of lipid metabolism in cells of the central nervous system. Here we review evidence that may help to explain how abnormal lipid metabolism, microglial activation, and synaptic pathophysiology are inter-related in AD.
Collapse
Affiliation(s)
- Patrick J. Paasila
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Jason A. Aramideh
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Greg T. Sutherland
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Manuel B. Graeber
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
40
|
Galectin-3 is elevated in CSF and is associated with Aβ deposits and tau aggregates in brain tissue in Alzheimer's disease. Acta Neuropathol 2022; 144:843-859. [PMID: 35895141 PMCID: PMC9547798 DOI: 10.1007/s00401-022-02469-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 01/26/2023]
Abstract
Galectin-3 (Gal-3) is a beta-galactosidase binding protein involved in microglial activation in the central nervous system (CNS). We previously demonstrated the crucial deleterious role of Gal-3 in microglial activation in Alzheimer's disease (AD). Under AD conditions, Gal-3 is primarily expressed by microglial cells clustered around Aβ plaques in both human and mouse brain, and knocking out Gal-3 reduces AD pathology in AD-model mice. To further unravel the importance of Gal-3-associated inflammation in AD, we aimed to investigate the Gal-3 inflammatory response in the AD continuum. First, we measured Gal-3 levels in neocortical and hippocampal tissue from early-onset AD patients, including genetic and sporadic cases. We found that Gal-3 levels were significantly higher in both cortex and hippocampus in AD subjects. Immunohistochemistry revealed that Gal-3+ microglial cells were associated with amyloid plaques of a larger size and more irregular shape and with neurons containing tau-inclusions. We then analyzed the levels of Gal-3 in cerebrospinal fluid (CSF) from AD patients (n = 119) compared to control individuals (n = 36). CSF Gal-3 levels were elevated in AD patients compared to controls and more strongly correlated with tau (p-Tau181 and t-tau) and synaptic markers (GAP-43 and neurogranin) than with amyloid-β. Lastly, principal component analysis (PCA) of AD biomarkers revealed that CSF Gal-3 clustered and associated with other CSF neuroinflammatory markers, including sTREM-2, GFAP, and YKL-40. This neuroinflammatory component was more highly expressed in the CSF from amyloid-β positive (A+), CSF p-Tau181 positive (T+), and biomarker neurodegeneration positive/negative (N+/-) (A + T + N+/-) groups compared to the A + T-N- group. Overall, Gal-3 stands out as a key pathological biomarker of AD pathology that is measurable in CSF and, therefore, a potential target for disease-modifying therapies involving the neuroinflammatory response.
Collapse
|
41
|
Libard S, Giedraitis V, Kilander L, Ingelsson M, Alafuzoff I. Mixed Pathologies in a Subject with a Novel PSEN1 G206R Mutation. J Alzheimers Dis 2022; 90:1601-1614. [PMID: 36314207 PMCID: PMC9789486 DOI: 10.3233/jad-220655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND There are more than 300 presenilin-1 (PSEN1) mutations identified but a thorough postmortem neuropathological assessment of the mutation carriers is seldom performed. OBJECTIVE To assess neuropathological changes (NC) in a 73-year-old subject with the novel PSEN1 G206R mutation suffering from cognitive decline in over 20 years. To compare these findings with an age- and gender-matched subject with sporadic Alzheimer's disease (sAD). METHODS The brains were assessed macro- and microscopically and the proteinopathies were staged according to current recommendations. RESULTS The AD neuropathological change (ADNC) was more extensive in the mutation carrier, although both individuals reached a high level of ADNC. The transactive DNA binding protein 43 pathology was at the end-stage in the index subject, a finding not previously described in familial AD. This pathology was moderate in the sAD subject. The PSEN1 G206R subject displayed full-blown alpha-synuclein pathology, while this proteinopathy was absent in the sAD case. Additionally, the mutation carrier displayed pronounced neuroinflammation, not previously described in association with PSEN1 mutations. CONCLUSION Our findings are exceptional, as the PSEN1 G206R subject displayed an end-stage pathology of every common proteinopathy. It is unclear whether the observed alterations are caused by the mutation or are related to a cross-seeding mechanisms. The pronounced neuroinflammation in the index patient can be reactive to the extensive NC or a contributing factor to the proteinopathies. Thorough postmortem neuropathological and genetic assessment of subjects with familial AD is warranted, for further understanding of a dementing illness.
Collapse
Affiliation(s)
- Sylwia Libard
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Surgical Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Lena Kilander
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Department of Medicine and Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Irina Alafuzoff
- Department of Surgical Pathology, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
42
|
Joshi P, Riffel F, Satoh K, Enomoto M, Qamar S, Scheiblich H, Villacampa N, Kumar S, Theil S, Parhizkar S, Haass C, Heneka MT, Fraser PE, St George‐Hyslop P, Walter J. Differential interaction with TREM2 modulates microglial uptake of modified Aβ species. Glia 2021; 69:2917-2932. [PMID: 34427354 PMCID: PMC11497331 DOI: 10.1002/glia.24077] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 12/29/2022]
Abstract
Rare coding variants of the microglial triggering receptor expressed on myeloid cells 2 (TREM2) confer an increased risk for Alzheimer's disease (AD) characterized by the progressive accumulation of aggregated forms of amyloid β peptides (Aβ). Aβ peptides are generated by proteolytic processing of the amyloid precursor protein (APP). Heterogeneity in proteolytic cleavages and additional post-translational modifications result in the production of several distinct Aβ variants that could differ in their aggregation behavior and toxic properties. Here, we sought to assess whether post-translational modifications of Aβ affect the interaction with TREM2. Biophysical and biochemical methods revealed that TREM2 preferentially interacts with oligomeric Aβ, and that phosphorylation of Aβ increases this interaction. Phosphorylation of Aβ also affected the TREM2 dependent interaction and phagocytosis by primary microglia and in APP transgenic mouse models. Thus, TREM2 function is important for sensing phosphorylated Aβ variants in distinct aggregation states and reduces the accumulation and deposition of these toxic Aβ species in preclinical models of Alzheimer's disease.
Collapse
Affiliation(s)
- Pranav Joshi
- Department of NeurologyUniversity of BonnBonnGermany
| | | | - Kanayo Satoh
- Departments of Medical Biophysics and Medicine (Neurology)Tanz Centre for Research in Neurodegenerative Diseases andTorontoOntarioCanada
| | - Masahiro Enomoto
- Princess Margaret Cancer Centre Research InstituteUniversity Health NetworkTorontoOntarioCanada
| | - Seema Qamar
- Cambridge Institute for Medical Research, Department of Clinical NeurosciencesSchool of Clinical Medicine, University of CambridgeCambridgeUK
| | - Hannah Scheiblich
- Department of Neurodegenerative Diseases and GerontopsychiatryUniversity Hospital BonnBonnGermany
- Neuroinflammation UnitGerman Center for Neurodegenerative Diseases e. V. (DZNE)BonnGermany
| | - Nàdia Villacampa
- Department of Neurodegenerative Diseases and GerontopsychiatryUniversity Hospital BonnBonnGermany
- Neuroinflammation UnitGerman Center for Neurodegenerative Diseases e. V. (DZNE)BonnGermany
| | - Sathish Kumar
- Department of NeurologyUniversity of BonnBonnGermany
| | - Sandra Theil
- Department of NeurologyUniversity of BonnBonnGermany
| | - Samira Parhizkar
- Chair of Metabolic Biochemistry, Biomedical Center (BMC)Faculty of Medicine, Ludwig‐Maximilians‐Universität MünchenMunichGermany
| | - Christian Haass
- Chair of Metabolic Biochemistry, Biomedical Center (BMC)Faculty of Medicine, Ludwig‐Maximilians‐Universität MünchenMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
- Molecular Neurodegeneration UnitGerman Center for Neurodegenerative Diseases e.V. (DZNE) MunichMunichGermany
| | - Michael T. Heneka
- Department of Neurodegenerative Diseases and GerontopsychiatryUniversity Hospital BonnBonnGermany
- Neuroinflammation UnitGerman Center for Neurodegenerative Diseases e. V. (DZNE)BonnGermany
| | - Paul E. Fraser
- Departments of Medical Biophysics and Medicine (Neurology)Tanz Centre for Research in Neurodegenerative Diseases andTorontoOntarioCanada
| | - Peter St George‐Hyslop
- Departments of Medical Biophysics and Medicine (Neurology)Tanz Centre for Research in Neurodegenerative Diseases andTorontoOntarioCanada
- Cambridge Institute for Medical Research, Department of Clinical NeurosciencesSchool of Clinical Medicine, University of CambridgeCambridgeUK
| | - Jochen Walter
- Department of NeurologyUniversity of BonnBonnGermany
| |
Collapse
|
43
|
Linsenmeier L, Mohammadi B, Shafiq M, Frontzek K, Bär J, Shrivastava AN, Damme M, Song F, Schwarz A, Da Vela S, Massignan T, Jung S, Correia A, Schmitz M, Puig B, Hornemann S, Zerr I, Tatzelt J, Biasini E, Saftig P, Schweizer M, Svergun D, Amin L, Mazzola F, Varani L, Thapa S, Gilch S, Schätzl H, Harris DA, Triller A, Mikhaylova M, Aguzzi A, Altmeppen HC, Glatzel M. Ligands binding to the prion protein induce its proteolytic release with therapeutic potential in neurodegenerative proteinopathies. SCIENCE ADVANCES 2021; 7:eabj1826. [PMID: 34818048 PMCID: PMC8612689 DOI: 10.1126/sciadv.abj1826] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/20/2021] [Indexed: 05/07/2023]
Abstract
The prion protein (PrPC) is a central player in neurodegenerative diseases, such as prion diseases or Alzheimer’s disease. In contrast to disease-promoting cell surface PrPC, extracellular fragments act neuroprotective by blocking neurotoxic disease-associated protein conformers. Fittingly, PrPC release by the metalloprotease ADAM10 represents a protective mechanism. We used biochemical, cell biological, morphological, and structural methods to investigate mechanisms stimulating this proteolytic shedding. Shed PrP negatively correlates with prion conversion and is markedly redistributed in murine brain in the presence of prion deposits or amyloid plaques, indicating a sequestrating activity. PrP-directed ligands cause structural changes in PrPC and increased shedding in cells and organotypic brain slice cultures. As an exception, some PrP-directed antibodies targeting repetitive epitopes do not cause shedding but surface clustering, endocytosis, and degradation of PrPC. Both mechanisms may contribute to beneficial actions described for PrP-directed ligands and pave the way for new therapeutic strategies against currently incurable neurodegenerative diseases.
Collapse
Affiliation(s)
- Luise Linsenmeier
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Karl Frontzek
- Institute of Neuropathology, University of Zurich, Zürich, Switzerland
| | - Julia Bär
- Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Molecular Neurobiology Hamburg (ZMNH), UKE, Hamburg, Germany
| | - Amulya N. Shrivastava
- École Normale Supérieure, Institut de Biologie de l’ENS (IBENS), INSERM, CNRS, PSL Research University, Paris, France
| | - Markus Damme
- Institute of Biochemistry, Christian Albrechts University, Kiel, Germany
| | - Feizhi Song
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Alexander Schwarz
- Institute of Nanostructure and Solid State Physics, Universität Hamburg, Hamburg, Germany
| | - Stefano Da Vela
- European Molecular Biology Laboratory (EMBL), Hamburg, Germany
| | - Tania Massignan
- Dulbecco Telethon Laboratory of Prions and Amyloids, CIBIO, University of Trento, Trento, Italy
| | - Sebastian Jung
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Angela Correia
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Berta Puig
- Department of Neurology, Experimental Research in Stroke and Inflammation, UKE, Hamburg, Germany
| | - Simone Hornemann
- Institute of Neuropathology, University of Zurich, Zürich, Switzerland
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| | - Emiliano Biasini
- Dulbecco Telethon Laboratory of Prions and Amyloids, CIBIO, University of Trento, Trento, Italy
| | - Paul Saftig
- Institute of Biochemistry, Christian Albrechts University, Kiel, Germany
| | | | - Dmitri Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg, Germany
| | - Ladan Amin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Federica Mazzola
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Luca Varani
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Simrika Thapa
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada
| | - Sabine Gilch
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada
| | - Hermann Schätzl
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada
| | - David A. Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Antoine Triller
- École Normale Supérieure, Institut de Biologie de l’ENS (IBENS), INSERM, CNRS, PSL Research University, Paris, France
| | - Marina Mikhaylova
- Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Molecular Neurobiology Hamburg (ZMNH), UKE, Hamburg, Germany
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zürich, Switzerland
| | - Hermann C. Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
44
|
Irizarry BA, Davis J, Zhu X, Boon BDC, Rozemuller AJM, Van Nostrand WE, Smith SO. Human cerebral vascular amyloid contains both antiparallel and parallel in-register Aβ40 fibrils. J Biol Chem 2021; 297:101259. [PMID: 34599967 PMCID: PMC8528725 DOI: 10.1016/j.jbc.2021.101259] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 09/19/2021] [Accepted: 09/27/2021] [Indexed: 01/02/2023] Open
Abstract
The accumulation of fibrillar amyloid-β (Aβ) peptides alongside or within the cerebral vasculature is the hallmark of cerebral amyloid angiopathy (CAA). This condition commonly co-occurs with Alzheimer's disease (AD) and leads to cerebral microbleeds, intracranial hemorrhages, and stroke. CAA also occurs sporadically in an age-dependent fashion and can be accelerated by the presence of familial Aβ mutant peptides. Recent studies using Fourier transform infrared (FTIR) spectroscopy of vascular Aβ fibrils derived from rodents containing the double E22Q/D23N mutations indicated the presence of a novel antiparallel β-sheet structure. To address whether this structure is associated solely with the familial mutations or is a common feature of CAA, we propagated Aβ fibrils from human brain vascular tissue of patients diagnosed with nonfamilial CAA. Aβ fibrils were isolated from cerebral blood vessels using laser capture microdissection in which specific amyloid deposits were removed from thin slices of the brain tissue. Transmission electron microscopy revealed that these deposits were organized into a tight meshwork of fibrils, which FTIR measurements showed could serve as seeds to propagate the growth of Aβ40 fibrils for structural studies. Solid-state NMR measurements of the fibrils propagated from vascular amyloid showed they contained a mixture of parallel, in-register, and antiparallel β-sheet structures. The presence of fibrils with antiparallel structure derived from vascular amyloid is distinct from the typical parallel, in-register β-sheet structure that appears in fibrils derived from parenchymal amyloid in AD. These observations reveal that different microenvironments influence the structures of Aβ fibrils in the human brain.
Collapse
Affiliation(s)
- Brandon A Irizarry
- Center for Structural Biology, Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | - Judianne Davis
- George and Anne Ryan Institute for Neuroscience, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Xiaoyue Zhu
- George and Anne Ryan Institute for Neuroscience, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Baayla D C Boon
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC - VUmc, Amsterdam, the Netherlands; Department of Pathology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC - VUmc, Amsterdam, the Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC - VUmc, Amsterdam, the Netherlands
| | - William E Van Nostrand
- George and Anne Ryan Institute for Neuroscience, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Steven O Smith
- Center for Structural Biology, Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA.
| |
Collapse
|
45
|
Perosa V, Scherlek AA, Kozberg MG, Smith L, Westerling-Bui T, Auger CA, Vasylechko S, Greenberg SM, van Veluw SJ. Deep learning assisted quantitative assessment of histopathological markers of Alzheimer's disease and cerebral amyloid angiopathy. Acta Neuropathol Commun 2021; 9:141. [PMID: 34419154 PMCID: PMC8380352 DOI: 10.1186/s40478-021-01235-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022] Open
Abstract
Traditionally, analysis of neuropathological markers in neurodegenerative diseases has relied on visual assessments of stained sections. Resulting semiquantitative scores often vary between individual raters and research centers, limiting statistical approaches. To overcome these issues, we have developed six deep learning-based models, that identify some of the most characteristic markers of Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA). The deep learning-based models are trained to differentially detect parenchymal amyloid β (Aβ)-plaques, vascular Aβ-deposition, iron and calcium deposition, reactive astrocytes, microglia, as well as fibrin extravasation. The models were trained on digitized histopathological slides from brains of patients with AD and CAA, using a workflow that allows neuropathology experts to train convolutional neural networks (CNNs) on a cloud-based graphical interface. Validation of all models indicated a very good to excellent performance compared to three independent expert human raters. Furthermore, the Aβ and iron models were consistent with previously acquired semiquantitative scores in the same dataset and allowed the use of more complex statistical approaches. For example, linear mixed effects models could be used to confirm the previously described relationship between leptomeningeal CAA severity and cortical iron accumulation. A similar approach enabled us to explore the association between neuroinflammation and disparate Aβ pathologies. The presented workflow is easy for researchers with pathological expertise to implement and is customizable for additional histopathological markers. The implementation of deep learning-assisted analyses of histopathological slides is likely to promote standardization of the assessment of neuropathological markers across research centers, which will allow specific pathophysiological questions in neurodegenerative disease to be addressed in a harmonized way and on a larger scale.
Collapse
|
46
|
Sato K, Watamura N, Fujioka R, Mihira N, Sekiguchi M, Nagata K, Ohshima T, Saito T, Saido TC, Sasaguri H. A third-generation mouse model of Alzheimer's disease shows early and increased cored plaque pathology composed of wild-type human amyloid β peptide. J Biol Chem 2021; 297:101004. [PMID: 34329683 PMCID: PMC8397900 DOI: 10.1016/j.jbc.2021.101004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/22/2021] [Indexed: 01/22/2023] Open
Abstract
We previously developed single App knock-in mouse models of Alzheimer's disease (AD) harboring the Swedish and Beyreuther/Iberian mutations with or without the Arctic mutation (AppNL-G-F and AppNL-F mice, respectively). These models showed Aβ pathology, neuroinflammation, and cognitive impairment in an age-dependent manner. The former model exhibits extensive pathology as early as 6 months, but is unsuitable for investigating Aβ metabolism and clearance because the Arctic mutation renders Aβ resistant to proteolytic degradation and prone to aggregation. In particular, it is inapplicable to preclinical immunotherapy studies due to its discrete affinity for anti-Aβ antibodies. The latter model may take as long as 18 months for the pathology to become prominent, which leaves an unfulfilled need for an Alzheimer's disease animal model that is both swift to show pathology and useful for antibody therapy. We thus utilized mutant Psen1 knock-in mice into which a pathogenic mutation (P117L) had been introduced to generate a new model that exhibits early deposition of wild-type human Aβ by crossbreeding the AppNL-F line with the Psen1P117L/WT line. We show that the effects of the pathogenic mutations in the App and Psen1 genes are additive or synergistic. This new third-generation mouse model showed more cored plaque pathology and neuroinflammation than AppNL-G-F mice and will help accelerate the development of disease-modifying therapies to treat preclinical AD.
Collapse
Affiliation(s)
- Kaori Sato
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, Japan; Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, Shinjuku, Tokyo, Japan
| | - Naoto Watamura
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Ryo Fujioka
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Naomi Mihira
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Misaki Sekiguchi
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Kenichi Nagata
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toshio Ohshima
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, Shinjuku, Tokyo, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, Japan.
| | - Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, Japan.
| |
Collapse
|
47
|
Thomsen BB, Madsen C, Krohn KT, Thygesen C, Schütt T, Metaxas A, Darvesh S, Agerholm JS, Wirenfeldt M, Berendt M, Finsen B. Mild Microglial Responses in the Cortex and Perivascular Macrophage Infiltration in Subcortical White Matter in Dogs with Age-Related Dementia Modelling Prodromal Alzheimer's Disease. J Alzheimers Dis 2021; 82:575-592. [PMID: 34057083 PMCID: PMC8385501 DOI: 10.3233/jad-210040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: Microglia contribute to Alzheimer’s disease (AD) pathogenesis by clearing amyloid-β (Aβ) and driving neuroinflammation. Domestic dogs with age-related dementia (canine cognitive dysfunction (CCD)) develop cerebral amyloidosis like humans developing AD, and studying such dogs can provide novel information about microglial response in prodromal AD. Objective: The aim was to investigate the microglial response in the cortical grey and the subcortical white matter in dogs with CCD versus age-matched cognitively normal dogs. Methods: Brains from aged dogs with CCD and age-matched controls without dementia were studied. Cases were defined by dementia rating score. Brain sections were stained for Aβ, thioflavin S, hyperphosphorylated tau, and the microglial-macrophage ionized calcium binding adaptor molecule 1 (Iba1). Results were correlated to dementia rating score and tissue levels of Aβ. Results: Microglial numbers were higher in the Aβ plaque-loaded deep cortical layers in CCD versus control dogs, while the coverage by microglial processes were comparable. Aβ plaques were of the diffuse type and without microglial aggregation. However, a correlation was found between the %Iba1 area and insoluble Aβ 42 and N-terminal pyroglutamate modified Aβ(N3pE)-42. The %Iba1 area was higher in white matter, showing phosphorylation of S396 tau, versus grey matter. Perivascular macrophage infiltrates were abundant in the white matter particularly in CDD dogs. Conclusion: The results from this study of the microglial-macrophage response in dogs with CCD are suggestive of relatively mild microglial responses in the Aβ plaque-loaded deep cortical layers and perivascular macrophage infiltrates in the subcortical white matter, in prodromal AD.
Collapse
Affiliation(s)
- Barbara Blicher Thomsen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Madsen
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,BRIDGE: Brain Research-Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Katrine Tækker Krohn
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,BRIDGE: Brain Research-Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Camilla Thygesen
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,BRIDGE: Brain Research-Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Trine Schütt
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Athanasios Metaxas
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,BRIDGE: Brain Research-Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,School of Science, Department of Life Sciences, European University Cyprus, Nicosia, Cyprus
| | - Sultan Darvesh
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada.,Division of Neurology and Geriatric Medicine, Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Jørgen Steen Agerholm
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Wirenfeldt
- BRIDGE: Brain Research-Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Pathology, Institute of Clinical Science, Odense University Hospital, Odense, Denmark
| | - Mette Berendt
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Finsen
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,BRIDGE: Brain Research-Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
48
|
Multimodal, label-free fluorescence and Raman imaging of amyloid deposits in snap-frozen Alzheimer's disease human brain tissue. Commun Biol 2021; 4:474. [PMID: 33859370 PMCID: PMC8050064 DOI: 10.1038/s42003-021-01981-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 03/11/2021] [Indexed: 02/02/2023] Open
Abstract
Alzheimer's disease (AD) neuropathology is characterized by hyperphosphorylated tau containing neurofibrillary tangles and amyloid-beta (Aβ) plaques. Normally these hallmarks are studied by (immuno-) histological techniques requiring chemical pretreatment and indirect labelling. Label-free imaging enables one to visualize normal tissue and pathology in its native form. Therefore, these techniques could contribute to a better understanding of the disease. Here, we present a comprehensive study of high-resolution fluorescence imaging (before and after staining) and spectroscopic modalities (Raman mapping under pre-resonance conditions and stimulated Raman scattering (SRS)) of amyloid deposits in snap-frozen AD human brain tissue. We performed fluorescence and spectroscopic imaging and subsequent thioflavin-S staining of the same tissue slices to provide direct confirmation of plaque location and correlation of spectroscopic biomarkers with plaque morphology; differences were observed between cored and fibrillar plaques. The SRS results showed a protein peak shift towards the β-sheet structure in cored amyloid deposits. In the Raman maps recorded with 532 nm excitation we identified the presence of carotenoids as a unique marker to differentiate between a cored amyloid plaque area versus a non-plaque area without prior knowledge of their location. The observed presence of carotenoids suggests a distinct neuroinflammatory response to misfolded protein accumulations.
Collapse
|
49
|
Trujillo-Estrada L, Sanchez-Mejias E, Sanchez-Varo R, Garcia-Leon JA, Nuñez-Diaz C, Davila JC, Vitorica J, LaFerla FM, Moreno-Gonzalez I, Gutierrez A, Baglietto-Vargas D. Animal and Cellular Models of Alzheimer's Disease: Progress, Promise, and Future Approaches. Neuroscientist 2021; 28:572-593. [PMID: 33769131 DOI: 10.1177/10738584211001753] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disease affecting over 45 million people worldwide. Transgenic mouse models have made remarkable contributions toward clarifying the pathophysiological mechanisms behind the clinical manifestations of AD. However, the limited ability of these in vivo models to accurately replicate the biology of the human disease have precluded the translation of promising preclinical therapies to the clinic. In this review, we highlight several major pathogenic mechanisms of AD that were discovered using transgenic mouse models. Moreover, we discuss the shortcomings of current animal models and the need to develop reliable models for the sporadic form of the disease, which accounts for the majority of AD cases, as well as human cellular models to improve success in translating results into human treatments.
Collapse
Affiliation(s)
- Laura Trujillo-Estrada
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Elisabeth Sanchez-Mejias
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Raquel Sanchez-Varo
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Antonio Garcia-Leon
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Cristina Nuñez-Diaz
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jose Carlos Davila
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Javier Vitorica
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Frank M LaFerla
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA.,Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Ines Moreno-Gonzalez
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonia Gutierrez
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - David Baglietto-Vargas
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
50
|
Graff-Radford J, Yong KXX, Apostolova LG, Bouwman FH, Carrillo M, Dickerson BC, Rabinovici GD, Schott JM, Jones DT, Murray ME. New insights into atypical Alzheimer's disease in the era of biomarkers. Lancet Neurol 2021; 20:222-234. [PMID: 33609479 PMCID: PMC8056394 DOI: 10.1016/s1474-4422(20)30440-3] [Citation(s) in RCA: 322] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
Most patients with Alzheimer's disease present with amnestic problems; however, a substantial proportion, over-represented in young-onset cases, have atypical phenotypes including predominant visual, language, executive, behavioural, or motor dysfunction. In the past, these individuals often received a late diagnosis; however, availability of CSF and PET biomarkers of Alzheimer's disease pathologies and incorporation of atypical forms of Alzheimer's disease into new diagnostic criteria increasingly allows them to be more confidently diagnosed early in their illness. This early diagnosis in turn allows patients to be offered tailored information, appropriate care and support, and individualised treatment plans. These advances will provide improved access to clinical trials, which often exclude atypical phenotypes. Research into atypical Alzheimer's disease has revealed previously unrecognised neuropathological heterogeneity across the Alzheimer's disease spectrum. Neuroimaging, genetic, biomarker, and basic science studies are providing key insights into the factors that might drive selective vulnerability of differing brain networks, with potential mechanistic implications for understanding typical late-onset Alzheimer's disease.
Collapse
Affiliation(s)
| | - Keir X. X. Yong
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Liana G. Apostolova
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Femke H. Bouwman
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam University Medical Center
| | | | - Bradford C. Dickerson
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gil D. Rabinovici
- Departments of Neurology, Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Jonathan M. Schott
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - David T. Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|