1
|
Bando Y, Nagasaka A, Onozawa G, Sakiyama K, Owada Y, Amano O. Integrin expression and extracellular matrix adhesion of septoclasts, pericytes, and endothelial cells at the chondro-osseous junction and the metaphysis of the proximal tibia in young mice. J Anat 2023; 242:831-845. [PMID: 36602038 PMCID: PMC10093157 DOI: 10.1111/joa.13820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
We previously reported that septoclasts, which are uncalcified growth plate (GP) cartilage matrix-resorbing cells, are derived from pericytes surrounding capillary endothelial cells. Resorption of the GP is assumed to be regulated synchronously by septoclasts, pericytes, and endothelial cells. To reveal the contribution of the extracellular matrix (ECM) to the regulatory mechanisms of septoclastic cartilage resorption, we investigated the spatial correlation between the cells and the ECM in the GP matrix and basement membrane (BM) and investigated the expression of integrins-ECM receptors-in the cells. Septoclasts attached to the transverse septa containing collagen-II/-X at the tip of their processes and to the longitudinal septa containing collagen-II/-X at the spine-like processes extending from their bodies and processes. Collagen-IV and laminin α4 in the BM were sparsely detected between septoclasts and capillary endothelial cells at the chondro-osseous junction (COJ) and were absent in the outer surface of pericytes at the metaphysis. Integrin α1/α2, integrin α1, and integrin α2/α6 were detected in the cell membranes of septoclasts, pericytes, and endothelial cells, respectively. These results suggest that the adhesion between septoclasts and the cartilage ECM forming the scaffolds for cartilage resorption and migration is provided by integrin α2-collagen-II/-X interaction and that the adhesions between the BM and pericytes or endothelial cells are mediated by integrin α1-collagen-IV and integrin α2/α6-laminin interaction, respectively.
Collapse
Affiliation(s)
- Yasuhiko Bando
- Division of HistologyMeikai University School of DentistrySaitamaJapan
| | - Arata Nagasaka
- Division of HistologyMeikai University School of DentistrySaitamaJapan
| | - Go Onozawa
- Division of HistologyMeikai University School of DentistrySaitamaJapan
- Division of Oral and Maxillofacial SurgeryMeikai University School of DentistrySaitamaJapan
| | - Koji Sakiyama
- Division of AnatomyMeikai University School of DentistrySaitamaJapan
| | - Yuji Owada
- Department of Organ AnatomyTohoku University Graduate School of MedicineSendaiJapan
| | - Osamu Amano
- Division of HistologyMeikai University School of DentistrySaitamaJapan
| |
Collapse
|
2
|
Xu B, Chen L, Zhan Y, Marquez KNS, Zhuo L, Qi S, Zhu J, He Y, Chen X, Zhang H, Shen Y, Chen G, Gu J, Guo Y, Liu S, Xie T. The Biological Functions and Regulatory Mechanisms of Fatty Acid Binding Protein 5 in Various Diseases. Front Cell Dev Biol 2022; 10:857919. [PMID: 35445019 PMCID: PMC9013884 DOI: 10.3389/fcell.2022.857919] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
In recent years, fatty acid binding protein 5 (FABP5), also known as fatty acid transporter, has been widely researched with the help of modern genetic technology. Emerging evidence suggests its critical role in regulating lipid transport, homeostasis, and metabolism. Its involvement in the pathogenesis of various diseases such as metabolic syndrome, skin diseases, cancer, and neurological diseases is the key to understanding the true nature of the protein. This makes FABP5 be a promising component for numerous clinical applications. This review has summarized the most recent advances in the research of FABP5 in modulating cellular processes, providing an in-depth analysis of the protein's biological properties, biological functions, and mechanisms involved in various diseases. In addition, we have discussed the possibility of using FABP5 as a new diagnostic biomarker and therapeutic target for human diseases, shedding light on challenges facing future research.
Collapse
Affiliation(s)
- Binyue Xu
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yu Zhan
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Karl Nelson S. Marquez
- Clinical Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hankou, China
| | - Lvjia Zhuo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Shasha Qi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Jinyu Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Ying He
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xudong Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Hao Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yingying Shen
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Gongxing Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Jianzhong Gu
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yong Guo
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuiping Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
3
|
Sakashita H, Bando Y, Nagasaka A, Sakiyama K, Onozawa G, Taira F, Ogasawara Y, Owada Y, Sakashita H, Amano O. Spatial and chronological localization of septoclasts in the mouse Meckel's cartilage. Histochem Cell Biol 2022; 157:569-580. [PMID: 35195769 DOI: 10.1007/s00418-022-02085-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2022] [Indexed: 11/04/2022]
Abstract
Meckel's cartilage (MC) in the first branchial arch of mammals is a transient structure that disappears before birth, except for the most anterior and posterior portions. Recent studies reported that some congenital abnormalities in craniofacial regions are linked with the persistence or dysplasia of MC. However, the mechanisms underlying the resorption of MC have not been elucidated. Cartilage resorption in endochondral ossification is performed by multinuclear osteoclasts/chondroclasts as well as mononuclear septoclasts, which were newly added to the list of cartilage phagocytes. Septoclasts located exclusively at the chondro-osseous junction of the growth plate resorb the uncalcified cartilage matrix. We hypothesized that septoclasts participate in the resorption of MC and attempted to clarify the localization and roles of septoclasts in MC of mouse using a specific immunohistochemistry marker, epidermal type-fatty acid-binding protein (E-FABP/FABP5). E-FABP-immunopositive septoclasts were detected for the first time at the beginning of MC resorption and localized along the resorption surface. Septoclasts of MC in embryonic mice possessed several processes that elongated toward the uncalcified cartilage matrix, expressed cathepsin B, and exhibited characteristic pericapillary localization. Additionally, they localized between hypertrophied cartilage and osteoclasts/chondroclasts in the resorption surface. Confocal laser-scanning microscopy revealed a decrease in the numbers of septoclasts and their processes with the progression of MC disappearance before birth. The present study showed that E-FABP-immunopositive septoclasts participated in the disappearance of MC through the resorption of the uncalcified cartilage matrix and that they have different roles from osteoclasts/chondroclasts.
Collapse
Affiliation(s)
- Hide Sakashita
- Division of Anatomy/Histology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan.,Division of Oral and Maxillofacial Surgery, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan
| | - Yasuhiko Bando
- Division of Anatomy/Histology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan
| | - Arata Nagasaka
- Division of Anatomy/Histology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan
| | - Koji Sakiyama
- Division of Anatomy/Histology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan
| | - Go Onozawa
- Division of Anatomy/Histology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan.,Division of Oral and Maxillofacial Surgery, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan
| | - Fuyoko Taira
- Division of Anatomy/Histology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan.,Division of Oral and Maxillofacial Surgery, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan
| | - Yudai Ogasawara
- Division of Anatomy/Histology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan.,Division of Oral and Maxillofacial Surgery, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 9808575, Japan
| | - Hideaki Sakashita
- Division of Oral and Maxillofacial Surgery, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan
| | - Osamu Amano
- Division of Anatomy/Histology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan.
| |
Collapse
|
4
|
Yamamoto Y, Owada Y. Possible involvement of fatty acid binding proteins in psychiatric disorders. Anat Sci Int 2021; 96:333-342. [PMID: 33604770 DOI: 10.1007/s12565-020-00598-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/26/2020] [Indexed: 12/19/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are essential for brain development and function. Increasing evidence has shown that an imbalance of PUFAs is associated with various human psychiatric disorders, including autism and schizophrenia. However, the mechanisms underlying the effects of PUFAs on brain functions at cellular and molecular levels remain unclear. Since PUFAs are insoluble in water, specific transporters are required to deliver PUFAs to appropriate intracellular compartments. Fatty acid-binding proteins (FABPs), the cellular chaperones of PUFAs, are involved in PUFA intracellular trafficking, signal transduction, and gene transcription. Therefore, we focused on the relationship between FABP-regulated PUFA homeostasis in the brain and neuronal plasticity. The authors previously reported that FABP3, which preferentially binds to n-6 PUFAs, is strongly expressed in the gamma-aminobutyric acid (GABAergic) inhibitory interneurons of the adult mouse anterior cingulate cortex (ACC), which is a component of the limbic cortex and is important for the coordination of cognitive and emotional behaviors. Interestingly, Fabp3 KO mice show increased GABA synthesis and abnormal excitatory/inhibitory balance in the ACC. In addition, studies have indicated that FABP7, which preferentially binds to n-3 PUFAs, controls lipid raft function in astrocytes, and astrocytic Fabp7 deficiency results in an altered response of astrocytes to external stimuli. Furthermore, Fabp7 KO mice exhibit aberrant dendritic morphology, and decreased spine density and excitatory synaptic transmission in pyramidal neurons. This review summarizes relationship between PUFAs or FABPs and human psychiatric disorders and discusses recent progress in elucidating the function of FABPs, especially FABP3 and 7, in the brain.
Collapse
Affiliation(s)
- Yui Yamamoto
- Department of Organ Anatomy, Tohoku University, Seiryo-machi Aoba-ku, Sendai, 980-8575, Japan. .,Department of Anatomy, Tohoku Medical and Pharmaceutical University, Fukumuro Miyagino-ku, Sendai, 980-8578, Japan.
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University, Seiryo-machi Aoba-ku, Sendai, 980-8575, Japan
| |
Collapse
|
5
|
The impact of metabolic reprogramming on dendritic cell function. Int Immunopharmacol 2018; 63:84-93. [PMID: 30075432 DOI: 10.1016/j.intimp.2018.07.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) are antigen-presenting cells with the ability to activate naïve T cells and direct the adaptive cellular immune response toward a specific profile. This is important, as different pathogens demand specific "profiles" of immune responses for their elimination. Such a goal is achieved depending on the maturation/activation status of DCs by the time of antigen presentation to T cells. Notwithstanding this, recent studies have shown that DCs alter their metabolic program to accommodate the functional changes in gene expression and protein synthesis that follow antigen recognition. In this review, we aim to summarize the data in the literature regarding the metabolic pathways involved with DC phenotypes and their functions.
Collapse
|
6
|
Bando Y, Yamamoto M, Sakiyama K, Inoue K, Takizawa S, Owada Y, Iseki S, Kondo H, Amano O. Expression of epidermal fatty acid binding protein (E-FABP) in septoclasts in the growth plate cartilage of mice. J Mol Histol 2014; 45:507-18. [PMID: 24879443 DOI: 10.1007/s10735-014-9576-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/21/2014] [Indexed: 12/25/2022]
Abstract
n-3 Polyunsaturated fatty acids play a role in regulating the growth of the long bones. Fatty acid-binding proteins (FABPs) bind and transport hydrophobic long-chain fatty acids intracellularly, and epidermal-type FABP (E-FABP) has an affinity for n-3 fatty acids. This study aimed to clarify the localization of E-FABP in the growth plate of the mouse tibia. At the chondro-osseous junction (COJ) of the growth plate, E-FABP-immunoreactivity was exclusively localized in mononuclear, spindle-shaped cells with several long processes. These E-FABP-immunoreactive cells were identified as being septoclasts, i.e., cells that resorb uncalcified transverse septa. The processes of these immunoreactive septoclasts terminated between the longitudinal and transverse septa. E-FABP-immunoreactivity was found in the entire cytoplasm and on the mitochondrial outer membrane. In ontogeny, immunoreactive septoclasts were observed immediately after emergence of the primary ossifying center and were distributed not only at the COJ but also in the metaphysis near the COJ. The number of septoclasts increased at the postnatal age of 1 week (P1w)-P2w, and thereafter gradually decreased; and the cells became concentrated at the COJ after P3w-P4w. The immunoreactivity for peroxisome proliferator-activated receptor (PPAR)β/δ was detected in these E-FABP-immunoreactive septoclasts. The present results suggest that fatty acids, preferably n-3 ones, are intracellularly transported by E-FABP to various targets, including mitochondria and nucleus, in which PPARβ/δ may play functional roles in the transcriptional regulation of genes involved in the endochondral ossification.
Collapse
Affiliation(s)
- Yasuhiko Bando
- Division of Anatomy, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 3500283, Japan,
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Cheng L, Jin XK, Li WW, Li S, Guo XN, Wang J, Gong YN, He L, Wang Q. Fatty acid binding proteins FABP9 and FABP10 participate in antibacterial responses in Chinese mitten crab, Eriocheir sinensis. PLoS One 2013; 8:e54053. [PMID: 23365646 PMCID: PMC3554701 DOI: 10.1371/journal.pone.0054053] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 12/05/2012] [Indexed: 12/12/2022] Open
Abstract
Invertebrates rely solely on the innate immune system for defense against pathogens and other stimuli. Fatty acid binding proteins (FABP), members of the lipid binding proteins superfamily, play a crucial role in fatty acid transport and lipid metabolism and are also involved in gene expression induced by fatty acids. In the vertebrate immune system, FABP is involved in inflammation regulated by fatty acids through its interaction with peroxidase proliferator activate receptors (PPARs). However, the immune functions of FABP in invertebrates are not well characterized. For this reason, we investigated the immune functionality of two fatty acid binding proteins, Es-FABP9 and Es-FABP10, following lipopolysaccharide (LPS) challenge in the Chinese mitten crab (Eriocheir sinensis). An obvious variation in the expression of Es-FABP9 and Es-FABP10 mRNA in E. sinensis was observed in hepatopancreas, gills, and hemocytes post-LPS challenge. Recombinant proteins rEs-FABP9 and rEs-FABP10 exhibited distinct bacterial binding activity and bacterial agglutination activity against Escherichia coli and Staphylococcus aureus. Furthermore, bacterial growth inhibition assays demonstrated that rEs-FABP9 responds positively to the growth inhibition of Vibrio parahaemolyticuss and S. aureus, while rEs-FABP10 responds positively to the growth inhibition of Aeromonas hydrophila and Bacillus subtilis. Coating of agarose beads with recombinant rEs-FABP9 and rEs-FABP10 dramatically enhanced encapsulation of the beads by crab hemocytes in vitro. In conclusion, the data presented here demonstrate the participation of these two lipid metabolism-related proteins in the innate immune system of E. sinensis.
Collapse
Affiliation(s)
| | | | | | - Shuang Li
- School of Life Science, East China Normal University, Shanghai, China
| | - Xiao-Nv Guo
- School of Life Science, East China Normal University, Shanghai, China
| | - Juan Wang
- School of Life Science, East China Normal University, Shanghai, China
| | - Ya-Nan Gong
- School of Life Science, East China Normal University, Shanghai, China
| | - Lin He
- School of Life Science, East China Normal University, Shanghai, China
| | - Qun Wang
- School of Life Science, East China Normal University, Shanghai, China
- * E-mail:
| |
Collapse
|
8
|
Adachi Y, Hiramatsu S, Tokuda N, Sharifi K, Ebrahimi M, Islam A, Kagawa Y, Koshy Vaidyan L, Sawada T, Hamano K, Owada Y. Fatty acid-binding protein 4 (FABP4) and FABP5 modulate cytokine production in the mouse thymic epithelial cells. Histochem Cell Biol 2012; 138:397-406. [PMID: 22585040 DOI: 10.1007/s00418-012-0963-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2012] [Indexed: 12/11/2022]
Abstract
Thymic stromal cells, including cortical thymic epithelial cells (cTEC) produce many humoral factors, such as cytokines and eicosanoids to modulate thymocyte homeostasis, thereby regulating the peripheral immune responses. In this study, we identified fatty acid-binding protein (FABP4), an intracellular fatty acid chaperone, in the mouse thymus, and examined its role in the control of cytokine production in comparison with FABP5. By immunofluorescent staining, FABP4(+) cells enclosing the thymocytes were scattered throughout the thymic cortex with a spatial difference from the FABP5(+) cell that were distributed widely throughout the cTEC. The FABP4(+) cells were immunopositive for MHC class II, NLDC145 and cytokeratin 8, and were identified as part of cTEC. The FABP4(+) cells were identified as thymic nurse cells (TNC), a subpopulation of cTEC, by their active phagocytosis of apoptotic thymocytes. Furthermore, FABP4 expression was confirmed in the isolated TNC at the gene and protein levels. To explore the function of FABP in TNC, TSt-4/DLL1 cells stably expressing either FABP4 or FABP5 were established and the gene expressions of various cytokines were examined. The gene expression of interleukin (IL)-7 and IL-18 was increased both in FABP4 and FABP5 over-expressing cells compared with controls, and moreover, the increase in their expressions by adding of stearic acids was significantly enhanced in the FABP4 over-expressing cells. These data suggest that both FABPs are involved in the maintenance of T lymphocyte homeostasis through the modulation of cytokine production, which is possibly regulated by cellular fatty acid-mediated signaling in TEC, including TNC.
Collapse
Affiliation(s)
- Yasuhiro Adachi
- Department of Organ Anatomy, Graduate School of Medicine, Yamaguchi University, 1-1-1, Minami-kogushi, Ube, Yamaguchi 755-8505, Japan,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Tokuda N, Adachi T, Adachi Y, Higashi M, Sharifi K, Tuerxun T, Sawada T, Kondo H, Owada Y. Identification of FABP7 in fibroblastic reticular cells of mouse lymph nodes. Histochem Cell Biol 2010; 134:445-52. [PMID: 21042809 DOI: 10.1007/s00418-010-0754-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2010] [Indexed: 02/03/2023]
Abstract
Fatty acids and their metabolites regulate immune cell function. The present study was undertaken to examine the detailed distribution of fatty acid binding proteins (FABPs), the cytosolic chaperones of fatty acids, in mouse peripheral immune organs. Using immunohistochemistry, FABP7 was localized to the alpha-smooth muscle actin (SMA)(+) fibroblastic reticular cells, which construct the stromal reticula in the T cell areas of the peripheral lymph nodes and spleen. Immunoelectron microscopy showed that FABP7(+) cells enclosed the collagen fibers, forming a conduit system, which transport lymph and associated low-molecular-mass proteins. In contrast, FABP5(+) cells were distributed throughout the lymph node and contained well-developed lysosome and phagocytic materials within the cytoplasm. The mesenteric lymph nodes of FABP7 knockout mice showed normal histological features, but the percentage of CD4(+) cells was significantly increased compared with that in wild-type mice. These data indicate that FABP7 may be involved in T cell homeostasis, possibly by modulating lipid metabolism in fibroblastic reticular cells within the peripheral lymph nodes.
Collapse
Affiliation(s)
- Nobuko Tokuda
- Department of Organ Anatomy, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Suzuki R, Nourani MR, Saino-Saito S, Abe H, Nochi T, Kiyono H, Spener F, Kondo H, Owada Y. Localization of fatty acid binding protein of epidermal type common to dendritic cells and presumptive macrophages in Peyer's patches and epithelial M cells of mouse intestine. Histochem Cell Biol 2009; 132:577-84. [PMID: 19787366 DOI: 10.1007/s00418-009-0638-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2009] [Indexed: 01/08/2023]
Abstract
Fatty acid binding protein of epidermal type (E-FABP) was expressed/localized in most, if not all, populations of the dendritic cells in the subepithelial domes, follicles and interfollicular regions of Peyer's patches and presumptive macrophages in their germinal centers, and all M cells in the follicle-associated epithelium of mouse intestine. The immunoreactivity in both of the cell populations makes it easy to recognize the accumulation of DCs in the subepithelial domes in close proximity to the base of M cells, which is essential for luminal antigens to be transported to Peyer's patches. E-FABP may play some important roles in the mucosal immune reaction through Peyer's patches and associated structures.
Collapse
Affiliation(s)
- Ryoji Suzuki
- Department of Anatomy, Akita University Graduate School of Medicine, 1-1-1, Hondo, Akita, 010-8543, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yamamoto N, Kaneko I, Motohashi K, Sakagami H, Adachi Y, Tokuda N, Sawada T, Furukawa H, Ueyama Y, Fukunaga K, Ono M, Kondo H, Owada Y. Fatty acid-binding protein regulates LPS-induced TNF-alpha production in mast cells. Prostaglandins Leukot Essent Fatty Acids 2008; 79:21-6. [PMID: 18678477 DOI: 10.1016/j.plefa.2008.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 05/30/2008] [Accepted: 06/28/2008] [Indexed: 01/09/2023]
Abstract
There has been increasing evidence for the involvement of fatty acid-binding proteins (FABPs) in the cytokine production of macrophages and dendritic cells probably through the control of cellular lipid metabolism and signal transduction. Since mast cells (MCs) are recently shown to be involved in immune response through modification of cytokine production, it is possible that some FABPs could also be involved in the immune response of MCs. In this study, we found that epidermal-type FABP (E-FABP) was expressed in murine bone marrow-derived MCs (BMMCs). Using BMMCs from genetically E-FABP-null mutated mice, we demonstrated that E-FABP in BMMCs plays a key role in the production of TNF-alpha following lipopolysaccharide (LPS) stimulation. In the in vivo septic peritonitis model (cecal ligation and puncture model), E-FABP-null mice showed a significantly increased mortality compared to wild-type mice. However, no significant difference in antigen-induced cytokine production was observed between wild-type and E-FABP-null BMMCs, and systemic anaphylaxis was equally induced in vivo in both wild-type and E-FABP-null mice. These results suggest that E-FABP is specifically involved in the LPS-induced cytokine production of MCs, and could play a role in the host-defense against bacterial infection, possibly through regulation of TNF-alpha production.
Collapse
Affiliation(s)
- Noriko Yamamoto
- Department of Organ Anatomy, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami Kogushi, Ube 755-8505, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Owada Y. Fatty acid binding protein: localization and functional significance in the brain. TOHOKU J EXP MED 2008; 214:213-20. [PMID: 18323691 DOI: 10.1620/tjem.214.213] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Long chain fatty acids are important nutrients for brain development and function. However, the molecular basis of their actions in the brain is still to be clarified. Fatty acid-binding proteins (FABPs) belong to the multigene family of the intracellular lipid-binding protein. FABPs bind to long chain fatty acids, being involved in the promotion of cellular uptake and transport of fatty acids, the targeting of fatty acids to specific metabolic pathways, and the regulation of gene expression. FABPs are widely expressed in mammalian tissues, with distinct expression patterns for the individual protein. Although FABPs have been implicated to serve as regulators in systemic cellular metabolic pathways, recent studies have demonstrated the ability of FABPs to regulate functions of the brain, one of the most fat-enriched tissues in the body. This review summarizes the localization of FABPs in the brain, and recent progress in elucidating the function of FABPs in the brain.
Collapse
Affiliation(s)
- Yuji Owada
- Department of Organ Anatomy, Yamaguchi University Graduate School of Medicine.
| |
Collapse
|
13
|
Reynolds JM, Liu Q, Brittingham KC, Liu Y, Gruenthal M, Gorgun CZ, Hotamisligil GS, Stout RD, Suttles J. Deficiency of fatty acid-binding proteins in mice confers protection from development of experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2007; 179:313-21. [PMID: 17579051 DOI: 10.4049/jimmunol.179.1.313] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Fatty acid-binding proteins (FABPs) act as intracellular receptors for a variety of hydrophobic compounds, enabling their diffusion within the cytoplasmic compartment. Recent studies have demonstrated the ability of FABPs to simultaneously regulate metabolic and inflammatory pathways. We investigated the role of adipocyte FABP and epithelial FABP in the development of experimental autoimmune encephalomyelitis to test the hypothesis that these FABPs impact adaptive immune responses and contribute to the pathogenesis of autoimmune disease. FABP-deficient mice exhibited a lower incidence of disease, reduced clinical symptoms of experimental autoimmune encephalomyelitis and dramatically lower levels of proinflammatory cytokine mRNA expression in CNS tissue as compared with wild-type mice. In vitro Ag recall responses of myelin oligodendrocyte glycoprotein 35-55-immunized FABP(-/-) mice showed reduced proliferation and impaired IFN-gamma production. Dendritic cells deficient for FABPs were found to be poor producers of proinflammatory cytokines and Ag presentation by FABP(-/-) dendritic cells did not promote proinflammatory T cell responses. This study reveals that metabolic-inflammatory pathway cross-regulation by FABPs contributes to adaptive immune responses and subsequent autoimmune inflammation.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigen Presentation/genetics
- Antigen Presentation/immunology
- Brain/metabolism
- Brain/pathology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Disease Progression
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Fatty Acid-Binding Proteins/biosynthesis
- Fatty Acid-Binding Proteins/deficiency
- Fatty Acid-Binding Proteins/genetics
- Glycoproteins/administration & dosage
- Glycoproteins/immunology
- Inflammation Mediators/antagonists & inhibitors
- Inflammation Mediators/metabolism
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Macrophages/immunology
- Macrophages/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Molecular Sequence Data
- Myelin-Oligodendrocyte Glycoprotein
- Peptide Fragments/administration & dosage
- Peptide Fragments/immunology
- Spinal Cord/metabolism
- Spinal Cord/pathology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
- Joseph M Reynolds
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, 319 Abraham Flexner Way, Louisville, KY 40292, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abdelwahab SA, Owada Y, Kitanaka N, Adida A, Sakagami H, Ono M, Watanabe M, Spener F, Kondo H. Enhanced expression of adipocyte-type fatty acid binding protein in murine lymphocytes in response to dexamethasone treatment. Mol Cell Biochem 2007; 299:99-107. [PMID: 17111194 DOI: 10.1007/s11010-005-9050-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fatty acids have a great influence on the process of lymphocyte apoptosis which is considered as a modulating factor of immune response in both humans and animals. However the mechanism underlying the function of fatty acids in the process of lymphocyte apoptosis is not fully understood. In this study we show that the appearance of adipocyte-type fatty acid binding protein (A-FABP) is induced upon administration of dexamethasone (DEX) in both in vivo and cultured lymphocytes, and its distinct nuclear localization occurs in close relation to the DEX-induced apoptosis process. In immunohistochemistry of mouse spleen, A-FABP-immunoreactivity starts to occur 3 h after DEX stimulation, and it massively localizes in the nucleus 8 h after the treatment, while no A-FABP-immunoreactivity is discerned in the lymphocytes of normal as well as 24 h post-injection spleen. In the murine T-cell leukemia CTLL-2 cells, A-FABP-immunoreactivity is also induced in both of the cytoplasm and nucleus when the apoptosis is induced by IL-2 retrieval together with DEX treatment, while in the presence of IL-2 A-FABP-immunoreactivity is confined to the cytoplasm with DEX treatment. On the other hand, A-FABP-immunoreactivity is not detected by IL-2 retrieval alone. The present findings altogether suggest that A-FABP and its ligands, fatty acids, play an important role in the process of apoptosis and the immune modulation induced by DEX.
Collapse
Affiliation(s)
- Soha Abdelkawi Abdelwahab
- Division of Histology, Department of Cell Biology, Graduate School of Medical Science, Tohoku University, Tohoku, Sendai, 980-8575, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kushiro M, Takahashi Y, Ide T. Modulation of Cutaneous Fatty Acid-binding Protein mRNA Expression in Rat Adipose Tissues by Hereditary Obesity and Dietary Fats. J Oleo Sci 2007; 56:533-41. [PMID: 17898460 DOI: 10.5650/jos.56.533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cutaneous fatty acid-binding protein (C-FABP) is a member of the intracellular lipid-binding protein multigene family expressed in various tissues. A high level of C-FABP mRNA in adipose tissue has been reported, but its physiological significance in regulating adipose tissue function is not clear. To obtain insights into the role of C-FABP in adipose tissue, we studied the obesity-related and dietary fat-related changes of C-FABP mRNA expression in adipose tissues. C-FABP mRNA levels in interscapular brown adipose tissue, and epididymal and perirenal white adipose tissues were higher in Zucker fatty rats than in lean controls despite that the difference in brown adipose tissue was not significant. Fish oil compared to palm and safflower oils significantly reduced the mRNA level of C-FABP in brown adipose tissue and epididymal and perirenal white adipose tissues in Sprague-Dawley rats except for one occasion. Our study demonstrated that C-FABP is a protein whose mRNA expression is easily modified by hereditary obesity and the type of dietary fat. Therefore, C-FABP may play a significant role in regulating adipocyte function in response to changes in nutritional conditions.
Collapse
Affiliation(s)
- Masayo Kushiro
- Laboratory of Nutritional Function, Division of Food Functionality, National Food Research Institute, Tsukuba, Japan
| | | | | |
Collapse
|
16
|
Söderhäll I, Tangprasittipap A, Liu H, Sritunyalucksana K, Prasertsan P, Jiravanichpaisal P, Söderhäll K. Characterization of a hemocyte intracellular fatty acid-binding protein from crayfish (Pacifastacus leniusculus) and shrimp (Penaeus monodon). FEBS J 2006; 273:2902-12. [PMID: 16734719 DOI: 10.1111/j.1742-4658.2006.05303.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Intracellular fatty acid-binding proteins (FABPs) are small members of the superfamily of lipid-binding proteins, which occur in invertebrates and vertebrates. Included in this superfamily are the cellular retinoic acid-binding proteins and retinol-binding proteins, which seem to be restricted to vertebrates. Here, we report the cDNA cloning and characterization of two FABPs from hemocytes of the freshwater crayfish Pacifastacus leniusculus and the shrimp Penaeus monodon. In both these proteins, the binding triad residues involved in interaction with ligand carboxylate groups are present. From the sequence and homology modeling, the proteins are probably FABPs and not retinoic acid-binding proteins. The crayfish transcript (plFABP) was detected at high level in hemocytes, hepatopancreas, intestine and ovary and at low level in hematopoietic tissue and testis. Its expression in hematopoietic cells varied depending on the state of the crayfish from which it was isolated. Expression was 10-15 times higher in cultures isolated from crayfish with red colored plasma, in which hemocyte synthesis was high, if retinoic acid was added to the culture medium. In normal colored crayfish, with normal levels of hemocytes, no increase in expression of p1FABP was detected. Two other putative plFABP ligands, stearic acid and oleic acid, did not have any effect on plFABP expression in hematopoietic cells. These results suggest that retinoic acid-dependent signaling may be present in crustaceans.
Collapse
Affiliation(s)
- Irene Söderhäll
- Department of Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Sweden.
| | | | | | | | | | | | | |
Collapse
|
17
|
Kitanaka N, Owada Y, Okuyama R, Sakagami H, Nourani MR, Aiba S, Furukawa H, Watanabe M, Ono M, Ohteki T, Kondo H. Epidermal-type fatty acid binding protein as a negative regulator of IL-12 production in dendritic cells. Biochem Biophys Res Commun 2006; 345:459-66. [PMID: 16684508 DOI: 10.1016/j.bbrc.2006.04.114] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2006] [Accepted: 04/17/2006] [Indexed: 01/22/2023]
Abstract
Fatty acids and their metabolites have recently been shown to modulate various functions of dendritic cells (DCs) including their differentiation and cytokine production, although the mechanisms underlying their cellular functions are not fully understood. In view of our previous finding that epidermal-type fatty acid binding protein (E-FABP) was exclusively expressed in splenic DCs among FABP family, we examined the phenotype of E-FABP-null mutant mice in order to elucidate the functional significance of E-FABP expression in DCs. Although E-FABP-null mutant mice showed no apparent abnormalities in the population density and subset distribution of DCs as well as the microscopic morphology in the spleen, DCs isolated from E-FABP-null spleen showed enhanced production of IL-12p70, a key cytokine for innate immune responses, in response to appropriate stimuli as compared with wild-type. In real-time PCR, the expression level of IL-12p35 mRNA after LPS stimuli was much higher in mutant DCs when compared with wild-type, while no apparent change of IL-12p40 mRNA level was detected. Phosphorylated forms of p38 mitogen-activated protein kinase (p38MAPK) and IkappaB-alpha, molecules critical for IL-12 production, were detected at higher levels in E-FABP-null-mutant DCs after LPS stimuli when compared with wild-type counterparts. Collectively, it is suggested that E-FABP may be a novel negative regulator of IL-12 production in DCs, and this regulation may be exerted via its involvement in the p38MAPK-mediated transcription of IL-12p35.
Collapse
Affiliation(s)
- Noriko Kitanaka
- Department of Histology, Graduate School of Medicine, Tohoku University, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Nourani MR, Owada Y, Kitanaka N, Abdelwahab SA, Iwasa H, Sakagami H, Spener F, Kondo H. Localization of epidermal-type fatty acid binding protein in macrophages in advanced atretic follicles of adult mice. J Mol Histol 2006; 36:391-400. [PMID: 16400526 DOI: 10.1007/s10735-005-9005-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 07/27/2005] [Indexed: 12/21/2022]
Abstract
The localization of epidermal-type fatty acid binding protein (E-FABP) in the mature mouse ovary was examined by immuno-light and electron microscopy. Numerous macrophages immunopositive for both anti-E-FABP and F4/80 antibodies, together with immunonegative cells, were found in advanced atretic follicles that had eccentric lumens containing deformed ova. While some E-FABP-immunopositive macrophages were spider in shape and appeared singly, others, especially close to the lumen, were round and voluminous and tended to be aggregated. The voluminous macrophages contained phagosomes of various sizes and they were regarded as those actively involved in the phagocytosis of apoptotic granulosa cells. E-FABP-immunopositive macrophages and their processes were often apposed to adjacent immunonegative cells, and some of them lined the lumen containing deformed ova. On the other hand, E-FABP-immunonegative cells in the atretic follicles were classified into two types: the one, a minority, was characterized by small mitochondria containing non-tubular cristae and presumably represented residual granulosa cells, while the other dominant type was characterized by large mitochondria containing tubular cristae and presumably represented theca cells originally surrounding the follicles to be atretic. The present detection of E-FABP-immunopositivity selectively in macrophages of the atretic follicles suggests possible involvement of E-FABP and/or its ligand fatty acids in the process of follicular atresia, and it makes more reliable the identification of the advanced atretic follicles with the antral spaces obliterated, which could provide further details on the histology of the follicular atresia than before.
Collapse
Affiliation(s)
- Mohammad Reza Nourani
- Division of Histology, Department of Cell Biology, Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Asan E. Innovative techniques and applications in histochemistry and cell biology. Histochem Cell Biol 2003; 120:523-48. [PMID: 14648132 DOI: 10.1007/s00418-003-0604-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2003] [Indexed: 10/26/2022]
Abstract
Recent studies documenting novel histochemical methods and applications in cell biology and in other areas of the life sciences have again rendered insights into structure and functions of tissues, cells, and cellular components to the level of proteins and genes. Particularly, sophisticated microscopic techniques have proved to be able to significantly advance our knowledge. Findings of recent investigations representing this progress are summarized in the present review.
Collapse
Affiliation(s)
- Esther Asan
- Department of Anatomy and Cell Biology, University of Wuerzburg, Koellikerstrasse 6, 97070 Wuerzburg, Germany.
| |
Collapse
|