1
|
Schaller E, Hofmann J, Maher P, Stigloher C, Decker M. Visualizing Intracellular Localization of Natural-Product-Based Chemical Probes Using Click-Correlative Light and Electron Microscopy. ACS Chem Biol 2025; 20:721-730. [PMID: 39953968 DOI: 10.1021/acschembio.4c00849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Flavonoids such as sterubin and fisetin─and derivatives thereof─show strong neuroprotective effects in vitro as well as in vivo, combined with negligible toxicity and can therefore be considered novel treatment options for neurodegenerative diseases such as Alzheimer's disease. However, their subcellular locations responsible for neuroprotection and exact modes of action still remain unclear. Here, we present chemical probes based on both flavonoids sterubin and fisetin that were utilized in fluorescence microscopy and click-correlative light and electron microscopy to detect and visualize the localization of specific intracellular targets. We successfully adapted the workflow of correlative light and electron microscopy to a click-chemistry-based approach in a murine hippocampal cell line (HT22) on ultrathin resin sections making visualization of a small molecule for the first time possible in this setup. Utilizing this newly adapted technique, we could demonstrate that sterubin and fisetin show specific enrichment in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Eva Schaller
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg D-97074, Deutschland
| | - Julian Hofmann
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg D-97074, Deutschland
| | - Pamela Maher
- The Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, California 92037, United States
| | - Christian Stigloher
- Zentrale Abteilung für Mikroskopie/Imaging Core Facility, Biozentrum/Theodor-Boveri-Institut, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg D-97074, Germany
| | - Michael Decker
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg D-97074, Deutschland
| |
Collapse
|
2
|
Hans C, Sharma P, Saini R, Sachdeva M, Khadwal AR, Bose PL, Das R. Bone Marrow Erythroblastic Dysplasia on Morphology Correlates Significantly with Flow Cytometric Apoptosis and Peripheral Blood Eryptosis. J Microsc Ultrastruct 2025; 13:1-7. [PMID: 40351748 PMCID: PMC12063927 DOI: 10.4103/jmau.jmau_97_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/25/2022] [Accepted: 12/31/2022] [Indexed: 02/08/2023] Open
Abstract
Introduction Erythrocytic damage and death in response to physiochemical, infectious, metabolic, and pharmacological insults have been extensively studied in several diseases. Their relationship with erythroid precursors' apoptosis and morphological dysplasia, however, remains largely unexplored, despite several shared triggers and pathogenetic mechanisms. Materials and Methods We compared peripheral blood phosphatidylserine (PS) exposure and calcium influx in 53 patients with early and late apoptosis of CD71 + ve marrow erythroblasts using flow cytometry. Flow cytometric results were then correlated with dyserythropoiesis in the bone marrow as scored by experienced morphologists. Results Median patient age was 32 years (range: 1-75 years); 38 (72%) had hemoglobin (Hb) ≤11.0 g%. Patients overall had significantly higher Annexin V binding (PS exposure) and Fluo-3AM signal (calcium influx) vis-à-vis 20 healthy controls. Dyserythropoiesis on morphological evaluation correlated significantly with PS exposure (r = 0.618, P = 0.014) and Fluo-3AM binding (P = 0.002). Patients with dyserythropoiesis had significantly higher apoptosis compared to those without dyserythropoiesis (P = 0.006). In the peripheral blood, Annexin V binding and Fluo-3AM fluorescence correlated strongly with each other (r = 0.885, P < 0.001). PS exposure and Ca2+ influx were increased in 64% of cases. These patients had significantly lower Hbs and reticulocyte counts and increased red cell distribution widths and circulating nucleated red blood cell numbers. Conclusions This is the first study to compare and demonstrate links between dyserythropoiesis, peripheral blood eryptosis, and erythroblastic apoptosis. Eryptosis and apoptosis' interrelationships in patients with diverse hematological disorders link the marrow environment to peripheral blood.
Collapse
Affiliation(s)
- Chander Hans
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Prashant Sharma
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rahul Saini
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - M.U.S. Sachdeva
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Rani Khadwal
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Parveen Lata Bose
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Reena Das
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
3
|
Baral B, Nayak AK, Tulsiyan KD, Subudhi U. Molecular self-assembly of stable and small branched DNA nanostructures: Higher than a helical turn is enough for hybridization. Int J Biol Macromol 2024; 282:137491. [PMID: 39528187 DOI: 10.1016/j.ijbiomac.2024.137491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The Watson-Crick base pairing property of DNA is widely used for fabricating DNA nanostructures with well-defined geometry. Moreover, DNA nanostructures can be easily modified in terms of shape, size and function at the nanoscale level. Therefore, investigation on smaller and stable branched DNA (bDNA) is of critical significance for biomedical applications. In the present communication, we report smaller and stable branched DNA (bDNA) which is of critical significance for biomedical applications. In this study, a novel strategy has been used in identifying stable bDNA nanostructures with a minimum number of Watson-Crick base pairings. The importance of hybridizing regions and helical twists between multiple oligonucleotides has been explored using various biophysical techniques. The electrophoretic analysis demonstrated that hybridizing regions with ≥12 nt nucleotides can form stable bDNA structures. Substantial negative enthalpic contributions determine the significance of base stacking and the length of oligonucleotides in the hybridization process. Finally, thermal melting investigations confirmed the creation of bDNA nanostructures with ≥12 nt long hybridizing regions. In general, our findings indicate that bDNA oligonucleotides do not undergo hybridization if the number of base pairs is lesser for a single helical turn. Furthermore, the yield and stability of smaller bDNA nanostructures in physiological conditions are comparable with the earlier reported higher-order structures. Hence, smaller bDNAs are more stable which may be preferred over conventional bDNA nanostructures for advanced biomedical applications.
Collapse
Affiliation(s)
- Bineeth Baral
- DNA Nanomaterials & Application Laboratory, Environment & Sustainability Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashok K Nayak
- DNA Nanomaterials & Application Laboratory, Environment & Sustainability Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, India
| | - Kiran D Tulsiyan
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, India
| | - Umakanta Subudhi
- DNA Nanomaterials & Application Laboratory, Environment & Sustainability Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Alam MS, Wong KH, Ishikawa A, Li M, Zai Y, Papry RI, Mashio AS, Rahman IMM, Hasegawa H. Exploring phosphate impact on arsenate uptake and distribution in freshwater phytoplankton: Insights from single-cell ICP-MS. CHEMOSPHERE 2024; 364:143129. [PMID: 39159762 DOI: 10.1016/j.chemosphere.2024.143129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/04/2024] [Accepted: 08/17/2024] [Indexed: 08/21/2024]
Abstract
In this study, we investigated the interaction between arsenate (AsV) and phosphate (PO43-) in freshwater phytoplankton using single-cell inductively coupled plasma mass spectrometry (SC-ICP-MS). This study aimed to elucidate the influence of varying PO43- concentrations on arsenic (As) uptake and distribution at the single-cell level, providing insights into intraspecies diversity. Two species of freshwater phytoplanktons, Scenedesmus acutus and Pediastrum duplex, were cultured under different concentrations of PO43- and AsV in a controlled laboratory environment. Scenedesmus acutus, a species with strong salt tolerance, and Pediastrum duplex, known for its weak salt tolerance, were selected based on their contrasting behaviors in previous studies. SC-ICP-MS revealed non-uniform uptake of As by individual phytoplankton cells, with distinct variations in response to PO43- availability. Arsenic uptake by both species declined with a high PO43- level after 7 days of exposure. However, after 14 days, As uptake increased in S. acutus with higher PO43- concentrations, but decreased in P. duplex. Moreover, our findings revealed differences in cell morphology and membrane integrity between the two species in response to AsV and various PO43- concentrations. S. acutus maintained cell integrity under all experimental culture conditions, whereas P. duplex experienced cell lysis at elevated AsV and PO43- concentrations. This study highlights the varying responses of freshwater phytoplankton to changes in AsV and PO43- levels and underscores the advantages of SC-ICP-MS over conventional ICP-MS in providing detailed, cellular level insights. These findings are crucial for understanding and managing As pollution in aquatic ecosystems.
Collapse
Affiliation(s)
- Md Shah Alam
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan.
| | - Kuo H Wong
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan.
| | - Akari Ishikawa
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Meng Li
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Yinghan Zai
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Rimana Islam Papry
- Department of Environmental Science, College of Agricultural Sciences, IUBAT-International University of Business Agriculture and Technology, 4 Embankment Road, Sector 10, Uttara, Dhaka, 1230, Bangladesh
| | - Asami S Mashio
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Ismail M M Rahman
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima 960-1296, Japan
| | - Hiroshi Hasegawa
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan.
| |
Collapse
|
5
|
Li A, Yi J, Li X, Dong L, Ostrow LW, Ma J, Zhou J. Distinct transcriptomic profile of satellite cells contributes to preservation of neuromuscular junctions in extraocular muscles of ALS mice. eLife 2024; 12:RP92644. [PMID: 38661532 PMCID: PMC11045223 DOI: 10.7554/elife.92644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disorder characterized by progressive weakness of almost all skeletal muscles, whereas extraocular muscles (EOMs) are comparatively spared. While hindlimb and diaphragm muscles of end-stage SOD1G93A (G93A) mice (a familial ALS mouse model) exhibit severe denervation and depletion of Pax7+satellite cells (SCs), we found that the pool of SCs and the integrity of neuromuscular junctions (NMJs) are maintained in EOMs. In cell sorting profiles, SCs derived from hindlimb and diaphragm muscles of G93A mice exhibit denervation-related activation, whereas SCs from EOMs of G93A mice display spontaneous (non-denervation-related) activation, similar to SCs from wild-type mice. Specifically, cultured EOM SCs contain more abundant transcripts of axon guidance molecules, including Cxcl12, along with more sustainable renewability than the diaphragm and hindlimb counterparts under differentiation pressure. In neuromuscular co-culture assays, AAV-delivery of Cxcl12 to G93A-hindlimb SC-derived myotubes enhances motor neuron axon extension and innervation, recapitulating the innervation capacity of EOM SC-derived myotubes. G93A mice fed with sodium butyrate (NaBu) supplementation exhibited less NMJ loss in hindlimb and diaphragm muscles. Additionally, SCs derived from G93A hindlimb and diaphragm muscles displayed elevated expression of Cxcl12 and improved renewability following NaBu treatment in vitro. Thus, the NaBu-induced transcriptomic changes resembling the patterns of EOM SCs may contribute to the beneficial effects observed in G93A mice. More broadly, the distinct transcriptomic profile of EOM SCs may offer novel therapeutic targets to slow progressive neuromuscular functional decay in ALS and provide possible 'response biomarkers' in pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Ang Li
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at ArlingtonArlingtonUnited States
| | - Jianxun Yi
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at ArlingtonArlingtonUnited States
| | - Xuejun Li
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at ArlingtonArlingtonUnited States
| | - Li Dong
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at ArlingtonArlingtonUnited States
| | - Lyle W Ostrow
- Department of Neurology, Lewis Katz School of Medicine at Temple UniversityPhiladelphiaUnited States
| | - Jianjie Ma
- Department of Surgery, Division of Surgical Sciences, University of VirginiaCharlottesvilleUnited States
| | - Jingsong Zhou
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at ArlingtonArlingtonUnited States
| |
Collapse
|
6
|
Li A, Yi J, Li X, Dong L, Ostrow LW, Ma J, Zhou J. Distinct transcriptomic profile of satellite cells contributes to preservation of neuromuscular junctions in extraocular muscles of ALS mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.12.528218. [PMID: 36824725 PMCID: PMC9949002 DOI: 10.1101/2023.02.12.528218] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disorder characterized by progressive weakness of almost all skeletal muscles, whereas extraocular muscles (EOMs) are comparatively spared. While hindlimb and diaphragm muscles of end-stage SOD1G93A (G93A) mice (a familial ALS mouse model) exhibit severe denervation and depletion of Pax7 + satellite cells (SCs), we found that the pool of SCs and the integrity of neuromuscular junctions (NMJs) are maintained in EOMs. In cell sorting profiles, SCs derived from hindlimb and diaphragm muscles of G93A mice exhibit denervation-related activation, whereas SCs from EOMs of G93A mice display spontaneous (non-denervation-related) activation, similar to SCs from wild-type mice. Specifically, cultured EOM SCs contain more abundant transcripts of axon guidance molecules, including Cxcl12 , along with more sustainable renewability than the diaphragm and hindlimb counterparts under differentiation pressure. In neuromuscular co-culture assays, AAV-delivery of Cxcl12 to G93A-hindlimb SC-derived myotubes enhances motor neuron axon extension and innervation, recapitulating the innervation capacity of EOM SC-derived myotubes. G93A mice fed with sodium butyrate (NaBu) supplementation exhibited less NMJ loss in hindlimb and diaphragm muscles. Additionally, SCs derived from G93A hindlimb and diaphragm muscles displayed elevated expression of Cxcl12 and improved renewability following NaBu treatment in vitro . Thus, the NaBu-induced transcriptomic changes resembling the patterns of EOM SCs may contribute to the beneficial effects observed in G93A mice. More broadly, the distinct transcriptomic profile of EOM SCs may offer novel therapeutic targets to slow progressive neuromuscular functional decay in ALS and provide possible "response biomarkers" in pre-clinical and clinical studies.
Collapse
|
7
|
Fujimori C, Sugimoto K, Ishida M, Yang C, Kayo D, Tomihara S, Sano K, Akazome Y, Oka Y, Kanda S. Long-lasting redundant gnrh1/3 expression in GnRH neurons enabled apparent switching of paralog usage during evolution. iScience 2024; 27:109304. [PMID: 38464591 PMCID: PMC10924128 DOI: 10.1016/j.isci.2024.109304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/08/2023] [Accepted: 02/16/2024] [Indexed: 03/12/2024] Open
Abstract
Expressed subtype of paralogous genes in functionally homologous cells sometimes show differences across species, the reasons for which have not been explained. The present study examined hypophysiotropic gonadotropin-releasing hormone (GnRH) neurons in vertebrates to investigate this mechanism. These neurons express either gnrh1 or gnrh3 paralogs, depending on the species, and apparent switching of the expressed paralogs in them occurred at least four times in vertebrate evolution. First, we found redundant expression of gnrh1 and gnrh3 in a single neuron in piranha and hypothesized that it may represent an ancestral GnRH system. Moreover, the gnrh1/gnrh3 enhancer of piranha induced reporter RFP/GFP co-expression in a single hypophysiotropic GnRH neuron in both zebrafish and medaka, whose GnRH neurons only express either gnrh3 or gnrh1. Thus, we propose that redundant expression of gnrh1/3 of relatively recent common ancestors may be the key to apparent switching of the paralog usage among present-day species.
Collapse
Affiliation(s)
- Chika Fujimori
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
- Optics and Imaging Facility, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Kohei Sugimoto
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Mio Ishida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Christopher Yang
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Daichi Kayo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Soma Tomihara
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
- Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Kaori Sano
- Department of Chemistry, Faculty of Science, Josai University, Sakado, Saitama, Japan
| | - Yasuhisa Akazome
- Department of Anatomy, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shinji Kanda
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
8
|
Montagne J, Preza M, Koziol U. Stem cell proliferation and differentiation during larval metamorphosis of the model tapeworm Hymenolepis microstoma. Front Cell Infect Microbiol 2023; 13:1286190. [PMID: 37908761 PMCID: PMC10614006 DOI: 10.3389/fcimb.2023.1286190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Background Tapeworm larvae cause important diseases in humans and domestic animals. During infection, the first larval stage undergoes a metamorphosis where tissues are formed de novo from a population of stem cells called germinative cells. This process is difficult to study for human pathogens, as these larvae are infectious and difficult to obtain in the laboratory. Methods In this work, we analyzed cell proliferation and differentiation during larval metamorphosis in the model tapeworm Hymenolepis microstoma, by in vivo labelling of proliferating cells with the thymidine analogue 5-ethynyl-2'-deoxyuridine (EdU), tracing their differentiation with a suite of specific molecular markers for different cell types. Results Proliferating cells are very abundant and fast-cycling during early metamorphosis: the total number of cells duplicates every ten hours, and the length of G2 is only 75 minutes. New tegumental, muscle and nerve cells differentiate from this pool of proliferating germinative cells, and these processes are very fast, as differentiation markers for neurons and muscle cells appear within 24 hours after exiting the cell cycle, and fusion of new cells to the tegumental syncytium can be detected after only 4 hours. Tegumental and muscle cells appear from early stages of metamorphosis (24 to 48 hours post-infection); in contrast, most markers for differentiating neurons appear later, and the detection of synapsin and neuropeptides correlates with scolex retraction. Finally, we identified populations of proliferating cells that express conserved genes associated with neuronal progenitors and precursors, suggesting the existence of tissue-specific lineages among germinative cells. Discussion These results provide for the first time a comprehensive view of the development of new tissues during tapeworm larval metamorphosis, providing a framework for similar studies in human and veterinary pathogens.
Collapse
Affiliation(s)
| | | | - Uriel Koziol
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
9
|
Hirai Y, Makita Y, Asaoka J, Aoyagi Y, Nomoto A, Okamura H, Fujiwara SI. Boron Clusters Alter the Membrane Permeability of Dicationic Fluorescent DNA-Staining Dyes. ACS OMEGA 2023; 8:35321-35327. [PMID: 37779949 PMCID: PMC10536875 DOI: 10.1021/acsomega.3c05156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023]
Abstract
Membrane-permeable fluorescent dyes that stain DNA are useful reagents for microscopic imaging, as they can be introduced into living cells to label DNA. However, the number of these dyes, such as Hoechst 33342, is limited. Here, we show that the icosahedral dodecaborate B12Br122-, a superchaotropic carrier that delivers different types of molecules into cells, functions as an excellent carrier for membrane-impermeable fluorescent dyes. Propidium iodide (PI) and 4',6-diamidino-2-phenylindole (DAPI), dicationic membrane-impermeable fluorescent dyes that stain DNA, can permeate cell membranes in the presence of boron clusters. Methyl green (MG), a dicationic dye used in the histological and fluorescent staining of DNA, permeated cell membranes in the presence of boron clusters. In contrast, monocationic membrane-permeable fluorescent dyes, such as acridine orange and pyronin Y, exhibited reduced fluorescence in cells in the presence of boron clusters. Boron clusters do not quench dicationic fluorescent dyes in water in vitro but have quenching effects on monocationic fluorescent dyes. We have demonstrated that the addition of B12Br122- to impermeable dicationic fluorescent DNA-staining dyes, such as DAPI, PI, and MG, which have been widely used for numerous years, imparts membrane permeability to introduce these dyes into living cells.
Collapse
Affiliation(s)
- Yuya Hirai
- Department
of Biology, Osaka Dental University, 8-1, Kuzuha Hanazono-cho, Hirakata, Osaka 573-1121, Japan
| | - Yoshimasa Makita
- Department
of Chemistry, Osaka Dental University, 8-1, Kuzuha Hanazono-cho, Hirakata, Osaka 573-1121, Japan
| | - Jun Asaoka
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, Gakuen-cho 1-1, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Yuka Aoyagi
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, Gakuen-cho 1-1, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Akihiro Nomoto
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, Gakuen-cho 1-1, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Hideyuki Okamura
- Department
of Biology, Osaka Dental University, 8-1, Kuzuha Hanazono-cho, Hirakata, Osaka 573-1121, Japan
| | - Shin-ichi Fujiwara
- Department
of Chemistry, Osaka Dental University, 8-1, Kuzuha Hanazono-cho, Hirakata, Osaka 573-1121, Japan
| |
Collapse
|
10
|
Ghosh DC, Sen PK, Pal B. Dye-surfactant interaction in aqueous premicellar and micellar environments in the alkaline fading of di-positive methyl green carbocation. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
11
|
Baral B, Nial PS, Subudhi U. Enhanced enzymatic activity and conformational stability of catalase in presence of tetrahedral DNA nanostructures: A biophysical and kinetic study. Int J Biol Macromol 2023; 242:124677. [PMID: 37141969 DOI: 10.1016/j.ijbiomac.2023.124677] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/07/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
The emergence of DNA nanotechnology has shown enormous potential in a vast array of applications, particularly in the medicinal and theranostics fields. Nevertheless, the knowledge of the compatibility between DNA nanostructures and cellular proteins is largely unknown. Herein, we report the biophysical interaction between proteins (circulatory protein bovine serum albumin, BSA, and the cellular enzyme bovine liver catalase, BLC) and tetrahedral DNA (tDNAs), which are well-known nanocarriers for therapeutics. Interestingly, the secondary conformation of BSA or BLC was unaltered in the presence of tDNAs which supports the biocompatible property of tDNA. In addition, thermodynamic studies showed that the binding of tDNAs with BLC has a stable non-covalent interaction via hydrogen bond and van der Waals contact, which is indicative of a spontaneous reaction. Furthermore, the catalytic activity of BLC was increased in the presence of tDNAs during 24 h of incubation. These findings indicate that the presence of tDNA nanostructures not only ensures a steady secondary conformation of proteins, but also stabilize the intracellular proteins like BLC. Surprisingly, our investigation discovered that tDNAs have no effect on albumin proteins, either by interfering or by adhering to the extracellular proteins. These findings will aid in the design of future DNA nanostructures for biomedical applications by increasing the knowledge on the biocompatible interaction of tDNAs with biomacromolecules.
Collapse
Affiliation(s)
- Bineeth Baral
- DNA Nanotechnology & Application Laboratory, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India; School of Biological Sciences, Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Partha S Nial
- DNA Nanotechnology & Application Laboratory, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India; School of Biological Sciences, Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Umakanta Subudhi
- DNA Nanotechnology & Application Laboratory, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India; School of Biological Sciences, Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
12
|
Synthesis, Conformational Analysis and ctDNA Binding Studies of Flavonoid Analogues Possessing the 3,5-di-tert-butyl-4-hydroxyphenyl Moiety. Antioxidants (Basel) 2022; 11:antiox11112273. [DOI: 10.3390/antiox11112273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Flavanones and their biochemical precursors, chalcones, are naturally occurring compounds and consist of privileged scaffolds used in drug discovery due to their wide range of biological activities. In this work, two novel flavanones (3 and 4), the arylidene flavanone 5, and the chalcone 6, displaying structural analogies with butylated hydroxytoluene (BHT), were synthesized via an aldol reaction. According to the antioxidant activity studies of the synthesized flavanones, the arylidene flavanone 5 was the most potent antioxidant (70.8% interaction with DPPH radical and 77.4% inhibition of lipid peroxidation). In addition, the ability of the synthesized compounds to bind with ctDNA was measured via UV-spectroscopy, revealing that chalcone 6 has the strongest interaction with DNA (Kb = 5.0 × 10−3 M−1), while molecular docking was exploited to simulate the compound-DNA complexes. In an effort to explore the conformational features of the novel synthetic flavanones (3 and 4), arylidene flavanone 5, and chalcone 6, theoretical calculations were applied and the calculation of their physicochemical properties was also performed.
Collapse
|
13
|
Zebrafish Slit2 and Slit3 Act Together to Regulate Retinal Axon Crossing at the Midline. J Dev Biol 2022; 10:jdb10040041. [PMID: 36278546 PMCID: PMC9590056 DOI: 10.3390/jdb10040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Slit-Robo signaling regulates midline crossing of commissural axons in different systems. In zebrafish, all retinofugal axons cross at the optic chiasm to innervate the contralateral tectum. Here, the mutant for the Robo2 receptor presents severe axon guidance defects, which were not completely reproduced in a Slit2 ligand null mutant. Since slit3 is also expressed around this area at the stage of axon crossing, we decided to analyze the possibility that it collaborates with Slit2 in this process. We found that the disruption of slit3 expression by sgRNA-Cas9 injection caused similar, albeit slightly milder, defects than those of the slit2 mutant, while the same treatment in the slit2−/−mz background caused much more severe defects, comparable to those observed in robo2 mutants. Tracking analysis of in vivo time-lapse experiments indicated differential but complementary functions of these secreted factors in the correction of axon turn errors around the optic chiasm. Interestingly, RT-qPCR analysis showed a mild increase in slit2 expression in slit3-deficient embryos, but not the opposite. Our observations support the previously proposed “repulsive channel” model for Slit-Robo action at the optic chiasm, with both Slits acting in different manners, most probably relating to their different spatial expression patterns.
Collapse
|
14
|
Mohanty M, Sahu G, Banerjee A, Lima S, Patra SA, Crochet A, Sciortino G, Sanna D, Ugone V, Garribba E, Dinda R. Mo(VI) Potential Metallodrugs: Explaining the Transport and Cytotoxicity by Chemical Transformations. Inorg Chem 2022; 61:4513-4532. [PMID: 35213131 DOI: 10.1021/acs.inorgchem.2c00113] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The transport and cytotoxicity of molybdenum-based drugs have been explained with the concept of chemical transformation, a very important idea in inorganic medicinal chemistry that is often overlooked in the interpretation of the biological activity of metal-containing systems. Two monomeric, [MoO2(L1)(MeOH)] (1) and [MoO2(L2)(EtOH)] (2), and two mixed-ligand dimeric MoVIO2 species, [{MoO2(L1-2)}2(μ-4,4'-bipy)] (3-4), were synthesized and characterized. The structures of the solid complexes were solved through SC-XRD, while their transformation in water was clarified by UV-vis, ESI-MS, and DFT. In aqueous solution, 1-4 lead to the penta-coordinated [MoO2(L1-2)] active species after the release of the solvent molecule (1 and 2) or removal of the 4,4'-bipy bridge (3 and 4). [MoO2(L1-2)] are stable in solution and react with neither serum bioligand nor cellular reductants. The binding affinity of 1-4 toward HSA and DNA were evaluated through analytical and computational methods and in both cases a non-covalent interaction is expected. Furthermore, the in vitro cytotoxicity of the complexes was also determined and flow cytometry analysis showed the apoptotic death of the cancer cells. Interestingly, μ-4,4'-bipy bridged complexes 3 and 4 were found to be more active than monomeric 1 and 2, due to the mixture of species generated, that is [MoO2(L1-2)] and the cytotoxic 4,4'-bipy released after their dissociation. Since in the cytosol neither the reduction of MoVI to MoV/IV takes place nor the production of reactive oxygen species (ROS) through Fenton-like reactions of 1-4 with H2O2 occurs, the mechanism of cytotoxicity should be attributable to the direct interaction with DNA that happens with a minor-groove binding which results in cell death through an apoptotic mechanism.
Collapse
Affiliation(s)
- Monalisa Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Atanu Banerjee
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Sudhir Lima
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Sushree Aradhana Patra
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Aurélien Crochet
- Department of Chemistry, Fribourg Center for Nanomaterials, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Giuseppe Sciortino
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), 43007 Tarragona, Spain
| | - Daniele Sanna
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07100 Sassari, Italy
| | - Valeria Ugone
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07100 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| |
Collapse
|
15
|
Ansari MJ, Jasim SA, Bokov DO, Thangavelu L, Yasin G, Khalaji AD. Preparation of new bio-based chitosan/Fe 2O 3/NiFe 2O 4 as an efficient removal of methyl green from aqueous solution. Int J Biol Macromol 2022; 198:128-134. [PMID: 34968538 DOI: 10.1016/j.ijbiomac.2021.12.082] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/20/2021] [Accepted: 12/14/2021] [Indexed: 12/26/2022]
Abstract
Modified chitosan with various functional groups has high potential as an efficient adsorbent in removing water pollution. In this study, new magnetic adsorbent, bio-based chitosan/Fe2O3/NiFe2O4, was successfully prepared by green chemistry route involving mixing of chitosan as core moiety and Fe2O3/NiFe2O4 nanocomposite, and slow evaporation of solvent. Synthesized chitosan/Fe2O3/NiFe2O4 was characterized by FT-IR, TGA, XRD, VSM and FE-SEM. The FT-IR and XRD results confirmed that the successful preparation of chitosan/Fe2O3/NiFe2O4. Uniform dispersion of Fe2O3/NiFe2O4 nanoparticles with low aggregation was confirmed by FE-SEM. The as-prepared magnetic chitosan/Fe2O3/NiFe2O4 was developed as solid phase adsorbent to remove methyl green (MG) dye from aqueous solutions. Several important parameters such as contact time, pH, temperature and adsorbent dosage were investigated systematically. The high and fast MG dye removal (≈ 80%) occurs after 30 min. The optimal conditions for MG removal was recorded at pH = 8, contact time of 60 min, adsorbent dosage of 0.2 g and 25 °C and displayed a high MG dye removal percentage of 96.51% and adsorption capacity of 77.22 mg/g.
Collapse
Affiliation(s)
- Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz, University, Al-kharj, Saudi Arabia.
| | - Saade Abdalkareem Jasim
- Al-maarif University College, Medical Laboratory Techniques Department, Al-anbar-Ramadi, Iraq
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240, Russian Federation
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India.
| | - Ghulam Yasin
- Department of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran
| | | |
Collapse
|
16
|
Benítez D, Medeiros A, Quiroga C, Comini MA. A Simple Bioluminescent Assay for the Screening of Cytotoxic Molecules Against the Intracellular Form of Leishmania infantum. Methods Mol Biol 2022; 2524:127-147. [PMID: 35821468 DOI: 10.1007/978-1-0716-2453-1_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This chapter describes a viability assay for the intracellular (amastigote) and clinically relevant form of Leishmania infantum that is based on the detection of bioluminescence (BL) signal. The assay uses a reporter cell line of L. infantum that expresses constitutively a redshifted luciferase from Photinus pyralis and murine macrophages (cell line J774.A1) as host cells for infection. The host cell line was selected because it is a differentiated cell line, easy to manipulate in vitro, and advantageous for ethical reasons. This chapter introduces an assay designed for the screening of bioactive compounds/molecules employing a 96-well microplate and a 24 h treatment. The assay setup shows excellent balance between simplicity (cell culture manipulation/infection and timing) and quality parameters, as well as potential to detect drug-like molecules acting in a fast and cytotoxic manner.
Collapse
Affiliation(s)
- Diego Benítez
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| | - Andrea Medeiros
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Cristina Quiroga
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Marcelo A Comini
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| |
Collapse
|
17
|
de Barros WA, Nunes CDS, Souza JADCR, Nascimento IJDS, Figueiredo IM, de Aquino TM, Vieira L, Farias D, Santos JCC, de Fátima Â. The new psychoactive substances 25H-NBOMe and 25H-NBOH induce abnormal development in the zebrafish embryo and interact in the DNA major groove. Curr Res Toxicol 2021; 2:386-398. [PMID: 34888530 PMCID: PMC8637007 DOI: 10.1016/j.crtox.2021.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/19/2021] [Accepted: 11/18/2021] [Indexed: 11/24/2022] Open
Abstract
25H-NBOMe and 25H-NBOH recreational drugs induces abnormal formation in zebrafish embryos. Biophysical and theoretical studies indicate that these drugs have affinity for the DNA major groove. The toxicity observed in the zebrafish embryos and DNA interaction may be correlated.
Toxicological effects of 25H-NBOMe and 25H-NBOH recreational drugs on zebrafish embryos and larvae at the end of 96 h exposure period were demonstrated. 25H-NBOH and 25H-NBOMe caused high embryo mortality at 80 and 100 µg mL−1, respectively. According to the decrease in the concentration tested, lethality decreased while non-lethal effects were predominant up to 10 and 50 µg mL−1 of 25H-NBOH and 25H-NBOMe, respectively, including spine malformation, egg hatching delay, body malformation, otolith malformation, pericardial edema, and blood clotting. We can disclose that these drugs have an affinity for DNA in vitro using biophysical spectroscopic assays and molecular modeling methods. The experiments demonstrated that 25H-NBOH and 25H-NBOMe bind to the unclassical major groove of ctDNA with a binding constant of 27.00 × 104 M−1 and 5.27 × 104 M−1, respectively. Furthermore, these interactions lead to conformational changes in the DNA structure. Therefore, the results observed in the zebrafish embryos and DNA may be correlated.
Collapse
Affiliation(s)
- Wellington Alves de Barros
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Camila da Silva Nunes
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | | | | | | | | | - Leonardo Vieira
- Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | - Davi Farias
- Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | | | - Ângelo de Fátima
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
18
|
Slit2 is necessary for optic axon organization in the zebrafish ventral midline. Cells Dev 2021; 166:203677. [PMID: 33994352 DOI: 10.1016/j.cdev.2021.203677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
Slit-Robo signaling has been implicated in regulating several steps of retinal ganglion cell axon guidance, with a central role assigned to Slit2. We report here the phenotypical characterization of a CRISPR-Cas9-generated zebrafish null mutant for this gene, along with a detailed analysis of its expression pattern by WM-FISH. All evident defects in the optic axons in slit2-/- mutants were detected outside the retina, coincident with the major sites of expression at the ventral forebrain, around the developing optic nerve and anterior to the optic chiasm/proximal tract. Anterograde axon tracing experiments in zygotic and maternal-zygotic mutants, as well as morphants, showed the occurrence of axon sorting defects, which appeared mild at the optic nerve level, but more severe in the optic chiasm and the proximal tract. A remarkable sorting defect was the usual splitting of one of the optic nerves in two branches that surrounded the contralateral nerve at the chiasm. Although all axons eventually crossed the midline, the retinotopic order appeared lost at the proximal optic tract, to eventually correct distally. Time-lapse analysis demonstrated the sporadic occurrence of axon misrouting at the chiasm level, which could be responsible for the sorting errors. Our results support previous evidence of a channeling role for Slit molecules in retinal ganglion cell axons at the optic nerve, in addition to a function in the segregation of axons coming from each nerve and from different retinal regions at the medio-ventral area of the forebrain.
Collapse
|
19
|
Peters S, Kaiser L, Fink J, Schumacher F, Perschin V, Schlegel J, Sauer M, Stigloher C, Kleuser B, Seibel J, Schubert-Unkmeir A. Click-correlative light and electron microscopy (click-AT-CLEM) for imaging and tracking azido-functionalized sphingolipids in bacteria. Sci Rep 2021; 11:4300. [PMID: 33619350 PMCID: PMC7900124 DOI: 10.1038/s41598-021-83813-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/05/2021] [Indexed: 11/21/2022] Open
Abstract
Sphingolipids, including ceramides, are a diverse group of structurally related lipids composed of a sphingoid base backbone coupled to a fatty acid side chain and modified terminal hydroxyl group. Recently, it has been shown that sphingolipids show antimicrobial activity against a broad range of pathogenic microorganisms. The antimicrobial mechanism, however, remains so far elusive. Here, we introduce ‘click-AT-CLEM’, a labeling technique for correlated light and electron microscopy (CLEM) based on the super-resolution array tomography (srAT) approach and bio-orthogonal click chemistry for imaging of azido-tagged sphingolipids to directly visualize their interaction with the model Gram-negative bacterium Neisseria meningitidis at subcellular level. We observed ultrastructural damage of bacteria and disruption of the bacterial outer membrane induced by two azido-modified sphingolipids by scanning electron microscopy and transmission electron microscopy. Click-AT-CLEM imaging and mass spectrometry clearly revealed efficient incorporation of azido-tagged sphingolipids into the outer membrane of Gram-negative bacteria as underlying cause of their antimicrobial activity.
Collapse
Affiliation(s)
- Simon Peters
- Institute for Hygiene and Microbiology, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Lena Kaiser
- Institute for Hygiene and Microbiology, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Julian Fink
- Institute for Organic Chemistry, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Fabian Schumacher
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.,Department of Toxicology, University of Potsdam, Nuthetal, Germany.,Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Veronika Perschin
- Imaging Core Facility, Biocenter, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Jan Schlegel
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Christian Stigloher
- Imaging Core Facility, Biocenter, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.,Department of Toxicology, University of Potsdam, Nuthetal, Germany
| | - Jürgen Seibel
- Institute for Organic Chemistry, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany
| | | |
Collapse
|
20
|
Kiewisz R, Müller-Reichert T, Fabig G. High-throughput screening of mitotic mammalian cells for electron microscopy using classic histological dyes. Methods Cell Biol 2020; 162:151-170. [PMID: 33707011 DOI: 10.1016/bs.mcb.2020.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We introduce a new workflow that allows screening and selection of staged mammalian cells in mitosis prior to subsequent electron microscopy. We mainly describe four improved steps of specimen preparation. Firstly, we describe a method to efficiently enrich mammalian cells and attach them to sapphire discs; secondly, we report on the use of 3D-printed containers to seed cells on coated sapphire discs for high-pressure freezing; thirdly, we take advantage of a specimen carrier that allows for an upside-down placing of sapphire discs without a second carrier or spacer ring to close the "sandwich"; and fourthly, we use histological dyes to stain DNA/chromatin during freeze-substitution. Out of 14 tested histological dyes, we routinely use four of them for visual inspection of mitotic cells by light microscopy. Applying this streamlined workflow, HeLa cells at different stages of mitosis can be selected for further ultrastructural analysis. The practical aspects of this approach will be discussed herein.
Collapse
Affiliation(s)
- Robert Kiewisz
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Gunar Fabig
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
21
|
Yang P, Chen H, Wang ZZ, Zhang LL, Zhang DD, Shi QS, Xie XB. Crystal structures and biological properties of aroylhydrazone Ni(II) complexes. J Inorg Biochem 2020; 213:111248. [PMID: 33011623 DOI: 10.1016/j.jinorgbio.2020.111248] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/19/2020] [Accepted: 08/30/2020] [Indexed: 11/16/2022]
Abstract
Three aroylhydrazone ligands ((Z)-N'-([2,2'-bithiophen]-5-ylmethylene)-2-hydroxybenzohydrazide, HL1; (Z)-N'-([2,2'-bithiophen]-5-ylmethylene)-3-hydroxybenzohydrazide, HL2; and (Z)-N'-([2,2'-bithiophen]-5-ylmethylene)-4-hydroxybenzohydrazide, HL3) and their complexes with nickel (Ni(L1)2, 1; Ni(L2)2, 2; Ni(L3)2∙DMF, 3) were synthesized and characterized by ESI-MS, NMR, IR, UV-vis and elemental analysis techniques. The molecular structure of ligand (HL2) and complexes 1-3 was confirmed by single crystal X-ray crystallography. The single crystal X-ray structure of complexes 1-3 showed a distorted square planar geometry around the metal center, and the ligands adopt a bidentate chelating mode. The interaction of calf thymus (ctDNA) with nickel(II) complexes was explored using absorption, emission spectrum, viscosity, and circular dichroism methods. These complexes exhibited moderate affinity for ctDNA through groove binding modes. The most efficient DNA binder was complex 2. The interaction of the complexes with DNA has also been supported by molecular docking study and molecular dynamics simulation. An in vitro cytotoxicity study of the complexes found low activity against human cervical (Hela) and breast (MCF-7) cancer cell lines, with the best results for complex 2, where IC50 values are 86 μM and 92 μM respectively.
Collapse
Affiliation(s)
- Ping Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hong Chen
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Zi-Zhou Wang
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Li-Lei Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471000, China
| | - Dan-Dan Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qing-Shan Shi
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Xiao-Bao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
22
|
Lesage M, Thomas M, Bugeon J, Branthonne A, Gay S, Cardona E, Haghebaert M, Mahé F, Bobe J, Thermes V. C-ECi: a CUBIC-ECi combined clearing method for three-dimensional follicular content analysis in the fish ovary†. Biol Reprod 2020; 103:1099-1109. [PMID: 32776144 DOI: 10.1093/biolre/ioaa142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/07/2020] [Indexed: 11/13/2022] Open
Abstract
Deciphering mechanisms of oocyte development in the fish ovary still remain challenging, and a comprehensive overview of this process at the level of the organ is still needed. The recent development of optical tissue clearing methods has tremendously boosted the three-dimensional (3D) imaging of large size biological samples that are naturally opaque. However, no attempt of clearing on fish ovary that accumulates extremely high concentration of lipids within oocytes has been reported to date. To face with this ovarian-specific challenge, we combined two existing clearing methods, the nontoxic solvent-based ethyl cinnamate (ECi) method for efficient clearing and the Clear Unobstructed Brain Imaging Cocktails and Computational (CUBIC) method to enhance lipid removal and reduce nonspecific staining. The methyl green fluorescent dye was used to stain nuclei and delineate the follicular structures that include oocytes. Using this procedure (named CUBIC-ECi [C-ECi]), ovaries of both medaka and trout could be imaged in 3D and follicles analyzed. To our knowledge, this is the first procedure elaborated for clearing and imaging fish ovary in 3D. The C-ECi method thus provides an interesting tool for getting precise quantitative data on follicular content in fish ovary and promises to be useful for further developmental and morphological studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marie Haghebaert
- INRAE, LPGP, Rennes, France.,Université de Rennes, CNRS, IRMAR - UMR 6625, Rennes, France
| | - Fabrice Mahé
- Université de Rennes, CNRS, IRMAR - UMR 6625, Rennes, France
| | | | | |
Collapse
|
23
|
Liu CY, Polk DB. Cellular maps of gastrointestinal organs: getting the most from tissue clearing. Am J Physiol Gastrointest Liver Physiol 2020; 319:G1-G10. [PMID: 32421359 PMCID: PMC7468759 DOI: 10.1152/ajpgi.00075.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of modern methods to induce optical transparency ("clearing") in biological tissues has enabled the three-dimensional (3D) reconstruction of intact organs at cellular resolution. New capabilities in visualization of rare cellular events, long-range interactions, and irregular structures will facilitate novel studies in the alimentary tract and gastrointestinal systems. The tubular geometry of the alimentary tract facilitates large-scale cellular reconstruction of cleared tissue without specialized microscopy setups. However, with the rapid pace of development of clearing agents and current relative paucity of research groups in the gastrointestinal field using these techniques, it can be daunting to incorporate tissue clearing into experimental workflows. Here, we give some advice and describe our own experience bringing tissue clearing and whole mount reconstruction into our laboratory's investigations. We present a brief overview of the chemical concepts that underpin tissue clearing, what sorts of questions whole mount imaging can answer, how to choose a clearing agent, an example of how to clear and image alimentary tissue, and what to do after obtaining the image. This short review will encourage other gastrointestinal researchers to consider how utilizing tissue clearing and creating 3D "maps" of tissue might deepen the impact of their studies.
Collapse
Affiliation(s)
- Cambrian Y. Liu
- 1Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Saban Research Institute Children’s Hospital Los Angeles, Los Angeles, California
| | - D. Brent Polk
- 1Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Saban Research Institute Children’s Hospital Los Angeles, Los Angeles, California,2Department of Pediatrics, Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California Los Angeles, California
| |
Collapse
|
24
|
A Low Cost Antibody Signal Enhancer Improves Immunolabeling in Cell Culture, Primate Brain and Human Cancer Biopsy. Neuroscience 2020; 439:275-286. [DOI: 10.1016/j.neuroscience.2020.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 12/14/2022]
|
25
|
Murgai P, Sharma P, Sachdeva MUS, Bose PL, Gupta M, Das R, Varma N. A flow cytometric cell-cycle assay using methyl green. Anal Biochem 2020; 601:113782. [PMID: 32450059 DOI: 10.1016/j.ab.2020.113782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/03/2020] [Accepted: 05/19/2020] [Indexed: 01/30/2023]
Abstract
Methyl green (MG), a conventional, low-cost histological stain, was used to design a flow cytometric cell-cycle/DNA-ploidy assay. On fluorometry, MG absorbed maximally at 633-nm, showed negligible fluorescence in free-state, but emitted brightly when bound to DNA. Optimal dye and cell concentrations for staining and effects of time and photobleaching on stained cells were determined for a lyse-permeabilize-stain protocol. Linearity of DNA-binding, coefficients-of-variation of G0/G1-peaks and minimal carryover were confirmed. Assay results correlated highly with a propidium iodide-based kit in 29 acute lymphoblastic leukemia specimens. The MG-based DNA-ploidy assay represented an accurate and inexpensive alternative to conventional PI-based assays.
Collapse
Affiliation(s)
- Pooja Murgai
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Prashant Sharma
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Man Updesh Singh Sachdeva
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Parveen Lata Bose
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Minakshi Gupta
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Reena Das
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Varma
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
26
|
Tailoring of cardiovascular stent material surface by immobilizing exosomes for better pro-endothelialization function. Colloids Surf B Biointerfaces 2020; 189:110831. [DOI: 10.1016/j.colsurfb.2020.110831] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/17/2020] [Accepted: 01/26/2020] [Indexed: 02/08/2023]
|
27
|
Yang P, Zhang LL, Wang ZZ, Zhang DD, Liu YM, Shi QS, Xie XB. Nickel complexes of aroylhydrazone ligand: synthesis, crystal structure and DNA binding properties. J Inorg Biochem 2020; 203:110919. [DOI: 10.1016/j.jinorgbio.2019.110919] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/03/2019] [Accepted: 11/11/2019] [Indexed: 01/18/2023]
|
28
|
Yang P, Zhang DD, Wang ZZ, Liu HZ, Shi QS, Xie XB. Copper(ii) complexes with NNO ligands: synthesis, crystal structures, DNA cleavage, and anticancer activities. Dalton Trans 2019; 48:17925-17935. [PMID: 31793567 DOI: 10.1039/c9dt03746b] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Three novel copper(ii) complexes, Cu(L1)2 (1), Cu(L2)2·2DMF (2), and Cu(L3)2·2DMF (3), were synthesized using three aroylhydrazone ligands, (E)-2-hydroxy-N'-(1-(pyrazin-2-yl)ethylidene)benzohydrazide (HL1), (E)-3-hydroxy-N'-(1-(pyrazin-2-yl)ethylidene)benzohydrazide (HL2) and (E)-4-hydroxy-N'-(1-(pyrazin-2-yl)ethylidene)benzohydrazide (HL3). The complexes were characterized by elemental analysis, infrared (IR), and Ultraviolet-visible light (UV-vis) spectroscopy. The X-ray crystal structures of the complexes all possess a distorted octahedral coordination geometry. Both an absorption spectral titration and a competitive binding assay (ethidium bromide, 4',6-diamidino-2-phenylindole (DAPI), and methyl green) revealed that complexes 2 and 3 bind readily to calf thymus DNA (ctDNA) through intercalative and minor groove binding modes. Complexes 2 and 3 also exhibited oxidative cleavage of supercoiled plasmid DNA (pUC19) in the presence of ascorbic acid as an activator. Cytotoxicity studies showed that complexes 2 and 3 possessed high cytotoxicities toward the HeLa human cervical cancer cell line, but weak toxicities toward the L929 normal mouse fibroblast cell line. We therefore have reason to believe that complexes 2 and 3 both show potential as promising anticancer candidate drugs.
Collapse
Affiliation(s)
- Ping Yang
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, China.
| | - Dan-Dan Zhang
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, China.
| | - Zi-Zhou Wang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Higher Education Mega Center, 230 Wai Huan Xi Road, Guangzhou 510006, China
| | - Hui-Zhong Liu
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, China.
| | - Qing-Shan Shi
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, China.
| | - Xiao-Bao Xie
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, China.
| |
Collapse
|
29
|
The repeated 36 amino acid motif of Chlamydia trachomatis Hc2 protein binds to the major groove of DNA. Res Microbiol 2019; 170:256-262. [DOI: 10.1016/j.resmic.2019.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/16/2019] [Accepted: 08/07/2019] [Indexed: 11/19/2022]
|
30
|
Rakotoson I, Delhomme B, Djian P, Deeg A, Brunstein M, Seebacher C, Uhl R, Ricard C, Oheim M. Fast 3-D Imaging of Brain Organoids With a New Single-Objective Planar-Illumination Two-Photon Microscope. Front Neuroanat 2019; 13:77. [PMID: 31481880 PMCID: PMC6710410 DOI: 10.3389/fnana.2019.00077] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/16/2019] [Indexed: 12/28/2022] Open
Abstract
Human inducible pluripotent stem cells (hiPSCs) hold a large potential for disease modeling. hiPSC-derived human astrocyte and neuronal cultures permit investigations of neural signaling pathways with subcellular resolution. Combinatorial cultures, and three-dimensional (3-D) embryonic bodies (EBs) enlarge the scope of investigations to multi-cellular phenomena. The highest level of complexity, brain organoids that-in many aspects-recapitulate anatomical and functional features of the developing brain permit the study of developmental and morphological aspects of human disease. An ideal microscope for 3-D tissue imaging at these different scales would combine features from both confocal laser-scanning and light-sheet microscopes: a micrometric optical sectioning capacity and sub-micrometric spatial resolution, a large field of view and high frame rate, and a low degree of invasiveness, i.e., ideally, a better photon efficiency than that of a confocal microscope. In the present work, we describe such an instrument that uses planar two-photon (2P) excitation. Its particularity is that-unlike two- or three-lens light-sheet microscopes-it uses a single, low-magnification, high-numerical aperture objective for the generation and scanning of a virtual light sheet. The microscope builds on a modified Nipkow-Petráň spinning-disk scheme for achieving wide-field excitation. However, unlike the Yokogawa design that uses a tandem disk, our concept combines micro lenses, dichroic mirrors and detection pinholes on a single disk. This new design, advantageous for 2P excitation, circumvents problems arising with the tandem disk from the large wavelength difference between the infrared excitation light and visible fluorescence. 2P fluorescence excited by the light sheet is collected with the same objective and imaged onto a fast sCMOS camera. We demonstrate 3-D imaging of TO-PRO3-stained EBs and of brain organoids, uncleared and after rapid partial transparisation with triethanolamine formamide (RTF) and we compare the performance of our instrument to that of a confocal laser-scanning microscope (CLSM) having a similar numerical aperture. Our large-field 2P-spinning disk microscope permits one order of magnitude faster imaging, affords less photobleaching and permits better depth penetration than a confocal microscope with similar spatial resolution.
Collapse
Affiliation(s)
- Irina Rakotoson
- Centre National de la Recherche Scientifique (CNRS) UMR 8118, Brain Physiology Laboratory, Paris, France
- Fédération de Recherche en Neurosciences CNRS FR 3636, Paris, France
- Faculté de Sciences Fondamentales et Biomédicales, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
- Master Program: MASTER Mention Biologie Cellulaire, Physiologie, Pathologies (BCPP), Spécialité Neurosciences, Université Paris Descartes - Paris 5, Paris, France
| | - Brigitte Delhomme
- Centre National de la Recherche Scientifique (CNRS) UMR 8118, Brain Physiology Laboratory, Paris, France
- Fédération de Recherche en Neurosciences CNRS FR 3636, Paris, France
- Faculté de Sciences Fondamentales et Biomédicales, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
| | - Philippe Djian
- Centre National de la Recherche Scientifique (CNRS) UMR 8118, Brain Physiology Laboratory, Paris, France
- Fédération de Recherche en Neurosciences CNRS FR 3636, Paris, France
- Faculté de Sciences Fondamentales et Biomédicales, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
| | | | - Maia Brunstein
- Centre National de la Recherche Scientifique (CNRS) UMR 8118, Brain Physiology Laboratory, Paris, France
- Fédération de Recherche en Neurosciences CNRS FR 3636, Paris, France
- Faculté de Sciences Fondamentales et Biomédicales, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
| | | | | | - Clément Ricard
- Centre National de la Recherche Scientifique (CNRS) UMR 8118, Brain Physiology Laboratory, Paris, France
- Fédération de Recherche en Neurosciences CNRS FR 3636, Paris, France
- Faculté de Sciences Fondamentales et Biomédicales, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
| | - Martin Oheim
- Centre National de la Recherche Scientifique (CNRS) UMR 8118, Brain Physiology Laboratory, Paris, France
- Fédération de Recherche en Neurosciences CNRS FR 3636, Paris, France
- Faculté de Sciences Fondamentales et Biomédicales, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
| |
Collapse
|
31
|
Hildebrand S, Schueth A, Herrler A, Galuske R, Roebroeck A. Scalable Labeling for Cytoarchitectonic Characterization of Large Optically Cleared Human Neocortex Samples. Sci Rep 2019; 9:10880. [PMID: 31350519 PMCID: PMC6659684 DOI: 10.1038/s41598-019-47336-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/12/2019] [Indexed: 01/27/2023] Open
Abstract
Optical clearing techniques and light sheet microscopy have transformed fluorescent imaging of rodent brains, and have provided a crucial alternative to traditional confocal or bright field techniques for thin sections. However, clearing and labeling human brain tissue through all cortical layers and significant portions of a cortical area, has so far remained extremely challenging, especially for formalin fixed adult cortical tissue. Here, we present MASH (Multiscale Architectonic Staining of Human cortex): a simple, fast and low-cost cytoarchitectonic labeling approach for optically cleared human cortex samples, which can be applied to large (up to 5 mm thick) formalin fixed adult brain samples. A suite of small-molecule fluorescent nuclear and cytoplasmic dye protocols in combination with new refractive index matching solutions allows deep volume imaging. This greatly reduces time and cost of imaging cytoarchitecture in thick samples and enables classification of cytoarchitectonic layers over the full cortical depth. We demonstrate application of MASH to large archival samples of human visual areas, characterizing cortical architecture in 3D from the scale of cortical areas to that of single cells. In combination with scalable light sheet imaging and data analysis, MASH could open the door to investigation of large human cortical systems at cellular resolution and in the context of their complex 3-dimensional geometry.
Collapse
Affiliation(s)
- Sven Hildebrand
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht, The Netherlands
| | - Anna Schueth
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht, The Netherlands
| | - Andreas Herrler
- Department of Anatomy & Embryology, Faculty of Health, Medicine & Life Science, Maastricht University, Maastricht, The Netherlands
| | - Ralf Galuske
- Systems Neurophysiology, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Alard Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht, The Netherlands.
| |
Collapse
|
32
|
Montagne J, Preza M, Castillo E, Brehm K, Koziol U. Divergent Axin and GSK-3 paralogs in the beta-catenin destruction complexes of tapeworms. Dev Genes Evol 2019; 229:89-102. [PMID: 31041506 DOI: 10.1007/s00427-019-00632-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/16/2019] [Indexed: 01/06/2023]
Abstract
The Wnt/beta-catenin pathway has many key roles in the development of animals, including a conserved and central role in the specification of the primary (antero-posterior) body axis. The posterior expression of Wnt ligands and the anterior expression of secreted Wnt inhibitors are known to be conserved during the larval metamorphosis of tapeworms. However, their downstream signaling components for Wnt/beta-catenin signaling have not been characterized. In this work, we have studied the core components of the beta-catenin destruction complex of the human pathogen Echinococcus multilocularis, the causative agent of alveolar echinococcosis. We focused on two Axin paralogs that are conserved in tapeworms and other flatworm parasites. Despite their divergent sequences, both Axins could robustly interact with one E. multilocularis beta-catenin paralog and limited its accumulation in a heterologous mammalian expression system. Similarly to what has been described in planarians (free-living flatworms), other beta-catenin paralogs showed limited or no interaction with either Axin and are unlikely to function as effectors in Wnt signaling. Additionally, both Axins interacted with three divergent GSK-3 paralogs that are conserved in free-living and parasitic flatworms. Axin paralogs have highly segregated expression patterns along the antero-posterior axis in the tapeworms E. multilocularis and Hymenolepis microstoma, indicating that different beta-catenin destruction complexes may operate in different regions during their larval metamorphosis.
Collapse
Affiliation(s)
- Jimena Montagne
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Iguá 4225, CP11400, Montevideo, Uruguay
| | - Matías Preza
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Iguá 4225, CP11400, Montevideo, Uruguay
| | - Estela Castillo
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Iguá 4225, CP11400, Montevideo, Uruguay
| | - Klaus Brehm
- Institute of Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Straße 2, 97080, Würzburg, Germany
| | - Uriel Koziol
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Iguá 4225, CP11400, Montevideo, Uruguay.
| |
Collapse
|
33
|
Thapa J, Maharjan B, Malla M, Fukushima Y, Poudel A, Pandey BD, Hyashida K, Gordon SV, Nakajima C, Suzuki Y. Direct detection of Mycobacterium tuberculosis in clinical samples by a dry methyl green loop-mediated isothermal amplification (LAMP) method. Tuberculosis (Edinb) 2019; 117:1-6. [PMID: 31378262 DOI: 10.1016/j.tube.2019.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/09/2019] [Accepted: 05/19/2019] [Indexed: 11/19/2022]
Abstract
The purpose of this study was to develop a simple visual methyl green (MeG) based dry loop-mediated isothermal amplification (LAMP) method for early detection of Mycobacterium tuberculosis (MTB) from clinical samples. We identified MeG as an indicator of a positive LAMP reaction, where a positive reaction gave a blue-green color while a negative reaction was colorless. The MeG MTB-LAMP system was further simplified by drying all reagents for ease of use, and was then validated for its ability to diagnose TB directly using Nepalese clinical samples. We evaluated the dry MeG MTB-LAMP with 69 new TB suspected samples from patients that did not have a confirmed history of TB treatment and found the sensitivity in culture positive samples as 92.8% (13/14) and specificity in culture negative samples as 96.3% (53/55). Our LAMP system has the potential to be a point of care test for early diagnosis of active TB in developing countries.
Collapse
Affiliation(s)
- Jeewan Thapa
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.
| | - Bhagwan Maharjan
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Kita 20 Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan; German Nepal Tuberculosis Project, Kalimati, Kathmandu, Nepal; Healthy Nepal, Balkhu, Kathmandu, Nepal
| | - Meena Malla
- Shi-Gan International College of Science and Technology, Kathmandu, Nepal
| | - Yukari Fukushima
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Kita 20 Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
| | - Ajay Poudel
- Department of Microbiology, Chitwan Medical College Teaching Hospital, Chitwan, Nepal
| | | | - Kyoko Hyashida
- Division of Collaboration and Education, Hokkaido University Research Center for Zoonosis Control, Kita 20 Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
| | - Stephen V Gordon
- UCD School of Veterinary Medicine, University College Dublin, Dublin, D04 W6F6, Ireland; The Global Station for Zoonosis Control, Hokkaido University Global Institution for Collaborative Research and Education, Kita 20 Nishi 10, Kita-ku, Sapporo, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Kita 20 Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan; The Global Station for Zoonosis Control, Hokkaido University Global Institution for Collaborative Research and Education, Kita 20 Nishi 10, Kita-ku, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Kita 20 Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan; The Global Station for Zoonosis Control, Hokkaido University Global Institution for Collaborative Research and Education, Kita 20 Nishi 10, Kita-ku, Sapporo, Japan.
| |
Collapse
|
34
|
Chakraborty A, Panda AK, Ghosh R, Roy I, Biswas A. Depicting the DNA binding and photo-nuclease ability of anti-mycobacterial drug rifampicin: A biophysical and molecular docking perspective. Int J Biol Macromol 2019; 127:187-196. [DOI: 10.1016/j.ijbiomac.2019.01.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/25/2018] [Accepted: 01/06/2019] [Indexed: 12/13/2022]
|
35
|
Chakraborty A, Panda AK, Ghosh R, Biswas A. DNA minor groove binding of a well known anti-mycobacterial drug dapsone: A spectroscopic, viscometric and molecular docking study. Arch Biochem Biophys 2019; 665:107-113. [PMID: 30851241 DOI: 10.1016/j.abb.2019.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/18/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022]
Abstract
Dapsone is a sulfone drug mainly used as anti-microbial and anti-inflammatory agent for the treatment of various diseases including leprosy. Recently, its interaction with protein (bovine serum albumin) is evidenced. But, the binding propensity of this anti-mycobacterial drug towards DNA is still unknown. Also, the mode of dapsone-DNA interaction (if any) is still an unknown quantity. In this study, we have taken a thorough attempt to understand these two unknown aspects using various biophysical and in silico molecular docking techniques. Both UV-visible and fluorescence titrimetric studies indicated that dapsone binds to CT-DNA with a binding constant in order of 104 M-1. Circular dichroism, thermal denaturation and viscosity experiments revealed that dapsone binds to the grooves of CT-DNA. Competitive DNA binding studies clearly indicated the minor groove binding property of this anti-mycobacterial drug. Molecular docking provided detailed information about the formation of hydrogen bonding in the dapsone-DNA complex. This in silico study further revealed that dapsone binds to the AT-rich region of the minor groove of DNA having a relative binding energy of -6.22 kcal mol-1. Overall, all these findings evolved from this study can be used for better understanding the medicinal importance of dapsone.
Collapse
Affiliation(s)
- Ayon Chakraborty
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Alok Kumar Panda
- School of Applied Sciences, KIIT Deemed to Be University, Bhubaneswar, 751024, Odisha, India
| | - Rajesh Ghosh
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India.
| |
Collapse
|
36
|
Thomas RK, Sukumaran S, Sudarsanakumar C. Photobehaviour and in vitro binding strategy of natural drug, chlorogenic acid with DNA: A case of groove binding. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.10.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
Murgai P, Sharma P, Sachdeva M, Das R, Varma N. DNA staining in agarose and polyacrylamide gels by methyl green. Biotech Histochem 2018; 93:581-588. [DOI: 10.1080/10520295.2018.1511062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- P. Murgai
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - P. Sharma
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - M.U.S. Sachdeva
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - R. Das
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - N. Varma
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
38
|
Aparicio G, Arruti C, Zolessi FR. MARCKS phosphorylation by PKC strongly impairs cell polarity in the chick neural plate. Genesis 2018; 56:e23104. [PMID: 29603589 DOI: 10.1002/dvg.23104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 12/26/2022]
Abstract
Neurulation involves a complex coordination of cellular movements that are in great part based on the modulation of the actin cytoskeleton. MARCKS, an F-actin-binding protein and the major substrate for PKC, is necessary for gastrulation and neurulation morphogenetic movements in mice, frogs, and fish. We previously showed that this protein accumulates at the apical region of the closing neural plate in chick embryos, and here further explore its role in this process and how it is regulated by PKC phosphorylation. PKC activation by PMA caused extensive neural tube closure defects in cultured chick embryos, together with MARCKS phosphorylation and redistribution to the cytoplasm. This was concomitant with an evident disruption of neural plate cell polarity and extensive apical cell extrusion. This effect was not due to actomyosin hypercontractility, but it was reproduced upon MARCKS knockdown. Interestingly, the overexpression of a nonphosphorylatable form of MARCKS was able to revert the cellular defects observed in the neural plate after PKC activation. Altogether, these results suggest that MARCKS function during neurulation would be to maintain neuroepithelial polarity through the stabilization of subapical F-actin, a function that appears to be counteracted by PKC activation.
Collapse
Affiliation(s)
- Gonzalo Aparicio
- Laboratorio de Cultivo de Tejidos, Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,Cell Biology of Neural Development Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Cristina Arruti
- Laboratorio de Cultivo de Tejidos, Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Flavio R Zolessi
- Laboratorio de Cultivo de Tejidos, Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,Cell Biology of Neural Development Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
39
|
Ortega C, Prieto D, Abreu C, Oppezzo P, Correa A. Multi-Compartment and Multi-Host Vector Suite for Recombinant Protein Expression and Purification. Front Microbiol 2018; 9:1384. [PMID: 29997597 PMCID: PMC6030378 DOI: 10.3389/fmicb.2018.01384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/06/2018] [Indexed: 11/13/2022] Open
Abstract
Recombinant protein expression has become an invaluable tool in basic and applied research. The accumulated knowledge in this field allowed the expression of thousands of protein targets in a soluble, pure, and homogeneous state, essential for biochemical and structural analyses. A lot of progress has been achieved in the last decades, where challenging proteins were expressed in a soluble manner after evaluating different parameters such as host, strain, and fusion partner or promoter strength, among others. In this regard, we have previously developed a vector suite that allows the evaluation of different promoters and solubility enhancer-proteins, through an easy and efficient cloning strategy. Nonetheless, the proper expression of many targets remains elusive, requiring, for example, the addition of complex post-translation modifications and/or passage through specialized compartments. In order to overcome the limitations found when working with a single subcellular localization and a single host type, we herein expanded our previously developed vector suite to include the evaluation of recombinant protein expression in different cell compartments and cell hosts. In addition, these vectors also allow the assessment of alternative purification strategies for the improvement of target protein yields.
Collapse
Affiliation(s)
- Claudia Ortega
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Daniel Prieto
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Department of Developmental Neurobiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Cecilia Abreu
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Pablo Oppezzo
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Agustín Correa
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
40
|
Gubu A, Li L, Ning Y, Zhang X, Lee S, Feng M, Li Q, Lei X, Jo K, Tang X. Bioorthogonal Metabolic DNA Labelling using Vinyl Thioether-Modified Thymidine and o-Quinolinone Quinone Methide. Chemistry 2018; 24:5895-5900. [PMID: 29443432 DOI: 10.1002/chem.201705917] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Indexed: 12/12/2022]
Abstract
Bioorthogonal metabolic DNA labeling with fluorochromes is a powerful strategy to visualize DNA molecules and their functions. Here, we report the development of a new DNA metabolic labeling strategy enabled by the catalyst-free bioorthogonal ligation using vinyl thioether modified thymidine and o-quinolinone quinone methide. With the newly designed vinyl thioether-modified thymidine (VTdT), we added labeling tags on cellular DNA, which could further be linked to fluorochromes in cells. Therefore, we successfully visualized the DNA localization within cells as well as single DNA molecules without other staining reagents. In addition, we further characterized this bioorthogonal DNA metabolic labeling using DNase I digestion, MS characterization of VTdT as well as VTdT-oQQF conjugate in cell nuclei or mitochondria. This technique provides a powerful strategy to study DNA in cells, which paves the way to achieve future spatiotemporal deciphering of DNA synthesis and functions.
Collapse
Affiliation(s)
- Amu Gubu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Rd., Beijing, P. R. China
| | - Long Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Rd., Beijing, P. R. China
| | - Yan Ning
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Rd., Beijing, P. R. China
| | - Xiaoyun Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking-Tsinghua Center for Life Sciences, Peking University, P. R. China
| | - Seonghyun Lee
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Republic of Korea
| | - Mengke Feng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Rd., Beijing, P. R. China
| | - Qiang Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking-Tsinghua Center for Life Sciences, Peking University, P. R. China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking-Tsinghua Center for Life Sciences, Peking University, P. R. China
| | - Kyubong Jo
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Republic of Korea
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Rd., Beijing, P. R. China
| |
Collapse
|
41
|
Vittori M, Khurshed M, Picavet DI, van Noorden CJF, Štrus J. Development of calcium bodies in Hylonsicus riparius (Crustacea: Isopoda). ARTHROPOD STRUCTURE & DEVELOPMENT 2018; 47:199-213. [PMID: 29421154 DOI: 10.1016/j.asd.2018.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Calcium bodies are internal epithelial sacs found in terrestrial isopods of the family Trichoniscidae that contain a mineralized extracellular matrix that is deposited and resorbed in relation to the molt cycle. Calcium bodies in several trichoniscids are filled with bacteria, the function of which is currently unknown. The woodlouse Hyloniscus riparius differs from other trichoniscids in that it possesses two different pairs of calcium bodies, the posterior pair being filled with bacteria and the anterior pair being devoid of bacteria. We explored the development of these organs and bacterial colonization of their lumen during the postmarsupial development with the use of optical clearing and whole-body confocal imaging of larval and juvenile stages. Our results show that calcium bodies are formed as invaginations of the epidermis in the region of intersegmental membranes during the postmarsupial development. The anterior pair of calcium bodies is generated during the first postmarsupial manca stage, whereas the posterior calcium bodies first appear in juveniles and are immediately colonized by bacteria, likely through a connection between the calcium body lumen and the body surface. Mineral is deposited in calcium bodies as soon as they are present.
Collapse
Affiliation(s)
- Miloš Vittori
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, SI-1000, Ljubljana, Slovenia.
| | - Mohammed Khurshed
- Cancer Center Amsterdam, Department of Medical Biology at the Academic Medical Center, 1105, AZ Amsterdam, The Netherlands.
| | - Daisy I Picavet
- Core Facility Cellular Imaging, Department of Medical Biology at the Academic Medical Center, 1105, AZ Amsterdam, The Netherlands.
| | - Cornelis J F van Noorden
- Cancer Center Amsterdam, Department of Medical Biology at the Academic Medical Center, 1105, AZ Amsterdam, The Netherlands.
| | - Jasna Štrus
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
42
|
S100-A9 protein in exosomes from chronic lymphocytic leukemia cells promotes NF-κB activity during disease progression. Blood 2017; 130:777-788. [DOI: 10.1182/blood-2017-02-769851] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/29/2017] [Indexed: 12/20/2022] Open
Abstract
Key Points
Plasma-derived exosomes from patients with CLL exhibit different protein cargo compositions depending on disease status and progression. S100-A9 protein is overexpressed and S100-A9 cargo in exosomes activates NF-κB pathway in patients with CLL during disease progression.
Collapse
|
43
|
Vinberg F, Wang T, De Maria A, Zhao H, Bassnett S, Chen J, Kefalov VJ. The Na +/Ca 2+, K + exchanger NCKX4 is required for efficient cone-mediated vision. eLife 2017; 6:e24550. [PMID: 28650316 PMCID: PMC5515578 DOI: 10.7554/elife.24550] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/23/2017] [Indexed: 12/24/2022] Open
Abstract
Calcium (Ca2+) plays an important role in the function and health of neurons. In vertebrate cone photoreceptors, Ca2+ controls photoresponse sensitivity, kinetics, and light adaptation. Despite the critical role of Ca2+ in supporting the function and survival of cones, the mechanism for its extrusion from cone outer segments is not well understood. Here, we show that the Na+/Ca2+, K+ exchanger NCKX4 is expressed in zebrafish, mouse, and primate cones. Functional analysis of NCKX4-deficient mouse cones revealed that this exchanger is essential for the wide operating range and high temporal resolution of cone-mediated vision. We show that NCKX4 shapes the cone photoresponse together with the cone-specific NCKX2: NCKX4 acts early to limit response amplitude, while NCKX2 acts late to further accelerate response recovery. The regulation of Ca2+ by NCKX4 in cones is a novel mechanism that supports their ability to function as daytime photoreceptors and promotes their survival.
Collapse
Affiliation(s)
- Frans Vinberg
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, United States
| | - Tian Wang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, United States
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, United States
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, United States
| | - Alicia De Maria
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, United States
| | - Haiqing Zhao
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Steven Bassnett
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, United States
| | - Jeannie Chen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, United States
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, United States
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, United States
| | - Vladimir J Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, United States
| |
Collapse
|
44
|
Prieto D, Zolessi FR. Functional Diversification of the Four MARCKS Family Members in Zebrafish Neural Development. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 328:119-138. [PMID: 27554589 DOI: 10.1002/jez.b.22691] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 06/01/2016] [Accepted: 06/20/2016] [Indexed: 12/25/2022]
Abstract
Myristoylated alanin-rich C-kinase substrate (MARCKS) and MARCKS-like 1, each encoded by a different gene, comprise a very small family of actin-modulating proteins with essential roles in mammalian neural development. We show here that four genes (two marcks and two marcksl1) are present in teleosts including zebrafish, while ancient actinopterigians, sarcopterigian fishes, and chondrichtyans only have two. No marcks genes were found in agnaths or invertebrates. All four zebrafish genes are expressed during development, and we show here how their early knockdown causes defects in neural development, with some phenotypical differences. Knockdown of marcksa generated embryos with smaller brain and eyes, while marcksb caused different morphogenetic defects, such as larger hindbrain ventricle and folded retina. marcksl1a and marcksl1b morpholinos also caused smaller eyes and brain, although marcksl1a alone generated larger brain ventricles. At 24 hpf, marcksb caused a wider angle of the hindbrain walls, while marcksl1a showed a "T-shaped" neural tube and alterations in neuroepithelium organization. The double knockdown surprisingly produced new features, which included an increased neuroepithelial disorganization and partial neural tube duplications evident at 48 hpf, suggesting defects in convergent extension. This disorganization was also evident in the retina, although retinal ganglion cells were still able to differentiate. marcksl1b morphants presented a unique retinal phenotype characterized by the occurrence of sporadic ectopic neuronal differentiation. Although only marcksl1a morphant had a clear "ciliary phenotype," all presented significantly shorter cilia. Altogether, our data show that all marcks genes have functions in zebrafish neural development, with some differences that suggest the onset of protein diversification.
Collapse
Affiliation(s)
- Daniel Prieto
- Facultad de Ciencias, Sección Biología Celular, Universidad de la República, Montevideo, Uruguay
| | - Flavio R Zolessi
- Facultad de Ciencias, Sección Biología Celular, Universidad de la República, Montevideo, Uruguay.,Cell Biology of Neural Development Lab, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
45
|
Lepanto P, Davison C, Casanova G, Badano JL, Zolessi FR. Characterization of primary cilia during the differentiation of retinal ganglion cells in the zebrafish. Neural Dev 2016; 11:10. [PMID: 27053191 PMCID: PMC4823885 DOI: 10.1186/s13064-016-0064-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/29/2016] [Indexed: 01/05/2023] Open
Abstract
Background Retinal ganglion cell (RGC) differentiation in vivo is a highly stereotyped process, likely resulting from the interaction of cell type-specific transcription factors and tissue-derived signaling factors. The primary cilium, as a signaling hub in the cell, may have a role during this process but its presence and localization during RGC generation, and its contribution to the process of cell differentiation, have not been previously assessed in vivo. Methods In this work we analyzed the distribution of primary cilia in vivo using laser scanning confocal microscopy, as well as their main ultrastructural features by transmission electron microscopy, in the early stages of retinal histogenesis in the zebrafish, around the time of RGC generation and initial differentiation. In addition, we knocked-down ift88 and elipsa, two genes with an essential role in cilia generation and maintenance, a treatment that caused a general reduction in organelle size. The effect on retinal development and RGC differentiation was assessed by confocal microscopy of transgenic or immunolabeled embryos. Results Our results show that retinal neuroepithelial cells have an apically-localized primary cilium usually protruding from the apical membrane. We also found a small proportion of sub-apical cilia, before and during the neurogenic period. This organelle was also present in an apical position in neuroblasts during apical process retraction and dendritogenesis, although between these stages cilia appeared highly dynamic regarding both presence and position. Disruption of cilia caused a decrease in the proliferation of retinal progenitors and a reduction of neural retina volume. In addition, retinal histogenesis was globally delayed albeit RGC layer formation was preferentially reduced with respect to the amacrine and photoreceptor cell layers. Conclusions These results indicate that primary cilia exhibit a highly dynamic behavior during early retinal differentiation, and that they are required for the proliferation and survival of retinal progenitors, as well as for neuronal generation, particularly of RGCs. Electronic supplementary material The online version of this article (doi:10.1186/s13064-016-0064-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paola Lepanto
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay
| | - Camila Davison
- Cell Biology of Neural Development Laboratory, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay.,Sección Biología Celular, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay
| | - Gabriela Casanova
- Unidad de Microscopía Electrónica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay
| | - Jose L Badano
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay.
| | - Flavio R Zolessi
- Cell Biology of Neural Development Laboratory, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay. .,Sección Biología Celular, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay.
| |
Collapse
|
46
|
Vittori M, Breznik B, Gredar T, Hrovat K, Bizjak Mali L, Lah TT. Imaging of human glioblastoma cells and their interactions with mesenchymal stem cells in the zebrafish (Danio rerio) embryonic brain. Radiol Oncol 2016; 50:159-67. [PMID: 27247548 PMCID: PMC4852964 DOI: 10.1515/raon-2016-0017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/07/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND An attractive approach in the study of human cancers is the use of transparent zebrafish (Danio rerio) embryos, which enable the visualization of cancer progression in a living animal. MATERIALS AND METHODS We implanted mixtures of fluorescently labeled glioblastoma (GBM) cells and bonemarrow-derived mesenchymal stem cells (MSCs) into zebrafish embryos to study the cellular pathways of their invasion and the interactions between these cells in vivo. RESULTS By developing and applying a carbocyanine-dye-compatible clearing protocol for observation of cells in deep tissues, we showed that U87 and U373 GBM cells rapidly aggregated into tumor masses in the ventricles and midbrain hemispheres of the zebrafish embryo brain, and invaded the central nervous system, often using the ventricular system and the central canal of the spinal cord. However, the GBM cells did not leave the central nervous system. With co-injection of differentially labeled cultured GBM cells and MSCs, the implanted cells formed mixed tumor masses in the brain. We observed tight associations between GBM cells and MSCs, and possible cell-fusion events. GBM cells and MSCs used similar invasion routes in the central nervous system. CONCLUSIONS This simple model can be used to study the molecular pathways of cellular processes in GBM cell invasion, and their interactions with various types of stromal cells in double or triple cell co-cultures, to design anti-GBM cell therapies that use MSCs as vectors.
Collapse
Affiliation(s)
- Milos Vittori
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | | | - Tajda Gredar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Lilijana Bizjak Mali
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
47
|
Luo HY, Li JY, Li Y, Zhang L, Li JY, Jia DZ, Xu GC. Cadmium(ii) complexes with a 4-acyl pyrazolone derivative and co-ligands: crystal structures and antitumor activity. RSC Adv 2016. [DOI: 10.1039/c6ra23938b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The antitumor activity of three mononuclear cadmium(ii) complexes and an apoptosis assay of complex 3 were investigated.
Collapse
Affiliation(s)
- Hua-Ying Luo
- Key Laboratory of Energy Materials Chemistry (Xinjiang University)
- Ministry of Education
- Key Laboratory of Advanced Functional Materials
- Autonomous Region
- Institute of Applied Chemistry
| | - Jin-Yu Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering
- College of Life Science and Technology
- Xinjiang University
- Urumqi
- P. R. China
| | - Yue Li
- Key Laboratory of Energy Materials Chemistry (Xinjiang University)
- Ministry of Education
- Key Laboratory of Advanced Functional Materials
- Autonomous Region
- Institute of Applied Chemistry
| | - Li Zhang
- Key Laboratory of Energy Materials Chemistry (Xinjiang University)
- Ministry of Education
- Key Laboratory of Advanced Functional Materials
- Autonomous Region
- Institute of Applied Chemistry
| | - Jin-Yao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering
- College of Life Science and Technology
- Xinjiang University
- Urumqi
- P. R. China
| | - Dian-Zeng Jia
- Key Laboratory of Energy Materials Chemistry (Xinjiang University)
- Ministry of Education
- Key Laboratory of Advanced Functional Materials
- Autonomous Region
- Institute of Applied Chemistry
| | - Guan-Cheng Xu
- Key Laboratory of Energy Materials Chemistry (Xinjiang University)
- Ministry of Education
- Key Laboratory of Advanced Functional Materials
- Autonomous Region
- Institute of Applied Chemistry
| |
Collapse
|
48
|
Prieto D, Aparicio G, Machado M, Zolessi FR. Application of the DNA-specific stain methyl green in the fluorescent labeling of embryos. J Vis Exp 2015:e52769. [PMID: 25993383 DOI: 10.3791/52769] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Methyl green has long been known as a histological stain with a specific affinity for DNA, although its fluorescent properties have remained unexplored until recently. In this article, we illustrate the method for preparing a methyl green aqueous stock solution, that when diluted can be used as a very convenient fluorescent nuclear label for fixed cells and tissues. Easy procedures to label whole zebrafish and chick embryos are detailed, and examples of images obtained shown. Methyl green is maximally excited by red light, at 633 nm, and emits with a relatively sharp spectrum that peaks at 677 nm. It is very inexpensive, non-toxic, highly stable in solution and very resistant to photobleaching when bound to DNA. Its red emission allows for unaltered high resolution scanning confocal imaging of nuclei in thick specimens. Finally, this methyl green staining protocol is compatible with other cell staining procedures, such as antibody labeling, or actin filaments labeling with fluorophore-conjugated phalloidin.
Collapse
Affiliation(s)
| | - Gonzalo Aparicio
- Institut Pasteur de Montevideo; Sección Biología Celular, Facultad de Ciencias, Universidad de la República
| | | | - Flavio R Zolessi
- Institut Pasteur de Montevideo; Sección Biología Celular, Facultad de Ciencias, Universidad de la República;
| |
Collapse
|
49
|
The Histochemistry and Cell Biology pandect: the year 2014 in review. Histochem Cell Biol 2015; 143:339-68. [PMID: 25744491 DOI: 10.1007/s00418-015-1313-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2015] [Indexed: 02/07/2023]
Abstract
This review encompasses a brief synopsis of the articles published in 2014 in Histochemistry and Cell Biology. Out of the total of 12 issues published in 2014, two special issues were devoted to "Single-Molecule Super-Resolution Microscopy." The present review is divided into 11 categories, providing an easy format for readers to quickly peruse topics of particular interest to them.
Collapse
|
50
|
Dash SP, Panda AK, Pasayat S, Dinda R, Biswas A, Tiekink ERT, Mukhopadhyay S, Bhutia SK, Kaminsky W, Sinn E. Oxidovanadium(v) complexes of aroylhydrazones incorporating heterocycles: synthesis, characterization and study of DNA binding, photo-induced DNA cleavage and cytotoxic activities. RSC Adv 2015. [DOI: 10.1039/c4ra14369h] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The interaction of four neutral oxidovanadium(v) complexes with DNA and their cytotoxic activities have been reported.
Collapse
Affiliation(s)
- Subhashree P. Dash
- Department of Chemistry
- National Institute of Technology
- Rourkela 769008
- India
| | - Alok K. Panda
- School of Basic Sciences
- Indian Institute of Technology Bhubaneswar
- Bhubaneswar 751 013
- India
| | - Sagarika Pasayat
- Department of Chemistry
- National Institute of Technology
- Rourkela 769008
- India
| | - Rupam Dinda
- Department of Chemistry
- National Institute of Technology
- Rourkela 769008
- India
| | - Ashis Biswas
- School of Basic Sciences
- Indian Institute of Technology Bhubaneswar
- Bhubaneswar 751 013
- India
| | | | | | - Sujit K. Bhutia
- Department of Life Science
- National Institute of Technology
- Rourkela 769008
- India
| | | | - Ekkehard Sinn
- Department of Chemistry
- Western Michigan University
- Kalamazoo
- USA
| |
Collapse
|