1
|
He A, Liang Y, Li J, Zhou Z, Li F, Li Z, Wang Y, Jiang G. A Critical Review of Populations with Occupational Exposure to Per- and Polyfluoroalkyl Substances: External Exposome, Internal Exposure Levels, and Health Effects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:10715-10733. [PMID: 40442988 DOI: 10.1021/acs.est.4c14478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
The relationship between per- and polyfluoroalkyl substances (PFAS) exposure and human health has received widespread attention. This review focuses on the key distinctions in PFAS exposure between the occupational population and the general population from different countries. A systematic summary is made from the external exposure environment, exposure pathways, internal exposure levels, and health effects of the occupational population. The manufacturing, use, and disposal processes of PFAS increase their concentration levels in the ambient environment, leading to significantly higher concentrations than background areas. Different PFAS exposure pathways may lead to different molecular initiating events and health outcomes in the occupational population and the general population. Moreover, the PFAS exposure levels of the occupational population are nearly one hundred times higher than those of the general population. Mixed exposure to more unknown PFAS is another important feature of the occupational population. Although occupational exposure to PFAS is not associated with mortality, PFAS exposure can significantly disrupt metabolic pathways and cause adverse effects on the liver, kidney, and lipid homeostasis. Therefore, more stringent occupational protections for the PFAS occupational population are necessary to reduce their health risks.
Collapse
Affiliation(s)
- Anen He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Juan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhen Zhou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Feifei Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhao Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
2
|
Du X, Xu X, Dong XX, Liang X, Wu Y, Du Z, Pan CW, Liang G, Li YZ, Zheng YJ, Qin Y, Qian K, Xu J, Hong X, Li DL, Zheng W. Integration of Animal, Population, and Toxicogenomic Evidence on the Hematotoxic and Immunosuppressive Effects of Environmental Exposure to PFAS Mixtures in Adolescents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:10841-10853. [PMID: 40408073 DOI: 10.1021/acs.est.5c01138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are emerging contaminants widely found in drinking water and food, potentially entering the human body through these sources. To investigate these effects, we simulated PFAS exposure doses in animal models, ranging from general population to occupational levels, and analyzed blood and spleen samples. Epidemiological studies linked PFAS exposure to immunosuppression and hematotoxicity, while toxicogenomic analyses validated the underlying biological mechanisms. PFAS exposure caused immunotoxic effects, including altered blood parameters and lymphocyte edema. Cellular abnormalities such as decreased cytoplasmic density, incomplete rough endoplasmic reticulum, chromatin condensation, lymphocyte nuclear shrinkage, and reduced mitochondrial cristae were observed. Epidemiological evidence revealed a dose-response relationship between mixed PFAS exposure and hematologic indices such as hematocrit (HCT), hemoglobin (HGB), platelet count (PLT), platelet-to-lymphocyte ratio (PLR), white blood cell count (WBC), monocyte percentage, and platelet large cell ratio (PLCR), with perfluorooctanoic acid (PFOA) playing a dominant role. Toxicogenomic analysis identified genes associated with platelets, anemia, and leukocyte function, linked to inflammation, Th17 cell differentiation, apoptosis, lipid metabolism, atherosclerosis, and JAK-STAT signaling. This study provides novel insights into the hematotoxicity and immunosuppressive effects of mixed PFAS exposure, emphasizing the need for PFAS substitution, removal, and policies addressing mixed exposures to protect public health.
Collapse
Affiliation(s)
- Xiushuai Du
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xueming Xu
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 420, Fuma Road, Jinan District, Fuzhou 350014, China
| | - Xing-Xuan Dong
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Xinlei Liang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yitian Wu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Zhiyuan Du
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Chen-Wei Pan
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Gang Liang
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming 650021,China
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province,Kunming 650000, China
| | - Yue-Zu Li
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming 650021,China
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province,Kunming 650000, China
| | - Ya-Jie Zheng
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming 650021,China
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province,Kunming 650000, China
| | - Yu Qin
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming 650021,China
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province,Kunming 650000, China
| | - Kelei Qian
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Jing Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Xinyu Hong
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Dan-Lin Li
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Weiwei Zheng
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
- Center for Water and Health, School of Public Health, Fudan University, Shanghai 200032, PR China
- Institute of Photochemistry and Photofunctional Materials, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
3
|
Cheng Y, Li JR, Yu H, Li S, Tychhon B, Cheng C, Weng YL. Perfluoroalkyl substance pollutants disrupt microglia function and trigger transcriptional and epigenomic changes. Toxicology 2025; 517:154198. [PMID: 40419075 DOI: 10.1016/j.tox.2025.154198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 05/22/2025] [Accepted: 05/22/2025] [Indexed: 05/28/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS), commonly referred to as "forever chemicals", are widely utilized in various industries and consumer products worldwide. Their exposure has been associated with numerous diseases and malignancies, including neurodevelopmental and neurodegenerative disorders. However, the molecular mechanisms underlying PFAS-induced adverse effects on the central nervous system (CNS) remain poorly understood. In this study, we investigated the transcriptomic and epigenetic changes in microglia exposed to perfluorooctane sulfonate (PFOS), a prevalent PFAS compound. Our findings demonstrate that 24-hour PFOS exposure (25 and 50 µM) disrupts the microglial transcriptome and compromises their homeostatic state, marked by increased inflammation and impaired actin cytoskeleton remodeling. Comparative analysis with in vivo transcriptional states revealed that PFOS-exposed microglia exhibit gene expression profiles resembling those of aged microglia. Additionally, profiling of active chromatin regions uncovered significant alterations in the H3K27ac landscape in PFOS-exposed microglia. Notably, these epigenetic disruptions persisted even after PFOS withdrawal, with a subset of H3K27ac-enriched regions remaining altered, suggesting the presence of lasting epigenetic scars. Furthermore, transcription factor analysis implicated the AP-1 and TEAD families as potential upstream regulators connecting the altered chromatin landscape to transcriptomic changes. Collectively, these findings provide mechanistic insights into how PFOS exposure disrupts microglial function and highlight its potential role in exacerbating neurodegenerative processes.
Collapse
Affiliation(s)
- Yating Cheng
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Jian-Rong Li
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hangjin Yu
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Shuang Li
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Boranai Tychhon
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi-Lan Weng
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX 77030, USA.
| |
Collapse
|
4
|
Paustenbach D, McCauley K, Siracusa J, Smallets S, Brew D, Stevens M, Deckard B, Hua M. United States Environmental Protection Agency's Perfluorooctanoic Acid, Perfluorooctane Sulfonic Acid, and Related Per- and Polyfluoroalkyl Substances 2024 Drinking Water Maximum Contaminant Level: Part 2 - Fifteen Misconceptions About the Health Hazards. Crit Rev Toxicol 2025; 55:368-415. [PMID: 40391660 DOI: 10.1080/10408444.2024.2446453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 05/22/2025]
Abstract
This paper examines widely held beliefs about the six per- and polyfluoroalkyl substances (PFAS) addressed in the final U.S. Environmental Protection Agency's (EPA) rule on PFAS in drinking water (e.g., the Maximum Contaminant Levels - MCLs). Based on our understanding of the scientific literature and the comments submitted by stakeholders regarding the EPA's regulation that was promulgated in April 2024, we identified 15 misconceptions that had a weak scientific foundation. These are now memoralized in the MCLs for the six PFAS but remain debated due to ongoing ambiguous research findings. Many critics of the MCLs found the EPA's systematic review of the published relevant information, particularly the toxicology of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), to be inadequate. The following seven views are among the most important. First, the EPA asserted that the toxicology of these six chemicals was poorly understood and lacked sufficient data to determine a safe daily intake level for chronic health effects; nonetheless, they promulgated what may be the costliest environmental regulation to date. Notably, adverse effects remain difficult to demonstrate in occupationally exposed individuals even at blood concentrations 50-100 times higher than current background PFAS levels. Second, the Agency indicated that the epidemiology data showed that exposure to PFOA and PFOS caused kidney and potentially other cancers, yet the data were equivocal and do not support that assertion. Third, it was stated that specific non-cancer effects, such as heart disease, would be prevented under the promulgated rule; however, the studies that they relied upon do not show an increased incidence of heart disease even in highly exposed populations. Fourth, the Agency relied on animal data to support its views on the likely toxic effects in humans, despite ample toxicology data that animals, particularly rodents, are poor predictors of the human response to PFAS exposures. Fifth, the EPA predicted a reduction in healthcare expenditures that would offset much of the cost of complying with the MCL, but, they did not have adequate data to support this prediction. Sixth, the EPA suggested that these six PFAS act through a shared mechanism of action (i.e., PPARα pathway induction); however, data indicate that PPARα induction in humans may be 80% less than what is observed in rodents. Also, induction of the PPARα pathway is not a cause of systemic disease. Seventh, the Agency failed to disclose that achieving the new MCL would yield negligible reductions in blood PFAS levels even among highly exposed populations, given drinking water accounts for only 20% or less of total PFAS exposure. The survey that could answer that question, the EPA's fifth Unregulated Contaminant Monitoring Rule, was only 25% complete at the time the MCL was promulgated. Overall, our analysis concluded that while the EPA's intent to regulate these chemicals due to their environmental presence was necessary, the derivation of the MCLs and the alleged health effects was based on the application of the precautionary principle rather than robust scientific evidence.
Collapse
Affiliation(s)
| | | | | | | | - David Brew
- Paustenbach and Associates, Jackson, WY, USA
| | | | | | - My Hua
- Paustenbach and Associates, Glendale, CA, USA
| |
Collapse
|
5
|
Pattarawat P, Zhan T, Fan Y, Zhang J, Yang H, Zhang Y, Moyd S, Douglas NC, Urbanek M, Buckley B, Burdette J, Zhang Q, Kim JYJ, Xiao S. Exposure to Long- and Short-Chain Per- and Polyfluoroalkyl Substances in Mice and Ovarian-Related Outcomes: An in Vivo and in Vitro Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2025; 133:57024. [PMID: 40194260 PMCID: PMC12120842 DOI: 10.1289/ehp14876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/17/2025] [Accepted: 04/03/2025] [Indexed: 04/09/2025]
Abstract
BACKGROUND The extensive use of per- and polyfluoroalkyl substances (PFAS) has led to environmental contamination and bioaccumulation of these substances. Previous research linked PFAS exposure to female reproductive disorders, but the mechanism remains elusive. Further, most studies focused on legacy long-chain PFOA and PFOS, yet the reproductive impacts of other long-chain PFAS and short-chain alternatives are rarely explored. OBJECTIVES We investigated the effects of long- and short-chain PFAS on the mouse ovary and further evaluated the toxic mechanisms of long-chain perfluorononanoic acid (PFNA). METHODS A 3D in vitro mouse ovarian follicle culture system and an in vivo mouse model were used, together with approaches of reverse transcription-quantitative polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), RNA sequencing (RNA-seq), pharmacological treatments, in situ zymography, histology, in situ hybridization, analytical chemistry, and benchmark dose modeling (BMD). Using these approaches, a wide range of exposure levels (1 - 250 μ M ) of long-chain PFAS (PFOA, PFOS, PFNA) and short-chain PFAS (PFHpA, PFBS, GenX) were first tested in cultured follicles to examine their effects on follicle growth, hormone secretion, and ovulation. We identified 250 μ M as the most effective concentration for further investigation into the toxic mechanisms of PFNA, followed by an in vivo mouse exposure model to verify the accumulation of PFNA in the ovary and its ovarian-disrupting effects. RESULTS In vitro cultured ovarian follicles exposed to long- but not short-chain PFAS showed poorer gonadotropin-dependent follicle growth, ovulation, and hormone secretion in comparison with control follicles. RT-qPCR and RNA-seq analyses revealed significant alterations in the expression of genes involved in follicle-stimulating hormone (FSH)-dependent follicle growth, luteinizing hormone (LH)-stimulated ovulation, and associated regulatory pathways in the PFNA-exposed group in comparison with the control group. The PPAR agonist experiment demonstrated that a peroxisome proliferator-activated receptor gamma (PPAR γ ) antagonist could reverse both the phenotypic and genotypic effects of PFNA exposure, restoring them to levels comparable to the control group. Furthermore, in vivo experiments confirmed that PFNA could accumulate in ovarian tissues and validated the in vitro findings. The BMD, in vitro, and in vivo extrapolation analyses estimated follicular rupture as the most sensitive end point and that observed effects occurred in the range of human exposure to long-chain PFAS. DISCUSSION Our study demonstrates that long-chain PFAS, particularly PFNA, act as a PPAR γ agonist in granulosa cells to interfere with gonadotropin-dependent follicle growth, hormone secretion, and ovulation; and exposure to high levels of PFAS may cause adverse ovarian outcomes. https://doi.org/10.1289/EHP14876.
Collapse
Affiliation(s)
- Pawat Pattarawat
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey, USA
- Center for Environmental Exposures and Disease (CEED), Rutgers University, Piscataway, New Jersey, USA
| | - Tingjie Zhan
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey, USA
- Center for Environmental Exposures and Disease (CEED), Rutgers University, Piscataway, New Jersey, USA
| | - Yihan Fan
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, USA
| | - Jiyang Zhang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey, USA
- Center for Environmental Exposures and Disease (CEED), Rutgers University, Piscataway, New Jersey, USA
| | - Hilly Yang
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey, USA
- Center for Environmental Exposures and Disease (CEED), Rutgers University, Piscataway, New Jersey, USA
| | - Ying Zhang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey, USA
- Center for Environmental Exposures and Disease (CEED), Rutgers University, Piscataway, New Jersey, USA
| | - Sarahna Moyd
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Nataki C. Douglas
- Department of Obstetrics, Gynecology and Reproductive Health, New Jersey Medical School (NJMS), Rutgers University, Newark, New Jersey, USA
- Center for Immunity and Inflammation, Rutgers Biomedical and Health Sciences (RBHS), Newark, New Jersey, USA
| | - Margrit Urbanek
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey, USA
- Center for Environmental Exposures and Disease (CEED), Rutgers University, Piscataway, New Jersey, USA
| | - Joanna Burdette
- Department of Pharmaceutical Biosciences, Center for Biomolecular Science, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Ji-Yong Julie Kim
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey, USA
- Center for Environmental Exposures and Disease (CEED), Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
6
|
Raza YN, Moustafa JSES, Zhang X, Wang D, Tomlinson M, Falchi M, Menni C, Bowyer RCE, Steves CJ, Small KS. Longitudinal association of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) exposure with lipid traits, in a healthy unselected population. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2025:10.1038/s41370-025-00773-3. [PMID: 40274963 PMCID: PMC7617748 DOI: 10.1038/s41370-025-00773-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Perfluorooctanoic acid (PFOA) and Perfluorooctanesulfonic Acid (PFOS) are synthetic substances with long half-lives. Their presence is widespread and pervasive, and they are noted for their environmental persistence. Research has shown these chemicals to be associated with dyslipidaemia, although few studies have considered the long-term associations in the general population. OBJECTIVES The aim of this study was to consider the longitudinal and cross-sectional associations with lipid phenotypes. METHODS We investigated the association of these chemicals with total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides (TG), and the total cholesterol: high-density lipoprotein ratio (TC:HDL), in a healthy unselected British population of twins (n = 2069), measured at three timepoints between 1996 and 2014. RESULTS Serum levels of PFOA and PFOS decreased over time during this period. We demonstrate longitudinal associations across serum levels of both PFOA and PFOS, finding positive associations with TC (PFOA:β = 0.51, p = 1.9e-07; PFOS:β = 0.24, p = 3.8e-05) and LDL (PFOA:β = 0.61, p = 1.7e-11; PFOS:β = 0.42, p = 1.6e-14), and consistent negative associations with HDL and PFOA (β = -0.12, p = 0.003) and PFOS (β = -0.25, p = <2e-16). We also observe cross-sectional associations of PFAS with lipids across all three timepoints. IMPACT PFAS remain persistent in the environment, despite regulations, due to their structural properties, leaving humans open to exposure. There is less understanding of how chronic low exposure to these chemicals, particularly within an unselected population, may impact health outcomes. This study reports the longitudinal associations of PFOA and PFOS over an 18-year window with 5 lipid phenotypes, highlighting that despite falling serum levels, PFAS exposure may lead to hyperlipidaemia. We further investigate the cross-sectional associations across three timepoints to understand time-dependent effects, demonstrating associations persist. This work aids our understanding on the long-term effect of chronic PFAS exposure.
Collapse
Affiliation(s)
- Yasrab N Raza
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | | | - Xinyuan Zhang
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Dongmeng Wang
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Max Tomlinson
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Mario Falchi
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Via Francesco Sforza, 35, 20122, Milan, Italy
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, 20122, Milan, Italy
| | - Ruth C E Bowyer
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Claire J Steves
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.
| |
Collapse
|
7
|
Du X, Li DL, Xu X, Wu Y, Du Z, Liang G, Li YZ, Zheng YJ, Qin Y, Qian K, Xu J, Gao L, Tao G, Pan CW, Zheng W. Effects of mixed exposure to PFAS on adolescent non-alcoholic fatty liver disease: Integrating evidence from human cohorts, toxicogenomics, and animal models to uncover mechanisms and potential target sites. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136854. [PMID: 39706014 DOI: 10.1016/j.jhazmat.2024.136854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
Extensive evidence suggests a correlation between environmental pollutants, specifically perfluoroalkyl and polyfluoroalkyl substances (PFAS) and non-alcoholic fatty liver disease (NAFLD). This study aims to investigate the association and underlying mechanisms of PFAS-induced NAFLD in adolescents by employing a comprehensive approach of population-based studies, toxicogenomics, and animal models. A total of 2014 freshmen from Dali University were recruited for this study, with 1694 participants undergoing serum testing for PFAS exposure. Additionally, Comparative Toxicogenomics Database analysis and PFAS exposure experiments were conducted by orally administering PFAS to 8-week-old adult C57/6 J mice for 28 days. Epidemiological analysis of the adolescent cohort revealed that perfluorohexanesulfonic acid and perfluorooctanoic acid are significant risk factors for NAFLD in adolescents. Toxicogenomic analysis revealed that the negative regulation of gap junction assembly and glutathione derivative biosynthesis contributes to NAFLD development. Animal model studies further demonstrated that combined PFAS exposure led to pathological changes in hepatocytes, including inflammation and steatosis, elevated liver enzymes, cholestasis, and bile canalicular blockage. This study reveals that PFAS exposure serves as a significant risk factor for hepatic steatosis/NAFLD in adolescents. The activation of cytochrome P4502E1 and glutathione S-transferase A1 signaling highlights new molecular targets for PFAS-induced disruptions in hepatic lipid metabolism.
Collapse
Affiliation(s)
- Xiushuai Du
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Dan-Lin Li
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Xueming Xu
- Clinical Medical Research Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yitian Wu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Zhiyuan Du
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Gang Liang
- Department of Ophthalmology, the Affiliated Hospital of Yunnan University, Kunming, China; Department of Ophthalmology, the Second People's Hospital of Yunnan Province, Kunming, China
| | - Yue-Zu Li
- Department of Ophthalmology, the Affiliated Hospital of Yunnan University, Kunming, China; Department of Ophthalmology, the Second People's Hospital of Yunnan Province, Kunming, China
| | - Ya-Jie Zheng
- Department of Ophthalmology, the Affiliated Hospital of Yunnan University, Kunming, China; Department of Ophthalmology, the Second People's Hospital of Yunnan Province, Kunming, China
| | - Yu Qin
- Department of Ophthalmology, the Affiliated Hospital of Yunnan University, Kunming, China; Department of Ophthalmology, the Second People's Hospital of Yunnan Province, Kunming, China
| | - Kelei Qian
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Jing Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Liping Gao
- Department of Laboratory Medicine, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Gonghua Tao
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China.
| | - Chen-Wei Pan
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| | - Weiwei Zheng
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Center for Water and Health, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
8
|
Huacachino AA, Chung A, Sharp K, Penning TM. Specific and potent inhibition of steroid hormone pre-receptor regulator AKR1C2 by perfluorooctanoic acid: Implications for androgen metabolism. J Steroid Biochem Mol Biol 2025; 246:106641. [PMID: 39571823 PMCID: PMC11652220 DOI: 10.1016/j.jsbmb.2024.106641] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous environmental pollutants that are highly stable synthetic organofluorine compounds. One congener perfluorooctanoic acid (PFOA) can be detected in nearly all humans and is recognized as an endocrine disrupting chemical (EDC). EDCs disrupt hormone synthesis and metabolism and receptor function. One mechanism of steroid hormone action is the pre-receptor regulation of ligand access to steroid hormone receptors by aldo-keto reductases. Here we report PFOA inhibition of AKR family 1 member C2 (AKR1C2), leading to dysregulation of androgen action. Spectrofluorimetric inhibitor screens identified PFOA as a competitive and tight binding inhibitor of AKR1C2, whose role is to inactivate 5α-dihydrotestosterone (5α-DHT). Further site directed mutagenesis studies along with molecular docking simulations revealed the importance of residue Valine 54 in mediating AKR1C2 inhibitor specificity. Binding site restrictions were explored by testing inhibition of other related PFAS chemicals, confirming that steric hinderance is a key factor. Furthermore, radiochromatography using HPLC and in line radiometric detection confirmed the accumulation of 5α-DHT as a result of PFOA inhibition of AKR1C2. We showed that PFOA could enhance the transactivation of AR in reporter genes assays in which 5α-DHT metabolism was blocked by AKR1C2 inhibition in HeLa cells. Taken together, these data suggest PFOA has a role in disrupting androgen action through inhibiting AKR1C2. Our work identifies an EDC function for PFOA not previously revealed.
Collapse
Affiliation(s)
- Andrea Andress Huacachino
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anna Chung
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kim Sharp
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Trevor M Penning
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Li L, Ren J, Guo M, An Z, Duan W, Lv J, Tan Z, Yang J, Zhu Y, Yang H, Liu Y, Ma Y, Guo H. SAP130 mediates crosstalk between hepatocyte ferroptosis and M1 macrophage polarization in PFOS-induced hepatotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175612. [PMID: 39163934 DOI: 10.1016/j.scitotenv.2024.175612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant widely utilized in industrial manufacturing and daily life, leading to significant environmental accumulation and various public health issues. This study aims to characterize spliceosome-associated protein 130 (SAP130) as a key mediator of crosstalk between hepatocytes and macrophages, elucidating its role in PFOS-induced liver inflammation. The data demonstrate that PFOS exposure induces ferroptosis in mouse liver and AML12 cells. During ferroptosis, SAP130 is released from injured hepatocytes into the microenvironment, binding to macrophage-inducible C-type lectin (Mincle) and activating the Mincle/Syk signaling pathway in macrophages, ultimately promoting M1 polarization and exacerbating liver injury. Treatment with the ferroptosis inhibitor Ferrostatin-1 reduces SAP130 release, inhibits Mincle/Syk signaling activation, and mitigates inflammatory response. Furthermore, siSAP130 suppresses the activation of the Mincle signaling pathway and M1 polarization in BMDM cells. Conversely, treatment with the ferroptosis agonist Erastin enhances paracrine secretion of SAP130 and exacerbates inflammation. These findings emphasize the significance of hepatocyte-macrophage crosstalk as a critical pathway for PFOS-induced liver injury in mice while highlighting SAP130 as a pivotal regulator of ferroptosis and inflammation, thereby elucidating the potential mechanism of PFOS-induced liver injury.
Collapse
Affiliation(s)
- Longfei Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Jingyi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Mingmei Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Ziwen An
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Wenjing Duan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Junli Lv
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Zhenzhen Tan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Jing Yang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yiming Zhu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Huiling Yang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China.
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, PR China.
| |
Collapse
|
10
|
Zhang R, Tu L, Lin Y, Liu J, Liang T, Lu W, Chen B, Luan T. Effective strategies alleviate mitochondrial toxicity of perfluorooctanoic acid: Modification of functional head group and inhibition of toxic target. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135733. [PMID: 39236541 DOI: 10.1016/j.jhazmat.2024.135733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Minimizing the detrimental impacts of perfluorooctanoic acid (PFOA) on human health is a daunting task. Here, we aimed to propose effective strategies for reducing PFOA-induced mitochondrial toxicity in human liver and intestinal cells. PFOA could occupy the fatty acid-binding pockets of human peroxisome proliferator-activated receptor alpha (hPPARα). PFOA not only could structurally interact with hPPARα, but also substantially upregulated the expression levels of PPARα and its downstream gene (i.e., pyruvate dehydrogenase kinase (PDK4)). The increased expression of PDK4 was associated with the mitochondrial toxicity of PFOA, and inhibition of PDK4 or knock-down of PDK4 could effectively attenuate the mitochondrial toxicity of PFOA. Moreover, modification of carboxyl group via an esterification of PFOA into methyl perfluorooctanoate (MePFOA) decreased the affinity to hPPARα, resulting in the loss of upregulated expressions of PPARα and PDK4. Lower mitochondrial toxicity and cytotoxicity were found in the MePFOA-treated cells compared to PFOA exposure. Our study supported that the carboxyl group of PFOA (as functional head group) was required for inducing its mitochondrial toxicity. Two strategies, including modification of functional head group and inhibition of toxic target of PFOA, are feasible to ameliorate mitochondrial toxicity of PFOA.
Collapse
Affiliation(s)
- Ruijia Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Lanyin Tu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yingshi Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiahui Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Tong Liang
- Intensive Care Unit, Guangzhou Eighth People's Hospital, Guangzhou 510440, China
| | - Wenhua Lu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China.
| | - Tiangang Luan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
11
|
Samala N, Kulkarni M, Lele RS, Gripshover TC, Lynn Wise J, Rai SN, Cave MC. Associations between per- and polyfluoroalkyl substance exposures and metabolic dysfunction associated steatotic liver disease (MASLD) in adult National Health and Nutrition Examination Survey 2017 to 2018. Toxicol Sci 2024; 202:142-151. [PMID: 39150893 PMCID: PMC11514833 DOI: 10.1093/toxsci/kfae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants previously associated with elevated liver enzymes in human cohorts and steatotic liver disease in animal models. We aimed to evaluate the associations between PFAS exposures, and liver enzymes and vibration controlled transient elastography (VCTE) biomarkers of metabolic dysfunction associated steatotic liver disease (MASLD) in adult National Health and Nutrition Examination Survey (NHANES) 2017 to 2018. VCTE was determined by FibroScan. Serum PFAS (n = 14), measured by mass spectrometry, were analyzed individually and by principal component (PC). Univariate and multivariable associations were determined between PFAS exposures and liver disease outcome variables: alanine aminotransferase (ALT), controlled attenuation parameter (CAP), liver stiffness measurement (LSM), FibroScan-based Score (FAST), using R. About 1,400 participants including 50% women with a mean age of 48 ± 19 years and a mean BMI of 29 ± 7 kg/m2 were analyzed. Four PFAS clustered to PC1, whereas 3 PFAS clustered to PC2. PC1 was significantly associated with ALT (β = 0.028), CAP (β = 0.041), LSM (β = 0.025), and FAST (β = 0.198) in univariate analysis. Individual PFAS exposures were oftentimes inversely associated with these measurements in multivariate analysis. In adult NHANES 2017-2018, PFAS may not be a significant burden for MASLD, because of the inconsistent associations between the environmental PFAS exposures and biomarkers of liver steatosis, inflammation, and fibrosis. More data are required to better understand the relationships between PFAS exposures and liver disease.
Collapse
Affiliation(s)
- Niharika Samala
- Department of Medicine, Division of Gastroenterology & Hepatology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Manjiri Kulkarni
- Environmental Health Institute, University of Louisville, Louisville, KY 40202, United States
| | - Rachana S Lele
- Department of Biostatistics, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Tyler C Gripshover
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, United States
| | - Jaime Lynn Wise
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, United States
| | - Shesh N Rai
- Department of Biostatistics, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Matthew C Cave
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, United States
- University of Louisville Superfund Research Program, University of Louisville, Louisville, KY 40202, United States
| |
Collapse
|
12
|
Du X, Xu X, Yu H, Du Z, Wu Y, Qian K, Xu J, Tao G, Zhang L, Zheng W. Thyrotoxic Effects of Mixed Exposure to Perfluorinated Compounds: Integrating Population-Based, Toxicogenomic, Animal, and Cellular Evidence to Elucidate Molecular Mechanisms and Identify Potential Effector Targets. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18177-18189. [PMID: 39359169 DOI: 10.1021/acs.est.4c06287] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are emerging environmental endocrine disruptors that may adversely affect the human endocrine system, particularly the thyroid gland, the largest endocrine gland in the human body. An epidemiologic survey was conducted involving 318 community residents in Shanghai, China, to assess PFAS exposure levels. The relationship between PFAS exposure and five thyroid function indicators was analyzed using Bayesian Kernel Regression (BKMR) and Weighted Quantile Sum Regression (WQS). Ten effector genes related to PFAS and thyroid diseases were identified through the Comparative Toxicogenomics Database (CTD) for bioinformatics analysis and pathways involved were explored through mediation analysis. In vivo validation of these effector genes was conducted using PCR, complemented by in vitro cellular experiments involving transcriptome sequencing and the construction of animal models to simulate mixed PFAS exposure in the general population. Mixed PFAS exposure was found to impact thyroid health primarily through pathways related to lipid metabolism in toxicogenomic studies and resulted in the upregulation of key genes associated with lipid metabolism in animal models. Our results demonstrate that PFAS exposure could affect the expression of lipid metabolism pathways through the modulation of transcription factors, contributing to the development of thyroid disease.
Collapse
Affiliation(s)
- Xiushuai Du
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
- Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Xueming Xu
- Clinical Medical Research Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Hongjie Yu
- Jiading District Center for Disease Control and Prevention, Shanghai 201899, China
| | - Zhiyuan Du
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
- Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Yitian Wu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Kelei Qian
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Jing Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Gonghua Tao
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Ling Zhang
- Department of Surgery, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Weiwei Zheng
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
- Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
- Center for Water and Health, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
13
|
Garmo LC, Herroon MK, Mecca S, Wilson A, Allen DR, Agarwal M, Kim S, Petriello MC, Podgorski I. The long-chain polyfluorinated alkyl substance perfluorohexane sulfonate (PFHxS) promotes bone marrow adipogenesis. Toxicol Appl Pharmacol 2024; 491:117047. [PMID: 39111555 DOI: 10.1016/j.taap.2024.117047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/11/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) bioaccumulate in different organ systems, including bone. While existing research highlights the adverse impact of PFAS on bone density, a critical gap remains in understanding the specific effects on the bone marrow microenvironment, especially the bone marrow adipose tissue (BMAT). Changes in BMAT have been linked to various health consequences, such as the development of osteoporosis and the progression of metastatic tumors in bone. Studies presented herein demonstrate that exposure to a mixture of five environmentally relevant PFAS compounds promotes marrow adipogenesis in vitro and in vivo. We show that among the components of the mixture, PFHxS, an alternative to PFOS, has the highest propensity to accumulate in bone and effectively promote marrow adipogenesis. Utilizing RNAseq approaches, we identified the peroxisome proliferator-activated receptor (PPAR) signaling as a top pathway modulated by PFHxS exposure. Furthermore, we provide results suggesting the activation and involvement of PPAR-gamma (PPARγ) in PFHxS-mediated bone marrow adipogenesis, especially in combination with high-fat diet. In conclusion, our findings demonstrate the potential impact of elevated PFHxS levels, particularly in occupational settings, on bone health, and specifically bone marrow adiposity. This study contributes new insights into the health risks of PFHxS exposure, urging further research on the relationship between environmental factors, diet, and adipose tissue dynamics.
Collapse
Affiliation(s)
- Laimar C Garmo
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Mackenzie K Herroon
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Shane Mecca
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Alexis Wilson
- Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, United States of America
| | - David R Allen
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Manisha Agarwal
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, United States of America
| | - Michael C Petriello
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States of America
| | - Izabela Podgorski
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America; Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, United States of America.
| |
Collapse
|
14
|
Taibl KR, Dunlop AL, Smith MR, Walker DI, Ryan PB, Panuwet P, Corwin EJ, Kannan K, Jones DP, Marsit CJ, Tan Y, Liang D, Eick SM, Barr DB. Association of per- and polyfluoroalkyl substances with the antioxidant bilirubin across pregnancy. Free Radic Biol Med 2024; 223:184-192. [PMID: 39097204 PMCID: PMC11866431 DOI: 10.1016/j.freeradbiomed.2024.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND In mechanistic and preliminary human studies, prenatal exposure to per- and polyfluoroalkyl substances (PFAS) is associated with oxidative stress, a potential contributor to maternal liver disease. Bilirubin is an endogenous antioxidant abundant in the liver that may serve as a physiological modulator of oxidative stress in pregnant people. Hence, our objective was to estimate the association between repeated measures of PFAS and bilirubin during pregnancy. METHODS The study population included 332 participants in the Atlanta African American Maternal-Child Cohort between 2014 and 2020. Serum samples were collected up to two times (early pregnancy: 6-18 gestational weeks; late pregnancy: 21-36 gestational weeks) for the measurement of perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and total bilirubin. We analyzed single PFAS with linear mixed effect regression and a mixture of the four PFAS with quantile g-computation. Models were repeated with a multiplicative interaction term to explore effect modification by study visit. RESULTS Overall, PFHxS was positively associated with bilirubin (β = 0.08, 95 % CI = 0.01, 0.15). We also found during late pregnancy, there was a positive association of PFHxS and the PFAS mixture with bilirubin (β = 0.12, 95 % CI = 0.02, 0.22; ψ = 0.19, 95 % CI = 0.03, 0.34, respectively). Finally, study visit modified the PFOA-bilirubin association (interaction p-value = 0.09), which was greater during early pregnancy (β = 0.08, 95 % CI = 0.01, 0.15). CONCLUSION In a prospective cohort of pregnant African Americans, an increase in PFOA, PFHxS, and the PFAS mixture was associated with an increase in bilirubin. Our results suggest that, depending on pregnancy stage, prenatal PFAS exposure disrupts the maternal liver antioxidant capacity.
Collapse
Affiliation(s)
- Kaitlin R Taibl
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Anne L Dunlop
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - M Ryan Smith
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA; Atlanta VA Healthcare System, Decatur, GA, USA
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - P Barry Ryan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Elizabeth J Corwin
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Environmental Health Sciences, State University of New York at Albany, NY, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Youran Tan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Stephanie M Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
15
|
Roth K, Yang Z, Agarwal M, Birbeck J, Westrick J, Lydic T, Gurdziel K, Petriello MC. Exposure of Ldlr-/- Mice to a PFAS Mixture and Outcomes Related to Circulating Lipids, Bile Acid Excretion, and the Intestinal Transporter ASBT. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:87007. [PMID: 39177951 PMCID: PMC11343043 DOI: 10.1289/ehp14339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Previous epidemiological studies have repeatedly found per- and polyfluoroalkyl substances (PFAS) exposure associated with higher circulating cholesterol, one of the greatest risk factors for development of coronary artery disease. The main route of cholesterol catabolism is through its conversion to bile acids, which circulate between the liver and ileum via enterohepatic circulation. Patients with coronary artery disease have decreased bile acid excretion, indicating that PFAS-induced impacts on enterohepatic circulation may play a critical role in cardiovascular risk. OBJECTIVES Using a mouse model with high levels of low-density and very low-density lipoprotein (LDL and VLDL, respectively) cholesterol and aortic lesion development similar to humans, the present study investigated mechanisms linking exposure to a PFAS mixture with increased cholesterol. METHODS Male and female L d l r - / - mice were fed an atherogenic diet (Clinton/Cybulsky low fat, 0.15% cholesterol) and exposed to a mixture of 5 PFAS representing legacy, replacement, and emerging subtypes (i.e., PFOA, PFOS, PFHxS, PFNA, GenX), each at a concentration of 2 mg / L , for 7 wk. Blood was collected longitudinally for cholesterol measurements, and mass spectrometry was used to measure circulating and fecal bile acids. Transcriptomic analysis of ileal samples was performed via RNA sequencing. RESULTS After 7 wk of PFAS exposure, average circulating PFAS levels were measured at 21.6, 20.1, 31.2, 23.5, and 1.5 μ g / mL in PFAS-exposed females and 12.9, 9.7, 23, 14.3, and 1.7 μ g / mL in PFAS-exposed males for PFOA, PFOS, PFHxS, PFNA, and GenX, respectively. Total circulating cholesterol levels were higher in PFAS-exposed mice after 7 wk (352 mg / dL vs. 415 mg / dL in female mice and 392 mg / dL vs. 488 mg / dL in male mice exposed to vehicle or PFAS, respectively). Total circulating bile acid levels were higher in PFAS-exposed mice (2,978 pg / μ L vs. 8,496 pg / μ L in female mice and 1,960 pg / μ L vs. 4,452 pg / μ L in male mice exposed to vehicle or PFAS, respectively). In addition, total fecal bile acid levels were lower in PFAS-exposed mice (1,797 ng / mg vs. 682 ng / mg in females and 1,622 ng / mg vs. 670 ng / mg in males exposed to vehicle or PFAS, respectively). In the ileum, expression levels of the apical sodium-dependent bile acid transporter (ASBT) were higher in PFAS-exposed mice. DISCUSSION Mice exposed to a PFAS mixture displayed higher circulating cholesterol and bile acids perhaps due to impacts on enterohepatic circulation. This study implicates PFAS-mediated effects at the site of the ileum as a possible critical mediator of increased cardiovascular risk following PFAS exposure. https://doi.org/10.1289/EHP14339.
Collapse
Affiliation(s)
- Katherine Roth
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Zhao Yang
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Manisha Agarwal
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Johnna Birbeck
- Department of Chemistry, Lumigen Instrumentation Center, Wayne State University, Detroit, Michigan, USA
| | - Judy Westrick
- Department of Chemistry, Lumigen Instrumentation Center, Wayne State University, Detroit, Michigan, USA
| | - Todd Lydic
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Katherine Gurdziel
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan, USA
- Genome Sciences Core, Wayne State University, Detroit, Michigan, USA
| | - Michael C. Petriello
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
16
|
Green MP, Shearer C, Patrick R, Kabiri S, Rivers N, Nixon B. The perils of poly- and perfluorinated chemicals on the reproductive health of humans, livestock, and wildlife. Reprod Fertil Dev 2024; 36:RD24034. [PMID: 38744493 DOI: 10.1071/rd24034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
Poly- and perfluoroalkyl substances (PFAS) are a prominent class of persistent synthetic compound. The widespread use of these substances in various industrial applications has resulted in their pervasive contamination on a global scale. It is therefore concerning that PFAS have a propensity to accumulate in bodily tissues whereupon they have been linked with a range of adverse health outcomes. Despite this, the true extent of the risk posed by PFAS to humans, domestic animals, and wildlife remains unclear. Addressing these questions requires a multidisciplinary approach, combining the fields of chemistry, biology, and policy to enable meaningful investigation and develop innovative remediation strategies. This article combines the perspectives of chemists, soil scientists, reproductive biologists, and health policy researchers, to contextualise the issue of PFAS contamination and its specific impact on reproductive health. The purpose of this article is to describe the challenges associated with remediating PFAS-contaminated soils and waters and explore the consequences of PFAS contamination on health and reproduction. Furthermore, current actions to promote planetary health and protect ecosystems are presented to instigate positive social change among the scientific community.
Collapse
Affiliation(s)
- Mark P Green
- School of BioSciences, Faculty of Science, University of Melbourne, Parkville, Vic. 3010, Australia
| | - Cameron Shearer
- Department of Chemistry, School of Physics, Chemistry and Earth Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, SA 5005, Australia
| | - Rebecca Patrick
- School of Health and Social Development, Faculty of Health, Deakin University, Geelong, Vic. 3220, Australia
| | - Shervin Kabiri
- School of Agriculture, Food and Wine, Faculty of Sciences, Engineering and Technology, Glen Osmond, SA 5064, Australia
| | - Nicola Rivers
- Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Clayton, Vic. 3168, Australia
| | - Brett Nixon
- Hunter Medical Research Institute Research Program in Infertility and Reproduction, New Lambton Heights, NSW 2305, Australia; and School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
17
|
Dai C, Peng L, Li Y, Li Z, Chen D, Wang F, Lin N. Distribution of per- and polyfluoroalkyl substances in blood, serum, and urine of patients with liver cancer and associations with liver function biomarkers. J Environ Sci (China) 2024; 139:418-427. [PMID: 38105065 DOI: 10.1016/j.jes.2023.05.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 12/19/2023]
Abstract
Studies have shown that per- and polyfluoroalkyl substances (PFASs) may be hepatotoxic in animals or humans. However, data on clinical epidemiology are very limited. In this study, 21 PFASs were determined in patients with liver diseases, with the highest median concentrations detected in the serum sample (26.7 ng/mL), followed by blood (10.7 ng/mL) and urine (5.02 ng/mL). Higher total PFAS concentrations were found in hepatocellular carcinoma (HCC) patients compared to non-HCC patients, with significant discrepancies in serum and blood samples. Besides, significant correlations were also found among PFAS concentrations and age, gender, body mass index (BMI), and liver function biomarkers levels. For example, PFAS concentrations are significantly higher in males than in females; Several serum PFASs concentrations increase with age and BMI, while the serum perfluorohexane sulfonic acid (PFHxS) concentrations are negatively correlated with age. In addition, multiple regression models adjusted for age, gender and BMI found that increased serum perfluorobutane sulfonic acid (PFBS), perfluoroheptane sulfonic acid (PFHpS) and perfluorohexylphosphonic acid (PFHxPA) conentrations are correlated with elevated alkaline phosphatase (ALP), aspartate aminotransferase (AST), and alpha-fetoprotein (AFP) (p < 0.05). Our results provide epidemiological support for the future study on the potential clinical hepatotoxicity of PFAS.
Collapse
Affiliation(s)
- Cao Dai
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Lin Peng
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Yanjie Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zhendong Li
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Fei Wang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - Nan Lin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
18
|
Zhang D, Hu J, Li H. Perfluorooctanoic acid inhibits androgen biosynthesis in rat immature Leydig cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:1700-1714. [PMID: 38050817 DOI: 10.1002/tox.24042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/22/2023] [Accepted: 11/05/2023] [Indexed: 12/07/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a commonly used short-chain synthetic perfluoroalkyl agent. Immature Leydig cells (ILCs) are localized in the testis and responsible for androgen biosynthesis and metabolism. Although PFOA shows toxicity in the reproductive system, it is not clear if it disrupts the function of ILCs. In the present study, primary ILCs were isolated from 35-day-old rats and exposed to a range of PFOA concentrations (0, 0.01, 0.1, or 1 μM). It was determined that 0.1 or 1 μM PFOA reduced total androgen biosynthesis in ILCs. Specifically, 22R-hydroxycholesterol (22R), and pregnenolone (P5) mediated androgen biosynthesis were reduced by 0.1 μM PFOA. PFOA also selectively downregulated mRNA and protein expressions of steroidogenic enzymes including LHCGR, CYP11A1, 3β-HSD1, and NR5A1 at 0.01, 0.1, or 1 μM. Further analysis revealed that 0.1 μM PFOA inhibited CYP11A1 and 3β-HSD1 enzyme activities. However, PFOA did not significantly affect androgen metabolism and turnover under any of the conditions tested. And PFOA gavaging to 35-day-old rats at 5 or 10 mg/kg for 7 or 14 days also reduced serum androgen levels secreted by ILCs. Moreover, PFOA gavaging also downregulated the mRNA and protein expression levels of LHCGR, CYP11A1, 3β-HSD1, and NR5A1 in vivo. Taken together, these findings suggest that PFOA inhibits androgen biosynthesis in ILCs by selectively targeting key enzymes in the synthesis pathway.
Collapse
Affiliation(s)
- Dongxu Zhang
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jiasheng Hu
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Heming Li
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
19
|
Xing W, Liang M, Gu W, Wang Z, Fan D, Zhang B, Sun S, Wang L, Shi L. Exposure to Perfluoroalkyl Substances and Hyperlipidemia Among Adults: Data From NHANES 2017-2018. J Occup Environ Med 2024; 66:105-110. [PMID: 37853679 DOI: 10.1097/jom.0000000000003000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
BACKGROUND The present study aims to explore the relationship between perfluoroalkyl substances (PFAS) exposure and hyperlipidemia using data from the National Health and Nutrition Examination Survey. METHODS A total of 1600 subjects were included in the analysis, and nine kinds of PFAS were measured. Multivariate logistic regression analysis was performed to explore the association between serum PFAS and hyperlipidemia. RESULTS Compared with the lowest quartile of perfluoromethylheptane sulfonic acid isomers (Sm-PFOS), the percentage change for hyperlipidemia was 57% and 41% in the third and highest quartile of PFOS. The positive association between Sm-PFOS and hyperlipidemia remained significant in population younger than 60 years, and the odds ratio for hyperlipidemia in fourth quartile of Sm-PFOS was 1.81. CONCLUSIONS These findings indicated that serum Sm-PFOS was independently associated with a higher risk for hyperlipidemia. The epidemiological study warrants further study to elucidate the causal relationship between them.
Collapse
Affiliation(s)
- Weilong Xing
- From the Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Batzella E, Rosato I, Pitter G, Da Re F, Russo F, Canova C, Fletcher T. Determinants of PFOA Serum Half-Life after End of Exposure: A Longitudinal Study on Highly Exposed Subjects in the Veneto Region. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:27002. [PMID: 38306197 PMCID: PMC10836585 DOI: 10.1289/ehp13152] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Perfluoroalkyl substances (PFAS) are widely used, ubiquitous, and highly persistent man-made chemicals. Groundwater of a vast area of the Veneto Region (northeastern Italy) was found to be contaminated by PFAS from a manufacturing plant active since the late 1960s. As a result, residents were overexposed to PFAS through drinking water until 2013, mainly to perfluorooctanoic acid (PFOA). OBJECTIVES The aim of the present study was to estimate the rates of decline in serum PFOA and their corresponding serum half-lives, while characterizing their determinants. METHODS We investigated 5,860 subjects more than 14 years of age who enrolled in the second surveillance round of the regional health surveillance program. Two blood samples were collected between 2017 and 2022 (average time between measurements: 4 years). Serum PFOA excretion rates and half-lives were estimated based on linear mixed effect models, modeling subject-specific serum PFOA concentrations over time and correcting for background concentrations. For modeling determinants of half-life [age, sex, body mass index (BMI), smoking-habit, alcohol consumption, and estimated glomerular filtration rate (eGFR)], we added interaction terms between each covariate and the elapsed time between measurements. Perfluorooctanesulfonate (PFOS) and perfluorohexanesulfonic acid (PFHxS) apparent half-lives were also estimated. A separate analysis was conducted in children (n = 480 ). All analyses were stratified by sex. RESULTS Median initial serum concentrations of PFOA was 49 ng / mL (range: 0.5-1,090), with a median reduction of 62.45%. The mean estimated PFOA half-life was 2.36 years [95% confidence interval (CI): 2.33, 2.40], shorter in women (2.04; 95% CI: 2.00, 2.08) compared to men (2.83; 95% CI: 2.78, 2.89). Half-lives varied when stratified by some contributing factors, with faster excretion rates in nonsmokers and nonalcohol drinkers (especially in males). CONCLUSIONS This study, to our knowledge the largest on PFOA half-life, provides precise estimates in young adults whose exposure via drinking water has largely ceased. For other PFAS, longer half-lives than reported in other studies can be explained by some ongoing exposure to PFAS via other routes. https://doi.org/10.1289/EHP13152.
Collapse
Affiliation(s)
- Erich Batzella
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Isabella Rosato
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Gisella Pitter
- Screening Unit, Azienda Zero-Veneto Region, Padova, Italy
| | - Filippo Da Re
- Directorate of Prevention, Food Safety, and Veterinary Public Health-Veneto Region, Venice, Italy
| | - Francesca Russo
- Directorate of Prevention, Food Safety, and Veterinary Public Health-Veneto Region, Venice, Italy
| | - Cristina Canova
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Tony Fletcher
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
21
|
Zhang R, Lu W, Tu L, Lin Y, Sun J, Chen B, Luan T. Perfluorooctanoic acid-induced metabolic disorder via enhancing metabolism of glutamine and fatty acids in human intestinal cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122684. [PMID: 37802284 DOI: 10.1016/j.envpol.2023.122684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
Intestinal cell metabolism plays an important role in intestine health. Perfluorooctanoic acid (PFOA) exposure could disorder intestinal cell metabolism. However, the mechanisms regarding how the three carbon sources interact under PFOA stress remined to be understood. The present study aimed to dissect the interconnections of glucose, glutamine, and fatty acids in PFOA-treated human colorectal cancer (DLD-1) cells using 13C metabolic flux analysis. The abundance of glycolysis and tricarboxylic acid (TCA) cycle metabolites was decreased in PFOA-treated cells except for succinate, whereas most of amino acids were more abundant. Beside serine and glycine, the levels of metabolites derived from 13C glucose were reduced in PFOA-treated cells, and the pentose phosphate pathway flux was 1.4-fold higher in PFOA-treated cells than in the controls. In reductive glutamine pathway, higher labeled enrichment of citrate, malate, fumarate, and succinate was observed for PFOA-treated cells. The contribution of glucose to fatty acid synthesis in PFOA-treated cells decreased while the contribution of glutamine to fatty acid synthesis increased. Additionally, synthesis of TCA intermediates from fatty acid β-oxidation was promoted in PFOA-treated cells. All results suggested that metabolic remodeling could happen in intestinal cells exposed to PFOA, which was potentially related to PFOA toxicity relevant with the loss of glucose in biomass synthesis and energy metabolism.
Collapse
Affiliation(s)
- Ruijia Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenhua Lu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Lanyin Tu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yingshi Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jin Sun
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China.
| | - Tiangang Luan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
22
|
Comito R, Porru E, Violante FS. Analytical methods employed in the identification and quantification of per- and polyfluoroalkyl substances in human matrices - A scoping review. CHEMOSPHERE 2023; 345:140433. [PMID: 37832886 DOI: 10.1016/j.chemosphere.2023.140433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/15/2023]
Abstract
Persistent organic pollutants (POPs) represent a possible hazard for the ecosystems, with adverse outcomes on wildlife and humans. POPs have always received interest from the scientific community, and they have also been subject to legal restrictions worldwide on their application and commercialization. Among the broad spectrum of POPs, per- and polyfluoroalkyl substances (PFASs) are considered emerging contaminants due to their potential effect on the ecosystem and human health. These contaminants are widely employed in countless applications, from surfactants and building materials to food packaging. On the other hand, their chemical structure gives them the ability to interact with the environment, causing possible toxic effects for humans and environment. Human biomonitoring is a necessary instrument to indagate the impact of PFASs on human health: in recent years several studies have found detectable levels of PFASs in several biological matrices in humans (blood, hair, nails, and urine). Here, we review the most recent scientific literature concerning analytical methods employed in the identification and quantification of PFASs focusing on biological matrices. It has been noted that liquid chromatography coupled with mass spectrometry is the main analytical instrumentation employed, while blood and/or serum samples are the main employed human matrices whereas the use of non-invasive matrices is still at the beginning. Various issues directly related to human metabolism of PFASs and the effective amount of PFAS absorbed from the environment still need to be investigated.
Collapse
Affiliation(s)
- Rossana Comito
- Occupational Medicine Unit, Department of Medical and Surgical Science, Alma Mater Studiorum, University of Bologna, Bologna, 40138, Italy
| | - Emanuele Porru
- Occupational Medicine Unit, Department of Medical and Surgical Science, Alma Mater Studiorum, University of Bologna, Bologna, 40138, Italy
| | - Francesco Saverio Violante
- Occupational Medicine Unit, Department of Medical and Surgical Science, Alma Mater Studiorum, University of Bologna, Bologna, 40138, Italy; Division of Occupational Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, 40138, Italy.
| |
Collapse
|
23
|
Yang L, Chen Y, Ji H, Zhang X, Zhou Y, Li J, Wang Y, Xie Z, Yuan W, Liang H, Miao M. Per- and Poly-fluoroalkyl Substances and Bile Acid Profiles in Pregnant Women. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15869-15881. [PMID: 37821457 DOI: 10.1021/acs.est.3c05106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Alterations in bile acid (BA) profiles are closely associated with adverse outcomes in pregnant women and their offspring and may be one potential pathway underlying the related metabolic effects of per- and poly-fluoroalkyl substances (PFAS) exposure. However, evidence of associations between PFAS exposure and BA profiles in pregnant women is scarce. This study examined the associations of individual PFAS and PFAS mixture with BA profiles of pregnant women. We obtained quantitative data on the plasma concentrations of 13 PFAS and 15 BAs in 645 pregnant women from the Jiashan birth cohort. In Bayesian kernel machine regression models, the PFAS mixture was associated with increased plasma CA, TCA, TCDCA, and GLCA levels but with decreased GCA and LCA concentrations. Furthermore, the PFAS mixture was associated with increased concentrations of total BAs and the secondary/primary BA ratio but with decreased conjugated/unconjugated and glycine/taurine-conjugated BA ratios. PFHxS, PFUdA, PFOS, PFNA, and PFDA were the dominant contributors. The results of the linear regression analysis of individual PFAS were generally similar. Our findings provide the first epidemiological evidence for the associations of a PFAS mixture with BA profiles in pregnant women and may provide explanatory insights into the biological pathways underlying the related metabolic effects of PFAS exposure.
Collapse
Affiliation(s)
- Lan Yang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai 200237, China
| | - Yao Chen
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai 200237, China
| | - Honglei Ji
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai 200237, China
| | - Xi Zhang
- Clinical Research Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, China
| | - Yan Zhou
- Hubei Provincial Key Laboratory of Applied Toxicology, National Reference Laboratory of Dioxin, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Jianhui Li
- Shanghai Institute for Biomedical and Pharmaceutical Technologies, Hospital of SIPPR, Shanghai 200032, China
| | - Yan Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhenzhen Xie
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai 200237, China
| | - Wei Yuan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai 200237, China
| | - Hong Liang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai 200237, China
| | - Maohua Miao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai 200237, China
| |
Collapse
|
24
|
Ho TC, Wan HT, Lee WK, Lam TKY, Lin X, Chan TF, Lai KP, Wong CKC. Effects of In Utero PFOS Exposure on Epigenetics and Metabolism in Mouse Fetal Livers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14892-14903. [PMID: 37759171 PMCID: PMC10569047 DOI: 10.1021/acs.est.3c05207] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/16/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
Prenatal exposure to perfluorooctanesulfonate (PFOS) increases fetus' metabolic risk; however, the investigation of the underlying mechanism is limited. In this study, pregnant mice in the gestational days (GD, 4.5-17.5) were exposed to PFOS (0.3 and 3 μg/g of body weight). At GD 17.5, PFOS perturbed maternal lipid metabolism and upregulated metabolism-regulating hepatokines (Angptl4, Angptl8, and Selenop). Mass-spectrometry imaging and whole-genome bisulfite sequencing revealed, respectively, selective PFOS localization and deregulation of gene methylation in fetal livers, involved in inflammation, glucose, and fatty acid metabolism. PCR and Western blot analysis of lipid-laden fetal livers showed activation of AMPK signaling, accompanied by significant increases in the expression of glucose transporters (Glut2/4), hexose-phosphate sensors (Retsat and ChREBP), and the key glycolytic enzyme, pyruvate kinase (Pk) for glucose catabolism. Additionally, PFOS modulated the expression levels of PPARα and PPARγ downstream target genes, which simultaneously stimulated fatty acid oxidation (Cyp4a14, Acot, and Acox) and lipogenesis (Srebp1c, Acaca, and Fasn). Using human normal hepatocyte (MIHA) cells, the underlying mechanism of PFOS-elicited nuclear translocation of ChREBP, associated with a fatty acid synthesizing pathway, was revealed. Our finding implies that in utero PFOS exposure altered the epigenetic landscape associated with dysregulation of fetal liver metabolism, predisposing postnatal susceptibility to metabolic challenges.
Collapse
Affiliation(s)
- Tsz Chun Ho
- Croucher
Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon 999077, Hong Kong SAR, China
- State
Key Laboratory in Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon 999077, Hong Kong SAR, China
| | - Hin Ting Wan
- Croucher
Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon 999077, Hong Kong SAR, China
| | - Wang Ka Lee
- Croucher
Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon 999077, Hong Kong SAR, China
| | - Thomas Ka Yam Lam
- State
Key Laboratory in Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon 999077, Hong Kong SAR, China
| | - Xiao Lin
- Department
of Psychiatry, Icahn School of Medicine
at Mount Sinai, New York, New York 10029, United States
| | - Ting Fung Chan
- School
of Life Sciences, State Key Laboratory of Agrobiotechnology, Bioinformatics
Centre, The Chinese University of Hong Kong, New Territories 999077, Hong Kong SAR, China
| | - Keng Po Lai
- Key
Laboratory of Environmental Pollution and Integrative Omics, Education
Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541100, China
| | - Chris Kong Chu Wong
- Croucher
Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon 999077, Hong Kong SAR, China
- State
Key Laboratory in Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon 999077, Hong Kong SAR, China
| |
Collapse
|
25
|
Christensen BT, Calkins MM. Occupational exposure to per- and polyfluoroalkyl substances: a scope review of the literature from 1980-2021. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:673-686. [PMID: 36977833 PMCID: PMC10533727 DOI: 10.1038/s41370-023-00536-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) comprise a large group of chemicals that have been integrated into a wide variety of industrial processes and consumer products since the 1950s. Due to their profuse usage and high persistence in human serum, understanding workplace exposures to PFAS is critical. OBJECTIVE We aimed to characterize the PFAS exposure profiles of relevant occupational populations, elucidate trends in the PFAS exposure characterization process, and identify major research gaps that remain within the occupational PFAS exposure literature. METHODS A systematic search of four literature databases for peer-reviewed articles published between 1980 and 2021 on PFAS exposure in occupational settings was conducted. RESULTS Of the 2574 articles identified, 92 met the inclusion criteria. Fluorochemical workers were the target population in most early exposure assessment research; however, studies conducted within the last 10 years have evaluated a wider range of occupational populations and settings. The highest exposures were reported in fluorochemical workers, but, in comparison to reference populations, one or more PFAS were elevated in most workers and in most workplaces that were assessed. PFAS was most frequently assessed in worker serum using a discrete analytical panel of PFAS, with earlier studies restricted to a few long-alkyl chain PFAS while more recent studies have included more expansive panels due to more robust methods. SIGNIFICANCE Characterization of occupational exposure to PFAS is limited but expanding. Current analytical methods are not robust enough to fully capture the potential range of PFAS present across different workers and workplaces. While exposures to PFAS for certain occupational groups have been studied in detail, exposure information for other occupational groups with high potential for exposure are limited. This review highlights substantial findings and major research gaps within the occupational literature.
Collapse
Affiliation(s)
- Brian T Christensen
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Field Studies and Engineering, Cincinnati, OH, 45213, USA.
| | - Miriam M Calkins
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Field Studies and Engineering, Cincinnati, OH, 45213, USA
| |
Collapse
|
26
|
India-Aldana S, Yao M, Midya V, Colicino E, Chatzi L, Chu J, Gennings C, Jones DP, Loos RJF, Setiawan VW, Smith MR, Walker RW, Barupal D, Walker DI, Valvi D. PFAS Exposures and the Human Metabolome: A Systematic Review of Epidemiological Studies. CURRENT POLLUTION REPORTS 2023; 9:510-568. [PMID: 37753190 PMCID: PMC10520990 DOI: 10.1007/s40726-023-00269-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 09/28/2023]
Abstract
Purpose of Review There is a growing interest in understanding the health effects of exposure to per- and polyfluoroalkyl substances (PFAS) through the study of the human metabolome. In this systematic review, we aimed to identify consistent findings between PFAS and metabolomic signatures. We conducted a search matching specific keywords that was independently reviewed by two authors on two databases (EMBASE and PubMed) from their inception through July 19, 2022 following PRISMA guidelines. Recent Findings We identified a total of 28 eligible observational studies that evaluated the associations between 31 different PFAS exposures and metabolomics in humans. The most common exposure evaluated was legacy long-chain PFAS. Population sample sizes ranged from 40 to 1,105 participants at different stages across the lifespan. A total of 19 studies used a non-targeted metabolomics approach, 7 used targeted approaches, and 2 included both. The majority of studies were cross-sectional (n = 25), including four with prospective analyses of PFAS measured prior to metabolomics. Summary Most frequently reported associations across studies were observed between PFAS and amino acids, fatty acids, glycerophospholipids, glycerolipids, phosphosphingolipids, bile acids, ceramides, purines, and acylcarnitines. Corresponding metabolic pathways were also altered, including lipid, amino acid, carbohydrate, nucleotide, energy metabolism, glycan biosynthesis and metabolism, and metabolism of cofactors and vitamins. We found consistent evidence across studies indicating PFAS-induced alterations in lipid and amino acid metabolites, which may be involved in energy and cell membrane disruption.
Collapse
Affiliation(s)
- Sandra India-Aldana
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Meizhen Yao
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Vishal Midya
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Elena Colicino
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Leda Chatzi
- Department of Population and Public Health Sciences, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jaime Chu
- Department of Pediatrics, Icahn School of Medicine at Mount
Sinai, New York, NY, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Dean P. Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary,
Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Ruth J. F. Loos
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
- Charles Bronfman Institute for Personalized Medicine, Icahn
School of Medicine at Mount Sinai, New York, NY, USA
- Faculty of Health and Medical Sciences, Novo Nordisk
Foundation Center for Basic Metabolic Research, University of Copenhagen,
Copenhagen, Denmark
| | - Veronica W. Setiawan
- Department of Population and Public Health Sciences, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mathew Ryan Smith
- Clinical Biomarkers Laboratory, Division of Pulmonary,
Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
- Veterans Affairs Medical Center, Decatur, GA, USA
| | - Ryan W. Walker
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Dinesh Barupal
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Douglas I. Walker
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| |
Collapse
|
27
|
Freire C, Vela-Soria F, Castiello F, Salamanca-Fernández E, Quesada-Jiménez R, López-Alados MC, Fernández M, Olea N. Exposure to perfluoroalkyl substances (PFAS) and association with thyroid hormones in adolescent males. Int J Hyg Environ Health 2023; 252:114219. [PMID: 37451108 DOI: 10.1016/j.ijheh.2023.114219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/25/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFAS) are found in a wide range of consumer products. Exposure to PFAS in children and adolescents may be associated with alterations in thyroid hormones, which have critical roles in brain function. OBJECTIVE This study investigated the association between plasma concentrations of PFAS and serum levels of total triiodothyronine (T3), free thyroxine (T4), and thyroid-stimulating hormone (TSH) in adolescent males. METHODS In 2017-2019, 151 boys from the Environment and Childhood (INMA)-Granada birth cohort, Spain, participated in a clinical follow up visit at the age of 15-17 years. Plasma concentrations of ten PFAS (PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFTrDA, PFOS, and PFHxS) and serum thyroid hormones were measured in 129 of these boys. Linear regression analysis was performed to determine associations of individual PFAS with total T3, free T4, TSH, and free T4/TSH ratio, and quantile g-computation models were performed to assess the mixture effect. Additional models considered iodine status as effect modifier. RESULTS PFOS was the most abundant PFAS in plasma (median = 2.22 μg/L), followed by PFOA (median = 1.00 μg/L), PFNA (median = 0.41 μg/L), and PFHxS (median = 0.40 μg/L). When adjusted by confounders (including age, maternal schooling, and fish intake), PFOA and PFUnDA were associated with an increase in free T4 (β [95% CI] = 0.72 [0.06; 1.38] and 0.36 [0.04; 0.68] pmol/L, respectively, per two-fold increase in plasma concentrations), with no change in TSH. PFOS, the sum of PFOA, PFNA, PFOS, and PFHxS, and the sum of long-chain PFAS were marginally associated with increases in free T4. Associations with higher free T4 and/or total T3 were seen for several PFAS in boys with lower iodine intake (<108 μ/day) alone. Moreover, the PFAS mixture was association with an increase in free T4 levels in boys with lower iodine intake (% change [95% CI] = 6.47 [-0.69; 14.11] per each quartile increase in the mixture concentration). CONCLUSIONS Exposure to PFAS, considered individually or as a mixture, was associated with an increase in free T4 levels in boys with lower iodine intake. However, given the small sample size, the extent of these alterations remains uncertain.
Collapse
Affiliation(s)
- Carmen Freire
- Department of Legal Medicine, Toxicology, and Physical Anthropology, School of Medicine, University of Granada, 18016, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| | - Fernando Vela-Soria
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain.
| | | | - Elena Salamanca-Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; Department of Radiology and Physical Medicine, University of Granada, 18071, Granada, Spain.
| | - Raquel Quesada-Jiménez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain.
| | | | - Marieta Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Department of Radiology and Physical Medicine, University of Granada, 18071, Granada, Spain.
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Department of Radiology and Physical Medicine, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
28
|
Pálešová N, Maitre L, Stratakis N, Řiháčková K, Pindur A, Kohoutek J, Šenk P, Bartošková Polcrová A, Gregor P, Vrijheid M, Čupr P. Firefighters and the liver: Exposure to PFAS and PAHs in relation to liver function and serum lipids (CELSPAC-FIREexpo study). Int J Hyg Environ Health 2023; 252:114215. [PMID: 37418783 DOI: 10.1016/j.ijheh.2023.114215] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023]
Abstract
INTRODUCTION Firefighting is one of the most hazardous occupations due to exposure to per- and polyfluoroalkyl substances (PFAS) and polycyclic aromatic hydrocarbons (PAHs). Such exposure is suspected to affect the cardiometabolic profile, e.g., liver function and serum lipids. However, only a few studies have investigated the impact of this specific exposure among firefighters. METHODS Men included in the CELSPAC-FIREexpo study were professional firefighters (n = 52), newly recruited firefighters in training (n = 58), and controls (n = 54). They completed exposure questionnaires and provided 1-3 samples of urine and blood during the 11-week study period to allow assessment of their exposure to PFAS (6 compounds) and PAHs (6 compounds), and to determine biomarkers of liver function (alanine aminotransferase (ALT), gamma-glutamyl transferase (GGT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and total bilirubin (BIL)) and levels of serum lipids (total cholesterol (CHOL), low-density lipoprotein cholesterol (LDL) and triglycerides (TG)). The associations between biomarkers were investigated both cross-sectionally using multiple linear regression (MLR) and Bayesian weighted quantile sum (BWQS) regression and prospectively using MLR. The models were adjusted for potential confounders and false discovery rate correction was applied to account for multiplicity. RESULTS A positive association between exposure to PFAS and PAH mixture and BIL (β = 28.6%, 95% CrI = 14.6-45.7%) was observed by the BWQS model. When the study population was stratified, in professional firefighters and controls the mixture showed a positive association with CHOL (β = 29.5%, CrI = 10.3-53.6%) and LDL (β = 26.7%, CrI = 8.3-48.5%). No statistically significant associations with individual compounds were detected using MLR. CONCLUSIONS This study investigated the associations between exposure to PFAS and PAHs and biomarkers of cardiometabolic health in the Czech men, including firefighters. The results suggest that higher exposure to a mixture of these compounds is associated with an increase in BIL and the alteration of serum lipids, which can result in an unfavourable cardiometabolic profile.
Collapse
Affiliation(s)
- Nina Pálešová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Léa Maitre
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Nikos Stratakis
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Katarína Řiháčková
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Aleš Pindur
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic; Faculty of Sports Studies, Masaryk University, Kamenice 753/5, 625 00, Czech Republic; Training Centre of Fire Rescue Service, Fire Rescue Service of the Czech Republic, Ministry of the Interior, Trnkova 85, 628 00, Brno, Czech Republic
| | - Jiří Kohoutek
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Petr Šenk
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | | | - Petr Gregor
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Pavel Čupr
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
| |
Collapse
|
29
|
Maitre L, Jedynak P, Gallego M, Ciaran L, Audouze K, Casas M, Vrijheid M. Integrating -omics approaches into population-based studies of endocrine disrupting chemicals: A scoping review. ENVIRONMENTAL RESEARCH 2023; 228:115788. [PMID: 37004856 DOI: 10.1016/j.envres.2023.115788] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/13/2023] [Accepted: 03/27/2023] [Indexed: 05/16/2023]
Abstract
Health effects of endocrine disrupting chemicals (EDCs) are challenging to detect in the general population. Omics technologies become increasingly common to identify early biological changes before the apparition of clinical symptoms, to explore toxic mechanisms and to increase biological plausibility of epidemiological associations. This scoping review systematically summarises the application of omics in epidemiological studies assessing EDCs-associated biological effects to identify potential gaps and priorities for future research. Ninety-eight human studies (2004-2021) were identified through database searches (PubMed, Scopus) and citation chaining and focused on phthalates (34 studies), phenols (19) and PFASs (17), while PAHs (12) and recently-used pesticides (3) were less studied. The sample sizes ranged from 10 to 12,476 (median = 159), involving non-pregnant adults (38), pregnant women (11), children/adolescents (15) or both latter populations studied together (23). Several studies included occupational workers (10) and/or highly exposed groups (11) focusing on PAHs, PFASs and pesticides, while studies on phenols and phthalates were performed in the general population only. Analysed omics layers included metabolic profiles (30, including 14 targeted analyses), miRNA (13), gene expression (11), DNA methylation (8), microbiome (5) and proteins (3). Twenty-one studies implemented targeted multi-assays focusing on clinical routine blood lipid traits, oxidative stress or hormones. Overall, DNA methylation and gene expression associations with EDCs did not overlap across studies, while some EDC-associated metabolite groups, such as carnitines, nucleotides and amino acids in untargeted metabolomic studies, and oxidative stress markers in targeted studies, were consistent across studies. Studies had common limitations such as small sample sizes, cross-sectional designs and single sampling for exposure biomonitoring. In conclusion, there is a growing body of evidence evaluating the early biological responses to exposure to EDCs. This review points to a need for larger longitudinal studies, wider coverage of exposures and biomarkers, replication studies and standardisation of research methods and reporting.
Collapse
Affiliation(s)
- Léa Maitre
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | - Paulina Jedynak
- ISGlobal, Barcelona, Spain; University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Marta Gallego
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Laura Ciaran
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Karine Audouze
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 Rue des Saints Pères, Paris, France
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
30
|
Huang K, Zhou W, Fu J, Zhang Q, Teng Y, Gu L, Fu Y, Hu B, Mei Y, Zhang H, Zhang A, Fu J, Jiang G. Linking Transthyretin-Binding Chemicals and Free Thyroid Hormones: In Vitro to In Vivo Extrapolation Based on a Competitive Binding Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:9130-9139. [PMID: 37261382 DOI: 10.1021/acs.est.3c01094] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Large numbers of pollutants competitively inhibit the binding between thyroid hormones and transthyretin (TTR) in vitro. However, the impact of this unintended binding on free thyroid hormones in vivo has not yet been characterized. Herein, we established a quantitative in vitro to in vivo extrapolation (QIVIVE) method based on a competitive binding model to quantify the effect of TTR-binding chemicals on free thyroid hormones in human blood. Twenty-five TTR-binding chemicals including 6 hydroxyl polybromodiphenyl ethers (OH-PDBEs), 6 hydroxyl polychlorobiphenyls (OH-PCBs), 4 halogenphenols, 5 per- and polyfluorinated substances (PFASs), and 4 phenols were selected for investigation. Incorporating the in vitro binding parameters and human exposure data, the QIVIVE model could well predict the in vivo effect on free thyroid hormones. Co-exposure to twenty-five typical TTR-binding chemicals resulted in median increases of 0.080 and 0.060% in circulating levels of free thyroxine (FT4) and free triiodothyronine (FT3) in the general population. Individuals with occupational exposure to TTR-binding chemicals suffered 1.88-32.2% increases in free thyroid hormone levels. This study provides a quantitative tool to evaluate the thyroid-disrupting risks of TTR-binding chemicals and proposes a new framework for assessing the in vivo effects of chemical exposures on endogenous molecules.
Collapse
Affiliation(s)
- Kai Huang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wei Zhou
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jie Fu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qun Zhang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunhe Teng
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Luyao Gu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yilin Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boyuan Hu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yang Mei
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Haiyan Zhang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Aiqian Zhang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jianjie Fu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
31
|
Li H, Dong Q, Zhang M, Gong T, Zan R, Wang W. Transport behavior difference and transport model of long- and short-chain per- and polyfluoroalkyl substances in underground environmental media: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121579. [PMID: 37028785 DOI: 10.1016/j.envpol.2023.121579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonates (PFSAs), which are the most commonly regulated and most widely concerned per- and polyfluoroalkyl substances (PFAS) have received increasing attention on a global scale due to their amphiphilicity, stability, and long-range transport. Thus, understanding the typical PFAS transport behavior and using models to predict the evolution of PFAS contamination plumes is important for evaluating the potential risks. In this study, the effects of organic matter (OM), minerals, water saturation, and solution chemistry on the transport and retention of PFAS were investigated, and the interaction mechanism between long-chain/short-chain PFAS and the surrounding environment was analyzed. The results revealed that high content of OM/minerals, low saturation, low pH, and divalent cation had a great retardation effect on long-chain PFAS transport. The retention caused by hydrophobic interaction was the prominent mechanism for long-chain PFAS, whereas, the retention caused by electrostatic interaction was more relevant for short-chain PFAS. Additional adsorption at the air-water and nonaqueous-phase liquids (NAPL)-water interface was another potential interaction for retarding PFAS transport in the unsaturated media, which preferred to retard long-chain PFAS. Furthermore, the developing models for describing PFAS transport were investigated and summarized in detail, including the convection-dispersion equation, two-site model (TSM), continuous-distribution multi-rate model, modified-TSM, multi-process mass-transfer (MPMT) model, MPMT-1D model, MPMT-3D model, tempered one-sided stable density transport model, and a comprehensive compartment model. The research revealed PFAS transport mechanisms and provided the model tools, which supported the theoretical basis for the practical prediction of the evolution of PFAS contamination plumes.
Collapse
Affiliation(s)
- Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Qianling Dong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Meng Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Tiantian Gong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Rixia Zan
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Wenbing Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
32
|
Fujiwara N, Yamashita S, Okamoto M, Cooley MA, Ozaki K, Everett ET, Suzuki M. Perfluorooctanoic acid-induced cell death via the dual roles of ROS-MAPK/ERK signaling in ameloblast-lineage cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115089. [PMID: 37271104 DOI: 10.1016/j.ecoenv.2023.115089] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
Perfluorooctanoic acid (PFOA) is an artificial fluorinated organic compound that has generated increased public attention due to its potential health hazards. Unsafe levels of PFOA exposure can affect reproduction, growth and development. During tooth enamel development (amelogenesis), environmental factors including fluoride can cause enamel hypoplasia. However, the effects of PFOA on ameloblasts and tooth enamel formation remain largely unknown. In the present study we demonstrate several PFOA-mediated cell death pathways (necrosis/necroptosis, and apoptosis) and assess the roles of ROS-MAPK/ERK signaling in PFOA-mediated cell death in mouse ameloblast-lineage cells (ALC). ALC cells were treated with PFOA. Cell proliferation and viability were analyzed by MTT assays and colony formation assays, respectively. PFOA suppressed cell proliferation and viability in a dose dependent manner. PFOA induced both necrosis (PI-positive cells) and apoptosis (cleaved-caspase-3, γH2AX and TUNEL-positive cells). PFOA significantly increased ROS production and up-regulated phosphor-(p)-ERK. Addition of ROS inhibitor N-acetyl cysteine (NAC) suppressed p-ERK and decreased necrosis, and increased cell viability compared to PFOA alone, whereas NAC did not change apoptosis. This suggests that PFOA-mediated necrosis was induced by ROS-MAPK/ERK signaling, but apoptosis was not associated with ROS. Addition of MAPK/ERK inhibitor PD98059 suppressed necrosis and increased cell viability compared to PFOA alone. Intriguingly, PD98059 augmented PFOA-mediated apoptosis. This suggests that p-ERK promoted necrosis but suppressed apoptosis. Addition of the necroptosis inhibitor Necrostatin-1 restored cell viability compared to PFOA alone, while pan-caspase inhibitor Z-VAD did not mitigate PFOA-mediated cell death. These results suggest that 1) PFOA-mediated cell death was mainly caused by necrosis/necroptosis by ROS-MAPK/ERK signaling rather than apoptosis, 2) MAPK/ERK signaling plays the dual roles (promoting necrosis and suppressing apoptosis) under PFOA treatment. This is the initial report to indicate that PFOA could be considered as a possible causative factor for cryptogenic enamel malformation. Further studies are required to elucidate the mechanisms of PFOA-mediated adverse effects on amelogenesis.
Collapse
Affiliation(s)
- Natsumi Fujiwara
- Department of Oral Health Promotion, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| | - Shohei Yamashita
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Motoki Okamoto
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Marion A Cooley
- Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Kazumi Ozaki
- Department of Oral Health Promotion, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| | - Eric T Everett
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maiko Suzuki
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
33
|
Dragon J, Hoaglund M, Badireddy AR, Nielsen G, Schlezinger J, Shukla A. Perfluoroalkyl Substances (PFAS) Affect Inflammation in Lung Cells and Tissues. Int J Mol Sci 2023; 24:8539. [PMID: 37239886 PMCID: PMC10218140 DOI: 10.3390/ijms24108539] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Adverse lung outcomes from exposure to per-and polyfluoroalkyl substances (PFAS) are known; however, the mechanism of action is poorly understood. To explore this, human bronchial epithelial cells were grown and exposed to varied concentrations of short-chain (perfluorobutanoic acid, perflurobutane sulfonic acid and GenX) or long-chain (PFOA and perfluorooctane sulfonic acid (PFOS)) PFAS, alone or in a mixture to identify cytotoxic concentrations. Non-cytotoxic concentrations of PFAS from this experiment were selected to assess NLRP3 inflammasome activation and priming. We found that PFOA and PFOS alone or in a mixture primed and activated the inflammasome compared with vehicle control. Atomic force microscopy showed that PFOA but not PFOS significantly altered the membrane properties of cells. RNA sequencing was performed on the lungs of mice that had consumed PFOA in drinking water for 14 weeks. Wild type (WT), PPARα knock-out (KO) and humanized PPARα (KI) were exposed to PFOA. We found that multiple inflammation- and immune-related genes were affected. Taken together, our study demonstrated that PFAS exposure could alter lung biology in a significant manner and may contribute to asthma/airway hyper-responsiveness.
Collapse
Affiliation(s)
- Julie Dragon
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (J.D.); (M.H.); (A.R.B.); (G.N.); (J.S.)
| | - Michael Hoaglund
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (J.D.); (M.H.); (A.R.B.); (G.N.); (J.S.)
| | - Appala Raju Badireddy
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (J.D.); (M.H.); (A.R.B.); (G.N.); (J.S.)
| | - Greylin Nielsen
- Department of Environmental Health, School of Public Health, Boston University, Boston, MA 02118, USA
| | - Jennifer Schlezinger
- Department of Environmental Health, School of Public Health, Boston University, Boston, MA 02118, USA
| | - Arti Shukla
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (J.D.); (M.H.); (A.R.B.); (G.N.); (J.S.)
| |
Collapse
|
34
|
Kim OJ, Kim S, Park EY, Oh JK, Jung SK, Park S, Hong S, Jeon HL, Kim HJ, Park B, Park B, Kim S, Kim B. Exposure to serum perfluoroalkyl substances and biomarkers of liver function: The Korean national environmental health survey 2015-2017. CHEMOSPHERE 2023; 322:138208. [PMID: 36822523 DOI: 10.1016/j.chemosphere.2023.138208] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Exposure to perfluoroalkyl substances (PFAS) may increase the risk of liver disease by disrupting cholesterol and lipid synthesis/metabolism, leading to higher liver-enzyme concentrations. However, most studies assessing association between PFAS and liver enzymes focused on individual PFAS. Moreover, PFAS concentrations differ based on sex and obesity status, and it remains unclear whether these factors affect associations with liver function. Therefore, we examined the association between exposure to both individual and combined PFAS and liver-function biomarkers and assessed sex and obesity as effect modifiers in Korean adults. METHODS We measured serum concentrations of the five most abundant PFAS (PFOA, PFOS, PFHxS, PFDA, PFNA) and three liver enzymes (alanine transaminase [ALT], aspartate aminotransferase [AST], γ-glutamyl transferase [GGT]) in 1404 adults from the Korean National Environmental Health Survey Cycle 3, 2015-2017. We used linear regression to evaluate associations between individual PFAS and liver-function biomarkers, assessing sex and obesity as possible effect modifiers, and performed Bayesian kernel machine regression and quantile g-computation to evaluate the overall effect of PFAS mixture on biomarkers of liver function. RESULTS Among 1404 Korean adults, all five PFAS were detected. Geometric mean concentration was highest for PFOS (16.11 μg/L), followed by PFOA (5.83 μg/L), PFHxS (2.21 μg/L), PFNA (2.03 μg/L), and PFDA (1.06 μg/L). In multivariable linear regression, all PFAS were positively associated with ALT, AST, and GGT; 2-fold increase in each PFAS was associated with 3.4-8.6% higher ALT, 2.4-4.6% higher AST, and 4.6-11.1% higher GGT (all p < 0.05). Positive associations for PFOA, PFDA, and PFNA with AST were stronger in men, and positive associations for PFOS with ALT and GGT were stronger in women. Compared to obese participants, nonobese participants had higher average percent changes in each enzyme, particularly GGT, when individual PFAS concentration doubled. Additionally, increased exposure to PFAS mixtures was associated with higher ALT, AST, and GGT. In quantile g-computations, simultaneous quartile increase in all PFAS was significantly associated with 6.9% (95%CI: 3.7, 10.2) higher ALT, 4.5% (95%CI: 2.4, 6.6) higher AST, and 8.3% (95%CI: 3.7, 13.1) higher GGT levels, on average. CONCLUSIONS Exposure to individual and combined PFAS is associated with higher liver enzymes in Korean adults, providing additional evidence for the association between PFAS exposure and risk of liver disease.
Collapse
Affiliation(s)
- Ok-Jin Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Seyoung Kim
- National Cancer Control Institute, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Eun Young Park
- Department of Preventive Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Jin Kyoung Oh
- National Cancer Control Institute, National Cancer Center, Goyang, 10408, Republic of Korea; Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Sun Kyoung Jung
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Soyoung Park
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Sooyeon Hong
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Hye Li Jeon
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Hyun-Jin Kim
- National Cancer Control Institute, National Cancer Center, Goyang, 10408, Republic of Korea; Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Bohyun Park
- National Cancer Control Institute, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Bomi Park
- Department of Preventive Medicine, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Suejin Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, 22689, Republic of Korea.
| | - Byungmi Kim
- National Cancer Control Institute, National Cancer Center, Goyang, 10408, Republic of Korea; Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Republic of Korea.
| |
Collapse
|
35
|
Liu B, Zhu L, Wang M, Sun Q. Associations between Per- and Polyfluoroalkyl Substances Exposures and Blood Lipid Levels among Adults-A Meta-Analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:56001. [PMID: 37141244 PMCID: PMC10159273 DOI: 10.1289/ehp11840] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND Associations between per- and polyfluoroalkyl substances (PFAS) and blood lipid levels in humans were mixed. OBJECTIVES The objective of this meta-analysis was to summarize associations between PFAS and blood lipids in adults. METHODS A literature search was conducted on PubMed and Web of Science for articles published through 13 May 2022 that examined associations between PFAS and blood lipids, including total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triacylglycerols (TGs). Inclusion criteria included the presence of associations between five PFAS (PFOA, PFOS, PFHxS, PFDA, and PFNA) and four blood lipid measures (TC, HDL-C, LDL-C, and TGs) in adults. Data on study characteristics and PFAS-lipid associations were extracted. Assessments of individual study quality were performed. Associations of changes of blood lipid levels corresponding to 1 interquartile range (IQR)-unit increase of blood PFAS levels were pooled using random effects models. Dose-response relationships were examined. RESULTS Twenty-nine publications were included in the present analyses. Every IQR increase of PFOA was significantly associated with a 2.1 -mg / dL increase in TC (95% CI: 1.2, 3.0), a 1.3 -mg / dL increase in TGs (95% CI: 0.1, 2.4), and a 1.4 -mg / dL increase in LDL-C (95% CI: 0.6, 2.2). PFOS was also significantly associated with TC and LDL-C levels, and the corresponding values were 2.6 (95% CI: 1.5, 3.6) and 1.9 (95% CI: 0.9, 3.0), respectively. Associations of PFOS and PFOA with HDL-C levels were largely null. For minor PFAS species, PFHxS was significantly associated with higher levels of HDL-C [0.8 (95% CI: 0.5, 1.2)]. Inverse associations were observed between PFDA and TGs [- 5.0 (95% CI: - 8.1 , - 1.9 )] and between PFNA and TGs [- 1.7 (95% CI: - 3.5 , - 0.02 )], whereas a positive association was observed between PFDA and HDL-C [1.4 (95% CI: 0.1, 2.7)]. Nonsignificant nonlinear dose-response relationships were identified for associations of PFOA and PFOS with certain blood lipids. DISCUSSION PFOA and PFOS were significantly associated with TC and LDL-C levels in adults. Whether these findings may translate into an elevated cardiovascular disease risk associated with PFAS exposure warrants further investigation. https://doi.org/10.1289/EHP11840.
Collapse
Affiliation(s)
- Binkai Liu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Lu Zhu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Molin Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Qi Sun
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Coperchini F, De Marco G, Croce L, Denegri M, Greco A, Magri F, Tonacchera M, Imbriani M, Rotondi M, Chiovato L. PFOA, PFHxA and C6O4 differently modulate the expression of CXCL8 in normal thyroid cells and in thyroid cancer cell lines. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63522-63534. [PMID: 37052835 DOI: 10.1007/s11356-023-26797-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 03/30/2023] [Indexed: 05/11/2023]
Abstract
Industrial chemical PFAS are persistent pollutants. Long chain PFAS were taken out of production due to their risk for human health, however, new congeners PFAS have been introduced. The in vitro effects of the long-chain PFOA, the short-chain PFHxA and the new-generation C6O4 were evaluated in normal and in thyroid cancer cell lines in terms of cell viability and proliferation, and secretion of a pro-tumorigenic chemokine (CXCL8), both at the mRNA and at the protein level. The Nthy-ory 3-1 normal-thyroid cell line, the TPC-1 and the 8505C (RET/PTC rearranged and BRAFV600e mutated, respectively) thyroid-cancer cell lines were exposed to increasing concentrations of each PFAS in a time-course. We evaluated viability using WST-1 (confirmed by AnnexinV/PI) and proliferation using the cristal-violet test. To evaluate CXCL8 mRNA we used RT-PCR and measured CXCL8 in the supernatants by ELISA. The exposure to none PFAS did not affect thyroid cells viability (except for a reduction of 8505C cells viability after 144 h) or proliferation. Individual PFAS differently modulated CXCL8 mRNA and protein level. PFOA increased CXCL8 both at mRNA and protein level in the three cell lines; PFHxA increased CXCL8 mRNA in the three cell lines, but increased the protein only in TPC-1 cells; C6O4 increased the CXCL8 mRNA only in thyroid cancer cell lines, but never increased the CXCL8 protein. The results of the present study indicate that the in vitro exposure to different PFAS may modulate both at the mRNA and secreted protein levels of CXCL8 in normal and cancer thyroid cells. Strikingly different effects emerged according to the specific cell type and to the targeted analyte (CXCL8 mRNA or protein).
Collapse
Affiliation(s)
- Francesca Coperchini
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia (PV), 27100, Italy
| | - Giuseppina De Marco
- Department of Clinical and Experimental Medicine, Endocrinology Unit, University of Pisa (PI), via Paradisa 2, 56124, Pisa, Italy
| | - Laura Croce
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia (PV), 27100, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Pavia (PV), 27100, Italy
- NBFC, National Biodiversity Future Center, Palermo (PA), 90133, Italy
| | - Marco Denegri
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Molecular Cardiology, 27100, Pavia (PV), Italy
| | - Alessia Greco
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Pavia (PV), 27100, Italy
| | - Flavia Magri
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia (PV), 27100, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Pavia (PV), 27100, Italy
| | - Massimo Tonacchera
- Department of Clinical and Experimental Medicine, Endocrinology Unit, University of Pisa (PI), via Paradisa 2, 56124, Pisa, Italy
| | - Marcello Imbriani
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100, Pavia (PV), Italy
| | - Mario Rotondi
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia (PV), 27100, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Pavia (PV), 27100, Italy
- NBFC, National Biodiversity Future Center, Palermo (PA), 90133, Italy
| | - Luca Chiovato
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Pavia (PV), 27100, Italy.
| |
Collapse
|
37
|
Liao Q, Tang P, Fan H, Song Y, Liang J, Huang H, Pan D, Mo M, Lin M, Chen J, Wei H, Long J, Shao Y, Zeng X, Liu S, Huang D, Qiu X. Association between maternal exposure to per- and polyfluoroalkyl substances and serum markers of liver function during pregnancy in China: A mixture-based approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121348. [PMID: 36842621 DOI: 10.1016/j.envpol.2023.121348] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/12/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Previous studies have shown that per- and polyfluoroalkyl substances (PFAS) may have hepatotoxic effects in animals. However, epidemiological evidence in humans, especially pregnant women, is limited. This study aimed to assess the association of single and multiple PFAS exposure with serum markers of liver function in pregnant women. A total of 420 pregnant women from the Guangxi Zhuang Birth Cohort were enrolled from June 2015 to April 2019. Nine PFAS were measured in the maternal serum in early pregnancy. Data for liver function biomarkers, namely, alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyltransferase (GGT), total bilirubin (TBIL), direct bilirubin (DBIL), and indirect bilirubin (IBIL), were obtained from medical records. In generalized linear model (GLM), there was a positive association of perfluorooctane sulfonate (PFOS) with ALT, perfluorodecanoic acid (PFDA) and perfluorobutanesulfonic acid (PFBS) with GGT, and perfluorohexane sulfonate (PFHxS) with TBIL and IBIL. In contrast, there was a negative association of perfluoroheptanoic acid (PFHpA) with TBIL. There were inverse U-shaped relationships of PFUnA with ALT and AST and PFDA with ALT by restricted cubic spline. The weighted quantile sum (WQS) regression model revealed the positive effects of the PFAS mixture on GGT, TBIL, DBIL, and IBIL. Bayesian kernel machine regression (BKMR) analysis confirmed that the PFAS mixture was positively associated with GGT, and PFBS was the main contributor. In addition, the BKMR model showed a positive association of individual PFBS with GGT, individual PFHxS with TBIL and IBIL, and a negative association of individual PFHpA with TBIL. Our findings provide evidence of an association between individual PFAS, PFAS mixture and maternal serum markers of liver function during pregnancy. Additionally, these findings also enhance concerns over PFAS exposure on maternal liver function and PFAS monitoring in pregnancy, reducing the effect of maternal liver dysfunction on maternal and infant health.
Collapse
Affiliation(s)
- Qian Liao
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Peng Tang
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Haoran Fan
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yanye Song
- The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530031, Guangxi, China
| | - Jun Liang
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Huishen Huang
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Dongxiang Pan
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Meile Mo
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Mengrui Lin
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiehua Chen
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Huanni Wei
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jinghua Long
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yantao Shao
- Department of Medical and Health Management, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoyun Zeng
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shun Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoqiang Qiu
- Department Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
38
|
Morgan S, Mottaleb MA, Kraemer MP, Moser DK, Worley J, Morris AJ, Petriello MC. Effect of lifestyle-based lipid lowering interventions on the relationship between circulating levels of per-and polyfluoroalkyl substances and serum cholesterol. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104062. [PMID: 36621559 PMCID: PMC9992109 DOI: 10.1016/j.etap.2023.104062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Exposure to certain per-and polyfluoroalkyl substances (PFAS) has been shown to be positively associated with total and/or low-density lipoprotein cholesterol. Examining this association in lipid lowering interventions may provide additional evidence linking PFAS to cardiovascular risk. We examined the relationship of 6 PFAS with cholesterol in a 6-month lifestyle-based intervention. We quantitated PFAS in 350 individuals at baseline and post intervention and examined associations of PFAS with cholesterol before and after intervention. Food frequency questionnaires and GIS analyses were used to investigate PFAS hotspots and possible exposure routes. Cholesterol significantly decreased following intervention and in parallel, PFOS, PFOA, PFHxS, and PFHpA significantly decreased. PFOS was positively correlated with total cholesterol only post-intervention. We observed that PFOS was distributed among both non-albumin and albumin lipoprotein fractions pre-intervention, but entirely in albumin fraction post-intervention. Our results indicate that lipid-lowering via lifestyle modification may impact on circulating levels or distribution of PFAS.
Collapse
Affiliation(s)
- Stephanie Morgan
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| | - M Abdul Mottaleb
- Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; Lexington Veterans Affairs Medical Center, Lexington, KY, USA
| | - Maria P Kraemer
- Lexington Veterans Affairs Medical Center, Lexington, KY, USA
| | - Debra K Moser
- College of Nursing, University of Kentucky, Lexington, KY 40536, USA
| | - Jessica Worley
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Andrew J Morris
- Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; Lexington Veterans Affairs Medical Center, Lexington, KY, USA
| | - Michael C Petriello
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; Lexington Veterans Affairs Medical Center, Lexington, KY, USA; Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
39
|
Ling J, Hua L, Qin Y, Gu T, Jiang S, Zhao J. Perfluorooctane sulfonate promotes hepatic lipid accumulation and steatosis in high-fat diet mice through AMP-activated protein kinase/acetyl-CoA carboxylase (AMPK/ACC) pathway. J Appl Toxicol 2023; 43:312-322. [PMID: 35999056 DOI: 10.1002/jat.4383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/20/2022] [Accepted: 08/20/2022] [Indexed: 01/17/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a hepatotoxic environmental organic pollutant that can cause aberrant lipid accumulation in the liver. However, the molecular mechanism underlying PFOS-induced hepatic steatosis remains unclear. Our research showed that subchronic PFOS exposure inhibited AMP-activated protein kinase (AMPK) phosphorylation, leading to increased acetyl-CoA carboxylase (ACC) activity, attenuated fatty acid β-oxidation, and consequent liver lipid accumulation. We found that 1 mg/kg/day PFOS exposure significantly aggravated steatosis in high-fat diet (HFD)-fed mice, along with reduced AMPK activity. Oil Red O results showed that PFOS exposure caused fat accumulation in HepG2 cells. As predicted, PFOS treatment reduced the level of phosphorylated AMPK in a concentration-dependent manner, leading to subsequent increase in ACC activity and lipid droplet accumulation in HepG2 cells. Treatment with 200-μM AMPK agonist AICAR alleviated PFOS-induced ACC activation and lipid accumulation. In summary, our data highlight a crucial role of AMPK/ACC pathway in PFOS-mediated liver lipid metabolic disorders.
Collapse
Affiliation(s)
- Junyi Ling
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Lu Hua
- Department of Oncology, Taizhou People's Hospital, Taizhou, China
| | - Yi Qin
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China.,Haimen District Center for Disease Control and Prevention, Nantong, China
| | - Tianye Gu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Shengyang Jiang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China.,Jiangsu Nantong Health Higher Vocational Technical School, Nantong, China
| | - Jianya Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| |
Collapse
|
40
|
Fustinoni S, Consonni D. Historical Trend of Exposure to Perfluoroalkyl Surfactants PFOA, ADV, and cC6O4 and its Management in Two Perfluoroalkyl Polymers Plants, Italy. Ann Work Expo Health 2023; 67:518-535. [PMID: 36715212 PMCID: PMC10119700 DOI: 10.1093/annweh/wxac095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/17/2022] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVES Perfluoroalkyl acid surfactants are used in the chemical industry for the synthesis of perfluoroalkyl polymers. In one Italian fluoropolymer plant and in the research and innovation center, two major perfluoroalkyl surfactants have been historically used: PFOA and ADV and a third, cC6O4 substituted PFOA from mid-2013. This work is summarizing occupational exposure to these chemicals in the period 2004-2021, assessed by biological monitoring. Moreover, taking advantage of the phasing out of PFOA, the elimination kinetics of PFOA in humans is investigated. METHODS Workers exposed to PFOA (from beginning of the sixties to 2013), ADV (since 1996), and/or cC6O4 (since 2012) in the production of fluoropolymers, in the synthesis, research, and analysis, were periodically surveyed from 2004, measuring the concentration of perfluoroalkyl acid surfactants in serum. Workers of the same plants, not directly exposed, were surveyed as well. Applying the first-order kinetics model, the half-life of PFOA was calculated. RESULTS 809 Workers were investigated with measurements of PFOA (n = 3692), ADV (n = 4288) and cC6O4 (n = 2272) in serum. In the production plant, median PFOA ranged from 1900 to 14 µg/l from 2004 to 2021; median ADV ranged from 434 to 86 µg/l from 2011 to 2021. For cC6O4 the detection percentage ranged from 9 to 47%; in detected samples median cC6O4 ranged from 3 to 16 µg/l in the period 2013-2021. Adopted mitigation measurements included: the phasing out of PFOA, the improvement of the plastomer and elastomer post-treatments; the reinforcement of the staff involved in prevention. Decreasing trends were observed for all chemicals along years (P value for linear trend of means < 0.01). For PFOA, a half-life of 3.16 (95% CI 2.98-3.37) years was calculated. CONCLUSIONS In the study plants, several initiatives to reduce exposure and the risk associated with perfluoroalkyl surfactants were undertaken; results of biomonitoring show that they were effective, with a 5- to 136-fold reduction in the concentration of perfluoroalkyl compounds in the serum of workers.
Collapse
Affiliation(s)
- Silvia Fustinoni
- Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, via S. Barnaba, 8 - 20122, Milano, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza, 35 - 20122, Milan, Italy
| | - Dario Consonni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza, 35 - 20122, Milan, Italy
| |
Collapse
|
41
|
Krawczyk K, Marynowicz W, Pich K, Jedruch O, Kania G, Gogola-Mruk J, Tworzydlo W, Polanski Z, Ptak A. Persistent organic pollutants affect steroidogenic and apoptotic activities in granulosa cells and reactive oxygen species concentrations in oocytes in the mouse. Reprod Fertil Dev 2023; 35:294-305. [PMID: 36403477 DOI: 10.1071/rd21326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 10/28/2022] [Indexed: 11/21/2022] Open
Abstract
CONTEXT The destruction of granulosa cells (GCs), the main functional cell type in the ovary, prevents steroid hormone production, which in turn may damage oocytes, resulting in ovarian failure. The accumulation of a number of persistent organic pollutants (POPs) in the ovarian follicular fluid (FF) has been documented, which raises serious questions regarding their impact on female fertility. AIMS We aimed to determine whether a mixture of POPs reflecting the profile found in FF influences mouse GCs or oocyte function and viability. METHODS A mixture of POPs, comprising perfluorooctanoate, perfluorooctane sulfonate, 2,2-dichlorodiphenyldichloroethylene, polychlorinated biphenyl 153, and hexachlorobenzene, was used. In addition to using the exact concentration of POPs previously measured in human FF, we tested two other mixtures, one with10-fold lower and another with 10-fold higher concentrations of each POP. KEY RESULTS Steroidogenesis was disrupted in GCs by the POP mixture, as demonstrated by lower oestradiol and progesterone secretion and greater lipid droplet accumulation. Furthermore, the POP mixture reduced GC viability and increased apoptosis, assessed using caspase-3 activity. The POP mixture significantly increased the number of oocytes that successfully progressed to the second meiotic metaphase and the oocyte reactive oxygen species (ROS) concentration. CONCLUSIONS Thus, a mixture of POPs that are typically present in human FF has detrimental effects on ovarian function: it reduces the viability of GCs, and increases the oocyte concentrations of ROS. IMPLICATIONS These results indicate that chronic exposure to POPs adversely affects female reproductive health.
Collapse
Affiliation(s)
- Kinga Krawczyk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Weronika Marynowicz
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Oliwia Jedruch
- Laboratory of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Gabriela Kania
- Laboratory of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Justyna Gogola-Mruk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Zbigniew Polanski
- Laboratory of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Anna Ptak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| |
Collapse
|
42
|
Attema B, Janssen AWF, Rijkers D, van Schothorst EM, Hooiveld GJEJ, Kersten S. Exposure to low-dose perfluorooctanoic acid promotes hepatic steatosis and disrupts the hepatic transcriptome in mice. Mol Metab 2022; 66:101602. [PMID: 36115532 PMCID: PMC9526138 DOI: 10.1016/j.molmet.2022.101602] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Perfluoroalkyl substances (PFAS) are man-made chemicals with demonstrated endocrine-disrupting properties. Exposure to perfluorooctanoic acid (PFOA) has been linked to disturbed metabolism via the liver, although the exact mechanism is not clear. Moreover, information on the metabolic effects of the new PFAS alternative GenX is limited. We examined whether exposure to low-dose PFOA and GenX induces metabolic disturbances in mice, including NAFLD, dyslipidemia, and glucose tolerance, and studied the involvement of PPARα. METHODS Male C57BL/6J wildtype and PPARα-/- mice were given 0.05 or 0.3 mg/kg body weight/day PFOA, or 0.3 mg/kg body weight/day GenX while being fed a high-fat diet for 20 weeks. Glucose and insulin tolerance tests were performed after 18 and 19 weeks. Plasma metabolite levels were measured next to a detailed assessment of the liver phenotype, including lipid content and RNA sequencing. RESULTS Exposure to high-dose PFOA decreased body weight and increased liver weight in wildtype and PPARα-/- mice. High-dose but not low-dose PFOA reduced plasma triglycerides and cholesterol, which for triglycerides was dependent on PPARα. PFOA and GenX increased hepatic triglycerides in a PPARα-dependent manner. RNA sequencing showed that the effects of GenX on hepatic gene expression were entirely dependent on PPARα, while the effects of PFOA were mostly dependent on PPARα. In the absence of PPARα, the involvement of PXR and CAR became more prominent. CONCLUSION Overall, we show that long-term and low-dose exposure to PFOA and GenX disrupts hepatic lipid metabolism in mice. Whereas the effects of PFOA are mediated by multiple nuclear receptors, the effects of GenX are entirely mediated by PPARα. Our data underscore the potential of PFAS to disrupt metabolism by altering signaling pathways in the liver.
Collapse
Affiliation(s)
- Brecht Attema
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, the Netherlands
| | | | - Deborah Rijkers
- Wageningen Food Safety Research (WFSR), Wageningen, the Netherlands
| | | | - Guido J E J Hooiveld
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, the Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, the Netherlands.
| |
Collapse
|
43
|
Sinioja T, Bodin J, Duberg D, Dirven H, Berntsen HF, Zimmer K, Nygaard UC, Orešič M, Hyötyläinen T. Exposure to persistent organic pollutants alters the serum metabolome in non-obese diabetic mice. Metabolomics 2022; 18:87. [PMID: 36329300 PMCID: PMC9633531 DOI: 10.1007/s11306-022-01945-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Autoimmune disorders such as type 1 diabetes (T1D) are believed to be caused by the interplay between several genetic and environmental factors. Elucidation of the role of environmental factors in metabolic and immune dysfunction leading to autoimmune disease is not yet well characterized. OBJECTIVES Here we investigated the impact of exposure to a mixture of persistent organic pollutants (POPs) on the metabolome in non-obese diabetic (NOD) mice, an experimental model of T1D. The mixture contained organochlorides, organobromides, and per- and polyfluoroalkyl substances (PFAS). METHODS Analysis of molecular lipids (lipidomics) and bile acids in serum samples was performed by UPLC-Q-TOF/MS, while polar metabolites were analyzed by GC-Q-TOF/MS. RESULTS Experimental exposure to the POP mixture in these mice led to several metabolic changes, which were similar to those previously reported as associated with PFAS exposure, as well as risk of T1D in human studies. This included an increase in the levels of sugar derivatives, triacylglycerols and lithocholic acid, and a decrease in long chain fatty acids and several lipid classes, including phosphatidylcholines, lysophosphatidylcholines and sphingomyelins. CONCLUSION Taken together, our study demonstrates that exposure to POPs results in an altered metabolic signature previously associated with autoimmunity.
Collapse
Affiliation(s)
- Tim Sinioja
- School of Science and Technology, Örebro University, 702 81, Örebro, Sweden
| | - Johanna Bodin
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Daniel Duberg
- School of Science and Technology, Örebro University, 702 81, Örebro, Sweden
| | - Hubert Dirven
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Hanne Friis Berntsen
- Norwegian University of Life Sciences, 1432, Ås, Norway
- National Institute of Occupational Health, 0363, Oslo, Norway
| | - Karin Zimmer
- Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Unni C Nygaard
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Matej Orešič
- School of Medical Sciences, Örebro University, 702 81, Örebro, Sweden
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Tuulia Hyötyläinen
- School of Science and Technology, Örebro University, 702 81, Örebro, Sweden.
| |
Collapse
|
44
|
Feng Z, McLamb F, Vu JP, Gong S, Gersberg RM, Bozinovic G. Physiological and transcriptomic effects of hexafluoropropylene oxide dimer acid in Caenorhabditis elegans during development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114047. [PMID: 36075119 DOI: 10.1016/j.ecoenv.2022.114047] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are chemicals resistant to degradation. While such a feature is desirable in consumer and industrial products, some PFAS, including perfluorooctanoic acid (PFOA), are toxic and bioaccumulate. Hexafluoropropylene oxide dimer acid (HFPO-DA), an emerging PFAS developed to replace PFOA, has not been extensively studied. To evaluate the potential toxicity of HFPO-DA with a cost- and time-efficient approach, we exposed C. elegans larvae for 48 h to 4 × 10-9-4 g/L HFPO-DA in liquid media and measured developmental, behavioral, locomotor, and transcriptional effects at various exposure levels. Worms exposed to 1.5-4 g/L HFPO-DA were developmentally delayed, and progeny production was significantly delayed (p < 0.05) in worms exposed to 2-4 g/L HFPO-DA. Statistically significant differential gene expression was identified in all fourteen HFPO-DA exposure groups ranging from 1.25 × 10-5 to 4 g/L, except for 6.25 × 10-5 g/L. Among 10298 analyzed genes, 2624 differentially expressed genes (DEGs) were identified in the developmentally delayed 4 g/L group only, and 78 genes were differentially expressed in at least one of the thirteen groups testing 1.25 × 10-5-2 g/L HFPO-DA exposures. Genes encoding for detoxification enzymes including cytochrome P450 and UDP glucuronosyltransferases were upregulated in 0.25-4 g/L acute exposure groups. DEGs were also identified in lower exposure level groups, though they did not share biological functions except for six ribosomal protein-coding genes. While our transcriptional data is inconclusive to infer mechanisms of toxicity, the significant gene expression differences at 1.25 × 10-5 g/L, the lowest concentration tested for transcriptional changes, calls for further targeted analyses of low-dose HFPO-DA exposure effects.
Collapse
Affiliation(s)
- Zuying Feng
- Boz Life Science Research and Teaching Institute, 3030 Bunker Hill Street, San Diego, CA, USA; School of Public Health, San Diego State University, 5500 Campanile Drive, San Diego, CA, USA.
| | - Flannery McLamb
- Boz Life Science Research and Teaching Institute, 3030 Bunker Hill Street, San Diego, CA, USA; Division of Extended Studies, University of California San Diego, 9600N. Torrey Pines Road, La Jolla, CA, USA.
| | - Jeanne P Vu
- Boz Life Science Research and Teaching Institute, 3030 Bunker Hill Street, San Diego, CA, USA; School of Public Health, San Diego State University, 5500 Campanile Drive, San Diego, CA, USA; Division of Extended Studies, University of California San Diego, 9600N. Torrey Pines Road, La Jolla, CA, USA.
| | - Sylvia Gong
- Boz Life Science Research and Teaching Institute, 3030 Bunker Hill Street, San Diego, CA, USA; School of Public Health, San Diego State University, 5500 Campanile Drive, San Diego, CA, USA; Division of Extended Studies, University of California San Diego, 9600N. Torrey Pines Road, La Jolla, CA, USA.
| | - Richard M Gersberg
- School of Public Health, San Diego State University, 5500 Campanile Drive, San Diego, CA, USA.
| | - Goran Bozinovic
- Boz Life Science Research and Teaching Institute, 3030 Bunker Hill Street, San Diego, CA, USA; School of Public Health, San Diego State University, 5500 Campanile Drive, San Diego, CA, USA; Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA.
| |
Collapse
|
45
|
Zhang Z, Wang F, Zhang Y, Yao J, Bi J, He J, Zhang S, Wei Y, Guo H, Zhang X, He M. Associations of serum PFOA and PFOS levels with incident hypertension risk and change of blood pressure levels. ENVIRONMENTAL RESEARCH 2022; 212:113293. [PMID: 35427595 DOI: 10.1016/j.envres.2022.113293] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Evidence on the associations of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) with hypertension or blood pressure (BP) levels was limited and inconsistent. The present prospective study aims to evaluate the longitudinal associations of serum levels of PFOA and PFOS with incident hypertension risk and change of blood pressure levels. At baseline 1080 participants (mean age 62 years, 58.9% females) free of hypertension, cardiovascular disease, diabetes, and cancer were followed up for nearly 5 years. Baseline serum levels of PFOA and PFOS were measured with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS). Hypertension was defined as any of (1) self-reported physician-diagnosed hypertension (2) use of hypotension drugs (3) measured systolic BP ≥ 140 mmHg or diastolic BP ≥ 90 mmHg. Change of BP was evaluated as a difference between twice measurements (BP at follow-up visit-BP at baseline). After adjustment for multiple covariates, serum PFOS levels were negatively correlated with risk of hypertension [RR per lg-unit = 0.94 (95% CI: 0.88, 0.99)] and change of systolic BP [β = -1.48 (95% CI: -2.56, -0.41)]. The highest vs lowest quartiles of PFOS concentration was negatively associated with hypertension risk. Compared with Q1, the RRs (95% CIs) for Q2, Q3, and Q4 were 0.83 (0.67-0.98), 0.81 (0.67-0.97), and 0.81(0.67-0.97), respectively (p for trend = 0.016). The negative associations remained in females but not in males (p for interaction = 0.44). No significant association of PFOA with hypertension risk was observed. Further studies are needed to validate our findings.
Collapse
Affiliation(s)
- Zefang Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environmental and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Fei Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environmental and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Ying Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environmental and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Jinqiu Yao
- Department of Occupational and Environmental Health, Key Laboratory of Environmental and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Jiao Bi
- Department of Occupational and Environmental Health, Key Laboratory of Environmental and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Jia He
- Department of Occupational and Environmental Health, Key Laboratory of Environmental and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Department of Public Health, Shihezi University School of Medicine, Shihezi, 832000, Xinjiang, China
| | - Shiyang Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environmental and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Yue Wei
- Department of Occupational and Environmental Health, Key Laboratory of Environmental and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Huan Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environmental and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environmental and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Meian He
- Department of Occupational and Environmental Health, Key Laboratory of Environmental and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| |
Collapse
|
46
|
Batzella E, Girardi P, Russo F, Pitter G, Da Re F, Fletcher T, Canova C. Perfluoroalkyl substance mixtures and cardio-metabolic outcomes in highly exposed male workers in the Veneto Region: A mixture-based approach. ENVIRONMENTAL RESEARCH 2022; 212:113225. [PMID: 35390304 DOI: 10.1016/j.envres.2022.113225] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFAS) have been consistently associated with cardio-metabolic traits. Occupational exposures to multiple PFAS with health outcomes have been poorly investigated. The aim of the present study was to examine these associations among former workers involved in PFAS production. METHODS We considered 232 male ex-employees who had worked in a factory (Trissino, Veneto Region, Italy), which produced PFAS and other chemicals during 1968-2018. Out of twelve serum PFAS, only four (PFOA, PFOS, PFHxS, and PFNA) were quantifiable in at least 50% of samples. Non-fasting serum total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured. The associations between serum PFAS mixture and considered outcomes were assessed through linear regression mixed models and Weighted Quantile Sum (WQS) regression, adjusting for potential confounders. RESULTS PFOA was detected at the highest level, with a median concentration (in ng/mL) of 80.8 (min-max: 0.35-13,033), followed by PFOS (median: 8.55, min-max: 0.35-343), PFHxS (median: 6.8, min-max: 0.35-597) and PFNA (median: 0.8, min-max: 0.35-5). We observed that each A quartile increase in the WQS index was positively associated with the levels of TC (β: 8.41, 95% IC: 0.78-16.0), LDL-C (β: 8.02, 95% IC: 1-15.0) and SBP (β: 3.21, 95% IC: 0.82-5.60). No association of serum PFAS concentration on HDL cholesterol and DBP emerged. WQS analyses revealed a major contribution of PFNA and PFHxS for the cholesterol levels, although PFOA reported the highest concentration. PFOA and PFOS emerged as chemicals of concern regarding the association with SBP. CONCLUSIONS The results showed a clear association between serum PFAS levels and markers of cardiovascular risk and support the importance of clinical surveillance of cardiovascular risk factors in population with a high exposure to PFAS, especially in the occupational setting.
Collapse
Affiliation(s)
- Erich Batzella
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, Padova, Italy
| | - Paolo Girardi
- Department of Developmental Psychology and Socialization, University of Padua, Padua, Italy & Department of Statistical Sciences, University of Padua, Italy
| | - Francesca Russo
- Regional Directorate of Prevention, Food Safety, and Veterinary Public Health-Veneto Region, Venice, Italy
| | - Gisella Pitter
- Screening and Health Impact Assessment Unit, Azienda Zero-Veneto Region, Padua, Italy
| | - Filippo Da Re
- Regional Directorate of Prevention, Food Safety, and Veterinary Public Health-Veneto Region, Venice, Italy
| | - Tony Fletcher
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Cristina Canova
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, Padova, Italy.
| |
Collapse
|
47
|
Ward-Caviness CK, Moyer J, Weaver A, Devlin R, Diaz-Sanchez D. Associations between PFAS occurrence and multimorbidity as observed in an electronic health record cohort. Environ Epidemiol 2022; 6:e217. [PMID: 35975166 PMCID: PMC9374186 DOI: 10.1097/ee9.0000000000000217] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/14/2022] [Indexed: 01/06/2023] Open
Abstract
Per and polyfluoroalkyl substances (PFAS) are associated with health outcomes ranging from cancer to high cholesterol. However, there has been little examination of how PFAS exposure might impact the development of multiple chronic diseases, known as multimorbidity. Here, we associated the presence of one or more PFAS in water systems serving the zip code of residence with chronic disease and multimorbidity.
Collapse
|
48
|
Zare Jeddi M, Soltanmohammadi R, Barbieri G, Fabricio ASC, Pitter G, Dalla Zuanna T, Canova C. To which extent are per-and poly-fluorinated substances associated to metabolic syndrome? REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:211-228. [PMID: 34036763 DOI: 10.1515/reveh-2020-0144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Exposure to per- and polyfluoroalkyl substances (PFAS), ubiquitous persistent environmental contaminants, has led to substantial global concern due to their potential environmental and human health effects. Several epidemiological studies have assessed the possible association between PFAS exposure and risk of metabolic syndrome (MetS), however, the results are ambiguous. The aim of this study was to assess the current human epidemiologic evidence on the association between exposure to PFAS and MetS. We performed a systematic search strategy using three electronic databases (PubMed, Scopus, and Web of Science) for relevant studies concerning the associations of PFAS with MetS and its clinical relevance from inception until January 2021. We undertook meta-analyses where there were five or more studies with exposure and outcomes assessments that were reasonably comparable. The pooled odd ratios (ORs) were calculated using random effects models and heterogeneity among studies was assessed by I2 index and Q test. A total of 12 cross-sectional studies (10 studies on the general population and two studies in the occupational settings) investigated the association between PFAS exposure and MetS. We pooled data from seven studies on the general population for perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) and five studies for perfluorohexanesulfonate (PFHxS) and perfluorononanoic acid (PFNA). Predominately, most studies reported no statistically significant association between concentrations of PFAS and MetS. In the meta-analysis, the overall measure of effect was not statistically significant, showing no evidence of an association between concentrations of PFOA, PFOS, PFNA, and PFHxS and the risk of MetS. Based on the results of the meta-analysis, current small body of evidence does not support association between PFAS and MetS. However, due to limited number of studies and substantial heterogeneity, results should be interpreted with caution. Further scrutinizing cohort studies are needed to evaluate the association between various and less well-known PFAS substances and their mixture with MetS and its components in both adults and children in different settings.
Collapse
Affiliation(s)
- Maryam Zare Jeddi
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padova, Italy
| | - Rozita Soltanmohammadi
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padova, Italy
| | - Giulia Barbieri
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padova, Italy
| | - Aline S C Fabricio
- Regional Center for Biomarkers, Department of Clinical Pathology, Azienda ULSS 3 Serenissima, Venice, Italy
| | - Gisella Pitter
- Screening and Health Impact Assessment Unit, Azienda Zero-Veneto Region, Padova, Italy
| | - Teresa Dalla Zuanna
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padova, Italy
| | - Cristina Canova
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padova, Italy
| |
Collapse
|
49
|
Running L, Atilla-Gokcumen GE, Aga DS. Development of a Liquid Chromatography-Mass Spectrometry-Based In Vitro Assay to Assess Changes in Steroid Hormones Due to Exposure to Per- and Polyfluoroalkyl Substances. Chem Res Toxicol 2022; 35:1277-1288. [PMID: 35696490 DOI: 10.1021/acs.chemrestox.2c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Per- and poly-fluorinated substances (PFASs) are organic pollutants that have been linked to numerous health effects, including diabetes, cancers, and dysregulation of the endocrine system. This study aims to develop a liquid chromatography with tandem mass spectrometry (LC-MS/MS) assay to measure changes in 17 hormones in H295R cell line (a steroid producing adrenocortical cells) upon exposure to PFASs. Due to the challenges in the analysis of steroid hormones using electrospray ionization MS, a chemical derivatization method was employed to achieve 0.07-2 μg/L detection limits in LC-MS/MS. Furthermore, a 10-fold concentration factor through solid-phase extraction (SPE) allows for consistent sub-parts per billion detections. Optimization of the derivatization conditions showed doubly-derivatized products in some hormone analytes, including progesterone, corticosterone, and cortisol, and gave improved ionization efficiency up to 20-fold higher signal than the singly-derivatized product. The use of SPE for sample cleanup to analyze hormones from cellular media using weak anion exchange sorbent yielded 80-100% recovery for the 17 targeted hormones. The method was validated by exposing H295R cells to two known endocrine disruptors, forskolin and prochloraz, which showed expected changes in hormones. An initial exposure of H295R cells with various PFAS standards and their mixtures at 1 μM showed significant increases in progestogens with some PFAS treatments, which include PFBS, PFHxA, PFOS, PFDA, and PFDS. In addition, modest changes in hormone levels were observed in cells treated with other sulfonated or carboxylated headgroup PFASs. This sensitive LC-MS/MS method for hormone analysis in H295R cells will allow for the investigations of the alterations in the hormone production caused by exposure to various environmental insults in cell-based assays and other in vitro models.
Collapse
Affiliation(s)
- Logan Running
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260, United States
| | - G Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260, United States
| | - Diana S Aga
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260, United States
| |
Collapse
|
50
|
Liu M, Zhang G, Meng L, Han X, Li Y, Shi Y, Li A, Turyk ME, Zhang Q, Jiang G. Associations between Novel and Legacy Per- and Polyfluoroalkyl Substances in Human Serum and Thyroid Cancer: A Case and Healthy Population in Shandong Province, East China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6144-6151. [PMID: 34618433 DOI: 10.1021/acs.est.1c02850] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are widely detected in the environment and may cause adverse human health effects after exposure. Studies on the effect of PFASs on some health end points, including cancer, are still limited and show inconsistent results. In this research, 319 participants were recruited from Shandong Province, East China, consisting of patients with thyroid cancer and healthy controls. Seven novel and legacy PFASs were frequently detected (detection rate > 75%) in the serum samples of the participants. The concentrations of perfluorooctanoic acid (PFOA) were the highest in the case and control groups. Males showed significantly higher concentrations of PFASs than females. Exposure to PFASs was inversely associated with the risk of thyroid cancer. In the control group, we identified significant positive associations between PFASs and free thyroxine (FT4) as well as between PFOA and thyroid stimulating hormone (TSH) in females. A significant negative association between perfluorononanoic acid (PFNA) and triiodothyronine (T3) was observed in males. Our results suggest that exposure to certain PFASs could interfere with thyroid function. To our knowledge, this is the first case-control study demonstrating associations between novel and legacy PFASs in human and thyroid cancer.
Collapse
Affiliation(s)
- Mei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaoxin Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lan Zhou, Gansu 730070, China
| | - Lingling Meng
- Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan 250014, Shandong Province China
| | - Xu Han
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Research Institute of Petroleum Processing, Sinopec, Beijing 100083, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - An Li
- School of Public Health, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Mary E Turyk
- School of Public Health, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|