1
|
Liu Y, Hurley EC, Ogawa Y, Gause M, Toomey MB, Myers CA, Corbo JC. Avian photoreceptor homologies and the origin of double cones. Curr Biol 2025; 35:2215-2227.e6. [PMID: 40250431 DOI: 10.1016/j.cub.2025.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/09/2025] [Accepted: 02/18/2025] [Indexed: 04/20/2025]
Abstract
Birds possess the most complex photoreceptor system among vertebrates, with one rod and six cone types, including four single cones (violet, blue, green, and red) and two constituent cells of the double cone (DC-P and DC-A). The evolutionary relationships of avian photoreceptors to those of other vertebrate taxa have not been systematically explored. Here, we perform single-cell RNA sequencing (scRNA-seq) on retinas of newly hatched chickens to trace cell-type homologies across species. Analysis of differentially expressed transcription factors (TFs) suggests that avian rods and single cone types correspond to cognate cell types in fish and placental mammals, whereas double cones have a distinct origin. We propose that DC-P arose from an ancestral red cone, as revealed by expression of the red cone cell fate determinants thyroid hormone receptor β (THRB) and SAMD7, whereas DC-A may have arisen from an ancestral blue cone, as suggested by expression of the blue cone TFs FOXQ2 and SKOR1. These expression signatures are shared by DC-P and DC-A of the green anole lizard (Anolis carolinensis), suggesting conservation throughout Sauropsida. Consistent with our hypothesis, CRISPR-mediated knockout of THRB causes loss of red cones and DC-P, but not DC-A, and the appearance of supernumerary rods and green cones, suggestive of direct transfating. Furthermore, cis-regulatory analysis suggests that separate enhancers control red cone opsin expression in DC-P and DC-A, consistent with distinct evolutionary origins. Taken together, our studies trace the evolutionary relationships of avian photoreceptors and suggest separate origins of DC-P and DC-A from ancestral red and blue cones, respectively.
Collapse
Affiliation(s)
- Yu Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Erica C Hurley
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yohey Ogawa
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Maria Gause
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew B Toomey
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Connie A Myers
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
2
|
Thorson MT, Wei SE, Johnson C, Gabriel CJ, Arshavsky VY, Pearring JN. Nrl:CreERT2 mouse model to induce mosaic gene expression in rod photoreceptors. Front Mol Neurosci 2023; 16:1161127. [PMID: 37181654 PMCID: PMC10166802 DOI: 10.3389/fnmol.2023.1161127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/20/2023] [Indexed: 05/16/2023] Open
Abstract
Photoreceptors are sensory neurons that capture light within their outer segment, a narrow cylindrical organelle stacked with disc-shaped membranes housing the visual pigment. Photoreceptors are the most abundant neurons in the retina and are tightly packed to maximize the capture of incoming light. As a result, it is challenging to visualize an individual cell within a crowded photoreceptor population. To address this limitation, we developed a rod-specific mouse model that expresses tamoxifen-inducible cre recombinase under the control of the Nrl promoter. We characterized this mouse using a farnyslated GFP (GFPf) reporter mouse and found mosaic rod expression throughout the retina. The number of GFPf-expressing rods stabilized within 3 days post tamoxifen injection. At that time, the GFPf reporter began to accumulate in basal disc membranes. Using this new reporter mouse, we attempted to quantify the time course of photoreceptor disc renewal in WT and Rd9 mice, a model of X-linked retinitis pigmentosa previously proposed to have a reduced disc renewal rate. We measured GFPf accumulation in individual outer segments at 3 and 6 days post-induction and found that basal accumulation of the GFPf reporter was unchanged between WT and Rd9 mice. However, rates of renewal based on the GFPf measurements were inconsistent with historical calculations from radiolabeled pulse-chase experiments. By extending GFPf reporter accumulation to 10 and 13 days we found that this reporter had an unexpected distribution pattern that preferentially labeled the basal region of the outer segment. For these reasons the GFPf reporter cannot be used for measuring rates of disc renewal. Therefore, we used an alternative method that labels newly forming discs with a fluorescent dye to measure disc renewal rates directly in the Rd9 model and found it was not significantly different from WT. Our study finds that the Rd9 mouse has normal rates of disc renewal and introduces a novel Nrl:CreERT2 mouse for gene manipulation of individual rods.
Collapse
Affiliation(s)
- Molly T. Thorson
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Stephanie E. Wei
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Craig Johnson
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | | | - Vadim Y. Arshavsky
- Department of Ophthalmology, Duke University, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, United States
| | - Jillian N. Pearring
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
3
|
Liu F, Qin Y, Huang Y, Gao P, Li J, Yu S, Jia D, Chen X, Lv Y, Tu J, Sun K, Han Y, Reilly J, Shu X, Lu Q, Tang Z, Xu C, Luo D, Liu M. Rod genesis driven by mafba in an nrl knockout zebrafish model with altered photoreceptor composition and progressive retinal degeneration. PLoS Genet 2022; 18:e1009841. [PMID: 35245286 PMCID: PMC8926279 DOI: 10.1371/journal.pgen.1009841] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/16/2022] [Accepted: 02/17/2022] [Indexed: 12/25/2022] Open
Abstract
Neural retina leucine zipper (NRL) is an essential gene for the fate determination and differentiation of the precursor cells into rod photoreceptors in mammals. Mutations in NRL are associated with the autosomal recessive enhanced S-cone syndrome and autosomal dominant retinitis pigmentosa. However, the exact role of Nrl in regulating the development and maintenance of photoreceptors in the zebrafish (Danio rerio), a popular animal model used for retinal degeneration and regeneration studies, has not been fully determined. In this study, we generated an nrl knockout zebrafish model via the CRISPR-Cas9 technology and observed a surprising phenotype characterized by a reduced number, but not the total loss, of rods and over-growth of green cones. We discovered two waves of rod genesis, nrl-dependent and -independent at the embryonic and post-embryonic stages, respectively, in zebrafish by monitoring the rod development. Through bulk and single-cell RNA sequencing, we characterized the gene expression profiles of the whole retina and each retinal cell type from the wild type and nrl knockout zebrafish. The over-growth of green cones and mis-expression of green-cone-specific genes in rods in nrl mutants suggested that there are rod/green-cone bipotent precursors, whose fate choice between rod versus green-cone is controlled by nrl. Besides, we identified the mafba gene as a novel regulator of the nrl-independent rod development, based on the cell-type-specific expression patterns and the retinal phenotype of nrl/mafba double-knockout zebrafish. Gene collinearity analysis revealed the evolutionary origin of mafba and suggested that the function of mafba in rod development is specific to modern fishes. Furthermore, the altered photoreceptor composition and abnormal gene expression in nrl mutants caused progressive retinal degeneration and subsequent regeneration. Accordingly, this study revealed a novel function of the mafba gene in rod development and established a working model for the developmental and regulatory mechanisms regarding the rod and green-cone photoreceptors in zebrafish. Vision is mediated by two types of light-sensing cells named rod and cone photoreceptors in animal eyes. Abnormal generation, dysfunction or death of photoreceptor cells all cause irreversible vision problems. NRL is an essential gene for the generation and function of rod cells in mice and humans. Surprisingly, we found that in the zebrafish, a popular animal model for human diseases and therapeutic testing, there are two types of rod cells, and eliminating the function of nrl gene affects the rod cell formation at the embryonic stage but not at the juvenile and adult stages. The rod cell formation at the post-embryonic is driven by the mafba gene, which has not been reported to play a role in rod cells. In addition to the reduced number of rod cells, deletion of nrl also results in the emergence of rod/green-cone hybrid cells and an increased number of green cones. The ensuing cellular and molecular alterations collectively lead to retinal degeneration. These findings expand our understanding of photoreceptor development and maintenance and highlight the underlying conserved and species-specific regulatory mechanisms.
Collapse
Affiliation(s)
- Fei Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, P.R. China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yayun Qin
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yuwen Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Pan Gao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jingzhen Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Shanshan Yu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Danna Jia
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xiang Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yuexia Lv
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jiayi Tu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Kui Sun
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yunqiao Han
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Xinhua Shu
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Qunwei Lu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
- * E-mail: (CX); (DL); (ML)
| | - Daji Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, P.R. China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (CX); (DL); (ML)
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
- * E-mail: (CX); (DL); (ML)
| |
Collapse
|
4
|
Bery A, Bagchi U, Bergen AA, Felder-Schmittbuhl MP. Circadian clocks, retinogenesis and ocular health in vertebrates: new molecular insights. Dev Biol 2022; 484:40-56. [DOI: 10.1016/j.ydbio.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 12/22/2022]
|
5
|
Farnsworth DR, Posner M, Miller AC. Single cell transcriptomics of the developing zebrafish lens and identification of putative controllers of lens development. Exp Eye Res 2021; 206:108535. [PMID: 33705730 PMCID: PMC8092445 DOI: 10.1016/j.exer.2021.108535] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/31/2021] [Accepted: 03/02/2021] [Indexed: 01/10/2023]
Abstract
The vertebrate lens is a valuable model system for investigating the gene expression changes that coordinate tissue differentiation due to its inclusion of two spatially separated cell types, the outer epithelial cells and the deeper denucleated fiber cells that they support. Zebrafish are a useful model system for studying lens development given the organ's rapid development in the first several days of life in an accessible, transparent embryo. While we have strong foundational knowledge of the diverse lens crystallin proteins and the basic gene regulatory networks controlling lens development, no study has detailed gene expression in a vertebrate lens at single cell resolution. Here we report an atlas of lens gene expression in zebrafish embryos and larvae at single cell resolution through five days of development, identifying a number of novel putative regulators of lens development. Our data address open questions about the temperospatial expression of α-crystallins during lens development that will support future studies of their function and provide the first detailed view of β- and γ-crystallin expression in and outside the lens. We describe divergent expression in transcription factor genes that occur as paralog pairs in the zebrafish. Finally, we examine the expression dynamics of cytoskeletal, membrane associated, RNA-binding, and transcription factor genes, identifying a number of novel patterns. Overall these data provide a foundation for identifying and characterizing lens developmental regulatory mechanisms and revealing targets for future functional studies with potential therapeutic impact.
Collapse
Affiliation(s)
| | - Mason Posner
- Department of Biology and Toxicology, Ashland University, Ashland, OH, USA.
| | - Adam C Miller
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| |
Collapse
|
6
|
Oel AP, Neil GJ, Dong EM, Balay SD, Collett K, Allison WT. Nrl Is Dispensable for Specification of Rod Photoreceptors in Adult Zebrafish Despite Its Deeply Conserved Requirement Earlier in Ontogeny. iScience 2020; 23:101805. [PMID: 33299975 PMCID: PMC7702016 DOI: 10.1016/j.isci.2020.101805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/06/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
The transcription factor NRL (neural retina leucine zipper) has been canonized as the master regulator of photoreceptor cell fate in the retina. NRL is necessary and sufficient to specify rod cell fate and to preclude cone cell fate in mice. By engineering zebrafish, we tested if NRL function has conserved roles beyond mammals or beyond nocturnal species, i.e., in a vertebrate possessing a greater and more typical diversity of cone sub-types. Transgenic expression of Nrl from zebrafish or mouse was sufficient to induce rod photoreceptor cells. Zebrafish nrl−/− mutants lacked rods (and had excess UV-sensitive cones) as young larvae; thus, the conservation of Nrl function between mice and zebrafish appears sound. Strikingly, however, rods were abundant in adult nrl−/− null mutant zebrafish. Rods developed in adults despite Nrl protein being undetectable. Therefore, a yet-to-be-revealed non-canonical pathway independent of Nrl is able to specify the fate of some rod photoreceptors. Nrl is conserved and sufficient to specify rod photoreceptors in the zebrafish retina Nrl is necessary for rod photoreceptors in early ontogeny of zebrafish larvae Zebrafish Nrl is functionally conserved with mouse and human NRL Remarkably, Nrl is dispensable for rod specification in adult zebrafish
Collapse
Affiliation(s)
- A Phillip Oel
- Department of Biological Sciences, University of Alberta, Edmonton AB, T7Y 1C4, Canada
| | - Gavin J Neil
- Department of Biological Sciences, University of Alberta, Edmonton AB, T7Y 1C4, Canada
| | - Emily M Dong
- Department of Biological Sciences, University of Alberta, Edmonton AB, T7Y 1C4, Canada
| | - Spencer D Balay
- Department of Biological Sciences, University of Alberta, Edmonton AB, T7Y 1C4, Canada
| | - Keon Collett
- Department of Biological Sciences, University of Alberta, Edmonton AB, T7Y 1C4, Canada
| | - W Ted Allison
- Department of Biological Sciences, University of Alberta, Edmonton AB, T7Y 1C4, Canada.,Department of Medical Genetics, University of Alberta, Edmonton AB, T6G 2R3, Canada
| |
Collapse
|
7
|
Riddiford N, Schlosser G. Dissecting the pre-placodal transcriptome to reveal presumptive direct targets of Six1 and Eya1 in cranial placodes. eLife 2016; 5. [PMID: 27576864 PMCID: PMC5035141 DOI: 10.7554/elife.17666] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/29/2016] [Indexed: 11/13/2022] Open
Abstract
The pre-placodal ectoderm, marked by the expression of the transcription factor Six1 and its co-activator Eya1, develops into placodes and ultimately into many cranial sensory organs and ganglia. Using RNA-Seq in Xenopus laevis we screened for presumptive direct placodal target genes of Six1 and Eya1 by overexpressing hormone-inducible constructs of Six1 and Eya1 in pre-placodal explants, and blocking protein synthesis before hormone-inducing nuclear translocation of Six1 or Eya1. Comparing the transcriptome of explants with non-induced controls, we identified hundreds of novel Six1/Eya1 target genes with potentially important roles for placode development. Loss-of-function studies confirmed that target genes encoding known transcriptional regulators of progenitor fates (e.g. Sox2, Hes8) and neuronal/sensory differentiation (e.g. Ngn1, Atoh1, Pou4f1, Gfi1) require Six1 and Eya1 for their placodal expression. Our findings provide insights into the gene regulatory network regulating placodal neurogenesis downstream of Six1 and Eya1 suggesting new avenues of research into placode development and disease.
Collapse
Affiliation(s)
- Nick Riddiford
- School of Natural Sciences, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland
| | - Gerhard Schlosser
- School of Natural Sciences, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland
| |
Collapse
|
8
|
Cvekl A, McGreal R, Liu W. Lens Development and Crystallin Gene Expression. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 134:129-67. [PMID: 26310154 DOI: 10.1016/bs.pmbts.2015.05.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The eye and lens represent excellent models to understand embryonic development at cellular and molecular levels. Initial 3D formation of the eye depends on a reciprocal invagination of the lens placode/optic vesicle to form the eye primordium, i.e., the optic cup partially surrounding the lens vesicle. Subsequently, the anterior part of the lens vesicle gives rise to the lens epithelium, while the posterior cells of the lens vesicle differentiate into highly elongated lens fibers. Lens fiber differentiation involves cytoskeletal rearrangements, cellular elongation, accumulation of crystallin proteins, production of extracellular matrix for the lens capsule, and degradation of organelles. This chapter summarizes recent advances in lens development and provides insights into the regulatory mechanisms and differentiation at the level of chromatin structure and dynamics, the emerging field of noncoding RNAs, and novel strategies to fill the gaps in our understanding of lens development.
Collapse
Affiliation(s)
- Ales Cvekl
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA.
| | - Rebecca McGreal
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Wei Liu
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
9
|
Enright JM, Lawrence KA, Hadzic T, Corbo JC. Transcriptome profiling of developing photoreceptor subtypes reveals candidate genes involved in avian photoreceptor diversification. J Comp Neurol 2014; 523:649-68. [PMID: 25349106 DOI: 10.1002/cne.23702] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 10/21/2014] [Accepted: 10/22/2014] [Indexed: 12/26/2022]
Abstract
Avian photoreceptors are a diverse class of neurons, comprised of four single cones, the two members of the double cone, and rods. The signaling events and transcriptional regulators driving the differentiation of these diverse photoreceptors are largely unknown. In addition, many distinctive features of photoreceptor subtypes, including spectral tuning, oil droplet size and pigmentation, synaptic targets, and spatial patterning, have been well characterized, but the molecular mechanisms underlying these attributes have not been explored. To identify genes specifically expressed in distinct chicken (Gallus gallus) photoreceptor subtypes, we developed fluorescent reporters that label photoreceptor subpopulations, isolated these subpopulations by using fluorescence-activated cell sorting, and subjected them to next-generation sequencing. By comparing the expression profiles of photoreceptors labeled with rhodopsin, red opsin, green opsin, and violet opsin reporters, we have identified hundreds of differentially expressed genes that may underlie the distinctive features of these photoreceptor subtypes. These genes are involved in a variety of processes, including phototransduction, transcriptional regulation, cell adhesion, maintenance of intra- and extracellular structure, and metabolism. Of particular note are a variety of differentially expressed transcription factors, which may drive and maintain photoreceptor diversity, and cell adhesion molecules, which may mediate spatial patterning of photoreceptors and act to establish retinal circuitry. These analyses provide a framework for future studies that will dissect the role of these various factors in the differentiation of avian photoreceptor subtypes.
Collapse
Affiliation(s)
- Jennifer M Enright
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, 63110-1024
| | | | | | | |
Collapse
|
10
|
Hang Y, Stein R. MafA and MafB activity in pancreatic β cells. Trends Endocrinol Metab 2011; 22:364-73. [PMID: 21719305 PMCID: PMC3189696 DOI: 10.1016/j.tem.2011.05.003] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/03/2011] [Accepted: 05/18/2011] [Indexed: 12/11/2022]
Abstract
Analyses in mouse models have revealed crucial roles for MafA (musculoaponeurotic fibrosarcoma oncogene family A) and MafB in islet β cells, with MafB being required during development and MafA in adults. These two closely related transcription factors regulate many genes essential for glucose sensing and insulin secretion in a cooperative and sequential manner. Significantly, the switch from MafB to MafA expression also appears to be vital for functional maturation of β cells produced by human embryonic stem (hES) cell differentiation. This review summarizes the discovery, distribution, and function of MafA and MafB in rodent pancreatic β cells, and describes some key questions regarding their importance to β cells.
Collapse
Affiliation(s)
| | - Roland Stein
- Correspondence: 723 Light Hall, 2215 Garland Ave Nashville, TN 37232 Phone: 615-322-7026 Facsimile: 615-322-7236
| |
Collapse
|
11
|
Cheng H, Khan NW, Roger JE, Swaroop A. Excess cones in the retinal degeneration rd7 mouse, caused by the loss of function of orphan nuclear receptor Nr2e3, originate from early-born photoreceptor precursors. Hum Mol Genet 2011; 20:4102-15. [PMID: 21813656 DOI: 10.1093/hmg/ddr334] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The orphan nuclear receptor NR2E3 is a direct transcriptional target of NRL, the key basic motif leucine zipper transcription factor that dictates rod versus cone photoreceptor cell fate in the mammalian retina. The lack of NR2E3 function in humans and in retinal degeneration rd7 mutant mouse leads to increased S-cones accompanied by rod degeneration, whereas ectopic expression of Nr2e3 in the cone-only Nrl(-/-) retina generates rod-like cells that do not exhibit any visual function. Using GFP to tag the newborn rods and by 5-bromo-2'-deoxyuridine birthdating, we demonstrate that early-born post-mitotic photoreceptor precursors in the rd7 retina express cone-specific genes. Transgenic mouse studies in the rd7 background show that Nr2e3 when expressed under the control of Crx promoter can restore rod photoreceptor function and suppress cone gene expression. Furthermore, Nr2e3 expression in photoreceptor precursors committed to be rods (driven by the Nrl promoter) could completely rescue the retinal phenotype of the rd7 mice. We conclude that excess of S-cones in the rd7 retina originate from photoreceptor precursors with a 'default' fate and not from proliferation of cones and that Nr2e3 is required to suppress the expression of S-cone genes during normal rod differentiation. These studies further support the 'transcriptional dominance' model of photoreceptor cell fate determination and provide insights into the pathogenesis of retinal disease phenotypes caused by NR2E3 mutations.
Collapse
Affiliation(s)
- Hong Cheng
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | | | | | | |
Collapse
|
12
|
White JT, Zhang B, Cerqueira DM, Tran U, Wessely O. Notch signaling, wt1 and foxc2 are key regulators of the podocyte gene regulatory network in Xenopus. Development 2010; 137:1863-73. [PMID: 20431116 PMCID: PMC2867321 DOI: 10.1242/dev.042887] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2010] [Indexed: 11/20/2022]
Abstract
Podocytes are highly specialized cells in the vertebrate kidney. They participate in the formation of the size-exclusion barrier of the glomerulus/glomus and recruit mesangial and endothelial cells to form a mature glomerulus. At least six transcription factors (wt1, foxc2, hey1, tcf21, lmx1b and mafb) are known to be involved in podocyte specification, but how they interact to drive the differentiation program is unknown. The Xenopus pronephros was used as a paradigm to address this question. All six podocyte transcription factors were systematically eliminated by antisense morpholino oligomers. Changes in the expression of the podocyte transcription factors and of four selected markers of terminal differentiation (nphs1, kirrel, ptpru and nphs2) were analyzed by in situ hybridization. The data were assembled into a transcriptional regulatory network for podocyte development. Although eliminating the six transcription factors individually interfered with aspects of podocyte development, no single gene regulated the entire differentiation program. Only the combined knockdown of wt1 and foxc2 resulted in a loss of all podocyte marker gene expression. Gain-of-function studies showed that wt1 and foxc2 were sufficient to increase podocyte gene expression within the glomus proper. However, the combination of wt1, foxc2 and Notch signaling was required for ectopic expression in ventral marginal zone explants. Together, this approach demonstrates how complex interactions are required for the correct spatiotemporal execution of the podocyte gene expression program.
Collapse
Affiliation(s)
- Jeffrey T. White
- Department of Cell Biology and Anatomy, LSU Health Sciences Center, MEB 6A12, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Bo Zhang
- Department of Cell Biology and Anatomy, LSU Health Sciences Center, MEB 6A12, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Débora M. Cerqueira
- Department of Cell Biology and Anatomy, LSU Health Sciences Center, MEB 6A12, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Uyen Tran
- Department of Cell Biology and Anatomy, LSU Health Sciences Center, MEB 6A12, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Oliver Wessely
- Department of Cell Biology and Anatomy, LSU Health Sciences Center, MEB 6A12, 1901 Perdido Street, New Orleans, LA 70112, USA
- Department of Genetics, LSU Health Sciences Center, MEB 6A12, 1901 Perdido Street, New Orleans, LA 70112, USA
| |
Collapse
|
13
|
Takeuchi T, Kudo T, Ogata K, Hamada M, Nakamura M, Kito K, Abe Y, Ueda N, Yamamoto M, Engel JD, Takahashi S. Neither MafA/L-Maf nor MafB is essential for lens development in mice. Genes Cells 2009; 14:941-7. [PMID: 19624757 DOI: 10.1111/j.1365-2443.2009.01321.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The importance of the large Maf transcription factor family has been investigated in lens development in the chick, Xenopus and mammals. Previously we reported that c-maf-deficient mice exhibit severe defects in lens fibre cells. Here, we report the roles of other large Mafs, MafA/L-Maf and MafB, during mouse lens development. MafA/L-Maf and MafB were expressed in lens epithelial cells and fibre cells at E12.5 but had largely disappeared from the lens at E18.5. The lens of mafA-, mafB-deficient and mafA::mafB double-deficient mice developed normally. In c-maf-deficient mice, the pattern of expression of MafA and MafB differed from their expression in wild-type mice. Moreover, the expression of crystallin genes was unchanged in mafA-, mafB- and mafA::mafB double-deficient lens. These results indicate that c-Maf alone is essential for lens development, and that MafA/L-Maf and MafB are dispensable in mice.
Collapse
Affiliation(s)
- Takashi Takeuchi
- Department of Anatomy and Embryology, Doctoral Program in Life System Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kim H, Cheong SM, Ryu J, Jung HJ, Jho EH, Han JK. Xenopus Wntless and the retromer complex cooperate to regulate XWnt4 secretion. Mol Cell Biol 2009; 29:2118-28. [PMID: 19223472 PMCID: PMC2663306 DOI: 10.1128/mcb.01503-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 10/27/2008] [Accepted: 02/02/2009] [Indexed: 11/20/2022] Open
Abstract
Wnt signaling is implicated in a variety of developmental and pathological processes. The molecular mechanisms governing the secretion of Wnt ligands remain to be elucidated. Wntless, an evolutionarily conserved multipass transmembrane protein, is a dedicated secretion factor of Wnt proteins that participates in Drosophila melanogaster embryogenesis. In this study, we show that Xenopus laevis Wntless (XWntless) regulates the secretion of a specific Wnt ligand, XWnt4, and that this regulation is specifically required for eye development in Xenopus. Moreover, the Retromer complex is required for XWntless recycling to regulate the XWnt4-mediated eye development. Inhibition of Retromer function by Vps35 morpholino (MO) resulted in various Wnt deficiency phenotypes, affecting mesoderm induction, gastrulation cell movements, neural induction, neural tube closure, and eye development. Overexpression of XWntless led to the rescue of Vps35 MO-mediated eye defects but not other deficiencies. These results collectively suggest that XWntless and the Retromer complex are required for the efficient secretion of XWnt4, facilitating its role in Xenopus eye development.
Collapse
Affiliation(s)
- Hyunjoon Kim
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | | | | | | | | | | |
Collapse
|
15
|
Discovery and characterization of novel vascular and hematopoietic genes downstream of etsrp in zebrafish. PLoS One 2009; 4:e4994. [PMID: 19308258 PMCID: PMC2654924 DOI: 10.1371/journal.pone.0004994] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 02/24/2009] [Indexed: 01/22/2023] Open
Abstract
The transcription factor Etsrp is required for vasculogenesis and primitive myelopoiesis in zebrafish. When ectopically expressed, etsrp is sufficient to induce the expression of many vascular and myeloid genes in zebrafish. The mammalian homolog of etsrp, ER71/Etv2, is also essential for vascular and hematopoietic development. To identify genes downstream of etsrp, gain-of-function experiments were performed for etsrp in zebrafish embryos followed by transcription profile analysis by microarray. Subsequent in vivo expression studies resulted in the identification of fourteen genes with blood and/or vascular expression, six of these being completely novel. Regulation of these genes by etsrp was confirmed by ectopic induction in etsrp overexpressing embryos and decreased expression in etsrp deficient embryos. Additional functional analysis of two newly discovered genes, hapln1b and sh3gl3, demonstrates their importance in embryonic vascular development. The results described here identify a group of genes downstream of etsrp likely to be critical for vascular and/or myeloid development.
Collapse
|
16
|
Nelson SM, Frey RA, Wardwell SL, Stenkamp DL. The developmental sequence of gene expression within the rod photoreceptor lineage in embryonic zebrafish. Dev Dyn 2008; 237:2903-17. [PMID: 18816851 PMCID: PMC2581811 DOI: 10.1002/dvdy.21721] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In postembryonic zebrafish, rod photoreceptors are continuously generated from progenitors in the inner nuclear layer, which are derived from radial Müller glia that express the transcription factor pax6. We used BrdU incorporation, in combination with in situ hybridization for cell-specific transcription factors, to establish the patterns of gene expression during rod lineage maturation in the embryonic zebrafish. Downregulation of pax6 expression was accompanied by sporadic upregulation of expression of the transcription factors NeuroD/nrd, rx1, crx, and Nr2e3/pnr. As cells of the rod lineage entered the outer nuclear layer, they became homogeneous, coordinately expressing NeuroD, rx1, crx, and Nr2e3. Postmitotic, maturing rods also expressed nrl, rod opsin, and rod transducin/gnat1. The presence of rx1 within the rod lineage and in maturing rods indicates that rx1 is not cone-specific, as previously reported, and suggests a high degree of molecular similarity between rod and cone progenitor populations in the zebrafish.
Collapse
Affiliation(s)
- Steve M. Nelson
- Department of Biological Sciences, University of Idaho, Moscow, Idaho
- Neuroscience Graduate Program, University of Idaho, Moscow, Idaho
| | - Ruth A. Frey
- Department of Biological Sciences, University of Idaho, Moscow, Idaho
| | - Sheri L. Wardwell
- Department of Biological Sciences, University of Idaho, Moscow, Idaho
| | - Deborah L. Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, Idaho
- Neuroscience Graduate Program, University of Idaho, Moscow, Idaho
| |
Collapse
|
17
|
Abstract
Like JUN and FOS, the Maf transcription factors belong to the AP1 family. Besides their established role in human cancer--overexpression of the large Maf genes promotes the development of multiple myeloma--they can display tumour suppressor-like activity in specific cellular contexts, which is compatible with their physiological role in terminal differentiation. However, their oncogenic activity relies mostly on the acquisition of new biological functions relevant to cell transformation, the most striking characteristic of Maf oncoproteins being their ability to enhance pathological interactions between tumour cells and the stroma.
Collapse
Affiliation(s)
- Alain Eychène
- Institut Curie, Centre de Recherche, Orsay F-91405, France
| | | | | |
Collapse
|
18
|
Adler R, Raymond PA. Have we achieved a unified model of photoreceptor cell fate specification in vertebrates? Brain Res 2008; 1192:134-50. [PMID: 17466954 PMCID: PMC2288638 DOI: 10.1016/j.brainres.2007.03.044] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Revised: 03/08/2007] [Accepted: 03/16/2007] [Indexed: 12/01/2022]
Abstract
How does a retinal progenitor choose to differentiate as a rod or a cone and, if it becomes a cone, which one of their different subtypes? The mechanisms of photoreceptor cell fate specification and differentiation have been extensively investigated in a variety of animal model systems, including human and non-human primates, rodents (mice and rats), chickens, frogs (Xenopus) and fish. It appears timely to discuss whether it is possible to synthesize the resulting information into a unified model applicable to all vertebrates. In this review we focus on several widely used experimental animal model systems to highlight differences in photoreceptor properties among species, the diversity of developmental strategies and solutions that vertebrates use to create retinas with photoreceptors that are adapted to the visual needs of their species, and the limitations of the methods currently available for the investigation of photoreceptor cell fate specification. Based on these considerations, we conclude that we are not yet ready to construct a unified model of photoreceptor cell fate specification in the developing vertebrate retina.
Collapse
Affiliation(s)
- Ruben Adler
- Wilmer Institute, Johns Hopkins University, School of Medicine
| | - Pamela A. Raymond
- Department of Molecular, Cellular and Developmental Biology, University of Michigan
| |
Collapse
|
19
|
Abstract
Insulin is a critical hormone in the regulation of blood glucose levels. It is produced exclusively by pancreatic islet beta-cells. beta-cell-enriched transcription factors, such as Pdx1 and Beta2, have dual roles in the activation of the insulin gene promoter establishing beta-cell-specific insulin expression, and in the regulation of beta-cell differentiation. It was shown that MafA, a beta-cell-specific member of the Maf family of transcription factors, binds to the conserved C1/RIPE3b element of the insulin promoter. The Maf family proteins regulate tissue-specific gene expression and cell differentiation in a wide variety of tissues. MafA acts synergistically with Pdx1 and Beta2 to activate the insulin gene promoter, and mice with a targeted deletion of mafA develop age-dependent diabetes. MafA also regulates genes involved in beta-cell function such as Glucose transporter 2, Glucagons-like peptide 1 receptor, and Prohormone convertase 1/3. The abundance of MafA in beta-cells is regulated at both the transcriptional and post-translational levels by glucose and oxidative stress. This review summarizes recent progress in determining the functions and roles of MafA in the regulation of insulin gene transcription in beta-cells.
Collapse
Affiliation(s)
- Shinsaku Aramata
- Graduate School of Biological Science, Nara Institute of Science and Technology, Nara Japan
| | | | | |
Collapse
|
20
|
Abstract
Recent studies demonstrated a number of links between chromatin structure, gene expression, extracellular signaling and cellular differentiation during lens development. Lens progenitor cells originate from a pool of common progenitor cells, the pre-placodal region (PPR) which is formed from a combination of extracellular signaling between the neural plate, naïve ectoderm and mesendoderm. A specific commitment to the lens program over alternate choices such as the formation of olfactory epithelium or the anterior pituitary is manifested by the formation of a thickened surface ectoderm, the lens placode. Mouse lens progenitor cells are characterized by the expression of a complement of lens lineage-specific transcription factors including Pax6, Six3 and Sox2, controlled by FGF and BMP signaling, followed later by c-Maf, Mab21like1, Prox1 and FoxE3. Proliferation of lens progenitors together with their morphogenetic movements results in the formation of the lens vesicle. This transient structure, comprised of lens precursor cells, is polarized with its anterior cells retaining their epithelial morphology and proliferative capacity, whereas the posterior lens precursor cells initiate terminal differentiation forming the primary lens fibers. Lens differentiation is marked by expression and accumulation of crystallins and other structural proteins. The transcriptional control of crystallin genes is characterized by the reiterative use of transcription factors required for the establishment of lens precursors in combination with more ubiquitously expressed factors (e.g. AP-1, AP-2alpha, CREB and USF) and recruitment of histone acetyltransferases (HATs) CBP and p300, and chromatin remodeling complexes SWI/SNF and ISWI. These studies have poised the study of lens development at the forefront of efforts to understand the connections between development, cell signaling, gene transcription and chromatin remodeling.
Collapse
Affiliation(s)
- Ales Cvekl
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
21
|
McIlvain VA, Knox BE. Nr2e3 and Nrl can reprogram retinal precursors to the rod fate in Xenopus retina. Dev Dyn 2007; 236:1970-9. [PMID: 17377979 DOI: 10.1002/dvdy.21128] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Transformation of undifferentiated progenitors into specific cell types is largely dependent on temporal and spatial expression of a complex network of transcription factors. Here, we examined whether neural retina leucine zipper (Nrl) and photoreceptor-specific nuclear receptor Nr2e3 transcription factors contribute to cell fate determination. We cloned the Xenopus Nr2e3 gene and showed that its temporal and spatial expression is similar to its mammalian ortholog. We tested its in vivo function by misexpressing these transcription factors in Xenopus eye primordia, demonstrating that either human Nr2e3 or Nrl directed photoreceptor precursors to become rods at the expense of cones. Furthermore, overexpression of Xenopus Nrl dramatically increased the number of lens fibers, whereas human Nrl did not, suggesting evolutionary divergence of function of the Nrl gene family. Misexpression of Nrl and Nr2e3 together were more effective than either transcription factor alone in directing precursors to the rod fate.
Collapse
Affiliation(s)
- Vera A McIlvain
- Department of Biochemistry & Molecular Biology and Ophthalmology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | |
Collapse
|
22
|
Jaszczyszyn Y, Haeussler M, Heuzé A, Debiais-Thibaud M, Casane D, Bourrat F, Joly JS. Comparison of the expression of medaka (Oryzias latipes) pitx genes with other vertebrates shows high conservation and a case of functional shuffling in the pituitary. Gene 2007; 406:42-50. [PMID: 17656043 DOI: 10.1016/j.gene.2007.05.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 05/22/2007] [Accepted: 05/24/2007] [Indexed: 02/07/2023]
Abstract
With the availability of an increasing number of whole genome sequences in chordates, exhaustive comparisons of multigene families become feasible. Relationships of orthology/paralogy can not only be inferred from sequence similarity but also by comparing synteny conservation on chromosomes. More accurate scenarios for gene and expression domain gain or loss can now be proposed. Here, we take benefit from the recent release of the medaka (Oryzias latipes) genome to analyse the orthology relationships and expression patterns of the three different sub-families of the pitx homeobox genes belonging to the paired class. They are involved in a wide variety of developmental processes and have pleiotropic expression patterns, especially in the case of the pitx2 sub-family. The emerging picture is a strong conservation of expression domains, suggesting that most functions have been present in the common ancestor of actinopterygians and sarcopterygians. Almost all pitx genes are expressed in anterior placodes in all species studied so far, including medaka. It has previously been shown that in mammals, pitx1 and 2 are expressed in the pituitary. Interestingly we demonstrate here that only pitx3 is expressed in medaka pituitary. It will be interesting to analyze what are the corresponding changes in the regulatory elements of pitx genes.
Collapse
Affiliation(s)
- Yan Jaszczyszyn
- MSNC INRA Group, UPR2197 DEPSN Institut Fessard, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Kanda A, Friedman JS, Nishiguchi KM, Swaroop A. Retinopathy mutations in the bZIP protein NRL alter phosphorylation and transcriptional activity. Hum Mutat 2007; 28:589-98. [PMID: 17335001 DOI: 10.1002/humu.20488] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The transcription factor neural retina leucine zipper (NRL) is required for rod photoreceptor differentiation during mammalian retinal development. NRL interacts with CRX, NR2E3, and other transcription factors and synergistically regulates the activity of photoreceptor-specific genes. Mutations in the human NRL gene are associated with retinal degenerative diseases. Here we report functional analyses of 17 amino acid variations and/or mutations of NRL. We show that 13 of these lead to changes in NRL phosphorylation. Six mutations at residues p.S50 (c.148T>A, c.148T>C, and c.149C>T) and p.P51 (c.151C>A, c.151C>T, and c.152C>T), identified in patients with autosomal dominant retinitis pigmentosa, result in a major NRL isoform that exhibits reduced phosphorylation but enhanced activation of the rhodopsin promoter. The truncated NRL mutant proteins-p.L75fs (c.224_225insC) and p.L160fs (c.459_477dup)-do not localize to the nucleus because of the absence of bZIP domain. The p.L160P (c.479T>C), p.L160fs, and p.R218fs (c.654delC) mutant proteins do not bind to the NRL-response element, as revealed by electrophoretic mobility shift assays. These three and p.S225N (c.674G>A) mutant show reduced transcriptional activity and may contribute to recessive disease. The p.P67S (c.199C>T) and p.L235F (c.703C>T) variations in NRL do not appear to directly cause retinitis pigmentosa, while p.E63K (c.187G>A), p.A76V (c.227C>T), p.G122E (c.365G>A), and p.H125Q (c.375C>G) are of uncertain significance. Our results support the notion that gain-of-function mutations in the NRL gene cause autosomal dominant retinitis pigmentosa while loss-of-function NRL mutations lead to autosomal recessive retinitis pigmentosa. We propose that differential phosphorylation of NRL fine-tunes its transcriptional regulatory activity, leading to a more precise control of gene expression.
Collapse
Affiliation(s)
- Atsuhiro Kanda
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan 48105, USA
| | | | | | | |
Collapse
|
24
|
Yang Y, Cvekl A. Large Maf Transcription Factors: Cousins of AP-1 Proteins and Important Regulators of Cellular Differentiation. THE EINSTEIN JOURNAL OF BIOLOGY AND MEDICINE : EJBM 2007; 23:2-11. [PMID: 18159220 PMCID: PMC2151748 DOI: 10.23861/ejbm20072347] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A large number of mammalian transcription factors possess the evolutionary conserved basic and leucine zipper domain (bZIP). The basic domain interacts with DNA while the leucine zipper facilitates homo- and hetero-dimerization. These factors can be grouped into at least seven families: AP-1, ATF/CREB, CNC, C/EBP, Maf, PAR, and virus-encoded bZIPs. Here, we focus on a group of four large Maf proteins: MafA, MafB, c-Maf, and NRL. They act as key regulators of terminal differentiation in many tissues such as bone, brain, kidney, lens, pancreas, and retina, as well as in blood. The DNA-binding mechanism of large Mafs involves cooperation between the basic domain and an adjacent ancillary DNA-binding domain. Many genes regulated by Mafs during cellular differentiation use functional interactions between the Pax/Maf, Sox/Maf, and Ets/Maf promoter and enhancer modules. The prime examples are crystallin genes in lens and glucagon and insulin in pancreas. Novel roles for large Mafs emerged from studying generations of MafA and MafB knockouts and analysis of combined phenotypes in double or triple null mice. In addition, studies of this group of factors in invertebrates revealed the evolutionarily conserved function of these genes in the development of multicellular organisms.
Collapse
Affiliation(s)
- Ying Yang
- Departments of Ophthalmology and Visual Sciences and Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | | |
Collapse
|
25
|
Goldstone J, Hamdoun A, Cole B, Howard-Ashby M, Nebert D, Scally M, Dean M, Epel D, Hahn M, Stegeman J. The chemical defensome: environmental sensing and response genes in the Strongylocentrotus purpuratus genome. Dev Biol 2006; 300:366-84. [PMID: 17097629 PMCID: PMC3166225 DOI: 10.1016/j.ydbio.2006.08.066] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2006] [Revised: 08/18/2006] [Accepted: 08/28/2006] [Indexed: 01/08/2023]
Abstract
Metazoan genomes contain large numbers of genes that participate in responses to environmental stressors. We surveyed the sea urchin Strongylocentrotus purpuratus genome for homologs of gene families thought to protect against chemical stressors; these genes collectively comprise the 'chemical defensome.' Chemical defense genes include cytochromes P450 and other oxidases, various conjugating enzymes, ATP-dependent efflux transporters, oxidative detoxification proteins, and transcription factors that regulate these genes. Together such genes account for more than 400 genes in the sea urchin genome. The transcription factors include homologs of the aryl hydrocarbon receptor, hypoxia-inducible factor, nuclear factor erythroid-derived 2, heat shock factor, and nuclear hormone receptors, which regulate stress-response genes in vertebrates. Some defense gene families, including the ABCC, the UGT, and the CYP families, have undergone expansion in the urchin relative to other deuterostome genomes, whereas the stress sensor gene families do not show such expansion. More than half of the defense genes are expressed during embryonic or larval life stages, indicating their importance during development. This genome-wide survey of chemical defense genes in the sea urchin reveals evolutionary conservation of this network combined with lineage-specific diversification that together suggest the importance of these chemical stress sensing and response mechanisms in early deuterostomes. These results should facilitate future studies on the evolution of chemical defense gene networks and the role of these networks in protecting embryos from chemical stress during development.
Collapse
Affiliation(s)
- J.V. Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - A. Hamdoun
- Hopkins Marine Station, Stanford University, Oceanview Blvd. Pacific Grove, CA 93950, USA
| | - B.J. Cole
- Hopkins Marine Station, Stanford University, Oceanview Blvd. Pacific Grove, CA 93950, USA
| | - M. Howard-Ashby
- Department of Biology, California Institute of Technology, CA, USA
| | - D.W. Nebert
- Department of Environmental Health, University Cincinnati Medical Center, Cincinnati, OH 45267-0056, USA
| | - M. Scally
- Human Genetics Section, Laboratory of Genomic Diversity, NCI-Frederick, Frederick, MD 21702, USA
| | - M. Dean
- Human Genetics Section, Laboratory of Genomic Diversity, NCI-Frederick, Frederick, MD 21702, USA
| | - D. Epel
- Hopkins Marine Station, Stanford University, Oceanview Blvd. Pacific Grove, CA 93950, USA
| | - M.E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - J.J. Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|
26
|
Khanna H, Akimoto M, Siffroi-Fernandez S, Friedman JS, Hicks D, Swaroop A. Retinoic acid regulates the expression of photoreceptor transcription factor NRL. J Biol Chem 2006; 281:27327-34. [PMID: 16854989 PMCID: PMC1592579 DOI: 10.1074/jbc.m605500200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NRL (neural retina leucine zipper) is a key basic motif-leucine zipper (bZIP) transcription factor, which orchestrates rod photoreceptor differentiation by activating the expression of rod-specific genes. The deletion of Nrl in mice results in functional cones that are derived from rod precursors. However, signaling pathways modulating the expression or activity of NRL have not been elucidated. Here, we show that retinoic acid (RA), a diffusible factor implicated in rod development, activates the expression of NRL in serum-deprived Y79 human retinoblastoma cells and in primary cultures of rat and porcine photoreceptors. The effect of RA is mimicked by TTNPB, a RA receptor agonist, and requires new protein synthesis. DNaseI footprinting and electrophoretic mobility shift assays (EMSA) using bovine retinal nuclear extract demonstrate that RA response elements (RAREs) identified within the Nrl promoter bind to RA receptors. Furthermore, in transiently transfected Y79 and HEK293 cells the activity of Nrl-promoter driving a luciferase reporter gene is induced by RA, and this activation is mediated by RAREs. Our data suggest that signaling by RA via RA receptors regulates the expression of NRL, providing a framework for delineating early steps in photoreceptor cell fate determination.
Collapse
Affiliation(s)
- Hemant Khanna
- From the Departments of Ophthalmology and Visual Sciences and
| | - Masayuki Akimoto
- From the Departments of Ophthalmology and Visual Sciences and
- Translational Research Center, Kyoto University Hospital, Sakyo-ku, Kyoto 606-8507, Japan, the
| | | | | | - David Hicks
- Laboratory of Neurobiological Rhythms, UMR CNRS 7518, Centre de Neurochimie, 67084 Strasbourg, France
| | - Anand Swaroop
- From the Departments of Ophthalmology and Visual Sciences and
- Human Genetics, University of Michigan, Ann Arbor, Michigan 48105, the
- Harold F. Falls Collegiate Professor and a recipient of RPB Senior Scientific Investigator award. To whom correspondence should be addressed: Dept. of Ophthalmology and Visual Sciences, W. K. Kellogg Eye Center, University of Michigan, 1000 Wall St., Ann Arbor, MI 48105. Tel.: 734-763-3731; Fax: 734-647-0228; E-mail:
| |
Collapse
|
27
|
Yang Y, Stopka T, Golestaneh N, Wang Y, Wu K, Li A, Chauhan BK, Gao CY, Cveklová K, Duncan MK, Pestell RG, Chepelinsky AB, Skoultchi AI, Cvekl A. Regulation of alphaA-crystallin via Pax6, c-Maf, CREB and a broad domain of lens-specific chromatin. EMBO J 2006; 25:2107-18. [PMID: 16675956 PMCID: PMC1462985 DOI: 10.1038/sj.emboj.7601114] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 04/04/2006] [Indexed: 11/08/2022] Open
Abstract
Pax6 and c-Maf regulate multiple stages of mammalian lens development. Here, we identified novel distal control regions (DCRs) of the alphaA-crystallin gene, a marker of lens fiber cell differentiation induced by FGF-signaling. DCR1 stimulated reporter gene expression in primary lens explants treated with FGF2 linking FGF-signaling with alphaA-crystallin synthesis. A DCR1/alphaA-crystallin promoter (including DCR2) coupled with EGFP virtually recapitulated the expression pattern of alphaA-crystallin in lens epithelium and fibers. In contrast, the DCR3/alphaA/EGFP reporter was expressed only in 'late' lens fibers. Chromatin immunoprecipitations showed binding of Pax6 to DCR1 and the alphaA-crystallin promoter in lens chromatin and demonstrated that high levels of alphaA-crystallin expression correlate with increased binding of c-Maf and CREB to the promoter and of CREB to DCR3, a broad domain of histone H3K9-hyperacetylation extending from DCR1 to DCR3, and increased abundance of chromatin remodeling enzymes Brg1 and Snf2h at the alphaA-crystallin locus. Our data demonstrate a novel mechanism of Pax6, c-Maf and CREB function, through regulation of chromatin-remodeling enzymes, and suggest a multistage model for the activation of alphaA-crystallin during lens differentiation.
Collapse
Affiliation(s)
- Ying Yang
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tomáš Stopka
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Yan Wang
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Kongming Wu
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Anping Li
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Bharesh K Chauhan
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Květa Cveklová
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Melinda K Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Richard G Pestell
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Arthur I Skoultchi
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aleš Cvekl
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Ophthalmology and Visual Sciences and Molecular Genetics, Albert Einstein College of Medicine, 123 Ullmann, 1300 Morris Park Ave, Bronx, NY 10461, USA. Tel: +1 718 430 3217; Fax: +1 718 430 8778; E-mail:
| |
Collapse
|
28
|
Akimoto M, Cheng H, Zhu D, Brzezinski JA, Khanna R, Filippova E, Oh ECT, Jing Y, Linares JL, Brooks M, Zareparsi S, Mears AJ, Hero A, Glaser T, Swaroop A. Targeting of GFP to newborn rods by Nrl promoter and temporal expression profiling of flow-sorted photoreceptors. Proc Natl Acad Sci U S A 2006; 103:3890-5. [PMID: 16505381 PMCID: PMC1383502 DOI: 10.1073/pnas.0508214103] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Indexed: 11/18/2022] Open
Abstract
The Maf-family transcription factor Nrl is a key regulator of photoreceptor differentiation in mammals. Ablation of the Nrl gene in mice leads to functional cones at the expense of rods. We show that a 2.5-kb Nrl promoter segment directs the expression of enhanced GFP specifically to rod photoreceptors and the pineal gland of transgenic mice. GFP is detected shortly after terminal cell division, corresponding to the timing of rod genesis revealed by birthdating studies. In Nrl-/- retinas, the GFP+ photoreceptors express S-opsin, consistent with the transformation of rod precursors into cones. We report the gene profiles of freshly isolated flow-sorted GFP+ photoreceptors from wild-type and Nrl-/- retinas at five distinct developmental stages. Our results provide a framework for establishing gene regulatory networks that lead to mature functional photoreceptors from postmitotic precursors. Differentially expressed rod and cone genes are excellent candidates for retinopathies.
Collapse
Affiliation(s)
- Masayuki Akimoto
- Departments of *Ophthalmology and Visual Sciences
- Translational Research Center, Kyoto University Hospital, Kyoto 606-8507, Japan; and
| | | | - Dongxiao Zhu
- Statistics
- Bioinformatics, University of Michigan, Ann Arbor, MI 48105
| | | | - Ritu Khanna
- Departments of *Ophthalmology and Visual Sciences
| | | | | | | | | | | | | | - Alan J. Mears
- Departments of *Ophthalmology and Visual Sciences
- **University of Ottawa Eye Institute and Ottawa Health Research Institute, Ottawa, ON, Canada K1H 8L6
| | - Alfred Hero
- Statistics
- Electrical Engineering and Computer Science
- Biomedical Engineering, and
- Bioinformatics, University of Michigan, Ann Arbor, MI 48105
| | - Tom Glaser
- Human Genetics
- Internal Medicine, Programs in
| | - Anand Swaroop
- Departments of *Ophthalmology and Visual Sciences
- Human Genetics
- Translational Research Center, Kyoto University Hospital, Kyoto 606-8507, Japan; and
| |
Collapse
|