1
|
Saad MJA, Santos A. The Microbiota and Evolution of Obesity. Endocr Rev 2025; 46:300-316. [PMID: 39673174 PMCID: PMC11894537 DOI: 10.1210/endrev/bnae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/03/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
Obesity is a major global concern and is generally attributed to a combination of genetic and environmental factors. Several hypotheses have been proposed to explain the evolutionary origins of obesity epidemic, including thrifty and drifty genotypes, and changes in thermogenesis. Here, we put forward the hypothesis of metaflammation, which proposes that due to intense selection pressures exerted by environmental pathogens, specific genes that help develop a robust defense mechanism against infectious diseases have had evolutionary advantages and that this may contribute to obesity in modern times due to connections between the immune and energy storage systems. Indeed, incorporating the genetic variations of gut microbiota into the complex genetic framework of obesity makes it more polygenic than previously believed. Thus, uncovering the evolutionary origins of obesity requires a multifaceted approach that considers the complexity of human history, the unique genetic makeup of different populations, and the influence of gut microbiome on host genetics.
Collapse
Affiliation(s)
- Mario J A Saad
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, CEP 13083-887 Campinas, SP, Brazil
| | - Andrey Santos
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, CEP 13083-887 Campinas, SP, Brazil
| |
Collapse
|
2
|
Laganà A, Visalli G, Di Pietro A, Facciolà A. Vaccinomics and adversomics: key elements for a personalized vaccinology. Clin Exp Vaccine Res 2024; 13:105-120. [PMID: 38752004 PMCID: PMC11091437 DOI: 10.7774/cevr.2024.13.2.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/07/2024] [Accepted: 03/12/2024] [Indexed: 05/18/2024] Open
Abstract
Vaccines are one of the most important and effective tools in the prevention of infectious diseases and research about all the aspects of vaccinology are essential to increase the number of available vaccines more and more safe and effective. Despite the unquestionable value of vaccinations, vaccine hesitancy has spread worldwide compromising the success of vaccinations. Currently, the main purpose of vaccination campaigns is the immunization of whole populations with the same vaccine formulations and schedules for all individuals. A personalized vaccinology approach could improve modern vaccinology counteracting vaccine hesitancy and giving great benefits for human health. This ambitious purpose would be possible by facing and deepening the areas of vaccinomics and adversomics, two innovative areas of study investigating the role of a series of variables able to influence the immune response to vaccinations and the development of serious side effects, respectively. We reviewed the recent scientific knowledge about these innovative sciences focusing on genetic and non-genetic basis involved in the individual response to vaccines in terms of both immune response and side effects.
Collapse
Affiliation(s)
- Antonio Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- Istituto Clinico Polispecialistico C.O.T., Cure Ortopediche Traumatologiche S.P.A., Messina, Italy
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Alessio Facciolà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
3
|
Al-Mohammedawi AKK, Anvari E, Fateh A. Relationship between CDX2 rs11568820 and EcoRV rs4516035 polymorphisms on the vitamin D receptor gene with susceptibility to different SARS-CoV-2 variants. Cell Biol Int 2023; 47:1728-1736. [PMID: 37369952 DOI: 10.1002/cbin.12064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/22/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023]
Abstract
Several studies have revealed that vitamin D deficiency is linked to an increased risk of developing coronavirus disease 19 (COVID-19). In individuals with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, vitamin D receptor activation is required to decrease acute respiratory distress syndrome. The purpose of this study was to examine the genotypic distribution and allelic frequencies of CDX2 rs11568820 and EcoRV rs4516035 polymorphisms in COVID-19 patients with various SARS-CoV-2 variants. For genotyping of CDX2 rs11568820 and EcoRV rs4516035 polymorphisms, we used the polymerase chain reaction-restriction fragment length polymorphism technique in 1734 and 1450 recovered and deceased patients, respectively. The results indicated the rate of COVID-19 mortality was associated with CDX2 rs11568820 AA and GA genotypes in the Delta variant and with CDX2 rs11568820 AA in the Omicron BA.5 variant, while no association was shown in the Alpha variant. Therefore, the rate of COVID-19 mortality was associated with EcoRV rs4516035 TC and CC genotypes in the Delta variant, while no association was shown in the Alpha and Omicron BA.5 variants. According to our analysis, the T-G haplotype was more common in all SARS-CoV-2 variants. The C-A haplotype was associated with COVID-19 mortality in the Delta and Omicron BA.5 variants, and the T-A haplotype was related to the Alpha variant. In conclusion, the genotype frequencies of the CDX2 rs11568820 and EcoRV rs4516035 polymorphisms between SARS-CoV-2 variants were significantly different between the deceased patients and recovered patients. However, more studies should be done to confirm the results.
Collapse
Affiliation(s)
| | - Enayat Anvari
- Clinical Research Development Unit, Shahid Mostafa Khomeini Hospital, Ilam University of Medical Science, Ilam, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
4
|
Dudley MZ, Gerber JE, Budigan Ni H, Blunt M, Holroyd TA, Carleton BC, Poland GA, Salmon DA. Vaccinomics: A scoping review. Vaccine 2023; 41:2357-2367. [PMID: 36803903 PMCID: PMC10065969 DOI: 10.1016/j.vaccine.2023.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 12/24/2022] [Accepted: 02/03/2023] [Indexed: 02/21/2023]
Abstract
BACKGROUND This scoping review summarizes a key aspect of vaccinomics by collating known associations between heterogeneity in human genetics and vaccine immunogenicity and safety. METHODS We searched PubMed for articles in English using terms covering vaccines routinely recommended to the general US population, their effects, and genetics/genomics. Included studies were controlled and demonstrated statistically significant associations with vaccine immunogenicity or safety. Studies of Pandemrix®, an influenza vaccine previously used in Europe, were also included, due to its widely publicized genetically mediated association with narcolepsy. FINDINGS Of the 2,300 articles manually screened, 214 were included for data extraction. Six included articles examined genetic influences on vaccine safety; the rest examined vaccine immunogenicity. Hepatitis B vaccine immunogenicity was reported in 92 articles and associated with 277 genetic determinants across 117 genes. Thirty-three articles identified 291 genetic determinants across 118 genes associated with measles vaccine immunogenicity, 22 articles identified 311 genetic determinants across 110 genes associated with rubella vaccine immunogenicity, and 25 articles identified 48 genetic determinants across 34 genes associated with influenza vaccine immunogenicity. Other vaccines had fewer than 10 studies each identifying genetic determinants of their immunogenicity. Genetic associations were reported with 4 adverse events following influenza vaccination (narcolepsy, GBS, GCA/PMR, high temperature) and 2 adverse events following measles vaccination (fever, febrile seizure). CONCLUSION This scoping review identified numerous genetic associations with vaccine immunogenicity and several genetic associations with vaccine safety. Most associations were only reported in one study. This illustrates both the potential of and need for investment in vaccinomics. Current research in this field is focused on systems and genetic-based studies designed to identify risk signatures for serious vaccine reactions or diminished vaccine immunogenicity. Such research could bolster our ability to develop safer and more effective vaccines.
Collapse
Affiliation(s)
- Matthew Z Dudley
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Institute for Vaccine Safety, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Jennifer E Gerber
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Survey Research Division, RTI International, Washington, DC, USA
| | - Haley Budigan Ni
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Office of Health Equity, California Department of Public Health, Richmond, CA, USA
| | - Madeleine Blunt
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Taylor A Holroyd
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; International Vaccine Access Center, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Bruce C Carleton
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Gregory A Poland
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA; Mayo Vaccine Research Group, Mayo Clinic, Rochester, MN, USA
| | - Daniel A Salmon
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Institute for Vaccine Safety, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Department of Health, Behavior & Society, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
5
|
[Vitamin D and polymorphisms of VDR and GC genes in the severity and mortality from COVID-19. A systematic review]. NUTR HOSP 2022; 39:1397-1407. [PMID: 36327123 DOI: 10.20960/nh.04299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Introduction Previous studies have pointed to a possible relationship between vitamin D deficiency and the severity of the disease promoted by SARS-CoV-2, reducing respiratory and cardiovascular complications caused by a hyperreaction of the immune system known as "cytokine storm". This vitamin exerts multiple functions that depend on the presence and levels of different proteins, such as the vitamin D receptor (VDR) and the vitamin D binding protein (DBP), and the existence of single nucleotide polymorphisms (SNPs) of the genes that encode these proteins. The objective of this review is to assess whether some VDR and GC SNPs are risk factors for the most severe forms of COVID-19 disease and whether they condition the response to vitamin D supplementation. A search was performed in PubMed, Google Scholar and Scielo, finding that genotypes in patients affected by COVID-19, were rarely performed, although some studies find a relationship between different alleles and the severity of the disease. The ApaI polymorphism of the VDR gene stands out, as the minor allele "a" increases the risk of mortality from COVID-19 (OR = 11.828, CI: 2,493-56,104, p = 0.002). Results divergency in the efficacy of vitamin D supplementation suggest the need for a larger number of studies. In conclusion, the study of VDR and GC polymorphisms seems essential to effectively treat vitamin D deficiency and particularly to protect against COVID-19. Well-designed studies are needed to elucidate whether plasma vitamin D levels play a role of casuality or causality.
Collapse
|
6
|
The rs1883832 Polymorphism (CD40-1C>T) Affects the Intensity of IgA Responses after BNT162b2 Vaccination. Int J Mol Sci 2022; 23:ijms232214056. [PMID: 36430533 PMCID: PMC9697403 DOI: 10.3390/ijms232214056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022] Open
Abstract
The effectiveness of coronavirus disease 2019 (COVID-19) vaccination strategies is affected by several factors, including the genetic background of the host. In our study, we evaluated the contribution of the functional polymorphism rs1883832 affecting the Kozak sequence of the TNFSF5 gene (c.-1C>T), encoding CD40, to humoral immune responses after vaccination with the spike protein of SARS-CoV-2. The rs1883832 polymorphism was analyzed by PCR-RFLP in 476 individuals (male/female: 216/260, median age: 55.0 years, range: 20−105) of whom 342 received the BNT162b2 mRNA vaccine and 134 received the adenovirus-based vector vaccines (67 on ChAdOx1-nCoV-19 vaccine, 67 on Ad.26.COV2.S vaccine). The IgG and IgA responses were evaluated with chemiluminescent microparticle and ELISA assays on days 21, 42, and 90 after the first dose. The T allele of the rs1883832 polymorphism (allele frequency: 32.8%) was significantly associated with lower IgA levels and represented, as revealed by multivariable analysis, an independent risk factor for reduced anti-spike protein IgA levels on days 42 and 90 following BNT162b2 mRNA vaccination. Similar to serum anti-spike IgA levels, a trend of lower anti-spike IgA concentrations in saliva was found in individuals with the T allele of rs1883832. Finally, the intensity of IgA and IgG responses on day 42 significantly affected the prevalence of COVID-19 after vaccination. The rs1883832 polymorphism may be used as a molecular predictor of the intensity of anti-spike IgA responses after BNT162b2 mRNA vaccination.
Collapse
|
7
|
Davalos V, García-Prieto CA, Ferrer G, Aguilera-Albesa S, Valencia-Ramos J, Rodríguez-Palmero A, Ruiz M, Planas-Serra L, Jordan I, Alegría I, Flores-Pérez P, Cantarín V, Fumadó V, Viadero MT, Rodrigo C, Méndez-Hernández M, López-Granados E, Colobran R, Rivière JG, Soler-Palacín P, Pujol A, Esteller M. Epigenetic profiling linked to multisystem inflammatory syndrome in children (MIS-C): A multicenter, retrospective study. EClinicalMedicine 2022; 50:101515. [PMID: 35770252 PMCID: PMC9233426 DOI: 10.1016/j.eclinm.2022.101515] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Most children and adolescents infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain asymptomatic or develop a mild coronavirus disease 2019 (COVID-19) that usually does not require medical intervention. However, a small proportion of pediatric patients develop a severe clinical condition, multisystem inflammatory syndrome in children (MIS-C). The involvement of epigenetics in the control of the immune response and viral activity prompted us to carry out an epigenomic study to uncover target loci regulated by DNA methylation that could be altered upon the appearance of MIS-C. METHODS Peripheral blood samples were recruited from 43 confirmed MIS-C patients. 69 non-COVID-19 pediatric samples and 15 COVID-19 pediatric samples without MIS-C were used as controls. The cases in the two groups were mixed and divided into discovery (MIS-C = 29 and non-MIS-C = 56) and validation (MIS-C = 14 and non-MIS-C = 28) cohorts, and balanced for age, gender and ethnic background. We interrogated 850,000 CpG sites of the human genome for DNA methylation variants. FINDINGS The DNA methylation content of 33 CpG loci was linked with the presence of MIS-C. Of these sites, 18 (54.5%) were located in described genes. The top candidate gene was the immune T-cell mediator ZEB2; and others highly ranked candidates included the regulator of natural killer cell functional competence SH2D1B; VWA8, which contains a domain of the Von Willebrand factor A involved in the pediatric hemostasis disease; and human leukocyte antigen complex member HLA-DRB1; in addition to pro-inflammatory genes such as CUL2 and AIM2. The identified loci were used to construct a DNA methylation profile (EPIMISC) that was associated with MIS-C in both cohorts. The EPIMISC signature was also overrepresented in Kawasaki disease patients, a childhood pathology with a possible viral trigger, that shares many of the clinical features of MIS-C. INTERPRETATION We have characterized DNA methylation loci that are associated with MIS-C diagnosis. The identified genes are likely contributors to the characteristic exaggerated host inflammatory response observed in these patients. The described epigenetic signature could also provide new targets for more specific therapies for the disorder. FUNDING Unstoppable campaign of Josep Carreras Leukaemia Foundation, Fundació La Marató de TV3, Cellex Foundation and CERCA Programme/Generalitat de Catalunya.
Collapse
Affiliation(s)
- Veronica Davalos
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Carlos A. García-Prieto
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Catalonia, Spain
| | - Gerardo Ferrer
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), Spain
| | | | | | - Agustí Rodríguez-Palmero
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
- Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Barcelona, Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| | - Laura Planas-Serra
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| | - Iolanda Jordan
- Pediatric Critical Care Unit, Hospital Universitari Sant Joan de Deu, Barcelona, Catalonia, Spain
| | | | | | - Verónica Cantarín
- Pediatrics Department, Hospital Universitario Niño Jesús, Madrid, Spain
| | - Victoria Fumadó
- Unitat de Malalties Infeccioses i Importades, Servei de Pediatría, Infectious and Imported Diseases, Pediatric Unit, Hospital Universitari Sant Joan de Deú, Barcelona, Catalonia, Spain
| | - Maria Teresa Viadero
- Servicio de Pediatría del Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Carlos Rodrigo
- Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Barcelona, Spain
| | - Maria Méndez-Hernández
- Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Barcelona, Spain
| | - Eduardo López-Granados
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
- Department of Immunology, La Paz University Hospital, Madrid, Spain; La Paz Institute of Biomedical Research, Madrid, Spain
| | - Roger Colobran
- Immunology Division, Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Jacques G. Rivière
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Pere Soler-Palacín
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Corresponding author at: Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Catalonia, Spain.
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Catalonia, Spain
- Corresponding author at: Josep Carreras Leukaemia Research Institute (IJC), Carretera de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Catalonia, Spain.
| |
Collapse
|
8
|
Prasov L, Bohnsack BL, El Husny AS, Tsoi LC, Guan B, Kahlenberg JM, Almeida E, Wang H, Cowen EW, De Jesus AA, Jani P, Billi AC, Moroi SE, Wasikowski R, Almeida I, Almeida LN, Kok F, Garnai SJ, Mian SI, Chen MY, Warner BM, Ferreira CR, Goldbach-Mansky R, Hur S, Brooks BP, Richards JE, Hufnagel RB, Gudjonsson JE. DDX58(RIG-I)-related disease is associated with tissue-specific interferon pathway activation. J Med Genet 2022; 59:294-304. [PMID: 33495304 PMCID: PMC8310534 DOI: 10.1136/jmedgenet-2020-107447] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/10/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Singleton-Merten syndrome (SGMRT) is a rare immunogenetic disorder that variably features juvenile open-angle glaucoma (JOAG), psoriasiform skin rash, aortic calcifications and skeletal and dental dysplasia. Few families have been described and the genotypic and phenotypic spectrum is poorly defined, with variants in DDX58 (DExD/H-box helicase 58) being one of two identified causes, classified as SGMRT2. METHODS Families underwent deep systemic phenotyping and exome sequencing. Functional characterisation with in vitro luciferase assays and in vivo interferon signature using bulk and single cell RNA sequencing was performed. RESULTS We have identified a novel DDX58 variant c.1529A>T p.(Glu510Val) that segregates with disease in two families with SGMRT2. Patients in these families have widely variable phenotypic features and different ethnic background, with some being severely affected by systemic features and others solely with glaucoma. JOAG was present in all individuals affected with the syndrome. Furthermore, detailed evaluation of skin rash in one patient revealed sparse inflammatory infiltrates in a unique distribution. Functional analysis showed that the DDX58 variant is a dominant gain-of-function activator of interferon pathways in the absence of exogenous RNA ligands. Single cell RNA sequencing of patient lesional skin revealed a cellular activation of interferon-stimulated gene expression in keratinocytes and fibroblasts but not in neighbouring healthy skin. CONCLUSIONS These results expand the genotypic spectrum of DDX58-associated disease, provide the first detailed description of ocular and dermatological phenotypes, expand our understanding of the molecular pathogenesis of this condition and provide a platform for testing response to therapy.
Collapse
Affiliation(s)
- Lev Prasov
- Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Brenda L Bohnsack
- Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Ophthalmology, Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Ophthalmology, Northwestern University, Chicago, IL, USA
| | - Antonette S El Husny
- Children and Adolescents' Health Care Unit, Bettina Ferro De Souza University Hospital, Federal University of Para, Belem, Brazil
| | - Lam C Tsoi
- Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Bin Guan
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Bethesda, Maryland, USA
| | - J Michelle Kahlenberg
- Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Haitao Wang
- Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Edward W Cowen
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Adriana A De Jesus
- Translational Autoinflammatory Diseases Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Priyam Jani
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Allison C Billi
- Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sayoko E Moroi
- Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Ophthalmology and Visual Sciences, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Rachael Wasikowski
- Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Izabela Almeida
- Ophthalmology and Visual Sciences, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Sarah J Garnai
- Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Shahzad I Mian
- Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Marcus Y Chen
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Blake M Warner
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, Bethesda, MD, USA
| | - Carlos R Ferreira
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Sun Hur
- Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Brian P Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Bethesda, Maryland, USA
| | - Julia E Richards
- Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Robert B Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Bethesda, Maryland, USA
| | - Johann E Gudjonsson
- Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
CD14 Is Involved in the Interferon Response of Human Macrophages to Rubella Virus Infection. Biomedicines 2022; 10:biomedicines10020266. [PMID: 35203475 PMCID: PMC8869353 DOI: 10.3390/biomedicines10020266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Macrophages (MΦ) as specialized immune cells are involved in rubella virus (RuV) pathogenesis and enable the study of its interaction with the innate immune system. A similar replication kinetics of RuV in the two human MΦ types, the pro-inflammatory M1-like (or GM-MΦ) and anti-inflammatory M2-like (M-MΦ), was especially in M-MΦ accompanied by a reduction in the expression of the innate immune receptor CD14. Similar to RuV infection, exogenous interferon (IFN) β induced a loss of glycolytic reserve in M-MΦ, but in contrast to RuV no noticeable influence on CD14 expression was detected. We next tested the contribution of CD14 to the generation of cytokines/chemokines during RuV infection of M-MΦ through the application of anti-CD14 blocking antibodies. Blockage of CD14 prior to RuV infection enhanced generation of virus progeny. In agreement with this observation, the expression of IFNs was significantly reduced in comparison to the isotype control. Additionally, the expression of TNF-α was slightly reduced, whereas the chemokine CXCL10 was not altered. In conclusion, the observed downmodulation of CD14 during RuV infection of M-MΦ appears to contribute to virus-host-adaptation through a reduction of the IFN response.
Collapse
|
10
|
Miya TV, Groome MJ, de Assis Rosa D. TLR genetic variation is associated with Rotavirus-specific IgA seroconversion in South African Black infants after two doses of Rotarix vaccine. Vaccine 2021; 39:7028-7035. [PMID: 34740476 DOI: 10.1016/j.vaccine.2021.10.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/01/2021] [Accepted: 10/22/2021] [Indexed: 10/19/2022]
Abstract
Live oral rotavirus vaccines have significantly reduced rotavirus-related diarrheal morbidity and mortality globally, but low efficacy of these vaccines is observed in low-income countries where disease burden is highest. The biological basis of rotavirus vaccine failure remains unknown but likely includes both microbial and host factors. We investigated associations between 19 candidate SNPs in the TLR3, TLR7, TLR8, DDX58 and IFIH1 genes that play a role in innate immunity, and seroconversion in Black South African infants after vaccination with Rotarix at 6 and 14 weeks of age. Rotavirus-specific IgA antibody titre was measured by ELISA before each vaccine dose and four weeks after the second dose, and seroconversion was defined as a four-fold or greater increase in IgA antibody titre at 18 weeks of age when compared to pre-vaccine titres. A total of 95/138 individuals seroconverted (68.8%) and seroconversion was significantly affected by birthweight (P = 0.010), pre-vaccine IgA and IgG titres (P = 0.0002 and P = 0.007 respectively). rs2159377 SNP in TLR8 was significantly associated with seroconversion in a univariate allelic model (P = 0.015) and was borderline significant in a multivariable logistic regression adjusted for birthweight and pre-vaccine titres (P = 0.071), although these values did not remain significant after Bonferroni correction. A haplotype of six SNPs on the X chromosome across TLR7 and TLR8, including rs179008 and rs5935438 minor alleles, was significantly associated with seroconversion in a univariate model (P = 0.042), but not in a multivariable model or after Bonferroni correction. Epistatic interaction between rs5743305 in TLR3 and rs55789327 in DDX58 was significantly associated with seroconversion (P = 0.034) but a genetic risk score constructed from all 19 minor alleles was not. Our results suggest that TLR variants may influence IgA antibody production and seroconversion to Rotarix vaccine in South Africans. Host genetic variation contributes to the varying immunogenicity of live oral rotavirus vaccines.
Collapse
Affiliation(s)
- Thabiso V Miya
- School of Molecular and Cell Biology, Faculty of Science, University of Witwatersrand, Jhb, South Africa
| | - Michelle J Groome
- South African Medical Research Council Vaccines and Infectious Diseases Analytics (VIDA) Research Unit, SA Medical Research Council and Faculty of Health Science, University of the Witwatersrand, Jhb, South Africa; National Institute for Communicable Diseases, Jhb, South Africa
| | - Debra de Assis Rosa
- School of Molecular and Cell Biology, Faculty of Science, University of Witwatersrand, Jhb, South Africa.
| |
Collapse
|
11
|
Homma H, Watanabe M, Inoue N, Isono M, Hidaka Y, Iwatani Y. Polymorphisms in Vitamin A-Related Genes and Their Functions in Autoimmune Thyroid Disease. Thyroid 2021; 31:1749-1756. [PMID: 34470463 DOI: 10.1089/thy.2021.0312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background: Vitamin A is a factor that suppresses immune responses, including T helper (Th)1 and Th17 responses. However, there has been no report showing the association between vitamin A-related genes (CYP26B1, RARB, and RARG) and the prognosis of autoimmune thyroid disease (AITD). The objective of this study was to clarify the association between vitamin A-related genes and the susceptibility and prognosis of AITD. Methods: We genotyped polymorphisms in genes encoding vitamin A-related molecules using the polymerase chain reaction-restriction fragment length polymorphism method. The proportion of T helper cells was analyzed by flow cytometry. Serum interleukin (IL)-17 and interferon (IFN)-γ were examined by enzyme-linked immunosorbent assay. Results:CYP26B1 rs3768641 GG genotype and G allele were significantly more frequent in patients with mild Hashimoto's thyroiditis (HT) than in those with severe HT (p = 0.0013 and 0.0024, respectively). The RARB rs1997352 CC genotype was significantly more frequent in HT patients than in controls (p = 0.0207). The proportion of Th17 cells was significantly higher in CYP26B1 rs2241057 TT genotype than C carrier (CC+CT genotypes) (p = 0.0385), in RARB rs1997352 A carrier (AA+AC genotypes) than those with CC genotype (p = 0.0246), and in RARG rs7398676 G carrier (GG+GT genotypes) than in TT genotype (p = 0.0249). In the RARB rs1997352 polymorphism, HT patients with a high concentration of IFN-γ (≥150 ng/mL) were more frequent in the CC genotype than in A carriers (AA+AC genotypes) (p = 0.0226). Serum levels of IL-17 were significantly elevated in subjects with the TT genotype of the CYP26B1 rs2241057 single nucleotide polymorphism (SNP) (p = 0.0026) and in subjects with the GG genotype of the CYP26B1 rs3798641 SNP (p = 0.030). Subjects with a high concentration of IL-17 (≥0.71 pg/mL) were more frequent in RARG 7398676 G carriers (GG+GT genotypes) than in TT genotype (p = 0.0218). Conclusions: Polymorphisms in the CYP26B1 gene were related to the proportion of Th17 cells, the level of IL-17 and the severity of HT. Polymorphisms in RAR were related to the proportion of Th17 cells, concentrations of IFN-γ and IL-17, and susceptibility to HT.
Collapse
Affiliation(s)
- Hinako Homma
- Division of Health Sciences, Department of Biomedical Informatics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mikio Watanabe
- Division of Health Sciences, Department of Biomedical Informatics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naoya Inoue
- Division of Health Sciences, Department of Biomedical Informatics, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory for Clinical Investigation, Osaka University Hospital, Osaka, Japan
| | - Moeko Isono
- Division of Health Sciences, Department of Biomedical Informatics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoh Hidaka
- Laboratory for Clinical Investigation, Osaka University Hospital, Osaka, Japan
| | - Yoshinori Iwatani
- Division of Health Sciences, Department of Biomedical Informatics, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
12
|
Abdollahzadeh R, Shushizadeh MH, Barazandehrokh M, Choopani S, Azarnezhad A, Paknahad S, Pirhoushiaran M, Makani SZ, Yeganeh RZ, Al-Kateb A, Heidarzadehpilehrood R. Association of Vitamin D receptor gene polymorphisms and clinical/severe outcomes of COVID-19 patients. INFECTION GENETICS AND EVOLUTION 2021; 96:105098. [PMID: 34610433 PMCID: PMC8487094 DOI: 10.1016/j.meegid.2021.105098] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/11/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022]
Abstract
Introduction Growing evidence documented the critical impacts of vitamin D (VD) in the prognosis of COVID-19 patients. The functions of VD are dependent on the vitamin D receptor (VDR) in the VD/VDR signaling pathway. Therefore, we aimed to assess the association of VDR gene polymorphisms with COVID-19 outcomes. Methods In the present study, eight VDR single nucleotide polymorphisms (SNPs) were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in 500 COVID-19 patients in Iran, including 160 asymptomatic, 250 mild/moderate, and 90 severe/critical cases. The association of these polymorphisms with severity, clinical outcomes, and comorbidities were evaluated through the calculation of the Odds ratio (OR). Results Interestingly, significant associations were disclosed for some of the SNP-related alleles and/or genotypes in one or more genetic models with different clinical data in COVID-19 patients. Significant association of VDR-SNPs with signs, symptoms, and comorbidities was as follows: ApaI with shortness of breath (P ˂ 0.001) and asthma (P = 0.034) in severe/critical patients (group III); BsmI with chronic renal disease (P = 0.010) in mild/moderate patients (group II); Tru9I with vomiting (P = 0.031), shortness of breath (P = 0.04), and hypertension (P = 0.030); FokI with fever and hypertension (P = 0.027) in severe/critical patients (group III); CDX2 with shortness of breath (P = 0.022), hypertension (P = 0.036), and diabetes (P = 0.042) in severe/critical patients (group III); EcoRV with diabetes (P ˂ 0.001 and P = 0.045 in mild/moderate patients (group II) and severe/critical patients (group III), respectively). However, the association of VDR TaqI and BglI polymorphisms with clinical symptoms and comorbidities in COVID-19 patients was not significant. Conclusion VDR gene polymorphisms might play critical roles in the vulnerability to infection and severity of COVID-19, probably by altering the risk of comorbidities. However, these results require further validation in larger studies with different ethnicities and geographical regions.
Collapse
Affiliation(s)
- Rasoul Abdollahzadeh
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Mina Barazandehrokh
- Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | | | - Asaad Azarnezhad
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Sahereh Paknahad
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pirhoushiaran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - S Zahra Makani
- Babol Razi Pathology and Genetic Laboratory, Babol, Iran
| | - Razieh Zarifian Yeganeh
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmed Al-Kateb
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Roozbeh Heidarzadehpilehrood
- Department of Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia.
| |
Collapse
|
13
|
Saso A, Kampmann B, Roetynck S. Vaccine-Induced Cellular Immunity against Bordetella pertussis: Harnessing Lessons from Animal and Human Studies to Improve Design and Testing of Novel Pertussis Vaccines. Vaccines (Basel) 2021; 9:877. [PMID: 34452002 PMCID: PMC8402596 DOI: 10.3390/vaccines9080877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
Pertussis ('whooping cough') is a severe respiratory tract infection that primarily affects young children and unimmunised infants. Despite widespread vaccine coverage, it remains one of the least well-controlled vaccine-preventable diseases, with a recent resurgence even in highly vaccinated populations. Although the exact underlying reasons are still not clear, emerging evidence suggests that a key factor is the replacement of the whole-cell (wP) by the acellular pertussis (aP) vaccine, which is less reactogenic but may induce suboptimal and waning immunity. Differences between vaccines are hypothesised to be cell-mediated, with polarisation of Th1/Th2/Th17 responses determined by the composition of the pertussis vaccine given in infancy. Moreover, aP vaccines elicit strong antibody responses but fail to protect against nasal colonisation and/or transmission, in animal models, thereby potentially leading to inadequate herd immunity. Our review summarises current knowledge on vaccine-induced cellular immune responses, based on mucosal and systemic data collected within experimental animal and human vaccine studies. In addition, we describe key factors that may influence cell-mediated immunity and how antigen-specific responses are measured quantitatively and qualitatively, at both cellular and molecular levels. Finally, we discuss how we can harness this emerging knowledge and novel tools to inform the design and testing of the next generation of improved infant pertussis vaccines.
Collapse
Affiliation(s)
- Anja Saso
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1 7HT, UK; (B.K.); (S.R.)
- Vaccines and Immunity Theme, MRC Unit, The Gambia at London School of Hygiene & Tropical Medicine, Banjul P.O. Box 273, The Gambia
| | - Beate Kampmann
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1 7HT, UK; (B.K.); (S.R.)
- Vaccines and Immunity Theme, MRC Unit, The Gambia at London School of Hygiene & Tropical Medicine, Banjul P.O. Box 273, The Gambia
| | - Sophie Roetynck
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1 7HT, UK; (B.K.); (S.R.)
- Vaccines and Immunity Theme, MRC Unit, The Gambia at London School of Hygiene & Tropical Medicine, Banjul P.O. Box 273, The Gambia
| |
Collapse
|
14
|
Yao Y, Shen Y, Shao H, Liu Y, Ji Y, Du G, Ye X, Huang P, Chen H. Polymorphisms of RIG-I-like receptor influence HBV clearance in Chinese Han population. J Med Virol 2021; 93:4957-4965. [PMID: 33783003 DOI: 10.1002/jmv.26969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/05/2023]
Abstract
Retinoic acid-inducible gene I-like receptors (RLRs) play an essential role in human innate immune, which may influence the spontaneous clearance of hepatitis B virus (HBV) infection. We aimed to investigate whether the SNPs in RLR family were associated with HBV spontaneous clearance. The current study included 82 participants with spontaneous clearance, 601 asymptomatic hepatitis B surface antigen (HBsAg) carriers, and 168 participants with chronic hepatitis B (CHB). Six SNPs (DDX58 rs3824456, rs3205166, DHX58 rs2074160, rs2074158, IFIH1 rs2111485, rs3747517) were genotyped to explore their association with HBV spontaneous clearance. Patients carrying the mutant allele C at rs3824456 or A at rs2074160 were more likely to achieve spontaneous clearance compared with asymptomatic HBsAg carriers (additive model: odds ratio [OR] = 0.69, 95% confidence interval [CI] = 0.49-0.97; dominant model: OR = 0.54, 95% CI = 0.31-0.95, respectively). In addition, patients carrying the mutant allele G at rs2111485 were more likely to achieve spontaneous clearance compared with CHB (dominant model: OR = 0.47, 95% CI = 0.25-0.87). The mutations were protective factors for HBV spontaneous clearance. These results suggest the DDX58 rs3824456, DHX58 s2074160, IFIH1 rs2111485 were associated with spontaneous clearance of HBV, which may be predictive markers in the Chinese Han population of HBV.
Collapse
Affiliation(s)
- Yinan Yao
- Department of Infectious Disease Control, Zhangjiagang Center for Disease Control and Prevention, Suzhou, China
| | - Yan Shen
- Department of Infectious Disease Control, Zhangjiagang Center for Disease Control and Prevention, Suzhou, China
| | - Haifeng Shao
- Department of Infectious Disease Control, Zhangjiagang Center for Disease Control and Prevention, Suzhou, China
| | - Yuchang Liu
- Department of Infectious Disease Control, Zhangjiagang Center for Disease Control and Prevention, Suzhou, China
| | - Yan Ji
- Department of Infectious Disease Control, Zhangjiagang Center for Disease Control and Prevention, Suzhou, China
| | - Guoming Du
- Department of Infectious Disease Control, Zhangjiagang Center for Disease Control and Prevention, Suzhou, China
| | - Xiangyu Ye
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Peng Huang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Infectious Diseases, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haiming Chen
- Department of Infectious Disease Control, Zhangjiagang Center for Disease Control and Prevention, Suzhou, China
| |
Collapse
|
15
|
Serpen JY, Armenti ST, Prasov L. Immunogenetics of the Ocular Anterior Segment: Lessons from Inherited Disorders. J Ophthalmol 2021; 2021:6691291. [PMID: 34258050 PMCID: PMC8257379 DOI: 10.1155/2021/6691291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 05/06/2021] [Accepted: 06/15/2021] [Indexed: 11/18/2022] Open
Abstract
Autoimmune and autoinflammatory diseases cause morbidity in multiple organ systems including the ocular anterior segment. Genetic disorders of the innate and adaptive immune system present an avenue to study more common inflammatory disorders and host-pathogen interactions. Many of these Mendelian disorders have ophthalmic manifestations. In this review, we highlight the ophthalmic and molecular features of disorders of the innate immune system. A comprehensive literature review was performed using PubMed and the Online Mendelian Inheritance in Man databases spanning 1973-2020 with a focus on three specific categories of genetic disorders: RIG-I-like receptors and downstream signaling, inflammasomes, and RNA processing disorders. Tissue expression, clinical associations, and animal and functional studies were reviewed for each of these genes. These genes have broad roles in cellular physiology and may be implicated in more common conditions with interferon upregulation including systemic lupus erythematosus and type 1 diabetes. This review contributes to our understanding of rare inherited conditions with ocular involvement and has implications for further characterizing the effect of perturbations in integral molecular pathways.
Collapse
Affiliation(s)
- Jasmine Y. Serpen
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
- Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Stephen T. Armenti
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Lev Prasov
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Crooke SN, Ovsyannikova IG, Kennedy RB, Warner ND, Poland GA. Associations between markers of cellular and humoral immunity to rubella virus following a third dose of measles-mumps-rubella vaccine. Vaccine 2020; 38:7897-7904. [PMID: 33158591 DOI: 10.1016/j.vaccine.2020.10.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/02/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Rubella virus (RV) was eliminated in the United States in 2004, although a small portion of the population fails to develop long-term immunity against RV even after two doses of the measles-mumps-rubella (MMR) vaccine. We hypothesized that inherent biological differences in cytokine and chemokine signaling likely govern an individual's response to a third dose of the vaccine. METHODS Healthy young women (n = 97) were selected as study participants if they had either low or high extremes of RV-specific antibody titer after two previous doses of MMR vaccine. We measured cytokine and chemokine secretion from RV-stimulated PBMCs before and 28 days after they received a third dose of MMR vaccine and assessed correlations with humoral immune response outcomes. RESULTS High and low antibody vaccine responders exhibited a strong pro-inflammatory cellular response, with an underlying Th1-associated signature (IL-2, IFN-γ, MIP-1β, IP-10) and suppressed production of most Th2-associated cytokines (IL-4, IL-10, IL-13). IL-10 and IL-4 exhibited significant negative associations with neutralizing antibody titers and memory B cell ELISpot responses among low vaccine responders. CONCLUSION IL-4 and IL-10 signaling pathways may be potential targets for understanding and improving the immune response to rubella vaccination or for designing new vaccines that induce more durable immunity.
Collapse
Affiliation(s)
- Stephen N Crooke
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA
| | | | | | - Nathaniel D Warner
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
17
|
Paria K, Paul D, Chowdhury T, Pyne S, Chakraborty R, Mandal SM. Synergy of melanin and vitamin-D may play a fundamental role in preventing SARS-CoV-2 infections and halt COVID-19 by inactivating furin protease. TRANSLATIONAL MEDICINE COMMUNICATIONS 2020; 5:21. [PMID: 33169107 PMCID: PMC7642579 DOI: 10.1186/s41231-020-00073-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/25/2020] [Indexed: 05/28/2023]
Abstract
Since the birth of Christ, in these 2019 years, the man on earth has never experienced a survival challenge from any acellular protist compared to SARS-CoV-2. No specific drugs yet been approved. The host immunity is the only alternative to prevent and or reduce the infection and mortality rate as well. Here, a novel mechanism of melanin mediated host immunity is proposed having potent biotechnological prospects in health care management of COVID-19. Vitamin D is known to enhance the rate of melanin synthesis; and this may concurrently regulate the expression of furin expression. In silico analyses have revealed that the intermediates of melanin are capable of binding strongly with the active site of furin protease. On the other hand, furin expression is negatively regulated via 1-α-hydroxylase (CYP27B1), that belongs to vitamin-D pathway and controls cellular calcium levels. Here, we have envisaged the availability of biological melanin and elucidated the bio-medical potential. Thus, we propose a possible synergistic application of melanin and the enzyme CYP27B1 (regulates vitamin D biosynthesis) as a novel strategy to prevent viral entry through the inactivation of furin protease and aid in boosting our immunity at the cellular and humoral levels.
Collapse
Affiliation(s)
- Kishalay Paria
- Department of Zoology, Vidyasagar University, Midnapore, West Bengal India
| | - Debarati Paul
- Amity Institute of Biotechnology, Amity University, Noida, Sector 125 201313 India
| | - Trinath Chowdhury
- Central Research Facility, Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Smritikana Pyne
- Central Research Facility, Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Ranadhir Chakraborty
- Department of Biotechnology, University of North Bengal, Raja Rammohanpur, Darjeeling, West Bengal 734013 India
| | - Santi M. Mandal
- Central Research Facility, Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| |
Collapse
|
18
|
Kennedy RB, Ovsyannikova IG, Palese P, Poland GA. Current Challenges in Vaccinology. Front Immunol 2020; 11:1181. [PMID: 32670279 PMCID: PMC7329983 DOI: 10.3389/fimmu.2020.01181] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
The development of vaccines, which prime the immune system to respond to future infections, has led to global declines in morbidity and mortality from dreadful infectious communicable diseases. However, many pathogens of public health importance are highly complex and/or rapidly evolving, posing unique challenges to vaccine development. Several of these challenges include an incomplete understanding of how immunity develops, host and pathogen genetic variability, and an increased societal skepticism regarding vaccine safety. In particular, new high-dimensional omics technologies, aided by bioinformatics, are driving new vaccine development (vaccinomics). Informed by recent insights into pathogen biology, host genetic diversity, and immunology, the increasing use of genomic approaches is leading to new models and understanding of host immune system responses that may provide solutions in the rapid development of novel vaccine candidates.
Collapse
Affiliation(s)
- Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| | - Peter Palese
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
19
|
Vitamin D Receptor Gene Polymorphisms and Autoimmune Thyroiditis: Are They Associated with Disease Occurrence and Its Features? BIOMED RESEARCH INTERNATIONAL 2019; 2019:8197580. [PMID: 31531369 PMCID: PMC6719278 DOI: 10.1155/2019/8197580] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/15/2019] [Accepted: 07/28/2019] [Indexed: 11/24/2022]
Abstract
Purpose Vitamin D, besides its role in calcium-phosphorus metabolism, turned out to play a significant immunomodulating function. Until now four single nucleotide polymorphisms of vitamin D receptor gene (VDR), rs2228570 (FokI), rs1544410 (BsmI), rs7975232 (ApaI), and rs731236 (TaqI), have been studied in autoimmune thyroid disorders, with conflicting results. Another functional polymorphism of the VDR gene, rs11568820 (Cdx2), has been shown to influence the immune system, although it has not been studied for its association with autoimmune thyroiditis to date. Therefore, the study aimed to evaluate the association of these five VDR gene polymorphisms with susceptibility to autoimmune thyroiditis among Caucasian Polish population. A relationship between the studied polymorphisms and selected clinical features of the disease was additionally assessed. Methods 223 patients with autoimmune thyroiditis and 130 control subjects were enrolled in the study. VDR polymorphisms were studied by PCR-RFLP or TaqMan real-time PCR. Results Allele and genotype distributions of any of the studied polymorphisms did not differ significantly between patients and controls. Similarly, frequencies of haplotypes derived from rs1544410-rs7975232-rs731236 (BsmI-ApaI-TaqI) polymorphisms were not significantly different in the two studied groups. However, a weak association between rs1544410 (BsmI) or rs7975232 (ApaI) VDR polymorphisms and thyroid volume was found (p = 0.03 and p = 0.04, resp.). Conclusions Our results suggest that VDR gene is not a major susceptibility factor for autoimmune thyroiditis development, at least in Caucasian Polish population.
Collapse
|
20
|
OMIC Technologies and Vaccine Development: From the Identification of Vulnerable Individuals to the Formulation of Invulnerable Vaccines. J Immunol Res 2019; 2019:8732191. [PMID: 31183393 PMCID: PMC6512027 DOI: 10.1155/2019/8732191] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 12/16/2022] Open
Abstract
Routine vaccination is among the most effective clinical interventions to prevent diseases as it is estimated to save over 3 million lives every year. However, the full potential of global immunization programs is not realised because population coverage is still suboptimal. This is also due to the inadequate immune response and paucity of informative correlates of protection upon immunization of vulnerable individuals such as newborns, preterm infants, pregnant women, and elderly individuals as well as those patients affected by chronic and immune compromising medical conditions. In addition, these groups are undervaccinated for a number of reasons, including lack of awareness of vaccine-preventable diseases and uncertainty or misconceptions about the safety and efficacy of vaccination by parents and healthcare providers. The presence of these nonresponders/undervaccinated individuals represents a major health and economic burden to society, which will become particularly difficult to address in settings with limited public resources. This review describes innovative and experimental approaches that can help identify specific genomic profiles defining nonresponder individuals for whom specific interventions might be needed. We will provide examples that show how such information can be useful to identify novel biomarkers of safety and immunogenicity for future vaccine trials. Finally, we will discuss how system biology “OMICs” data can be used to design bioinformatic tools to predict the vaccination outcome providing genetic and molecular “signatures” of protective immune response. This strategy may soon enable identification of signatures highly predictive of vaccine safety, immunogenicity, and efficacy/protection thereby informing personalized vaccine interventions in vulnerable populations.
Collapse
|
21
|
Abstract
There is substantial variation between individuals in the immune response to vaccination. In this review, we provide an overview of the plethora of studies that have investigated factors that influence humoral and cellular vaccine responses in humans. These include intrinsic host factors (such as age, sex, genetics, and comorbidities), perinatal factors (such as gestational age, birth weight, feeding method, and maternal factors), and extrinsic factors (such as preexisting immunity, microbiota, infections, and antibiotics). Further, environmental factors (such as geographic location, season, family size, and toxins), behavioral factors (such as smoking, alcohol consumption, exercise, and sleep), and nutritional factors (such as body mass index, micronutrients, and enteropathy) also influence how individuals respond to vaccines. Moreover, vaccine factors (such as vaccine type, product, adjuvant, and dose) and administration factors (schedule, site, route, time of vaccination, and coadministered vaccines and other drugs) are also important. An understanding of all these factors and their impacts in the design of vaccine studies and decisions on vaccination schedules offers ways to improve vaccine immunogenicity and efficacy.
Collapse
|
22
|
Wu X, Zang F, Liu M, Zhuo L, Wu J, Xia X, Feng Y, Yu R, Huang P, Yang S. Genetic variants in RIG-I-like receptor influences HCV clearance in Chinese Han population. Epidemiol Infect 2019; 147:e195. [PMID: 31364528 PMCID: PMC6518566 DOI: 10.1017/s0950268819000827] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/28/2019] [Accepted: 04/10/2019] [Indexed: 01/02/2023] Open
Abstract
Human innate immune plays an essential role in the spontaneous clearance of acute infection and therapy of HCV. We investigated whether the SNPs in retinoic acid-inducible gene I-like receptor family were associated with HCV spontaneous clearance and response to treatment. To evaluate the clinical value of DDX58 rs3824456, rs10813831 and rs10738889 genotypes on HCV spontaneous clearance and treatment response in Chinese Han population, we genotyped 1001 HCV persistent infectors, 599 participants with HCV natural clearance and 354 patients with PEGylated interferon-α and ribavirin (PEG IFN-α/RBV) treatment. People carrying rs10813831-G allele genotype were more liable to achieve spontaneous clearance than the carriage of the T allele (dominant model: adjusted OR 1.35, 95% CI 1.08-1.71, P = 0.008). In rs10738889, the rate of persistent infection was significantly lower in patients with the TC genotype compared to those with TT genotype (dominant model: adjusted OR 1.36, 95% CI 1.06-1.74, P = 0.015). Multivariate stepwise analysis indicated that rs10738889, age, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were independent predictors for HCV spontaneous clearance. However, there were no significant differences in the three selection SNPs between the non-SVR group and the SVR group. These results suggest the DDX58 rs10813831 and rs10738889 are associated with spontaneous clearance of HCV, which may be identified as a predictive marker in the Chinese Han population of HCV.
Collapse
Affiliation(s)
- Xinyu Wu
- Department of Clinical Medicine, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Feng Zang
- Department of Epidemiology and Biostatistics, School of Public Health, Key Laboratory of Infectious Diseases, Nanjing Medical University, Nanjing 211166, China
| | - Mei Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Key Laboratory of Infectious Diseases, Nanjing Medical University, Nanjing 211166, China
| | - Lingyun Zhuo
- Department of Epidemiology and Biostatistics, School of Public Health, Key Laboratory of Infectious Diseases, Nanjing Medical University, Nanjing 211166, China
| | - Jingjing Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Key Laboratory of Infectious Diseases, Nanjing Medical University, Nanjing 211166, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yue Feng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Rongbin Yu
- Department of Epidemiology, School of Public Health, Key Laboratory of Infectious Diseases, Nanjing Medical University, Nanjing 211166, China
| | - Peng Huang
- Department of Epidemiology, School of Public Health, Key Laboratory of Infectious Diseases, Nanjing Medical University, Nanjing 211166, China
| | - Sheng Yang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
23
|
Lin X, Peng C, Greenbaum J, Li ZF, Wu KH, Ao ZX, Zhang T, Shen J, Deng HW. Identifying potentially common genes between dyslipidemia and osteoporosis using novel analytical approaches. Mol Genet Genomics 2018; 293:711-723. [PMID: 29327327 PMCID: PMC5949092 DOI: 10.1007/s00438-017-1414-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 12/29/2017] [Indexed: 02/07/2023]
Abstract
Dyslipidemia (DL) is closely related to osteoporosis (OP), while the exact common genetic mechanisms are still largely unknown. We proposed to use novel genetic analysis methods with pleiotropic information to identify potentially novel and/or common genes for the potential shared pathogenesis associated with OP and/or DL. We assessed the pleiotropy between plasma lipid (PL) and femoral neck bone mineral density (FNK BMD). We jointly applied the conditional false discovery rate (cFDR) method and the genetic analysis incorporating pleiotropy and annotation (GPA) method to the summary statistics provided by genome-wide association studies (GWASs) of FNK BMD (n = 49,988) and PL (n = 188,577) to identify potentially novel and/or common genes for BMD/PL. We found strong pleiotropic enrichment between PL and FNK BMD. Two hundred and forty-five PL SNPs were identified as potentially novel SNPs by cFDR and GPA. The corresponding genes were enriched in gene ontology (GO) terms "phospholipid homeostasis" and "chylomicron remnant clearance". Three SNPs (rs2178950, rs9939318, and rs9368716) might be the pleiotropic ones and the corresponding genes NLRC5 (rs2178950) and TRPS1 (rs9939318) were involved in NF-κB signaling pathway and Wnt signaling pathway as well as inflammation and innate immune processes. Our study validated the pleiotropy between PL and FNK BMD, and corroborated the reliability and high-efficiency of cFDR and GPA methods in further analyses of existing GWASs with summary statistics. We identified potentially common and/or novel genes for PL and/or FNK BMD, which may provide new insight and direction for further research.
Collapse
Affiliation(s)
- Xu Lin
- Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Cheng Peng
- Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, 510180, People's Republic of China
| | - Jonathan Greenbaum
- Center for Bioinformatics and Genomics, Department of Global Statistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Zhang-Fang Li
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China
| | - Ke-Hao Wu
- Center for Bioinformatics and Genomics, Department of Global Statistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Zeng-Xin Ao
- Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Tong Zhang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China
| | - Jie Shen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, People's Republic of China
| | - Hong-Wen Deng
- Center for Bioinformatics and Genomics, Department of Global Statistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA.
- School of Basic Medical Sciences, Central South University, Changsha, 410000, People's Republic of China.
| |
Collapse
|
24
|
Li YP, Li M, Jia XL, Deng HL, Wang WJ, Wu FP, Wang J, Dang SS. Association of gene polymorphisms of pattern-recognition receptor signaling pathway with the risk and severity of hand, foot, and mouth disease caused by enterovirus 71 in Chinese Han population. J Med Virol 2018; 90:692-698. [PMID: 29235129 DOI: 10.1002/jmv.25000] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 11/29/2017] [Indexed: 12/11/2022]
Abstract
Hand, foot, and mouth disease (HFMD) caused by enterovirus 71 (EV71) presents with a wide variety of clinical manifestations. Host immune response is a factor that influences disease susceptibility and severity. We investigated the potential association of gene polymorphisms in the pattern recognition receptor (PRR) pathway with the risk and severity of EV71 infection. A total of 180 EV71 HFMD cases (108 severe case; 72 mild cases) were enrolled. A group of 201 sex- and age-matched children was included as a control. All subjects were genotyped for the most common single-nucleotide polymorphisms (SNPs) in the PRR and the PRR signaling pathway using the SNPscan multiple SNP typing method. Binary logistic regression analysis revealed statistically significant differences in polymorphism of RIG-1 between patients and controls (rs3739674 G vs C: OR = 1.502, 95%CI: 1.120-2.014; rs9695310 G vs C: OR = 1.782, 95%CI: 1.312-2.419). Polymorphisms of RIG-1 rs3739674 (G vs C: OR = 2.047, 95%CI: 1.307-3.205) and TLR3 rs5743305 (A vs T: OR = 0.346, 95%CI: 0.212-0.566) were found to be associated with disease severity. The results indicated that RIG-1 (rs3739674 and rs9695310) polymorphisms are associated with an increased risk of EV71-induced HFMD in Chinese children, whereas RIG-1 rs3739674 and TLR3 rs5743305 polymorphisms are associated with disease severity. These findings support an important role of innate immune mechanism in EV71 infection.
Collapse
Affiliation(s)
- Ya-Ping Li
- Department of Infectious Diseases, Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Mei Li
- Department of Infectious Diseases, Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Xiao-Li Jia
- Department of Infectious Diseases, Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Hui-Ling Deng
- Department of Infectious Diseases, Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Wen-Jun Wang
- Department of Infectious Diseases, Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Feng-Ping Wu
- Department of Infectious Diseases, Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| | - Jun Wang
- Department of Infectious Diseases, Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Shuang-Suo Dang
- Department of Infectious Diseases, Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
25
|
Lee RU, Won SH, Hansen C, Crum-Cianflone NF. 25-hydroxyvitamin D, influenza vaccine response and healthcare encounters among a young adult population. PLoS One 2018; 13:e0192479. [PMID: 29425250 PMCID: PMC5806853 DOI: 10.1371/journal.pone.0192479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/24/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Influenza causes significant morbidity and mortality; the pandemic in 2009-2010 was a reminder of the potential for novel strains and antigenic changes. Studies have shown that vitamin D deficiency may be associated with poor vaccine immunogenicity, therefore we sought to determine if there was a correlation between 25-hydroxyvitamin D [25(OH)D] and influenza vaccine response. METHODS A retrospective observational study was conducted among young, healthy military members to evaluate the association between total 25(OH)D levels with post influenza vaccination antibody titers and healthcare encounters during the 2009-10 influenza season. Univariate analyses were performed to evaluate whether 25(OH)D levels are associated with baseline characteristics and post-vaccination antibody responses. Multivariable logistic regression models were utilized to determine the associations between antibody responses and 25(OH)D levels adjusting for possible confounders. RESULTS A total of 437 subjects were studied. Most participants were young adults (91% were 18-39 years of age), 50% were male, and 56% resided in the southern U.S. Overall, 152 (34.8%) were vitamin D deficient, 167 (38.2%) insufficient, and 118 (27.0%) with normal 25(OH)D levels. There were no demographic differences by 25(OH)D category. Only 224 (51.3%) demonstrated a seroprotective anti-influenza post-vaccination titer, which did not vary by categorical 25(OH)D levels [vitamin D deficient vs. normal: OR 1.10 (0.68-1.78) and insufficient vs. normal: OR 1.25 (0.78-2.01)] or continuous vitamin D levels [OR 0.98 (0.84-1.15)]. There were also no associations with increased influenza like illnesses, respiratory diagnoses and healthcare encounters between the vitamin D groups. CONCLUSION Vitamin D insufficiency and deficiency were highly prevalent despite evaluating a young, healthy adult population. There were no significant associations between 25(OH)D levels and post-vaccination antibody titers to influenza vaccine. Further studies are required to discover strategies to improve vaccine efficacy as well as to determine the role of 25(OH)D in vaccine immunity.
Collapse
Affiliation(s)
- Rachel U. Lee
- Division of Allergy and Immunology, Department of Internal Medicine, Naval Medical Center San Diego, San Diego, CA
- * E-mail:
| | - Seung Hyun Won
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
| | - Christian Hansen
- Operational Infectious Disease Department, Naval Health Research Center, San Diego, CA
| | - Nancy F. Crum-Cianflone
- Division of Infectious Disease, Department of Internal Medicine, Scripps Mercy Hospital, San Diego, CA
| |
Collapse
|
26
|
Wang X, Zhang Q, Zhou Z, Liu M, Chen Y, Li J, Xu L, Guo J, Li Q, Yang J, Wang S. Retinoic acid receptor β, a potential therapeutic target in the inhibition of adenovirus replication. Antiviral Res 2018; 152:84-93. [PMID: 29421320 DOI: 10.1016/j.antiviral.2018.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/23/2018] [Accepted: 01/31/2018] [Indexed: 10/18/2022]
Abstract
Human adenoviruses (HAdVs) usually cause mild respiratory infections, but they can also lead to fatal outcomes for immunosuppressive patients. Unfortunately, there has been no specific anti-HAdV drug approved for medical use. A better understanding of the nature of virus-host interactions during infection is beneficial to the discovery of potential antiviral targets and new antiviral drugs. In this study, a time-course transcriptome analysis of HAdV-infected human lung epithelial cells (A549 cells) was performed to investigate virus-host interactions, and several key host molecules involved in the HAdV infection process were identified. The RARβ (retinoic acid receptor β) molecule, one of the upstream regulatory factors of differentially expressed genes (DEGs), played important roles in HAdV replication. The results of reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting showed that RARβ mRNA and protein were downregulated by HAdV infection in the A549 cells. The knockdown of RARβ by RARβ siRNA increased the HAdV production and the overexpression of RARβ decreased the HAdV production. Furthermore, FDA-approved Tazarotene, which is an RAR selective agonist with relatively more selectivity for RARβ, was found to inhibit HAdV replication in vitro. Taken together, our study presents a key host molecule in adenovirus infection, which could be developed as a potential host target to an anti-adenovirus drug. In addition, this study provides evidence for the re-exploitation of an FDA-approved small molecule for therapeutic applications in adenovirus replication.
Collapse
Affiliation(s)
- Xiaolong Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Qiling Zhang
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Zhe Zhou
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Manjiao Liu
- Beijing Computing Center, Beijing Academy of of Science and Technology, Beijing 100850, PR China; The Key Laboratory of Beijing Cloud Computing Technology and Application, Beijing 100850, PR China
| | - Yubao Chen
- Beijing Computing Center, Beijing Academy of of Science and Technology, Beijing 100850, PR China; The Key Laboratory of Beijing Cloud Computing Technology and Application, Beijing 100850, PR China
| | - Jianbo Li
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Linlin Xu
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Jing Guo
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Qingjun Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Jing Yang
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| |
Collapse
|
27
|
Poland GA, Ovsyannikova IG, Kennedy RB. Personalized vaccinology: A review. Vaccine 2017; 36:5350-5357. [PMID: 28774561 PMCID: PMC5792371 DOI: 10.1016/j.vaccine.2017.07.062] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/19/2017] [Accepted: 07/12/2017] [Indexed: 12/18/2022]
Abstract
At the current time, the field of vaccinology remains empirical in many respects. Vaccine development, vaccine immunogenicity, and vaccine efficacy have, for the most part, historically been driven by an empiric “isolate-inactivate-inject” paradigm. In turn, a population-level public health paradigm of “the same dose for everyone for every disease” model has been the normative thinking in regard to prevention of vaccine-preventable infectious diseases. In addition, up until recently, no vaccines had been designed specifically to overcome the immunosenescence of aging, consistent with a post-WWII mentality of developing vaccines and vaccine programs for children. It is now recognized that the current lack of knowledge concerning how immune responses to vaccines are generated is a critical barrier to understanding poor vaccine responses in the elderly and in immunoimmaturity, discovery of new correlates of vaccine immunogenicity (vaccine response biomarkers), and a directed approach to new vaccine development. The new fields of vaccinomics and adversomics provide models that permit global profiling of the innate, humoral, and cellular immune responses integrated at a systems biology level. This has advanced the science beyond that of reductionist scientific approaches by revealing novel interactions between and within the immune system and other biological systems (beyond transcriptional level), which are critical to developing “downstream” adaptive humoral and cellular responses to infectious pathogens and vaccines. Others have applied systems level approaches to the study of antibody responses (a.k.a. “systems serology”), [1] high-dimensional cell subset immunophenotyping through CyTOF, [2,3] and vaccine induced metabolic changes [4]. In turn, this knowledge is being utilized to better understand the following: identifying who is at risk for which infections; the level of risk that exists regarding poor immunogenicity and/or serious adverse events; and the type or dose of vaccine needed to fully protect an individual. In toto, such approaches allow for a personalized approach to the practice of vaccinology, analogous to the substantial inroads that individualized medicine is playing in other fields of human health and medicine. Herein we briefly review the field of vaccinomics, adversomics, and personalized vaccinology.
Collapse
Affiliation(s)
- G A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA.
| | - I G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| | - R B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
28
|
Vitamin D Status and the Host Resistance to Infections: What It Is Currently (Not) Understood. Clin Ther 2017; 39:930-945. [DOI: 10.1016/j.clinthera.2017.04.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 04/05/2017] [Accepted: 04/05/2017] [Indexed: 12/18/2022]
|
29
|
Choung RS, Larson SA, Khaleghi S, Rubio-Tapia A, Ovsyannikova IG, King KS, Larson JJ, Lahr BD, Poland GA, Camilleri MJ, Murray JA. Prevalence and Morbidity of Undiagnosed Celiac Disease From a Community-Based Study. Gastroenterology 2017; 152:830-839.e5. [PMID: 27916669 PMCID: PMC5337129 DOI: 10.1053/j.gastro.2016.11.043] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Little is known about the prevalence and burden of undiagnosed celiac disease in individuals younger than age 50. We determined the prevalence and morbidity of undiagnosed celiac disease in individuals younger than age 50 in a community. METHODS We tested sera from 31,255 residents of Olmsted County, Minnesota (<50 y), without a prior diagnosis of celiac disease assay using an assay for IgA against tissue transglutaminase; in subjects with positive test results, celiac disease was confirmed using an assay for endomysial IgA. We performed a nested case-control study to compare the proportion of comorbidities between undiagnosed cases of celiac disease and age- and sex-matched seronegative controls (1:2). Medical records were abstracted to identify potential comorbidities. RESULTS We identified 338 of 30,425 adults with positive results from both serologic tests. Based on this finding, we estimated the prevalence of celiac disease to be 1.1% (95% confidence interval, 1.0%-1.2%); 8 of 830 children tested positive for IgA against tissue transglutaminase (1.0%; 95% confidence interval, 0.4%-1.9%). No typical symptoms or classic consequences of diagnosed celiac disease (diarrhea, anemia, or fracture) were associated with undiagnosed celiac disease. Undiagnosed celiac disease was associated with increased rates of hypothyroidism (odds ratio, 2.2; P < .01) and a lower than average cholesterol level (P = .03) and ferritin level (P = .01). During a median follow-up period of 6.3 years, the cumulative incidence of a subsequent diagnosis with celiac disease at 5 years after testing was 10.8% in persons with undiagnosed celiac disease vs 0.1% in seronegative persons (P < .01). Celiac disease status was not associated with overall survival. CONCLUSIONS Based on serologic tests of a community population for celiac disease, we estimated the prevalence of undiagnosed celiac disease to be 1.1%. Undiagnosed celiac disease appeared to be clinically silent and remained undetected, but long-term outcomes have not been determined.
Collapse
Affiliation(s)
- Rok Seon Choung
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Scott A Larson
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Shahryar Khaleghi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Alberto Rubio-Tapia
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | - Katherine S King
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Joseph J Larson
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Brian D Lahr
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, Minnesota
| | | | - Joseph A Murray
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
30
|
Jolliffe DA, Walton RT, Griffiths CJ, Martineau AR. Single nucleotide polymorphisms in the vitamin D pathway associating with circulating concentrations of vitamin D metabolites and non-skeletal health outcomes: Review of genetic association studies. J Steroid Biochem Mol Biol 2016; 164:18-29. [PMID: 26686945 DOI: 10.1016/j.jsbmb.2015.12.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/03/2015] [Accepted: 12/09/2015] [Indexed: 12/19/2022]
Abstract
Polymorphisms in genes encoding proteins involved in vitamin D metabolism and transport are recognised to influence vitamin D status. Syntheses of genetic association studies linking these variants to non-skeletal health outcomes are lacking. We therefore conducted a literature review to identify reports of statistically significant associations between single nucleotide polymorphisms (SNP) in 11 vitamin D pathway genes (DHCR7, CYP2R1, CYP3A4, CYP27A1, DBP, LRP2, CUB, CYP27B1, CYP24A1, VDR and RXRA) and non-bone health outcomes and circulating levels of 25-hydroxyvitamin D (25[OH]D and 1,25-dihydroxyvitamin D (1,25[OH]2D). A total of 120 genetic association studies reported positive associations, of which 44 investigated determinants of circulating 25(OH)D and/or 1,25(OH)2D concentrations, and 76 investigated determinants of non-skeletal health outcomes. Statistically significant associations were reported for a total of 55 SNP in the 11 genes investigated. There was limited overlap between genetic determinants of vitamin D status and those associated with non-skeletal health outcomes: polymorphisms in DBP, CYP2R1 and DHCR7 were the most frequent to be reported to associate with circulating concentrations of 25(OH)D, while polymorphisms in VDR were most commonly reported to associate with non-skeletal health outcomes, among which infectious and autoimmune diseases were the most represented.
Collapse
Affiliation(s)
- David A Jolliffe
- Centre for Primary Care and Public Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AB, UK.
| | - Robert T Walton
- Centre for Primary Care and Public Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AB, UK
| | - Christopher J Griffiths
- Centre for Primary Care and Public Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AB, UK
| | - Adrian R Martineau
- Centre for Primary Care and Public Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AB, UK.
| |
Collapse
|
31
|
McKinney BA, Lareau C, Oberg AL, Kennedy RB, Ovsyannikova IG, Poland GA. The Integration of Epistasis Network and Functional Interactions in a GWAS Implicates RXR Pathway Genes in the Immune Response to Smallpox Vaccine. PLoS One 2016; 11:e0158016. [PMID: 27513748 PMCID: PMC4981436 DOI: 10.1371/journal.pone.0158016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/08/2016] [Indexed: 11/24/2022] Open
Abstract
Although many diseases and traits show large heritability, few genetic variants have been found to strongly separate phenotype groups by genotype. Complex regulatory networks of variants and expression of multiple genes lead to small individual-variant effects and difficulty replicating the effect of any single variant in an affected pathway. Interaction network modeling of GWAS identifies effects ignored by univariate models, but population differences may still cause specific genes to not replicate. Integrative network models may help detect indirect effects of variants in the underlying biological pathway. In this study, we used gene-level functional interaction information from the Integrative Multi-species Prediction (IMP) tool to reveal important genes associated with a complex phenotype through evidence from epistasis networks and pathway enrichment. We test this method for augmenting variant-based network analyses with functional interactions by applying it to a smallpox vaccine immune response GWAS. The integrative analysis spotlights the role of genes related to retinoid X receptor alpha (RXRA), which has been implicated in a previous epistasis network analysis of smallpox vaccine.
Collapse
Affiliation(s)
- Brett A. McKinney
- Tandy School of Computer Science and Department of Mathematics, University of Tulsa, Tulsa, OK, United States of America
| | - Caleb Lareau
- Tandy School of Computer Science and Department of Mathematics, University of Tulsa, Tulsa, OK, United States of America
| | - Ann L. Oberg
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States of America
| | - Richard B. Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States of America
| | - Inna G. Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States of America
| | - Gregory A. Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States of America
- * E-mail:
| |
Collapse
|
32
|
Gröndahl-Yli-Hannuksela K, Vahlberg T, Ilonen J, Mertsola J, He Q. Polymorphism of IL-10 gene promoter region: association with T cell proliferative responses after acellular pertussis vaccination in adults. Immunogenetics 2016; 68:733-41. [PMID: 27282930 DOI: 10.1007/s00251-016-0923-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/01/2016] [Indexed: 10/21/2022]
Abstract
Individual variation in immune responses is always encountered after vaccination. This phenomenon is also seen after acellular pertussis vaccination. The aim of this present study was to investigate whether single nucleotide polymorphisms (SNPs) in the IL-10 gene promoter region (rs1800890, rs1800896, rs1800871), IL-12B (rs2546890), IL-12RB1 (rs372889), IL-17A (rs2275913), and IL-23R (rs11209026) affect the immune responses after acellular pertussis vaccination. The T cell proliferative response was evaluated in 38 Finnish young adults who received a second booster dose of a vaccine combination of diphtheria, tetanus, and acellular pertussis, 10 years after the previous booster. The response was evaluated with a proliferation assay in which vaccine antigens pertussis toxin (PT), filamentous hemagglutinin (FHA), and pertactin (PRN) were used for the stimulation, before and 1 month after the second vaccination. Specific proliferation of peripheral blood mononuclear cells against pertussis antigens was affected by IL-10 SNP in the promoter region at position -1082 (A>G, rs1800896). One month after the vaccination, subjects with the AA and AG genotypes had a significantly higher T cell proliferative response against PT and FHA compared to those with the GG genotype. Subjects with the GG genotype had the lowest responses. As a conclusion, our preliminary results indicate that IL-10 SNP -1082 might play an important role in T cell-mediated immune responses after acellular pertussis vaccination.
Collapse
Affiliation(s)
- Kirsi Gröndahl-Yli-Hannuksela
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland.,Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, Turku, Finland
| | - Tero Vahlberg
- Department of Biostatistics, University of Turku, Turku, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, University of Turku, Turku, Finland
| | - Jussi Mertsola
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland
| | - Qiushui He
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland. .,Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, Turku, Finland. .,Department of Medical Microbiology, Capital Medical University, Beijing, China.
| |
Collapse
|
33
|
Mentzer AJ, O'Connor D, Pollard AJ, Hill AVS. Searching for the human genetic factors standing in the way of universally effective vaccines. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0341. [PMID: 25964463 DOI: 10.1098/rstb.2014.0341] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vaccines have revolutionized modern public health. The effectiveness of some vaccines is limited by the variation in response observed between individuals and across populations. There is compelling evidence that a significant proportion of this variability can be attributed to human genetic variation, especially for those vaccines administered in early life. Identifying and understanding the determinants of this variation could have a far-reaching influence upon future methods of vaccine design and deployment. In this review, we summarize the genetic studies that have been undertaken attempting to identify the genetic determinants of response heterogeneity for the vaccines against hepatitis B, measles and rubella. We offer a critical appraisal of these studies and make a series of suggestions about how modern genetic techniques, including genome-wide association studies, could be used to characterize the genetic architecture of vaccine response heterogeneity. We conclude by suggesting how the findings from such studies could be translated to improve vaccine effectiveness and target vaccination in a more cost-effective manner.
Collapse
Affiliation(s)
- Alexander J Mentzer
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Daniel O'Connor
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| | - Andrew J Pollard
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| | - Adrian V S Hill
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| |
Collapse
|
34
|
Witsø E, Cinek O, Tapia G, Brorsson CA, Stene LC, Gjessing HK, Rasmussen T, Bergholdt R, Pociot FM, Rønningen KS. Genetic Determinants of Enterovirus Infections: Polymorphisms in Type 1 Diabetes and Innate Immune Genes in the MIDIA Study. Viral Immunol 2015; 28:556-63. [DOI: 10.1089/vim.2015.0067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
| | - Ondrej Cinek
- Department of Pediatrics, University Hospital Motol, and 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - German Tapia
- Norwegian Institute of Public Health, Oslo, Norway
| | - Caroline A. Brorsson
- Department of Pediatrics E, Copenhagen Diabetes Research Centre (CPH-DIRECT), Herlev University Hospital, Herlev, Denmark
| | | | - Håkon K. Gjessing
- Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | | | | | - Flemming M. Pociot
- Department of Pediatrics E, Copenhagen Diabetes Research Centre (CPH-DIRECT), Herlev University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
35
|
Abstract
HIV type 1 (HIV-1) has a very narrow host range that is limited to humans and chimpanzees. HIV-1 cannot replicate well in Old World monkey cells such as rhesus and cynomolgus monkeys. Tripartite motif (TRIM)5α is a key molecule that confers potent resistance against HIV-1 infection and is composed of really interesting new gene, B-box2, coiled-coil and PRYSPRY domains. Interaction between TRIM5α PRYSPRY domains and HIV-1 capsid core triggers the anti-HIV-1 activity of TRIM5α. Analysis of natural HIV variants and extensive mutational experiments has revealed the presence of critical amino acid residues in both the PRYSPRY domain and HIV capsid for potent HIV suppression by TRIM5α. Genetic manipulation of the human TRIM5 gene could establish human cells totally resistant to HIV-1, which may lead to a cure for HIV-1 infection in the future.
Collapse
|
36
|
Ovsyannikova IG, Salk HM, Larrabee BR, Pankratz VS, Poland GA. Single nucleotide polymorphisms/haplotypes associated with multiple rubella-specific immune response outcomes post-MMR immunization in healthy children. Immunogenetics 2015; 67:547-61. [PMID: 26329766 DOI: 10.1007/s00251-015-0864-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/03/2015] [Indexed: 12/11/2022]
Abstract
The observed heterogeneity in rubella-specific immune response phenotypes post-MMR vaccination is thought to be explained, in part, by inter-individual genetic variation. In this study, single nucleotide polymorphisms (SNPs) and multiple haplotypes in several candidate genes were analyzed for associations with more than one rubella-specific immune response outcome, including secreted IFN-γ, secreted IL-6, and neutralizing antibody titers. Overall, we identified 23 SNPs in 10 different genes that were significantly associated with at least two rubella-specific immune responses. Of these SNPs, we detected eight in the PVRL3 gene, five in the PVRL1 gene, one in the TRIM22 gene, two in the IL10RB gene, two in the TLR4 gene, and five in other genes (PVR, ADAR, ZFP57, MX1, and BTN2A1/BTN3A3). The PVRL3 gene haplotype GACGGGGGCAGCAAAAAGAAGAGGAAAGAACAA was significantly associated with both higher IFN-γ secretion (t-statistic 4.43, p < 0.0001) and higher neutralizing antibody titers (t-statistic 3.14, p = 0.002). Our results suggest that there is evidence of multigenic associations among identified gene SNPs and that polymorphisms in these candidate genes contribute to the overall observed differences between individuals in response to live rubella virus vaccine. These results will aid our understanding of mechanisms behind rubella-specific immune response to MMR vaccine and influence the development of vaccines in the future.
Collapse
Affiliation(s)
- Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim 611C, 200 1st Street S.W., Rochester, Minnesota, 55905, USA
| | - Hannah M Salk
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim 611C, 200 1st Street S.W., Rochester, Minnesota, 55905, USA
| | - Beth R Larrabee
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - V Shane Pankratz
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim 611C, 200 1st Street S.W., Rochester, Minnesota, 55905, USA.
| |
Collapse
|
37
|
Sadarangani SP, Whitaker JA, Poland GA. "Let there be light": the role of vitamin D in the immune response to vaccines. Expert Rev Vaccines 2015; 14:1427-40. [PMID: 26325349 DOI: 10.1586/14760584.2015.1082426] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vitamin D's non-skeletal actions, including immunomodulatory role, have been increasingly recognized. Of significance, many immune cells are able to synthesize a biologically active form of vitamin D from circulating 25-hydroxyvitamin D with subsequent intracrine actions, and the vitamin D receptor is broadly distributed. In this review, we discuss vitamin D's potent role in innate and adaptive immune responses and published studies evaluating the impact of serum vitamin D, vitamin D gene pathway polymorphisms or empiric vitamin D supplementation on vaccine immunogenicity. We highlight existing knowledge gaps and propose the steps needed to advance the science and answer the question of whether vitamin D may prove valuable as a vaccine adjuvant for certain vaccines against infectious diseases.
Collapse
Affiliation(s)
- Sapna P Sadarangani
- a 1 Mayo Vaccine Research Group, Rochester, MN, USA.,b 2 Division of Infectious Diseases, Mayo Clinic, Rochester, MN, USA
| | | | - Gregory A Poland
- a 1 Mayo Vaccine Research Group, Rochester, MN, USA.,c 3 Mayo Clinic Division of General Internal Medicine, Rochester, MN, USA
| |
Collapse
|
38
|
Fichna M, Żurawek M, Fichna P, Januszkiewicz-Lewandowska D, Ruchała M, Nowak J. Polymorphisms of the Toll-Like Receptor-3 Gene in Autoimmune Adrenal Failure and Type 1 Diabetes in Polish Patients. Arch Immunol Ther Exp (Warsz) 2015; 64:83-7. [PMID: 26318769 PMCID: PMC4713709 DOI: 10.1007/s00005-015-0360-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/08/2015] [Indexed: 12/16/2022]
Abstract
Infectious agents are plausible environmental triggers for autoimmunity in genetically susceptible individuals. Polymorphic variants of genes implicated in innate immunity may affect immune responses and hence promote auto-aggressive reactions. Genes such as Toll-like receptor-3 (TLR3), which participate in recognizing conserved foreign molecules and mounting the first line of defence against viral infections, are promising functional candidates in autoimmune conditions. We investigated the association of the TLR3 variants, rs13126816 and rs3775291, with the autoimmune endocrine disorders, Addison's disease (AD) and type 1 diabetes (T1D) in the Polish population. The study comprised 168 AD patients, 524 individuals with T1D and 592 healthy controls. Genotyping was performed by real-time PCR. Distribution of the TLR3 genotypes and alleles did not reveal significant differences between patients and controls (p > 0.05). No effect on age at disease onset was found in affected cohorts. This analysis does not support an association between TLR3 variants and the risk for autoimmune destruction of the adrenal cortex and beta cells. However, innate immunity merits further studies in autoimmune endocrine conditions.
Collapse
Affiliation(s)
- Marta Fichna
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland. .,Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland. .,Department of Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland.
| | - Magdalena Żurawek
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Piotr Fichna
- Department of Paediatric Diabetes and Obesity, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Jerzy Nowak
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| |
Collapse
|
39
|
Circelli L, Petrizzo A, Tagliamonte M, Tornesello ML, Buonaguro FM, Buonaguro L. Systems Biology Approach for Cancer Vaccine Development and Evaluation. Vaccines (Basel) 2015; 3:544-555. [PMID: 26350594 PMCID: PMC4586466 DOI: 10.3390/vaccines3030544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/02/2015] [Accepted: 07/03/2015] [Indexed: 11/16/2022] Open
Abstract
Therapeutic cancer vaccines do not hold promise yet as an effective anti-cancer treatment. Lack of efficacy or poor clinical outcomes are due to several antigenic and immunological aspects that need to be addressed in order to reverse such trends and significantly improve cancer vaccines' efficacy. The newly developed high throughput technologies and computational tools are instrumental to this aim allowing the identification of more specific antigens and the comprehensive analysis of the innate and adaptive immunities. Here, we review the potentiality of systems biology in providing novel insights in the mechanisms of the action of vaccines to improve their design and effectiveness.
Collapse
Affiliation(s)
- Luisa Circelli
- Laboratory of Molecular Biology and Viral Oncology, Department of Experimental Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale" - IRCCS, Naples 80131, Italy.
| | - Annacarmen Petrizzo
- Laboratory of Molecular Biology and Viral Oncology, Department of Experimental Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale" - IRCCS, Naples 80131, Italy.
| | - Maria Tagliamonte
- Laboratory of Molecular Biology and Viral Oncology, Department of Experimental Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale" - IRCCS, Naples 80131, Italy.
| | - Maria Lina Tornesello
- Laboratory of Molecular Biology and Viral Oncology, Department of Experimental Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale" - IRCCS, Naples 80131, Italy.
| | - Franco M Buonaguro
- Laboratory of Molecular Biology and Viral Oncology, Department of Experimental Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale" - IRCCS, Naples 80131, Italy.
| | - Luigi Buonaguro
- Laboratory of Molecular Biology and Viral Oncology, Department of Experimental Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale" - IRCCS, Naples 80131, Italy.
| |
Collapse
|
40
|
Abstract
Rubella remains an important pathogen worldwide, with roughly 100,000 cases of congenital rubella syndrome estimated to occur every year. Rubella-containing vaccine is highly effective and safe and, as a result, endemic rubella transmission has been interrupted in the Americas since 2009. Incomplete rubella vaccination programmes result in continued disease transmission, as evidenced by recent large outbreaks in Japan and elsewhere. In this Seminar, we provide present results regarding rubella control, elimination, and eradication policies, and a brief review of new laboratory diagnostics. Additionally, we provide novel information about rubella-containing vaccine immunogenetics and review the emerging evidence of interindividual variability in humoral and cell-mediated innate and adaptive immune responses to rubella-containing vaccine and their association with haplotypes and single-nucleotide polymorphisms across the human genome.
Collapse
Affiliation(s)
| | - Peter Strebel
- Department of Immunization, Vaccines, and Biologicals, World Health Organization, Geneva, Switzerland
| | | | - Joseph Icenogle
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA; Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
41
|
Alagarasu K, Memane RS, Shah PS. Polymorphisms in the retinoic acid-1 like-receptor family of genes and their association with clinical outcome of dengue virus infection. Arch Virol 2015; 160:1555-60. [PMID: 25850761 DOI: 10.1007/s00705-015-2417-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/30/2015] [Indexed: 12/21/2022]
Abstract
Polymorphisms in the DDX58 and IFIH1 genes, which code for the retinoic acid inducible gene-1 protein and myeloid differentiation factor (MDA) 5, were investigated in 120 dengue (DEN) cases (88 dengue fever [DF] cases and 32 dengue hemorrhagic fever [DHF] cases) and 109 healthy controls (HCs) to investigate their association with dengue. The results revealed a lower carrier frequency of the DDX58 rs3205166 G allele in DEN than in HCs and a higher frequency of the DDX58 rs669260 T/C genotype in DHF than in DF cases (P = 0.043, OR with 95 % CI 3.358 [1.038-10.861]). This suggests that polymorphisms in DDX58 gene influence the clinical outcome of DENV infection.
Collapse
Affiliation(s)
- K Alagarasu
- Dengue Group, National Institute of Virology (Indian Council of Medical Research), 20A, Dr Ambedkar Road, Pune, Maharashtra, India,
| | | | | |
Collapse
|
42
|
Castiblanco J, Anaya JM. Genetics and vaccines in the era of personalized medicine. Curr Genomics 2015; 16:47-59. [PMID: 25937813 PMCID: PMC4412964 DOI: 10.2174/1389202916666141223220551] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 12/17/2022] Open
Abstract
Vaccines represent the most successful and sustainable tactic to prevent and counteract infection. A vaccine generally improves immunity to a particular disease upon administration by inducing specific protective and efficient immune responses in all of the receiving population. The main known factors influencing the observed heterogeneity for immune re-sponses induced by vaccines are gender, age, co-morbidity, immune system, and genetic background. This review is mainly focused on the genetic status effect to vaccine immune responses and how this could contribute to the development of novel vaccine candidates that could be better directed and predicted relative to the genetic history of an individual and/or population. The text offers a brief history of vaccinology as a field, a description of the genetic status of the most relevant and studied genes and their functionality and correlation with exposure to specific vaccines; followed by an inside look into autoimmunity as a concern when designing vaccines as well as perspectives and conclusions looking towards an era of personalized and predictive vaccinology instead of a one size fits all approach.
Collapse
Affiliation(s)
- John Castiblanco
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 #63-C-69, Bogota, Colombia ; Doctoral Program in Biomedical Sciences, Universidad del Rosario, Bogotá,Colombia
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 #63-C-69, Bogota, Colombia
| |
Collapse
|
43
|
Matas-Cobos AM, Redondo-Cerezo E, Alegría-Motte C, Martínez-Chamorro A, Saenz-López P, Jiménez P, Jiménez MRC, González-Calvín JL, de Teresa J, Osuna FRC. The role of Toll-like receptor polymorphisms in acute pancreatitis occurrence and severity. Pancreas 2015; 44:429-433. [PMID: 25423559 DOI: 10.1097/mpa.0000000000000272] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVES Toll-like receptors (TLRs) are damage-associated molecular patterns receptors, which are essential in the activation of the inflammasome cascade, required for the initiation of inflammation. We hypothesized that changes in the function of these receptors caused by genetic polymorphisms in their encoding genes could determine acute pancreatitis (AP) incidence or severity. METHODS Two hundred sixty-nine patients and 269 controls were included. Acute pancreatitis diagnosis criteria were abdominal pain, increased serum amylase levels, and positive findings on abdominal imaging. The patients were observed until discharge. Blood samples were obtained, determining the following TLRs: TLR1 rs5743611, TLR2 rs5743704, TLR3 rs3775291, TLR3 rs5743305, TLR4 rs4986790, TLR4 rs4986791, TLR5 rs5744174, TLR6 rs5743795, TLR7 rs2302267, TLR9 rs352140, and TLR10 rs4129009. RESULTS No TLR polymorphism was related to AP incidence. Regarding severity, CC genotype patients in TLR3 rs3775291 had an increased risk for severe pancreatitis (CC odds ratio [OR], 2.426; P = 0.015). In addition, TLR6 rs5743795 GG genotype patients had a lower risk for severe AP (GG OR, 0.909; P < 0.05). Intensive care unit admission was related to TLR5 rs5744174 homozygote TT carriers (TT OR, 3.367; P = 0.036). CONCLUSIONS Our article points to genetic polymorphisms in TLR3 and TLR6 as having a plausible role in the occurrence of severe AP.
Collapse
Affiliation(s)
- Ana M Matas-Cobos
- From the Departments of *Gastroenterology and Hepatology, and †Immunology, Virgen de las Nieves University Hospital; and ‡Department of Medicine, University of Granada, Granada, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lang PO, Aspinall R. Can we translate vitamin D immunomodulating effect on innate and adaptive immunity to vaccine response? Nutrients 2015; 7:2044-60. [PMID: 25803545 PMCID: PMC4377899 DOI: 10.3390/nu7032044] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 03/09/2015] [Accepted: 03/12/2015] [Indexed: 12/11/2022] Open
Abstract
Vitamin D (VitD), which is well known for its classic role in the maintenance of bone mineral density, has now become increasingly studied for its extra-skeletal roles. It has an important influence on the body’s immune system and modulates both innate and adaptive immunity and regulates the inflammatory cascade. In this review our aim was to describe how VitD might influence immune responsiveness and its potential modulating role in vaccine immunogenicity. In the first instance, we consider the literature that may provide molecular and genetic support to the idea that VitD status may be related to innate and/or adaptive immune response with a particular focus on vaccine immunogenicity and then discuss observational studies and controlled trials of VitD supplementation conducted in humans. Finally, we conclude with some knowledge gaps surrounding VitD and vaccine response, and that it is still premature to recommend “booster” of VitD at vaccination time to enhance vaccine response.
Collapse
Affiliation(s)
- Pierre Olivier Lang
- Geriatric medicine and Geriatric rehabilitation division, Department of medicine, University Hospital of Lausanne (CHUV), CH-1011 Lausanne, Switzerland.
- Health and Wellbeing academy, Anglia Ruskin University, CM1 1SQ Cambridge, UK.
| | - Richard Aspinall
- Health and Wellbeing academy, Anglia Ruskin University, CM1 1SQ Cambridge, UK.
| |
Collapse
|
45
|
Lambert ND, Haralambieva IH, Kennedy RB, Ovsyannikova IG, Pankratz VS, Poland GA. Polymorphisms in HLA-DPB1 are associated with differences in rubella virus-specific humoral immunity after vaccination. J Infect Dis 2014; 211:898-905. [PMID: 25293367 DOI: 10.1093/infdis/jiu553] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Vaccination with live attenuated rubella virus induces a strong immune response in most individuals. However, small numbers of subjects never reach or maintain protective antibody levels, and there is a high degree of variability in immune response. We have previously described genetic polymorphisms in HLA and other candidate genes that are associated with interindividual differences in humoral immunity to rubella virus. To expand our previous work, we performed a genome-wide association study (GWAS) to discover single-nucleotide polymorphisms (SNPs) associated with rubella virus-specific neutralizing antibodies. We identified rs2064479 in the HLA-DPB1 genetic region as being significantly associated with humoral immune response variations after rubella vaccination (P = 8.62 × 10(-8)). All other significant SNPs in this GWAS were located near the HLA-DPB1 gene (P ≤ 1 × 10(-7)). These findings demonstrate that polymorphisms in HLA-DPB1 are strongly associated with interindividual differences in neutralizing antibody levels to rubella vaccination and represent a validation of our previous HLA work.
Collapse
Affiliation(s)
| | | | | | | | | | - Gregory A Poland
- Mayo Vaccine Research Group Program in Translational Immunovirology and Biodefense
| |
Collapse
|
46
|
Grzegorzewska AE, Jodłowska E, Mostowska A, Sowińska A, Jagodziński PP. Single nucleotide polymorphisms of vitamin D binding protein, vitamin D receptor and retinoid X receptor alpha genes and response to hepatitis B vaccination in renal replacement therapy patients. Expert Rev Vaccines 2014; 13:1395-403. [DOI: 10.1586/14760584.2014.962521] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Ovsyannikova IG, Salk HM, Larrabee BR, Pankratz VS, Poland GA. Single-nucleotide polymorphism associations in common with immune responses to measles and rubella vaccines. Immunogenetics 2014; 66:663-9. [PMID: 25139337 DOI: 10.1007/s00251-014-0796-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/11/2014] [Indexed: 02/08/2023]
Abstract
Single-nucleotide polymorphisms (SNPs) in candidate immune response genes were evaluated for associations with measles- and rubella-specific neutralizing antibodies, interferon (IFN)-γ, and interleukin (IL)-6 secretion in two separate association analyses in a cohort of healthy immunized subjects. We identified six SNP associations shared between the measles-specific and rubella-specific immune responses, specifically neutralizing antibody titers (DDX58), secreted IL-6 (IL10RB, IL12B), and secreted IFN-γ (IFNAR2, TLR4). An intronic SNP (rs669260) in the antiviral innate immune receptor gene, DDX58, was significantly associated with increased neutralizing antibody titers for both measles and rubella viral antigens post-MMR vaccination (p values 0.02 and 0.0002, respectively). Significant associations were also found between IL10RB (rs2284552; measles study p value 0.006, rubella study p value 0.00008) and IL12B (rs2546893; measles study p value 0.005, rubella study p value 0.03) gene polymorphisms and variations in both measles- and rubella virus-specific IL-6 responses. We also identified associations between individual SNPs in the IFNAR2 and TLR4 genes that were associated with IFN-γ secretion for both measles and rubella vaccine-specific immune responses. These results are the first to indicate that there are SNP associations in common across measles and rubella vaccine immune responses and that SNPs from multiple genes involved in innate and adaptive immune response regulation may contribute to the overall human antiviral response.
Collapse
Affiliation(s)
- Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim 611C, 200 1st Street S.W., Rochester, MN, 55905, USA
| | | | | | | | | |
Collapse
|
48
|
Kennedy RB, Ovsyannikova IG, Haralambieva IH, Lambert ND, Pankratz VS, Poland GA. Genetic polymorphisms associated with rubella virus-specific cellular immunity following MMR vaccination. Hum Genet 2014; 133:1407-17. [PMID: 25098560 DOI: 10.1007/s00439-014-1471-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 07/18/2014] [Indexed: 12/11/2022]
Abstract
Rubella virus causes a relatively benign disease in most cases, although infection during pregnancy can result in serious birth defects. An effective vaccine has been available since the early 1970s and outbreaks typically do not occur among highly vaccinated (≥2 doses) populations. Nevertheless, considerable inter-individual variation in immune response to rubella immunization does exist, with single-dose seroconversion rates ~95 %. Understanding the mechanisms behind this variability may provide important insights into rubella immunity. In the current study, we examined associations between single nucleotide polymorphisms (SNPs) in selected cytokine, cytokine receptor, and innate/antiviral genes and immune responses following rubella vaccination in order to understand genetic influences on vaccine response. Our approach consisted of a discovery cohort of 887 subjects aged 11-22 at the time of enrollment and a replication cohort of 542 older adolescents and young adults (age 18-40). Our data indicate that SNPs near the butyrophilin genes (BTN3A3/BTN2A1) and cytokine receptors (IL10RB/IFNAR1) are associated with variations in IFNγ secretion and that multiple SNPs in the PVR gene, as well as SNPs located in the ADAR gene, exhibit significant associations with rubella virus-specific IL-6 secretion. This information may be useful, not only in furthering our understanding immune responses to rubella vaccine, but also in identifying key pathways for targeted adjuvant use to boost immunity in those with weak or absent immunity following vaccination.
Collapse
Affiliation(s)
- Richard B Kennedy
- Mayo Vaccine Research Group, Mayo Clinic, Guggenheim 611C, 200 First Street SW, Rochester, MN, 55905, USA
| | | | | | | | | | | |
Collapse
|
49
|
Haralambieva IH, Lambert ND, Ovsyannikova IG, Kennedy RB, Larrabee BR, Pankratz VS, Poland GA. Associations between single nucleotide polymorphisms in cellular viral receptors and attachment factor-related genes and humoral immunity to rubella vaccination. PLoS One 2014; 9:e99997. [PMID: 24945853 PMCID: PMC4063777 DOI: 10.1371/journal.pone.0099997] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/21/2014] [Indexed: 12/30/2022] Open
Abstract
Background Viral attachment and cell entry host factors are important for viral replication, pathogenesis, and the generation and sustenance of immune responses after infection and/or vaccination, and are plausible genetic regulators of vaccine-induced immunity. Methods Using a tag-SNP approach in candidate gene study, we assessed the role of selected cell surface receptor genes, attachment factor-related genes, along with other immune genes in the genetic control of immune response variations after live rubella vaccination in two independent study cohorts. Results Our analysis revealed evidence for multiple associations between genetic variants in the PVR, PVRL2, CD209/DC-SIGN, RARB, MOG, IL6 and other immune function-related genes and rubella-specific neutralizing antibodies after vaccination (meta p-value <0.05). Conclusion Our results indicate that multiple SNPs from genes involved in cell adhesion, viral attachment, and viral entry, as well as others in genes involved in signaling and/or immune response regulation, play a role in modulating humoral immune responses following live rubella vaccination.
Collapse
MESH Headings
- Adolescent
- Adult
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Viral/biosynthesis
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/immunology
- Child
- Cohort Studies
- Female
- Gene Expression
- Host-Pathogen Interactions
- Humans
- Immunity, Humoral
- Interleukin-6/genetics
- Interleukin-6/immunology
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Male
- Measles-Mumps-Rubella Vaccine/administration & dosage
- Measles-Mumps-Rubella Vaccine/immunology
- Myelin-Oligodendrocyte Glycoprotein/genetics
- Myelin-Oligodendrocyte Glycoprotein/immunology
- Polymorphism, Single Nucleotide
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/immunology
- Receptors, Virus/genetics
- Receptors, Virus/immunology
- Rubella/immunology
- Rubella/prevention & control
- Rubella/virology
- Rubella virus/immunology
- Vaccination
- Virus Attachment/drug effects
- Virus Internalization/drug effects
Collapse
Affiliation(s)
- Iana H. Haralambieva
- Mayo Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
- Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Nathaniel D. Lambert
- Mayo Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
- Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Inna G. Ovsyannikova
- Mayo Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
- Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Richard B. Kennedy
- Mayo Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
- Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Beth R. Larrabee
- Division of Biostatistics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - V. Shane Pankratz
- Mayo Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
- Division of Biostatistics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Gregory A. Poland
- Mayo Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
50
|
Petrizzo A, Tagliamonte M, Tornesello M, Buonaguro FM, Buonaguro L. Systems vaccinology for cancer vaccine development. Expert Rev Vaccines 2014; 13:711-719. [PMID: 24766452 DOI: 10.1586/14760584.2014.913484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Results of therapeutic vaccines for established chronic infections or cancers are still unsatisfactory. The only therapeutic cancer vaccine approved for clinical use is the sipuleucel-T, for the treatment of metastatic prostate cancer, which induces a limited 4-month improvement in the overall survival of vaccinated patients compared to controls. This represents a remarkable advancement in the cancer immunotherapy field, although the clinical outcome of cancer vaccines needs to be substantially improved. To this aim, a multipronged strategy is required, including the evaluation of mechanisms underlying the effective elicitation of immune responses by cancer vaccines. The recent development of new technologies and computational tools allows the comprehensive and quantitative analysis of the interactions between all of the components of innate and adaptive immunity over time. Here we review the potentiality of systems biology in providing novel insights in the mechanisms of action of vaccines to improve their design and effectiveness.
Collapse
Affiliation(s)
- Annacarmen Petrizzo
- Laboratory of Molecular Biology and Viral Oncology, Department of Experimental Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale" - IRCCS, 80131 Naples, Italy
| | | | | | | | | |
Collapse
|