1
|
Wang J, Shi K, Xu Q, Wang H, Wang Y, Liu S, Jiang W, Chen R, Chen Y, Zhang Y, Wu M, Li X, Li C. Aldose reductase -mediated HUR ubiquitination enhances exosome release and hepatic fibrosis via ROS/PI3K/AKT pathway. Free Radic Biol Med 2025; 236:1-16. [PMID: 40334999 DOI: 10.1016/j.freeradbiomed.2025.04.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/18/2025] [Accepted: 04/26/2025] [Indexed: 05/09/2025]
Abstract
INTRODUCTION Liver fibrosis is caused by the activation of hepatic stellate cells due to various reasons. Our previous research has shown that aldose reductase (AR) played an important role in liver ischemia-reperfusion injury and liver regeneration. OBJECTIVES Here, we aimed to investigate the role and mechanism of AR in the progression of liver fibrosis induced by various factors. METHODS AR expression was detected in liver tissue of fibrosis patients and mouse models. The role and mechanism of AR in fibrosis progression were investigated in AR knockout mice and cell lines. RESULTS AR expression was increased in liver from patients with fibrosis and mouse models. The knockout of AR protected against CCL4 or HFD induced liver injury and development of fibrosis. Furthermore, AR promoted ubiquitization degradation of HUR through competitive binding with OTUB1, thereby exacerbating the accumulation of ROS, and ultimately activating PI3K/AKT pathway. The impaired autophagolysosome resulted in the massive release of exosomes, which activated stellate cells by regulating PTP4a1/SMAD3 pathway. The hepatocyte specific recovery of AR in AR knockout mice aggravated ROS damage and fibrosis, while recovery of HUR in wild-type mice reduced ROS damage and fibrosis. CONCLUSIONS In conclusion, these findings suggest that AR might be a promising therapeutic target for treating liver fibrosis.
Collapse
Affiliation(s)
- Jifei Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Gusu School, Nanjing Medical University, Soochow, China
| | - Kuangheng Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qingqiao Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | | | - Yirui Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shuochen Liu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wangjie Jiang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ruixiang Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yananlan Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yaodong Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Mingyu Wu
- Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, China
| | - Xiangcheng Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China; Gusu School, Nanjing Medical University, Soochow, China.
| | - Changxian Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China.
| |
Collapse
|
2
|
Ivanesthi IR, Latifah E, Liu SY, Tseng YK, Pan HC, Wang CC. Dual-mode recognition of tRNA Pro isoacceptors by Toxoplasma gondii Prolyl-tRNA synthetase. EMBO Rep 2025:10.1038/s44319-025-00457-x. [PMID: 40295724 DOI: 10.1038/s44319-025-00457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025] Open
Abstract
Prolyl-tRNA synthetases (ProRSs) exhibit diverse domain architectures and motifs, evolving into prokaryotic (P-type) and eukaryotic/archaeal (E-type) variants. Both types exhibit high specificity for the recognition and aminoacylation of their cognate tRNAs. Interestingly, the parasitic eukaryote Toxoplasma gondii encodes a single E-type ProRS (TgProRS) but utilizes two distinct tRNAPro isoacceptors: a cytosolic E-type (with C72/C73) and an apicoplast P-type (with G72/A73). Our study demonstrates that TgProRS, despite being classified as an E-type enzyme, efficiently charges both tRNAPro isoacceptors and functionally compensates for yeast cytoplasmic and mitochondrial ProRS activities. Notably, while C72/C73 are dispensable for cytosolic tRNAPro charging, G72/A73 are crucial for apicoplast tRNAPro aminoacylation. Furthermore, Mutations in the motif 2 loop selectively affect E- or P-type tRNAPro recognition. While TgProRS exhibits similar susceptibility to azetidine (a proline mimic) when charging both tRNAPro types, cytosolic tRNAPro charging is five times more sensitive to inhibition by halofuginone (a Pro-A76 mimic) compared to apicoplast tRNAPro charging. These findings underscore TgProRS's dual functionality, showcasing its remarkable evolutionary adaptability and providing valuable insights for developing more selective therapeutic agents.
Collapse
Affiliation(s)
- Indira Rizqita Ivanesthi
- Department of Life Sciences, National Central University, Jungli District, Taoyuan, 32001, Taiwan
| | - Emi Latifah
- Department of Life Sciences, National Central University, Jungli District, Taoyuan, 32001, Taiwan
| | - Shih-Yang Liu
- Department of Life Sciences, National Central University, Jungli District, Taoyuan, 32001, Taiwan
| | - Yi-Kuan Tseng
- Graduate Institute of Statistics, National Central University, Jungli District, Taoyuan, 32001, Taiwan
| | - Hung-Chuan Pan
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung, 407219, Taiwan
| | - Chien-Chia Wang
- Department of Life Sciences, National Central University, Jungli District, Taoyuan, 32001, Taiwan.
| |
Collapse
|
3
|
Wang J, Guan L, Yu J, Ma B, Shen H, Xing G, Xu Y, Li Q, Liu J, Xu Q, Shi W, He J, Huang Y, Yin D, Li W, Wang R. Halofuginone prevents inflammation and proliferation of high-altitude pulmonary hypertension by inhibiting the TGF-β1/Smad signaling pathway. Sci Rep 2025; 15:3619. [PMID: 39880976 PMCID: PMC11779860 DOI: 10.1038/s41598-025-88258-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 01/28/2025] [Indexed: 01/31/2025] Open
Abstract
The inflammatory response of lung tissue and abnormal proliferation of pulmonary artery smooth muscle cells are involved in the pathogenesis of high-altitude pulmonary hypertension (HAPH). Halofuginone (HF), an active ingredient derivative of Chang Shan (Dichroa febrifuga Lour. [Hydrangeaceae]), has antiproliferative, antihypertrophic, antifibrotic, and other effects, but its protective effects on HAPH remains unclear. In the present study, we evaluated the efficacy of HF on HAPH by establishing a 6000 m HAPH rat model. Male Sprague-Dawley rats were divided into normoxia, normoxia + halofuginone (1 mg/kg), hypoxia, and hypoxia + halofuginone (1 mg/kg) groups. The results showed that HF (1 mg/kg) could prevent hypoxia-induced hemodynamic abnormalities, right ventricular hypertrophy, and pulmonary vascular remodeling in rats. We further detected the expression levels of inflammatory factors interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α) and proliferative/antiproliferative indicators proliferating cell nuclear antigen (PCNA), cyclin-dependent kinase 6 (CDK6), Cyclin D1, p21 in lung tissue, and found that HF could attenuate the lung tissue inflammatory response and proliferative response in HAPH rats. In addition, we also examined the expression levels of transforming growth factor-β1 (TGF-β1), Smad2/3 and p-Smad2/3 in lung tissue, and found that HF exerted therapeutic effects by inhibiting the TGF-β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Jiangtao Wang
- General Hospital of Xinjiang Military Command, 359 North Friendship Road, Sayibak, Ürümqi, 830000, Xinjiang, China
- School of Medicine, Shihezi University, Shihezi, 832000, China
| | - Lina Guan
- General Hospital of Xinjiang Military Command, 359 North Friendship Road, Sayibak, Ürümqi, 830000, Xinjiang, China
| | - Jian Yu
- Tumor Hospital of Xinjiang Medical University, Ürümqi, 830000, China
| | - Bohua Ma
- Department of Pharmacy, Qingyang People's Hospital, Qingyang, 745000, China
| | - Huihua Shen
- General Hospital of Xinjiang Military Command, 359 North Friendship Road, Sayibak, Ürümqi, 830000, Xinjiang, China
| | - Guozhu Xing
- General Hospital of Xinjiang Military Command, 359 North Friendship Road, Sayibak, Ürümqi, 830000, Xinjiang, China
| | - Yawei Xu
- General Hospital of Xinjiang Military Command, 359 North Friendship Road, Sayibak, Ürümqi, 830000, Xinjiang, China
| | - Qiufang Li
- General Hospital of Xinjiang Military Command, 359 North Friendship Road, Sayibak, Ürümqi, 830000, Xinjiang, China
| | - Juan Liu
- General Hospital of Xinjiang Military Command, 359 North Friendship Road, Sayibak, Ürümqi, 830000, Xinjiang, China
| | - Qin Xu
- Xinjiang Key Laboratory of Special Environmental Medicine, Ürümqi, 830000, China
| | - Wenhui Shi
- Xinjiang Key Laboratory of Special Environmental Medicine, Ürümqi, 830000, China
| | - Jia He
- General Hospital of Xinjiang Military Command, 359 North Friendship Road, Sayibak, Ürümqi, 830000, Xinjiang, China
| | - Yixuan Huang
- General Hospital of Xinjiang Military Command, 359 North Friendship Road, Sayibak, Ürümqi, 830000, Xinjiang, China
| | - Dongfeng Yin
- General Hospital of Xinjiang Military Command, 359 North Friendship Road, Sayibak, Ürümqi, 830000, Xinjiang, China.
| | - Wu Li
- General Hospital of Xinjiang Military Command, 359 North Friendship Road, Sayibak, Ürümqi, 830000, Xinjiang, China.
- School of Medicine, Shihezi University, Shihezi, 832000, China.
| | - Rui Wang
- General Hospital of Xinjiang Military Command, 359 North Friendship Road, Sayibak, Ürümqi, 830000, Xinjiang, China.
| |
Collapse
|
4
|
Chen W, Wu X, Hu J, Liu X, Guo Z, Wu J, Shao Y, Hao M, Zhang S, Hu W, Wang Y, Zhang M, Zhu M, Wang C, Wu Y, Wang J, Xing D. The translational potential of miR-26 in atherosclerosis and development of agents for its target genes ACC1/2, COL1A1, CPT1A, FBP1, DGAT2, and SMAD7. Cardiovasc Diabetol 2024; 23:21. [PMID: 38195542 PMCID: PMC10777520 DOI: 10.1186/s12933-024-02119-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
Atherosclerosis is one of the leading causes of death worldwide. miR-26 is a potential biomarker of atherosclerosis. Standardized diagnostic tests for miR-26 (MIR26-DX) have been developed, but the fastest progress has been in predicting the efficacy of IFN-α therapy for hepatocellular carcinoma (HCC, phase 3). MiR-26 slows atherosclerosis development by suppressing ACC1/2, ACLY, ACSL3/4, ALDH3A2, ALPL, BMP2, CD36, COL1A1, CPT1A, CTGF, DGAT2, EHHADH, FAS, FBP1, GATA4, GSK3β, G6PC, Gys2, HMGA1, HMGB1, LDLR, LIPC, IL-1β, IL-6, JAG2, KCNJ2, MALT1, β-MHC, NF-κB, PCK1, PLCβ1, PYGL, RUNX2, SCD1, SMAD1/4/5/7, SREBF1, TAB3, TAK1, TCF7L2, and TNF-α expression. Many agents targeting these genes, such as the ACC1/2 inhibitors GS-0976, PF-05221304, and MK-4074; the DGAT2 inhibitors IONIS-DGAT2Rx, PF-06427878, PF-0685571, and PF-07202954; the COL1A1 inhibitor HT-100; the stimulants 68Ga-CBP8 and RCT-01; the CPT1A inhibitors etomoxir, perhexiline, and teglicar; the FBP1 inhibitors CS-917 and MB07803; and the SMAD7 inhibitor mongersen, have been investigated in clinical trials. Interestingly, miR-26 better reduced intima-media thickness (IMT) than PCSK9 or CT-1 knockout. Many PCSK9 inhibitors, including alirocumab, evolocumab, inclisiran, AZD8233, Civi-007, MK-0616, and LIB003, have been investigated in clinical trials. Recombinant CT-1 was also investigated in clinical trials. Therefore, miR-26 is a promising target for agent development. miR-26 promotes foam cell formation by reducing ABCA1 and ARL4C expression. Multiple materials can be used to deliver miR-26, but it is unclear which material is most suitable for mass production and clinical applications. This review focuses on the potential use of miR-26 in treating atherosclerosis to support the development of agents targeting it.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Xiaolin Wu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Jianxia Hu
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xiaolei Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Zhu Guo
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Jianfeng Wu
- Department of Cardiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, Clinical Medicine Research Center of Arteriosclerotic Disease of Hunan Province, Hengyang, 421001, Hunan, China
| | - Yingchun Shao
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Minglu Hao
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Shuangshuang Zhang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Weichao Hu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
- Department of Endocrinology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266000, Shandong, China
| | - Yanhong Wang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Miao Zhang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Meng Zhu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, 266071, Shandong, China
| | - Chao Wang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Yudong Wu
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Jie Wang
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| | - Dongming Xing
- Cancer Institute, Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
5
|
Mi L, Zhang Y, Su A, Tang M, Xing Z, He T, Wu W, Li Z. Halofuginone for cancer treatment: A systematic review of efficacy and molecular mechanisms. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
6
|
Choi JH, Park S, Kim GD, Kim JY, Jun JH, Bae SH, Baik SK, Hwang SG, Kim GJ. Increased Phosphatase of Regenerating Liver-1 by Placental Stem Cells Promotes Hepatic Regeneration in a Bile-Duct-Ligated Rat Model. Cells 2021; 10:cells10102530. [PMID: 34685509 PMCID: PMC8533985 DOI: 10.3390/cells10102530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Phosphatase of regenerating liver-1 (PRL-1) controls various cellular processes and liver regeneration. However, the roles of PRL-1 in liver regeneration induced by chorionic-plate-derived mesenchymal stem cells (CP-MSCs) transplantation remain unknown. Here, we found that increased PRL-1 expression by CP-MSC transplantation enhanced liver regeneration in a bile duct ligation (BDL) rat model by promoting the migration and proliferation of hepatocytes. Engrafted CP-MSCs promoted liver function via enhanced hepatocyte proliferation through increased PRL-1 expression in vivo and in vitro. Moreover, higher increased expression of PRL-1 regulated CP-MSC migration into BDL-injured rat liver through enhancement of migration-related signals by increasing Rho family proteins. The dual effects of PRL-1 on proliferation of hepatocytes and migration of CP-MSCs were substantially reduced when PRL-1 was silenced with siRNA-PRL-1 treatment. These findings suggest that PRL-1 may serve as a multifunctional enhancer for therapeutic applications of CP-MSC transplantation.
Collapse
Affiliation(s)
- Jong Ho Choi
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung-si 25457, Korea;
| | - Sohae Park
- Department of Biomedical Science, CHA University, Seongnam-si 13488, Korea; (S.P.); (J.Y.K.); (J.H.J.)
- Research Institute of Placental Science, CHA University, Seongnam-si 13488, Korea
| | - Gi Dae Kim
- Department of Food and Nutrition, Kyungnam University, Changwon-si 51767, Korea;
| | - Jae Yeon Kim
- Department of Biomedical Science, CHA University, Seongnam-si 13488, Korea; (S.P.); (J.Y.K.); (J.H.J.)
| | - Ji Hye Jun
- Department of Biomedical Science, CHA University, Seongnam-si 13488, Korea; (S.P.); (J.Y.K.); (J.H.J.)
- Research Institute of Placental Science, CHA University, Seongnam-si 13488, Korea
| | - Si Hyun Bae
- Department of Internal Medicine, Catholic University Medical College, Seoul 03312, Korea;
| | - Soon Koo Baik
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Korea;
| | - Seong-Gyu Hwang
- CHA Bundang Medical Center, Department of Internal Medicine, Division of Gastroenterology, CHA University School of Medicine, Seongnam-si 13496, Korea;
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seongnam-si 13488, Korea; (S.P.); (J.Y.K.); (J.H.J.)
- Research Institute of Placental Science, CHA University, Seongnam-si 13488, Korea
- Correspondence: ; Tel.: +82-31-881-7145
| |
Collapse
|
7
|
Aschner Y, Nelson M, Brenner M, Roybal H, Beke K, Meador C, Foster D, Correll KA, Reynolds PR, Anderson K, Redente EF, Matsuda J, Riches DWH, Groshong SD, Pozzi A, Sap J, Wang Q, Rajshankar D, McCulloch CAG, Zemans RL, Downey GP. Protein tyrosine phosphatase-α amplifies transforming growth factor-β-dependent profibrotic signaling in lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2020; 319:L294-L311. [PMID: 32491951 PMCID: PMC7473933 DOI: 10.1152/ajplung.00235.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 04/06/2020] [Accepted: 04/25/2020] [Indexed: 01/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, often fatal, fibrosing lung disease for which treatment remains suboptimal. Fibrogenic cytokines, including transforming growth factor-β (TGF-β), are central to its pathogenesis. Protein tyrosine phosphatase-α (PTPα) has emerged as a key regulator of fibrogenic signaling in fibroblasts. We have reported that mice globally deficient in PTPα (Ptpra-/-) were protected from experimental pulmonary fibrosis, in part via alterations in TGF-β signaling. The goal of this study was to determine the lung cell types and mechanisms by which PTPα controls fibrogenic pathways and whether these pathways are relevant to human disease. Immunohistochemical analysis of lungs from patients with IPF revealed that PTPα was highly expressed by mesenchymal cells in fibroblastic foci and by airway and alveolar epithelial cells. To determine whether PTPα promotes profibrotic signaling pathways in lung fibroblasts and/or epithelial cells, we generated mice with conditional (floxed) Ptpra alleles (Ptpraf/f). These mice were crossed with Dermo1-Cre or with Sftpc-CreERT2 mice to delete Ptpra in mesenchymal cells and alveolar type II cells, respectively. Dermo1-Cre/Ptpraf/f mice were protected from bleomycin-induced pulmonary fibrosis, whereas Sftpc-CreERT2/Ptpraf/f mice developed pulmonary fibrosis equivalent to controls. Both canonical and noncanonical TGF-β signaling and downstream TGF-β-induced fibrogenic responses were attenuated in isolated Ptpra-/- compared with wild-type fibroblasts. Furthermore, TGF-β-induced tyrosine phosphorylation of TGF-β type II receptor and of PTPα were attenuated in Ptpra-/- compared with wild-type fibroblasts. The phenotype of cells genetically deficient in PTPα was recapitulated with the use of a Src inhibitor. These findings suggest that PTPα amplifies profibrotic TGF-β-dependent pathway signaling in lung fibroblasts.
Collapse
Affiliation(s)
- Yael Aschner
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Meghan Nelson
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Matthew Brenner
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Helen Roybal
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Keriann Beke
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Carly Meador
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Daniel Foster
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Kelly A Correll
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Paul R Reynolds
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Kelsey Anderson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado
| | - Elizabeth F Redente
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado
- Veterans Affairs Eastern Colorado Heath Care System, Denver, Colorado
| | - Jennifer Matsuda
- Department of Biomedical Research, National Jewish Health, Denver, Colorado
| | - David W H Riches
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado
- Veterans Affairs Eastern Colorado Heath Care System, Denver, Colorado
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado
| | - Steve D Groshong
- Division of Pathology, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Ambra Pozzi
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Veterans Affairs Medical Center, Nashville, Tennessee
| | - Jan Sap
- Epigenetics and Cell Fate, Université Paris, Paris, France
| | - Qin Wang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Dhaarmini Rajshankar
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | | - Rachel L Zemans
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Gregory P Downey
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
- Department of Pediatrics, National Jewish Health, Denver, Colorado
- Department of Biomedical Research, National Jewish Health, Denver, Colorado
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado
| |
Collapse
|
8
|
Barzilai-Tutsch H, Genin O, Pines M, Halevy O. Early pathological signs in young dysf -/- mice are improved by halofuginone. Neuromuscul Disord 2020; 30:472-482. [PMID: 32451154 DOI: 10.1016/j.nmd.2020.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 03/14/2020] [Accepted: 04/03/2020] [Indexed: 01/09/2023]
Abstract
Dysferlinopathies are a non-lethal group of late-onset muscular dystrophies. Here, we evaluated the fusion ability of primary myoblasts from young dysf-/- mice and the muscle histopathology prior to, and during early stages of disease onset. The ability of primary myoblasts of 5-week-old dysf-/- mice to form large myotubes was delayed compared to their wild-type counterparts, as evaluated by scanning electron microscopy. However, their fusion activity, as reflected by the presence of actin filaments connecting several cells, was enhanced by the antifibrotic drug halofuginone. Early dystrophic signs were already apparent in 4-week-old dysf-/- mice; their collagen level was double that in wild-type mice and continued to rise until 5 months of age. Continuous treatment with halofuginone from 4 weeks to 5 months of age reduced muscle fibrosis in a phosphorylated-Smad3 inhibition-related manner. Halofuginone also enhanced myofiber hypertrophy, reduced the percentage of centrally nucleated myofibers, and increased muscle performance. Together, the data suggest an inhibitory effect of halofuginone on the muscle histopathology at very early stages of dysferlinopathy, and enhancement of muscle performance. These results offer new opportunities for early pharmaceutical treatment in dysferlinopathies with favorable outcomes at later stages of life.
Collapse
Affiliation(s)
- Hila Barzilai-Tutsch
- Department of Animal Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Olga Genin
- Institute of Animal Science, the Volcani Center, Bet Dagan 52505, Israel
| | - Mark Pines
- Institute of Animal Science, the Volcani Center, Bet Dagan 52505, Israel
| | - Orna Halevy
- Department of Animal Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel.
| |
Collapse
|
9
|
Barzilai-Tutsch H, Dewulf M, Lamaze C, Butler Browne G, Pines M, Halevy O. A promotive effect for halofuginone on membrane repair and synaptotagmin-7 levels in muscle cells of dysferlin-null mice. Hum Mol Genet 2019; 27:2817-2829. [PMID: 29771357 DOI: 10.1093/hmg/ddy185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/09/2018] [Indexed: 11/14/2022] Open
Abstract
In the absence of dysferlin, skeletal muscle cells fail to reseal properly after injury, resulting in slow progress of the dysferlinopathy muscular dystrophy (MD). Halofuginone, a leading agent in preventing fibrosis in MDs, was tested for its effects on membrane resealing post-injury. A hypo-osmotic shock assay on myotubes derived from wild-type (Wt) and dysferlin-null (dysf-/-) mice revealed that pre-treatment with halofuginone reduces the percentage of membrane-ruptured myotubes only in dysf-/- myotubes. In laser-induced injury of isolated myofibers, halofuginone decreased the amount of FM1-43 at the injury site of dysf-/- myofibers while having no effect on Wt myofibers. These results implicate halofuginone in ameliorating muscle-cell membrane integrity in dysf-/- mice. Halofuginone increased lysosome scattering across the cytosol of dysf-/- primary myoblasts, in a protein kinase/extracellular signal-regulated protein kinase and phosphoinositide 3 kinase/Akt-dependent manner, in agreement with an elevation in lysosomal exocytotic activity in these cells. A spatial- and age-dependent synaptotagmin-7 (Syt-7) expression pattern was shown in dysf-/- versus Wt mice, suggesting that these pattern alterations are related to the disease progress and that sytnaptotagmin-7 may be compensating for the lack of dysferlin at least with regard to membrane resealing post-injury. While halofuginone did not affect patch-repair-complex key proteins, it further enhanced Syt-7 levels and its spread across the cytosol in dysf-/- myofibers and muscle tissue, and increased its co-localization with lysosomes. Together, the data imply a novel role for halofuginone in membrane-resealing events with Syt-7 possibly taking part in these events.
Collapse
Affiliation(s)
- Hila Barzilai-Tutsch
- Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Melissa Dewulf
- Membrane Dynamics and Mechanics of Intracellular Signaling Laboratory, Institut Curie-Centre de Recherche, PSL Research University, INSERM U1143, Centre national de la recherche scientifique, UMR 3666, Paris, France
| | - Christophe Lamaze
- Membrane Dynamics and Mechanics of Intracellular Signaling Laboratory, Institut Curie-Centre de Recherche, PSL Research University, INSERM U1143, Centre national de la recherche scientifique, UMR 3666, Paris, France
| | - Gillian Butler Browne
- Center for Research in Myology, CNRS FRE 3617, UPMC Univ Paris 06, UM76, INSERM U974, Sorbonne Universités, Paris, France
| | - Mark Pines
- The Volcani Center, Institute of Animal Science, Bet Dagan 52505, Israel
| | - Orna Halevy
- Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
10
|
Engl T, Rutz J, Maxeiner S, Juengel E, Roos F, Khoder W, Bechstein WO, Nelson K, Tsaur I, Haferkamp A, Blaheta RA. mTOR inhibition reduces growth and adhesion of hepatocellular carcinoma cells in vitro. Mol Med Rep 2017; 16:7064-7071. [PMID: 28901501 DOI: 10.3892/mmr.2017.7401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 07/07/2017] [Indexed: 11/06/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) signaling is typically increased in hepatocellular carcinoma (HCC). A panel of HCC cell lines (HepG2, Hep3B and HuH6) was exposed to various concentrations of the mTOR inhibitors, everolimus and temsirolimus, in order to investigate their effects on cell growth, clonal formation, cell cycle progression, and adhesion and chemotactic migration using MTT and clonal cell growth assays, fluorometric detection of cell cycle phases and a Boyden chamber assay. In addition, integrin α and β adhesion receptors were analyzed by flow cytometry and blocking studies using function blocking monoclonal antibodies were conducted to explore functional relevance. The results demonstrated that everolimus and temsirolimus significantly suppressed HCC cell growth and clonal formation, at 0.1 or 1 nM (depending on the cell line). In addition, the number of cells in G0/G1 phase was increased in response to drug treatment, whereas the number of G2/M phase cells was decreased. Drug treatment also considerably suppressed HCC cell adhesion to immobilized collagen. Integrin profiling revealed strong expression of integrin α1, α2, α6 and β1 subtypes; and integrin α1 was upregulated in response to mTOR inhibition. Suppression of integrin α1 did not affect cell growth; however, it did significantly decrease adhesion and chemotaxis, with the influence on adhesion being greater than that on motility. Due to a positive association between integrin α1 expression and the extent of adhesion, whereby reduced receptor expression was correlated to decreased cell adhesion, it may be hypothesized that the adhesion‑blocking effects of mTOR inhibitors are not associated with mechanical contact inhibition of the α1 receptor but with integrin α1‑dependent suppression of oncogenic signaling, thus preventing tumor cell‑matrix interaction.
Collapse
Affiliation(s)
- Tobias Engl
- Department of Urology, Goethe‑University, D‑60590 Frankfurt am Main, Germany
| | - Jochen Rutz
- Department of Urology, Goethe‑University, D‑60590 Frankfurt am Main, Germany
| | - Sebastian Maxeiner
- Department of Urology, Goethe‑University, D‑60590 Frankfurt am Main, Germany
| | - Eva Juengel
- Department of Urology, Goethe‑University, D‑60590 Frankfurt am Main, Germany
| | - Frederik Roos
- Department of Urology, Goethe‑University, D‑60590 Frankfurt am Main, Germany
| | - Wael Khoder
- Department of Urology, Goethe‑University, D‑60590 Frankfurt am Main, Germany
| | - Wolf O Bechstein
- Department of Urology, Goethe‑University, D‑60590 Frankfurt am Main, Germany
| | - Karen Nelson
- Department of Vascular and Endovascular Surgery, Goethe‑University, D‑60590 Frankfurt am Main, Germany
| | - Igor Tsaur
- Department of Urology, Goethe‑University, D‑60590 Frankfurt am Main, Germany
| | - Axel Haferkamp
- Department of Urology, Goethe‑University, D‑60590 Frankfurt am Main, Germany
| | - Roman A Blaheta
- Department of Urology, Goethe‑University, D‑60590 Frankfurt am Main, Germany
| |
Collapse
|
11
|
Bai Q, Yan H, Sheng Y, Jin Y, Shi L, Ji L, Wang Z. Long-term acetaminophen treatment induced liver fibrosis in mice and the involvement of Egr-1. Toxicology 2017; 382:47-58. [PMID: 28286204 DOI: 10.1016/j.tox.2017.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 12/19/2022]
Abstract
Acetaminophen (APAP)-induced acute liver injury has already been well studied. However, whether long-term administration of APAP will cause liver fibrosis is still not very clear. This study aims to investigate the liver fibrosis in mice induced by long-term APAP treatment and the involvement of early growth response 1 (Egr-1). C57BL/6 mice were orally given with APAP (200, 300mg/kg) for 2, 6 or 10 weeks, respectively. Liver hydroxyproline content, collagen deposition and inflammatory cells infiltration were increased in mice treated with APAP (200, 300mg/kg) for 6 or 10 weeks. Liver mRNA expression of collagen (COL)1a1, Col3a1, transforming growth factor-β (TGF-β) and serum contents of COL1, COL3, TGF-β were all increased in APAP-treated mice. Liver expression of α-smooth muscle actin (α-SMA) and phosphorylated ERK1/2 and Smad2/3 were all increased in APAP-treated mice. Furthermore, increased liver mRNA expression of Egr-1 and its subsequent nuclear translocation were found in APAP-treated mice. Egr-1 knock-out mice were further applied. APAP-induced liver fibrosis was found to be more serious in Egr-1 knock-out mice. N-acetyl-p-benzoquinoneimine (NAPQI), the APAP hepatotoxic metabolite, increased cellular mRNA expression of α-SMA, Col1a1, Col3a1, TGF-β, induced ERK1/2 and Smad2/3 phosphorylation and Egr-1 nuclear translocation in hepatic stellate LX2 cells. In conclusion, long-term administration of APAP induced liver fibrosis in mice, and Egr-1 was critically involved in this process. This study points out a warning and reference for patients with long-term APAP ingestion in clinic.
Collapse
Affiliation(s)
- Qingyun Bai
- Shanghai Key Laboratory of Complex Prescription, MOE Key Laboratory for Standardization of Chinese Medicines and SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; College of Chemistry and Chemical Engineering, Yichun University, Yichun 336000, China
| | - Hongyu Yan
- Shanghai Key Laboratory of Complex Prescription, MOE Key Laboratory for Standardization of Chinese Medicines and SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuchen Sheng
- Center for Drug Safety Evaluation and Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yao Jin
- Shanghai Key Laboratory of Complex Prescription, MOE Key Laboratory for Standardization of Chinese Medicines and SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liang Shi
- Shanghai Key Laboratory of Complex Prescription, MOE Key Laboratory for Standardization of Chinese Medicines and SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lili Ji
- Shanghai Key Laboratory of Complex Prescription, MOE Key Laboratory for Standardization of Chinese Medicines and SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhengtao Wang
- Shanghai Key Laboratory of Complex Prescription, MOE Key Laboratory for Standardization of Chinese Medicines and SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
12
|
Chen G, Gong R, Shi X, Yang D, Zhang G, Lu A, Yue J, Bian Z. Halofuginone and artemisinin synergistically arrest cancer cells at the G1/G0 phase by upregulating p21Cip1 and p27Kip1. Oncotarget 2016; 7:50302-50314. [PMID: 27385212 PMCID: PMC5226584 DOI: 10.18632/oncotarget.10367] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/09/2016] [Indexed: 01/02/2023] Open
Abstract
Combinational drug therapy is one of the most promising strategies in modern anticancer research. Traditional Chinese medicine (TCM) formulas represent a wealth of complex combinations proven successful over centuries of clinical application. One such formula used to treat a variety of diseases, including cancer, contains two herbs, whose main active components are Halofuginone (HF) and Artemisinin (ATS). Here we studied the anticancer synergism of HF and ATS in various cancer cell lines and in a xenograft nude mice model. We found that the HF-ATS combination arrested more cells at the G1/G0 phase than either one alone, with the concomitant increased levels of CDK2 inhibitors, p21Cip1 and p27Kip1. By knocking down p21Cip1 and p27Kip1 separately or simultaneously in HCT116 cells and MCF-7 cells, we found that p21Cip1 was required for HF induced G1/G0 arrest, whereas p21Cip1 and p27Kip1 were both required for ATS or HF-ATS combination-mediated cell cycle arrest. Moreover, HF-ATS combination synergistically inhibited tumor growth in xenograft nude mice, and this was associated with the increased levels of p21Cip1 and p27Kip1. Collectively, these data indicate that the upregulation of p21Cip1 and p27Kip1 contributes to the synergistic anticancer effect of the HF-ATS combination.
Collapse
Affiliation(s)
- Guoqing Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Ruihong Gong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xianli Shi
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Dajian Yang
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Ge Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jianbo Yue
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Zhaoxiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
13
|
Barzilai-Tutsch H, Bodanovsky A, Maimon H, Pines M, Halevy O. Halofuginone promotes satellite cell activation and survival in muscular dystrophies. Biochim Biophys Acta Mol Basis Dis 2015; 1862:1-11. [PMID: 26454207 DOI: 10.1016/j.bbadis.2015.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 11/18/2022]
Abstract
Halofuginone is a leading agent in preventing fibrosis and inflammation in various muscular dystrophies. We hypothesized that in addition to these actions, halofuginone directly promotes the cell-cycle events of satellite cells in the mdx and dysf(-/-) mouse models of early-onset Duchenne muscular dystrophy and late-onset dysferlinopathy, respectively. In both models, addition of halofuginone to freshly prepared single gastrocnemius myofibers derived from 6-week-old mice increased BrdU incorporation at as early as 18h of incubation, as well as phospho-histone H3 (PHH3) and MyoD protein expression in the attached satellite cells, while having no apparent effect on myofibers derived from wild-type mice. BrdU incorporation was abolished by an inhibitor of mitogen-activated protein kinase/extracellular signal-regulated protein kinase, suggesting involvement of this pathway in mediating halofuginone's effects on cell-cycle events. In cultures of myofibers and myoblasts isolated from dysf(-/-) mice, halofuginone reduced Bax and induced Bcl2 expression levels and induced Akt phosphorylation in a time-dependent manner. Addition of an inhibitor of the phosphinositide-3-kinase/Akt pathway reversed the halofuginone-induced cell survival, suggesting this pathway's involvement in mediating halofuginone's effects on survival. Thus, in addition to its known role in inhibiting fibrosis and inflammation, halofuginone plays a direct role in satellite cell activity and survival in muscular dystrophies, regardless of the mutation. These actions are of the utmost importance for improving muscle pathology and function in muscular dystrophies.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Cell Cycle/drug effects
- Cell Survival/drug effects
- MAP Kinase Signaling System/drug effects
- Male
- Mice
- Mice, Inbred C57BL
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscular Dystrophies, Limb-Girdle/drug therapy
- Muscular Dystrophies, Limb-Girdle/metabolism
- Muscular Dystrophies, Limb-Girdle/pathology
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Phosphatidylinositol 3-Kinases/metabolism
- Piperidines/pharmacology
- Piperidines/therapeutic use
- Proto-Oncogene Proteins c-akt/metabolism
- Quinazolinones/pharmacology
- Quinazolinones/therapeutic use
- Satellite Cells, Skeletal Muscle/cytology
- Satellite Cells, Skeletal Muscle/drug effects
- Satellite Cells, Skeletal Muscle/metabolism
- Satellite Cells, Skeletal Muscle/pathology
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Hila Barzilai-Tutsch
- Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Anna Bodanovsky
- Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Hadar Maimon
- Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Mark Pines
- Institute of Animal Science, The Volcani Center, Bet Dagan 52505, Israel
| | - Orna Halevy
- Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
14
|
Pines M. Halofuginone for fibrosis, regeneration and cancer in the gastrointestinal tract. World J Gastroenterol 2014; 20:14778-14786. [PMID: 25356039 PMCID: PMC4209542 DOI: 10.3748/wjg.v20.i40.14778] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 05/01/2014] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
Organ fibrosis and architectural remodeling can severely disrupt tissue function, often with fatal consequences. Fibrosis is the end result of chronic inflammatory reactions induced by a variety of stimuli, and the key cellular mediator of fibrosis comprises the myofibroblasts which, when activated, serve as the primary collagen-producing cells. Complex links exist between fibrosis, regeneration and carcinogenesis, and the concept that all organs contain common tissue fibrosis pathways that could be potential therapeutic targets is an attractive one. Because of the major impact of fibrosis on human health there is an unmet need for safe and effective therapies that directly target fibrosis. Halofuginone inhibits tissue fibrosis and regeneration, and thereby affects the development of tumors in various tissues along the gastrointestinal tract. The high efficacy of halofuginone in reducing the fibrosis that affects tumor growth and tissue regeneration is probably due to its dual role in inhibiting the signaling pathway of transforming growth factor β, on the one hand, and inhibiting the development of Th17 cells, on the other hand. At present halofuginone is being evaluated in a clinical trial for other fibrotic indication, and any clinical success in that trial would allow the use of halofuginone, also for all other fibrotic indications, including those of the gastrointestinal tract.
Collapse
|
15
|
Inhibition of matrix metalloproteinase-2 by halofuginone is mediated by the Egr1 transcription factor. Anticancer Drugs 2012; 23:1022-31. [DOI: 10.1097/cad.0b013e328357d186] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Establishment of a standardized liver fibrosis model with different pathological stages in rats. Gastroenterol Res Pract 2012; 2012:560345. [PMID: 22761610 PMCID: PMC3384940 DOI: 10.1155/2012/560345] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/05/2012] [Accepted: 04/19/2012] [Indexed: 12/20/2022] Open
Abstract
Objective. To establish a standardized animal model for liver fibrosis with the same assessment criteria for liver fibrosis studies that have been established on a unified platform. Methods. The standardized liver fibrosis model was established using Sprague-Dawley (SD) rats that either received an intraperitoneal injection of carbon tetrachloride (CCl(4)) in small dosages or ingested an ethanol solution. Results. The definite corresponding rules among modeling of different weeks and corresponding serology indices as well as different pathological staging can be observed by modeling with small dosages and slow, individualized, and combined administrations. Conclusion. This method can be used for the standardized establishment of a liver fibrosis model in rats across 5 pathological stages, ranging from S0 to S4, with a high success rate (89.33%) and low death rate (17.3%) because of the application of multiple hypotoxic chemicals for modeling. We refer to the criteria of Histological Grading and Staging of Chronic Hepatitis for Fibrosis established by the 10th World Digestive Disease Academic Conference in Los Angeles in September 1994 (revised in November 2000).
Collapse
|
17
|
Leiba M, Jakubikova J, Klippel S, Mitsiades CS, Hideshima T, Tai YT, Leiba A, Pines M, Richardson PG, Nagler A, Anderson KC. Halofuginone inhibits multiple myeloma growth in vitro and in vivo and enhances cytotoxicity of conventional and novel agents. Br J Haematol 2012; 157:718-31. [PMID: 22533681 DOI: 10.1111/j.1365-2141.2012.09120.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 03/06/2012] [Indexed: 12/13/2022]
Abstract
Multiple Myeloma (MM), a malignancy of plasma cells, remains incurable despite the use of conventional and novel therapies. Halofuginone (HF), a synthetic derivative of quinazolinone alkaloid, has recently been shown to have anti-cancer activity in various preclinical settings. This study demonstrated the anti-tumour activity of HF against a panel of human MM cell lines and primary patient-derived MM cells, regardless of their sensitivity to conventional therapy or novel agents. HF showed anti-MM activity in vivo using a myeloma xenograft mouse model. HF suppressed proliferation of myeloma cells alone and when co-cultured with bone marrow stromal cells. Similarly, HF induced apoptosis in MM cells even in the presence of insulin-like growth factor 1 or interleukin 6. Importantly, HF, even at high doses, did not induce cytotoxicity against CD40 activated peripheral blood mononuclear cells from normal donors. HF treatment induced accumulation of cells in the G(0) /G(1) cell cycle and induction of apoptotic cell death associated with depletion of mitochondrial membrane potential; cleavage of poly (ADP-ribose) polymerase and caspases-3, 8 and 9 as well as down-regulation of anti-apoptotic proteins including Mcl-1 and X-IAP. Multiplex analysis of phosphorylation of diverse components of signalling cascades revealed that HF induced changes in P38MAPK activation; increased phosphorylation of c-jun, c-jun NH(2)-terminal kinase (JNK), p53 and Hsp-27. Importantly, HF triggered synergistic cytotoxicity in combination with lenalidomide, melphalan, dexamethasone, and doxorubicin. Taken together, these preclinical studies provide the preclinical framework for future clinical studies of HF in MM.
Collapse
Affiliation(s)
- Merav Leiba
- Department of Medical Oncology, The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Skinner AL, Vartia AA, Williams TD, Laurence JS. Enzyme activity of phosphatase of regenerating liver is controlled by the redox environment and its C-terminal residues. Biochemistry 2009; 48:4262-72. [PMID: 19341304 DOI: 10.1021/bi900241k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Phosphatase of regenerating liver-1 (PRL-1) belongs to a unique subfamily of protein tyrosine phosphatases (PTPases) associated with oncogenic and metastatic phenotypes. While considerable evidence supports a role for PRL-1 in promoting proliferation, the biological regulators and effectors of PRL-1 activity remain unknown. PRL-1 activity is inhibited by disulfide bond formation at the active site in vitro, suggesting PRL-1 may be susceptible to redox regulation in vivo. Because PRL-1 has been observed to localize to several different subcellular locations and cellular redox conditions vary with tissue type, age, stage of cell cycle, and subcellular location, we determined the reduction potential of the active site disulfide bond that controls phosphatase activity to improve our understanding of the function of PRL-1 in various cellular environments. We used high-resolution solution NMR spectroscopy to measure the potential and found it to be -364.3 +/- 1.5 mV. Because normal cellular environments range from -170 to -320 mV, we concluded that nascent PRL-1 would be primarily oxidized inside cells. Our studies show that a significant conformational change accompanies activation, suggesting a post-translational modification may alter the reduction potential, conferring activity. We further demonstrate that alteration of the C-terminus renders the protein reduced and active in vitro, implying the C-terminus is an important regulator of PRL-1 function. These data provide a basis for understanding how subcellular localization regulates the activity of PRL-1 and, with further investigation, may help reveal how PRL-1 promotes unique outcomes in different cellular systems, including proliferation in both normal and diseased states.
Collapse
Affiliation(s)
- Andria L Skinner
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, USA
| | | | | | | |
Collapse
|
19
|
Inhibition of transforming growth factor beta signaling by halofuginone as a modality for pancreas fibrosis prevention. Pancreas 2009; 38:427-35. [PMID: 19188864 DOI: 10.1097/mpa.0b013e3181967670] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Chronic pancreatitis is characterized by inflammation and fibrosis. We evaluated the efficacy of halofuginone, an inhibitor of collagen synthesis and myofibroblast activation, in preventing cerulein-induced pancreas fibrosis. METHODS Collagen synthesis was evaluated by in situ hybridization and staining. Levels of prolyl 4-hydroxylase beta (P4Hbeta), cytoglobin/stellate cell activation-associated protein (Cygb/STAP), transgelin, tissue inhibitors of metalloproteinases, serum response factor, transforming growth factor beta (TGFbeta), Smad3, and pancreatitis-associated protein 1 (PAP-1) were determined by immunohistochemistry. Metalloproteinase activity was evaluated by zymography. RESULTS Halofuginone prevented cerulein-dependent increase in collagen synthesis, collagen cross-linking enzyme P4Hbeta, Cygb/STAP, and tissue inhibitors of metalloproteinase 2. Halofuginone did not affect TGFbeta levels in cerulein-treated mice but inhibited serum response factor synthesis and Smad3 phosphorylation. In culture, halofuginone inhibited pancreatic stellate cell (PSC) proliferation and TGFbeta-dependent increase in Cygb/STAP and transgelin synthesis and metalloproteinase 2 activity. Halofuginone increased c-Jun N-terminal kinase phosphorylation in PSCs derived from cerulein-treated mice. Halofuginone prevented the increase in acinar cell proliferation and further increased the cerulein-dependent PAP-1 synthesis. CONCLUSIONS Halofuginone inhibits Smad3 phosphorylation and increases c-Jun N-terminal kinase phosphorylation, leading to the inhibition of PSC activation and consequent prevention of fibrosis. Halofuginone increased the synthesis of PAP-1, which further reduces pancreas fibrosis. Thus, halofuginone might serve as a novel therapy for pancreas fibrosis.
Collapse
|
20
|
Sato S, Kawamura H, Takemoto M, Maezawa Y, Fujimoto M, Shimoyama T, Koshizaka M, Tsurutani Y, Watanabe A, Ueda S, Halevi K, Saito Y, Yokote K. Halofuginone prevents extracellular matrix deposition in diabetic nephropathy. Biochem Biophys Res Commun 2008; 379:411-6. [PMID: 19114027 DOI: 10.1016/j.bbrc.2008.12.088] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Accepted: 12/16/2008] [Indexed: 12/22/2022]
Abstract
Transforming growth factor-beta (TGF-beta) is known to promote the accumulation of extracellular matrix (ECM) and the development of diabetic nephropathy. Halofuginone, an analog of febrifugine, has been shown to block TGF-beta(1) signaling and subsequent type I collagen production. Here, the inhibitory effect of halofuginone on diabetic nephropathy was examined. Halofuginone suppressed Smad2 phosphorylation induced by TGF-beta(1) in cultured mesangial cells. In addition, the expression of TGF-beta type 2 receptor decreased by halofuginone. Halofuginone showed an inhibitory effect on type I collagen and fibronectin expression promoted by TGF-beta(1). An in vivo experiment using db/db mice confirmed the ability of halofuginone to suppress mesangial expansion and fibronectin overexpression in the kidneys. Moreover, an analysis of urinary 8-OHdG level and dihydroethidium fluorescence revealed that halofuginone reduced oxidative stress in the glomerulus of db/db mice. These data indicate that halofuginone prevents ECM deposition and decreases oxidative stress, thereby suppressing the progression of diabetic nephropathy.
Collapse
Affiliation(s)
- Seiya Sato
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Aberrant protein tyrosine phosphorylation resulting from the altered activity of protein tyrosine phosphatases (PTPs) is increasingly being implicated in the genesis and progression of human cancer. Accumulating evidence indicates that the dysregulated expression of members of the phosphatase of regenerating liver (PRL) subgroup of PTPs is linked to these processes. Enhanced expression of the PRLs, notably PRL-1 and PRL-3, promotes the acquisition of cellular properties that confer tumorigenic and metastatic abilities. Up-regulation of PRL-3 is associated with the progression and eventual metastasis of several types of human cancer. Indeed, PRL-3 shows promise as a biomarker and prognostic indicator in colorectal, breast, and gastric cancers. However, the substrates and molecular mechanisms of action of the PRLs have remained elusive. Recent findings indicate that PRLs may function in regulating cell adhesion structures to effect epithelial-mesenchymal transition. The identification of PRL substrates is key to understanding their roles in cancer progression and exploiting their potential as exciting new therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Darrell C Bessette
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
22
|
Tacheau C, Michel L, Farge D, Mauviel A, Verrecchia F. Involvement of ERK signaling in halofuginone-driven inhibition of fibroblast ability to contract collagen lattices. Eur J Pharmacol 2007; 573:65-9. [PMID: 17706637 DOI: 10.1016/j.ejphar.2007.07.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 07/06/2007] [Accepted: 07/16/2007] [Indexed: 01/22/2023]
Abstract
Halofuginone, an alkaloid isolated from the plant Dichroa febrifuga, has been shown to be a potent inhibitor of tissue fibrosis. We herein demonstrate that, at concentrations below 10(-7) M, halofuginone does not affect the cell cycle but efficiently induces extracellular signal-regulated kinases(1,2) (ERK(1,2)), p38 and Jun NH2-terminal kinases(1,2) (JNK(1,2)) phosphorylation. In addition, at these non cytotoxic concentrations, halofuginone diminishes the capacity of fibroblasts to contract mechanically unloaded collagen lattices, an effect that is specifically blocked by the ERK inhibitors PD98059 and U0126, not by inhibitors of the JNK or p38 pathways. These data thus indicate that the inhibitory effect of halofuginone on fibroblast contractile activity, a key function for wound healing implicated in the development of tissue fibrosis, is an ERK-mediated mechanism.
Collapse
|
23
|
Gnainsky Y, Kushnirsky Z, Bilu G, Hagai Y, Genina O, Volpin H, Bruck R, Spira G, Nagler A, Kawada N, Yoshizato K, Reinhardt DP, Libermann TA, Pines M. Gene expression during chemically induced liver fibrosis: effect of halofuginone on TGF-beta signaling. Cell Tissue Res 2006; 328:153-66. [PMID: 17180598 DOI: 10.1007/s00441-006-0330-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 08/14/2006] [Indexed: 01/07/2023]
Abstract
Hepatic fibrosis is associated with the activation of stellate cells (HSCs), the major source of extracellular matrix (ECM) proteins. Transforming growth factor-beta (TGF-beta), signaling via Smad3, is the most profibrogenic cytokine and the major promoter of ECM synthesis. Halofuginone, an inhibitor of liver fibrosis, inhibits TGF-beta-dependent Smad3 phosphorylation in human HSCs in culture. We have used transcriptional profiling to evaluate the effect of halofuginone on gene expression during the progression of thioacetamide (TAA)-induced liver fibrosis in the rat and have focused on genes that are associated with TGF-beta. TAA treatment causes alterations in the expression of 7% of liver genes. Halofuginone treatment prevents the changes in the expression of 41% of these genes and results in the inhibition of HSC activation and collagen synthesis. During the early stages of the disease, halofuginone affects genes involved in alcohol, lipid, protein, and phosphate metabolism and cell adhesion and, at later stages, in the cell cycle (cell development, differentiation, cell proliferation, and apoptosis). The activation of TGF-beta-dependent genes, such as tartrate-resistant acid phosphatase, its putative substrate osteopontin, stellate cell activation-association protein, and fibrillin-1, during chemically induced fibrosis is prevented by halofuginone. This study thus highlights the role of TGF-beta signaling in liver fibrosis and especially its potential for pharmacological intervention. Halofuginone, which has demonstrated efficacy and tolerance in animals and humans, could become an effective and novel therapy for liver fibrosis.
Collapse
Affiliation(s)
- Y Gnainsky
- Institute of Animal Sciences, The Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|