1
|
Emanuilov AI, Budnik AF, Masliukov PM. Somatostatin-immunoreactive neurons of the rat gut during the development. Histochem Cell Biol 2024; 162:385-402. [PMID: 39153131 DOI: 10.1007/s00418-024-02322-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Somatostatin (SST) is a peptide expressed in the peripheral and central nervous systems, as well as in endocrine and immune cells. The aim of the current study is to determine the percentage of SST immunoreactive (IR) neurons and their colocalization with choline acetyltransferase (ChAT), neuronal nitric oxide synthase (nNOS), neuropeptide Y (NPY), and glial fibrillary acidic protein (GFAP) in the myenteric plexus (MP) and submucous plexus (SP) of the small intestine (SI) and large intestine (LI) of rats across different age groups from newborn to senescence using immunohistochemistry. In the MP of the SI and LI, the percentage of SST-IR neurons significantly increased during early postnatal development from 12 ± 2.4 (SI) and 13 ± 3.0 (LI) in newborn rats to 23 ± 1.5 (SI) and 18 ± 1.6 (LI) in 20-day-old animals, remaining stable until 60 days of age. The proportion of SST-IR cells then decreased in aged 2-year-old animals to 14 ± 2.0 (SI) and 10 ± 2.6 (LI). In the SP, the percentage of SST-IR neurons significantly rose from 22 ± 3.2 (SI) and 23 ± 1.7 (LI) in newborn rats to 42 ± 4.0 in 20-day-old animals (SI) and 32 ± 4.9 in 30-day-old animals (LI), before declining in aged 2-year-old animals to 21 ± 2.6 (SI) and 28 ± 7.4 (LI). Between birth and 60 days of age, 97-98% of SST-IR neurons in the MP and SP colocalized with ChAT in both plexuses of the SI and LI. The percentage of SST/ChAT neurons decreased in old rats to 85 ± 5.0 (SI) and 90 ± 3.8 (LI) in the MP and 89 ± 3.2 (SI) and 89 ± 1.6 (LI) in the SP. Conversely, in young rats, only a few SST-IR neurons colocalized with nNOS, but this percentage significantly increased in 2-year-old rats. The percentage of SST/NPY-IR neurons exhibited considerable variation throughout postnatal development, with no significant differences across different age groups in both the MP and SP of both intestines. No colocalization of SST with GFAP was observed in any of the studied animals. In conclusion, the expression of SST in enteric neurons increases in young rats and decreases in senescence, accompanied by changes in SST colocalization with ChAT and nNOS.
Collapse
Affiliation(s)
- Andrey I Emanuilov
- Department of Human Anatomy, Yaroslavl State Medical University, Yaroslavl, Russia
| | - Antonina F Budnik
- Department of Normal and Pathological Anatomy, Kabardino-Balkarian State University Named After H.M. Berbekov, Nalchik, Russia
| | - Petr M Masliukov
- Department of Human Anatomy, Yaroslavl State Medical University, Yaroslavl, Russia.
- Department of Normal Physiology and Biophysics, Yaroslavl State Medical University, Revoliucionnaya 5, Yaroslavl, Russia, 150000.
| |
Collapse
|
2
|
Moura MM, Monteiro A, Salgado AJ, Silva NA, Monteiro S. Disrupted autonomic pathways in spinal cord injury: Implications for the immune regulation. Neurobiol Dis 2024; 195:106500. [PMID: 38614275 DOI: 10.1016/j.nbd.2024.106500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024] Open
Abstract
Spinal Cord Injury (SCI) disrupts critical autonomic pathways responsible for the regulation of the immune function. Consequently, individuals with SCI often exhibit a spectrum of immune dysfunctions ranging from the development of damaging pro-inflammatory responses to severe immunosuppression. Thus, it is imperative to gain a more comprehensive understanding of the extent and mechanisms through which SCI-induced autonomic dysfunction influences the immune response. In this review, we provide an overview of the anatomical organization and physiology of the autonomic nervous system (ANS), elucidating how SCI impacts its function, with a particular focus on lymphoid organs and immune activity. We highlight recent advances in understanding how intraspinal plasticity that follows SCI may contribute to aberrant autonomic activity in lymphoid organs. Additionally, we discuss how sympathetic mediators released by these neuron terminals affect immune cell function. Finally, we discuss emerging innovative technologies and potential clinical interventions targeting the ANS as a strategy to restore the normal regulation of the immune response in individuals with SCI.
Collapse
Affiliation(s)
- Maria M Moura
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal
| | - Andreia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal
| | - Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal.
| |
Collapse
|
3
|
Herath M, Cho E, Marklund U, Franks AE, Bornstein JC, Hill-Yardin EL. Quantitative Spatial Analysis of Neuroligin-3 mRNA Expression in the Enteric Nervous System Reveals a Potential Role in Neuronal-Glial Synapses and Reduced Expression in Nlgn3R451C Mice. Biomolecules 2023; 13:1063. [PMID: 37509099 PMCID: PMC10377306 DOI: 10.3390/biom13071063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Mutations in the Neuroligin-3 (Nlgn3) gene are implicated in autism spectrum disorder (ASD) and gastrointestinal (GI) dysfunction, but cellular Nlgn3 expression in the enteric nervous system remains to be characterised. We combined RNAScope in situ hybridization and immunofluorescence to measure Nlgn3 mRNA expression in cholinergic and VIP-expressing submucosal neurons, nitrergic and calretinin-containing myenteric neurons and glial cells in both WT and Nlgn3R451C mutant mice. We measured Nlgn3 mRNA neuronal and glial expression via quantitative three-dimensional image analysis. To validate dual RNAScope/immunofluorescence data, we interrogated available single-cell RNA sequencing (scRNASeq) data to assess for Nlgn3, Nlgn1, Nlgn2 and their binding partners, Nrxn1-3, MGDA1 and MGDA2, in enteric neural subsets. Most submucosal and myenteric neurons expressed Nlgn3 mRNA. In contrast to other Nlgns and binding partners, Nlgn3 was strongly expressed in enteric glia, suggesting a role for neuroligin-3 in mediating enteric neuron-glia interactions. The autism-associated R451C mutation reduces Nlgn3 mRNA expression in cholinergic but not in VIPergic submucosal neurons. In the myenteric plexus, Nlgn3 mRNA levels are reduced in calretinin, nNOS-labelled neurons and S100 β -labelled glia. We provide a comprehensive cellular profile for neuroligin-3 expression in ileal neuronal subpopulations of mice expressing the R451C autism-associated mutation in Nlgn3, which may contribute to the understanding of the pathophysiology of GI dysfunction in ASD.
Collapse
Affiliation(s)
- Madushani Herath
- Department of Anatomy & Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ellie Cho
- Biological Optical Microscopy Platform, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ulrika Marklund
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Ashley E Franks
- Department of Microbiology, Anatomy Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
| | - Joel C Bornstein
- Department of Anatomy & Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Elisa L Hill-Yardin
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
4
|
Heumüller-Klug S, Maurer K, Tapia-Laliena MÁ, Sticht C, Christmann A, Mörz H, Khasanov R, Wink E, Schulte S, Greffrath W, Treede RD, Wessel LM, Schäfer KH. Impact of cryopreservation on viability, gene expression and function of enteric nervous system derived neurospheres. Front Cell Dev Biol 2023; 11:1196472. [PMID: 37377739 PMCID: PMC10291272 DOI: 10.3389/fcell.2023.1196472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction: Impairment of both the central and peripheral nervous system is a major cause of mortality and disability. It varies from an affection of the brain to various types of enteric dysganglionosis. Congenital enteric dysganglionosis is characterized by the local absence of intrinsic innervation due to deficits in either migration, proliferation or differentiation of neural stem cells. Despite surgery, children's quality of life is reduced. Neural stem cell transplantation seems a promising therapeutic approach, requiring huge amounts of cells and multiple approaches to fully colonize the diseased areas completely. A combination of successful expansion and storage of neural stem cells is needed until a sufficient amount of cells is generated. This must be combined with suitable cell transplantation strategies, that cover all the area affected. Cryopreservation provides the possibility to store cells for long time, unfortunately with side effects, i.e., upon vitality. Methods: In this study we investigate the impact of different freezing and thawing protocols (M1-M4) upon enteric neural stem cell survival, protein and gene expression, and cell function. Results: Freezing enteric nervous system derived neurospheres (ENSdN) following slow-freezing protocols (M1-3) resulted in higher survival rates than flash-freezing (M4). RNA expression profiles were least affected by freezing protocols M1/2, whereas the protein expression of ENSdN remained unchanged after treatment with protocol M1 only. Cells treated with the most promising freezing protocol (M1, slow freezing in fetal calf serum plus 10% DMSO) were subsequently investigated using single-cell calcium imaging. Freezing of ENSdN did not alter the increase in intracellular calcium in response to a specific set of stimuli. Single cells could be assigned to functional subgroups according to response patterns and a significant shift towards cells responding to nicotine was observed after freezing. Discussion: The results demonstrate that cryopreservation of ENSdN is possible with reduced viability, only slight changes in protein/gene expression patterns and without an impact on the neuronal function of different enteric nervous system cell subtypes, with the exception of a subtle upregulation of cells expressing nicotinergic acetylcholine receptors. In summary, cryopreservation presents a good method to store sufficient amounts of enteric neural stem cells without neuronal impairment, in order to enable subsequent transplantation of cells into compromised tissues.
Collapse
Affiliation(s)
- Sabine Heumüller-Klug
- Department of Pediatric Surgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Kristina Maurer
- Department of Pediatric Surgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - María Á. Tapia-Laliena
- Department of Pediatric Surgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Carsten Sticht
- Medical Research Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Anne Christmann
- AGENS, University of Applied Sciences Kaiserslautern Campus Zweibrücken, Kaiserslautern, Germany
| | - Handan Mörz
- Mannheim Center for Translational Neuroscience (MCTN), Department of Neurophysiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rasul Khasanov
- Department of Pediatric Surgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Elvira Wink
- Department of Pediatric Surgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Steven Schulte
- AGENS, University of Applied Sciences Kaiserslautern Campus Zweibrücken, Kaiserslautern, Germany
| | - Wolfgang Greffrath
- Mannheim Center for Translational Neuroscience (MCTN), Department of Neurophysiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rolf-Detlef Treede
- Mannheim Center for Translational Neuroscience (MCTN), Department of Neurophysiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Lucas M. Wessel
- Department of Pediatric Surgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Karl-Herbert Schäfer
- AGENS, University of Applied Sciences Kaiserslautern Campus Zweibrücken, Kaiserslautern, Germany
| |
Collapse
|
5
|
Pupim ACE, Basso CR, Machado CCA, Watanabe PS, Fernandes GSA, ErthalL RP, Sodré GBC, Guarnier FA, Simão ANC, Araújo EJA. Long-term and low dose oral malathion exposure causes morphophysiological changes in the colon of rats. Life Sci 2023; 327:121840. [PMID: 37290667 DOI: 10.1016/j.lfs.2023.121840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Malathion (MAL) is an organophosphate insecticide that inhibits cholinesterases, used to control pests in agriculture and to combat mosquitoes that transmit various arboviruses. As acetylcholine is one of the major neurotransmitters of the enteric nervous system (ENS), humans exposed to MAL by ingestion of contaminated food and water can develop symptoms due disfunction of the gastrointestinal tract. Although the deleterious effects after exposure to high doses are recognized, little is known about the long-term and low-dose effects of this pesticide on the structure and motility of the colon. AIMS to evaluate the effects of prolonged oral exposure to low levels of MAL on the wall structure and colonic motility parameters of young rats. MAIN METHODS The animals were divided into three groups: control, and groups that received 10 or 50 mg/kg of MAL via gavage for 40 days. The colon was collected for histological analysis and analysis of the ENS through the evaluation of total neurons and subpopulations of the myenteric and submucosal plexuses. Cholinesterase activity and functional analyzes of the colon were evaluated. KEY FINDINGS MAL treatments (10 and 50 mg/Kg) reduced the butyrylcholinesterase activity, and caused enlargement of faecal pellets, atrophy of muscle layers and several changes in neurons of both myenteric and submucosal plexi. Considering colonic contraction, MAL (50 mg/Kg) increased the number of retrograde colonic migratory motor complexes. SIGNIFICANCE The long-term exposure to low doses of MAL affects colonic morphophysiology, which highlights the need to intensify control and care in the use of this pesticide.
Collapse
Affiliation(s)
- A C E Pupim
- Department of Histology, State University of Londrina, Londrina, Paraná, Brazil.
| | - C R Basso
- Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
| | - C C A Machado
- Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
| | - P S Watanabe
- Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
| | - G S A Fernandes
- Department of General Biology, State University of Londrina, Londrina, Paraná, Brazil
| | - R P ErthalL
- Department of General Biology, State University of Londrina, Londrina, Paraná, Brazil
| | - G B C Sodré
- Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
| | - F A Guarnier
- Department of Pathological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - A N C Simão
- Department of Pathology, Clinical Analysis and Toxicology, State University of Londrina, Paraná, Brazil
| | - E J A Araújo
- Department of Histology, State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
6
|
Ma J, Nguyen D, Madas J, Bizanti A, Mistareehi A, Kwiat AM, Chen J, Lin M, Christie R, Hunter P, Heal M, Baldwin S, Tappan S, Furness JB, Powley TL, Cheng ZJ. Mapping the Organization and Morphology of Calcitonin Gene-Related Peptide (CGRP)-IR Axons in the Whole Mouse Stomach. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541811. [PMID: 37398245 PMCID: PMC10312482 DOI: 10.1101/2023.05.23.541811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Nociceptive afferent axons innervate the stomach and send signals to the brain and spinal cord. Peripheral nociceptive afferents can be detected with a variety of markers [e.g., substance P (SP) and calcitonin gene-related peptide (CGRP)]. We recently examined the topographical organization and morphology of SP-immunoreactive (SP-IR) axons in the whole mouse stomach muscular layer. However, the distribution and morphological structure of CGRP-IR axons remain unclear. We used immunohistochemistry labeling and applied a combination of imaging techniques, including confocal and Zeiss Imager M2 microscopy, Neurolucida 360 tracing, and integration of axon tracing data into a 3D stomach scaffold to characterize CGRP-IR axons and terminals in the whole mouse stomach muscular layers. We found that: 1) CGRP-IR axons formed extensive terminal networks in both ventral and dorsal stomachs. 2) CGRP-IR axons densely innervated the blood vessels. 3) CGRP-IR axons ran in parallel with the longitudinal and circular muscles. Some axons ran at angles through the muscular layers. 4) They also formed varicose terminal contacts with individual myenteric ganglion neurons. 5) CGRP-IR occurred in DiI-labeled gastric-projecting neurons in the dorsal root and vagal nodose ganglia, indicating CGRP-IR axons were visceral afferent axons. 6) CGRP-IR axons did not colocalize with tyrosine hydroxylase (TH) or vesicular acetylcholine transporter (VAChT) axons in the stomach, indicating CGRP-IR axons were not visceral efferent axons. 7) CGRP-IR axons were traced and integrated into a 3D stomach scaffold. For the first time, we provided a topographical distribution map of CGRP-IR axon innervation of the whole stomach muscular layers at the cellular/axonal/varicosity scale.
Collapse
|
7
|
Bagyánszki M, Bódi N. Key elements determining the intestinal region-specific environment of enteric neurons in type 1 diabetes. World J Gastroenterol 2023; 29:2704-2716. [PMID: 37274063 PMCID: PMC10237112 DOI: 10.3748/wjg.v29.i18.2704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Diabetes, as a metabolic disorder, is accompanied with several gastrointestinal (GI) symptoms, like abdominal pain, gastroparesis, diarrhoea or constipation. Serious and complex enteric nervous system damage is confirmed in the background of these diabetic motility complaints. The anatomical length of the GI tract, as well as genetic, developmental, structural and functional differences between its segments contribute to the distinct, intestinal region-specific effects of hyperglycemia. These observations support and highlight the importance of a regional approach in diabetes-related enteric neuropathy. Intestinal large and microvessels are essential for the blood supply of enteric ganglia. Bidirectional morpho-functional linkage exists between enteric neurons and enteroglia, however, there is also a reciprocal communication between enteric neurons and immune cells on which intestinal microbial composition has crucial influence. From this point of view, it is more appropriate to say that enteric neurons partake in multidirectional communication and interact with these key players of the intestinal wall. These interplays may differ from segment to segment, thus, the microenvironment of enteric neurons could be considered strictly regional. The goal of this review is to summarize the main tissue components and molecular factors, such as enteric glia cells, interstitial cells of Cajal, gut vasculature, intestinal epithelium, gut microbiota, immune cells, enteroendocrine cells, pro-oxidants, antioxidant molecules and extracellular matrix, which create and determine a gut region-dependent neuronal environment in diabetes.
Collapse
Affiliation(s)
- Mária Bagyánszki
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged H-6726, Hungary
| | - Nikolett Bódi
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged H-6726, Hungary
| |
Collapse
|
8
|
Sharkey KA, Mawe GM. The enteric nervous system. Physiol Rev 2023; 103:1487-1564. [PMID: 36521049 PMCID: PMC9970663 DOI: 10.1152/physrev.00018.2022] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Of all the organ systems in the body, the gastrointestinal tract is the most complicated in terms of the numbers of structures involved, each with different functions, and the numbers and types of signaling molecules utilized. The digestion of food and absorption of nutrients, electrolytes, and water occurs in a hostile luminal environment that contains a large and diverse microbiota. At the core of regulatory control of the digestive and defensive functions of the gastrointestinal tract is the enteric nervous system (ENS), a complex system of neurons and glia in the gut wall. In this review, we discuss 1) the intrinsic neural control of gut functions involved in digestion and 2) how the ENS interacts with the immune system, gut microbiota, and epithelium to maintain mucosal defense and barrier function. We highlight developments that have revolutionized our understanding of the physiology and pathophysiology of enteric neural control. These include a new understanding of the molecular architecture of the ENS, the organization and function of enteric motor circuits, and the roles of enteric glia. We explore the transduction of luminal stimuli by enteroendocrine cells, the regulation of intestinal barrier function by enteric neurons and glia, local immune control by the ENS, and the role of the gut microbiota in regulating the structure and function of the ENS. Multifunctional enteric neurons work together with enteric glial cells, macrophages, interstitial cells, and enteroendocrine cells integrating an array of signals to initiate outputs that are precisely regulated in space and time to control digestion and intestinal homeostasis.
Collapse
Affiliation(s)
- Keith A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gary M Mawe
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
9
|
Nakanishi S, Mantani Y, Ohno N, Morishita R, Yokoyama T, Hoshi N. Histological study on regional specificity of the mucosal nerve network in the rat large intestine. J Vet Med Sci 2023; 85:123-134. [PMID: 36517005 PMCID: PMC10017283 DOI: 10.1292/jvms.22-0433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Our previous studies and others have revealed detailed characteristics of the mucosal nerve network in the small intestine, but much remains unknown about the corresponding network in the large intestine. We herein investigated regional differences in the expression of neurochemical markers, the nerve network structure, and the cells in contact with nerve fibers by histological analysis using both immunohistochemistry and serial block-face scanning electron microscopy (SBF-SEM). Immunohistochemistry revealed that immunopositive structures for protein gene product 9.5, vasoactive intestinal peptide (VIP), calretinin and vesicular acetylcholine transporter were more prevalent in the lamina propria of the ascending colon than the cecum and descending colon (DC). There was no significant difference in the frequency of most neurochemical markers between the cecum and DC, but the frequencies of VIP+ structures were higher in the cecum than in the DC. SBF-SEM analysis showed that the nerve network structure was more developed on the luminal side of the DC than the cecum. The cells that nerve fibers abundantly contacted were subepithelial and lamina propria fibroblast-like cells and macrophages. In addition, nerve fibers in the cecum were in more frequent contact with immune cells such as macrophages and plasma cells than nerve fibers in the DC. Thus, the present histological analysis suggested that the mucosal nerve network in the large intestine possessed both regional universality and various specificities, and revealed the intimate relationship between the nerve network and immune cells, especially in the cecum.
Collapse
Affiliation(s)
- Satoki Nakanishi
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Youhei Mantani
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, School of Medicine, Tochigi, Japan.,Division of Ultrastructural Research, National Institute for Physiological Sciences, Aichi, Japan
| | - Rinako Morishita
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Toshifumi Yokoyama
- Laboratory of Animal Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| |
Collapse
|
10
|
Tarif AMM, Islam MN, Jahan MR, Afrin M, Meher MM, Nozaki K, Masumoto KH, Yanai A, Shinoda K. Neurochemical phenotypes of huntingtin-associated protein 1 in reference to secretomotor and vasodilator neurons in the submucosal plexuses of rodent small intestine. Neurosci Res 2022; 191:13-27. [PMID: 36581175 DOI: 10.1016/j.neures.2022.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/21/2022] [Accepted: 12/25/2022] [Indexed: 12/27/2022]
Abstract
Huntingtin-associated protein 1(HAP1) is an immunohistochemical marker of the stigmoid body (STB). Brain and spinal cord regions with lack of STB/HAP1 immunoreactivity are always neurodegenerative targets, whereas STB/HAP1 abundant regions are usually spared from neurodegeneration. In addition to the brain and spinal cord, HAP1 is abundantly expressed in the excitatory and inhibitory motor neurons in myenteric plexuses of the enteric nervous system (ENS). However, the detailed expression of HAP1 and its neurochemical characterization in submucosal plexuses of ENS are still unknown. In this study, we aimed to clarify the expression and neurochemical characterization of HAP1 in the submucosal plexuses of the small intestine in adult mice and rats. HAP1 was highly expressed in the submucosal plexuses of both rodents. The percentage of HAP1-immunoreactive submucosal neurons was not significantly varied between the intestinal segments of these rodents. Double immunofluorescence results revealed that almost all the cholinergic secretomotor neurons containing ChAT/ CGRP/ somatostatin/ calretinin, non-cholinergic secretomotor neurons containing VIP/NOS/TH/calretinin, and vasodilator neurons containing VIP/calretinin expressed HAP1. Our current study is the first to clarify that STB/HAP1 is expressed in secretomotor and vasodilator neurons of submucosal plexuses, suggesting that STB/HAP1 might modulate or protect the secretomotor and vasodilator functions of submucosal neurons in ENS.
Collapse
Affiliation(s)
- Abu Md Mamun Tarif
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Md Nabiul Islam
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Mir Rubayet Jahan
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan; Department of Anatomy and Histology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Marya Afrin
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan; Department of Anatomy and Histology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mirza Mienur Meher
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan; Department of Basic Laboratory Sciences, Faculty of Medicine and Health Sciences, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755- 8505, Japan
| | - Kanako Nozaki
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Koh-Hei Masumoto
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan
| | - Akie Yanai
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan; Department of Basic Laboratory Sciences, Faculty of Medicine and Health Sciences, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755- 8505, Japan
| | - Koh Shinoda
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Japan.
| |
Collapse
|
11
|
Mozel S, Arciszewski MB. Immunodetection of P2X2 Receptor in Enteric Nervous System Neurons of the Small Intestine of Pigs. Animals (Basel) 2022; 12:ani12243576. [PMID: 36552495 PMCID: PMC9774495 DOI: 10.3390/ani12243576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Extracellular adenosine 5'-triphosphate (ATP) is one of the best-known and frequently studied neurotransmitters. Its broad spectrum of biological activity is conditioned by the activation of purinergic receptors, including the P2X2 receptor. The P2X2 receptor is present in the central and peripheral nervous system of many species, including laboratory animals, domestic animals, and primates. However, the distribution of the P2X2 receptor in the nervous system of the domestic pig, a species increasingly used as an experimental model, is as yet unknown. Therefore, this study aimed to determine the presence of the P2X2 receptor in the neurons of the enteric nervous system (ENS) of the pig small intestine (duodenum, jejunum, and ileum) by the immunofluorescence method. In addition, the chemical code of P2X2-immunoreactive (IR) ENS neurons of the porcine small intestine was analysed by determining the coexistence of selected neuropeptides, i.e., vasoactive intestinal polypeptide (VIP), substance P (sP), and galanin. P2X2-IR neurons were present in the myenteric plexus (MP), outer submucosal plexus (OSP), and inner submucosal plexus (ISP) of all sections of the small intestine (duodenum, jejunum, and ileum). From 44.78 ± 2.24% (duodenum) to 63.74 ± 2.67% (ileum) of MP neurons were P2X2-IR. The corresponding ranges in the OSP ranged from 44.84 ± 1.43% (in the duodenum) to 53.53 ± 1.21% (in the jejunum), and in the ISP, from 53.10 ± 0.97% (duodenum) to 60.57 ± 2.24% (ileum). Immunofluorescence staining revealed the presence of P2X2-IR/galanin-IR and P2X2-IR/VIP-IR neurons in the MP, OSP, and ISP of the sections of the small intestine. The presence of sP was not detected in the P2X2-IR neurons of any ganglia tested in the ENS. Our results indicate for the first time that the P2X2 receptor is present in the MP, ISP, and OSP neurons of all small intestinal segments in pigs, which may suggest that its activation influences the action of the small intestine. Moreover, there is a likely functional interaction between P2X2 receptors and galanin or VIP, but not sP, in the ENS of the porcine small intestine.
Collapse
|
12
|
Embryology and anatomy of Hirschsprung disease. Semin Pediatr Surg 2022; 31:151227. [PMID: 36417785 DOI: 10.1016/j.sempedsurg.2022.151227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bowel has its own elegant nervous system - the enteric nervous system (ENS) which is a complex network of neurons and glial clones. Derived from neural crest cells (NCCs), this little brain controls muscle contraction, motility, and bowel activities in response to stimuli. Failure of developing enteric ganglia at the distal bowel results in intestinal obstruction and Hirschsprung disease (HSCR). This Review summarises the important embryological development of the ENS including proliferation, migration, and differentiation of NCCs. We address the signalling pathways which determine NCC cell fate and discuss how they are altered in the context of HSCR. Finally, we outline the anatomical defects and the mechanisms underlying gut motility in HSCR.
Collapse
|
13
|
Enteric Neuromics: How High-Throughput "Omics" Deepens Our Understanding of Enteric Nervous System Genetic Architecture. Cell Mol Gastroenterol Hepatol 2022; 15:487-504. [PMID: 36368612 PMCID: PMC9792566 DOI: 10.1016/j.jcmgh.2022.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
Abstract
Recent accessibility to specialized high-throughput "omics" technologies including single cell RNA sequencing allows researchers to capture cell type- and subtype-specific expression signatures. These omics methods are used in the enteric nervous system (ENS) to identify potential subtypes of enteric neurons and glia. ENS omics data support the known gene and/or protein expression of functional neuronal and glial cell subtypes and suggest expression patterns of novel subtypes. Gene and protein expression patterns can be further used to infer cellular function and implications in human disease. In this review we discuss how high-throughput "omics" data add additional depth to the understanding of established functional subtypes of ENS cells and raise new questions by suggesting novel ENS cell subtypes with unique gene and protein expression patterns. Then we investigate the changes in these expression patterns during pathology observed by omics research. Although current ENS omics studies provide a plethora of novel data and therefore answers, they equally create new questions and routes for future study.
Collapse
|
14
|
Poon SSB, Hung LY, Wu Q, Parathan P, Yalcinkaya N, Haag A, Luna RA, Bornstein JC, Savidge TC, Foong JPP. Neonatal antibiotics have long term sex-dependent effects on the enteric nervous system. J Physiol 2022; 600:4303-4323. [PMID: 36082768 PMCID: PMC9826436 DOI: 10.1113/jp282939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/18/2022] [Indexed: 01/12/2023] Open
Abstract
Infants and young children receive the highest exposures to antibiotics globally. Although there is building evidence that early life exposure to antibiotics increases susceptibility to various diseases including gut disorders later in life, the lasting impact of early life antibiotics on the physiology of the gut and its enteric nervous system (ENS) remains unclear. We treated neonatal mice with the antibiotic vancomycin during their first 10 postnatal days, then examined potential lasting effects of the antibiotic treatment on their colons during young adulthood (6 weeks old). We found that neonatal vancomycin treatment disrupted the gut functions of young adult female and male mice differently. Antibiotic-exposed females had significantly longer whole gut transit while antibiotic-treated males had significantly lower faecal weights compared to controls. Both male and female antibiotic-treated mice had greater percentages of faecal water content. Neonatal vancomycin treatment also had sexually dimorphic impacts on the neurochemistry and Ca2+ activity of young adult myenteric and submucosal neurons. Myenteric neurons of male mice were more disrupted than those of females, while opposing changes in submucosal neurons were seen in each sex. Neonatal vancomycin also induced sustained changes in colonic microbiota and lasting depletion of mucosal serotonin (5-HT) levels. Antibiotic impacts on microbiota and mucosal 5-HT were not sex-dependent, but we propose that the responses of the host to these changes are sex-specific. This first demonstration of long-term impacts of neonatal antibiotics on the ENS, gut microbiota and mucosal 5-HT has important implications for gut function and other physiological systems of the host. KEY POINTS: Early life exposure to antibiotics can increase susceptibility to diseases including functional gastrointestinal (GI) disorders later in life. Yet, the lasting impact of this common therapy on the gut and its enteric nervous system (ENS) remains unclear. We investigated the long-term impact of neonatal antibiotic treatment by treating mice with the antibiotic vancomycin during their neonatal period, then examining their colons during young adulthood. Adolescent female mice given neonatal vancomycin treatment had significantly longer whole gut transit times, while adolescent male and female mice treated with neonatal antibiotics had significantly wetter stools. Effects of neonatal vancomycin treatment on the neurochemistry and Ca2+ activity of myenteric and submucosal neurons were sexually dimorphic. Neonatal vancomycin also had lasting effects on the colonic microbiome and mucosal serotonin biosynthesis that were not sex-dependent. Different male and female responses to antibiotic-induced disruptions of the ENS, microbiota and mucosal serotonin biosynthesis can lead to sex-specific impacts on gut function.
Collapse
Affiliation(s)
- Sabrina S. B. Poon
- Department of Anatomy and PhysiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Lin Y. Hung
- Department of Anatomy and PhysiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Qinglong Wu
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTXUSA
- Texas Children's Microbiome CenterTexas Children's HospitalHoustonTXUSA
| | - Pavitha Parathan
- Department of Anatomy and PhysiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Nazli Yalcinkaya
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTXUSA
- Texas Children's Microbiome CenterTexas Children's HospitalHoustonTXUSA
| | - Anthony Haag
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTXUSA
- Texas Children's Microbiome CenterTexas Children's HospitalHoustonTXUSA
| | - Ruth Ann Luna
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTXUSA
- Texas Children's Microbiome CenterTexas Children's HospitalHoustonTXUSA
| | - Joel C. Bornstein
- Department of Anatomy and PhysiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Tor C. Savidge
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTXUSA
- Texas Children's Microbiome CenterTexas Children's HospitalHoustonTXUSA
| | - Jaime P. P. Foong
- Department of Anatomy and PhysiologyThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
15
|
Hibberd TJ, Yew WP, Dodds KN, Xie Z, Travis L, Brookes SJ, Costa M, Hu H, Spencer NJ. Quantification of CGRP-immunoreactive myenteric neurons in mouse colon. J Comp Neurol 2022; 530:3209-3225. [PMID: 36043843 DOI: 10.1002/cne.25403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/08/2022] [Accepted: 08/17/2022] [Indexed: 11/07/2022]
Abstract
Quantitative data of biological systems provide valuable baseline information for understanding pathology, experimental perturbations, and computational modeling. In mouse colon, calcitonin gene-related peptide (CGRP) is expressed by myenteric neurons with multiaxonal (Dogiel type II) morphology, characteristic of intrinsic primary afferent neurons (IPANs). Analogous neurons in other species and gut regions represent 5-35% of myenteric neurons. We aimed to quantify proportions of CGRP-immunopositive (CGRP+) myenteric neurons. Colchicine-treated wholemount preparations of proximal, mid, and distal colon were labeled for HuC/D, CGRP, nitric oxide synthase (NOS), and peripherin (Per). The pan-neuronal markers (Hu+/Per+) co-labeled 94% of neurons. Hu+/Per- neurons comprised ∼6%, but Hu-/Per+ cells were rare. Thus, quantification was based on Hu+ myenteric neurons (8576 total; 1225 ± 239 per animal, n = 7). CGRP+ cell bodies were significantly larger than the average of all Hu+ neurons (329 ± 13 vs. 261 ± 12 μm2 , p < .0001). CGRP+ neurons comprised 19% ± 3% of myenteric neurons without significant regional variation. NOS+ neurons comprised 42% ± 2% of myenteric neurons overall, representing a lower proportion in proximal colon, compared to mid and distal colon (38% ± 2%, 44% ± 2%, and 44% ± 3%, respectively). Peripherin immunolabeling revealed cell body and axonal morphology in some myenteric neurons. Whether all CGRP+ neurons were multiaxonal could not be addressed using peripherin immunolabeling. However, of 118 putatively multiaxonal neurons first identified based on peripherin immunoreactivity, all were CGRP+ (n = 4). In conclusion, CGRP+ myenteric neurons in mouse colon were comprehensively quantified, occurring within a range expected of a putative IPAN marker. All Per+ multiaxonal neurons, characteristic of Dogiel type II/IPAN morphology, were CGRP+.
Collapse
Affiliation(s)
- Timothy J Hibberd
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Wai Ping Yew
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Kelsi N Dodds
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Zili Xie
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lee Travis
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Simon J Brookes
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Marcello Costa
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nick J Spencer
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
16
|
Chalazonitis A, Rao M, Sulzer D. Similarities and differences between nigral and enteric dopaminergic neurons unravel distinctive involvement in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:50. [PMID: 35459867 PMCID: PMC9033791 DOI: 10.1038/s41531-022-00308-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 03/14/2022] [Indexed: 11/09/2022] Open
Abstract
In addition to the well-known degeneration of midbrain dopaminergic neurons, enteric neurons can also be affected in neurodegenerative disorders such as Parkinson's disease (PD). Dopaminergic neurons have recently been identified in the enteric nervous system (ENS). While ENS dopaminergic neurons have been shown to degenerate in genetic mouse models of PD, analyses of their survival in enteric biopsies of PD patients have provided inconsistent results to date. In this context, this review seeks to highlight the distinctive and shared factors and properties that control the evolution of these two sets of dopaminergic neurons from neuronal precursors to aging neurons. Although their cellular sources and developmental times of origin differ, midbrain and ENS dopaminergic neurons express many transcription factors in common and their respective environments express similar neurotrophic molecules. For example, Foxa2 and Sox6 are expressed by both populations to promote the specification, differentiation, and long-term maintenance of the dopaminergic phenotype. Both populations exhibit sustained patterns of excitability that drive intrinsic vulnerability over time. In disorders such as PD, colon biopsies have revealed aggregation of alpha-synuclein in the submucosal plexus where dopaminergic neurons reside and lack blood barrier protection. Thus, these enteric neurons may be more susceptible to neurotoxic insults and aggregation of α-synuclein that spreads from gut to midbrain. Under sustained stress, inefficient autophagy leads to neurodegeneration, GI motility dysfunction, and PD symptoms. Recent findings suggest that novel neurotrophic factors such as CDNF have the potential to be used as neuroprotective agents to prevent and treat ENS symptoms of PD.
Collapse
Affiliation(s)
- Alcmène Chalazonitis
- Department of Pathology & Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| | - Meenakshi Rao
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - David Sulzer
- Departments of Psychiatry, Neurology, and Pharmacology, Division of Molecular Therapeutics, New York State Psychiatry Institute, Columbia University, New York, NY, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|
17
|
Holzer P, Holzer-Petsche U. Constipation Caused by Anti-calcitonin Gene-Related Peptide Migraine Therapeutics Explained by Antagonism of Calcitonin Gene-Related Peptide's Motor-Stimulating and Prosecretory Function in the Intestine. Front Physiol 2022; 12:820006. [PMID: 35087426 PMCID: PMC8787053 DOI: 10.3389/fphys.2021.820006] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
The development of small-molecule calcitonin gene-related peptide (CGRP) receptor antagonists (gepants) and of monoclonal antibodies targeting the CGRP system has been a major advance in the management of migraine. In the randomized controlled trials before regulatory approval, the safety of these anti-CGRP migraine therapeutics was considered favorable and to stay within the expected profile. Post-approval real-world surveys reveal, however, constipation to be a major adverse event which may affect more than 50% of patients treated with erenumab (an antibody targeting the CGRP receptor), fremanezumab or galcanezumab (antibodies targeting CGRP). In this review article we address the question whether constipation caused by inhibition of CGRP signaling can be mechanistically deduced from the known pharmacological actions and pathophysiological implications of CGRP in the digestive tract. CGRP in the gut is expressed by two distinct neuronal populations: extrinsic primary afferent nerve fibers and distinct neurons of the intrinsic enteric nervous system. In particular, CGRP is a major messenger of enteric sensory neurons which in response to mucosal stimulation activate both ascending excitatory and descending inhibitory neuronal pathways that enable propulsive (peristaltic) motor activity to take place. In addition, CGRP is able to stimulate ion and water secretion into the intestinal lumen. The motor-stimulating and prosecretory actions of CGRP combine in accelerating intestinal transit, an activity profile that has been confirmed by the ability of CGRP to induce diarrhea in mice, dogs and humans. We therefore conclude that the constipation elicited by antibodies targeting CGRP or its receptor results from interference with the physiological function of CGRP in the small and large intestine in which it contributes to the maintenance of peristaltic motor activity, ion and water secretion and intestinal transit.
Collapse
Affiliation(s)
- Peter Holzer
- Division of Pharmacology, Otto Loewi Research Centre, Medical University of Graz, Graz, Austria
| | - Ulrike Holzer-Petsche
- Division of Pharmacology, Otto Loewi Research Centre, Medical University of Graz, Graz, Austria
| |
Collapse
|
18
|
Enteric neuroimmune interactions coordinate intestinal responses in health and disease. Mucosal Immunol 2022; 15:27-39. [PMID: 34471248 PMCID: PMC8732275 DOI: 10.1038/s41385-021-00443-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 02/04/2023]
Abstract
The enteric nervous system (ENS) of the gastrointestinal (GI) tract interacts with the local immune system bidirectionally. Recent publications have demonstrated that such interactions can maintain normal GI functions during homeostasis and contribute to pathological symptoms during infection and inflammation. Infection can also induce long-term changes of the ENS resulting in the development of post-infectious GI disturbances. In this review, we discuss how the ENS can regulate and be regulated by immune responses and how such interactions control whole tissue physiology. We also address the requirements for the proper regeneration of the ENS and restoration of GI function following the resolution of infection.
Collapse
|
19
|
Masliukov PM, Budnik AF, Vishnyakova PA, Pavlov AV. Neurochemical Features of Neuropeptide Y-ergic Enteric Submucosal Neurons in the Rat Small Intestine during Postnatal Ontogenesis. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s002209302105015x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Schwerdtfeger LA, Tobet SA. Sex differences in anatomic plasticity of gut neuronal-mast cell interactions. Physiol Rep 2021; 9:e15066. [PMID: 34605201 PMCID: PMC8488573 DOI: 10.14814/phy2.15066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/30/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022] Open
Abstract
The gut wall houses mast cells that are anatomically situated near enteric neuronal fibers. Roles of specific neuropeptides in modulating function of immune components like mast cells in response to challenge with bacterial components are relatively unknown. Investigating such interactions requires models that include diverse cellular elements in native anatomic arrangements. Using an organotypic slice model that maintains gut wall cellular diversity ex vivo, the present study compared responses between tissues derived from male and female mice to examine neural-immune signaling in the gut wall after selected treatments. Ileum slices were treated with pharmacological reagents that block neuronal function (e.g., tetrodotoxin) or vasoactive intestinal peptide (VIP) receptors prior to challenge with lipopolysaccharide (LPS) to assess their influence on anatomic plasticity of VIP fibers and activation of mast cells. Sex differences were observed in the number of mucosal mast cells (c-kit/ACK2 immunoreactive) at baseline, regardless of treatment, with female ileum tissue having 46% more ACK2-IR mast cells than males. After challenge with LPS, male mast cell counts rose to female levels. Furthermore, sex differences were observed in the percentage of ACK2-IR cells within 1 µm of a VIP+ neuronal fiber, and mast cell size, a metric previously tied to activation, with females having larger cells at baseline. Male mast cell sizes reached female levels after LPS challenge. This study suggests sex differences in neural-immune plasticity and in mast cell activation both basally and in response to challenge with LPS. These sex differences could potentially impact functional neuroimmune response to pathogens.
Collapse
Affiliation(s)
| | - Stuart A. Tobet
- Department of Biomedical SciencesColorado State UniversityFort CollinsColoradoUSA
- School of Biomedical EngineeringColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
21
|
O'Brien R, Buckley MM, O'Malley D. Divergent effects of exendin-4 and interleukin-6 on rat colonic secretory and contractile activity are associated with changes in regional vagal afferent signaling. Neurogastroenterol Motil 2021; 33:e14160. [PMID: 33945195 DOI: 10.1111/nmo.14160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/10/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND The pro-inflammatory cytokine, interleukin (IL)-6 is elevated in individuals with the functional bowel disorder, irritable bowel syndrome (IBS). IL-6 can independently modify intestinal secreto-motor function, thereby contributing to IBS pathophysiology. Additionally, hormonal changes may underlie symptom flares. Post-prandial exacerbation of IBS symptoms has been linked to secretion of the incretin hormone, glucagon-like peptide-1 (GLP-1), which can also influence colonic secreto-motor activity. This study aimed to ascertain if the effects of GLP-1 on colonic secretory and contractile activity was impacted by elevated IL-6 levels and if sensory signals regarding such changes were reflected in altered vagal afferent activity. METHODS Colonic secretory currents and circular muscle contractile activity was investigated in Sprague Dawley rats using Ussing chamber and organ bath electrophysiology. Regional afferent signaling was assessed using extracellular electrophysiological recordings from colonic vagal afferents. KEY RESULTS Application of the GLP-1 receptor agonist, exendin-4 (Ex-4) in the presence of IL-6 potentiated colonic secretory currents and transepithelial resistance. Vagal afferent fibers originating in the submucosal layer exhibited larger responses to Ex-4 when IL-6 was also present. In contrast, co-application of Ex-4 and IL-6 to gut-bath chambers suppressed circular muscle contractile activity. The activity in extrinsic afferents originating in the colonic myenteric layer was similarly suppressed. CONCLUSIONS & INFERENCES Application of Ex-4 in the presence of IL-6 had divergent modulatory effects on colonic secretion and contractile activity. Similar patterns were observed in vagal afferent signaling originating in the submucosal and myenteric neuronal layers, indicating regional afferent activity reflected immune- and endocrine-mediated changes in colonic function.
Collapse
Affiliation(s)
- Rebecca O'Brien
- Department of Physiology, University College Cork, Cork, Ireland
| | - Maria M Buckley
- Department of Physiology, University College Cork, Cork, Ireland
| | - Dervla O'Malley
- Department of Physiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
22
|
Abstract
Major advances in our understanding of the functional heterogeneity of enteric neurons are driven by the application of newly developed, innovative methods. In contrast to this progress, both animal and human enteric neurons are usually divided into only two morphological subpopulations, “Dogiel type II” neurons (with several long processes) and “Dogiel type I” neurons (with several short processes). This implies no more than the distinction of intrinsic primary afferent from all other enteric neurons. The well-known chemical and functional diversity of enteric neurons is not reflected by this restrictive dichotomy of morphological data. Recent structural investigations of human enteric neurons were performed by different groups which mainly used two methodical approaches, namely detecting the architecture of their processes and target-specific tracing of their axonal courses. Both methods were combined with multiple immunohistochemistry in order to decipher neurochemical codes. This review integrates these morphological and immunohistological data and presents a classification of human enteric neurons which we believe is not yet complete but provides an essential foundation for the further development of human gastrointestinal neuropathology.
Collapse
Affiliation(s)
- Axel Brehmer
- Institute of Anatomy and Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstr. 9, 91054, Erlangen, Germany.
| |
Collapse
|
23
|
Louzao MC, Costas C, Abal P, Suzuki T, Watanabe R, Vilariño N, Carrera C, Boente-Juncal A, Vale C, Vieytes MR, Botana LM. Serotonin involvement in okadaic acid-induced diarrhoea in vivo. Arch Toxicol 2021; 95:2797-2813. [PMID: 34148100 PMCID: PMC8298366 DOI: 10.1007/s00204-021-03095-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022]
Abstract
The consumption of contaminated shellfish with okadaic acid (OA) group of toxins leads to diarrhoeic shellfish poisoning (DSP) characterized by a set of symptoms including nausea, vomiting and diarrhoea. These phycotoxins are Ser/Thr phosphatase inhibitors, which produce hyperphosphorylation in cellular proteins. However, this inhibition does not fully explain the symptomatology reported and other targets could be relevant to the toxicity. Previous studies have indicated a feasible involvement of the nervous system. We performed a set of in vivo approaches to elucidate whether neuropeptide Y (NPY), Peptide YY (PYY) or serotonin (5-HT) was implicated in the early OA-induced diarrhoea. Fasted Swiss female mice were administered NPY, PYY(3-36) or cyproheptadine intraperitoneal prior to oral OA treatment (250 µg/kg). A non-significant delay in diarrhoea onset was observed for NPY (107 µg/kg) and PYY(3-36) (1 mg/kg) pre-treatment. On the contrary, the serotonin antagonist cyproheptadine was able to block (10 mg/kg) or delay (0.1 and 1 mg/kg) diarrhoea onset suggesting a role of 5-HT. This is the first report of the possible involvement of serotonin in OA-induced poisoning.
Collapse
Affiliation(s)
- M Carmen Louzao
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002, Lugo, Spain.
| | - Celia Costas
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Paula Abal
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Toshiyuki Suzuki
- Fisheries Technology Institute, National Research and Development Agency, Japan Fisheries Research and Education Agency, Yokohama, 236-8648, Japan
| | - Ryuichi Watanabe
- Fisheries Technology Institute, National Research and Development Agency, Japan Fisheries Research and Education Agency, Yokohama, 236-8648, Japan
| | - Natalia Vilariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Cristina Carrera
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Andrea Boente-Juncal
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Carmen Vale
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Mercedes R Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| |
Collapse
|
24
|
Kang YN, Fung C, Vanden Berghe P. Gut innervation and enteric nervous system development: a spatial, temporal and molecular tour de force. Development 2021; 148:148/3/dev182543. [PMID: 33558316 DOI: 10.1242/dev.182543] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During embryonic development, the gut is innervated by intrinsic (enteric) and extrinsic nerves. Focusing on mammalian ENS development, in this Review we highlight how important the different compartments of this innervation are to assure proper gut function. We specifically address the three-dimensional architecture of the innervation, paying special attention to the differences in development along the longitudinal and circumferential axes of the gut. We review recent information about the formation of both intrinsic innervation, which is fairly well-known, as well as the establishment of the extrinsic innervation, which, despite its importance in gut-brain signaling, has received much less attention. We further discuss how external microbial and nutritional cues or neuroimmune interactions may influence development of gut innervation. Finally, we provide summary tables, describing the location and function of several well-known molecules, along with some newer factors that have more recently been implicated in the development of gut innervation.
Collapse
Affiliation(s)
- Yi-Ning Kang
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven 3000, Belgium
| | - Candice Fung
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven 3000, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
25
|
Fung C, Vanden Berghe P. Functional circuits and signal processing in the enteric nervous system. Cell Mol Life Sci 2020; 77:4505-4522. [PMID: 32424438 PMCID: PMC7599184 DOI: 10.1007/s00018-020-03543-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/13/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023]
Abstract
The enteric nervous system (ENS) is an extensive network comprising millions of neurons and glial cells contained within the wall of the gastrointestinal tract. The major functions of the ENS that have been most studied include the regulation of local gut motility, secretion, and blood flow. Other areas that have been gaining increased attention include its interaction with the immune system, with the gut microbiota and its involvement in the gut-brain axis, and neuro-epithelial interactions. Thus, the enteric circuitry plays a central role in intestinal homeostasis, and this becomes particularly evident when there are faults in its wiring such as in neurodevelopmental or neurodegenerative disorders. In this review, we first focus on the current knowledge on the cellular composition of enteric circuits. We then further discuss how enteric circuits detect and process external information, how these signals may be modulated by physiological and pathophysiological factors, and finally, how outputs are generated for integrated gut function.
Collapse
Affiliation(s)
- Candice Fung
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium.
| |
Collapse
|
26
|
Hung LY, Parathan P, Boonma P, Wu Q, Wang Y, Haag A, Luna RA, Bornstein JC, Savidge TC, Foong JPP. Antibiotic exposure postweaning disrupts the neurochemistry and function of enteric neurons mediating colonic motor activity. Am J Physiol Gastrointest Liver Physiol 2020; 318:G1042-G1053. [PMID: 32390463 PMCID: PMC7311661 DOI: 10.1152/ajpgi.00088.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The period during and immediately after weaning is an important developmental window when marked shifts in gut microbiota can regulate the maturation of the enteric nervous system (ENS). Because microbiota-derived signals that modulate ENS development are poorly understood, we examined the physiological impact of the broad spectrum of antibiotic, vancomycin-administered postweaning on colonic motility, neurochemistry of enteric neurons, and neuronal excitability. The functional impact of vancomycin on enteric neurons was investigated by Ca2+ imaging in Wnt1-Cre;R26R-GCaMP3 reporter mice to characterize alterations in the submucosal and the myenteric plexus, which contains the neuronal circuitry controlling gut motility. 16S rDNA sequencing of fecal specimens after oral vancomycin demonstrated significant deviations in microbiota abundance, diversity, and community composition. Vancomycin significantly increased the relative family rank abundance of Akkermansiaceae, Lactobacillaceae, and Enterobacteriaceae at the expense of Lachnospiraceae and Bacteroidaceae. In sharp contrast to neonatal vancomycin exposure, microbiota compositional shifts in weaned animals were associated with slower colonic migrating motor complexes (CMMCs) without mucosal serotonin biosynthesis being altered. The slowing of CMMCs is linked to disruptions in the neurochemistry of the underlying enteric circuitry. This included significant reductions in cholinergic and calbindin+ myenteric neurons, neuronal nitric oxide synthase+ submucosal neurons, neurofilament M+ enteric neurons, and increased proportions of cholinergic submucosal neurons. The antibiotic treatment also increased transmission and responsiveness in myenteric and submucosal neurons that may enhance inhibitory motor pathways, leading to slower CMMCs. Differential vancomycin responses during neonatal and weaning periods in mice highlight the developmental-specific impact of antibiotics on colonic enteric circuitry and motility.
Collapse
Affiliation(s)
- Lin Y. Hung
- 1Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Pavitha Parathan
- 1Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Prapaporn Boonma
- 2Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,3Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas,4Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Qinglong Wu
- 2Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,3Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas
| | - Yi Wang
- 1Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony Haag
- 2Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,3Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas
| | - Ruth Ann Luna
- 2Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,3Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas
| | - Joel C. Bornstein
- 1Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Tor C. Savidge
- 2Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,3Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas
| | - Jaime P. P. Foong
- 1Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
27
|
Budnik AF, Aryaeva D, Vyshnyakova P, Masliukov PM. Age related changes of neuropeptide Y-ergic system in the rat duodenum. Neuropeptides 2020; 80:101982. [PMID: 31708113 DOI: 10.1016/j.npep.2019.101982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/31/2022]
Abstract
Neuropeptide Y (NPY) is widely distributed in the autonomic nervous system and acts as a neurotransmitter and a trophic factor. However, there is no report concerning the expression of NPY and its receptors in the intestine during postnatal ontogenesis. In the current study, immunohistochemistry and western blot analysis was used to label NPY, Y1R, Y2R and Y5R receptors in the duodenum from rats of different ages (1-, 10-, 20-, 30-, 60-day-old and 2-year-old). The obtained data suggest age-dependent changes of NPY-mediated gut innervation. NPY-immunoreactive (IR) neurons were observed in the myenteric (MP) and submucous (SP) plexus from the moment of birth. In the MP, the percentage of NPY-IR neurons was low and varied from 4.1 ± 0.32 in 1-day-old to 2.9 ± 0.62 in 2-year-old rats. The proportion of NPY-IR myenteric neurons did not change significantly through the senescence (p > .05). In the SP, the proportion of NPY-IR neurons significantly increased in the first month of life from 56.3 ± 2.4% in 1-day-old to 78.1 ± 5.18% in 20-day-old and significantly decreased from 75.6 ± 4.62% in 30-day-old rats to 59.8 ± 4.24% in 2-year-old rats. The expression of NPY in the duodenum did not change significantly during the development by western blot analysis. The expression of Y1R and Y2R was low in newborns and upregulated in the first ten days of life. The expression of Y5R was maximal in newborn pups and significantly decreased in in the first 20 days. Thus, there are some fluctuation of the percentage of NPY-IR neurons accompanies changes in relation of different subtypes of NPY receptors in the small intestine during postnatal ontogenesis.
Collapse
Affiliation(s)
- Antonina F Budnik
- Department of Normal and Pathological Anatomy, Kabardino-Balkarian State University named after H.M. Berbekov, Nalchik, Russia
| | - Daria Aryaeva
- Department of Normal Physiology, Yaroslavl State Medical University, Yaroslavl, Russia
| | - Polina Vyshnyakova
- Department of Normal Physiology, Yaroslavl State Medical University, Yaroslavl, Russia
| | - Petr M Masliukov
- Department of Normal Physiology, Yaroslavl State Medical University, Yaroslavl, Russia; Petrozavodsk State University, Petrozavodsk, Russia.
| |
Collapse
|
28
|
Chalazonitis A, Li Z, Pham TD, Chen J, Rao M, Lindholm P, Saarma M, Lindahl M, Gershon MD. Cerebral dopamine neurotrophic factor is essential for enteric neuronal development, maintenance, and regulation of gastrointestinal transit. J Comp Neurol 2020; 528:2420-2444. [PMID: 32154930 DOI: 10.1002/cne.24901] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/19/2020] [Accepted: 03/02/2020] [Indexed: 12/25/2022]
Abstract
Cerebral dopamine neurotrophic factor (CDNF) is expressed in the brain and is neuroprotective. We have previously shown that CDNF is also expressed in the bowel and that its absence leads to degeneration and autophagy in the enteric nervous system (ENS), particularly in the submucosal plexus. We now demonstrate that enteric CDNF immunoreactivity is restricted to neurons (submucosal > myenteric) and is not seen in glia, interstitial cells of Cajal, or smooth muscle. Expression of CDNF, moreover, is essential for the normal development and survival of enteric dopaminergic neurons; thus, expression of the dopaminergic neuronal markers, dopamine, tyrosine hydroxylase, and dopamine transporter are deficient in the ileum of Cdnf -/- mice. The normal age-related decline in proportions of submucosal dopaminergic neurons is exacerbated in Cdnf -/- animals. The defect in Cdnf -/- animals is not dopamine-restricted; proportions of other submucosal neurons (NOS-, GABA-, and CGRP-expressing), are also deficient. The deficits in submucosal neurons are reflected functionally in delayed gastric emptying, slowed colonic motility, and prolonged total gastrointestinal transit. CDNF is expressed selectively in isolated enteric neural crest-derived cells (ENCDC), which also express the dopamine-related transcription factor Foxa2. Addition of CDNF to ENCDC promotes development of dopaminergic neurons; moreover, survival of these neurons becomes CDNF-dependent after exposure to bone morphogenetic protein 4. The effects of neither glial cell-derived neurotrophic factor (GDNF) nor serotonin are additive with CDNF. We suggest that CDNF plays a critical role in development and long-term maintenance of dopaminergic and other sets of submucosal neurons.
Collapse
Affiliation(s)
- Alcmène Chalazonitis
- Department of Pathology and Cell Biology, Columbia University, Vagelos College of Physicians and Surgeons, New York, New York
| | - ZhiShan Li
- Department of Pathology and Cell Biology, Columbia University, Vagelos College of Physicians and Surgeons, New York, New York
| | - Tuan D Pham
- Department of Pathology and Cell Biology, Columbia University, Vagelos College of Physicians and Surgeons, New York, New York
| | - Jason Chen
- Department of Pathology and Cell Biology, Columbia University, Vagelos College of Physicians and Surgeons, New York, New York
| | - Meenakshi Rao
- Department of Pediatrics, Columbia University, Vagelos College of Physicians and Surgeons, New York, New York
| | - Päivi Lindholm
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Maria Lindahl
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Michael D Gershon
- Department of Pathology and Cell Biology, Columbia University, Vagelos College of Physicians and Surgeons, New York, New York
| |
Collapse
|
29
|
Parathan P, Wang Y, Leembruggen AJL, Bornstein JC, Foong JPP. The enteric nervous system undergoes significant chemical and synaptic maturation during adolescence in mice. Dev Biol 2020; 458:75-87. [DOI: 10.1016/j.ydbio.2019.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022]
|
30
|
Hao MM, Fung C, Boesmans W, Lowette K, Tack J, Vanden Berghe P. Development of the intrinsic innervation of the small bowel mucosa and villi. Am J Physiol Gastrointest Liver Physiol 2020; 318:G53-G65. [PMID: 31682159 DOI: 10.1152/ajpgi.00264.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Detection of nutritional and noxious food components in the gut is a crucial component of gastrointestinal function. Contents in the gut lumen interact with enteroendocrine cells dispersed throughout the gut epithelium. Enteroendocrine cells release many different hormones, neuropeptides, and neurotransmitters that communicate either directly or indirectly with the central nervous system and the enteric nervous system, a network of neurons and glia located within the gut wall. Several populations of enteric neurons extend processes that innervate the gastrointestinal lamina propria; however, how these processes develop and begin to transmit information from the mucosa is not fully understood. In this study, we found that Tuj1-immunoreactive neurites begin to project out of the myenteric plexus at embryonic day (E)13.5 in the mouse small intestine, even before the formation of villi. Using live calcium imaging, we discovered that neurites were capable of transmitting electrical information from stimulated villi to the plexus by E15.5. In unpeeled gut preparations where all layers were left intact, we also mimicked the basolateral release of 5-HT from enteroendocrine cells, which triggered responses in myenteric cell bodies at postnatal day (P)0. Altogether, our results show that enteric neurons extend neurites out of the myenteric plexus early during mouse enteric nervous system development, innervating the gastrointestinal mucosa, even before villus formation in mice of either sex. Neurites are already able to conduct electrical information at E15.5, and responses to 5-HT develop postnatally.NEW & NOTEWORTHY How enteric neurons project into the gut mucosa and begin to communicate with the epithelium during development is not known. Our study shows that enteric neurites project into the lamina propria as early as E13.5 in the mouse, before development of the submucous plexus and before formation of intestinal villi. These neurites are capable of transmitting electrical signals back to their cell bodies by E15.5 and respond to serotonin applied to neurite terminals by birth.
Collapse
Affiliation(s)
- Marlene M Hao
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium.,Department of Anatomy and Neuroscience, the University of Melbourne, Australia
| | - Candice Fung
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium
| | - Werend Boesmans
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium.,Department of Pathology, GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center, The Netherlands.,Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Katrien Lowette
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium
| | - Jan Tack
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric Neuroscience, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Belgium
| |
Collapse
|
31
|
Lindahl M, Chalazonitis A, Palm E, Pakarinen E, Danilova T, Pham TD, Setlik W, Rao M, Võikar V, Huotari J, Kopra J, Andressoo JO, Piepponen PT, Airavaara M, Panhelainen A, Gershon MD, Saarma M. Cerebral dopamine neurotrophic factor-deficiency leads to degeneration of enteric neurons and altered brain dopamine neuronal function in mice. Neurobiol Dis 2019; 134:104696. [PMID: 31783118 PMCID: PMC7000201 DOI: 10.1016/j.nbd.2019.104696] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/07/2019] [Accepted: 11/24/2019] [Indexed: 12/13/2022] Open
Abstract
Cerebral dopamine neurotrophic factor (CDNF) is neuroprotective for nigrostriatal dopamine neurons and restores dopaminergic function in animal models of Parkinson’s disease (PD). To understand the role of CDNF in mammals, we generated CDNF knockout mice (Cdnf−/−), which are viable, fertile, and have a normal life-span. Surprisingly, an age-dependent loss of enteric neurons occurs selectively in the submucosal but not in the myenteric plexus. This neuronal loss is a consequence not of increased apoptosis but of neurodegeneration and autophagy. Quantitatively, the neurodegeneration and autophagy found in the submucosal plexus in duodenum, ileum and colon of the Cdnf−/− mouse are much greater than in those of Cdnf+/+ mice. The selective vulnerability of submucosal neurons to the absence of CDNF is reminiscent of the tendency of pathological abnormalities to occur in the submucosal plexus in biopsies of patients with PD. In contrast, the number of substantia nigra dopamine neurons and dopamine and its metabolite concentrations in the striatum are unaltered in Cdnf−/− mice; however, there is an age-dependent deficit in the function of the dopamine system in Cdnf−/− male mice analyzed. This is observed as D-amphetamine-induced hyperactivity, aberrant dopamine transporter function, and as increased D-amphetamine-induced dopamine release demonstrating that dopaminergic axon terminal function in the striatum of the Cdnf−/− mouse brain is altered. The deficiencies of Cdnf−/− mice, therefore, are reminiscent of those seen in early stages of Parkinson’s disease.
Collapse
Affiliation(s)
- Maria Lindahl
- Institute of Biotechnology, HiLIFE Unit, Viikinkaari 5D, FI-00014, University of Helsinki, Finland.
| | | | - Erik Palm
- Institute of Biotechnology, HiLIFE Unit, Viikinkaari 5D, FI-00014, University of Helsinki, Finland
| | - Emmi Pakarinen
- Institute of Biotechnology, HiLIFE Unit, Viikinkaari 5D, FI-00014, University of Helsinki, Finland
| | - Tatiana Danilova
- Institute of Biotechnology, HiLIFE Unit, Viikinkaari 5D, FI-00014, University of Helsinki, Finland
| | - Tuan D Pham
- Department of Pathology & Cell Biology, Columbia University, NY, New York, USA
| | - Wanda Setlik
- Department of Pathology & Cell Biology, Columbia University, NY, New York, USA
| | - Meenakshi Rao
- Department of Pathology & Cell Biology, Columbia University, NY, New York, USA
| | - Vootele Võikar
- Neuroscience Center/Laboratory Animal Center, Mustialankatu 1, FI-00014, University of Helsinki, Finland
| | - Jatta Huotari
- Institute of Biotechnology, HiLIFE Unit, Viikinkaari 5D, FI-00014, University of Helsinki, Finland
| | - Jaakko Kopra
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, Viikinkaari 5E, FI-00014, University of Helsinki, Finland
| | - Jaan-Olle Andressoo
- Institute of Biotechnology, HiLIFE Unit, Viikinkaari 5D, FI-00014, University of Helsinki, Finland
| | - Petteri T Piepponen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, Viikinkaari 5E, FI-00014, University of Helsinki, Finland
| | - Mikko Airavaara
- Institute of Biotechnology, HiLIFE Unit, Viikinkaari 5D, FI-00014, University of Helsinki, Finland
| | - Anne Panhelainen
- Institute of Biotechnology, HiLIFE Unit, Viikinkaari 5D, FI-00014, University of Helsinki, Finland
| | - Michael D Gershon
- Department of Pathology & Cell Biology, Columbia University, NY, New York, USA
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE Unit, Viikinkaari 5D, FI-00014, University of Helsinki, Finland
| |
Collapse
|
32
|
Gonkowski S, Rytel L. Somatostatin as an Active Substance in the Mammalian Enteric Nervous System. Int J Mol Sci 2019; 20:ijms20184461. [PMID: 31510021 PMCID: PMC6769505 DOI: 10.3390/ijms20184461] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/22/2019] [Accepted: 09/08/2019] [Indexed: 12/12/2022] Open
Abstract
Somatostatin (SOM) is an active substance which most commonly occurs in endocrine cells, as well as in the central and peripheral nervous system. One of the parts of the nervous system where the presence of SOM has been confirmed is the enteric nervous system (ENS), located in the wall of the gastrointestinal (GI) tract. It regulates most of the functions of the stomach and intestine and it is characterized by complex organization and a high degree of independence from the central nervous system. SOM has been described in the ENS of numerous mammal species and its main functions in the GI tract are connected with the inhibition of the intestinal motility and secretory activity. Moreover, SOM participates in sensory and pain stimuli conduction, modulation of the release of other neuronal factors, and regulation of blood flow in the intestinal vessels. This peptide is also involved in the pathological processes in the GI tract and is known as an anti-inflammatory agent. This paper, which focuses primarily on the distribution of SOM in the ENS and extrinsic intestinal innervation in various mammalian species, is a review of studies concerning this issue published from 1973 to the present.
Collapse
Affiliation(s)
- Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowski Str. 13, 10-718 Olsztyn, Poland.
| | - Liliana Rytel
- Department and Clinic of Internal Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowski Str. 14, 10-718 Olsztyn, Poland.
| |
Collapse
|
33
|
Kuwahara A, Kuwahara Y, Kato I, Kawaguchi K, Harata D, Asano S, Inui T, Marunaka Y. Xenin-25 induces anion secretion by activating noncholinergic secretomotor neurons in the rat ileum. Am J Physiol Gastrointest Liver Physiol 2019; 316:G785-G796. [PMID: 30978113 DOI: 10.1152/ajpgi.00333.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Xenin-25 is a neurotensin-like peptide that is secreted by enteroendocrine cells in the small intestine. Xenin-8 is reported to augment duodenal anion secretion by activating afferent neural pathways. The intrinsic neuronal circuits mediating the xenin-25-induced anion secretion were characterized using the Ussing-chambered, mucosa-submucosa preparation from the rat ileum. Serosal application of xenin-25 increased the short-circuit current in a concentration-dependent manner. The responses were abolished by the combination of Cl--free and HCO3- -free solutions. The responses were almost completely blocked by TTX (10-6 M) but not by atropine (10-5 M) or hexamethonium (10-4 M). The selective antagonists for neurotensin receptor 1 (NTSR1), neurokinin 1 (NK1), vasoactive intestinal polypeptide (VIP) receptors 1 and 2 (VPAC1 and VPAC2, respectively), and capsaicin, but not 5-hydroxyltryptamine receptors 3 and 4 (5-HT3 and 5-HT4), NTSR2, and A803467, inhibited the responses to xenin-25. The expression of VIP receptors (Vipr) in rat ileum was examined using RT-PCR. The Vipr1 PCR products were detected in the submucosal plexus and mucosa. Immunohistochemical staining showed the colocalization of NTSR1 and NK1 with substance P (SP)- and calbindin-immunoreactive neurons in the submucosal plexus, respectively. In addition, NK1 was colocalized with noncholinergic VIP secretomotor neurons. Based on the results from the present study, xenin-25-induced Cl-/ HCO3- secretion is involved in NTSR1 activation on intrinsic and extrinsic afferent neurons, followed by the release of SP and subsequent activation of NK1 expressed on noncholinergic VIP secretomotor neurons. Finally, the secreted VIP may activate VPAC1 on epithelial cells to induce Cl-/ HCO3- secretion in the rat ileum. Activation of noncholinergic VIP secretomotor neurons by intrinsic primary afferent neurons and extrinsic afferent neurons by postprandially released xenin-25 may account for most of the neurogenic secretory response induced by xenin-25. NEW & NOTEWORTHY This study is the first to investigate the intrinsic neuronal circuit responsible for xenin-25-induced anion secretion in the rat small intestine. We have found that nutrient-stimulated xenin-25 release may activate noncholinergic vasoactive intestinal polypeptide (VIP) secretomotor neurons to promote Cl-/ HCO3- secretion through the activation of VIP receptor 1 on epithelial cells. Moreover, the xenin-25-induced secretory responses are mainly linked with intrinsic primary afferent neurons, which are involved in the activation of neurotensin receptor 1 and neurokinin 1 receptor.
Collapse
Affiliation(s)
- Atsukazu Kuwahara
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University , Kusatsu , Japan.,Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto , Japan.,Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University , Kusatsu , Japan
| | - Yuko Kuwahara
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto , Japan
| | - Ikuo Kato
- Department of Medical Biochemistry, Kobe Pharmaceutical University , Kobe , Japan
| | - Kotoku Kawaguchi
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University , Kusatsu , Japan
| | - Daiki Harata
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University , Kusatsu , Japan
| | - Shinji Asano
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University , Kusatsu , Japan
| | | | - Yoshinori Marunaka
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto , Japan.,Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University , Kusatsu , Japan.,Research Institute for Clinical Physiology, Kyoto Industrial Health Association , Kyoto , Japan
| |
Collapse
|
34
|
Bódi N, Szalai Z, Bagyánszki M. Nitrergic Enteric Neurons in Health and Disease-Focus on Animal Models. Int J Mol Sci 2019; 20:ijms20082003. [PMID: 31022832 PMCID: PMC6515552 DOI: 10.3390/ijms20082003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022] Open
Abstract
Nitrergic enteric neurons are key players of the descending inhibitory reflex of intestinal peristalsis, therefore loss or damage of these neurons can contribute to developing gastrointestinal motility disturbances suffered by patients worldwide. There is accumulating evidence that the vulnerability of nitrergic enteric neurons to neuropathy is strictly region-specific and that the two main enteric plexuses display different nitrergic neuronal damage. Alterations both in the proportion of the nitrergic subpopulation and in the total number of enteric neurons suggest that modification of the neurochemical character or neuronal death occurs in the investigated gut segments. This review aims to summarize the gastrointestinal region and/or plexus-dependent pathological changes in the number of nitric oxide synthase (NOS)-containing neurons, the NO release and the cellular and subcellular expression of different NOS isoforms. Additionally, some of the underlying mechanisms associated with the nitrergic pathway in the background of different diseases, e.g., type 1 diabetes, chronic alcoholism, intestinal inflammation or ischaemia, will be discussed.
Collapse
Affiliation(s)
- Nikolett Bódi
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary.
| | - Zita Szalai
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary.
| | - Mária Bagyánszki
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary.
| |
Collapse
|
35
|
Restraint stress induced gut dysmotility is diminished by a milk oligosaccharide (2'-fucosyllactose) in vitro. PLoS One 2019; 14:e0215151. [PMID: 31017915 PMCID: PMC6481803 DOI: 10.1371/journal.pone.0215151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 03/27/2019] [Indexed: 12/21/2022] Open
Abstract
Background Stress causes severe dysmotility in the mammalian gut. Almost all research done to date has concentrated on prevention of stress-induced altered gut motility but not on treatment. We had previously shown that intraluminal 2′FL could acutely moderate propulsive motility in isolated mouse colonic segments. Because 2′FL appeared to modulate enteric nervous system dependent motility, we wondered if the oligosaccharide could reverse the effects of prior restraint stress, ex vivo. We tested whether 2′FL could benefit the dysmotility of isolated jejunal and colonic segments from animals subjected to prior acute restraint stress. Methods Jejunal and colonic segments were obtained from male Swiss Webster mice that were untreated or subjected to 1 hour of acute restraint stress. Segments were perfused with Krebs buffer and propagating contractile clusters (PCC) digitally video recorded. 2′FL or β-lactose were added to the perfusate at a concentration of 1 mg/ml. Spatiotemporal maps were constructed from paired before and after treatment recordings, each consisting of 20 min duration and PCC analyzed for frequency, velocity and amplitude. Key Results Stress decreased propulsive motility in murine small intestine while increasing it in the colon. 2′FL in jejunum of previously stressed mice produced a 50% increase in PCC velocity (p = 0.0001), a 43% increase in frequency (p = 0.0002) and an insignificant decrease in peak amplitude. For stressed colon, 2′FL reduced the frequency by 23% (p = 0.017) and peak amplitude by 26% (p = 0.011), and was without effect on velocity. β-lactose had negligible or small treatment effects. Conclusions & Inferences We show that the prebiotic 2′FL may have potential as a treatment for acute stress-induced gut dysmotility, ex vivo, and that, as is the case for certain beneficial microbes, the mechanism occurs in the gut, likely via action on the enteric nervous system.
Collapse
|
36
|
Schill EM, Wright CM, Jamil A, LaCombe JM, Roper RJ, Heuckeroth RO. Down syndrome mouse models have an abnormal enteric nervous system. JCI Insight 2019; 5:124510. [PMID: 30998504 PMCID: PMC6629165 DOI: 10.1172/jci.insight.124510] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 04/17/2019] [Indexed: 12/16/2022] Open
Abstract
Children with trisomy 21 (Down syndrome [DS]) have a 130-fold increased incidence of Hirschsprung Disease (HSCR), a developmental defect where the enteric nervous system (ENS) is missing from distal bowel (i.e., distal bowel is aganglionic). Treatment for HSCR is surgical resection of aganglionic bowel, but many children have bowel problems after surgery. Post-surgical problems like enterocolitis and soiling are especially common in children with DS. To determine how trisomy 21 affects ENS development, we evaluated the ENS in two DS mouse models, Ts65Dn and Tc1. These mice are trisomic for many chromosome 21 homologous genes, including Dscam and Dyrk1a, which are hypothesized to contribute to HSCR risk. Ts65Dn and Tc1 mice have normal ENS precursor migration at E12.5 and almost normal myenteric plexus structure as adults. However, Ts65Dn and Tc1 mice have markedly reduced submucosal plexus neuron density throughout the bowel. Surprisingly, the submucosal neuron defect in Ts65Dn mice is not due to excess Dscam or Dyrk1a, since normalizing copy number for these genes does not rescue the defect. These findings suggest the possibility that the high frequency of bowel problems in children with DS and HSCR may occur because of additional unrecognized problems with ENS structure.
Collapse
Affiliation(s)
- Ellen M. Schill
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pediatrics, Children’s Hospital of Philadelphia Research Institute and Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | - Christina M. Wright
- Department of Pediatrics, Children’s Hospital of Philadelphia Research Institute and Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | - Alisha Jamil
- Department of Pediatrics, Children’s Hospital of Philadelphia Research Institute and Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | - Jonathan M. LaCombe
- Department of Biology, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Randall J. Roper
- Department of Biology, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Robert O. Heuckeroth
- Department of Pediatrics, Children’s Hospital of Philadelphia Research Institute and Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
37
|
Abstract
The gastrointestinal tract contains its own set of intrinsic neuroglial circuits - the enteric nervous system (ENS) - which detects and responds to diverse signals from the environment. Here, we address recent advances in the understanding of ENS development, including how neural-crest-derived progenitors migrate into and colonize the bowel, the formation of ganglionated plexuses and the molecular mechanisms of enteric neuronal and glial diversification. Modern lineage tracing and transcription-profiling technologies have produced observations that simultaneously challenge and affirm long-held beliefs about ENS development. We review many genetic and environmental factors that can alter ENS development and exert long-lasting effects on gastrointestinal function, and discuss how developmental defects in the ENS might account for some of the large burden of digestive disease.
Collapse
Affiliation(s)
- Meenakshi Rao
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Michael D Gershon
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
38
|
Fung C, Koussoulas K, Unterweger P, Allen AM, Bornstein JC, Foong JPP. Cholinergic Submucosal Neurons Display Increased Excitability Following in Vivo Cholera Toxin Exposure in Mouse Ileum. Front Physiol 2018; 9:260. [PMID: 29618987 PMCID: PMC5871806 DOI: 10.3389/fphys.2018.00260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/06/2018] [Indexed: 12/16/2022] Open
Abstract
Cholera-induced hypersecretion causes dehydration and death if untreated. Cholera toxin (CT) partly acts via the enteric nervous system (ENS) and induces long-lasting changes to enteric neuronal excitability following initial exposure, but the specific circuitry involved remains unclear. We examined this by first incubating CT or saline (control) in mouse ileal loops in vivo for 3.5 h and then assessed neuronal excitability in vitro using Ca2+ imaging and immunolabeling for the activity-dependent markers cFos and pCREB. Mice from a C57BL6 background, including Wnt1-Cre;R26R-GCaMP3 mice which express the fluorescent Ca2+ indicator GCaMP3 in its ENS, were used. Ca2+-imaging using this mouse model is a robust, high-throughput method which allowed us to examine the activity of numerous enteric neurons simultaneously and post-hoc immunohistochemistry enabled the neurochemical identification of the active neurons. Together, this provided novel insight into the CT-affected circuitry that was previously impossible to attain at such an accelerated pace. Ussing chamber measurements of electrogenic ion secretion showed that CT-treated preparations had higher basal secretion than controls. Recordings of Ca2+ activity from the submucous plexus showed that increased numbers of neurons were spontaneously active in CT-incubated tissue (control: 4/149; CT: 32/160; Fisher's exact test, P < 0.0001) and that cholinergic neurons were more responsive to electrical (single pulse and train of 20 pulses) or nicotinic (1,1-dimethyl-4-phenylpiperazinium (DMPP; 10 μM) stimulation. Expression of the neuronal activity marker, pCREB, was also increased in the CT-treated submucous plexus neurons. c-Fos expression and spontaneous fast excitatory postsynaptic potentials (EPSPs), recorded by intracellular electrodes, were increased by CT exposure in a small subset of myenteric neurons. However, the effect of CT on the myenteric plexus is less clear as spontaneous Ca2+ activity and electrical- or nicotinic-evoked Ca2+ responses were reduced. Thus, in a model where CT exposure evokes hypersecretion, we observed sustained activation of cholinergic secretomotor neuron activity in the submucous plexus, pointing to involvement of these neurons in the overall response to CT.
Collapse
Affiliation(s)
- Candice Fung
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Katerina Koussoulas
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Petra Unterweger
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew M Allen
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia.,Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Joel C Bornstein
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Jaime P P Foong
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
39
|
Masliukov PM, Budnik AF, Nozdrachev AD. Neurochemical Features of Metasympathetic System Ganglia in the Course of Ontogenesis. ADVANCES IN GERONTOLOGY 2018. [DOI: 10.1134/s2079057017040087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
40
|
Boesmans W, Hao MM, Vanden Berghe P. Optogenetic and chemogenetic techniques for neurogastroenterology. Nat Rev Gastroenterol Hepatol 2018; 15:21-38. [PMID: 29184183 DOI: 10.1038/nrgastro.2017.151] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Optogenetics and chemogenetics comprise a wide variety of applications in which genetically encoded actuators and indicators are used to modulate and monitor activity with high cellular specificity. Over the past 10 years, development of these genetically encoded tools has contributed tremendously to our understanding of integrated physiology. In concert with the continued refinement of probes, strategies to target transgene expression to specific cell types have also made much progress in the past 20 years. In addition, the successful implementation of optogenetic and chemogenetic techniques thrives thanks to ongoing advances in live imaging microscopy and optical technology. Although innovation of optogenetic and chemogenetic methods has been primarily driven by researchers studying the central nervous system, these techniques also hold great promise to boost research in neurogastroenterology. In this Review, we describe the different classes of tools that are currently available and give an overview of the strategies to target them to specific cell types in the gut wall. We discuss the possibilities and limitations of optogenetic and chemogenetic technology in the gut and provide an overview of their current use, with a focus on the enteric nervous system. Furthermore, we suggest some experiments that can advance our understanding of how the intrinsic and extrinsic neural networks of the gut control gastrointestinal function.
Collapse
Affiliation(s)
- Werend Boesmans
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Herestraat 49, O&N 1 Box 701, 3000 Leuven, Belgium.,Department of Pathology, Maastricht University Medical Center, P. Debeijelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Marlene M Hao
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Herestraat 49, O&N 1 Box 701, 3000 Leuven, Belgium.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Pieter Vanden Berghe
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Herestraat 49, O&N 1 Box 701, 3000 Leuven, Belgium
| |
Collapse
|
41
|
Yoo BB, Mazmanian SK. The Enteric Network: Interactions between the Immune and Nervous Systems of the Gut. Immunity 2017; 46:910-926. [PMID: 28636959 PMCID: PMC5551410 DOI: 10.1016/j.immuni.2017.05.011] [Citation(s) in RCA: 311] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 05/25/2017] [Accepted: 05/31/2017] [Indexed: 12/16/2022]
Abstract
Interactions between the nervous and immune systems enable the gut to respond to the variety of dietary products that it absorbs, the broad spectrum of pathogens that it encounters, and the diverse microbiome that it harbors. The enteric nervous system (ENS) senses and reacts to the dynamic ecosystem of the gastrointestinal (GI) tract by translating chemical cues from the environment into neuronal impulses that propagate throughout the gut and into other organs in the body, including the central nervous system (CNS). This review will describe the current understanding of the anatomy and physiology of the GI tract by focusing on the ENS and the mucosal immune system. We highlight emerging literature that the ENS is essential for important aspects of microbe-induced immune responses in the gut. Although most basic and applied research in neuroscience has focused on the brain, the proximity of the ENS to the immune system and its interface with the external environment suggest that novel paradigms for nervous system function await discovery.
Collapse
Affiliation(s)
- Bryan B Yoo
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Sarkis K Mazmanian
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
42
|
Fung C, Boesmans W, Cirillo C, Foong JPP, Bornstein JC, Vanden Berghe P. VPAC Receptor Subtypes Tune Purinergic Neuron-to-Glia Communication in the Murine Submucosal Plexus. Front Cell Neurosci 2017; 11:118. [PMID: 28487635 PMCID: PMC5403822 DOI: 10.3389/fncel.2017.00118] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/10/2017] [Indexed: 12/20/2022] Open
Abstract
The enteric nervous system (ENS) situated within the gastrointestinal tract comprises an intricate network of neurons and glia which together regulate intestinal function. The exact neuro-glial circuitry and the signaling molecules involved are yet to be fully elucidated. Vasoactive intestinal peptide (VIP) is one of the main neurotransmitters in the gut, and is important for regulating intestinal secretion and motility. However, the role of VIP and its VPAC receptors within the enteric circuitry is not well understood. We investigated this in the submucosal plexus of mouse jejunum using calcium (Ca2+)-imaging. Local VIP application induced Ca2+-transients primarily in neurons and these were inhibited by VPAC1- and VPAC2-antagonists (PG 99-269 and PG 99-465 respectively). These VIP-evoked neural Ca2+-transients were also inhibited by tetrodotoxin (TTX), indicating that they were secondary to action potential generation. Surprisingly, VIP induced Ca2+-transients in glia in the presence of the VPAC2 antagonist. Further, selective VPAC1 receptor activation with the agonist ([K15, R16, L27]VIP(1-7)/GRF(8-27)) predominantly evoked glial responses. However, VPAC1-immunoreactivity did not colocalize with the glial marker glial fibrillary acidic protein (GFAP). Rather, VPAC1 expression was found on cholinergic submucosal neurons and nerve fibers. This suggests that glial responses observed were secondary to neuronal activation. Trains of electrical stimuli were applied to fiber tracts to induce endogenous VIP release. Delayed glial responses were evoked when the VPAC2 antagonist was present. These findings support the presence of an intrinsic VIP/VPAC-initiated neuron-to-glia signaling pathway. VPAC1 agonist-evoked glial responses were inhibited by purinergic antagonists (PPADS and MRS2179), thus demonstrating the involvement of P2Y1 receptors. Collectively, we showed that neurally-released VIP can activate neurons expressing VPAC1 and/or VPAC2 receptors to modulate purine-release onto glia. Selective VPAC1 activation evokes a glial response, whereas VPAC2 receptors may act to inhibit this response. Thus, we identified a component of an enteric neuron-glia circuit that is fine-tuned by endogenous VIP acting through VPAC1- and VPAC2-mediated pathways.
Collapse
Affiliation(s)
- Candice Fung
- Department of Physiology, The University of MelbourneParkville, VIC, Australia.,Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), KU LeuvenLeuven, Belgium
| | - Werend Boesmans
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), KU LeuvenLeuven, Belgium
| | - Carla Cirillo
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), KU LeuvenLeuven, Belgium
| | - Jaime P P Foong
- Department of Physiology, The University of MelbourneParkville, VIC, Australia
| | - Joel C Bornstein
- Department of Physiology, The University of MelbourneParkville, VIC, Australia
| | - Pieter Vanden Berghe
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), KU LeuvenLeuven, Belgium
| |
Collapse
|
43
|
Ascl1 Is Required for the Development of Specific Neuronal Subtypes in the Enteric Nervous System. J Neurosci 2016; 36:4339-50. [PMID: 27076429 DOI: 10.1523/jneurosci.0202-16.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/25/2016] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED The enteric nervous system (ENS) is organized into neural circuits within the gastrointestinal wall where it controls the peristaltic movements, secretion, and blood flow. Although proper gut function relies on the complex neuronal composition of the ENS, little is known about the transcriptional networks that regulate the diversification into different classes of enteric neurons and glia during development. Here we redefine the role of Ascl1 (Mash1), one of the few regulatory transcription factors described during ENS development. We show that enteric glia and all enteric neuronal subtypes appear to be derived from Ascl1-expressing progenitor cells. In the gut of Ascl1(-/-) mutant mice, neurogenesis is delayed and reduced, and posterior gliogenesis impaired. The ratio of neurons expressing Calbindin, TH, and VIP is selectively decreased while, for instance, 5-HT(+) neurons, which previously were believed to be Ascl1-dependent, are formed in normal numbers. Essentially the same differentiation defects are observed in Ascl1(KINgn2) transgenic mutants, where the proneural activity of Ngn2 replaces Ascl1, demonstrating that Ascl1 is required for the acquisition of specific enteric neuronal subtype features independent of its role in neurogenesis. In this study, we provide novel insights into the expression and function of Ascl1 in the differentiation process of specific neuronal subtypes during ENS development. SIGNIFICANCE STATEMENT The molecular mechanisms underlying the generation of different neuronal subtypes during development of the enteric nervous system are poorly understood despite its pivotal function in gut motility and involvement in gastrointestinal pathology. This report identifies novel roles for the transcription factor Ascl1 in enteric gliogenesis and neurogenesis. Moreover, independent of its proneurogenic activity, Ascl1 is required for the normal expression of specific enteric neuronal subtype characteristics. Distinct enteric neuronal subtypes are formed in a temporally defined order, and we observe that the early-born 5-HT(+) neurons are generated in Ascl1(-/-) mutants, despite the delayed neurogenesis. Enteric nervous system progenitor cells may therefore possess strong intrinsic control over their specification at the initial waves of neurogenesis.
Collapse
|
44
|
Filpa V, Moro E, Protasoni M, Crema F, Frigo G, Giaroni C. Role of glutamatergic neurotransmission in the enteric nervous system and brain-gut axis in health and disease. Neuropharmacology 2016; 111:14-33. [PMID: 27561972 DOI: 10.1016/j.neuropharm.2016.08.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/18/2016] [Accepted: 08/18/2016] [Indexed: 02/07/2023]
Abstract
Several studies have been carried out in the last 30 years in the attempt to clarify the possible role of glutamate as a neurotransmitter/neuromodulator in the gastrointestinal tract. Such effort has provided immunohistochemical, biomolecular and functional data suggesting that the entire glutamatergic neurotransmitter machinery is present in the complex circuitries of the enteric nervous system (ENS), which participates to the local coordination of gastrointestinal functions. Glutamate is also involved in the regulation of the brain-gut axis, a bi-directional connection pathway between the central nervous system (CNS) and the gut. The neurotransmitter contributes to convey information, via afferent fibers, from the gut to the brain, and to send appropriate signals, via efferent fibers, from the brain to control gut secretion and motility. In analogy with the CNS, an increasing number of studies suggest that dysregulation of the enteric glutamatergic neurotransmitter machinery may lead to gastrointestinal dysfunctions. On the whole, this research field has opened the possibility to find new potential targets for development of drugs for the treatment of gastrointestinal diseases. The present review analyzes the more recent literature on enteric glutamatergic neurotransmission both in physiological and pathological conditions, such as gastroesophageal reflux, gastric acid hypersecretory diseases, inflammatory bowel disease, irritable bowel syndrome and intestinal ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Viviana Filpa
- Department of Clinical and Experimental Medicine, University of Insubria, via H. Dunant 5, I-21100 Varese, Italy
| | - Elisabetta Moro
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, via Ferrata 9, I-27100 Pavia, Italy
| | - Marina Protasoni
- Department of Surgical and Morphological Sciences, University of Insubria, via F. Guicciardini 9, I-21100 Varese, Italy
| | - Francesca Crema
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, via Ferrata 9, I-27100 Pavia, Italy
| | - Gianmario Frigo
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, via Ferrata 9, I-27100 Pavia, Italy
| | - Cristina Giaroni
- Department of Clinical and Experimental Medicine, University of Insubria, via H. Dunant 5, I-21100 Varese, Italy
| |
Collapse
|
45
|
Buckinx R, Van Remoortel S, Gijsbers R, Waddington SN, Timmermans JP. Proof-of-concept: neonatal intravenous injection of adeno-associated virus vectors results in successful transduction of myenteric and submucosal neurons in the mouse small and large intestine. Neurogastroenterol Motil 2016; 28:299-305. [PMID: 26564813 DOI: 10.1111/nmo.12724] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 10/11/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Despite the success of viral vector technology in the transduction of the central nervous system in both preclinical research and gene therapy, its potential in neurogastroenterological research remains largely unexploited. This study asked whether and to what extent myenteric and submucosal neurons in the ileum and distal colon of the mouse were transduced after neonatal systemic delivery of recombinant adeno-associated viral vectors (AAVs). METHODS Mice were intravenously injected at postnatal day one with AAV pseudotypes AAV8 or AAV9 carrying a cassette encoding enhanced green fluorescent protein (eGFP) as a reporter under the control of a cytomegalovirus promoter. At postnatal day 35, transduction of the myenteric and submucosal plexuses of the ileum and distal colon was evaluated in whole-mount preparations, using immunohistochemistry to neurochemically identify transduced enteric neurons. KEY RESULTS The pseudotypes AAV8 and AAV9 showed equal potential in transducing the enteric nervous system (ENS), with 25-30% of the neurons expressing eGFP. However, the percentage of eGFP-expressing colonic submucosal neurons was significantly lower. Neurochemical analysis showed that all enteric neuron subtypes, but not glia, expressed the reporter protein. Intrinsic sensory neurons were most efficiently transduced as nearly 80% of calcitonin gene-related peptide-positive neurons expressed the transgene. CONCLUSIONS & INFERENCES The pseudotypes AAV8 and AAV9 can be employed for gene delivery to both the myenteric and the submucosal plexus, although the transduction efficiency in the latter is region-dependent. These findings open perspectives for novel preclinical applications aimed at manipulating and imaging the ENS in the short term, and in gene therapy in the longer term.
Collapse
Affiliation(s)
- R Buckinx
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - S Van Remoortel
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - R Gijsbers
- Laboratory for Viral Vector Technology & Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.,Leuven Viral Vector Core, KU Leuven, Leuven, Belgium
| | - S N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, UK.,Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - J-P Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
46
|
Mosińska P, Zielińska M, Fichna J. Expression and physiology of opioid receptors in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes 2016; 23:3-10. [PMID: 26702845 DOI: 10.1097/med.0000000000000219] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Stimulation of opioid receptors elicits analgesic effect not only in the central nervous system, but also in the gastrointestinal tract, where a high concentration of opioid receptors can be found within the enteric nervous system as well as muscular and immune cells. Along with antinociception, opioid receptors in the stomach and intestine relay signals crucial for secretory and motor gastrointestinal function. RECENT FINDINGS The review focuses on the utility of opioid receptor antagonists, which is generally contributing to the management of postoperative ileus and opioid bowel dysfunction in chronic pain patients nonetheless, opioid receptor antagonists can also be useful in the treatment of irritable bowel syndrome and chronic idiopathic constipation. The study also discusses several antidiarrheal opioid agonists, as well as opioids and opioid mimetics encompassing the concept of ligand-biased agonism and truncated opioid receptor splice variants. SUMMARY Good understanding of the localization and the role of opioid receptors is vital for regulation of various pathophysiological processes in the gastrointestinal tract and may simultaneously provide a tempting approach in eliminating adverse effects related to centrally acting opioids.
Collapse
Affiliation(s)
- Paula Mosińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | | | | |
Collapse
|
47
|
Involvement of catecholaminergic neurons in motor innervation of striated muscle in the mouse esophagus. Histochem Cell Biol 2016; 145:573-85. [PMID: 26794326 DOI: 10.1007/s00418-015-1403-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2015] [Indexed: 12/17/2022]
Abstract
Enteric co-innervation is a peculiar innervation pattern of striated esophageal musculature. Both anatomical and functional data on enteric co-innervation related to various transmitters have been collected in different species, although its function remains enigmatic. However, it is unclear whether catecholaminergic components are involved in such a co-innervation. Thus, we examined to identify catecholaminergic neuronal elements and clarify their relationship to other innervation components in the esophagus, using immunohistochemistry with antibodies against tyrosine hydroxylase (TH), vesicular acetylcholine transporter (VAChT), choline acetyltransferase (ChAT) and protein gene product 9.5 (PGP 9.5), α-bungarotoxin (α-BT) and PCR with primers for amplification of cDNA encoding TH and dopamine-β-hydroxylase (DBH). TH-positive nerve fibers were abundant throughout the myenteric plexus and localized on about 14% of α-BT-labelled motor endplates differing from VAChT-positive vagal nerve terminals. TH-positive perikarya represented a subpopulation of only about 2.8% of all PGP 9.5-positive myenteric neurons. Analysis of mRNA showed both TH and DBH transcripts in the mouse esophagus. As ChAT-positive neurons in the compact formation of the nucleus ambiguus were negative for TH, the TH-positive nerve varicosities on motor endplates are presumably of enteric origin, although a sympathetic origin cannot be excluded. In the medulla oblongata, the cholinergic ambiguus neurons were densely supplied with TH-positive varicosities. Thus, catecholamines may modulate vagal motor innervation of esophageal-striated muscles not only at the peripheral level via enteric co-innervation but also at the central level via projections to the nucleus ambiguus. As Parkinson's disease, with a loss of central dopaminergic neurons, also affects the enteric nervous system and dysphagia is prevalent in patients with this disease, investigation of intrinsic catecholamines in the esophagus may be worthwhile to understand such a symptom.
Collapse
|
48
|
Quantitative immunohistochemical co-localization of TRPV1 and CGRP in varicose axons of the murine oesophagus, stomach and colorectum. Neurosci Lett 2015; 599:164-71. [DOI: 10.1016/j.neulet.2015.05.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/14/2015] [Accepted: 05/10/2015] [Indexed: 12/31/2022]
|
49
|
Côté M, Poirier AA, Aubé B, Jobin C, Lacroix S, Soulet D. Partial depletion of the proinflammatory monocyte population is neuroprotective in the myenteric plexus but not in the basal ganglia in a MPTP mouse model of Parkinson's disease. Brain Behav Immun 2015; 46:154-67. [PMID: 25637482 DOI: 10.1016/j.bbi.2015.01.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 01/14/2015] [Accepted: 01/20/2015] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) patients often suffer from gastrointestinal (GI) impairments that are associated with the alteration of dopaminergic (DAergic) neurons in the myenteric nervous system. Growing evidence suggests that inflammation originating from the gut may have a major impact in both the initiation and progression of PD. Here, we investigated the role of the innate immune response in neurodegeneration occurring in central nervous system (CNS) and enteric nervous system (ENS) in response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a neurotoxin that produces Parkinsonism in both humans and animal models. We found a strong immune response in the gut of mice treated with MPTP, as demonstrated by the prominent presence of macrophages derived from CD115(+) CD11b(+) Ly6C(Hi) monocytes, known as M1 monocytes, and increased production of IL-1β and IL-6. Partial depletion of proinflammatory M1 monocytes through intravenous injections of clodronate-encapsulated liposome protects against MPTP-induced reduction of tyrosine hydroxylase (TH) expression in the ENS. In contrast, loss of striatal TH expression in the CNS after MPTP intoxication occurs regardless of partial monocyte depletion. Examination of brain tissue revealed that microglial activation, comprising the majority of the immune response in the CNS after MPTP injections is unaffected by M1 depletion. In vitro experiments revealed that MPTP and MPP(+) act directly on monocytes to elicit a proinflammatory response that is, in part, dependent on the MyD88/NF-κB signaling pathway resulting in nitrite and proinflammatory cytokine production. Taken together, our results demonstrate a critical role for proinflammatory M1 monocytes/macrophages in DAergic alterations occurring in the GI, but not in the brain, in the MPTP model of PD.
Collapse
Affiliation(s)
- M Côté
- Centre de recherche du CHU de Québec, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada
| | - A-A Poirier
- Centre de recherche du CHU de Québec, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada
| | - B Aubé
- Centre de recherche du CHU de Québec, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada
| | - C Jobin
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Florida, FL, USA
| | - S Lacroix
- Centre de recherche du CHU de Québec, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada; Faculté de médecine, Département de Médecine Moléculaire, Université Laval, Québec, QC G1K 0A6, Canada
| | - D Soulet
- Centre de recherche du CHU de Québec, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada; Faculté de médecine, Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC G1K 0A6, Canada.
| |
Collapse
|
50
|
Wilhelm M, Lawrence JJ, Gábriel R. Enteric plexuses of two choline-acetyltransferase transgenic mouse lines: chemical neuroanatomy of the fluorescent protein-expressing nerve cells. Brain Res Bull 2015; 111:76-83. [PMID: 25592616 DOI: 10.1016/j.brainresbull.2015.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/23/2014] [Accepted: 01/05/2015] [Indexed: 12/31/2022]
Abstract
We studied cholinergic circuit elements in the enteric nervous system (ENS) of two distinct transgenic mouse lines in which fluorescent protein expression was driven by the choline-acetyltransferase (ChAT) promoter. In the first mouse line, green fluorescent protein was fused to the tau gene. This construct allowed the visualization of the fiber tracts and ganglia, however the nerve cells were poorly resolved. In the second mouse line (ChATcre-YFP), CRE/loxP recombination yielded cytosolic expression of yellow fluorescent protein (YFP). In these preparations the morphology of enteric neurons could be well studied. We also determined the neurochemical identity of ENS neurons in muscular and submucous layers using antibodies against YFP, calretinin (CALR), calbindin (CALB), and vasoactive intestinal peptide (VIP). Confocal microscopic imaging was used to visualize fluorescently-conjugated secondary antibodies. In ChATcre-YFP preparations, YFP was readily apparent in somatodendritic regions of ENS neurons. In the myenteric plexus, YFP/CALR/VIP staining revealed that 34% of cholinergic cells co-labeled with CALR. Few single-stained CR-positive cells were observed. Neither YFP nor CALR co-localized with VIP. In GFP/CALB/CALR staining, all co-localization combinations were represented. In the submucosal plexus, YFP/CALR/VIP staining revealed discrete neuronal populations. However, in separate preparations, double labeling was observed for YFP/CALR and CALR/VIP. In YFP/CALR/CALB staining, all combinations of double staining and triple labeling were verified. In conclusion, the neurochemical coding of ENS neurons in these mouse lines is consistent with many observations in non-transgenic animals. Thus, they provide useful tools for physiological and pharmacological studies on distinct neurochemical subtypes of ENS neurons.
Collapse
Affiliation(s)
- Márta Wilhelm
- Institute of Sport Sciences and Physical Education, University of Pécs, Pécs, Hungary
| | - J Josh Lawrence
- COBRE Center for Structural and Functional Neuroscience; Department of Biomedical Sciences, University of Montana, Missoula, Montana, USA
| | - Robert Gábriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.
| |
Collapse
|