1
|
Mishra AK, Gupta GS, Agrawal SB, Tiwari S. Understanding the impact of elevated CO 2 and O 3 on growth and yield in Indian wheat cultivars: Implications for food security in a changing climate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124990. [PMID: 39303935 DOI: 10.1016/j.envpol.2024.124990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/29/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The pressing issue of increasing tropospheric ozone (O3) levels necessitates the development of effective stress management strategies for plant protection. While considerable research has elucidated the adverse impacts of O3, understanding the combined effects of O3 and CO2 requires further investigation. This study focuses on assessing the response of stomatal O3 flux under various O3 and CO2 treatments, individually and in combination, and their repercussions on physiological, growth, and yield attributes in two Indian wheat cultivars, HUW-55 and PBW-550, which exhibit varying levels of sensitivities against elevated O3. Results indicated significant alterations in stomatal O3 flux in both O3-sensitive and tolerant wheat cultivars across different treatments, influencing the overall yield outcomes. Particularly, the ECO2+EO3 treatment demonstrated more positive yield protection in the O3-sensitive cultivar PBW-550, compared to HUW-55 indicating enhanced allocation of photosynthates towards reproductive development in PBW-550, compared to the tolerant cultivar HUW-55, as evidenced by higher harvest index (HI). Furthermore, the study revealed a stronger correlation between yield response and stomatal O3 flux in PBW-550 (R2 = 0.88) compared to HUW-55 (R2 = 0.79), as indicated by a steeper regression slope for PBW-550. The research also confirmed the role of elevated CO2 in reducing stomatal O3- flux in the tested cultivars, with discernible effects on their respective yield responses. Further experimentation is necessary to confirm these results across different cultivars exhibiting varying sensitivities to O3. These findings can potentially revolutionize agricultural productivity in regions affected by O3 stress. The criteria for recommending cultivars for agricultural practices should not be based only on their sensitivity/tolerance to O3. Still, they should also consider the effect of CO2 fertilization in the growing area. This experiment offers hope to sustain global food security, as the O3-sensitive wheat cultivar also showed promising results at elevated CO2. In essence, this research could pave the way for more resilient agricultural systems in the era of changing climate under elevated O3 and CO2 conditions.
Collapse
Affiliation(s)
- Ashish Kumar Mishra
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Gereraj Sen Gupta
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Supriya Tiwari
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Lucas M, Diaz-Espejo A, Romero-Jimenez D, Peinado-Torrubia P, Delgado-Vaquero A, Álvarez R, Colmenero-Flores JM, Rosales MA. Chloride reduces plant nitrate requirement and alleviates low nitrogen stress symptoms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108717. [PMID: 38761542 DOI: 10.1016/j.plaphy.2024.108717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/12/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
Chloride (Cl-) is traditionally categorized as an antagonist of nitrate (NO3-) because Cl- hinders plant NO3- transport and accumulation. However, we have recently defined Cl- as a beneficial macronutrient for higher plants, due to specific functions that lead to more efficient use of water, nitrogen (N) and CO2 under optimal N and water supply. When accumulated in leaves at macronutrient levels, Cl- promotes growth through osmotic, physiological, metabolic, anatomical and cellular changes that improve plant performance under optimal NO3- nutrition. Nitrate over-fertilization in agriculture can adversely affect crop yield and nature, while its deficiency limits plant growth. To study the relationship between Cl- nutrition and NO3- availability, we have characterized different physiological responses such as growth and yield, N-use efficiency, water status, photosynthesis, leaf anatomy, pigments and antioxidants in tomato plants treated with or without 5 mM Cl- salts and increasing NO3- treatments (3-15 mM). First, we have demonstrated that 5 mM Cl- application can reduce the use of NO3- in the nutrient solution by up to half without detriment to plant growth and yield in tomato and other horticultural plants. Second, Cl- application reduced stress symptoms and improved plant growth under low-NO3- conditions. The Cl--dependent resistance to low-N stress resulted from: more efficient use of the available NO3-; improved plant osmotic and water status regulation; improved stomatal conductance and photosynthetic rate; and better antioxidant response. We proposed that beneficial Cl- levels increase the crop ability to grow better with lower NO3- requirements and withstand N deficiency, promoting a more sustainable and resilient agriculture.
Collapse
Affiliation(s)
- Marta Lucas
- Group of Plant Ion and Water Regulation, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), 41012, Seville, Spain; Laboratory of Plant Molecular Ecophysiology, IRNAS, CSIC, 41012, Seville, Spain
| | - Antonio Diaz-Espejo
- Laboratory of Plant Molecular Ecophysiology, IRNAS, CSIC, 41012, Seville, Spain; Irrigation and Crop Ecophysiology Group, IRNAS, CSIC, 41012, Seville, Spain
| | - David Romero-Jimenez
- Group of Plant Ion and Water Regulation, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), 41012, Seville, Spain; Laboratory of Plant Molecular Ecophysiology, IRNAS, CSIC, 41012, Seville, Spain
| | - Procopio Peinado-Torrubia
- Group of Plant Ion and Water Regulation, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), 41012, Seville, Spain
| | - Alba Delgado-Vaquero
- Group of Plant Ion and Water Regulation, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), 41012, Seville, Spain; Laboratory of Plant Molecular Ecophysiology, IRNAS, CSIC, 41012, Seville, Spain
| | - Rosario Álvarez
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, 41080, Sevilla, Spain
| | - José M Colmenero-Flores
- Group of Plant Ion and Water Regulation, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), 41012, Seville, Spain; Laboratory of Plant Molecular Ecophysiology, IRNAS, CSIC, 41012, Seville, Spain
| | - Miguel A Rosales
- Group of Plant Ion and Water Regulation, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), 41012, Seville, Spain; Laboratory of Plant Molecular Ecophysiology, IRNAS, CSIC, 41012, Seville, Spain; Department of Stress, Development and Signaling in Plants, Estación Experimental Del Zaidín (EEZ), CSIC, 18008, Granada, Spain.
| |
Collapse
|
3
|
Li S, Agathokleous E, Li S, Xu Y, Xia J, Feng Z. Climate gradient and leaf carbon investment influence the effects of climate change on water use efficiency of forests: A meta-analysis. PLANT, CELL & ENVIRONMENT 2024; 47:1070-1083. [PMID: 38018689 DOI: 10.1111/pce.14777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
Forest ecosystems cover a large area of the global land surface and are important carbon sinks. The water-carbon cycles of forests are prone to climate change, but uncertainties remain regarding the magnitude of water use efficiency (WUE) response to climate change and the underpinning mechanism driving WUE variation. We conducted a meta-analysis of the effects of elevated CO2 concentration (eCO2 ), drought and elevated temperature (eT) on the leaf- to plant-level WUE, covering 80 field studies and 95 tree species. The results showed that eCO2 increased leaf intrinsic and instantaneous WUE (WUEi, WUEt), whereas drought enhanced both leaf- and plant-level WUEs. eT increased WUEi but decreased carbon isotope-based WUE, possibly due to the influence of mesophyll conductance. Stimulated leaf-level WUE by drought showed a progressing trend with increasing latitude, while eCO2 -induced WUE enhancement showed decreasing trends after >40° N. These latitudinal gradients might influence the spatial pattern of climate and further drove WUE variation. Moreover, high leaf-level WUE under eCO2 and drought was accompanied by low leaf carbon contents. Such a trade-off between growth efficiency and defence suggests a potentially compromised tolerance to diseases and pests. These findings add important ecophysiological parameters into climate models to predict carbon-water cycles of forests.
Collapse
Affiliation(s)
- Shenglan Li
- School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Evgenios Agathokleous
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Shuangjiang Li
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Yansen Xu
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Jiaxuan Xia
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhaozhong Feng
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Zhu X, Duan H, Jin H, Chen S, Chen Z, Shao S, Tang J, Zhang Y. Heat responsive gene StGATA2 functions in plant growth, photosynthesis and antioxidant defense under heat stress conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1227526. [PMID: 37496854 PMCID: PMC10368472 DOI: 10.3389/fpls.2023.1227526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
Backgrounds Potato is sensitive to heat stress particularly during plant seedling growth. However, limited studies have characterized the expression pattern of the StGATA family genes under heat stress and lacked validation of its function in potato plants. Methods Potato plants were cultivated at 30°C and 35°C to induce heat stress responses. qRT-PCR was carried out to characterize the expression pattern of StGATA family genes in potato plants subjected to heat stress. StGATA2 loss-of-function and gain-of-function plants were established. Morphological phenotypes and growth were indicated by plant height and mass. Photosynthesis and transpiration were suggested by stomatal aperture, net photosynthetic rate, transpiration rate, and stomatal conductance. Biochemical and genetic responses were indicated by enzyme activity and mRNA expression of genes encoding CAT, SOD, and POD, and contents of H2O2, MDA, and proline. Results The expression patterns of StGATA family genes were altered in response to heat stress. StGATA2 protein located in the nucleus. StGATA2 is implicated in regulating plant height and weight of potato plants in response to heat stresses, especially acute heat stress. StGATA2 over-expression promoted photosynthesis while inhibited transpiration under heat stress. StGATA2 overexpression induced biochemical responses of potato plant against heat stress by regulating the contents of H2O2, MDA and proline and the activity of CAT, SOD and POD. StGATA2 overexpression caused genetic responses (CAT, SOD and POD) of potato plant against heat stress. Conclusion Our data indicated that StGATA2 could enhance the ability of potato plants to resist heat stress-induced damages, which may provide an effective strategy to engineer potato plants for better adaptability to adverse heat stress conditions.
Collapse
Affiliation(s)
- Xi Zhu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs of China, Zhanjiang, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Huimin Duan
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs of China, Zhanjiang, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Hui Jin
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs of China, Zhanjiang, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Shu Chen
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs of China, Zhanjiang, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Zhuo Chen
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs of China, Zhanjiang, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Shunwei Shao
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Jinghua Tang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs of China, Zhanjiang, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Yu Zhang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs of China, Zhanjiang, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| |
Collapse
|
5
|
Lv C, Hu Z, Wei J, Wang Y. Transgenerational effects of elevated CO 2 on rice photosynthesis and grain yield. PLANT MOLECULAR BIOLOGY 2022; 110:413-424. [PMID: 35763210 DOI: 10.1007/s11103-022-01294-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Chunhua Lv
- Institute of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of Ministry of Education, Peking University, Beijing, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenghua Hu
- School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Jian Wei
- Institute of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of Ministry of Education, Peking University, Beijing, China
| | - Yin Wang
- Institute of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of Ministry of Education, Peking University, Beijing, China.
| |
Collapse
|
6
|
Poorter H, Knopf O, Wright IJ, Temme AA, Hogewoning SW, Graf A, Cernusak LA, Pons TL. A meta-analysis of responses of C 3 plants to atmospheric CO 2 : dose-response curves for 85 traits ranging from the molecular to the whole-plant level. THE NEW PHYTOLOGIST 2022; 233:1560-1596. [PMID: 34657301 DOI: 10.1111/nph.17802] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/03/2021] [Indexed: 05/20/2023]
Abstract
Generalised dose-response curves are essential to understand how plants acclimate to atmospheric CO2 . We carried out a meta-analysis of 630 experiments in which C3 plants were experimentally grown at different [CO2 ] under relatively benign conditions, and derived dose-response curves for 85 phenotypic traits. These curves were characterised by form, plasticity, consistency and reliability. Considered over a range of 200-1200 µmol mol-1 CO2 , some traits more than doubled (e.g. area-based photosynthesis; intrinsic water-use efficiency), whereas others more than halved (area-based transpiration). At current atmospheric [CO2 ], 64% of the total stimulation in biomass over the 200-1200 µmol mol-1 range has already been realised. We also mapped the trait responses of plants to [CO2 ] against those we have quantified before for light intensity. For most traits, CO2 and light responses were of similar direction. However, some traits (such as reproductive effort) only responded to light, others (such as plant height) only to [CO2 ], and some traits (such as area-based transpiration) responded in opposite directions. This synthesis provides a comprehensive picture of plant responses to [CO2 ] at different integration levels and offers the quantitative dose-response curves that can be used to improve global change simulation models.
Collapse
Affiliation(s)
- Hendrik Poorter
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Oliver Knopf
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Andries A Temme
- Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, 14195, Berlin, Germany
| | | | - Alexander Graf
- Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
| | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, Qld, 4879, Australia
| | - Thijs L Pons
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3512 PN, Utrecht, the Netherlands
| |
Collapse
|
7
|
Marek S, Tomaszewski D, Żytkowiak R, Jasińska A, Zadworny M, Boratyńska K, Dering M, Danusevičius D, Oleksyn J, Wyka TP. Stomatal density in Pinus sylvestris as an indicator of temperature rather than CO 2 : Evidence from a pan-European transect. PLANT, CELL & ENVIRONMENT 2022; 45:121-132. [PMID: 34748220 DOI: 10.1111/pce.14220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/13/2021] [Accepted: 10/28/2021] [Indexed: 05/15/2023]
Abstract
The commonly observed negative relationship between stomatal density (SD) and atmospheric CO2 has led to SD being proposed as an indicator of atmospheric CO2 concentration. The use of SD as a proxy for CO2 , however, has been hampered by an insufficient understanding of the intraspecific variation of this trait. We hypothesized that SD in Pinus sylvestris, a widely distributed conifer, varies geographically and that this variation is determined by major climatic variables. By sampling needles from naturally growing trees along a latitudinal range of 32.25°, equivalent to 13.7°C gradient of mean annual temperature (MAT) across Europe, we found that SD decreased from the warmest southern sites to the coldest sites in the north at a rate of 4 stomata per mm2 for each 1°C, with MAT explaining 44% of the variation. Additionally, samples from a provenance trial exhibited a positive relationship between SD and the MAT of the original localities, suggesting that high SD is an adaptation to warm temperature. Our study revealed one of the strongest intraspecific relationships between SD and climate in any woody species, supporting the utility of SD as a temperature, rather than direct CO2 , proxy. In addition, our results predict the response of SD to climate warming.
Collapse
Affiliation(s)
- Sławomir Marek
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | | | - Roma Żytkowiak
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Anna Jasińska
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Marcin Zadworny
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | | | | | - Darius Danusevičius
- Faculty of Forest Science and Ecology, Aleksandras Stulginskis University, Akademija, Kaunas, Lithuania
| | - Jacek Oleksyn
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Tomasz P Wyka
- Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
8
|
Lauriks F, Salomón RL, Steppe K. Temporal variability in tree responses to elevated atmospheric CO 2. PLANT, CELL & ENVIRONMENT 2021; 44:1292-1310. [PMID: 33368341 DOI: 10.1111/pce.13986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
At leaf level, elevated atmospheric CO2 concentration (eCO2 ) results in stimulation of carbon net assimilation and reduction of stomatal conductance. However, a comprehensive understanding of the impact of eCO2 at larger temporal (seasonal and annual) and spatial (from leaf to whole-tree) scales is still lacking. Here, we review overall trends, magnitude and drivers of dynamic tree responses to eCO2 , including carbon and water relations at the leaf and the whole-tree level. Spring and early season leaf responses are most susceptible to eCO2 and are followed by a down-regulation towards the onset of autumn. At the whole-tree level, CO2 fertilization causes consistent biomass increments in young seedlings only, whereas mature trees show a variable response. Elevated CO2 -induced reductions in leaf stomatal conductance do not systematically translate into limitation of whole-tree transpiration due to the unpredictable response of canopy area. Reduction in the end-of-season carbon sink demand and water-limiting strategies are considered the main drivers of seasonal tree responses to eCO2 . These large temporal and spatial variabilities in tree responses to eCO2 highlight the risk of predicting tree behavior to eCO2 based on single leaf-level point measurements as they only reveal snapshots of the dynamic responses to eCO2 .
Collapse
Affiliation(s)
- Fran Lauriks
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Roberto Luis Salomón
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Department of Natural Resources and Systems, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
9
|
Dunn J, Hunt L, Afsharinafar M, Meselmani MA, Mitchell A, Howells R, Wallington E, Fleming AJ, Gray JE. Reduced stomatal density in bread wheat leads to increased water-use efficiency. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4737-4748. [PMID: 31172183 PMCID: PMC6760291 DOI: 10.1093/jxb/erz248] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 05/24/2019] [Indexed: 05/02/2023]
Abstract
Wheat is a staple crop, frequently cultivated in water-restricted environments. Improving crop water-use efficiency would be desirable if grain yield can be maintained. We investigated whether a decrease in wheat stomatal density via the manipulation of epidermal patterning factor (EPF) gene expression could improve water-use efficiency. Our results show that severe reductions in stomatal density in EPF-overexpressing wheat plants have a detrimental outcome on yields. However, wheat plants with a more moderate reduction in stomatal density (i.e. <50% reduction in stomatal density on leaves prior to tillering) had yields indistinguishable from controls, coupled with an increase in intrinsic water-use efficiency. Yields of these moderately reduced stomatal density plants were also comparable with those of control plants under conditions of drought and elevated CO2. Our data demonstrate that EPF-mediated control of wheat stomatal development follows that observed in other grasses, and we identify the potential of stomatal density as a tool for breeding wheat plants that are better able to withstand water-restricted environments without yield loss.
Collapse
Affiliation(s)
- Jessica Dunn
- Molecular Biology & Biotechnology Department, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Lee Hunt
- Molecular Biology & Biotechnology Department, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Mana Afsharinafar
- Molecular Biology & Biotechnology Department, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Moaed Al Meselmani
- Molecular Biology & Biotechnology Department, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Alice Mitchell
- Molecular Biology & Biotechnology Department, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | | | | | - Andrew J Fleming
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
- Correspondence: or
| | - Julie E Gray
- Molecular Biology & Biotechnology Department, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
- Correspondence: or
| |
Collapse
|
10
|
Klein T, Ramon U. Stomatal sensitivity to CO
2
diverges between angiosperm and gymnosperm tree species. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13379] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Tamir Klein
- Department of Plant & Environmental Sciences Weizmann Institute of Science Rehovot Israel
| | - Uria Ramon
- Department of Plant & Environmental Sciences Weizmann Institute of Science Rehovot Israel
| |
Collapse
|
11
|
Franks PJ, Bonan GB, Berry JA, Lombardozzi DL, Holbrook NM, Herold N, Oleson KW. Comparing optimal and empirical stomatal conductance models for application in Earth system models. GLOBAL CHANGE BIOLOGY 2018; 24:5708-5723. [PMID: 30218538 DOI: 10.1111/gcb.14445] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/23/2018] [Accepted: 08/29/2018] [Indexed: 05/27/2023]
Abstract
Earth system models (ESMs) rely on the calculation of canopy conductance in land surface models (LSMs) to quantify the partitioning of land surface energy, water, and CO2 fluxes. This is achieved by scaling stomatal conductance, gw , determined from physiological models developed for leaves. Traditionally, models for gw have been semi-empirical, combining physiological functions with empirically determined calibration constants. More recently, optimization theory has been applied to model gw in LSMs under the premise that it has a stronger grounding in physiological theory and might ultimately lead to improved predictive accuracy. However, this premise has not been thoroughly tested. Using original field data from contrasting forest systems, we compare a widely used empirical type and a more recently developed optimization-type gw model, termed BB and MED, respectively. Overall, we find no difference between the two models when used to simulate gw from photosynthesis data, or leaf gas exchange from a coupled photosynthesis-conductance model, or gross primary productivity and evapotranspiration for a FLUXNET tower site with the CLM5 community LSM. Field measurements reveal that the key fitted parameters for BB and MED, g1B and g1M, exhibit strong species specificity in magnitude and sensitivity to CO2 , and CLM5 simulations reveal that failure to include this sensitivity can result in significant overestimates of evapotranspiration for high-CO2 scenarios. Further, we show that g1B and g1M can be determined from mean ci /ca (ratio of leaf intercellular to ambient CO2 concentration). Applying this relationship with ci /ca values derived from a leaf δ13 C database, we obtain a global distribution of g1B and g1M , and these values correlate significantly with mean annual precipitation. This provides a new methodology for global parameterization of the BB and MED models in LSMs, tied directly to leaf physiology but unconstrained by spatial boundaries separating designated biomes or plant functional types.
Collapse
Affiliation(s)
- Peter J Franks
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Gordon B Bonan
- National Center for Atmospheric Research, Boulder, Colorado
| | - Joseph A Berry
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California
| | | | - N Michele Holbrook
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Nicholas Herold
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Keith W Oleson
- National Center for Atmospheric Research, Boulder, Colorado
| |
Collapse
|
12
|
Purcell C, Batke SP, Yiotis C, Caballero R, Soh WK, Murray M, McElwain JC. Increasing stomatal conductance in response to rising atmospheric CO2. ANNALS OF BOTANY 2018; 121:1137-1149. [PMID: 29394303 PMCID: PMC5946907 DOI: 10.1093/aob/mcx208] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/16/2017] [Indexed: 05/19/2023]
Abstract
Background and Aims Studies have indicated that plant stomatal conductance (gs) decreases in response to elevated atmospheric CO2, a phenomenon of significance for the global hydrological cycle. However, gs increases across certain CO2 ranges have been predicted by optimization models. The aim of this work was to demonstrate that under certain environmental conditions, gs can increase in response to elevated CO2. Methods Using (1) an extensive, up-to-date synthesis of gs responses in free air CO2 enrichment (FACE)experiments, (2) in situ measurements across four biomes showing dynamic gs responses to a CO2 rise of ~50 ppm (characterizing the change in this greenhouse gas over the past three decades) and (3) a photosynthesis-stomatal conductance model, it is demonstrated that gs can in some cases increase in response to increasing atmospheric CO2. Key Results Field observations are corroborated by an extensive synthesis of gs responses in FACE experiments showing that 11.8 % of gs responses under experimentally elevated CO2 are positive. They are further supported by a strong data-model fit (r2 = 0.607) using a stomatal optimization model applied to the field gs dataset. A parameter space identified in the Farquhar-Ball-Berry photosynthesis-stomatal conductance model confirms field observations of increasing gs under elevated CO2 in hot dry conditions. Contrary to the general assumption, positive gs responses to elevated CO2, although relatively rare, are a feature of woody taxa adapted to warm, low-humidity conditions, and this response is also demonstrated in global simulations using the Community Land Model (CLM4). Conclusions The results contradict the over-simplistic notion that global vegetation always responds with decreasing gs to elevated CO2, a finding that has important implications for predicting future vegetation feedbacks on the hydrological cycle at the regional level.
Collapse
Affiliation(s)
- C Purcell
- School of Biology and Environmental Science, Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| | - S P Batke
- School of Biology and Environmental Science, Earth Institute, University College Dublin, Belfield, Dublin, Ireland
- Department of Biology, Edge Hill University, St. Helens Road, Ormskirk, UK
| | - C Yiotis
- School of Biology and Environmental Science, Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| | - R Caballero
- Department of Meteorology and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - W K Soh
- School of Biology and Environmental Science, Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| | - M Murray
- School of Biology and Environmental Science, Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| | - J C McElwain
- Botany Department, Trinity College Dublin, College Green, Dublin, Ireland
| |
Collapse
|
13
|
Mozdzer TJ, Caplan JS. Complementary responses of morphology and physiology enhance the stand‐scale production of a model invasive species under elevated
CO
2
and nitrogen. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Thomas J. Mozdzer
- Department of Biology Bryn Mawr College Bryn Mawr Pennsylvania
- Smithsonian Environmental Research Center Edgewater Maryland
| | - Joshua S. Caplan
- Department of Biology Bryn Mawr College Bryn Mawr Pennsylvania
- Smithsonian Environmental Research Center Edgewater Maryland
| |
Collapse
|
14
|
Nackley LL, Midgley GF, Bösenberg JDW, Donaldson JS. A cycad's non-saturating response to carbon dioxide enrichment indicates Cenozoic carbon limitation in pre-historic plants. AUSTRAL ECOL 2018. [DOI: 10.1111/aec.12581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lloyd L. Nackley
- Kirstenbosch Research Center; South African National Biodiversity Institute; Cape Town South Africa
- Oregon State University; Corvallis Oregon USA
| | - Guy F. Midgley
- Department of Botany and Zoology; Stellenbosch University; Stellenbosch Private Bag X1 Matieland 7602 South Africa
| | - Jacques de Wet Bösenberg
- Kirstenbosch Research Center; South African National Biodiversity Institute; Cape Town South Africa
| | - John S. Donaldson
- Kirstenbosch Research Center; South African National Biodiversity Institute; Cape Town South Africa
| |
Collapse
|
15
|
Xu Z, Jiang Y, Jia B, Zhou G. Elevated-CO2 Response of Stomata and Its Dependence on Environmental Factors. FRONTIERS IN PLANT SCIENCE 2016; 7:657. [PMID: 27242858 PMCID: PMC4865672 DOI: 10.3389/fpls.2016.00657] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 04/29/2016] [Indexed: 05/18/2023]
Abstract
Stomata control the flow of gases between plants and the atmosphere. This review is centered on stomatal responses to elevated CO2 concentration and considers other key environmental factors and underlying mechanisms at multiple levels. First, an outline of general responses in stomatal conductance under elevated CO2 is presented. Second, stomatal density response, its development, and the trade-off with leaf growth under elevated CO2 conditions are depicted. Third, the molecular mechanism regulating guard cell movement at elevated CO2 is suggested. Finally, the interactive effects of elevated CO2 with other factors critical to stomatal behavior are reviewed. It may be useful to better understand how stomata respond to elevated CO2 levels while considering other key environmental factors and mechanisms, including molecular mechanism, biochemical processes, and ecophysiological regulation. This understanding may provide profound new insights into how plants cope with climate change.
Collapse
Affiliation(s)
- Zhenzhu Xu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Yanling Jiang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Bingrui Jia
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Guangsheng Zhou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
- Chinese Academy of Meteorological SciencesBeijing, China
| |
Collapse
|
16
|
Rodrigues WP, Martins MQ, Fortunato AS, Rodrigues AP, Semedo JN, Simões-Costa MC, Pais IP, Leitão AE, Colwell F, Goulao L, Máguas C, Maia R, Partelli FL, Campostrini E, Scotti-Campos P, Ribeiro-Barros AI, Lidon FC, DaMatta FM, Ramalho JC. Long-term elevated air [CO2 ] strengthens photosynthetic functioning and mitigates the impact of supra-optimal temperatures in tropical Coffea arabica and C. canephora species. GLOBAL CHANGE BIOLOGY 2016; 22:415-31. [PMID: 26363182 DOI: 10.1111/gcb.13088] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 05/05/2023]
Abstract
The tropical coffee crop has been predicted to be threatened by future climate changes and global warming. However, the real biological effects of such changes remain unknown. Therefore, this work aims to link the physiological and biochemical responses of photosynthesis to elevated air [CO2 ] and temperature in cultivated genotypes of Coffea arabica L. (cv. Icatu and IPR108) and Coffea canephora cv. Conilon CL153. Plants were grown for ca. 10 months at 25/20°C (day/night) and 380 or 700 μl CO2 l(-1) and then subjected to temperature increase (0.5°C day(-1) ) to 42/34°C. Leaf impacts related to stomatal traits, gas exchanges, C isotope composition, fluorescence parameters, thylakoid electron transport and enzyme activities were assessed at 25/20, 31/25, 37/30 and 42/34°C. The results showed that (1) both species were remarkably heat tolerant up to 37/30°C, but at 42/34°C a threshold for irreversible nonstomatal deleterious effects was reached. Impairments were greater in C. arabica (especially in Icatu) and under normal [CO2 ]. Photosystems and thylakoid electron transport were shown to be quite heat tolerant, contrasting to the enzymes related to energy metabolism, including RuBisCO, which were the most sensitive components. (2) Significant stomatal trait modifications were promoted almost exclusively by temperature and were species dependent. Elevated [CO2 ], (3) strongly mitigated the impact of temperature on both species, particularly at 42/34°C, modifying the response to supra-optimal temperatures, (4) promoted higher water-use efficiency under moderately higher temperature (31/25°C) and (5) did not provoke photosynthetic downregulation. Instead, enhancements in [CO2 ] strengthened photosynthetic photochemical efficiency, energy use and biochemical functioning at all temperatures. Our novel findings demonstrate a relevant heat resilience of coffee species and that elevated [CO2 ] remarkably mitigated the impact of heat on coffee physiology, therefore playing a key role in this crop sustainability under future climate change scenarios.
Collapse
Affiliation(s)
- Weverton P Rodrigues
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Instituto Investigação Científica Tropical, I.P. (IICT), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
- Setor Fisiologia Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Univ. Estadual Norte Fluminense (UENF), Darcy Ribeiro, RJ, Brazil
| | - Madlles Q Martins
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Instituto Investigação Científica Tropical, I.P. (IICT), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
- Centro Univ. Norte do Espírito Santo (CEUNES), Dept. Ciências Agrárias e Biológicas (DCAB), Univ. Federal Espírito Santo (UFES), Rod. BR 101 Norte, Km. 60, Bairro Litorâneo, CEP: 29932-540, São Mateus, ES, Brazil
| | - Ana S Fortunato
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Instituto Investigação Científica Tropical, I.P. (IICT), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity) and Centro de Estudos Florestais, Instituto Superior Agronomia, Univ. Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal
| | - Ana P Rodrigues
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity) and Centro de Estudos Florestais, Instituto Superior Agronomia, Univ. Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal
| | - José N Semedo
- Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
| | - Maria C Simões-Costa
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Instituto Investigação Científica Tropical, I.P. (IICT), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity) and Centro de Estudos Florestais, Instituto Superior Agronomia, Univ. Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal
| | - Isabel P Pais
- Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
| | - António E Leitão
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Instituto Investigação Científica Tropical, I.P. (IICT), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity) and Centro de Estudos Florestais, Instituto Superior Agronomia, Univ. Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal
- GeoBioTec, Fac. Ciências Tecnologia, Univ. Nova Lisboa, Caparica, 2829-516, Portugal
| | - Filipe Colwell
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Instituto Investigação Científica Tropical, I.P. (IICT), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity) and Centro de Estudos Florestais, Instituto Superior Agronomia, Univ. Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal
| | - Luis Goulao
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Instituto Investigação Científica Tropical, I.P. (IICT), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
| | - Cristina Máguas
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculty Sciences, Univ. Lisbon, Campo Grande, Lisboa, 1749-016, Portugal
| | - Rodrigo Maia
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculty Sciences, Univ. Lisbon, Campo Grande, Lisboa, 1749-016, Portugal
| | - Fábio L Partelli
- Centro Univ. Norte do Espírito Santo (CEUNES), Dept. Ciências Agrárias e Biológicas (DCAB), Univ. Federal Espírito Santo (UFES), Rod. BR 101 Norte, Km. 60, Bairro Litorâneo, CEP: 29932-540, São Mateus, ES, Brazil
| | - Eliemar Campostrini
- Setor Fisiologia Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Univ. Estadual Norte Fluminense (UENF), Darcy Ribeiro, RJ, Brazil
| | - Paula Scotti-Campos
- Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
| | - Ana I Ribeiro-Barros
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Instituto Investigação Científica Tropical, I.P. (IICT), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity) and Centro de Estudos Florestais, Instituto Superior Agronomia, Univ. Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal
- GeoBioTec, Fac. Ciências Tecnologia, Univ. Nova Lisboa, Caparica, 2829-516, Portugal
| | - Fernando C Lidon
- GeoBioTec, Fac. Ciências Tecnologia, Univ. Nova Lisboa, Caparica, 2829-516, Portugal
| | - Fábio M DaMatta
- Dept. Biologia Vegetal, Univ. Federal Viçosa (UFV), Viçosa, 36570-000, MG, Brazil
| | - José C Ramalho
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Instituto Investigação Científica Tropical, I.P. (IICT), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity) and Centro de Estudos Florestais, Instituto Superior Agronomia, Univ. Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal
- GeoBioTec, Fac. Ciências Tecnologia, Univ. Nova Lisboa, Caparica, 2829-516, Portugal
| |
Collapse
|
17
|
Xu Z, Jiang Y, Jia B, Zhou G. Elevated-CO2 Response of Stomata and Its Dependence on Environmental Factors. FRONTIERS IN PLANT SCIENCE 2016. [PMID: 27242858 DOI: 10.3389/fpls.20116.00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Stomata control the flow of gases between plants and the atmosphere. This review is centered on stomatal responses to elevated CO2 concentration and considers other key environmental factors and underlying mechanisms at multiple levels. First, an outline of general responses in stomatal conductance under elevated CO2 is presented. Second, stomatal density response, its development, and the trade-off with leaf growth under elevated CO2 conditions are depicted. Third, the molecular mechanism regulating guard cell movement at elevated CO2 is suggested. Finally, the interactive effects of elevated CO2 with other factors critical to stomatal behavior are reviewed. It may be useful to better understand how stomata respond to elevated CO2 levels while considering other key environmental factors and mechanisms, including molecular mechanism, biochemical processes, and ecophysiological regulation. This understanding may provide profound new insights into how plants cope with climate change.
Collapse
Affiliation(s)
- Zhenzhu Xu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences Beijing, China
| | - Yanling Jiang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences Beijing, China
| | - Bingrui Jia
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences Beijing, China
| | - Guangsheng Zhou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China; Chinese Academy of Meteorological SciencesBeijing, China
| |
Collapse
|
18
|
Šigut L, Holišová P, Klem K, Šprtová M, Calfapietra C, Marek MV, Špunda V, Urban O. Does long-term cultivation of saplings under elevated CO2 concentration influence their photosynthetic response to temperature? ANNALS OF BOTANY 2015; 116:929-39. [PMID: 25851132 PMCID: PMC4640122 DOI: 10.1093/aob/mcv043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/09/2015] [Accepted: 02/27/2015] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS Plants growing under elevated atmospheric CO2 concentrations often have reduced stomatal conductance and subsequently increased leaf temperature. This study therefore tested the hypothesis that under long-term elevated CO2 the temperature optima of photosynthetic processes will shift towards higher temperatures and the thermostability of the photosynthetic apparatus will increase. METHODS The hypothesis was tested for saplings of broadleaved Fagus sylvatica and coniferous Picea abies exposed for 4-5 years to either ambient (AC; 385 µmol mol(-1)) or elevated (EC; 700 µmol mol(-1)) CO2 concentrations. Temperature response curves of photosynthetic processes were determined by gas-exchange and chlorophyll fluorescence techniques. KEY RESULTS Initial assumptions of reduced light-saturated stomatal conductance and increased leaf temperatures for EC plants were confirmed. Temperature response curves revealed stimulation of light-saturated rates of CO2 assimilation (Amax) and a decline in photorespiration (RL) as a result of EC within a wide temperature range. However, these effects were negligible or reduced at low and high temperatures. Higher temperature optima (Topt) of Amax, Rubisco carboxylation rates (VCmax) and RL were found for EC saplings compared with AC saplings. However, the shifts in Topt of Amax were instantaneous, and disappeared when measured at identical CO2 concentrations. Higher values of Topt at elevated CO2 were attributed particularly to reduced photorespiration and prevailing limitation of photosynthesis by ribulose-1,5-bisphosphate (RuBP) regeneration. Temperature response curves of fluorescence parameters suggested a negligible effect of EC on enhancement of thermostability of photosystem II photochemistry. CONCLUSIONS Elevated CO2 instantaneously increases temperature optima of Amax due to reduced photorespiration and limitation of photosynthesis by RuBP regeneration. However, this increase disappears when plants are exposed to identical CO2 concentrations. In addition, increased heat-stress tolerance of primary photochemistry in plants grown at elevated CO2 is unlikely. The hypothesis that long-term cultivation at elevated CO2 leads to acclimation of photosynthesis to higher temperatures is therefore rejected. Nevertheless, incorporating acclimation mechanisms into models simulating carbon flux between the atmosphere and vegetation is necessary.
Collapse
Affiliation(s)
- Ladislav Šigut
- Global Change Research Centre AS CR, v.v.i., Bělidla 986/4a, 603 00, Brno, Czech Republic, Faculty of Science, Ostrava University, 30. dubna 22, 701 03, Ostrava 1, Czech Republic and
| | - Petra Holišová
- Global Change Research Centre AS CR, v.v.i., Bělidla 986/4a, 603 00, Brno, Czech Republic
| | - Karel Klem
- Global Change Research Centre AS CR, v.v.i., Bělidla 986/4a, 603 00, Brno, Czech Republic
| | - Mirka Šprtová
- Global Change Research Centre AS CR, v.v.i., Bělidla 986/4a, 603 00, Brno, Czech Republic
| | - Carlo Calfapietra
- Global Change Research Centre AS CR, v.v.i., Bělidla 986/4a, 603 00, Brno, Czech Republic, National Research Council, Institute of Agro-Environmental & Forest Biology, Via Marconi 2, 05010, Porano, Italy
| | - Michal V Marek
- Global Change Research Centre AS CR, v.v.i., Bělidla 986/4a, 603 00, Brno, Czech Republic
| | - Vladimír Špunda
- Global Change Research Centre AS CR, v.v.i., Bělidla 986/4a, 603 00, Brno, Czech Republic, Faculty of Science, Ostrava University, 30. dubna 22, 701 03, Ostrava 1, Czech Republic and
| | - Otmar Urban
- Global Change Research Centre AS CR, v.v.i., Bělidla 986/4a, 603 00, Brno, Czech Republic,
| |
Collapse
|
19
|
Silva LCR, Salamanca-Jimenez A, Doane TA, Horwath WR. Carbon dioxide level and form of soil nitrogen regulate assimilation of atmospheric ammonia in young trees. Sci Rep 2015; 5:13141. [PMID: 26294035 PMCID: PMC4543970 DOI: 10.1038/srep13141] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 07/21/2015] [Indexed: 11/26/2022] Open
Abstract
The influence of carbon dioxide (CO2) and soil fertility on the physiological performance of plants has been extensively studied, but their combined effect is notoriously difficult to predict. Using Coffea arabica as a model tree species, we observed an additive effect on growth, by which aboveground productivity was highest under elevated CO2 and ammonium fertilization, while nitrate fertilization favored greater belowground biomass allocation regardless of CO2 concentration. A pulse of labelled gases ((13)CO2 and (15)NH3) was administered to these trees as a means to determine the legacy effect of CO2 level and soil nitrogen form on foliar gas uptake and translocation. Surprisingly, trees with the largest aboveground biomass assimilated significantly less NH3 than the smaller trees. This was partly explained by declines in stomatal conductance in plants grown under elevated CO2. However, unlike the (13)CO2 pulse, assimilation and transport of the (15)NH3 pulse to shoots and roots varied as a function of interactions between stomatal conductance and direct plant response to the form of soil nitrogen, observed as differences in tissue nitrogen content and biomass allocation. Nitrogen form is therefore an intrinsic component of physiological responses to atmospheric change, including assimilation of gaseous nitrogen as influenced by plant growth history.
Collapse
Affiliation(s)
- Lucas C. R. Silva
- Department of Land Air and Water Resources. University of California, Davis, CA-95616
| | - Alveiro Salamanca-Jimenez
- Department of Land Air and Water Resources. University of California, Davis, CA-95616
- National Center for Coffee Research, Manizales, Colombia. A.A. 2427
| | - Timothy A. Doane
- Department of Land Air and Water Resources. University of California, Davis, CA-95616
| | - William R. Horwath
- Department of Land Air and Water Resources. University of California, Davis, CA-95616
| |
Collapse
|
20
|
Fichot R, Brignolas F, Cochard H, Ceulemans R. Vulnerability to drought-induced cavitation in poplars: synthesis and future opportunities. PLANT, CELL & ENVIRONMENT 2015; 38:1233-51. [PMID: 25444560 DOI: 10.1111/pce.12491] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 11/12/2014] [Indexed: 05/04/2023]
Abstract
Vulnerability to drought-induced cavitation is a key trait of plant water relations. Here, we summarize the available literature on vulnerability to drought-induced cavitation in poplars (Populus spp.), a genus of agronomic, ecological and scientific importance. Vulnerability curves and vulnerability parameters (including the water potential inducing 50% loss in hydraulic conductivity, P50) were collected from 37 studies published between 1991 and 2014, covering a range of 10 species and 12 interspecific hybrid crosses. Results of our meta-analysis confirm that poplars are among the most vulnerable woody species to drought-induced cavitation (mean P50 = -1.44 and -1.55 MPa across pure species and hybrids, respectively). Yet, significant variation occurs among species (P50 range: 1.43 MPa) and among hybrid crosses (P50 range: 1.12 MPa), within species and hybrid crosses (max. P50 range reported: 0.8 MPa) as well as in response to environmental factors including nitrogen fertilization, irradiance, temperature and drought (max. P50 range reported: 0.75 MPa). Potential implications and gaps in knowledge are discussed in the context of poplar cultivation, species adaptation and climate modifications. We suggest that poplars represent a valuable model for studies on drought-induced cavitation, especially to elucidate the genetic and molecular basis of cavitation resistance in Angiosperms.
Collapse
Affiliation(s)
- Régis Fichot
- INRA, LBLGC, EA 1207, University of Orléans, Orléans, F-45067, France
| | - Franck Brignolas
- INRA, LBLGC, EA 1207, University of Orléans, Orléans, F-45067, France
| | - Hervé Cochard
- UMR547 PIAF, INRA, Clermont-Ferrand, F-63100, France
- UMR547 PIAF, Clermont Université, Université Blaise-Pascal, Clermont-Ferrand, F-63000, France
| | - Reinhart Ceulemans
- Department of Biology, Centre of Excellence, Plant and Vegetation Ecology (PLECO), University of Antwerp, Wilrijk, B-2610, Belgium
| |
Collapse
|
21
|
Schippers P, Sterck F, Vlam M, Zuidema PA. Tree growth variation in the tropical forest: understanding effects of temperature, rainfall and CO 2. GLOBAL CHANGE BIOLOGY 2015; 21:2749-2761. [PMID: 25626673 DOI: 10.1111/gcb.12877] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 12/14/2014] [Indexed: 05/06/2023]
Abstract
Tropical forest responses to climatic variability have important consequences for global carbon cycling, but are poorly understood. As empirical, correlative studies cannot disentangle the interactive effects of climatic variables on tree growth, we used a tree growth model (IBTREE) to unravel the climate effects on different physiological pathways and in turn on stem growth variation. We parameterized the model for canopy trees of Toona ciliata (Meliaceae) from a Thai monsoon forest and compared predicted and measured variation from a tree-ring study over a 30-year period. We used historical climatic variation of minimum and maximum day temperature, precipitation and carbon dioxide (CO2 ) in different combinations to estimate the contribution of each climate factor in explaining the inter-annual variation in stem growth. Running the model with only variation in maximum temperature and rainfall yielded stem growth patterns that explained almost 70% of the observed inter-annual variation in stem growth. Our results show that maximum temperature had a strong negative effect on the stem growth by increasing respiration, reducing stomatal conductance and thus mitigating a higher transpiration demand, and - to a lesser extent - by directly reducing photosynthesis. Although stem growth was rather weakly sensitive to rain, stem growth variation responded strongly and positively to rainfall variation owing to the strong inter-annual fluctuations in rainfall. Minimum temperature and atmospheric CO2 concentration did not significantly contribute to explaining the inter-annual variation in stem growth. Our innovative approach - combining a simulation model with historical data on tree-ring growth and climate - allowed disentangling the effects of strongly correlated climate variables on growth through different physiological pathways. Similar studies on different species and in different forest types are needed to further improve our understanding of the sensitivity of tropical tree growth to climatic variability and change.
Collapse
Affiliation(s)
- Peter Schippers
- Forest Ecology and Forest Management Group, Wageningen University, PO Box 47, 6700 AA, Wageningen, The Netherlands
- Team Biodiversity and Policy, ALTERRA, Wageningen University and Research Centre, PO Box 47, 6700 AA, Wageningen, The Netherlands
| | - Frank Sterck
- Forest Ecology and Forest Management Group, Wageningen University, PO Box 47, 6700 AA, Wageningen, The Netherlands
| | - Mart Vlam
- Forest Ecology and Forest Management Group, Wageningen University, PO Box 47, 6700 AA, Wageningen, The Netherlands
| | - Pieter A Zuidema
- Forest Ecology and Forest Management Group, Wageningen University, PO Box 47, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
22
|
Kumar S, Chaitanya BSK, Ghatty S, Reddy AR. Growth, reproductive phenology and yield responses of a potential biofuel plant, Jatropha curcas grown under projected 2050 levels of elevated CO2. PHYSIOLOGIA PLANTARUM 2014; 152:501-19. [PMID: 24655305 DOI: 10.1111/ppl.12195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 05/05/2023]
Abstract
Jatropha (Jatropha curcas) is a non-edible oil producing plant which is being advocated as an alternative biofuel energy resource. Its ability to grow in diverse soil conditions and minimal requirements of essential agronomical inputs compared with other oilseed crops makes it viable for cost-effective advanced biofuel production. We designed a study to investigate the effects of elevated carbon dioxide concentration ([CO(2)]) (550 ppm) on the growth, reproductive development, source-sink relationships, fruit and seed yield of J. curcas. We report, for the first time that elevated CO(2) significantly influences reproductive characteristics of Jatropha and improve its fruit and seed yields. Net photosynthetic rate of Jatropha was 50% higher in plants grown in elevated CO(2) compared with field and ambient CO(2) -grown plants. The study also revealed that elevated CO(2) atmosphere significantly increased female to male flower ratio, above ground biomass and carbon sequestration potential in Jatropha (24 kg carbon per tree) after 1 year. Our data demonstrate that J. curcas was able to sustain enhanced rate of photosynthesis in elevated CO(2) conditions as it had sufficient sink strength to balance the increased biomass yields. Our study also elucidates that the economically important traits including fruit and seed yield in elevated CO(2) conditions were significantly high in J. curcas that holds great promise as a potential biofuel tree species for the future high CO(2) world.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | | | | | | |
Collapse
|
23
|
Pyakurel A, Wang JR. Interactive Effects of Elevated [CO<sub>2</sub>] and Soil Water Stress on Leaf Morphological and Anatomical Characteristic of Paper Birch Populations. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ajps.2014.55084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Ramalho JC, Rodrigues AP, Semedo JN, Pais IP, Martins LD, Simões-Costa MC, Leitão AE, Fortunato AS, Batista-Santos P, Palos IM, Tomaz MA, Scotti-Campos P, Lidon FC, DaMatta FM. Sustained photosynthetic performance of Coffea spp. under long-term enhanced [CO2]. PLoS One 2013; 8:e82712. [PMID: 24324823 PMCID: PMC3855777 DOI: 10.1371/journal.pone.0082712] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 10/28/2013] [Indexed: 11/18/2022] Open
Abstract
Coffee is one of the world's most traded agricultural products. Modeling studies have predicted that climate change will have a strong impact on the suitability of current cultivation areas, but these studies have not anticipated possible mitigating effects of the elevated atmospheric [CO2] because no information exists for the coffee plant. Potted plants from two genotypes of Coffea arabica and one of C. canephora were grown under controlled conditions of irradiance (800 μmol m(-2) s(-1)), RH (75%) and 380 or 700 μL CO2 L(-1) for 1 year, without water, nutrient or root development restrictions. In all genotypes, the high [CO2] treatment promoted opposite trends for stomatal density and size, which decreased and increased, respectively. Regardless of the genotype or the growth [CO2], the net rate of CO2 assimilation increased (34-49%) when measured at 700 than at 380 μL CO2 L(-1). This result, together with the almost unchanged stomatal conductance, led to an instantaneous water use efficiency increase. The results also showed a reinforcement of photosynthetic (and respiratory) components, namely thylakoid electron transport and the activities of RuBisCo, ribulose 5-phosphate kinase, malate dehydrogenase and pyruvate kinase, what may have contributed to the enhancements in the maximum rates of electron transport, carboxylation and photosynthetic capacity under elevated [CO2], although these responses were genotype dependent. The photosystem II efficiency, energy driven to photochemical events, non-structural carbohydrates, photosynthetic pigment and membrane permeability did not respond to [CO2] supply. Some alterations in total fatty acid content and the unsaturation level of the chloroplast membranes were noted but, apparently, did not affect photosynthetic functioning. Despite some differences among the genotypes, no clear species-dependent responses to elevated [CO2] were observed. Overall, as no apparent sign of photosynthetic down-regulation was found, our data suggest that Coffea spp. plants may successfully cope with high [CO2] under the present experimental conditions.
Collapse
Affiliation(s)
- José C. Ramalho
- Grupo Interações Planta-Ambiente - Plant Stress, Centro de Ambiente, Agricultura e Desenvolvimento - BioTrop, Instituto de Investigação Científica Tropical, I.P., Oeiras, Portugal
| | - Ana P. Rodrigues
- Centro de Estudos Florestais, Instituto Superior Agronomia, Universidade Técnica de Lisboa, Lisboa, Portugal
| | - José N. Semedo
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Oeiras, Portugal
| | - Isabel P. Pais
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Oeiras, Portugal
| | - Lima D. Martins
- Grupo Interações Planta-Ambiente - Plant Stress, Centro de Ambiente, Agricultura e Desenvolvimento - BioTrop, Instituto de Investigação Científica Tropical, I.P., Oeiras, Portugal
- Departamento Produção Vegetal, Centro de Ciências Agrárias, Universidade Federal do Espírito Santo, Alegre, Espirito Santo, Brazil
| | - Maria C. Simões-Costa
- Grupo Interações Planta-Ambiente - Plant Stress, Centro de Ambiente, Agricultura e Desenvolvimento - BioTrop, Instituto de Investigação Científica Tropical, I.P., Oeiras, Portugal
| | - António E. Leitão
- Grupo Interações Planta-Ambiente - Plant Stress, Centro de Ambiente, Agricultura e Desenvolvimento - BioTrop, Instituto de Investigação Científica Tropical, I.P., Oeiras, Portugal
| | - Ana S. Fortunato
- Grupo Interações Planta-Ambiente - Plant Stress, Centro de Ambiente, Agricultura e Desenvolvimento - BioTrop, Instituto de Investigação Científica Tropical, I.P., Oeiras, Portugal
| | - Paula Batista-Santos
- Grupo Interações Planta-Ambiente - Plant Stress, Centro de Ambiente, Agricultura e Desenvolvimento - BioTrop, Instituto de Investigação Científica Tropical, I.P., Oeiras, Portugal
| | - Isabel M. Palos
- Grupo Interações Planta-Ambiente - Plant Stress, Centro de Ambiente, Agricultura e Desenvolvimento - BioTrop, Instituto de Investigação Científica Tropical, I.P., Oeiras, Portugal
| | - Marcelo A. Tomaz
- Departamento Produção Vegetal, Centro de Ciências Agrárias, Universidade Federal do Espírito Santo, Alegre, Espirito Santo, Brazil
| | - Paula Scotti-Campos
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Oeiras, Portugal
| | - Fernando C. Lidon
- Departamento Ciências da Terra, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Fábio M. DaMatta
- Departamento Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
25
|
Rico C, Pittermann J, Polley HW, Aspinwall MJ, Fay PA. The effect of subambient to elevated atmospheric CO₂ concentration on vascular function in Helianthus annuus: implications for plant response to climate change. THE NEW PHYTOLOGIST 2013; 199:956-965. [PMID: 23731256 DOI: 10.1111/nph.12339] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 04/16/2013] [Indexed: 06/02/2023]
Abstract
Plant gas exchange is regulated by stomata, which coordinate leaf-level water loss with xylem transport. Stomatal opening responds to internal concentrations of CO₂ in the leaf, but changing CO₂ can also lead to changes in stomatal density that influence transpiration. Given that stomatal conductance increases under subambient concentrations of CO₂ and, conversely, that plants lose less water at elevated concentrations, can downstream effects of atmospheric CO₂ be observed in xylem tissue? We approached this problem by evaluating leaf stomatal density, xylem transport, xylem anatomy and resistance to cavitation in Helianthus annuus plants grown under three CO₂ regimes ranging from pre-industrial to elevated concentrations. Xylem transport, conduit size and stomatal density all increased at 290 ppm relative to ambient and elevated CO₂ concentrations. The shoots of the 290-ppm-grown plants were most vulnerable to cavitation, whereas xylem cavitation resistance did not differ in 390- and 480-ppm-grown plants. Our data indicate that, even as an indirect driver of water loss, CO₂ can affect xylem structure and water transport by coupling stomatal and xylem hydraulic functions during plant development. This plastic response has implications for plant water use under variable concentrations of CO₂, as well as the evolution of efficient xylem transport.
Collapse
Affiliation(s)
- Christopher Rico
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95064, USA
| | - Jarmila Pittermann
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95064, USA
| | - H Wayne Polley
- United States Department of Agriculture, Grassland Soil and Water Research Laboratory, 808 E. Blackland Rd, Temple, TX, 76502, USA
| | - Michael J Aspinwall
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, NSW, 2753, Australia
| | - Phillip A Fay
- United States Department of Agriculture, Grassland Soil and Water Research Laboratory, 808 E. Blackland Rd, Temple, TX, 76502, USA
| |
Collapse
|
26
|
Gómez-Guerrero A, Silva LCR, Barrera-Reyes M, Kishchuk B, Velázquez-Martínez A, Martínez-Trinidad T, Plascencia-Escalante FO, Horwath WR. Growth decline and divergent tree ring isotopic composition (δ(13) C and δ(18) O) contradict predictions of CO2 stimulation in high altitudinal forests. GLOBAL CHANGE BIOLOGY 2013; 19:1748-1758. [PMID: 23504983 DOI: 10.1111/gcb.12170] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/30/2013] [Indexed: 06/01/2023]
Abstract
Human-induced changes in atmospheric composition are expected to affect primary productivity across terrestrial biomes. Recent changes in productivity have been observed in many forest ecosystems, but low-latitude upper tree line forests remain to be investigated. Here, we use dendrochronological methods and isotopic analysis to examine changes in productivity, and their physiological basis, in Abies religiosa (Ar) and Pinus hartwegii (Ph) trees growing in high-elevation forests of central Mexico. Six sites were selected across a longitudinal transect (Transverse Volcanic Axis), from the Pacific Ocean toward the Gulf of Mexico, where mature dominant trees were sampled at altitudes ranging from 3200 to 4000 m asl. A total of 60 Ar and 84 Ph trees were analyzed to describe changes in growth (annual-resolution) and isotopic composition (decadal-resolution) since the early 1900s. Our results show an initial widespread increase in basal area increment (BAI) during the first half of the past century. However, BAI has decreased significantly since the 1950s with accentuated decline after the 1980s in both species and across sites. We found a consistent reduction in atmosphere to wood (13) C discrimination, resulting from increasing water use efficiency (20-60%), coinciding with rising atmospheric CO2 . Changes in (13) C discrimination were not followed, however, by shifts in tree ring δ(18) O, indicating site- and species-specific differences in water source or uptake strategy. Our results indicate that CO2 stimulation has not been enough to counteract warming-induced drought stress, but other stressors, such as progressive nutrient limitation, could also have contributed to growth decline. Future studies should explore the distinct role of resource limitation (water vs. nutrients) in modulating the response of high-elevation ecosystems to atmospheric change.
Collapse
Affiliation(s)
- Armando Gómez-Guerrero
- Colegio de Postgraduados, Postgrado Forestal, Km. 36.5 Carretera México-Texcoco, CP, Montecillo, Texcoco, 56230, Estado de México
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Rivera P, Luis Villaseñor J, Terrazas T. El aparato estomático de Asteraceae y su relación con el aumento de CO2 atmosférico en la Reserva Ecológica del Pedregal de San Ángel, México. REV MEX BIODIVERS 2013. [DOI: 10.7550/rmb.30933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
28
|
Battipaglia G, Saurer M, Cherubini P, Calfapietra C, McCarthy HR, Norby RJ, Francesca Cotrufo M. Elevated CO₂ increases tree-level intrinsic water use efficiency: insights from carbon and oxygen isotope analyses in tree rings across three forest FACE sites. THE NEW PHYTOLOGIST 2013; 197:544-554. [PMID: 23215904 DOI: 10.1111/nph.12044] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/04/2012] [Indexed: 05/09/2023]
Abstract
Elevated CO₂ increases intrinsic water use efficiency (WUE(i) ) of forests, but the magnitude of this effect and its interaction with climate is still poorly understood. We combined tree ring analysis with isotope measurements at three Free Air CO₂ Enrichment (FACE, POP-EUROFACE, in Italy; Duke FACE in North Carolina and ORNL in Tennessee, USA) sites, to cover the entire life of the trees. We used δ¹³C to assess carbon isotope discrimination and changes in water-use efficiency, while direct CO₂ effects on stomatal conductance were explored using δ¹⁸O as a proxy. Across all the sites, elevated CO₂ increased ¹³C-derived water-use efficiency on average by 73% for Liquidambar styraciflua, 77% for Pinus taeda and 75% for Populus sp., but through different ecophysiological mechanisms. Our findings provide a robust means of predicting water-use efficiency responses from a variety of tree species exposed to variable environmental conditions over time, and species-specific relationships that can help modelling elevated CO₂ and climate impacts on forest productivity, carbon and water balances.
Collapse
Affiliation(s)
- Giovanna Battipaglia
- Environmental Science Department, Second University of Naples, 81100, Caserta, Italy
- Centre for Bio-Archeology and Ecology, Ecole Pratique des Hautes Etudes (PALECO EPHE), Institut de Botanique, University of Montpellier 2, F-34090, Montpellier, France
| | | | - Paolo Cherubini
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, 8903, Birmensdorf, Switzerland
| | - Carlo Calfapietra
- IBAF-Institute of agro-environmental and Forest Biology, CNR, Porano, Italy
| | - Heather R McCarthy
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Richard J Norby
- Oak Ridge National Laboratory, Environmental Sciences Division, Oak Ridge, TN, USA
| | - M Francesca Cotrufo
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
29
|
Milcu A, Paul S, Lukac M. Belowground interactive effects of elevated CO2, plant diversity and earthworms in grassland microcosms. Basic Appl Ecol 2011. [DOI: 10.1016/j.baae.2011.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
30
|
Cernusak LA, Winter K, Martínez C, Correa E, Aranda J, Garcia M, Jaramillo C, Turner BL. Responses of legume versus nonlegume tropical tree seedlings to elevated CO2 concentration. PLANT PHYSIOLOGY 2011; 157:372-85. [PMID: 21788363 PMCID: PMC3165885 DOI: 10.1104/pp.111.182436] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Accepted: 07/21/2011] [Indexed: 05/06/2023]
Abstract
We investigated responses of growth, leaf gas exchange, carbon-isotope discrimination, and whole-plant water-use efficiency (W(P)) to elevated CO(2) concentration ([CO(2)]) in seedlings of five leguminous and five nonleguminous tropical tree species. Plants were grown at CO(2) partial pressures of 40 and 70 Pa. As a group, legumes did not differ from nonlegumes in growth response to elevated [CO(2)]. The mean ratio of final plant dry mass at elevated to ambient [CO(2)] (M(E)/M(A)) was 1.32 and 1.24 for legumes and nonlegumes, respectively. However, there was large variation in M(E)/M(A) among legume species (0.92-2.35), whereas nonlegumes varied much less (1.21-1.29). Variation among legume species in M(E)/M(A) was closely correlated with their capacity for nodule formation, as expressed by nodule mass ratio, the dry mass of nodules for a given plant dry mass. W(P) increased markedly in response to elevated [CO(2)] in all species. The ratio of intercellular to ambient CO(2) partial pressures during photosynthesis remained approximately constant at ambient and elevated [CO(2)], as did carbon isotope discrimination, suggesting that W(P) should increase proportionally for a given increase in atmospheric [CO(2)]. These results suggest that tree legumes with a strong capacity for nodule formation could have a competitive advantage in tropical forests as atmospheric [CO(2)] rises and that the water-use efficiency of tropical tree species will increase under elevated [CO(2)].
Collapse
Affiliation(s)
- Lucas A Cernusak
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ogaya R, Llorens L, Peñuelas J. Density and length of stomatal and epidermal cells in "living fossil" trees grown under elevated CO2 and a polar light regime. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2011. [DOI: 10.1016/j.actao.2011.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Niinemets Ü, Flexas J, Peñuelas J. Evergreens favored by higher responsiveness to increased CO2. Trends Ecol Evol 2011; 26:136-42. [DOI: 10.1016/j.tree.2010.12.012] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Revised: 12/23/2010] [Accepted: 12/27/2010] [Indexed: 11/15/2022]
|
33
|
Tallis MJ, Lin Y, Rogers A, Zhang J, Street NR, Miglietta F, Karnosky DF, De Angelis P, Calfapietra C, Taylor G. The transcriptome of Populus in elevated CO reveals increased anthocyanin biosynthesis during delayed autumnal senescence. THE NEW PHYTOLOGIST 2010; 186:415-28. [PMID: 20202130 DOI: 10.1111/j.1469-8137.2010.03184.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
*The delay in autumnal senescence that has occurred in recent decades has been linked to rising temperatures. Here, we suggest that increasing atmospheric CO2 may partly account for delayed autumnal senescence and for the first time, through transcriptome analysis, identify gene expression changes associated with this delay. *Using a plantation of Populus x euramericana grown in elevated [CO2] (e[CO2]) with free-air CO2 enrichment (FACE) technology, we investigated the molecular and biochemical basis of this response. A Populus cDNA microarray was used to identify genes representing multiple biochemical pathways influenced by e[CO2] during senescence. Gene expression changes were confirmed through real-time quantitative PCR, and leaf biochemical assays. *Pathways for secondary metabolism and glycolysis were significantly up-regulated by e[CO2] during senescence, in particular, those related to anthocyanin biosynthesis. Expressed sequence tags (ESTs) representing the two most significantly up-regulated transcripts in e[CO2], LDOX (leucoanthocyanidin dioxgenase) and DFR (dihydroflavonol reductase), gave (e[CO2]/ambient CO(2) (a[CO2])) expression ratios of 39.6 and 19.3, respectively. *We showed that in e[CO2] there was increased autumnal leaf sugar accumulation and up-regulation of genes determining anthocyanin biosynthesis which, we propose, prolongs leaf longevity during natural autumnal senescence.
Collapse
Affiliation(s)
- M J Tallis
- School of Biological Science, Bassett Crescent East, University of Southampton, Southampton SO16 7PX, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Miller-Rushing AJ, Primack RB, Templer PH, Rathbone S, Mukunda S. Long-term relationships among atmospheric CO2, stomata, and intrinsic water use efficiency in individual trees. AMERICAN JOURNAL OF BOTANY 2009; 96:1779-86. [PMID: 21622298 DOI: 10.3732/ajb.0800410] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Leaf-level responses to increases in atmospheric carbon dioxide (CO(2)) concentrations could have large implications for water and carbon cycles. We investigated whether stomatal density, guard cell length, and intrinsic water use efficiency (iWUE) of 27 individual trees growing at the Arnold Arboretum in Boston, Massachusetts have responded to changing environmental conditions over the last 100 years. We examined leaves from 74 herbarium specimens collected from three genera-Acer (maples), Quercus (oaks), and Carpinus (hornbeams)-from 1893 to 2006. During this period, global average atmospheric CO(2) concentrations increased by approximately 29% (86 ppm), and temperatures in Boston increased by 1.8°C. Stomatal density and guard cell length were negatively correlated in oaks and hornbeams. Although stomatal density declined and guard cell length increased over time, the changes were not dependent on the magnitude of changes in CO(2) concentrations. Intrinsic WUE did not change significantly over time. Our findings suggest that iWUE may not respond to changes in CO(2) concentrations over the lifetimes of individual trees, possibly because of compensating changes in stomatal density and guard cell size. We provide an example of a method that can enable researchers to differentiate between genetic and plastic responses to global change in long-lived trees.
Collapse
|
35
|
Liberloo M, Lukac M, Calfapietra C, Hoosbeek MR, Gielen B, Miglietta F, Scarascia-Mugnozza GE, Ceulemans R. Coppicing shifts CO2 stimulation of poplar productivity to above-ground pools: a synthesis of leaf to stand level results from the POP/EUROFACE experiment. THE NEW PHYTOLOGIST 2009; 182:331-346. [PMID: 19207687 DOI: 10.1111/j.1469-8137.2008.02754.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A poplar short rotation coppice (SRC) grown for the production of bioenergy can combine carbon (C) storage with fossil fuel substitution. Here, we summarize the responses of a poplar (Populus) plantation to 6 yr of free air CO(2) enrichment (POP/EUROFACE consisting of two rotation cycles). We show that a poplar plantation growing in nonlimiting light, nutrient and water conditions will significantly increase its productivity in elevated CO(2) concentrations ([CO(2)]). Increased biomass yield resulted from an early growth enhancement and photosynthesis did not acclimate to elevated [CO(2)]. Sufficient nutrient availability, increased nitrogen use efficiency (NUE) and the large sink capacity of poplars contributed to the sustained increase in C uptake over 6 yr. Additional C taken up in high [CO(2)] was mainly invested into woody biomass pools. Coppicing increased yield by 66% and partly shifted the extra C uptake in elevated [CO(2)] to above-ground pools, as fine root biomass declined and its [CO(2)] stimulation disappeared. Mineral soil C increased equally in ambient and elevated [CO(2)] during the 6 yr experiment. However, elevated [CO(2)] increased the stabilization of C in the mineral soil. Increased productivity of a poplar SRC in elevated [CO(2)] may allow shorter rotation cycles, enhancing the viability of SRC for biofuel production.
Collapse
Affiliation(s)
- Marion Liberloo
- University of Antwerp, Research Group of Plant and Vegetation Ecology, Department of Biology, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Martin Lukac
- NERC Centre for Population Biology, Division of Biology, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | - Carlo Calfapietra
- University of Tuscia, DISAFRI, Via San Camillo De Lellis, I-01100 Viterbo, Italy
- National Research Council (CNR), Institute of Agro-Environmental & Forest Biology, Via Salaria km 29,300, 00015 Monterotondo Scalo (Roma), Italy
| | - Marcel R Hoosbeek
- Department of Environmental Sciences, Earth System Science - Climate Change group, Wageningen University, PO Box 47, 6700AA Wageningen, the Netherlands
| | - Birgit Gielen
- University of Antwerp, Research Group of Plant and Vegetation Ecology, Department of Biology, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Franco Miglietta
- Institute of Biometeorology - National Research Council (IBIMET-CNR), Via Caproni 8, 50145 Firenze, Italy
| | - Giuseppe E Scarascia-Mugnozza
- University of Tuscia, DISAFRI, Via San Camillo De Lellis, I-01100 Viterbo, Italy
- National Research Council (CNR), Institute of Agro-Environmental & Forest Biology, Via Salaria km 29,300, 00015 Monterotondo Scalo (Roma), Italy
| | - Reinhart Ceulemans
- University of Antwerp, Research Group of Plant and Vegetation Ecology, Department of Biology, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
36
|
Primack RB, Miller-Rushing AJ. The role of botanical gardens in climate change research. THE NEW PHYTOLOGIST 2009; 182:303-313. [PMID: 19338634 DOI: 10.1111/j.1469-8137.2009.02800.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Botanical gardens have a unique set of resources that allows them to host important climate change research projects not easily undertaken elsewhere. These resources include controlled growing conditions, living collections with broad taxonomic representation, meticulous record-keeping, networks spanning wide geographic areas, and knowledgeable staff. Indeed, botanical gardens have already contributed significantly to our understanding of biological responses to climate change, particularly the effects of temperature on the timing of flowering and leaf-out. They have also made significant contributions to the understanding of the relationships among climate, physiology, and anatomy. Gardens are finding new uses for traditional research tools such as herbarium specimens and historical photographs, which are increasingly being used to obtain information on past plant behavior. Additional work on invasive species and comparative studies of responses to climatic variation are providing insights on important ecological, evolutionary, and management questions. With their large collections of plant species from throughout the world and excellent herbaria, botanical gardens are well positioned to expand their current activities to continue to provide leadership in climate change research and education.
Collapse
Affiliation(s)
- Richard B Primack
- Biology Department, Boston University, 5 Cummington St., Boston, MA 02215, USA
| | - Abraham J Miller-Rushing
- USA National Phenology Network, 1955 East Sixth St., Tucson, AZ 85719, USA
- The Wildlife Society, 5410 Grosvenor Lane, Bethesda, MD 20814, USA
| |
Collapse
|
37
|
Riikonen J, Syrjälä L, Tulva I, Mänd P, Oksanen E, Poteri M, Vapaavuori E. Stomatal characteristics and infection biology of Pyrenopeziza betulicola in Betula pendula trees grown under elevated CO2 and O3. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2008; 156:536-543. [PMID: 18289750 DOI: 10.1016/j.envpol.2008.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 01/07/2008] [Accepted: 01/08/2008] [Indexed: 05/25/2023]
Abstract
Two silver birch clones were exposed to ambient and elevated concentrations of CO(2) and O(3), and their combination for 3 years, using open-top chambers. We evaluated the effects of elevated CO(2) and O(3) on stomatal conductance (g(s)), density (SD) and index (SI), length of the guard cells, and epidermal cell size and number, with respect to crown position and leaf type. The relationship between the infection biology of the fungus (Pyrenopeziza betulicola) causing leaf spot disease and stomatal characteristics was also studied. Leaf type was an important determinant of O(3) response in silver birch, while crown position and clone played only a minor role. Elevated CO(2) reduced the g(s), but had otherwise no significant effect on the parameters studied. No significant interactions between elevated CO(2) and O(3) were found. The infection biology of P. betulicola was not correlated with SD or g(s), but it did occasionally correlate positively with the length of the guard cells.
Collapse
Affiliation(s)
- Johanna Riikonen
- Department of Ecology and Environmental Science, University of Kuopio, PO Box 1627, FIN-70211, Kuopio, Finland.
| | | | | | | | | | | | | |
Collapse
|
38
|
Li P, Ainsworth EA, Leakey ADB, Ulanov A, Lozovaya V, Ort DR, Bohnert HJ. Arabidopsis transcript and metabolite profiles: ecotype-specific responses to open-air elevated [CO2]. PLANT, CELL & ENVIRONMENT 2008; 31:1673-87. [PMID: 18721265 DOI: 10.1111/j.1365-3040.2008.01874.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A Free-Air CO(2) Enrichment (FACE) experiment compared the physiological parameters, transcript and metabolite profiles of Arabidopsis thaliana Columbia-0 (Col-0) and Cape Verde Island (Cvi-0) at ambient (approximately 0.375 mg g(-1)) and elevated (approximately 0.550 mg g(-1)) CO(2) ([CO(2)]). Photoassimilate pool sizes were enhanced in high [CO(2)] in an ecotype-specific manner. Short-term growth at elevated [CO(2)] stimulated carbon gain irrespective of down-regulation of plastid functions and altered expression of genes involved in nitrogen metabolism resembling patterns observed under N-deficiency. The study confirmed well-known characteristics, but the use of a time course, ecotypic genetic differences, metabolite analysis and the focus on clusters of functional categories provided new aspects about responses to elevated [CO(2)]. Longer-term Cvi-0 responded by down-regulating functions favouring carbon accumulation, and both ecotypes showed altered expression of genes for defence, redox control, transport, signalling, transcription and chromatin remodelling. Overall, carbon fixation with a smaller commitment of resources in elevated [CO(2)] appeared beneficial, with the extra C only partially utilized possibly due to disturbance of the C : N ratio. To different degrees, both ecotypes perceived elevated [CO(2)] as a metabolic perturbation that necessitated increased functions consuming or storing photoassimilate, with Cvi-0 emerging as more capable of acclimating. Elevated [CO(2)] in Arabidopsis favoured adjustments in reactive oxygen species (ROS) homeostasis and signalling that defined genotypic markers.
Collapse
Affiliation(s)
- Pinghua Li
- Department of Plant Biology, University of Illinois at Urbana - Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Konrad W, Roth-Nebelsick A, Grein M. Modelling of stomatal density response to atmospheric. J Theor Biol 2008; 253:638-58. [DOI: 10.1016/j.jtbi.2008.03.032] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 03/11/2008] [Accepted: 03/27/2008] [Indexed: 11/17/2022]
|
40
|
Eensalu E, Kupper P, Sellin A, Rahi M, Sõber A, Kull O. Do stomata operate at the same relative opening range along a canopy profile of Betula pendula? FUNCTIONAL PLANT BIOLOGY : FPB 2008; 35:103-110. [PMID: 32688761 DOI: 10.1071/fp07258] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 01/15/2008] [Indexed: 06/11/2023]
Abstract
Stomatal density and size were measured along the light gradient of a Betula pendula Roth. canopy in relation to microclimatic conditions. The theoretical stomatal conductance was calculated using stomatal density and dimensions to predict to what degree stomatal conductance is related to anatomical properties and relative stomatal opening. Stomatal density was higher and leaf area smaller in the upper canopy, whereas epidermal cell density did not change significantly along the canopy light gradient, indicating that stomatal initiation is responsible for differences in stomatal density. Stomatal dimensions - the length of guard cell on the dorsal side and the guard cell width - decreased with declining light availability. Maximum measured stomatal conductance and modelled stomatal conductance were higher at the top of the crown. The stomata operate closer to their maximum openness and stomatal morphology is a more important determinant of stomatal conductance in the top leaves than in leaves of lower canopy. As stomata usually limit photosynthesis more in upper than in lower canopy, it was concluded that stomatal morphology can principally be important for photosynthesis limitation in upper canopy.
Collapse
Affiliation(s)
- Eve Eensalu
- Institute of Ecology and Earth Sciences, Department of Botany, University of Tartu, Lai 40, Tartu 51005, Estonia
| | - Priit Kupper
- Institute of Ecology and Earth Sciences, Department of Botany, University of Tartu, Lai 40, Tartu 51005, Estonia
| | - Arne Sellin
- Institute of Ecology and Earth Sciences, Department of Botany, University of Tartu, Lai 40, Tartu 51005, Estonia
| | - Märt Rahi
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Riia 181, Tartu 51014, Estonia
| | - Anu Sõber
- Institute of Ecology and Earth Sciences, Department of Botany, University of Tartu, Lai 40, Tartu 51005, Estonia
| | - Olevi Kull
- Institute of Ecology and Earth Sciences, Department of Botany, University of Tartu, Lai 40, Tartu 51005, Estonia
| |
Collapse
|
41
|
Buckley TN. The role of stomatal acclimation in modelling tree adaptation to high CO2. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:1951-61. [PMID: 18000018 DOI: 10.1093/jxb/erm234] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Carbon dioxide enrichment changes the balance of photosynthetic limitations due to water, nitrogen, and light. This paper examines the role of stomata in these changes by comparing enrichment responses predicted by an optimality-based tree growth model, DESPOT, using three alternative 'setpoints' for stomatal acclimation: leaf water potential (psi(l)-setpoint), the ratio of intercellular to ambient CO(2) mole fraction (c(i)/c(a)-setpoint), and the parameters in a simple model in which stomata are controlled by H(2)O and CO(2) supply and demand (linked feedback). In each scenario, stomatal conductance (g(s)) and photosynthetic capacity (V(m)) declined, productivity and leaf area index (LAI) increased, and c(i)/c(a) remained within 5% of its pre-enrichment value. Height growth preceded the LAI response in the psi(l)-setpoint and linked feedback scenarios, but not in the c(i)/c(a)-setpoint scenario. These trends were explained in terms of photosynthetic resource substitution using the equimarginal principle of production theory, which controls carbon allocation in DESPOT: enrichment initially increased the marginal product for light, driving substitution towards light; height growth also drove substitution towards N in the psi(l) and feedback scenarios, but the inflexibility of c(i)/c(a) prevented that substitution in the c(i)/c(a) scenario, explaining the lack of height response. Each scenario, however, predicted similar behaviour for c(i)/c(a) and carbon and water flux. These results suggest that 'setpoints' may be robust tools for linking and constraining carbon and water fluxes, but that they should be used more cautiously in predicting or interpreting how those fluxes arise from changes in tree structure and physiology.
Collapse
Affiliation(s)
- Thomas N Buckley
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney NSW 2052, Australia.
| |
Collapse
|
42
|
Ju WM, Chen JM, Harvey D, Wang S. Future carbon balance of China's forests under climate change and increasing CO2. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2007; 85:538-62. [PMID: 17187919 DOI: 10.1016/j.jenvman.2006.04.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 04/01/2006] [Accepted: 04/16/2006] [Indexed: 05/13/2023]
Abstract
The possible response of the carbon (C) balance of China's forests to an increase in atmospheric CO(2) concentration and climate change was investigated through a series of simulations using the Integrated Terrestrial Ecosystem Carbon (InTEC) model, which explicitly represents the effects of climate, CO(2) concentration, and nitrogen deposition on future C sequestration by forests. Two climate change scenarios (CGCM2-A2 and -B2) were used to drive the model. Simulations showed that China's forests were a C sink in the 1990 s, averaging 189 Tg C yr(-1) (about 13% of the global total). This sink peaks around 2020 and then gradually declines to 33.5 Tg C yr(-1) during 2091-2100 without climate and CO(2) changes. Effects of pure climate change of CGCM2-A2 and -B2 without allowing CO(2) effects on C assimilation in plants might reduce the average net primary productivity (NPP) of China's forests by 29% and 18% during 2091-2100, respectively. Total soil C stocks might decrease by 16% and 11% during this period. China's forests might broadly act as C sources during 2091-2100, with values of about 50 g Cm(-2)yr(-1) under the moderate warming of CGCM2-B2 and 50-200 g Cm(-2)yr(-1) under the warmer scenario of CGCM2-A2. An increase in CO(2) might broadly increase future C sequestration of China's forests. However, this CO(2) fertilization effect might decline with time. The CO(2) fertilization effects on NPP by the end of this century are 349.6 and 241.7 Tg C yr(-1) under CGCM2-A2 and -B2 increase scenarios, respectively. These effects increase by 199.1 and 126.6 Tg C yr(-1) in the first 50 years, and thereafter, by 150.5 and 115.1 Tg C yr(-1) in the second 50 years under CGCM2-A2 and -B2 increase scenarios, respectively. Under a CO(2) increase without climate change, the majority of China's forests would be C sinks during 2091-2100, ranging from 0 to 100 g Cm(-2)yr(-1). The positive effect of CO(2) fertilization on NPP and net ecosystem productivity would be exceeded by the negative effect of climate change after 2050. Under the CGCM2-A2 climate scenario and with direct CO(2) effects, China's forests may be a small C source of 7.6 Tg C yr(-1) during 2091-2100. Most forests act as C sources of 0-40 g Cm(-2)yr(-1). Under the CGCM2-B2 climate scenario and with direct CO(2) effects, China's forests might be a small C sink of 10.5 Tg C yr(-1) during 2091-2100, with C sequestration of most forests ranging from 0 to 40 g Cm(-2)yr(-1). Stand age structure plays a more dominant role in determining future C sequestration than CO(2) and climate change. The prediction of future C sequestration of China's forests is very sensitive to the Q(10) value used to estimate maintenance respiration and to soil water availability and less sensitive to N deposition scenario. The results are not yet comprehensive, as no forest disturbance data were available or predicted after 2001. However, the results indicate a range of possible responses of the C balance of China's forests to various scenarios of increase in CO(2) and climate change. These results could be useful for assessing measures to mitigate climate change through reforestation.
Collapse
Affiliation(s)
- W M Ju
- Department of Geography, University of Toronto, 100 St. George St., Room 5047, Toronto, Ontario, Canada M5S 3G3.
| | | | | | | |
Collapse
|
43
|
Marinari S, Calfapietra C, De Angelis P, Mugnozza GS, Grego S. Impact of elevated CO(2) and nitrogen fertilization on foliar elemental composition in a short rotation poplar plantation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2007; 147:507-15. [PMID: 17084005 DOI: 10.1016/j.envpol.2006.08.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Accepted: 08/27/2006] [Indexed: 05/12/2023]
Abstract
The experiment was carried out on a short rotation coppice culture of poplars (POP-EUROFACE, Central Italy), growing in a free air carbon dioxide enriched atmosphere (FACE). The specific objective of this work was to study whether elevated CO(2) and fertilization (two CO(2) treatments, elevated CO(2) and control, two N fertilization treatments, fertilized and unfertilized), as well as the interaction between treatments caused an unbalanced nutritional status of leaves in three poplar species (P. x euramericana, P. nigra and P. alba). Finally, we discuss the ecological implications of a possible change in foliar nutrients concentration. CO(2) enrichment reduced foliar nitrogen and increased the concentration of magnesium; whereas nitrogen fertilization had opposite effects on leaf nitrogen and magnesium concentrations. Moreover, the interaction between elevated CO(2) and N fertilization amplified some element unbalances such as the K/N-ratio.
Collapse
Affiliation(s)
- Sara Marinari
- Department of Agrochemistry and Agrobiology, Università degli Studi della Tuscia, Via S Camillo de Lellis, Viterbo, Italy.
| | | | | | | | | |
Collapse
|
44
|
Ainsworth EA, Rogers A. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. PLANT, CELL & ENVIRONMENT 2007; 30:258-270. [PMID: 17263773 DOI: 10.1111/j.1365-3040.2007.01641.x] [Citation(s) in RCA: 901] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
This review summarizes current understanding of the mechanisms that underlie the response of photosynthesis and stomatal conductance to elevated carbon dioxide concentration ([CO2]), and examines how downstream processes and environmental constraints modulate these two fundamental responses. The results from free-air CO2 enrichment (FACE) experiments were summarized via meta-analysis to quantify the mean responses of stomatal and photosynthetic parameters to elevated [CO2]. Elevation of [CO2] in FACE experiments reduced stomatal conductance by 22%, yet, this reduction was not associated with a similar change in stomatal density. Elevated [CO2] stimulated light-saturated photosynthesis (Asat) in C3 plants grown in FACE by an average of 31%. However, the magnitude of the increase in Asat varied with functional group and environment. Functional groups with ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)-limited photosynthesis at elevated [CO2] had greater potential for increases in Asat than those where photosynthesis became ribulose-1,5-bisphosphate (RubP)-limited at elevated [CO2]. Both nitrogen supply and sink capacity modulated the response of photosynthesis to elevated [CO2] through their impact on the acclimation of carboxylation capacity. Increased understanding of the molecular and biochemical mechanisms by which plants respond to elevated [CO2], and the feedback of environmental factors upon them, will improve our ability to predict ecosystem responses to rising [CO2] and increase our potential to adapt crops and managed ecosystems to future atmospheric [CO2].
Collapse
Affiliation(s)
- Elizabeth A Ainsworth
- USDA/ARS Photosynthesis Research Unit and Department of Plant Biology, University of Illinois Urbana-Champaign, 147 ERML, 1201 W. Gregory Drive, Urbana, IL 61801,Department of Environmental Sciences, Brookhaven National Laboratory, Upton, NY 11973-5000 andDepartment of Crop Sciences, University of Illinois, Urbana IL 61801, USA
| | - Alistair Rogers
- USDA/ARS Photosynthesis Research Unit and Department of Plant Biology, University of Illinois Urbana-Champaign, 147 ERML, 1201 W. Gregory Drive, Urbana, IL 61801,Department of Environmental Sciences, Brookhaven National Laboratory, Upton, NY 11973-5000 andDepartment of Crop Sciences, University of Illinois, Urbana IL 61801, USA
| |
Collapse
|
45
|
Rae AM, Ferris R, Tallis MJ, Taylor G. Elucidating genomic regions determining enhanced leaf growth and delayed senescence in elevated CO2. PLANT, CELL & ENVIRONMENT 2006; 29:1730-41. [PMID: 16913862 DOI: 10.1111/j.1365-3040.2006.01545.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Limited information is available on the genetic variation and control for plant growth response to elevated CO(2) (e[CO(2)]). Such information is necessary to understand plant adaptation and evolution in future rising CO(2). Here, quantitative trait loci (QTL) for leaf growth, development, quality and leaf senescence were determined in a tree pedigree - an F(2) hybrid of Populus trichocarpa T. & G and Populus deltoides Marsh, following season-long exposure to either current day ambient carbon dioxide (a[CO(2)]) or e[CO(2)] at 600 microL L(-1). Leaf growth and development differed between the grandparents such that P. trichocarpa showed greater response to e[CO(2)]. In the F(2) generation, leaf development and quality traits including leaf area, leaf shape, epidermal cell area, and stomatal number, specific leaf area (SLA), and the phenology trait, canopy senescence index, were sensitive to e[CO(2)]. Sixty-nine QTL were mapped for the 19 traits of plants in a[CO(2)] while 60 QTL were mapped for plants in e[CO(2)]. The results suggest that although many QTL mapped to common positions in a[CO(2)] and e[CO(2)], confirming their importance in determining growth, there was also differential genetic control for a number of traits including leaf senescence. Candidate genes were shown to collocate to regions where response QTL mapped. This study is the first to identify candidate genes that may be important in determining plant adaptation to future high-CO(2) world.
Collapse
Affiliation(s)
- A M Rae
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton, UK
| | | | | | | |
Collapse
|
46
|
Responses to Elevated [CO2] of a Short Rotation, Multispecies Poplar Plantation: the POPFACE/EUROFACE Experiment. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/3-540-31237-4_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|