1
|
Bartolić P, Voltrová A, Macková L, Šrámková G, Šlenker M, Mandáková T, Padilla García N, Marhold K, Kolář F. Overcoming Ploidy Barriers: The Role of Triploid Bridges in the Genetic Introgression of Cardamine amara. Mol Ecol 2025; 34:e17702. [PMID: 39996298 PMCID: PMC11934083 DOI: 10.1111/mec.17702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
Polyploidisation is a significant reproductive barrier, yet genetic evidence indicates that interploidy admixture is more common than previously thought. Theoretical models and controlled crosses support the 'triploid bridge' hypothesis, proposing that hybrids of intermediate ploidy facilitate gene flow. However, comprehensive evidence combining experimental and genetic data from natural mixed-ploidy species is missing. Here, we investigated the rates and directionality of gene flow within a diploid-autotetraploid contact zone of Cardamine amara, a species with abundant natural triploids. We cytotyped over 400 individuals in the field, conducted reciprocal interploidy crosses, and inferred gene flow based on genome-wide sequencing of 84 individuals. Triploids represent a conspicuous entity in mixed-ploidy populations (5%), yet only part of them arose through interploidy hybridisation. Despite being rarely formed, triploid hybrids can backcross with their parental cytotypes, producing viable offspring that are often euploid (in 42% of cases). In correspondence, D-statistics and coalescent simulations documented a significant genome-wide signal of bidirectional gene flow in sympatric but not allopatric populations. Triploids, though rare, thus seem to play a key role in overcoming polyploidy-related reproductive barriers in C. amara. In sum, we present integrative evidence for interploidy gene flow mediated by a triploid bridge in natural populations.
Collapse
Affiliation(s)
- P. Bartolić
- Department of Botany, Faculty of ScienceCharles University in PraguePragueCzechia
| | - A. Voltrová
- Department of Botany, Faculty of ScienceCharles University in PraguePragueCzechia
| | - L. Macková
- Department of Botany, Faculty of ScienceCharles University in PraguePragueCzechia
| | - G. Šrámková
- Department of Botany, Faculty of ScienceCharles University in PraguePragueCzechia
| | - M. Šlenker
- Institute of BotanyPlant Science and Biodiversity Centre, Slovak Academy of SciencesBratislavaSlovakia
| | - T. Mandáková
- Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzechia
- Central European Institute of TechnologyMasaryk UniversityBrnoCzechia
| | - N. Padilla García
- Departamento de Botánica y Fisiología VegetalUniversity of SalamancaSalamancaSpain
| | - K. Marhold
- Department of Botany, Faculty of ScienceCharles University in PraguePragueCzechia
- Institute of BotanyPlant Science and Biodiversity Centre, Slovak Academy of SciencesBratislavaSlovakia
| | - F. Kolář
- Department of Botany, Faculty of ScienceCharles University in PraguePragueCzechia
- Institute of Botany of the Czech Academy of SciencesPrůhoniceCzechia
| |
Collapse
|
2
|
Pessino S, Nestares G, Bianchi MB, Katzaroff I, Amato L, Bocchini M, Marconi G, Albertini E, Ochogavía AC. Diploid aposporous sunflower forms triploid BIII progeny displaying increased apospory levels and non-random genetic mutations. Sci Rep 2025; 15:4808. [PMID: 39922937 PMCID: PMC11807094 DOI: 10.1038/s41598-025-89105-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/03/2025] [Indexed: 02/10/2025] Open
Abstract
Apomixis (asexual reproduction via seeds) has the potential to revolutionize sunflower breeding. In previous studies, we identified a diploid sunflower line (Rf975) that naturally exhibits extra gametophytes resembling aposporous apomictic embryo sacs (AES). Here, we investigated the nature (reduced vs. unreduced) and viability of these AES-like gametophytes by examining the formation of triploid (3x) BIII hybrids (2n + n) in the progeny of Rf975. Flow cytometry analysis of immature seeds revealed that, on average, 42.8% of self-pollinated Rf975 progeny were triploids, although only 36.6% of them reached maturity. Cytoembryological analysis showed that 100% of triploids exhibited some degree of apospory, with an average expressivity of 61.9%. Abnormal pollen grains and limited viable seeds were also noted. A segregant F2 progeny, comprising diploid and triploid individuals, was generated by crossing Rf975 with HA89, a genetically divergent sexual diploid. SNP-based progeny tests discarded that diploid Rf975 forms clonal matroclinal progeny at levels greater than 18%. Furthermore, specific non-random genetic and DNA methylation changes were detected in the F2 triploids compared to F2 diploids and parental plants, highlighting recurrent (epi)genetic alterations occurring during triploidization. This research could contribute to the future implementation of apomixis-based strategies in sunflower breeding.
Collapse
Affiliation(s)
- Silvina Pessino
- Facultad de Ciencias Agrarias, Universidad Nacional de Rosario (FCA-UNR), Campo Exp. Villarino, Zavalla, Santa Fe, Argentina
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Campo Exp. Villarino, Zavalla, Santa Fe, Argentina
| | - Graciela Nestares
- Facultad de Ciencias Agrarias, Universidad Nacional de Rosario (FCA-UNR), Campo Exp. Villarino, Zavalla, Santa Fe, Argentina
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Campo Exp. Villarino, Zavalla, Santa Fe, Argentina
| | - Marta B Bianchi
- Facultad de Ciencias Agrarias, Universidad Nacional de Rosario (FCA-UNR), Campo Exp. Villarino, Zavalla, Santa Fe, Argentina
- Consejo de Investigaciones de la Universidad Nacional de Rosario (CIUNR), Rosario, Argentina
| | - Iara Katzaroff
- Facultad de Ciencias Agrarias, Universidad Nacional de Rosario (FCA-UNR), Campo Exp. Villarino, Zavalla, Santa Fe, Argentina
| | - Lucía Amato
- Facultad de Ciencias Agrarias, Universidad Nacional de Rosario (FCA-UNR), Campo Exp. Villarino, Zavalla, Santa Fe, Argentina
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Campo Exp. Villarino, Zavalla, Santa Fe, Argentina
| | - Marika Bocchini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Gianpiero Marconi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Emidio Albertini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Ana C Ochogavía
- Facultad de Ciencias Agrarias, Universidad Nacional de Rosario (FCA-UNR), Campo Exp. Villarino, Zavalla, Santa Fe, Argentina.
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Campo Exp. Villarino, Zavalla, Santa Fe, Argentina.
| |
Collapse
|
3
|
Hanjalić Kurtović J, Kalamujić Stroil B, Siljak-Yakovlev S, Pojskić N, Durmić-Pašić A, Hajrudinović-Bogunić A, Lasić L, Ušanović L, Bogunić F. Spatial Distribution of Genetic, Ploidy, and Morphological Variation of the Edaphic Steno-Endemic Alyssum moellendorfianum (Brassicaceae) from the Western Balkans. PLANTS (BASEL, SWITZERLAND) 2025; 14:146. [PMID: 39861501 PMCID: PMC11769202 DOI: 10.3390/plants14020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025]
Abstract
Polyploidy is a powerful mechanism driving genetic, physiological, and phenotypic changes among cytotypes of the same species across both large and small geographic scales. These changes can significantly shape population structure and increase the evolutionary and adaptation potential of cytotypes. Alyssum moellendorfianum, an edaphic steno-endemic species with a narrow distribution in the Balkan Peninsula, serves as an intriguing case study. We conducted a comprehensive analysis of genetic diversity and population structure across the species' range, employing an array of genetic techniques (nuclear microsatellites, amplified fragment length polymorphisms, and plastid DNA sequences), flow cytometry (FCM), morphometry, and pollen analysis. The study reveals two genetic lineages: spatially distributed diploid and tetraploid cytotypes. Clear divergence between diploids and tetraploids was shown by AFLP, while plastid DNA sequences confirmed private haplotypes in each of the studied populations. Higher genetic diversity and allelic richness following the north-south pattern were documented in tetraploids compared to diploids, as indicated by nuclear microsatellites. Morphometric analysis via principal component analysis (PCA) and canonical discriminant analysis (CDA) did not reveal any divergence between diploid and tetraploid cytotypes. Nonetheless, a distinction in pollen size was clearly observed. The results suggest an autopolyploid origin of tetraploids from diploid ancestors. Despite the population fragmentation in a very small geographic range, these populations harbour high genetic diversity, which would allow them to remain stable if natural processes remain undisturbed.
Collapse
Affiliation(s)
- Jasna Hanjalić Kurtović
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, 71 000 Sarajevo, Bosnia and Herzegovina; (J.H.K.); (N.P.); (A.D.-P.); (L.L.); (L.U.)
| | - Belma Kalamujić Stroil
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, 71 000 Sarajevo, Bosnia and Herzegovina; (J.H.K.); (N.P.); (A.D.-P.); (L.L.); (L.U.)
| | - Sonja Siljak-Yakovlev
- Ecologie Systématique Evolution, AgroParisTech, Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Naris Pojskić
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, 71 000 Sarajevo, Bosnia and Herzegovina; (J.H.K.); (N.P.); (A.D.-P.); (L.L.); (L.U.)
| | - Adaleta Durmić-Pašić
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, 71 000 Sarajevo, Bosnia and Herzegovina; (J.H.K.); (N.P.); (A.D.-P.); (L.L.); (L.U.)
| | - Alma Hajrudinović-Bogunić
- Faculty of Forestry, University of Sarajevo, Zmaja od Bosne 8, 71 000 Sarajevo, Bosnia and Herzegovina; (A.H.-B.); (F.B.)
| | - Lejla Lasić
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, 71 000 Sarajevo, Bosnia and Herzegovina; (J.H.K.); (N.P.); (A.D.-P.); (L.L.); (L.U.)
| | - Lejla Ušanović
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, 71 000 Sarajevo, Bosnia and Herzegovina; (J.H.K.); (N.P.); (A.D.-P.); (L.L.); (L.U.)
| | - Faruk Bogunić
- Faculty of Forestry, University of Sarajevo, Zmaja od Bosne 8, 71 000 Sarajevo, Bosnia and Herzegovina; (A.H.-B.); (F.B.)
| |
Collapse
|
4
|
Ladinig U, Hörandl E, Klatt S, Wagner J. Reproductive Performance of the Alpine Plant Species Ranunculus kuepferi in a Climatic Elevation Gradient: Apomictic Tetraploids Do Not Show a General Fitness Advantage over Sexual Diploids. Life (Basel) 2024; 14:1202. [PMID: 39337984 PMCID: PMC11433044 DOI: 10.3390/life14091202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Previous studies on the mountain plant Ranunculus kuepferi concluded that apomictic self-compatible tetraploids have experienced a niche shift toward a colder climate during the Holocene, which suggests a fitness advantage over the sexual, self-sterile diploid parents under cold and stressful high-mountain conditions. However, there is still a lack of information on whether reproductive development would be advantageous for tetraploids. Here, we report on microsporogenesis, megagametogenesis, the dynamics of flower and seed development, and the consequences for reproductive success in a common garden experiment along a 1000 m climatic elevation gradient and in natural populations. Flower buds were initiated in the year preceding anthesis and passed winter in a pre-meiotic stage. Flower morphology differed in the known cytotype-specific way in that tetraploid flowers produced about twice as many carpels and fewer petals, stamens, and pollen grains than diploid flowers. Tetraploids developed precociously aposporous embryo sacs and showed a high rate of developmental disturbances. Sexual seed formation prevailed in diploids and pseudogamous apomixis in tetraploids. Along the elevation gradient, stigma pollen load, pollen performance, and seed output decreased. Combinations of reproductive traits, namely, bypass of meiosis irregularities and uniparental reproduction, might have promoted the vast expansion of apomictic R. kuepferi lines across the European Alps.
Collapse
Affiliation(s)
- Ursula Ladinig
- Department of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, A-6020 Innsbruck, Austria
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Untere Karspuele 2, D-37073 Goettingen, Germany
| | - Simone Klatt
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Untere Karspuele 2, D-37073 Goettingen, Germany
- Central Administration, University of Goettingen, Humboldtallee 15, D-37073 Goettingen, Germany
| | - Johanna Wagner
- Department of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, A-6020 Innsbruck, Austria
| |
Collapse
|
5
|
Hörandl E. Apomixis and the paradox of sex in plants. ANNALS OF BOTANY 2024; 134:1-18. [PMID: 38497809 PMCID: PMC11161571 DOI: 10.1093/aob/mcae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND The predominance of sex in eukaryotes, despite the high costs of meiosis and mating, remains an evolutionary enigma. Many theories have been proposed, none of them being conclusive on its own, and they are, in part, not well applicable to land plants. Sexual reproduction is obligate in embryophytes for the great majority of species. SCOPE This review compares the main forms of sexual and asexual reproduction in ferns and angiosperms, based on the generation cycling of sporophyte and gametophyte (leaving vegetative propagation aside). The benefits of sexual reproduction for maintenance of genomic integrity in comparison to asexuality are discussed in the light of developmental, evolutionary, genetic and phylogenetic studies. CONCLUSIONS Asexual reproduction represents modifications of the sexual pathway, with various forms of facultative sexuality. For sexual land plants, meiosis provides direct DNA repair mechanisms for oxidative damage in reproductive tissues. The ploidy alternations of meiosis-syngamy cycles and prolonged multicellular stages in the haploid phase in the gametophytes provide a high efficiency of purifying selection against recessive deleterious mutations. Asexual lineages might buffer effects of such mutations via polyploidy and can purge the mutational load via facultative sexuality. The role of organelle-nuclear genome compatibility for maintenance of genome integrity is not well understood. In plants in general, the costs of mating are low because of predominant hermaphroditism. Phylogenetic patterns in the archaeplastid clade suggest that high frequencies of sexuality in land plants are concomitant with a stepwise increase of intrinsic and extrinsic stress factors. Furthermore, expansion of genome size in land plants would increase the potential mutational load. Sexual reproduction appears to be essential for keeping long-term genomic integrity, and only rare combinations of extrinsic and intrinsic factors allow for shifts to asexuality.
Collapse
Affiliation(s)
- Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with herbarium), University of Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Kauai F, Bafort Q, Mortier F, Van Montagu M, Bonte D, Van de Peer Y. Interspecific transfer of genetic information through polyploid bridges. Proc Natl Acad Sci U S A 2024; 121:e2400018121. [PMID: 38748576 PMCID: PMC11126971 DOI: 10.1073/pnas.2400018121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/15/2024] [Indexed: 05/27/2024] Open
Abstract
Hybridization blurs species boundaries and leads to intertwined lineages resulting in reticulate evolution. Polyploidy, the outcome of whole genome duplication (WGD), has more recently been implicated in promoting and facilitating hybridization between polyploid species, potentially leading to adaptive introgression. However, because polyploid lineages are usually ephemeral states in the evolutionary history of life it is unclear whether WGD-potentiated hybridization has any appreciable effect on their diploid counterparts. Here, we develop a model of cytotype dynamics within mixed-ploidy populations to demonstrate that polyploidy can in fact serve as a bridge for gene flow between diploid lineages, where introgression is fully or partially hampered by the species barrier. Polyploid bridges emerge in the presence of triploid organisms, which despite critically low levels of fitness, can still allow the transfer of alleles between diploid states of independently evolving mixed-ploidy species. Notably, while marked genetic divergence prevents polyploid-mediated interspecific gene flow, we show that increased recombination rates can offset these evolutionary constraints, allowing a more efficient sorting of alleles at higher-ploidy levels before introgression into diploid gene pools. Additionally, we derive an analytical approximation for the rate of gene flow at the tetraploid level necessary to supersede introgression between diploids with nonzero introgression rates, which is especially relevant for plant species complexes, where interspecific gene flow is ubiquitous. Altogether, our results illustrate the potential impact of polyploid bridges on the (re)distribution of genetic material across ecological communities during evolution, representing a potential force behind reticulation.
Collapse
Affiliation(s)
- Felipe Kauai
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent9052, Belgium
- Center for Plant Systems Biology, Bioinformatics and Evolutionary Genomics, VIB, Gent9052, Belgium
- Department of Biology, Terrestrial Ecology Unit, Ghent University, Gent9000, Belgium
| | - Quinten Bafort
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent9052, Belgium
- Center for Plant Systems Biology, Bioinformatics and Evolutionary Genomics, VIB, Gent9052, Belgium
| | - Frederik Mortier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent9052, Belgium
- Center for Plant Systems Biology, Bioinformatics and Evolutionary Genomics, VIB, Gent9052, Belgium
- Department of Biology, Terrestrial Ecology Unit, Ghent University, Gent9000, Belgium
| | - Marc Van Montagu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent9052, Belgium
- Center for Plant Systems Biology, Bioinformatics and Evolutionary Genomics, VIB, Gent9052, Belgium
| | - Dries Bonte
- Department of Biology, Terrestrial Ecology Unit, Ghent University, Gent9000, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent9052, Belgium
- Center for Plant Systems Biology, Bioinformatics and Evolutionary Genomics, VIB, Gent9052, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria0028, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing210095, China
| |
Collapse
|
7
|
Gajdošová Z, Svitok M, Cetlová V, Mártonfiová L, Kučera J, Kolarčik V, Hurdu BI, Sîrbu IM, Turisová I, Turis P, Slovák M. Incidence and evolutionary relevance of autotriploid cytotypes in a relict member of the genus Daphne (Thymelaeaceae). AOB PLANTS 2023; 15:plad056. [PMID: 37899980 PMCID: PMC10601019 DOI: 10.1093/aobpla/plad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/09/2023] [Indexed: 10/31/2023]
Abstract
Odd ploidy-level cytotypes in sexually reproducing species are considered a dead end due to absent or reduced fertility. If sterility is only partial, however, their contribution to the population gene pool can be augmented by longevity and clonal growth. To test this, we investigated the cytotype origin and spatial pattern, and pollen viability in three relict shrub species of the genus Daphne (Thymelaeaceae Juss.) in central Europe. Daphne cneorum subsp. cneorum is a widespread European species that has a broad ecological amplitude, whereas D. cneorum subsp. arbusculoides and D. arbuscula are narrow endemics of the western Pannonian Plain and the Western Carpathians, respectively. Our study confirmed that all three taxa are diploid. However, of more than a thousand analysed individuals of D. cneorum subsp. cneorum, five in four different populations were triploid. Our data indicate that these triploids most likely originate from recurrent autopolyploidization events caused by the fusion of reduced and unreduced gametes. High pollen viability was observed in all three taxa and in both diploid and triploid cytotypes, ranging from 65 to 100 %. Our study highlights the significant role of odd ploidy-level cytotypes in interploidy gene flow, calling for more research into their reproduction, genetic variability, and overall fitness. Interestingly, while the endemic D. arbuscula differs from D. cneorum based on genetic and genome size data, D. cneorum subsp. arbusculoides was indistinguishable from D. cneorum subsp. cneorum. However, our study reveals that the subspecies differ in the number of flowers per inflorescence. This is the first comprehensive cytogeographic study of this intriguing genus at a regional scale, and in spite of its karyological stability, it contributes to our understanding of genomic evolution in plant species with a wide ecological amplitude.
Collapse
Affiliation(s)
- Zuzana Gajdošová
- Department of Evolution and Systematics, Institute of Botany, Plant Sciences and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 23 Bratislava, Slovak Republic
| | - Marek Svitok
- Department of Biology and General Ecology, Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, Ul. T. G. Masaryka 24, SK-960 01 Zvolen, Slovak Republic
- Department of Forest Ecology, Czech University of Life Sciences Prague, CZ-16 521 Suchdol, Praha 6, Czech Republic
| | - Veronika Cetlová
- Department of Evolution and Systematics, Institute of Botany, Plant Sciences and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 23 Bratislava, Slovak Republic
| | - Lenka Mártonfiová
- Botanical Garden of Pavol Jozef Šafárik University in Košice, Mánesova 23, SK-043 52 Košice, Slovak Republic
| | - Jaromír Kučera
- Department of Evolution and Systematics, Institute of Botany, Plant Sciences and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 23 Bratislava, Slovak Republic
| | - Vladislav Kolarčik
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Mánesova 23, SK-041 54 Košice, Slovak Republic
| | - Bogdan-Iuliu Hurdu
- Department of Taxonomy and Evolution, Institute of Biological Research, 48 Republicii St., R-400015 Cluj-Napoca, Romania
| | - Ioana-Minodora Sîrbu
- Faculty of Biology, University of Bucharest, Splaiul Independenței 91–95, R-050095Bucharest, Romania
| | - Ingrid Turisová
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University in Banská Bystrica, Tajovského 40, SK-974 01 Banská Bystrica, Slovak Republic
| | - Peter Turis
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University in Banská Bystrica, Tajovského 40, SK-974 01 Banská Bystrica, Slovak Republic
| | - Marek Slovák
- Department of Evolution and Systematics, Institute of Botany, Plant Sciences and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 23 Bratislava, Slovak Republic
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Praha, Czech Republic
| |
Collapse
|
8
|
Zalewska-Gałosz J, Kwiatkowska M, Prančl J, Skubała K, Lučanová M, Gebler D, Szoszkiewicz K. Origin, genetic structure and evolutionary potential of the natural hybrid Ranunculus circinatus × R. fluitans. Sci Rep 2023; 13:9030. [PMID: 37270656 DOI: 10.1038/s41598-023-36253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/31/2023] [Indexed: 06/05/2023] Open
Abstract
Understanding the genetic variability of hybrids provides information on their current and future evolutionary role. In this paper, we focus on the interspecific hybrid Ranunculus circinatus × R. fluitans that forms spontaneously within the group Ranuculus L. sect. Batrachium DC. (Ranunculaceae Juss.). Genome-wide DNA fingerprinting using amplified fragment length polymorphisms (AFLP) was employed to determine the genetic variation among 36 riverine populations of the hybrid and their parental species. The results demonstrate a strong genetic structure of R. circinatus × R. fluitans within Poland (Central Europe), which is attributed to independent hybridization events, sterility of hybrid individuals, vegetative propagation, and isolation through geographical distance within populations. The hybrid R. circinatus × R. fluitans is a sterile triploid, but, as we have shown in this study, it may participate in subsequent hybridization events, resulting in a ploidy change that can lead to spontaneous fertility recovery. The ability to produce unreduced female gametes of the hybrid R. circinatus × R. fluitans and the parental species R. fluitans is an important evolutionary mechanism in Ranunculus sect. Batrachium that could give rise to new taxa.
Collapse
Affiliation(s)
- J Zalewska-Gałosz
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland.
| | - M Kwiatkowska
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland
| | - J Prančl
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| | - K Skubała
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland
| | - M Lučanová
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - D Gebler
- Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637, Poznań, Poland
| | - K Szoszkiewicz
- Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637, Poznań, Poland
| |
Collapse
|
9
|
Niccolò T, Anderson AW, Emidio A. Apomixis: oh, what a tangled web we have! PLANTA 2023; 257:92. [PMID: 37000270 PMCID: PMC10066125 DOI: 10.1007/s00425-023-04124-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Apomixis is a complex evolutionary trait with many possible origins. Here we discuss various clues and causes, ultimately proposing a model harmonizing the three working hypotheses on the topic. Asexual reproduction through seeds, i.e., apomixis, is the holy grail of plant biology. Its implementation in modern breeding could be a game-changer for agriculture. It has the potential to generate clonal crops and maintain valuable complex genotypes and their associated heterotic traits without inbreeding depression. The genetic basis and origins of apomixis are still unclear. There are three central hypothesis for the development of apomixis that could be: i) a deviation from the sexual developmental program caused by an asynchronous development, ii) environmentally triggered through epigenetic regulations (a polyphenism of sex), iii) relying on one or more genes/alleles. Because of the ever-increasing complexity of the topic, the path toward a detailed understanding of the mechanisms underlying apomixis remains unclear. Here, we discuss the most recent advances in the evolution perspective of this multifaceted trait. We incorporated our understanding of the effect of endogenous effectors, such as small RNAs, epigenetic regulation, hormonal pathways, protein turnover, and cell wall modification in response to an upside stress. This can be either endogenous (hybridization or polyploidization) or exogenous environmental stress, mainly due to oxidative stress and the corresponding ROS (Reacting Oxygen Species) effectors. Finally, we graphically represented this tangled web.
Collapse
Affiliation(s)
- Terzaroli Niccolò
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy.
| | - Aaron W Anderson
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
- Fulbright Scholar From Department of Plant Sciences, University of California, Davis, USA
| | - Albertini Emidio
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
- Consorzio Interuniversitario per le Biotecnologie (CIB), Trieste, Italy
| |
Collapse
|
10
|
Hörandl E. Geographical Parthenogenesis in Alpine and Arctic Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:844. [PMID: 36840192 PMCID: PMC9959270 DOI: 10.3390/plants12040844] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The term "Geographical parthenogenesis" describes the phenomenon that asexual organisms usually occupy larger and more northern distribution areas than their sexual relatives, and tend to colonize previously glaciated areas. Several case studies on alpine and arctic plants confirm the geographical pattern, but the causal factors behind the phenomenon are still unclear. Research of the last decade in several plant families has shed light on the question and evaluated some of the classical evolutionary theories. Results confirmed, in general, that the advantages of uniparental reproduction enable apomictic plants to re-colonize faster in larger and more northern distribution areas. Associated factors like polyploidy seem to contribute mainly to the spatial separation of sexual and asexual cytotypes. Ecological studies suggest a better tolerance of apomicts to colder climates and temperate extremes, whereby epigenetic flexibility and phenotypic plasticity play an important role in occupying ecological niches under harsh conditions. Genotypic diversity appears to be of lesser importance for the distributional success of asexual plants. Classical evolutionary theories like a reduced pressure of biotic interactions in colder climates and hence an advantage to asexuals (Red Queen hypothesis) did not gain support from studies on plants. However, it is also still enigmatic why sexual outcrossing remains the predominant mode of reproduction also in alpine floras. Constraints for the origin of apomixis might play a role. Interestingly, some studies suggest an association of sexuality with abiotic stresses. Light stress in high elevations might explain why most alpine plants retain sexual reproduction despite other environmental factors that would favor apomixis. Directions for future research will be given.
Collapse
Affiliation(s)
- Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, 37073 Göttingen, Germany
| |
Collapse
|
11
|
Li MM, Su QL, Zu JR, Xie L, Wei Q, Guo HR, Chen J, Zeng RZ, Zhang ZS. Triploid cultivars of Cymbidium act as a bridge in the formation of polyploid plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1029915. [PMID: 36684754 PMCID: PMC9853991 DOI: 10.3389/fpls.2022.1029915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/23/2022] [Indexed: 06/17/2023]
Abstract
Triploid is considered a reproductive barrier and also a bridge in the formation of polyploids. However, few reports are available in Cymbidium. In this study, diploid 'Xiaofeng', sexual triploid 'Yuchan' and 'Huanghe' of Cymbidium were used to evaluate hybridization compatibility of the triploids. Results showed that the sexual triploids were fertile whether they were used as male or female parents. 'Yuchan' produced male gametes of 1x, 1x~2x, 2x, 2x~3x, and 3x at frequencies of 8.89%, 77.78%, 6.67%, 3.33%, and 3.33%, respectively; while 'Huanghe' produced 3.33% 1x, 80.00% 1x~2x, 8.89% 2x, 5.56% 2x~3x, and 2.22% 3x male gametes. The cross of 'Xiaofeng' with 'Yuchan' produced progenies with a wide range of ploidy levels, including one diploid, 34 2×~3× aneuploids, 12 triploids, and one tetraploid, indicating that male gametes produced by sexual triploid were fertile and could be transmitted and fused with egg cells. On the other hand, 10 progenies obtained from the cross of 'Yuchan' × 'Xiaofeng' were all aneuploids. The cross of 'Yuchan' with 'Huanghe' produced 40 progenies including three 2×~3× aneuploids, nine 3×~4× aneuploids, 21 tetraploids, six 4×~5× aneuploids, and one pentaploid, suggesting that 2x gametes, instead of the unreduced ones played a more important role in the formation of tetraploids. The survival rates of the hybrids were all above 80.00%, with the tetraploids at 96.67%. Cytological analysis revealed that during meiosis of sexual polyploids, two chromosome sets of the 2n gamete were inclined to enter into the same daughter cell, resulting in the production of 2x gametes. Our results indicate that the triploid cymbidiums are not reproductive barrier but serve as a bridge in the formation of polyploid plants.
Collapse
Affiliation(s)
- Man-Man Li
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Qing-Lian Su
- Guangzhou Flower Research Center, Guangzhou, China
| | - Jun-Rui Zu
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Li Xie
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Qian Wei
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - He-Rong Guo
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Environmental Horticulture Department, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
| | - Rui-Zhen Zeng
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Zhi-Sheng Zhang
- Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Lopes JML, Campos VR, Reis AC, de Matos EM, Azevedo ALS, Machado MA, Grazul RM, Viccini LF. Aneuploids and its increment on diversity of Lippia alba polyploid complex: genetic aspects and origin. Mol Biol Rep 2022; 49:7743-7752. [PMID: 35715608 DOI: 10.1007/s11033-022-07599-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Aneuploidy is associated with add or lack of individual chromosomes. The knowledge regarding aneuploidy is still rare in wild and tropical populations. Lippia alba is a tropical polyploid complex naturally formed, with 2x, 3x, 4x, 6x, and aneuploid individuals. The species presents pharmacological and medicinal importance, due to its essential oil compounds, which are related to the ploidal level. Considering the singularity of aneuploids emergence and stability, we proposed to investigate putative cytotypes involved in the aneuploids formation. METHODS AND RESULTS Molecular, cytogenetic, reproductive, and chemical approaches were adopted. The results showed that the aneuploids possibly have independent origin considering the genetic, chemical and karyotypical profiles. The chemical composition of aneuploids is related to genetic similarity. The aneuploid origin may involve 2x and 3x cytotypes being possible to rise four scenarios of crosses to explain that. CONCLUSIONS The results, in general, contribute to the comprehension of the origin of aneuploids and highlight the genetic profile of these accessions as a key element on the understanding of the chemical profile of L. alba accessions.
Collapse
Affiliation(s)
- Juliana Mainenti Leal Lopes
- Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, 36036-900, Brazil.,Department of Genetic and Biotechnology, School of Life Science and Environment, University of Trás-os-Montes and Alto Douro, 5001-801, Vila Real, Portugal.,BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1649-004, Lisbon, Portugal
| | - Victória Rabelo Campos
- Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | - Aryane Campos Reis
- Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | - Elyabe Monteiro de Matos
- Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | | | | | | | - Lyderson Facio Viccini
- Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, 36036-900, Brazil.
| |
Collapse
|
13
|
Hörandl E. Novel Approaches for Species Concepts and Delimitation in Polyploids and Hybrids. PLANTS (BASEL, SWITZERLAND) 2022; 11:204. [PMID: 35050093 PMCID: PMC8781807 DOI: 10.3390/plants11020204] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 05/08/2023]
Abstract
Hybridization and polyploidization are important processes for plant evolution. However, classification of hybrid or polyploid species has been notoriously difficult because of the complexity of processes and different evolutionary scenarios that do not fit with classical species concepts. Polyploid complexes are formed via combinations of allopolyploidy, autopolyploidy and homoploid hybridization with persisting sexual reproduction, resulting in many discrete lineages that have been classified as species. Polyploid complexes with facultative apomixis result in complicated net-work like clusters, or rarely in agamospecies. Various case studies illustrate the problems that apply to traditional species concepts to hybrids and polyploids. Conceptual progress can be made if lineage formation is accepted as an inevitable consequence of meiotic sex, which is established already in the first eukaryotes as a DNA restoration tool. The turnaround of the viewpoint that sex forms species as lineages helps to overcome traditional thinking of species as "units". Lineage formation and self-sustainability is the prerequisite for speciation and can also be applied to hybrids and polyploids. Species delimitation is aided by the improved recognition of lineages via various novel -omics methods, by understanding meiosis functions, and by recognizing functional phenotypes by considering morphological-physiological-ecological adaptations.
Collapse
Affiliation(s)
- Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, 37073 Göttingen, Germany
| |
Collapse
|
14
|
Kocot D, Sitek E, Nowak B, Kołton A, Stachurska-Swakoń A, Towpasz K. The Effectiveness of the Sexual Reproduction in Selected Clonal and Nonclonal Species of the Genus Ranunculus. BIOLOGY 2022; 11:biology11010085. [PMID: 35053083 PMCID: PMC8772756 DOI: 10.3390/biology11010085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/14/2021] [Accepted: 01/03/2022] [Indexed: 11/24/2022]
Abstract
Simple Summary The genus Ranunculus (buttercup) includes over 600 species, some of which are endangered, e.g., Illyrian Buttercup. Knowledge of the reproductive biology of such species may be crucial for conservation action. For this purpose, six species with different reproduction modes (nonclonal reproducing sexually by seeds only, clonal propagating by seeds and additionally vegetatively and apomictic) were observed. Selected features related to the efficiency of sexual reproduction were described: pollen viability, number of fruit set, seed viability and germination. It has been shown that in clonal species, which include the Illyrian Buttercup, the efficiency of sexual reproduction is lower compared to nonclonal species. The results will support conservation action taken for this species. Abstract Generative processes have been evaluated in six European buttercup species in order to verify the hypothesis that the reproduction efficiency of clonal species is lower than that of nonclonal ones. The study covered common species (Ficaria verna, Ranunculus auricomus, R. bulbosus, R. cassubicus, R. lanuginosus) and the endangered R. illyricus. The following properties have been assessed: pollen viability (staining method), pollen grain germination and the pollen-tube elongation in pistil tissues (fluorescence microscopy), seed formation efficiency, seed viability (tetrazolium test) and germination ability by introducing factors interrupting dormancy (low temperature and gibberellin application). Additionally, the pistil morphology was documented for R. bulbosus, R. illyricus and R. cassubicus using SEM techniques. It was demonstrated that the reproductive efficiency, expressed as the production of viable seeds able to germinate, was significantly higher in the species reproducing sexually (especially in R. lanuginosus) compared to the clonal ones. However, the complexity observed leads to separation of an additional group (cluster) of apomictic species: R. auricomus and R. cassubicus, distinguished by the lowest pollen viability and a low ability of the seeds to germinate. In the vegetatively reproducing R. illyricus, the seed formation efficiency was just 13.2% despite the having highest number of pistils in its flowers. The developed seeds of this species observed in our experiment were viable, but in general effective methods to stimulate their germination have not been proposed yet. Here, the first comparative study concerning the biology of sexual reproduction of R. illyricus is presented in the context of its decreasing distribution in natural habitats.
Collapse
Affiliation(s)
- Dawid Kocot
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Krakow, Poland; (D.K.); (E.S.); (A.K.)
| | - Ewa Sitek
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Krakow, Poland; (D.K.); (E.S.); (A.K.)
| | - Barbara Nowak
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Krakow, Poland; (D.K.); (E.S.); (A.K.)
- Correspondence: ; Tel.: +48-126-6252-5198; Fax: +48-12-662-5266
| | - Anna Kołton
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Krakow, Poland; (D.K.); (E.S.); (A.K.)
| | - Alina Stachurska-Swakoń
- Department of Plant Ecology, Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387 Krakow, Poland; (A.S.-S.); (K.T.)
| | - Krystyna Towpasz
- Department of Plant Ecology, Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387 Krakow, Poland; (A.S.-S.); (K.T.)
| |
Collapse
|
15
|
Reis AC, Chester M, de Sousa SM, Campos VR, de Queiroz Nascimento LS, Pacheco Júnior S, Franco AL, Viccini LF. Chromosomal view of Lippia alba, a tropical polyploid complex under genome stabilization process. PROTOPLASMA 2022; 259:33-46. [PMID: 33760982 DOI: 10.1007/s00709-021-01636-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Lippia alba is a phenotypically variable tropical shrub thought to comprise a young autopolyploid complex. Chromosome numbers in L. alba include 2n = 30, 38, 45, 60, and 90. High levels of chemical and phenotypic variation associated with economic and medicinal importance were reported. However, the genetic background including chromosome composition remains under-explored. Furthermore, the occurrence of at least four ploidal levels in L. alba and the lack of data for polyploid plants in tropical areas also merit further study of L. alba. Here we assessed the chromosome composition using two new satellite repeats (CL98 and CL66) applied as FISH probes to mitotic chromosomes, and we proposed to calculate the degree of homozygosis for CL66 satDNA (named as index h) and to associate it to meiotic instability. The CL98 mapping showed few variations in both number of signals and position. However, the levels of structural homozygosity for a satellite repeat CL66 were very variable. The numbers of CL66-bearing-chromosomes were under-represented in tetraploids relative to diploids implying that CL66 arrays have been lost in tetraploid lineages as a result of increased meiotic instability. High percentage of irregularities was observed in meiotic cells, especially in polyploids. L. alba complex comprised a mixture of homomorphic and heteromorphic chromosomes. Overall, the polyploid complex presents features typical of both young and older stable polyploids. It seems that L. alba genome is still in the process of stabilization.
Collapse
Affiliation(s)
- Aryane Campos Reis
- Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | | | - Saulo Marçal de Sousa
- Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Victória Rabelo Campos
- Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | | | | | - Ana Luiza Franco
- Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Lyderson Facio Viccini
- Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil.
| |
Collapse
|
16
|
Syngelaki E, Paetzold C, Hörandl E. Gene Expression Profiles Suggest a Better Cold Acclimation of Polyploids in the Alpine Species Ranunculus kuepferi (Ranunculaceae). Genes (Basel) 2021; 12:1818. [PMID: 34828424 PMCID: PMC8625111 DOI: 10.3390/genes12111818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022] Open
Abstract
Alpine habitats are shaped by harsh abiotic conditions and cold climates. Temperature stress can affect phenotypic plasticity, reproduction, and epigenetic profiles, which may affect acclimation and adaptation. Distribution patterns suggest that polyploidy seems to be advantageous under cold conditions. Nevertheless, whether temperature stress can induce gene expression changes in different cytotypes, and how the response is initialized through gene set pathways and epigenetic control remain vague for non-model plants. The perennial alpine plant Ranunculus kuepferi was used to investigate the effect of cold stress on gene expression profiles. Diploid and autotetraploid individuals were exposed to cold and warm conditions in climate growth chambers and analyzed via transcriptome sequencing and qRT-PCR. Overall, cold stress changed gene expression profiles of both cytotypes and induced cold acclimation. Diploids changed more gene set pathways than tetraploids, and suppressed pathways involved in ion/cation homeostasis. Tetraploids mostly activated gene set pathways related to cell wall and plasma membrane. An epigenetic background for gene regulation in response to temperature conditions is indicated. Results suggest that perennial alpine plants can respond to temperature extremes via altered gene expression. Tetraploids are better acclimated to cold conditions, enabling them to colonize colder climatic areas in the Alps.
Collapse
Affiliation(s)
- Eleni Syngelaki
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Georg-August-Universität Göttingen, 37073 Göttingen, Germany;
| | - Claudia Paetzold
- Department of Botany and Molecular Evolution, Senckenberg Research Institute, 60325 Frankfurt am Main, Germany;
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Georg-August-Universität Göttingen, 37073 Göttingen, Germany;
| |
Collapse
|
17
|
Köhler C, Dziasek K, Del Toro-De León G. Postzygotic reproductive isolation established in the endosperm: mechanisms, drivers and relevance. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200118. [PMID: 33866810 DOI: 10.1098/rstb.2020.0118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The endosperm is a developmental innovation of angiosperms that supports embryo growth and germination. Aside from this essential reproductive function, the endosperm fuels angiosperm evolution by rapidly establishing reproductive barriers between incipient species. Specifically, the endosperm prevents hybridization of newly formed polyploids with their non-polyploid progenitors, a phenomenon termed the triploid block. Furthermore, recently diverged diploid species are frequently reproductively isolated by endosperm-based hybridization barriers. Current genetic approaches have revealed a prominent role for epigenetic processes establishing these barriers. In particular, imprinted genes, which are expressed in a parent-of-origin-specific manner, underpin the interploidy barrier in the model species Arabidopsis. We will discuss the mechanisms establishing hybridization barriers in the endosperm, the driving forces for these barriers and their impact for angiosperm evolution. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Claudia Köhler
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Katarzyna Dziasek
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Gerardo Del Toro-De León
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| |
Collapse
|
18
|
Zhang Y, Wu H, Hörandl E, de Oliveira Franca R, Wang L, Hao J. Autonomous apomixis in Praxelis clematidea (Asteraceae: Eupatorieae), an invasive alien plant. AOB PLANTS 2021; 13:plab007. [PMID: 33859809 PMCID: PMC8035972 DOI: 10.1093/aobpla/plab007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 01/23/2021] [Indexed: 06/06/2023]
Abstract
Understanding the reproductive mechanisms of invasive alien species can lay the foundation for effective control measures. Praxelis clematidea is a triploid neotropical Asteraceae species that is invasive in China and other countries. However, few studies have focused on its reproductive biology. In this study, flow cytometric seed screening (FCSS) was used to identify and confirm the reproductive mode of the species. The development of ovules, anthers, and mega- and microgametophytes was observed using a clearing method and differential interference contrast microscopy. Pollen viability was measured using the Benzidine test and Alexander's stain. Pollen morphology was observed via fluorescence microscopy after sectioning the disk florets and staining with water-soluble aniline blue or 4'6-diamidino-2-phenylindole nuclei dyes. Controlled pollination experiments were conducted on four populations in China to examine the breeding system and to confirm autonomous apomixis. The reproductive mode was found to be autonomous apomixis without pseudogamy, according to FCSS. Megaspore mother cells developed directly into eight-nucleate megagametophytes without meiosis, conforming to Antennaria-type diplospory. The unreduced egg cells developed into embryos through parthenogenesis, while the endosperm was formed by the fusion of two unreduced polar nuclei. Pollen viability was very low (0.82 ± 0.57 % and 0.36 ± 0.44 %) as measured by the Benzidine test and Alexander's stain, respectively. The majority of the pollen grains were empty and had neither cytoplasm nor nuclei. The seed set was >90 % for all treatments of open pollination, bagging and emasculated capitula. Mature cypselae developed in capitula that were emasculated before flowering, which confirmed that the breeding system of P. clematidea was autonomous apomixis. The present study is the first report of autonomous apomixis in P. clematidea in China. Antennaria-type autonomous apomixis in P. clematidea greatly increases the probability of successful colonisation and dispersal of P. clematidea into new areas, which likely contributes to its high invasion potential. Effective control measures should be implemented to prevent autonomous (pollen-independent) seed production.
Collapse
Affiliation(s)
- Yuhuan Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Nansanhuanlu 99, Changshu 215500, Jiangsu Province, China
- College of Life Sciences, Northwest Normal University, No. 967, Anningxi Road, Lanzhou City 730070, Gansu Province, China
| | - Hairong Wu
- Guangzhou Customs Technology Center, No. 66, Huacheng Avenue, Guangzhou 51062, Guangdong Province, China
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Untere Karspuele 2, 37073 Goettingen, Germany
| | - Rafael de Oliveira Franca
- Programa de Pós-graduação em Biologia Comparada, Universidade Estadual de Maringá, 87020-900 Maringá, Paraná, Brazil
| | - LiXin Wang
- School of Biology and Food Engineering, Changshu Institute of Technology, Nansanhuanlu 99, Changshu 215500, Jiangsu Province, China
| | - Jianhua Hao
- School of Biology and Food Engineering, Changshu Institute of Technology, Nansanhuanlu 99, Changshu 215500, Jiangsu Province, China
| |
Collapse
|
19
|
The Evolutionary History, Diversity, and Ecology of Willows (Salix L.) in the European Alps. DIVERSITY-BASEL 2021. [DOI: 10.3390/d13040146] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The genus Salix (willows), with 33 species, represents the most diverse genus of woody plants in the European Alps. Many species dominate subalpine and alpine types of vegetation. Despite a long history of research on willows, the evolutionary and ecological factors for this species richness are poorly known. Here we will review recent progress in research on phylogenetic relationships, evolution, ecology, and speciation in alpine willows. Phylogenomic reconstructions suggest multiple colonization of the Alps, probably from the late Miocene onward, and reject hypotheses of a single radiation. Relatives occur in the Arctic and in temperate Eurasia. Most species are widespread in the European mountain systems or in the European lowlands. Within the Alps, species differ ecologically according to different elevational zones and habitat preferences. Homoploid hybridization is a frequent process in willows and happens mostly after climatic fluctuations and secondary contact. Breakdown of the ecological crossing barriers of species is followed by introgressive hybridization. Polyploidy is an important speciation mechanism, as 40% of species are polyploid, including the four endemic species of the Alps. Phylogenomic data suggest an allopolyploid origin for all taxa analyzed so far. Further studies are needed to specifically analyze biogeographical history, character evolution, and genome evolution of polyploids.
Collapse
|
20
|
Pérez YDJ, Angulo MB, Honfi A, Dematteis M. Embryology and fertility of the natural tetraploid Lessingianthus plantaginoides (Asteraceae, Vernonieae): taxonomic implications. RODRIGUÉSIA 2021. [DOI: 10.1590/2175-7860202172080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract Lessingianthus plantaginoides (Vernonieae, Asteraceae) is a small natural tetraploid shrub that inhabits rocky highlands from South America. The population studied inhabits and covers an extensive region of a private reserve with high local biodiversity and animal and plant endemisms. With the purpose of providing insights into the cyto-embryology of this tetraploid species, the aims of this study were: to perform an ontogenetic study of the male and female gametophytes of L. plantaginoides; to carry out detailed meiotic analysis and evaluate the fertility of this species; to document and provide highlights on taxonomic implications of their reproductive aspects. Lessingianthus plantaginoides presented the following male and female gametophyte traits: dicotyledonous type of anther wall development, tetrahedral tetrads, 3-celled mature pollen grains; development of the chalazal megaspore, monosporic embryo sac and Polygonum type of megagametophyte development. The meiotic behavior was regular, the spores were tetrads of equal size and the pollen grains were highly stainable. Lessingianthus plantaginoides is a highly diplodized autotetraploid that reproduces sexually and has high meiotic regularity; which is apparently responsible for its colonization potential. It now seems certain that polyploid speciation plays a significant role in the establishment and diversification of the genus.
Collapse
Affiliation(s)
| | - Maria Betiana Angulo
- Instituto de Botánica del Nordeste, Argentina; Facultad de Ciencias Exactas y Naturales y Agrimensura (UNNE), Argentina
| | - Ana Honfi
- Universidad Nacional de Misiones, Argentina
| | - Massimiliano Dematteis
- Instituto de Botánica del Nordeste, Argentina; Facultad de Ciencias Exactas y Naturales y Agrimensura (UNNE), Argentina
| |
Collapse
|
21
|
Barke BH, Karbstein K, Daubert M, Hörandl E. The relation of meiotic behaviour to hybridity, polyploidy and apomixis in the Ranunculus auricomus complex (Ranunculaceae). BMC PLANT BIOLOGY 2020; 20:523. [PMID: 33203395 PMCID: PMC7672892 DOI: 10.1186/s12870-020-02654-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/20/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Hybridization and polyploidization are powerful evolutionary factors that are associated with manifold developmental changes in plants such as irregular progression of meiosis and sporogenesis. The emergence of apomixis, which is asexual reproduction via seeds, is supposed to be connected to these factors and was often regarded as an escape from hybrid sterility. However, the functional trigger of apomixis is still unclear. Recently formed di- and polyploid Ranunculus hybrids, as well as their parental species were analysed for their modes of mega- and microsporogenesis by microscopy. Chromosomal configurations during male meiosis were screened for abnormalities. Meiotic and developmental abnormalities were documented qualitatively and collected quantitatively for statistical evaluations. RESULTS Allopolyploids showed significantly higher frequencies of erroneous microsporogenesis than homoploid hybrid plants. Among diploids, F2 hybrids had significantly more disturbed meiosis than F1 hybrids and parental plants. Chromosomal aberrations included laggard chromosomes, chromatin bridges and disoriented spindle activities. Failure of megasporogenesis appeared to be much more frequent in than of microsporogenesis is correlated to apomixis onset. CONCLUSIONS Results suggest diverging selective pressures on female and male sporogenesis, with only minor effects of hybridity on microsporogenesis, but fatal effects on the course of megasporogenesis. Hence, pollen development continues without major alterations, while selection will favour apomixis as alternative to the female meiotic pathway. Relation of investigated errors of megasporogenesis with the observed occurrence of apospory in Ranunculus hybrids identifies disturbed female meiosis as potential elicitor of apomixis in order to rescue these plants from hybrid sterility. Male meiotic disturbance appears to be stronger in neopolyploids than in homoploid hybrids, while disturbances of megasporogenesis were not ploidy-dependent.
Collapse
Affiliation(s)
- Birthe H Barke
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Untere Karspuele 2, D-37073, Goettingen, Germany.
| | - Kevin Karbstein
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Untere Karspuele 2, D-37073, Goettingen, Germany
| | - Mareike Daubert
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Untere Karspuele 2, D-37073, Goettingen, Germany
- Present Address: Carl von Ossietzky University, Institute of Biology and Environmental Sciences, Carl von Ossietzky Straße 9-11, D-26129, Oldenburg, Germany
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Untere Karspuele 2, D-37073, Goettingen, Germany
| |
Collapse
|
22
|
Farhat P, Siljak-Yakovlev S, Valentin N, Fabregat C, Lopez-Udias S, Salazar-Mendias C, Altarejos J, Adams RP. Gene flow between diploid and tetraploid junipers - two contrasting evolutionary pathways in two Juniperus populations. BMC Evol Biol 2020; 20:148. [PMID: 33167862 PMCID: PMC7650182 DOI: 10.1186/s12862-020-01688-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene flow and polyploidy have been found to be important in Juniperus evolution. However, little evidence has been published elucidating the association of both phenomena in juniper taxa in the wild. Two main areas were studied in Spain (Eastern Iberian Range and Sierra de Baza) with both diploid and tetraploid taxa present in sympatry. Gene flow and ploidy level were assessed for these taxa and the resulted offspring. RESULTS Twenty-two allo-triploid hybrids between J. sabina var. sabina and J. thurifera were found in the Eastern Iberian Range population. However, in the Sierra de Baza population no triploids were found. Instead, 18 allo-tetraploid hybrids between two tetraploid taxa: J. sabina var. balkanensis and J. thurifera were discovered. High genetic diversity was exhibited among the tetraploid hybrids at Sierra de Baza, in contrast to the genetically identical triploid hybrids at the Eastern Iberian Range; this suggests meiotic difficulties within the triploid hybrids. In addition, unidirectional gene flow was observed in both studied areas. CONCLUSION Polyploidy and hybridization can be complementary partners in the evolution of Juniperus taxa in sympatric occurrences. Juniperus was shown to be an ideal coniferous model to study these two phenomena, independently or in concert.
Collapse
Affiliation(s)
- Perla Farhat
- Biology Department, Baylor University, Waco, TX, 76798, USA.
- Present address: Key Laboratory of Bio-resources and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, China.
| | - Sonja Siljak-Yakovlev
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91405, Orsay, France
| | - Nicolas Valentin
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Carlos Fabregat
- Jardí Botànic de la Universitat de València, 46008, València, Spain
| | | | - Carlos Salazar-Mendias
- Departamento de Biología Animal, Biología Vegetal y Ecología. Universidad de Jaén, 23071, Jaén, Spain
| | - Joaquín Altarejos
- Departamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071, Jaén, Spain
| | - Robert P Adams
- Biology Department, Baylor University, Waco, TX, 76798, USA
| |
Collapse
|
23
|
López-González N, Bobo-Pinilla J, Padilla-García N, Loureiro J, Castro S, Rojas-Andrés BM, Martínez-Ortega MM. Genetic similarities versus morphological resemblance: Unraveling a polyploid complex in a Mediterranean biodiversity hotspot. Mol Phylogenet Evol 2020; 155:107006. [PMID: 33160038 DOI: 10.1016/j.ympev.2020.107006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 10/20/2020] [Accepted: 10/29/2020] [Indexed: 12/29/2022]
Abstract
The Balkan Peninsula is recognized as one of the hotspots of biodiversity in Europe. This area has shown since the Last Glacial Maximum appropriate conditions for species diversification and hybridization, which has led to the existence of numerous taxonomically unresolved entities. Here, we focus on the Western Balkans and explore the genetic structure and relationships among species belonging to the V. austriaca - V. orbiculata diploid-polyploid complex, including populations showing intermediate morphologies. A combination of nuclear markers (microsatellites), plastid DNA regions (trnH-psbA, ycf6-psbM) and ploidy level estimations using flow cytometry are employed to assess the genetic structure and evolutionary dynamics of this polyploid complex. To reconstruct the evolutionary history, an approximate Bayesian computation approach is combined with projections of the species distribution models onto the climatic scenarios of the Mid-Holocene (6 ka BP) and Last Glacial Maximum (22 ka BP). Four main groups were found: one well-established entity within the diploid level, V. dalmatica, a second diploid-tetraploid group which corresponds to V. orbiculata, a hexaploid cluster harboring V. austriaca subsp. jacquinii individuals, and an enigmatic tetraploid group. According to the molecular data obtained, this latter cluster represents an allopolyploid cryptic lineage −with V. orbiculata and V. dalmatica as putative parents− morphologically similar to V. orbiculata, but genetically more related to V. austriaca subsp. jacquinii. Veronica dalmatica and this “uncertain tetraploid” group are involved in the formation of the hexaploid taxon V. austriaca subsp. jacquinii, with the possibility of recent gene flow among different cytotypes. The present study supports a scenario of diversification from a diploid common ancestor leading to two different but interrelated lineages. The first one would correspond with the diploid V. orbiculata plus tetraploid individuals of this species arising through allo- and autopolyploidization, and the second one would involve all ploidy levels with allopolyploidization being prevalent.
Collapse
Affiliation(s)
- Noemí López-González
- Departamento de Botánica y Fisiología Vegetal, University of Salamanca, E-37007 Salamanca, Spain; Biobanco de ADN Vegetal, University of Salamanca, Edificio Multiusos I+D+i, Calle Espejo s/n, 37007 Salamanca, Spain.
| | - Javier Bobo-Pinilla
- Departamento de Botánica y Fisiología Vegetal, University of Salamanca, E-37007 Salamanca, Spain; Biobanco de ADN Vegetal, University of Salamanca, Edificio Multiusos I+D+i, Calle Espejo s/n, 37007 Salamanca, Spain
| | - Nélida Padilla-García
- Departamento de Botánica y Fisiología Vegetal, University of Salamanca, E-37007 Salamanca, Spain; Biobanco de ADN Vegetal, University of Salamanca, Edificio Multiusos I+D+i, Calle Espejo s/n, 37007 Salamanca, Spain
| | - João Loureiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Silvia Castro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Blanca M Rojas-Andrés
- Department of Molecular Evolution and Plant Systematics & Herbarium (LZ), Institute of Biology, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany
| | - M Montserrat Martínez-Ortega
- Departamento de Botánica y Fisiología Vegetal, University of Salamanca, E-37007 Salamanca, Spain; Biobanco de ADN Vegetal, University of Salamanca, Edificio Multiusos I+D+i, Calle Espejo s/n, 37007 Salamanca, Spain
| |
Collapse
|
24
|
Syngelaki E, Daubert M, Klatt S, Hörandl E. Phenotypic Responses, Reproduction Mode and Epigenetic Patterns under Temperature Treatments in the Alpine Plant Species Ranunculus kuepferi (Ranunculaceae). BIOLOGY 2020; 9:E315. [PMID: 33003474 PMCID: PMC7600421 DOI: 10.3390/biology9100315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 12/04/2022]
Abstract
Plant life in alpine habitats is shaped by harsh abiotic conditions and cold climates. Phenotypic variation of morphological characters and reproduction can be influenced by temperature stress. Nevertheless, little is known about the performance of different cytotypes under cold stress and how epigenetic patterns could relate to phenotypic variation. Ranunculus kuepferi, a perennial alpine plant, served as a model system for testing the effect of cold stress on phenotypic plasticity, reproduction mode, and epigenetic variation. Diploid and autotetraploid individuals were placed in climate growth cabinets under warm and cold conditions. Morphological traits (height, leaves and flowers) and the proportion of well-developed seeds were measured as fitness indicators, while flow cytometric seed screening (FCSS) was utilized to determine the reproduction mode. Subsequently, comparisons with patterns of methylation-sensitive amplified fragment-length polymorphisms (AFLPs) were conducted. Diploids grew better under warm conditions, while tetraploids performed better in cold treatments. Epigenetic patterns were correlated with the expressed morphological traits. Cold stress reduced the reproduction fitness but did not induce apomixis in diploids. Overall, our study underlines the potential of phenotypic plasticity for acclimation under environmental conditions and confirms the different niche preferences of cytotypes in natural populations. Results help to understand the pattern of geographical parthenogenesis in the species.
Collapse
Affiliation(s)
- Eleni Syngelaki
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Georg-August-Universität Göttingen, 37073 Göttingen, Germany;
| | - Mareike Daubert
- Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany;
| | - Simone Klatt
- Section Safety and Environmental Protection, Georg-August-Universität Göttingen, 37073 Göttingen, Germany;
| | - Elvira Hörandl
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Georg-August-Universität Göttingen, 37073 Göttingen, Germany;
| |
Collapse
|
25
|
Garmendia A, Ferriol M, Benavent D, Ferrer-Gallego PP, Merle H. Intra- and Inter-Specific Crosses among Centaurea aspera L. (Asteraceae) Polyploid Relatives-Influences on Distribution and Polyploid Establishment. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1142. [PMID: 32899362 PMCID: PMC7569768 DOI: 10.3390/plants9091142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 05/24/2023]
Abstract
How polyploids become established is a long-debated question, especially for autopolyploids that seem to have no evolutionary advantage over their progenitors. The Centaurea aspera polyploid complex includes diploid C. aspera and two related tetraploids C. seridis and C. gentilii. Our purpose was to study the mating system among these three taxa and to analyze its influence on polyploid establishment. The distribution and ploidy level of the Moroccan populations, and forced intra- and inter-specific crosses were assessed. Allotetraploid C. seridis produced more cypselae per capitulum in the intra-specific crosses. It is a bigger plant and autogamous, and previous studies indicated that selfing forces the asymmetric formation of sterile hybrids. All these characteristics help C. seridis to avoid the minority-cytotype-exclusion effect and become established. Inter-specific hybridization was possible between C. aspera and C. gentilii, and with the symmetric formation of hybrids. However, 49% of the hybrid cypselae were empty, which probably reveals postzygotic barriers. Autotetraploid C. gentilii produced the same number of cypselae per capitulum as those of the diploid parental, has an indistinguishable field phenotype, is allogamous, and symmetrically produces hybrids. Therefore, C. gentilii does not seem to have the same competitive advantages as those of C. seridis.
Collapse
Affiliation(s)
- Alfonso Garmendia
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, ES-46022 Valencia, Spain; (A.G.); (M.F.)
| | - María Ferriol
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, ES-46022 Valencia, Spain; (A.G.); (M.F.)
| | - David Benavent
- Departamento de Ecosistemas Agroforestales, Universitat Politècnica de València, ES-46022 Valencia, Spain;
| | - P. Pablo Ferrer-Gallego
- Servicio de Vida Silvestre, Centro para la Investigación y la Experimentación Forestal - VAERSA, Generalitat Valenciana, Avda. Comarques del País Valencià 114, Quart de Poblet, ES-46930 Valencia, Spain;
| | - Hugo Merle
- Departamento de Ecosistemas Agroforestales, Universitat Politècnica de València, ES-46022 Valencia, Spain;
| |
Collapse
|
26
|
Schinkel CCF, Syngelaki E, Kirchheimer B, Dullinger S, Klatt S, Hörandl E. Epigenetic Patterns and Geographical Parthenogenesis in the Alpine Plant Species Ranunculus kuepferi (Ranunculaceae). Int J Mol Sci 2020; 21:E3318. [PMID: 32392879 PMCID: PMC7247541 DOI: 10.3390/ijms21093318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/31/2022] Open
Abstract
Polyploidization and the shift to apomictic reproduction are connected to changes in DNA cytosine-methylation. Cytosine-methylation is further sensitive to environmental conditions. We, therefore, hypothesize that DNA methylation patterns would differentiate within species with geographical parthenogenesis, i.e., when diploid sexual and polyploid apomictic populations exhibit different spatial distributions. On natural populations of the alpine plant Ranunculus kuepferi, we tested differences in methylation patterns across two cytotypes (diploid, tetraploid) and three reproduction modes (sexual, mixed, apomictic), and their correlation to environmental data and geographical distributions. We used methylation-sensitive amplified fragment-length polymorphism (methylation-sensitive AFLPs) and scored three types of epiloci. Methylation patterns differed independently between cytotypes versus modes of reproduction and separated three distinct combined groups (2x sexual + mixed, 4x mixed, and 4x apomictic), with differentiation of 4x apomicts in all epiloci. We found no global spatial autocorrelation, but instead correlations to elevation and temperature gradients in 22 and 36 epiloci, respectively. Results suggest that methylation patterns in R. kuepferi were altered by cold conditions during postglacial recolonization of the Alps, and by the concomitant shift to facultative apomixis, and by polyploidization. Obligate apomictic tetraploids at the highest elevations established a distinct methylation profile. Methylation patterns reflect an ecological gradient rather than the geographical differentiation.
Collapse
Affiliation(s)
- Christoph C. F. Schinkel
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Untere Karspüle 2, 37073 Göttingen, Germany;
| | - Eleni Syngelaki
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Untere Karspüle 2, 37073 Göttingen, Germany;
| | - Bernhard Kirchheimer
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria; (B.K.); (S.D.)
| | - Stefan Dullinger
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria; (B.K.); (S.D.)
| | - Simone Klatt
- Section Safety and Environmental Protection, University of Goettingen, Humboldtallee 15, 37073 Göttingen, Germany;
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Untere Karspüle 2, 37073 Göttingen, Germany;
| |
Collapse
|
27
|
Syngelaki E, Schinkel CCF, Klatt S, Hörandl E. Effects of Temperature Treatments on Cytosine-Methylation Profiles of Diploid and Autotetraploid Plants of the Alpine Species Ranunculus kuepferi (Ranunculaceae). FRONTIERS IN PLANT SCIENCE 2020; 11:435. [PMID: 32322263 PMCID: PMC7158262 DOI: 10.3389/fpls.2020.00435] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/25/2020] [Indexed: 05/23/2023]
Abstract
The exposure to environmental stress can trigger epigenetic variation, which may have several evolutionary consequences. Polyploidy seems to affect the DNA methylation profiles. Nevertheless, it abides unclear whether temperature stress can induce methylations changes in different cytotypes and to what extent a treatment shift is translated to an epigenetic response. A suitable model system for studying these questions is Ranunculus kuepferi, an alpine perennial herb. Diploid and autotetraploid individuals of R. kuepferi were exposed to cold (+7°C day/+2°C night; frost treatment -1°C cold shocks for 3 nights per week) and warm (+15° day/+10°C night) conditions in climate growth chambers for two consecutive flowering periods and shifted from one condition to the other after the first flowering period. Methylation-sensitive amplified fragment-length polymorphism markers were applied for both years, to track down possible alterations induced by the stress treatments. Patterns of methylation suggested that cytotypes differed significantly in their profiles, independent from year of treatment. Likewise, the treatment shift had an impact on both cytotypes, resulting in significantly less epiloci, regardless the shift's direction. The AMOVAs revealed higher variation within than among treatments in diploids. In tetraploids, internally-methylated loci had a higher variation among than within treatments, as a response to temperature's change in both directions, and support the hypothesis of temperature stress affecting the epigenetic variation. Results suggest that the temperature-sensitivity of DNA methylation patterns shows a highly dynamic phenotypic plasticity in R. kuepferi, as both cytotypes responded to temperature shifts. Furthermore, ploidy level, even without effects of hybridization, has an important effect on epigenetic background variation, which may be correlated with the DNA methylation dynamics during cold acclimation.
Collapse
Affiliation(s)
- Eleni Syngelaki
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Christoph C. F. Schinkel
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Simone Klatt
- Section Safety and Environmental Protection, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-Universität Göttingen, Göttingen, Germany
| |
Collapse
|
28
|
Mao Y, Gabel A, Nakel T, Viehöver P, Baum T, Tekleyohans DG, Vo D, Grosse I, Groß-Hardt R. Selective egg cell polyspermy bypasses the triploid block. eLife 2020; 9:e52976. [PMID: 32027307 PMCID: PMC7004562 DOI: 10.7554/elife.52976] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/22/2019] [Indexed: 01/21/2023] Open
Abstract
Polyploidization, the increase in genome copies, is considered a major driving force for speciation. We have recently provided the first direct in planta evidence for polyspermy induced polyploidization. Capitalizing on a novel sco1-based polyspermy assay, we here show that polyspermy can selectively polyploidize the egg cell, while rendering the genome size of the ploidy-sensitive central cell unaffected. This unprecedented result indicates that polyspermy can bypass the triploid block, which is an established postzygotic polyploidization barrier. In fact, we here show that most polyspermy-derived seeds are insensitive to the triploid block suppressor admetos. The robustness of polyspermy-derived plants is evidenced by the first transcript profiling of triparental plants and our observation that these idiosyncratic organisms segregate tetraploid offspring within a single generation. Polyspermy-derived triparental plants are thus comparable to triploids recovered from interploidy crosses. Our results expand current polyploidization concepts and have important implications for plant breeding.
Collapse
Affiliation(s)
- Yanbo Mao
- Centre for Biomolecular InteractionsUniversity of BremenBremenGermany
| | - Alexander Gabel
- Institute of Computer ScienceMartin Luther University Halle-WittenbergHalleGermany
| | - Thomas Nakel
- Centre for Biomolecular InteractionsUniversity of BremenBremenGermany
| | - Prisca Viehöver
- Faculty of BiologyBielefeld UniversityBielefeldGermany
- Center for BiotechnologyBielefeld UniversityBielefeldGermany
| | - Thomas Baum
- Centre for Biomolecular InteractionsUniversity of BremenBremenGermany
| | | | - Dieu Vo
- Centre for Biomolecular InteractionsUniversity of BremenBremenGermany
| | - Ivo Grosse
- Institute of Computer ScienceMartin Luther University Halle-WittenbergHalleGermany
| | - Rita Groß-Hardt
- Centre for Biomolecular InteractionsUniversity of BremenBremenGermany
| |
Collapse
|
29
|
Ulum FB, Costa Castro C, Hörandl E. Ploidy-Dependent Effects of Light Stress on the Mode of Reproduction in the Ranunculus auricomus Complex (Ranunculaceae). FRONTIERS IN PLANT SCIENCE 2020; 11:104. [PMID: 32153611 PMCID: PMC7044147 DOI: 10.3389/fpls.2020.00104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/23/2020] [Indexed: 05/04/2023]
Abstract
Polyploidy in angiosperms is an influential factor to trigger apomixis, the reproduction of asexual seeds. Apomixis is usually facultative, which means that both sexual and apomictic seeds can be formed by the same plant. Environmental abiotic stress, e.g. light stress, can change the frequency of apomixis. Previous work suggested effects of stress treatments on meiosis and megasporogenesis. We hypothesized that polyploidy would alter the stress response and hence reproductive phenotypes of different cytotypes. The main aims of this research were to explore with prolonged photoperiods, whether polyploidy alters proportions of sexual ovule and sexual seed formation under light stress conditions. We used three facultative apomictic, pseudogamous cytotypes of the Ranunculus auricomus complex (diploid, tetraploid, and hexaploid). Stress treatments were applied by extended light periods (16.5 h) and control (10 h) in climate growth chambers. Proportions of apomeiotic vs. meiotic development in the ovule were evaluated with clearing methods, and mode of seed formation was examined by single seed flow cytometric seed screening (ssFCSS). We further studied pollen stainability to understand effects of pollen quality on seed formation. Results revealed that under extended photoperiod, all cytotypes produced significantly more sexual ovules than in the control, with strongest effects on diploids. The stress treatment affected neither the frequency of seed set nor the proportion of sexual seeds nor pollen quality. Successful seed formation appears to be dependent on balanced maternal: paternal genome contributions. Diploid cytotypes had mostly sexual seed formation, while polyploid cytotypes formed predominantly apomictic seeds. Pollen quality was in hexaploids better than in diploids and tetraploids. These findings confirm our hypothesis that megasporogenesis is triggered by light stress treatments. Comparisons of cytotypes support the hypothesis that ovule development in polyploid plants is less sensitive to prolonged photoperiods and responds to a lesser extent with sexual ovule formation. Polyploids may better buffer environmental stress, which releases the potential for aposporous ovule development from somatic cells, and may facilitate the establishment of apomictic seed formation.
Collapse
Affiliation(s)
- Fuad Bahrul Ulum
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
- Biology Department, Faculty of Mathematics and Sciences, Jember University, Jember, Indonesia
| | - Camila Costa Castro
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
- *Correspondence: Elvira Hörandl,
| |
Collapse
|
30
|
Toda E, Okamoto T. Polyspermy in angiosperms: Its contribution to polyploid formation and speciation. Mol Reprod Dev 2019; 87:374-379. [PMID: 31736192 DOI: 10.1002/mrd.23295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022]
Abstract
Polyploidization has played a major role in the long-term diversification and evolutionary success of angiosperms. Triploid formation among diploid plants, which is generally considered to be achieved by fertilization of an unreduced gamete with a reduced one, has been accepted as a means of polyploid production. In addition, it has been supposed that polyspermy also contributes to the triploid formation in maize, wheat, and some orchids; however, such a mechanism has been considered uncommon because reproducing the polyspermic situation and unambiguously investigating developmental profiles of polyspermic zygotes are difficult. To overcome these problems, rice polyspermic zygotes have been successfully produced by electrofusion of an egg cell with two sperm cells, and their developmental profiles have been monitored. The triploid zygotes progress through karyogamy and divide into two-celled embryos via a typical bipolar mitotic division; the two-celled embryos further develop into triploid plants, indicating that polyspermic plant zygotes, unlike those of animals, can develop normally. Furthermore, progenies consisting of triparental genetic materials have been successfully obtained in Arabidopsis through the pollination of two different kinds of male parents with a female parent. These different pieces of evidence for development and emergence of polyspermic zygotes in vitro and in planta suggest that polyspermy is a key event in polyploidization and species diversification.
Collapse
Affiliation(s)
- Erika Toda
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| |
Collapse
|
31
|
Brožová V, Koutecký P, Doležal J. Plant apomixis is rare in Himalayan high-alpine flora. Sci Rep 2019; 9:14386. [PMID: 31591463 PMCID: PMC6779868 DOI: 10.1038/s41598-019-50907-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/19/2019] [Indexed: 11/21/2022] Open
Abstract
Gametophytic apomixis is a way of asexual plant reproduction by seeds. It should be advantageous under stressful high altitude or latitude environment where short growing seasons, low temperatures, low pollinator activity or unstable weather may hamper sexual reproduction. However, this hypothesis remains largely untested. Here, we assess the reproductive mode in 257 species belonging to 45 families from the world's broadest alpine belt (2800-6150 m) in NW Himalayas using flow cytometric seed screen. We found only 12 apomictic species, including several members of Poaceae (Festuca, Poa and Stipa), Rosaceae (Potentilla) and Ranunculaceae (Halerpestes, Ranunculus), which are families typical for high apomict frequency. However, several apomictic species were newly discovered, including the first known apomictic species from the family Biebersteiniaceae (Biebersteinia odora), and first apomicts from the genera Stipa (Stipa splendens) and Halerpestes (Halerpestes lancifolia). Apomicts showed no preference for higher elevations, even in these extreme Himalayan alpine habitats. Additional trait-based analyses revealed that apomicts differed from sexuals in comprising more rhizomatous graminoids and forbs, higher soil moisture demands, sharing the syndrome of dominant species with broad geographical and elevation ranges typical for the late-successional habitats. Apomicts differ from non-apomicts in greater ability of clonal propagation and preference for wetter, more productive habitats.
Collapse
Affiliation(s)
- Viktorie Brožová
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic.
- Institute of Botany, The Czech Academy of Sciences, Dukelská 135, Třeboň, 379 01, Czech Republic.
| | - Petr Koutecký
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Jiří Doležal
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Dukelská 135, Třeboň, 379 01, Czech Republic
- Laboratory of Tree Ring Research, University of Arizona, 1215 E. Lowell Street, Tucson, 85721, Arizona, USA
| |
Collapse
|
32
|
Salmina K, Gerashchenko BI, Hausmann M, Vainshelbaum NM, Zayakin P, Erenpreiss J, Freivalds T, Cragg MS, Erenpreisa J. When Three Isn't a Crowd: A Digyny Concept for Treatment-Resistant, Near-Triploid Human Cancers. Genes (Basel) 2019; 10:E551. [PMID: 31331093 PMCID: PMC6678365 DOI: 10.3390/genes10070551] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/10/2019] [Accepted: 06/19/2019] [Indexed: 12/19/2022] Open
Abstract
Near-triploid human tumors are frequently resistant to radio/chemotherapy through mechanisms that are unclear. We recently reported a tight association of male tumor triploidy with XXY karyotypes based on a meta-analysis of 15 tumor cohorts extracted from the Mitelman database. Here we provide a conceptual framework of the digyny-like origin of this karyotype based on the germline features of malignant tumors and adaptive capacity of digyny, which supports survival in adverse conditions. Studying how the recombinatorial reproduction via diploidy can be executed in primary cancer samples and HeLa cells after DNA damage, we report the first evidence that diploid and triploid cell sub-populations constitutively coexist and inter-change genomes via endoreduplicated polyploid cells generated through genotoxic challenge. We show that irradiated triploid HeLa cells can enter tripolar mitosis producing three diploid sub-subnuclei by segregation and pairwise fusions of whole genomes. Considering the upregulation of meiotic genes in tumors, we propose that the reconstructed diploid sub-cells can initiate pseudo-meiosis producing two "gametes" (diploid "maternal" and haploid "paternal") followed by digynic-like reconstitution of a triploid stemline that returns to mitotic cycling. This process ensures tumor survival and growth by (1) DNA repair and genetic variation, (2) protection against recessive lethal mutations using the third genome.
Collapse
Affiliation(s)
- Kristine Salmina
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | - Bogdan I Gerashchenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, 03022 Kyiv, Ukraine
| | - Michael Hausmann
- Kirchhoff Institute for Physics, Heidelberg University, D-69120 Heidelberg, Germany
| | - Ninel M Vainshelbaum
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
- Institute of Cardiology and Regenerative Medicine, University of Latvia, LV-1004 Riga, Latvia
| | - Pawel Zayakin
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | - Juris Erenpreiss
- Riga Stradins University, LV-1007 Riga, Latvia
- Clinic IVF-Riga, LV-1010 Riga, Latvia
| | - Talivaldis Freivalds
- Institute of Cardiology and Regenerative Medicine, University of Latvia, LV-1004 Riga, Latvia
| | - Mark S Cragg
- Centre for Cancer Immunology, University of Southampton, Southampton SO16 6YD, UK
| | | |
Collapse
|
33
|
Kaushal P, Dwivedi KK, Radhakrishna A, Srivastava MK, Kumar V, Roy AK, Malaviya DR. Partitioning Apomixis Components to Understand and Utilize Gametophytic Apomixis. FRONTIERS IN PLANT SCIENCE 2019; 10:256. [PMID: 30906306 PMCID: PMC6418048 DOI: 10.3389/fpls.2019.00256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/18/2019] [Indexed: 05/07/2023]
Abstract
Apomixis is a method of reproduction to generate clonal seeds and offers tremendous potential to fix heterozygosity and hybrid vigor. The process of apomictic seed development is complex and comprises three distinct components, viz., apomeiosis (leading to formation of unreduced egg cell), parthenogenesis (development of embryo without fertilization) and functional endosperm development. Recently, in many crops, these three components are reported to be uncoupled leading to their partitioning. This review provides insight into the recent status of our understanding surrounding partitioning apomixis components in gametophytic apomictic plants and research avenues that it offers to help understand the biology of apomixis. Possible consequences leading to diversity in seed developmental pathways, resources to understand apomixis, inheritance and identification of candidate gene(s) for partitioned components, as well as contribution towards creation of variability are all discussed. The potential of Panicum maximum, an aposporous crop, is also discussed as a model crop to study partitioning principle and effects. Modifications in cytogenetic status, as well as endosperm imprinting effects arising due to partitioning effects, opens up new opportunities to understand and utilize apomixis components, especially towards synthesizing apomixis in crops.
Collapse
Affiliation(s)
- Pankaj Kaushal
- ICAR-National Institute of Biotic Stress Management, Raipur, India
| | | | | | | | - Vinay Kumar
- ICAR-National Institute of Biotic Stress Management, Raipur, India
| | - Ajoy Kumar Roy
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | | |
Collapse
|
34
|
León-Martínez G, Vielle-Calzada JP. Apomixis in flowering plants: Developmental and evolutionary considerations. Curr Top Dev Biol 2019; 131:565-604. [DOI: 10.1016/bs.ctdb.2018.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Nardi FD, Dobeš C, Müller D, Grasegger T, Myllynen T, Alonso-Marcos H, Tribsch A. Sexual intraspecific recombination but not de novo origin governs the genesis of new apomictic genotypes in Potentilla puberula (Rosaceae). TAXON 2018; 67:1108-1131. [PMID: 30799883 PMCID: PMC6382066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Apomixis - asexual reproduction via seeds - might arise de novo following polyploidisation events, or via reproductive transfer of apomixis. Both processes can be obtained within species or via hybridisation. We aimed to determine the origin of apomictic genotypes in Potentilla puberula, a rosaceous species showing reproductive differentiation with ploidy: sexual tetraploids and apomictic penta- to octoploids, which regularly co-occur in sympatry. The study is based on 726 individuals, comprising all cytotypes, collected from 138 populations in the Eastern European Alps. We established relationships of cytotypes based on AFLP fingerprinting and cpDNA sequencing to test (1) whether the apomicts are of recurrent allopolyploid origin or originated from within the species via autopolyploidy, and (2) whether there are indications for reproductive transfer versus de novo origin of apomixis. Three principal pathways were identified which explain the origin of new apomictic genotypes, all involving at least one apomictic parent and thus compatible with the idea of reproductive transfer of the apomictic trait to the progeny: (1) self-fertilisation of unreduced egg cells in apomicts; (2) cross-fertilisation among apomicts; and (3) occasionally, heteroploid crosses among sexuals and apomicts. Autopolyploids derived from tetraploid sexuals were repeatedly observed, but did not express apomixis. Finally, our results suggest no role of other species in the origin of extant apomictic genotypes of P. puberula, although local hybrids with P. crantzii were identified. In conclusion, our results show that the formation of new apomictic genotypes required a genetic contribution from at least one apomictic parent. This finding is in accordance with the idea that apomixis is inheritable in P. puberula. On the contrary, lack of apomixis in penta- and hexaploids derived from sexual backgrounds did not support the hypothesis of a de novo origin of apomixis. Relatively high frequency of remnant sexuality in the apomicts involving different cytological pathways of seed formation can explain their high cytological and genotypic diversity. Finally, lack of global introgression from a third taxon is in support of P. puberula as a concise, although highly diverse, species.
Collapse
Affiliation(s)
- Flavia Domizia Nardi
- Austrian Research Centre for Forests, Department of Forest Genetics, Seckendorff-Gudent-Weg 8, 1131 Vienna, Austria
- University of Salzburg, Department of Biosciences, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - Christoph Dobeš
- Austrian Research Centre for Forests, Department of Forest Genetics, Seckendorff-Gudent-Weg 8, 1131 Vienna, Austria
| | - Dorothee Müller
- University of Salzburg, Department of Biosciences, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - Tobias Grasegger
- University of Salzburg, Department of Biosciences, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - Tuuli Myllynen
- Austrian Research Centre for Forests, Department of Forest Genetics, Seckendorff-Gudent-Weg 8, 1131 Vienna, Austria
| | - Henar Alonso-Marcos
- Austrian Research Centre for Forests, Department of Forest Genetics, Seckendorff-Gudent-Weg 8, 1131 Vienna, Austria
| | - Andreas Tribsch
- University of Salzburg, Department of Biosciences, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| |
Collapse
|
36
|
Barke BH, Daubert M, Hörandl E. Establishment of Apomixis in Diploid F 2 Hybrids and Inheritance of Apospory From F 1 to F 2 Hybrids of the Ranunculus auricomus Complex. FRONTIERS IN PLANT SCIENCE 2018; 9:1111. [PMID: 30123228 PMCID: PMC6085428 DOI: 10.3389/fpls.2018.01111] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/10/2018] [Indexed: 05/18/2023]
Abstract
Hybridization and polyploidization play important roles in plant evolution but it is still not fully clarified how these evolutionary forces contribute to the establishment of apomicts. Apomixis, the asexual reproduction via seed formation, comprises several essential alterations in development compared to the sexual pathway. Furthermore, most natural apomicts were found to be polyploids and/or hybrids. The Ranunculus auricomus complex comprises diploid sexual and polyploid apomictic species and represents an excellent model system to gain knowledge on origin and evolution of apomixis in natural plant populations. In this study, the second generation of synthetically produced homoploid (2x) and heteroploid (3x) hybrids derived from sexual R. auricomus species was analyzed for aposporous initial cell formation by DIC microscopy. Complete manifestation of apomixis was determined by measuring single mature seeds by flow cytometric seed screen. Microscopic analysis of the female gametophyte formation indicated spontaneous occurrence of aposporous initial cells and several developmental irregularities. The frequency of apospory was found to depend on dosage effects since a significant increase in apospory was observed, when both F1 parents, rather than just one, were aposporous. Other than in the F1 generation, diploid Ranunculus F2 hybrids formed BIII seeds and fully apomictic seeds. The results indicate that hybridization rather than polyploidization seems to be the functional activator of apomictic reproduction in the synthetic Ranunculus hybrids. In turn, at least two hybrid generations are required to establish apomictic seed formation.
Collapse
Affiliation(s)
- Birthe H. Barke
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | | | | |
Collapse
|
37
|
Klatt S, Schinkel CCF, Kirchheimer B, Dullinger S, Hörandl E. Effects of cold treatments on fitness and mode of reproduction in the diploid and polyploid alpine plant Ranunculus kuepferi (Ranunculaceae). ANNALS OF BOTANY 2018; 121:1287-1298. [PMID: 29462249 PMCID: PMC6007502 DOI: 10.1093/aob/mcy017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 01/25/2017] [Indexed: 05/20/2023]
Abstract
Background and Aims Alpine plants grow in harsh environments and are thought to face occasional frost during the sensitive reproductive phase. Apomixis (asexual reproduction via seed) can be advantageous when sexual reproduction is disturbed by cold stress. Apomictic polyploids tend to grow in colder climates than their sexual diploid relatives. Whether cold temperatures actually induce apomixis was unknown to date. Methods We tested experimentally in climate cabinets for effects of low temperatures and repeated frost on phenology, fitness and mode of reproduction in diploid and tetraploid cytotypes of the alpine species Ranunculus kuepferi. The reproduction mode was determined via flow cytometric seed screening (FCSS). Key Results Diploids produced the first flowers earlier than the tetraploids in all treatments. Cold treatments significantly reduced the fitness of both cytotypes regarding seed set, and increased the frequency of apomictic seed formation in diploids, but not in tetraploids. Over consecutive years, the degree of facultative apomixis showed individual phenotypic plasticity. Conclusions Cold stress is correlated to expression of apomixis in warm-adapted, diploid R. kuepferi, while temperature-tolerant tetraploids just maintain facultative apomixis as a possible adaptation to colder climates. However, expression of apomixis may not depend on polyploidy, but rather on failure of the sexual pathway.
Collapse
Affiliation(s)
- Simone Klatt
- Department of Systematics, Biodiversity and Evolution of Plants, University of Goettingen, Goettingen, Germany
| | - Christoph C F Schinkel
- Department of Systematics, Biodiversity and Evolution of Plants, University of Goettingen, Goettingen, Germany
| | - Bernhard Kirchheimer
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Stefan Dullinger
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants, University of Goettingen, Goettingen, Germany
| |
Collapse
|
38
|
Kirchheimer B, Wessely J, Gattringer A, Hülber K, Moser D, Schinkel CCF, Appelhans M, Klatt S, Caccianiga M, Dellinger A, Guisan A, Kuttner M, Lenoir J, Maiorano L, Nieto‐Lugilde D, Plutzar C, Svenning J, Willner W, Hörandl E, Dullinger S, Thrall P. Reconstructing geographical parthenogenesis: effects of niche differentiation and reproductive mode on Holocene range expansion of an alpine plant. Ecol Lett 2018; 21:392-401. [PMID: 29349850 PMCID: PMC5888191 DOI: 10.1111/ele.12908] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/23/2017] [Accepted: 11/27/2017] [Indexed: 12/25/2022]
Abstract
Asexual taxa often have larger ranges than their sexual progenitors, particularly in areas affected by Pleistocene glaciations. The reasons given for this 'geographical parthenogenesis' are contentious, with expansion of the ecological niche or colonisation advantages of uniparental reproduction assumed most important in case of plants. Here, we parameterized a spread model for the alpine buttercup Ranunculus kuepferi and reconstructed the joint Holocene range expansion of its sexual and apomictic cytotype across the European Alps under different simulation settings. We found that, rather than niche broadening or a higher migration rate, a shift of the apomict's niche towards colder conditions per se was crucial as it facilitated overcoming of topographical barriers, a factor likely relevant for many alpine apomicts. More generally, our simulations suggest potentially strong interacting effects of niche differentiation and reproductive modes on range formation of related sexual and asexual taxa arising from their differential sensitivity to minority cytotype disadvantage.
Collapse
Affiliation(s)
- Bernhard Kirchheimer
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 141030ViennaAustria
| | - Johannes Wessely
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 141030ViennaAustria
| | - Andreas Gattringer
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 141030ViennaAustria
| | - Karl Hülber
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 141030ViennaAustria
| | - Dietmar Moser
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 141030ViennaAustria
| | - Christoph C. F. Schinkel
- Department of Systematics, Biodiversity and Evolution of Plants (with herbarium)University of GoettingenUntere Karspüle 237073Göttingen
| | - Marc Appelhans
- Department of Systematics, Biodiversity and Evolution of Plants (with herbarium)University of GoettingenUntere Karspüle 237073Göttingen
| | - Simone Klatt
- Department of Systematics, Biodiversity and Evolution of Plants (with herbarium)University of GoettingenUntere Karspüle 237073Göttingen
| | - Marco Caccianiga
- Department of BiosciencesUniversity of MilanVia Giovanni Celoria 2620133MilanItaly
| | - Agnes Dellinger
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 141030ViennaAustria
| | - Antoine Guisan
- Department of Ecology & EvolutionBiophoreUniversity of Lausanne1015LausanneSwitzerland
- Institute of Earth Surface DynamicsGeopolisUniversity of Lausanne1015LausanneSwitzerland
| | - Michael Kuttner
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 141030ViennaAustria
| | - Jonathan Lenoir
- UR «Ecologie et Dynamique des Systèmes Anthropisés» (EDYSAN, FRE 3498 CNRS)Jules Verne University of Picardie1 Rue des LouvelsF‐80037Amiens Cedex 1France
| | - Luigi Maiorano
- Department of Biology and BiotechnologiesSapienza University of RomeViale dell'Università 32RomeItaly
| | - Diego Nieto‐Lugilde
- Departamento de BotánicaEcología y Fisiología VegetalUniversidad de Córdoba14071CórdobaSpain
| | - Christoph Plutzar
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 141030ViennaAustria
| | - Jens‐Christian Svenning
- Section for Ecoinformatics & BiodiversityDepartment of BioscienceAarhus UniversityNy Munkegade 114‐1168000Aarhus CDenmark
| | - Wolfgang Willner
- Vienna Institute for Nature Conservation and AnalysesGießergasse 6/71090ViennaAustria
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with herbarium)University of GoettingenUntere Karspüle 237073Göttingen
| | - Stefan Dullinger
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 141030ViennaAustria
| | | |
Collapse
|
39
|
|