1
|
Li H, Fan L, Yang S, Tan P, Lei W, Yang H, Gao Z. Lactobacillus acidophilus 6074 Fermented Jujube Juice Ameliorated DSS-induced Colitis via Repairing Intestinal Barrier, Modulating Inflammatory Factors, and Gut Microbiota. Mol Nutr Food Res 2024:e202400568. [PMID: 39676427 DOI: 10.1002/mnfr.202400568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
Lactobacillus acidophilus L. acidophilus Lactobacillus, Bifidobacterium, and Akkermansia, This study aimed to explore the ameliorative effects and underlying mechanisms of oral administration Lactobacillus acidophilus 6074 fermented jujube juice (LAFJ) on dextran sulfate sodium (DSS)-induced colitis in mice. In this study, jujube juice was used as a substrate and fermented by L. acidophilus 6074 to investigate its effects on gut microbiota, intestinal barrier function, oxidative stress, inflammatory factors, and short-chain fatty acids (SCFAs) in mice with colitis and to reveal its potential mechanism for alleviating colitis. The results demonstrated that fermentation caused significant changes in the nutrients and nonnutrients of jujube juice, mainly in organic acids (malic acid, lactic acid, citric acid, and succinic acid) and free amino acids (Thr, Met, Ser, Ile, and Lys). High-dose LAFJ (20 mL/kg/day) significantly reduced the disease activity index (DAI), improved histopathological morphology, and increased colon length in colitis mice. LAFJ alleviated colon damage and preserved the integrity of the colonic mucosal barrier by promoting the expression of colonic tight junction proteins occludin, claudin-1, and zonula occluden-1 (ZO-1). Furthermore, LAFJ inhibited the production of proinflammatory factors and attenuated oxidative stress. Gut microbiota of mice revealed that LAFJ increased beneficial bacteria such as Lactobacillus, Bifidobacterium, and Akkermansia, promoted the production of SCFAs, and inhibited the growth of harmful microorganisms. Overall, LAFJ could reshape and restore gut microbiota imbalance caused by intestinal inflammation and alleviate the development of colitis, which may become a novel dietary intervention.
Collapse
Affiliation(s)
- Hongcai Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Lingjia Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Siqi Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Pei Tan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Wenzhi Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Haihua Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
2
|
Liu H, Xu K, Wang H, Lin H, Yang X, Wang X, Zhao J, Ma B, Shu Q, Lu Y, Jiao H. Effects of different forms of amino acid supplementation on the performance and intestinal barrier function of laying hens fed a low-protein diet. Poult Sci 2024; 103:104375. [PMID: 39442199 PMCID: PMC11532764 DOI: 10.1016/j.psj.2024.104375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024] Open
Abstract
The aim of this study was to investigate the effects of low-protein diets and the sustained release of synthetic amino acids (AA) on the performance, intestinal barrier function and nitrogen excretion of laying hens. Two hundred eighty-eight 39-week-old Hyline brown laying hens of were randomly divided into 3 groups with 8 replicates per group. The crude protein level in the control group (CON) was 16%, the crude protein levels in the crystal AA supplement group (LCP-CAA) and microencapsulated AA group (LCP-MAA) were both 13%, and the AA levels in the LCP-CAA and LCP-MAA groups were consistent with that in the CON group. The experiment lasted 12 wk, and production performance was assessed weekly. The FCR and ADFI values were significantly greater for the LCP-CAA group than for the CON and LCP-MAA groups (P < 0.05). Two hours after feeding, His levels were significantly greater in the LCP-CAA group than in the LCP-MAA group (P < 0.05); 4 h after feeding, the contents of Met, Thr, Leu and Val were significantly greater in blood from the LCP-MAA group (P < 0.05); 6 h after feeding, Trp, Ile and Arg levels were significantly greater in the LCP-MAA group (P < 0.05). The chylase content significantly decreased in the duodenum of the LCP-CAA group (P < 0.05), and the chylase and trypsin were contents increased in the ileum of the LCP-MAA group (P < 0.05). In the LCP-MAA group, significantly increased mRNA expression levels of Occludin, ZO-1 in duodenum; Occludin, ZO-1, y+LAT1 in jejunum; and ZO-1 in ileum were detected at 8 and 12 weeks (P < 0.05). The fecal nitrogen content significantly decreased in the low protein diet group (P < 0.01). In conclusion, reducing dietary crude protein levels and supplementing with microencapsulated AAs can improve intestinal barrier function, promote digestive enzyme secretion, increase the expression of AA transporters, improve dietary protein utilization efficiency, and reduce nitrogen emission in laying hens.
Collapse
Affiliation(s)
- Hui Liu
- Department of Animal Science, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, Taian 271018, Shandong Province, China; Animal Husbandry and Veterinary Service Center of Xintai City, Xintai 271200, Shandong Province, China
| | - Kangqi Xu
- Department of Animal Science, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, Taian 271018, Shandong Province, China
| | - Huimin Wang
- Department of Animal Science, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, Taian 271018, Shandong Province, China
| | - Hai Lin
- Department of Animal Science, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, Taian 271018, Shandong Province, China
| | - Xiaoyan Yang
- Shandong Bohi Industry Co. Ltd., Binzhou 256599, Shandong Province, China
| | - Xiaojuan Wang
- Department of Animal Science, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, Taian 271018, Shandong Province, China
| | - Jingpeng Zhao
- Department of Animal Science, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, Taian 271018, Shandong Province, China
| | - Baishun Ma
- Shandong Xiandai Research Institute of Egg-laying Industry, Shandong Hemeihua Nongmu Co. Ltd., Jinan 250102, Shandong Province, China
| | - Quanxian Shu
- Shandong Bohi Industry Co. Ltd., Binzhou 256599, Shandong Province, China
| | - Yanbo Lu
- Shandong Bohi Industry Co. Ltd., Binzhou 256599, Shandong Province, China
| | - Hongchao Jiao
- Department of Animal Science, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, Taian 271018, Shandong Province, China.
| |
Collapse
|
3
|
Vo TS, Chit PP, Nguyen VH, Hoang T, Lwin KM, Vo TTBC, Jeon B, Han S, Lee J, Park Y, Kim K. A comprehensive review of chitosan-based functional materials: From history to specific applications. Int J Biol Macromol 2024; 281:136243. [PMID: 39393718 DOI: 10.1016/j.ijbiomac.2024.136243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/08/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
Chitosan (CTS), a natural biopolymer derived from chitin, has garnered significant attention owing to its potential chemical, biological, and physical properties, such as biocompatibility, bioactivity, and biosafety. This comprehensive review traces the historical development of CTS-based materials and delves into their specific applications across various fields. The study highlights the evolution of CTS from its initial discovery to its current state, emphasizing key milestones and technological advancements that have expanded its utility. Despite the extensive research, the synthesis and functionalization of CTS to achieve desired properties for targeted applications remain a challenge. This review addresses current problems such as the scalability of production, consistency in quality, and the environmental impact of extraction and modification processes. Additionally, it explores the novel applications of CTS-based materials in biomedicine, agriculture, environmental protection, and food industry, showcasing innovative solutions and future potentials. By providing a detailed analysis of the current state of CTS research and identifying gaps in knowledge, this review offers a valuable resource for researchers and industry professionals. The novelty of this work lies in its holistic approach, combining historical context with a forward-looking perspective on emerging trends and potential breakthroughs in the field of CTS-based functional materials. Therefore, this review will be helpful for readers by summarizing recent advances and discussing prospects in CTS-based functional materials.
Collapse
Affiliation(s)
- Thi Sinh Vo
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Pyone Pyone Chit
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Vu Hoang Nguyen
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, 3800, Australia.
| | - Trung Hoang
- Department of Biophysics, Sungkyunkwan University, Suwon, 16419, South Korea; Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, South Korea.
| | - Khin Moe Lwin
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Tran Thi Bich Chau Vo
- Faculty of Industrial Management, College of Engineering, Can Tho University, Can Tho 900000, Viet Nam.
| | - Byounghyun Jeon
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Soobean Han
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jaehan Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Yunjeong Park
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, California 94709, United States.
| | - Kyunghoon Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
4
|
Schermuly II, Romanet S, Patra AK, Mastrototaro L, Lemme A, Pieper R, Zentek J, Aschenbach JR. Transport of Neutral Amino Acids in the Jejunum of Pigs with Special Consideration of L-Methionine. Nutrients 2024; 16:3418. [PMID: 39408384 PMCID: PMC11478682 DOI: 10.3390/nu16193418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Methionine (Met) is a popular nutritional supplement in humans and animals. It is routinely supplemented to pigs as L-Met, DL-Met, or DL-2-hydroxy-4-(methylthio) butanoic acid (DL-HMTBA). Methods: We investigated the effect of these Met supplements on jejunal amino acid (AA) transport in male castrated Piétrain × Danbred pigs, also including a non-supplemented group. The mucosal-to-serosal flux of ten [14C]-labeled AAs (L-glutamine, glycine, L-leucine, L-lysine, L-Met, L-serine, L-threonine, L-tryptophan, L-tyrosine and L-valine) was investigated at two concentrations (50 µM and 5 mM). Inhibition of apical uptake by mucosal L-Met was also measured for these AAs. The intestinal expression of apical AA transporters, angiotensin-converting enzyme II and inflammation-related genes were compared with those of a previous study. Results: Except for tryptophan and lysine at 5 mM, all AA fluxes were Na+-dependent (p ≤ 0.05), and the uptake of most AAs, except glycine and lysine, was inhibited by L-Met (p < 0.001). A correlation network existed between Na+-dependent fluxes of most AAs (except tryptophan and partly glycine). We observed the upregulation of B0AT1 (SLC6A19) (p < 0.001), the downregulation of ATB0,+ (SLC6A14) (p < 0.001) and a lower expression of CASP1, IL1β, IL8, TGFβ and TNFα in the present vs. the previous study (p < 0.001). Conclusions: The correlating AAs likely share the same Na+-dependent transporter(s). A varying effect of the Met supplement type on AA transport in the two studies might be related to a different level of supplementation or a different inflammatory status of the small intestine.
Collapse
Affiliation(s)
- Isabel I. Schermuly
- Institute of Veterinary Physiology, Freie Universität Berlin, Königsweg 56, 14163 Berlin, Germany; (I.I.S.); (L.M.)
| | - Stella Romanet
- Institute of Veterinary Physiology, Freie Universität Berlin, Königsweg 56, 14163 Berlin, Germany; (I.I.S.); (L.M.)
| | - Amlan K. Patra
- American Institute for Goat Research, Langston University, Langston, OK 73050, USA;
| | - Lucia Mastrototaro
- Institute of Veterinary Physiology, Freie Universität Berlin, Königsweg 56, 14163 Berlin, Germany; (I.I.S.); (L.M.)
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich-Heine-University, Auf’m Hennekamp 65, 40225 Düsseldorf, Germany
| | - Andreas Lemme
- Animal Nutrition Services, Evonik Operations GmbH, Rodenbacher Chausee 4, 63457 Hanau-Wolfgang, Germany;
| | - Robert Pieper
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Straße 49, 14195 Berlin, Germany
| | - Jürgen Zentek
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Straße 49, 14195 Berlin, Germany
| | - Jörg R. Aschenbach
- Institute of Veterinary Physiology, Freie Universität Berlin, Königsweg 56, 14163 Berlin, Germany; (I.I.S.); (L.M.)
| |
Collapse
|
5
|
Ignatiou A, Pitsouli C. Host-diet-microbiota interplay in intestinal nutrition and health. FEBS Lett 2024; 598:2482-2517. [PMID: 38946050 DOI: 10.1002/1873-3468.14966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
The intestine is populated by a complex and dynamic assortment of microbes, collectively called gut microbiota, that interact with the host and contribute to its metabolism and physiology. Diet is considered a key regulator of intestinal microbiota, as ingested nutrients interact with and shape the resident microbiota composition. Furthermore, recent studies underscore the interplay of dietary and microbiota-derived nutrients, which directly impinge on intestinal stem cells regulating their turnover to ensure a healthy gut barrier. Although advanced sequencing methodologies have allowed the characterization of the human gut microbiome, mechanistic studies assessing diet-microbiota-host interactions depend on the use of genetically tractable models, such as Drosophila melanogaster. In this review, we first discuss the similarities between the human and fly intestines and then we focus on the effects of diet and microbiota on nutrient-sensing signaling cascades controlling intestinal stem cell self-renewal and differentiation, as well as disease. Finally, we underline the use of the Drosophila model in assessing the role of microbiota in gut-related pathologies and in understanding the mechanisms that mediate different whole-body manifestations of gut dysfunction.
Collapse
Affiliation(s)
- Anastasia Ignatiou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Chrysoula Pitsouli
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
6
|
Lin J, Jing H, Wang J, Lucien-Cabaraux JF, Yang K, Liu W, Li X. Effects of lysine and threonine on milk yield, amino acid metabolism, and fecal microbiota of Yili lactating mares. Front Vet Sci 2024; 11:1396053. [PMID: 39021407 PMCID: PMC11251924 DOI: 10.3389/fvets.2024.1396053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
The nutritional benefits of mare milk are attracting increasing consumer interest. Limited availability due to low yield poses a challenge for widespread adoption. Although lysine and threonine are often used to enhance protein synthesis and muscle mass in horses, their impact on mare milk yield and nutrient composition remains underexplored. This study investigated the effects of lysine and threonine supplementation on 24 healthy Yili mares, mares at day 30 of lactation, over a 120-day period. The mares were divided into control and three experimental groups (six mares each) under pure grazing conditions. The control group received no amino acid supplementation, while experimental groups received varying daily doses of lysine and threonine: Group I (40 g lysine + 20 g threonine), Group II (60 g lysine + 40 g threonine), and Group III (80 g lysine + 60 g threonine). Supplementation in Group II notably increased milk yield, while Groups I and II showed higher milk fat percentages, and all experimental groups exhibited improved milk protein percentages. Additionally, blood levels of total protein, albumin, triglycerides, and glucose were reduced. Detailed analyses from Group II at peak lactation (day 60) included targeted metabolomics and microbial sequencing of milk, blood, and fecal samples. Amino acid metabolomics assessed amino acid content in mare milk and serum, while 16S rRNA gene sequencing evaluated rectal microbial composition. The results indicated that lysine and threonine supplementation significantly increased levels of threonine and creatine in the blood, and lysine, threonine, glutamine, and alanine in mare milk. Microbial analysis revealed a higher prevalence of certain bacterial families and genera, including Prevotellaceae, p_251_o5, and Rikenellaceae at the family level, and unclassified_p_251_o5, Prevotellaceae_UCG_001, and Rikenellaceae_RC9_gut_group at the genus level. Multi-omics analysis showed positive correlations between specific fecal genera and amino acids in mare milk. For instance, Prevotellaceae_UCG_003, unclassified Bacteroidetes_BS11_gut_group, and Corynebacterium were positively correlated with lysine, while unclassified Prevotellaceae was positively correlated with alanine and threonine, and Unclassified_Bacteroidales_BS11_gut_group was positively correlated with glutamine. In summary, lysine and threonine supplementation in grazing lactating mares enhanced milk production and improved milk protein and fat quality. It is recommended that herders, veterinarians, and technicians consider amino acid content in the diet of lactating mares. The optimal supplementation levels under grazing conditions for Yili horses were determined to be 60 g lysine and 40 g threonine per day. Future research should explore the molecular mechanisms by which these amino acids influence milk protein and lipid synthesis in mare mammary epithelial cells.
Collapse
Affiliation(s)
- Jianwei Lin
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat and Milk, College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Hongxin Jing
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat and Milk, College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Jianwen Wang
- Xinjiang Key Laboratory of Horse Breeding and Exercise Physiology, College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | | | - Kailun Yang
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat and Milk, College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Wujun Liu
- Xinjiang Key Laboratory of Horse Breeding and Exercise Physiology, College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Xiaobin Li
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat and Milk, College of Animal Science, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of Horse Breeding and Exercise Physiology, College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
7
|
Fei S, Kang J, Ou M, Liu H, Zhang X, Luo Q, Li K, Chen K, Zhao J. Effects of essential amino acids supplementation in a low-protein diet on growth performance, intestinal health and microbiota of juvenile blotched snakehead (Channa maculata). FISH & SHELLFISH IMMUNOLOGY 2024; 149:109555. [PMID: 38615703 DOI: 10.1016/j.fsi.2024.109555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Developing a low-protein feed is important for the sustainable advancement of aquaculture. The aim of this study was to investigate the effects of essential amino acid (EAA) supplementation in a low-protein diet on the growth, intestinal health, and microbiota of the juvenile blotched snakehead, Channa maculata in an 8-week trial conducted in a recirculating aquaculture system. Three isoenergetic diets were formulated to include a control group (48.66 % crude protein (CP), HP), a low protein group (42.54 % CP, LP), and a low protein supplementation EAA group (44.44 % CP, LP-AA). The results showed that significantly lower weight gain (WG), specific growth rate (SGR), protein efficiency ratio (PER), and feed efficiency ratio (FER) were observed in fish that were fed LP than in the HP and LP-AA groups (P < 0.05). The HP and LP-AA groups exhibited a significant increase in intestinal villus length, villus width, and muscular thickness compared to the LP group (P < 0.05). Additionally, the HP and LP-AA groups demonstrated significantly higher levels of intestinal total antioxidant capacity (T-AOC), catalase (CAT), and superoxide dismutase (SOD) and lower levels of malondialdehyde (MDA) compared to the LP group (P < 0.05). The apoptosis rate of intestinal cells in the LP group was significantly higher than those in the LP and HP groups (P < 0.05). The mRNA expression levels of superoxide dismutase (sod), nuclear factor kappa B p65 subunit (nfκb-p65), heat shock protein 70 (hsp70), and inhibitor of NF-κBα (iκba) in the intestine were significantly higher in the LP group than those in the HP and LP-AA groups (P < 0.05). The 16s RNA analysis indicated that EAA supplementation significantly increased the growth of Desulfovibrio and altered the intestinal microflora. The relative abundances of Firmicutes and Cyanobacteria were positively correlated with antioxidant parameters (CAT and T-AOC), whereas Desulfobacterota was negatively correlated with sod and T-AOC. The genera Bacillus, Bacteroides, and Rothia were associated with the favorable maintenance of gut health. In conclusion, dietary supplementation with EAAs to achieve a balanced amino acid profile could potentially reduce the dietary protein levels from 48.66 % to 44.44 % without adversely affecting the growth and intestinal health of juvenile blotched snakeheads.
Collapse
Affiliation(s)
- Shuzhan Fei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510380, PR China
| | - Jiamin Kang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510380, PR China; College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, PR China
| | - Mi Ou
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510380, PR China
| | - Haiyang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510380, PR China
| | - Xincheng Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510380, PR China
| | - Qing Luo
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510380, PR China
| | - Kaibin Li
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510380, PR China
| | - Kunci Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510380, PR China
| | - Jian Zhao
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510380, PR China.
| |
Collapse
|
8
|
Perez-Palencia JY, Ramirez-Camba CD, Haydon K, Urschel KL, Levesque CL. Effects of increasing dietary arginine supply during the three first weeks after weaning on pig growth performance, plasma amino acid concentrations, and health status. Transl Anim Sci 2024; 8:txae047. [PMID: 38651117 PMCID: PMC11034433 DOI: 10.1093/tas/txae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/30/2024] [Indexed: 04/25/2024] Open
Abstract
A total of 425 weaned pigs (Exp. 1: 225 pigs [5.8 ± 0.9 kg]; Exp. 2: 200 pigs [6.1 ± 1.2 kg]) were used to determine the optimal dietary standardized ileal digestible (SID) arginine (Arg) level in early nursery diets based on growth and health responses. The basal diet in Exp.1 was formulated to meet SID Arg recommendation (0.66%; NRC, 2012) and in Exp. 2, SID Arg was set to simulate current industry practices for feeding nursery pigs (1.15 %). Basal diets were supplemented with 0.3%, 0.6%, 0.9%, and 1.2% of l-arginine to provide five levels of dietary SID Arg. Experimental diets were fed during phases I (days 0 to 7) and II (days 8 to 21) with common diets until market. Feed disappearance and body weight (BW) were measured on days 7, 14, 21, and 43. Final BW was recorded at first removal of pigs for market. Pen fecal score was assigned daily from days 0 to 21. Plasma immunoglobulin A (IgA) was determined on days 0, 7, and 14 and amino acids (AAs) concentration and plasma urea nitrogen (PUN) on days 0 and 14. Orthogonal polynomial contrasts were used to determine the linear and quadratic effects of dietary Arg. Optimal SID Arg was determined by fitting the data with piecewise regression, using growth performance as the primary response variable. In Exp. 1, dietary Arg linearly increased (P < 0.1) BW, average daily gain (ADG), and gain to feed ratio (G:F) ratio on day 21, as well as reduced (χ2 = 0.004) the percentage of pigs that lost weight (PLW) in week 1 by 29%. Dietary Arg resulted in linear improvement (P = 0.082) of ADG for the overall nursery period and quadratic improvement (P < 0.1) of final BW at marketing. In Exp. 2, dietary Arg linearly increased (P < 0.05) ADG and average daily feed intake (ADFI) in week 1, BW and ADFI (P < 0.1) on day 14, as well as reduced (χ2 ≤ 0.001) PLW in week 1. From days 0 to 21, G:F was improved quadratically (P < 0.1). Dietary Arg linearly increased (P < 0.1) ADG and BW on day 43. Dietary Arg supplementation decreased the incidence (χ2 < 0.05) of soft and watery feces during the first weeks after weaning and lower concentration of plasma IgA on days 7 and 14. Dietary Arg linearly and/or quadratically influenced plasma AA concentrations (P < 0.05), including an increase in Arg, Leu, Phe, Val, citrulline, ornithine, and PUN concentrations. Overall, weaned pigs exhibit optimal nursery growth performance and health when provided with dietary SID Arg ranging from 1.5% to 1.9%. This dietary range contributes to a reduction in the occurrence of fall-back pigs and improvements in final BW at marketing.
Collapse
Affiliation(s)
| | - Christian D Ramirez-Camba
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
- Department of Animal Science, University of Minnesota, St. Paul, MN 57008, USA
| | - Keith Haydon
- CJ Bio America Inc, Downers Grove, IL 60515, USA
| | - Kristine L Urschel
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Crystal L Levesque
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
9
|
Castro C, Niknafs S, Gonzalez-Ortiz G, Tan X, Bedford MR, Roura E. Dietary xylo-oligosaccharides and arabinoxylans improved growth efficiency by reducing gut epithelial cell turnover in broiler chickens. J Anim Sci Biotechnol 2024; 15:35. [PMID: 38433214 PMCID: PMC10910751 DOI: 10.1186/s40104-024-00991-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/02/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND One of the main roles of the intestinal mucosa is to protect against environmental hazards. Supplementation of xylo-oligosaccharides (XOS) is known to selectively stimulate the growth of beneficial intestinal bacteria and improve gut health and function in chickens. XOS may have an impact on the integrity of the intestinal epithelia where cell turnover is critical to maintain the compatibility between the digestive and barrier functions. The aim of the study was to evaluate the effect of XOS and an arabinoxylan-rich fraction (AXRF) supplementation on gut function and epithelial integrity in broiler chickens. METHODS A total of 128 broiler chickens (Ross 308) were assigned into one of two different dietary treatments for a period of 42 d: 1) control diet consisting of a corn/soybean meal-based diet; or 2) a control diet supplemented with 0.5% XOS and 1% AXRF. Each treatment was randomly distributed across 8 pens (n = 8) with 8 chickens each. Feed intake and body weight were recorded weekly. On d 42, one male chicken per pen was selected based on average weight and euthanized, jejunum samples were collected for proteomics analysis. RESULTS Dietary XOS/AXRF supplementation improved feed efficiency (P < 0.05) from d 1 to 42 compared to the control group. Proteomic analysis was used to understand the mechanism of improved efficiency uncovering 346 differentially abundant proteins (DAP) (Padj < 0.00001) in supplemented chickens compared to the non-supplemented group. In the jejunum, the DAP translated into decreased ATP production indicating lower energy expenditure by the tissue (e.g., inhibition of glycolysis and tricarboxylic acid cycle pathways). In addition, DAP were associated with decreased epithelial cell differentiation, and migration by reducing the actin polymerization pathway. Putting the two main pathways together, XOS/AXRF supplementation may decrease around 19% the energy required for the maintenance of the gastrointestinal tract. CONCLUSIONS Dietary XOS/AXRF supplementation improved growth efficiency by reducing epithelial cell migration and differentiation (hence, turnover), actin polymerization, and consequently energy requirement for maintenance of the jejunum of broiler chickens.
Collapse
Affiliation(s)
- Carla Castro
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Shahram Niknafs
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | | | - Xinle Tan
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | | | - Eugeni Roura
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
10
|
Gong K, Chen J, Yin X, Wu M, Zheng H, Jiang L. Untargeted metabolomics analysis reveals spatial metabolic heterogeneity in different intestinal segments of type 1 diabetic mice. Mol Omics 2024; 20:128-137. [PMID: 37997452 DOI: 10.1039/d3mo00163f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Type 1 diabetes (T1D) has been reported to cause systematic metabolic disorders, but metabolic changes in different intestinal segments of T1D remain unclear. In this study, we analyzed metabolic profiles in the jejunum, ileum, cecum and colon of streptozocin-induced T1D and age-matched control (CON) mice by an LC-MS-based metabolomics method. The results show that segment-specific metabolic disorders occurred in the gut of T1D mice. In the jejunum, we found that T1D mainly led to disordered amino acid metabolism and most amino acids were significantly lower relative to CON mice. Moreover, fatty acid metabolism was disrupted mainly in the ileum, cecum and colon of T1D mice, such as arachidonic acid, alpha-linolenic acid and linoleic acid metabolism. Thus, our study reveals spatial metabolic heterogeneity in the gut of T1D mice and provides a metabolic view on diabetes-associated intestinal diseases.
Collapse
Affiliation(s)
- Kaiyan Gong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Junli Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Xiaoli Yin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Mengjun Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Hong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Lingling Jiang
- College of Science and Technology, Wenzhou-Kean University, Wenzhou 325060, China.
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou 325060, China
| |
Collapse
|
11
|
Chiu YW, Lee CH, Lo HC. Oral post-treatment supplementation with a combination of glutamine, citrulline, and antioxidant vitamins additively mitigates jejunal damage, oxidative stress, and inflammation in rats with intestinal ischemia and reperfusion. PLoS One 2024; 19:e0298334. [PMID: 38306371 PMCID: PMC10836685 DOI: 10.1371/journal.pone.0298334] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024] Open
Abstract
INTRODUCTION Intestinal ischemia and reperfusion (IIR) injury is closely associated with oxidative stress. Evidence shows that oral supplementation with glutamine and citrulline alleviates IIR-induced jejunal damage. We investigated the effects of a combination of glutamine, citrulline, and antioxidant vitamins on IIR-induced jejunal damage, oxidative stress, and inflammation. METHOD Male Wistar rats that underwent 60 min of superior mesenteric artery occlusion were orally administered glutamine plus citrulline (GC), vitamin C plus E (CE), or a combination of GC and CE 15 min before and 3, 9, and 21 h after reperfusion. Healthy rats without IIR were used as controls. RESULTS After reperfusion for 24 h, rats with IIR showed lower levels of red blood cells, hemoglobin, serum glucose, and jejunal DNA and increased white blood cell counts compared to controls (1-way ANOVA with the least significant difference, P < 0.05). The IIR-induced decrease in serum albumin and increase in plasma interleukin-6 and jejunal thiobarbituric acid-reactive substances (TBARS) were significantly reversed by GC and/or CE. The results of the 2-way ANOVA indicated that GC was the main factor that increased jejunal villus height and muscularis DNA, and CE was the main factor that increased jejunal muscularis protein and decreased jejunal proinflammatory cytokine levels and myeloperoxidase activity. In addition, GC and CE are the main factors that decrease plasma proinflammatory cytokine levels and the jejunal apoptotic index. CONCLUSION Oral post-treatment supplementation with glutamine and citrulline, combined with vitamins C and E, may alleviate IIR-induced oxidative stress, inflammation, and jejunal damage.
Collapse
Affiliation(s)
- Yu-Wen Chiu
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan
- Lee’s Endocrinology Clinic, Pingtung City, Pingtung County, Taiwan
| | - Chien-Hsing Lee
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Surgery, Division of Pediatric Surgery, China Medical University Children’s Hospital, Taichung, Taiwan
| | - Hui-Chen Lo
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
12
|
Liao SF, Ji F, Fan P, Denryter K. Swine Gastrointestinal Microbiota and the Effects of Dietary Amino Acids on Its Composition and Metabolism. Int J Mol Sci 2024; 25:1237. [PMID: 38279233 PMCID: PMC10816286 DOI: 10.3390/ijms25021237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/28/2024] Open
Abstract
Many researchers consider gut microbiota (trillions of microorganisms) an endogenous organ of its animal host, which confers a vast genetic diversity in providing the host with essential biological functions. Particularly, the gut microbiota regulates not only gut tissue structure but also gut health and gut functionality. This paper first summarized those common bacterial species (dominated by the Firmicutes, Bacteroidota, and Proteobacteria phyla) in swine gut and then briefly discussed their roles in swine nutrition and health, which include roles in nutrient metabolism, pathogen exclusion, and immunity modulation. Secondly, the current knowledge on how dietary nutrients and feed additives affect the gut bacterial composition and nutrient metabolism in pigs was discussed. Finally, how dietary amino acids affect the relative abundances and metabolism of bacteria in the swine gut was reviewed. Tryptophan supplementation promotes the growth of beneficial bacteria and suppresses pathogens, while arginine metabolism affects nitrogen recycling, impacting gut immune response and health. Glutamate and glutamine supplementations elevate the levels of beneficial bacteria and mitigate pathogenic ones. It was concluded that nutritional strategies to manipulate gut microbial ecosystems are useful measures to optimize gut health and gut functions. For example, providing pigs with nutrients that promote the growth of Lactobacillus and Bifidobacterium can lead to better gut health and growth performance, especially when dietary protein is limited. Further research to establish the mechanistic cause-and-effect relationships between amino acids and the dynamics of gut microbiota will allow swine producers to reap the greatest return on their feed investment.
Collapse
Affiliation(s)
- Shengfa F. Liao
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA; (P.F.)
| | - Feng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Peixin Fan
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA; (P.F.)
| | - Kristin Denryter
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA; (P.F.)
| |
Collapse
|
13
|
Sun M, De Cuyper A, Bosch G, Dierenfeld ES, Hendriks WH, Janssens GPJ. Protein quality of a small mammal prey and its body organs for felids. J Anim Sci 2024; 102:skae180. [PMID: 38980729 PMCID: PMC11247530 DOI: 10.1093/jas/skae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024] Open
Abstract
This study evaluated the protein quality of small mammalian prey and its body organs by analyzing amino acid (AA) composition and digestibility of wild adult rats and their body organs (skin/fur, bone, muscle, intestine, liver, kidney, spleen, brain, heart, and lung) utilizing an in vitro digestion method. The average dry matter (DM) digestibility of whole rats was 89.9%. The digestibility of total AA (TAA), total indispensable AA (TIAA), and total dispensable AA (TDAA) in whole rats was 85.6, 87.0, and 87.6%, respectively. Differences in DM digestibility were observed among rat organs, ranging from 59.0% in bone to 99.8% in muscle (P < 0.001). Highly digestible organs generally exhibited AA digestibility exceeding 90%, except for cysteine (Cys) in the intestine and kidney (83.8% and 88.9%, respectively). The digestibility of AAs in skin/fur ranged from 19.7% for Cys to 81.0% for glycine (Gly). In bone, the digestibility spanned from 56.9% for Gly to 81.1% for tyrosine (Tyr). Additionally, examining the digestible indispensable AA score (DIAAS) gives us an idea of the protein quality of small mammalian prey and their body organs. Our results complement information on AA supply and digestion during prey ingestion by felids.
Collapse
Affiliation(s)
- Mengmeng Sun
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Annelies De Cuyper
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Guido Bosch
- Department of Animal Science, Animal Nutrition Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Ellen S Dierenfeld
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Ellen S. Dierenfeld LLC, Saint Louis, MO 63128, USA
| | - Wouter H Hendriks
- Department of Animal Science, Animal Nutrition Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Geert P J Janssens
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
14
|
Takahashi T, Kidachi K, Yukawa M, Hachinohe T, Takashima Y, Fujimura M, Saito A, Soga D, Ota C, Niizuma E, Sato K, Ogasawara H, Kurose Y. D-aspartate stimulates growth hormone secretion in wethers. J Anim Sci 2024; 102:skae318. [PMID: 39432441 PMCID: PMC11630845 DOI: 10.1093/jas/skae318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024] Open
Abstract
Growth hormone (GH) is an essential factor in enhancing the productivity of animals. In ruminants, L-aspartate (L-Asp) stimulates the secretion of GH; however, the effect of D-Asp on GH remains unknown. Here, we examined the effect of D-Asp on GH secretion in wethers. Blood GH, insulin, adrenaline, noradrenaline, non-esterified fatty acid (NEFA), and glucose concentrations were evaluated in response to the intravenous infusion of a high-dose (0.1 mmol/kg/min) of D-Asp for 20 min. Further, concentrations of these biomolecules were evaluated when a low-dose (0.05 mmol/kg/min) of D-Asp was continuously infused intravenously for 20 min. Finally, the direct effect of D-Asp on GH secretion was determined using cultured sections of the anterior pituitary tissue from wethers. Infusion of the high-dose of D-Asp markedly increased blood GH concentrations (P < 0.05), resulting in an increase in the area under the curve (AUC). Plasma GH concentrations and AUC also increased in response to infusion of a low D-Asp dose. Infusion of a high and low D-Asp dose caused a prolonged reduction in plasma insulin concentrations, and the AUC was lower (P < 0.05). Plasma NEFA concentrations gradually increased after the end of D-Asp infusion, with a low D-Asp dose infusion resulting in significantly higher concentrations at 90 min (P < 0.05). Plasma adrenaline, noradrenaline, and glucose concentrations did not show significant changes despite differences in the dose of D-Asp. Although D-Asp treatments stimulated GH secretion in the cultured sections of pituitary tissues, the effect was not significant. These results suggest that D-Asp stimulates the secretion of GH in wethers through not only a direct action on the pituitary gland but also through another pathway of GH stimulation.
Collapse
Affiliation(s)
- Tatsuyuki Takahashi
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Kyosuke Kidachi
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Mikiko Yukawa
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Tomoki Hachinohe
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Yuina Takashima
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Mao Fujimura
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Atsuko Saito
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Daichi Soga
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Chihiro Ota
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Eri Niizuma
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Katsuyoshi Sato
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Hideki Ogasawara
- Field Science Center, School of Veterinary Medicine, Kitasato University, Hokkaido, Japan
| | - Yohei Kurose
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| |
Collapse
|
15
|
Van Tran T, Kim YS, Yun HH, Nguyen DH, Bui TT, Van Tran P. A blend of bacillus-fermented soybean meal, functional amino acids, and nucleotides improves nutrient digestibility, bolsters immune response, reduces diarrhea, and enhances growth performance in weaned piglets. J Anim Sci 2024; 102:skae293. [PMID: 39320170 PMCID: PMC11497617 DOI: 10.1093/jas/skae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024] Open
Abstract
This study investigated the effects of a blend of bacillus-fermented soybean meal, functional amino acids, and nucleotides (Functional protein blend-FP Blend) as a replacement for animal protein sources in a weaner pig diet without antibiotic growth promoters on nutrient digestibility, blood profiles, intestinal morphology, diarrhea incidence, and growth performance. A total of 288 crossbred weaned piglets [♂ Duroc x ♀ (Yorkshire × Landrace)] with an average body weight (BW) of 6.89 ± 0.71 kg were randomly allocated to 6 groups based on initial BW and sex (8 replicate pens per treatment; 3 gilts and 3 barrows/pen). The experiment lasted for 5 wk. Dietary treatments included PC [standard diet with 3% fish meal (FM) and 2% plasma protein (PP)], NC (nonanimal protein, AP), T1 (3% FM replaced with 5% FP Blend), T2 (3% FM and 1% PP replaced with 5% FP Blend), T3 (2% PP replaced with 5% FP Blend), and T4 (3% FM and 2% PP replaced with 5% FP Blend). Data were analyzed using Minitab version 17 software. Key results indicated that FP Blend improved the apparent ileal digestibility (AID) coefficient of dry matter, gross energy, lysine, and valine in T4 compared with NC treatment (P < 0.05), whereas AID coefficient of crude protein and other amino acids remained constant (P > 0.05). Compared with NC diet, the weaned pigs fed T4 diet reduced malondialdehyde, serum IL8, TNF-α, and increased IgG (P < 0.05), while showing no effect on serum IL6, IL10, white blood cells, IgA, and endotoxin (P > 0.05). Furthermore, FP blend significantly increased villus height in the duodenum and ileum in T4 compared with NC (P < 0.05). The average daily gain (ADG) was highest in T4 (502.73 g/d), followed by T1 (477.96 g/d) and T2 (475.85 g/d), compared with PC (450.86 g/d) and NC (439.79 g/d). T4's ADG significantly differed from PC and NC (P < 0.001), whereas no significant differences were observed in T1, T2, and T3 (P > 0.05). The feed conversion ratio (FCR) was significantly lower in T4 (1.45) compared with PC (1.57) and NC (1.59) (P < 0.001), with no significant differences among other groups. In conclusion, FP Blend demonstrated efficacy in improving nutrient digestibility, optimizing intestinal morphology, bolstering immune responses, reducing diarrhea incidence, alleviating the adverse effects of weaning stress, and enhancing growth performance of weaned piglets.
Collapse
Affiliation(s)
- Thang Van Tran
- Faculty of Animal Science and Veterinary Medicine, Thai Nguyen University of Agriculture and Forestry, Vietnam
| | - Yang Su Kim
- CJ BIO, Animal nutrition, Amino acid solution, Cheiljadang Center, 330, Dongho-ro, Jung-gu, Seoul 04560, South Korea
| | - Hyeon Ho Yun
- Technical Marketing, Protein Solution, CJ BIO, Cheiljadang Center, 330, Dongho-ro, Jung-gu, Seoul 04560, South Korea
| | - Dinh Hai Nguyen
- CJ Bio Vietnam, Technical Solution Center of The Asia Pacific Accreditation Cooperation, CJ Cheiljedang Building, Ho Chi Minh 700000, Vietnam
| | - Thom Thi Bui
- Institute of Life Sciences, Thai Nguyen University, Vietnam
| | - Phung Van Tran
- Institute of Life Sciences, Thai Nguyen University, Vietnam
| |
Collapse
|
16
|
Wright JK, Weckman AM, Ngai M, Stefanova V, Zhong K, McDonald CR, Elphinstone RE, Conroy AL, Coburn BA, Madanitsa M, Taylor SM, Ter Kuile FO, Kain KC. Intestinal barrier disruption with Plasmodium falciparum infection in pregnancy and risk of preterm birth: a cohort study. EBioMedicine 2023; 97:104808. [PMID: 37837932 PMCID: PMC10585225 DOI: 10.1016/j.ebiom.2023.104808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND Malaria in early pregnancy is a risk factor for preterm birth and is associated with sustained inflammation and dysregulated angiogenesis across gestation. This study investigated whether malaria is associated with increased gut leak and whether this contributes to systemic inflammation, altered angiogenesis, and preterm birth. METHODS We quantified plasma concentrations of gut leak markers, soluble CD14 (sCD14) and lipopolysaccharide binding protein (LBP) from 1339 HIV-negative pregnant Malawians at <24 weeks gestational age. We assessed the relationship of sCD14 and LBP concentrations with markers of inflammation, angiogenesis, and L-arginine bioavailability and compared them between participants with and without malaria, and with and without preterm birth. FINDINGS Plasma concentrations of sCD14 and LBP were significantly higher in participants with malaria and were associated with parasite burden (p <0.0001, both analyses and analytes). The odds ratio for preterm birth associated with one log sCD14 was 2.67 (1.33 to 5.35, p = 0.006) and 1.63 (1.07-2.47, p = 0.023) for LBP. Both gut leak analytes were positively associated with increases in proinflammatory cytokines CRP, sTNFR2, IL18-BP, CHI3L1 and Angptl3 (p <0.05, all analytes) and sCD14 was significantly associated with angiogenic proteins Angpt-2, sENG and the sFLT:PlGF ratio (p <0.05, all analytes). sCD14 was negatively associated with L-arginine bioavailability (p <0.001). INTERPRETATION Malaria in early pregnancy is associated with intestinal barrier dysfunction, which is linked to an increased risk of preterm birth. FUNDING Open Philanthropy, Canadian Institutes of Health Research, Canada Research Chair program, European and Developing Countries Clinical Trials Partnership, Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Julie K Wright
- Sandra Rotman Centre for Global Health, MaRS Centre, Department of Medicine, University Health Network-Toronto General Hospital, University of Toronto, 101 College St TMDT 10-360A, M5G 1L7, Toronto, ON, Canada; Division of Infectious Diseases, University Health Network, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| | - Andrea M Weckman
- Sandra Rotman Centre for Global Health, MaRS Centre, Department of Medicine, University Health Network-Toronto General Hospital, University of Toronto, 101 College St TMDT 10-360A, M5G 1L7, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| | - Michelle Ngai
- Sandra Rotman Centre for Global Health, MaRS Centre, Department of Medicine, University Health Network-Toronto General Hospital, University of Toronto, 101 College St TMDT 10-360A, M5G 1L7, Toronto, ON, Canada.
| | - Veselina Stefanova
- Sandra Rotman Centre for Global Health, MaRS Centre, Department of Medicine, University Health Network-Toronto General Hospital, University of Toronto, 101 College St TMDT 10-360A, M5G 1L7, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| | - Kathleen Zhong
- Sandra Rotman Centre for Global Health, MaRS Centre, Department of Medicine, University Health Network-Toronto General Hospital, University of Toronto, 101 College St TMDT 10-360A, M5G 1L7, Toronto, ON, Canada.
| | - Chloe R McDonald
- Sandra Rotman Centre for Global Health, MaRS Centre, Department of Medicine, University Health Network-Toronto General Hospital, University of Toronto, 101 College St TMDT 10-360A, M5G 1L7, Toronto, ON, Canada.
| | - Robyn E Elphinstone
- Sandra Rotman Centre for Global Health, MaRS Centre, Department of Medicine, University Health Network-Toronto General Hospital, University of Toronto, 101 College St TMDT 10-360A, M5G 1L7, Toronto, ON, Canada.
| | - Andrea L Conroy
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis, USA.
| | - Bryan A Coburn
- Division of Infectious Diseases, University Health Network, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| | - Mwayi Madanitsa
- Malawi University of Science and Technology, P.O Box 5196, Limbe, Thyolo, Malawi.
| | - Steve M Taylor
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Division of Infectious Diseases and Duke Global Health Institute, Duke University, Durham, NC, USA.
| | | | - Kevin C Kain
- Sandra Rotman Centre for Global Health, MaRS Centre, Department of Medicine, University Health Network-Toronto General Hospital, University of Toronto, 101 College St TMDT 10-360A, M5G 1L7, Toronto, ON, Canada; Division of Infectious Diseases, University Health Network, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
17
|
Hussein MA, Khattak F, Vervelde L, Athanasiadou S, Houdijk JGM. Sensitivity of broiler performance, organ weights and plasma constituents to amino acid supplementation and reused litter exposure using ideal protein-formulated rations. Animal 2023; 17:100985. [PMID: 37820405 DOI: 10.1016/j.animal.2023.100985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
Effects of amino acid supplementation to ideal protein (IP) formulated rations were investigated on growth performance, plasma metabolites and organ weights of broilers placed on 100% recycled (reused) litter. Day-old Ross308 male broilers were raised on either clean or reused litter and fed for three weeks on one of five isoenergetic diets, where an IP-based control diet (C) was compared with diets containing threonine (T) or arginine (A) at 25% above requirements, or with 1% supplemented glutamine (G), or with each amino acid added (TAG). Litter and diet treatments did not strongly interact on outcomes. Reused litter placement resulted in greater weight gain, smaller feed conversion ratio and heavier bursal weights (P < 0.05) compared to clean litter placement. Relative to C and T birds, TAG birds reduced weight gain and feed intake (P < 0.05). Plasma uric acid levels in G birds were greater than in C, T and A birds (P < 0.001). Collectively, since the outcomes of placement on reused litter increased performance and the control diet was IP formulated, the absence of increased growth performance in response to amino acid supplementation would be consistent with amino acids tested being excess to requirements.
Collapse
Affiliation(s)
- M A Hussein
- Monogastric Science Research Centre, Scotland's Rural College (SRUC), Edinburgh EH9 3JG, UK; The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK; Nutrition and Nutritional Deficiency Diseases Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| | - F Khattak
- Monogastric Science Research Centre, Scotland's Rural College (SRUC), Edinburgh EH9 3JG, UK
| | - L Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - S Athanasiadou
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Edinburgh EH9 3JG, UK
| | - J G M Houdijk
- Monogastric Science Research Centre, Scotland's Rural College (SRUC), Edinburgh EH9 3JG, UK
| |
Collapse
|
18
|
Cioffi I, Di Vincenzo O, Imperatore N, Fisco M, Testa A, Scialò F, Castiglione F, Ruoppolo M, Pasanisi F, Santarpia L. Amino acid profiles, disease activity, and protein intake in adult patients with Crohn's disease. Front Nutr 2023; 10:1245574. [PMID: 37854352 PMCID: PMC10579601 DOI: 10.3389/fnut.2023.1245574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction Crohn's disease (CD) is an immune-mediated inflammatory disorder of the gastrointestinal tract with a relapsing-remitting course. Amino acids (AAs) may play critical roles in the intestinal manifestations of disease, due to their involvement in many metabolic and immune functions. The present study aimed to explore serum AA concentrations in adult patients with CD, looking into their variations due to disease activity, surgery and protein content of diet. Eventually, the link between AAs and inflammatory markers was also assessed. Methods Consecutive adult patients aged 18-65 years with diagnosis of CD were recruited. All participants underwent anthropometry and were instructed to fill in a 3-day food record to assess protein intake. Disease activity was clinically defined using the Crohn's Disease Activity Index (CDAI), while blood samples were taken to analyze serum AA profile and inflammatory markers. Results A total of 103 patients with CD (61 men and 42 women; age:39.9 ± 13.9 years, BMI: 23.4 ± 3.51 kg/m2) were included. Tryptophan levels were found to be remarkably decreased in most subjects, unrelated to disease activity. On the contrary, concentration of lysine, leucine, valine and glutamine decreased in active versus quiescent CD patients, while aspartic acid, glutamate and glycine increased. The latter AAs were also directly correlated with CDAI and serum interleukin (IL)- 1β concentration. Considering the total protein intake, expressed as g/kg/body weight, we observed a reduction in some essential AAs in patients with unmet protein requirements compared to patients who met the recommendation. Discussion In conclusion, specific AAs varied according to disease activity and protein intake, adjusted to body weight and disease status. Glu and Asp concentrations raised with increasing IL-1β. However, extensive research is needed to understand the mechanisms underpinning the link between variation in serum AAs, disease activity and protein intake in patients with CD.
Collapse
Affiliation(s)
- Iolanda Cioffi
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences - DEFENS, Università degli Studi di Milano, Milan, Italy
- Department of Clinical Medicine and Surgery, Federico II University Hospital, Naples, Italy
| | - Olivia Di Vincenzo
- Department of Public Health, Federico II University Hospital, Naples, Italy
| | - Nicola Imperatore
- Gastroenterology and Endoscopy Unit, Santa Maria delle Grazie Hospital, Pozzuoli, Naples, Italy
| | - Mariagrazia Fisco
- CEINGE - Biotecnologie Avanzate F. Salvatore, s.c.ar.l, Napoli, Italy
| | - Anna Testa
- Department of Clinical Medicine and Surgery, Federico II University Hospital, Naples, Italy
| | - Filippo Scialò
- CEINGE - Biotecnologie Avanzate F. Salvatore, s.c.ar.l, Napoli, Italy
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, Naples, Italy
| | - Fabiana Castiglione
- Department of Clinical Medicine and Surgery, Federico II University Hospital, Naples, Italy
| | - Margherita Ruoppolo
- CEINGE - Biotecnologie Avanzate F. Salvatore, s.c.ar.l, Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
| | - Fabrizio Pasanisi
- Department of Clinical Medicine and Surgery, Federico II University Hospital, Naples, Italy
| | - Lidia Santarpia
- Department of Clinical Medicine and Surgery, Federico II University Hospital, Naples, Italy
| |
Collapse
|
19
|
Sui Z, Wang N, Zhang X, Liu C, Wang X, Zhou H, Mai K, He G. Comprehensive study on the effect of dietary leucine supplementation on intestinal physiology, TOR signaling and microbiota in juvenile turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2023; 141:109060. [PMID: 37678482 DOI: 10.1016/j.fsi.2023.109060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Intestinal damage and inflammation are major health and welfare issues in aquaculture. Considerable efforts have been devoted to enhancing intestinal health, with a specific emphasis on dietary additives. Branch chain amino acids, particularly leucine, have been reported to enhance growth performance in various studies. However, few studies have focused on the effect of leucine on the intestinal function and its underlying molecular mechanism is far from fully illuminated. In the present study, we comprehensively evaluated the effect of dietary leucine supplementation on intestinal physiology, signaling transduction and microbiota in fish. Juvenile turbot (Scophthalmus maximus L.) (10.13 ± 0.01g) were fed with control diet (Con diet) and leucine supplementation diet (Leu diet) for 10 weeks. The findings revealed significant improvements in intestinal morphology and function in the turbot fed with Leu diet. Leucine supplementation also resulted in a significant increase in mRNA expression levels of mucosal barrier genes, indicating enhanced intestinal integrity. The transcriptional levels of pro-inflammatory factors il-1β, tnf-α and irf-1 was decreased in response to leucine supplementation. Conversely, the level of anti-inflammatory factors tgf-β, il-10 and nf-κb were up-regulated by leucine supplementation. Dietary leucine supplementation led to an increase in intestinal complement (C3 and C4) and immunoglobulin M (IgM) levels, along with elevated antioxidant activity. Moreover, dietary leucine supplementation significantly enhanced the postprandial phosphorylation level of the target of rapamycin (TOR) signaling pathway in the intestine. Finally, intestinal bacterial richness and diversity were modified and intestinal bacterial composition was re-shaped by leucine supplementation. Overall, these results provide new insights into the beneficial role of leucine supplementation in promoting intestinal health in turbot, offering potential implications for the use of leucine as a nutritional supplement in aquaculture practices.
Collapse
Affiliation(s)
- Zhongmin Sui
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
| | - Ning Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
| | - Xiaojing Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
| | - Chengdong Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China.
| | - Xuan Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
| | - Huihui Zhou
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
| | - Kangsen Mai
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
| | - Gen He
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China; Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
20
|
Yang P, Wang H, Ma L, Yin H, Zhu Z, Liu C, Huang W, Zhou Z, Wu X, Taj S. The Optimum Dietary Phenylalanine Requirement of Hybrid Grouper ( Epinephelusfuscoguttatus ♀ × Epinepheluslanceolatus ♂) Juveniles: Effects on Growth Performance, Gut Micromorphology, and Antioxidation. AQUACULTURE NUTRITION 2023; 2023:9155290. [PMID: 37520289 PMCID: PMC10374384 DOI: 10.1155/2023/9155290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/31/2023] [Accepted: 06/21/2023] [Indexed: 08/01/2023]
Abstract
The optimum phenylalanine (Phe) requirement for hybrid grouper (Epinephelusfuscoguttatus ♀ × Epinepheluslanceolatus ♂) juveniles was determined through an 8-week growth trial. A total of seven isoenergetic (340 kcal per 100 g of dry matter), isonitrogenous, and isolipidic diets were made, containing 8.2 (Phe 8.2), 9.2 (Phe 9.2), 10.1 (Phe 10.1), 11.2 (Phe 11.2), 13.3 (Phe 13.3), 15.2 (Phe 15.2), and 17.3 g/kg (Phe 17.3), respectively. Triplicate tanks of juvenile fish (about 16.7 g/fish) were fed each experimental diet twice daily until apparent satiation. The results indicated that different dietary Phe levels significantly influenced weight gain percentage (WG), feed efficiency (FE), protein efficiency ratio (PER), as well as, productive protein value (PPV). Fish fed Phe 8.2 had the lowest WG or PPV among all experimental treatments. Furthermore, the optimal dietary Phe level increased fold height, width, enterocyte, and microvillus height of fish. The Phe 10.1 group exhibited higher growth hormone (GH) expression in the pituitary compared to other groups. Expression of hepatic insulin-like growth factor-1 (IGF-1) and growth hormone receptor 1 (GHR1) displayed a similar pattern of variation to that of GH. The Phe 13.3 group had lower expression of S6 kinase 1 (S6K1) and target of rapamycin (TOR) than other groups. In addition, fish fed Phe 10.1 had lower levels of nuclear factor erythroid 2 (Nrf2) and heat shock protein 70 (HSP70) in the head kidney, and Cu/Zn-superoxide (Cu/ZnSOD) dismutases in the midgut compared to fish fed other Phe levels. Generally, optimal Phe content in the diet of hybrid grouper was estimated to be 12.7 g/kg of dry matter (27.3 g/kg of dietary protein), and at this level, the feed utilization, gut micromorphology, and immunity of fish were also elevated.
Collapse
Affiliation(s)
- Pinxian Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Haikou 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Department of Aquaculture, Hainan University, Haikou, Hainan 570228, China
- Animal Feed Science Research Institute, New Hope Liuhe Co. Ltd, Chengdu, China
- Huzhou Haihuang Biotechnology Co. Ltd, Huzhou, China
| | - Haijiao Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Haikou 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Department of Aquaculture, Hainan University, Haikou, Hainan 570228, China
| | - Lei Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Haikou 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Department of Aquaculture, Hainan University, Haikou, Hainan 570228, China
| | - Haoran Yin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Haikou 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Department of Aquaculture, Hainan University, Haikou, Hainan 570228, China
| | - Zhanying Zhu
- Animal Feed Science Research Institute, New Hope Liuhe Co. Ltd, Chengdu, China
- Huzhou Haihuang Biotechnology Co. Ltd, Huzhou, China
| | - Cong Liu
- Animal Feed Science Research Institute, New Hope Liuhe Co. Ltd, Chengdu, China
| | - Wei Huang
- Animal Feed Science Research Institute, New Hope Liuhe Co. Ltd, Chengdu, China
- Huzhou Haihuang Biotechnology Co. Ltd, Huzhou, China
| | - Zhiyu Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Haikou 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Department of Aquaculture, Hainan University, Haikou, Hainan 570228, China
| | - Xiaoyi Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Haikou 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Department of Aquaculture, Hainan University, Haikou, Hainan 570228, China
| | - Sehrish Taj
- State Key Laboratory of Marine Resource Utilization in South China Sea, Haikou 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Department of Aquaculture, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
21
|
Zhang CE, Yu XH, Cui YT, Wang HJ, Chen X, Ma XJ, Li H, Su JR, Ma ZJ, Huang LQ. Shengjiang Xiexin Decoction ameliorates antibiotic-associated diarrhea by altering the gut microbiota and intestinal metabolic homeostasis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154737. [PMID: 36905867 DOI: 10.1016/j.phymed.2023.154737] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Antibiotic-associated diarrhea (AAD) has had a significant increase in the last years, with limited available effective therapies. Shengjiang Xiexin Decoction (SXD), a classic traditional Chinese medicine formula for treating diarrhea, is a promising alternative for reducing the incidence of AAD. PURPOSE This study aimed to explore the therapeutic effect of SXD on AAD and to investigate its potential therapeutic mechanism by integrated analysis of the gut microbiome and intestinal metabolic profile. METHODS 16S rRNA sequencing analysis of the gut microbiota and untargeted-metabolomics analysis of feces were performed. The mechanism was further explored by fecal microbiota transplantation (FMT). RESULTS SXD could effectively ameliorate AAD symptoms and restore intestinal barrier function. In addition, SXD could significantly improve the diversity of the gut microbiota and accelerate the recovery of the gut microbiota. At the genus level, SXD significantly increased the relative abundance of Bacteroides spp (p < 0.01) and decreased the relative abundance of Escherichia_Shigela spp (p < 0.001). Untargeted metabolomics showed that SXD significantly improved gut microbiota and host metabolic function, particularly bile acid metabolism and amino acid metabolism. CONCLUSION This study demonstrated that SXD could extensively modulate the gut microbiota and intestinal metabolic homeostasis to treat AAD.
Collapse
Affiliation(s)
- Cong-En Zhang
- Department of Pharmacy, Beijing Friendsip Hospital, Capital Medical University, 100050, Beijing, China
| | - Xiao-Hong Yu
- Department of Pharmacy, Beijing Friendsip Hospital, Capital Medical University, 100050, Beijing, China
| | - Yu-Tao Cui
- Department of Pharmacy, Beijing Friendsip Hospital, Capital Medical University, 100050, Beijing, China
| | - Huan-Jun Wang
- Department of Pharmacy, Beijing Friendsip Hospital, Capital Medical University, 100050, Beijing, China
| | - Xi Chen
- Department of Pharmacy, Beijing Friendsip Hospital, Capital Medical University, 100050, Beijing, China
| | - Xiao-Jing Ma
- Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jian-Rong Su
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China
| | - Zhi-Jie Ma
- Department of Pharmacy, Beijing Friendsip Hospital, Capital Medical University, 100050, Beijing, China.
| | - Lu-Qi Huang
- Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
22
|
Jiang Q, Sherlock DN, Guyader J, Loor JJ. Abundance of Amino Acid Transporters and mTOR Pathway Components in the Gastrointestinal Tract of Lactating Holstein Cows. Animals (Basel) 2023; 13:ani13071189. [PMID: 37048445 PMCID: PMC10093496 DOI: 10.3390/ani13071189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Data from non-ruminants indicate that amino acid (AA) transport into cells can regulate mTOR pathway activity and protein synthesis. Whether mTOR is expressed in the ruminant gastrointestinal tract (GIT) and how it may be related to AA transporters and the AA concentrations in the tissue is unknown. Ruminal papillae and the epithelia of the duodenum, jejunum, and ileum collected at slaughter from eight clinically healthy Holstein in mid-lactation were used. Metabolites and RNA were extracted from tissue for liquid chromatography–mass spectrometry and RT-qPCR analysis. The glycine and asparagine concentrations in the rumen were greater than those in the intestine (p < 0.05), but the concentrations of other AAs were greater in the small intestine than those in the rumen. Among the 20 AAs identified, the concentrations of glutamate, alanine, and glycine were the greatest. The mRNA abundances of AKT1 and MTOR were greater in the small intestine than those in the rumen (p < 0.05). Similarly, the SLC1A1, SLC6A6, SLC7A8, SLC38A1, SLC38A7, and SLC43A2 mRNA abundances were greater (p < 0.05) in the small intestine than those in the rumen. The mRNA abundances of SLC1A5, SLC3A2, and SLC7A5 were greater in the rumen than those in the small intestine (p < 0.05). Overall, the present study provides fundamental data on the relationship between mTOR pathway components and the transport of AAs in different sections of the gastrointestinal tract.
Collapse
Affiliation(s)
- Qianming Jiang
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | - Jessie Guyader
- Evonik Operations GmbH, Hanau-Wolfgang, 63457 Essen, Germany
| | - Juan J. Loor
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
- Correspondence:
| |
Collapse
|
23
|
Hussein MA, Khattak F, Vervelde L, Athanasiadou S, Houdijk JGM. Growth performance, caecal microbiome profile, short-chain fatty acids, and litter characteristics in response to placement on reused litter and combined threonine, arginine and glutamine supplementation to juvenile male broiler chickens. Anim Microbiome 2023; 5:18. [PMID: 36945017 PMCID: PMC10031934 DOI: 10.1186/s42523-023-00240-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/13/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Exposure of broilers to litter microbiome may increase specific amino acid (AA) requirements towards activated immune responses. This may challenge the generality of the ideal protein (IP) concept, in which dietary essential AA to lysine ratios aimed to mimic presumably constant AA to lysine ratios in whole bird requirements. Therefore, we tested the effect of threonine, arginine and glutamine (TAG) supplementation to IP-based control diets (C) on performance, caecal microbiome composition, short-chain fatty acids and litter characteristics of broiler chickens placed on reused litter. RESULTS Thirty-two pens with ten male broiler chickens each were used in a 2 × 2 factorial arrangement of two diet treatments (with or without TAG supplementation) and two litter treatments (placement on clean or reused litter) for 21 days (n = 8). Caecal contents were analysed for microbiome profile using percent guanine + cytosine (%G + C profile) method and short chain fatty acids. TAG-supplemented birds underperformed compared to C birds (P = 0.002), whereas birds placed on reused litter outperformed those on clean litter (P = 0.047). Diet, reused litter and their interaction impacted the %G + C profile at different ranges. Whilst TAG supplementation reduced bacterial abundance at %G + C 51-56 (P < 0.05), reused litter placement tended to reduce %G + C 23-31 and increase %G + C 56-59 (P < 0.10). However, TAG supplementation reduced bacterial abundance at %G + C 47-51 (P < 0.05) and increased caecal branched chain fatty acids on clean litter only (P = 0.025). Greater levels of propionic acid were observed for C birds placed on reused litter only (P = 0.008). Litter pH was greater for reused litter pens than clean litter pens at day 21 (P < 0.001). In addition, litter moisture content was less for TAG birds and reused litter pens compared to C birds (P = 0.041) and clean litter pens (P < 0.001), respectively. CONCLUSIONS These data support the view that irrespective of performance benefits arising from bird placement on reused litter, TAG supplementation to IP-formulated baseline rations impaired growth, supported by the lowered abundance of caecal bacteria known to dominate in well-performing birds and greater levels of caecal branched chain fatty acids.
Collapse
Affiliation(s)
- Marwa A Hussein
- Monogastric Science Research Centre, Scotland's Rural College (SRUC), Edinburgh, UK.
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
- Nutrition and Nutritional Deficiency Diseases Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| | - Farina Khattak
- Monogastric Science Research Centre, Scotland's Rural College (SRUC), Edinburgh, UK
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | | - Jos G M Houdijk
- Monogastric Science Research Centre, Scotland's Rural College (SRUC), Edinburgh, UK
| |
Collapse
|
24
|
Hu Y, Zhang J, Cai M, Chu W, Hu Y. Methionine-Mediated Regulation of Intestinal Lipid Transportation Induced by High-Fat Diet in Rice Field Eel ( Monopterus Albus). AQUACULTURE NUTRITION 2023; 2023:5533414. [PMID: 36967810 PMCID: PMC10036194 DOI: 10.1155/2023/5533414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/06/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
An eight-week feeding trial explored the mechanism that supplemented methionine (0 g/kg, 4 g/kg, 8 g/kg, and 12 g/kg) in a high-fat diet (120 g/kg fat) on intestinal lipid transportation and gut microbiota of M. Albus (initial weight 25.03 ± 0.13 g) based on the diet (60 g/kg fat), named as Con, HFD+M0, HFD+M4, HFD+M8, and HFD+M12, respectively. Compared with Con, gastric amylase, lipase, trypsin (P < 0.05), and intestinal lipase, amylase, trypsin, Na+/K+ -Adenosinetriphosphatase, depth of gastric fovea, and the number of intestinal villus goblet cells of HFD+M0 were markedly declined (P < 0.05), while intestinal high-density lipoprotein-cholesterol, very low-density lipoprotein-cholesterol and microsomal triglyceride transfer protein of HFD+M0 were markedly enhanced (P < 0.05); compared with HFD+M0, gastric lipase, amylase, trypsin, and intestinal lipase, trypsin, Na+/K+ -Adenosinetriphosphatase, microsomal triglyceride transfer protein, very low-density lipoprotein-cholesterol, and apolipoprotein -A, the height of intestinal villus and the number of intestinal villus goblet cells of HFD+M8 were remarkably enhanced (P < 0.05). Compared with Con, intestinal occ, cl12, cl15, zo-1, zo-2 of HFD + M0 were markedly down-regulated (P <0.05), while intestinal vldlr, npc1l1, cd36, fatp1, fatp2, fatp6, fatp7, apo, apoa, apob, apof, apoo, mct1, mct2, mct4, mct7, mct12, lpl, mttp, moat2, dgat2 of HFD M0 were remarkably upregulated (P < 0.05); compared with HFD+M0, intestinal gcn2 and eif2α of HFD+M8 were remarkably downregulated (P < 0.05), intestinal occ, cl12, cl15, zo-1, zo-2, hdlbp, ldlrap, vldlr, cd36, fatp1, fatp2, fatp6, apo, apoa, apob, apof, apoo, mct1, mct2, mct8, mct12, lpl, mttp, moat2, and dgat2 were remarkably upregulated (P < 0.05). Compared with Con, the diversity of gut microbiota of HFD+M0 was significantly declined (P < 0.05), while the diversity of gut microbiota in HFD+M8 was significantly higher than that in HFD+M0 (P < 0.05). In conclusion, a high-fat methionine deficiency diet destroyed the intestinal barrier, reduced the capacity of intestinal digestion and absorption, and disrupted the balance of gut microbiota; supplemented methionine promoted the digestion and absorption of lipids, and also improved the balance of gut microbiota.
Collapse
Affiliation(s)
- Yajun Hu
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha Hunan 410128, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha Hunan 410128, China
| | - Junzhi Zhang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha Hunan 410128, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha Hunan 410128, China
| | - Minglang Cai
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha Hunan 410128, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha Hunan 410128, China
| | - Wuying Chu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha Hunan 410000, China
| | - Yi Hu
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha Hunan 410128, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha Hunan 410128, China
| |
Collapse
|
25
|
Liu X, Zhao Z, Fan Y, Zhao D, Wang Y, Lv M, Qin X. Microbiome and metabolome reveal the metabolic and microbial variations induced by depression and constipation. Psychogeriatrics 2023; 23:319-336. [PMID: 36683263 DOI: 10.1111/psyg.12934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/10/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023]
Abstract
BACKGROUND Depressed patients are often accompanied with constipation symptoms, and vice versa. However, the underlying mechanisms of such a bidirectional correlation have remained elusive. We aim to reveal the possible correlations between depression and constipation from the perspectives of gut microbiome and plasma metabolome. METHODS We constructed the depressed model and the constipated model of rats, respectively. First, we measured the locomotor activity status and the gastrointestinal functions of rats. And then, nuclear magnetic resonance plasma metabolomics was applied to reveal the shared and the unique metabolites of depression and constipation. In addition, 16 S ribosomal RNA gene sequencing was used to detect the impacts of constipation and depression on gut microbiota of rats. Finally, a multiscale and multifactorial network, that is, the 'phenotypes - differential metabolites - microbial biomarkers' integrated network, was constructed to visualise the mechanisms of connections between depression and constipation. RESULTS We found that spontaneous locomotor activity and gastrointestinal functions of both depressed rats and constipated rats significantly decreased. Further, eight metabolites and 14 metabolites were associated depression and constipation, respectively. Among them, seven metabolites and four metabolic pathways were shared by constipation and depression, mainly perturbing energy metabolism and amino acid metabolism. Additionally, depression and constipation significantly disordered the functions and the compositions of gut microbiota of rats, and decreased the ratio of Firmicutes to Bacteroidetes. CONCLUSION The current findings provide multiscale and multifactorial perspectives for understanding the correlations between depression and constipation, and demonstrate new mechanisms of comorbidity of depression and constipation.
Collapse
Affiliation(s)
- Xiaojie Liu
- Modern Research Centre for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilisation in Traditional Chinese Medicine of Shanxi Province, Taiyuan, China
| | - Ziyu Zhao
- Modern Research Centre for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilisation in Traditional Chinese Medicine of Shanxi Province, Taiyuan, China
| | - Yuhui Fan
- Modern Research Centre for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilisation in Traditional Chinese Medicine of Shanxi Province, Taiyuan, China
| | - Di Zhao
- Modern Research Centre for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilisation in Traditional Chinese Medicine of Shanxi Province, Taiyuan, China
| | - Yaze Wang
- Modern Research Centre for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilisation in Traditional Chinese Medicine of Shanxi Province, Taiyuan, China
| | - Meng Lv
- Modern Research Centre for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilisation in Traditional Chinese Medicine of Shanxi Province, Taiyuan, China
| | - Xuemei Qin
- Modern Research Centre for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China.,Key Laboratory of Effective Substances Research and Utilisation in Traditional Chinese Medicine of Shanxi Province, Taiyuan, China
| |
Collapse
|
26
|
Concentrations of Plasma Amino Acids and Neurotransmitters in Participants with Functional Gut Disorders and Healthy Controls. Metabolites 2023; 13:metabo13020313. [PMID: 36837931 PMCID: PMC9959678 DOI: 10.3390/metabo13020313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Amino acids are important in several biochemical pathways as precursors to neurotransmitters which impact biological processes previously linked to functional gastrointestinal disorders (FGIDs). Dietary protein consumption, metabolic host processes, and the gut microbiome can influence the plasma concentration of amino acids and neurotransmitters, and their uptake by tissues. The aim of this analysis was to quantify 19 proteogenic and 4 non-proteogenic amino acids and 19 neurotransmitters (including precursors and catabolites, herein referred to as neurotransmitters) to ascertain if their circulating concentrations differed between healthy participants and those with FGIDs. Plasma proteogenic and non-proteogenic amino acids and neurotransmitters were measured using ultra-performance liquid chromatography and liquid chromatography-mass spectrometry, respectively, from 165 participants (Rome IV: irritable bowel syndrome (IBS-constipation, IBS-diarrhea), functional constipation, functional diarrhea, and healthy controls). There were significant differences (p < 0.05) in pairwise comparisons between healthy controls and specific FGID groups for branched-chain amino acids (BCAAs), ornithine, and alpha-aminobutyric acid. No other significant differences were observed for the neurotransmitters or any other amino acids analyzed. Multivariate and bivariate correlation analyses between proteogenic and non-proteogenic amino acids and neurotransmitters for constipation (constipation (IBS-C and functional constipation) and phenotypes diarrhea (IBS-D and functional diarrhea)) and healthy controls suggested that associations between BCAAs, 5-hydroxytryptophan, and kynurenine in combination with tyrosine, 3,4-dihydroxyphenylalanine, and 3,4-dihydroxyphenylacetic acid and associations with gamma-aminobutyric acid, glutamate, asparagine, and serine are likely disrupted in FGID phenotypes. In conclusion, although correlations were evident between some proteogenic and non-proteogenic amino acids and neurotransmitters, the results showed minor concentration differences in plasma proteogenic and non-proteogenic amino acids, amino acid-derived metabolites, and neurotransmitters between FGID phenotypes and healthy controls.
Collapse
|
27
|
Yang M, Zhu C, Du L, Huang J, Lu J, Yang J, Tong Y, Zhu M, Song C, Shen C, Dai J, Lu X, Xu Z, Li N, Ma H, Hu Z, Gu D, Jin G, Hang D, Shen H. A Metabolomic Signature of Obesity and Risk of Colorectal Cancer: Two Nested Case-Control Studies. Metabolites 2023; 13:metabo13020234. [PMID: 36837854 PMCID: PMC9965372 DOI: 10.3390/metabo13020234] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Obesity is a leading contributor to colorectal cancer (CRC) risk, but the metabolic mechanisms linking obesity to CRC are not fully understood. We leveraged untargeted metabolomics data from two 1:1 matched, nested case-control studies for CRC, including 223 pairs from the US Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial and 190 pairs from a prospective Chinese cohort. We explored serum metabolites related to body mass index (BMI), constructed a metabolomic signature of obesity, and examined the association between the signature and CRC risk. In total, 72 of 278 named metabolites were correlated with BMI after multiple testing corrections (p FDR < 0.05). The metabolomic signature was calculated by including 39 metabolites that were independently associated with BMI. There was a linear positive association between the signature and CRC risk in both cohorts (p for linear < 0.05). Per 1-SD increment of the signature was associated with 38% (95% CI: 9-75%) and 28% (95% CI: 2-62%) higher risks of CRC in the US and Chinese cohorts, respectively. In conclusion, we identified a metabolomic signature for obesity and demonstrated the association between the signature and CRC risk. The findings offer new insights into the underlying mechanisms of CRC, which is critical for improved CRC prevention.
Collapse
Affiliation(s)
- Mingjia Yang
- Department of Epidemiology, School of Public Health, Southeast University, Nanjing 210009, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Chen Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
- Department of Cancer Prevention, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Lingbin Du
- Department of Cancer Prevention, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jianv Huang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Jiayi Lu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Jing Yang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Ye Tong
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine and International Joint Research Center on Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Ci Song
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine and International Joint Research Center on Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Chong Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Xiangfeng Lu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ni Li
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine and International Joint Research Center on Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine and International Joint Research Center on Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
| | - Dongfeng Gu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Guangfu Jin
- Department of Epidemiology, School of Public Health, Southeast University, Nanjing 210009, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine and International Joint Research Center on Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
- Correspondence: (G.J.); (D.H.)
| | - Dong Hang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine and International Joint Research Center on Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
- Correspondence: (G.J.); (D.H.)
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine and International Joint Research Center on Environment and Human Health, Nanjing Medical University, Nanjing 211166, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
28
|
Zhang X, Wang A, Chang E, Han B, Xu J, Fu Y, Dong X, Miao S. Effects of dietary tryptophan on the antioxidant capacity and immune response associated with TOR and TLRs/MyD88/NF-κB signaling pathways in northern snakehead, Channa argus (Cantor, 1842). Front Immunol 2023; 14:1149151. [PMID: 37114056 PMCID: PMC10128191 DOI: 10.3389/fimmu.2023.1149151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Dietary tryptophan (Trp) has been shown to influence fish feed intake, growth, immunity and inflammatory responses. The purpose of this study was to investigate the effect and mechanism of Trp on immune system of juvenile northern snakehead (Channa argus Cantor, 1842). Methods A total of 540 fish (10.21 ± 0.11 g) were fed six experimental diets containing graded levels of Trp at 1.9, 3.0, 3.9, 4.8, 5.9 and 6.8 g/kg diet for 70 days, respectively. Results and Discussion The results showed that supplementation of 1.9-4.8 g/kg Trp in diets had no effect on the hepatosomatic index (HSI) and renal index (RI), while dietary 3.9 and 4.8 g/kg Trp significantly increased spleen index (SI) of fish. Dietary 3.9, 4.8, 5.9 and 6.8 g/kg Trp enhanced the total hemocyte count (THC), the activities of total antioxidant capacity (T-AOC) and superoxide dismutase (SOD). Malondinaldehyde (MDA) levels in the blood were significantly decreased by consuming 3.9 and 4.8 g/kg Trp. Fish fed with 3.0 and 3.9 g/kg Trp diets up-regulated interleukin 6 (il-6) and interleukin 8 (il-8) mRNA levels. The expression of tumor necrosis factor α (tnf-α) was highest in fish fed with 3.0 g/kg Trp diet, and the expression of interleukin 1β (il-1β) was highest in fish fed with 3.9 g/kg Trp diet. Dietary 4.8, 5.9 and 6.8 g/kg Trp significantly decreased il-6 and tnf-α mRNA levels in the intestine. Moreover, Trp supplementation was also beneficial to the mRNA expression of interleukin 22 (il-22). Additionally, the mRNA expression levels of target of rapamycin (tor), toll-like receptor-2 (tlr2), toll-like receptor-4 (tlr4), toll-like receptor-5 (tlr5) and myeloid differentiation primary response 88 (myd88) of intestine were significantly up-regulated in fish fed 1.9, 3.0 and 3.9 g/kg Trp diets, and down-regulated in fish fed 4.8, 5.9 and 6.8 g/kg Trp diets. Dietary 4.8 and 5.9 g/kg Trp significantly increased the expression of inhibitor of nuclear factor kappa B kinase beta subunit (ikkβ) and decreased the expression of inhibitor of kappa B (iκbα), but inhibited nuclear transcription factor kappa B (nf-κb) mRNA level. Collectively, these results indicated that dietary 4.8 g/kg Trp could improve antioxidant capacity and alleviate intestinal inflammation associated with TOR and TLRs/MyD88/NF-κB signaling pathways.
Collapse
|
29
|
Bicak B, Kecel Gunduz S, Budama Kilinc Y, Imhof P, Gok B, Akman G, Ozel AE. Structural, spectroscopic, in silico, in vitro and DNA binding evaluations of tyrosyl-lysyl-threonine. J Biomol Struct Dyn 2022; 40:12148-12164. [PMID: 34463215 DOI: 10.1080/07391102.2021.1968499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The main objective of the present study is to investigate the molecular structure and DNA binding interaction of the tyrosyl-lysyl-threonine (YKT) tripeptide, which has anticancer, antioxidant and analgesic properties, using various in silico (MD, QM, molecular docking), spectroscopic (UV, FT-IR, FTIR-ATR, Raman, gel electrophoresis) and in vitro (MCF-7 and HeLa cancer cell lines and BEAS-2B cell line) methods. The optimized geometry, vibrational wavenumbers, molecular electrostatic potential (MEP), natural bond orbital (NBO) and HOMO-LUMO (highest occupied molecular orbital- lowest unoccupied molecular orbital) calculations were carried out with Density Functional Theory (DFT) using B3LYP/6-311++G(d,p) basis set to indicate conformational, vibrational and intramolecular charge transfer characteristics. The assignment of all fundamental theoretical vibration wavenumbers was performed using potential energy distribution analysis (PED). DNA is a significant pharmacological target of drugs in several diseases such as cancer. For this reason, molecular docking calculation was used to elucidate the binding and interaction between YKT tripeptide and DNA at the atomic level. Also, the dynamic behaviors of YKT and DNA was examined using MD simulations. Besides, the interaction of YKT with DNA was experimentally examined by UV titration method and agarose gel electrophoresis method. Experimental results showed that YKT was intercalatively and electrostatically bound to CT-DNA (Calf thymus DNA) and cleavage pBR322 DNA in the presence of H2O2. The pharmacokinetic profile of YKT was also obtained. Cytotoxic effect of YKT was evaluated on MCF-7, HeLa and BEAS-2B cell lines. Hence, these studies about YKT tripeptide may pave the way for the development of various cancer drugs. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bilge Bicak
- Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkey.,Department of Physics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Serda Kecel Gunduz
- Department of Physics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Yasemin Budama Kilinc
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Petra Imhof
- Computer Chemistry Center, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Bahar Gok
- Graduate School of Natural and Applied Science, Yildiz Technical University, Istanbul, Turkey
| | - Gizem Akman
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Ayşen E Ozel
- Department of Physics, Faculty of Science, Istanbul University, Istanbul, Turkey
| |
Collapse
|
30
|
Chen L, Zhong Y, Ouyang X, Wang C, Yin L, Huang J, Li Y, Wang Q, Xie J, Huang P, Yang H, Yin Y. Effects of β-alanine on intestinal development and immune performance of weaned piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:398-408. [PMID: 36788928 PMCID: PMC9918425 DOI: 10.1016/j.aninu.2022.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 12/12/2022]
Abstract
Beta-alanine is an important amino acid involved in several metabolic reactions in the body. The study aimed to investigate the effect of β-alanine supplementation on intestinal development and the immune performance of weaned piglets. Thirty-two 21-day-old healthy weaned piglets (half female and half male; Duroc × Landrace × Yorkshire) with an initial body weight of 8.11 ± 0.21 kg were randomly divided into 4 groups with 8 replicates of 1 pig each. The control group was fed a basal diet and the three experimental treatment groups were fed diets supplemented with 300, 600 and 1,200 mg/kg β-alanine, respectively. The trial lasted 28 days and the diets fed were divided into 2 phases: the late lactation period (day 1 to 14) and the nursery period (day 15 to 28), during which the weaned piglets had free access to food and water. The regulatory effects of β-alanine were further investigated in vitro using organoids obtained from the jejunum of piglets. In vivo, the addition of β-alanine to the diet had no significant effect on the growth performance of weaned piglets (P > 0.05), but significantly reduced serum levels of immunoglobulin G (IgG) (P < 0.01), immunoglobulin M (IgM) (P = 0.005), and complement 3 (C3) (P = 0.017). The serum interleukin- 6 (IL-6) levels (P < 0.01) were significantly reduced in the 1,200 mg/kg treatment group. The addition of β-alanine increased ileal villus height, with the most significant effect at a concentration of 300 mg/kg (P = 0.041). The addition of 600 mg/kg β-alanine significantly up-regulated the expression of superoxide dismutase (SOD) activity (P = 0.020) and the zonula occludens-1 (ZO-1) gene (P = 0.049) in the jejunum. Diets supplemented with 300 mg/kg β-alanine significantly increased the number of Ki67 positive cells in the jejunal crypts (P < 0.01). In vitro, β-alanine increased the organoid budding rates (P = 0.001) and the budding height of the crypt significantly (P = 0.004). In conclusion, β-alanine can improve intestinal morphology and barrier function, reduce inflammatory responses and alleviate the adverse effects of weaning stress on piglet intestinal health.
Collapse
Affiliation(s)
- Linlin Chen
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China,Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Yan Zhong
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Xiangqin Ouyang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Chunfeng Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Lanmei Yin
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China,Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Jing Huang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Yali Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Qiye Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Junyan Xie
- Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Changsha, Hunan, 410125, China
| | - Pengfei Huang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China,Corresponding authors.
| | - Huansheng Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Yulong Yin
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China,Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Changsha, Hunan, 410125, China,Corresponding authors.
| |
Collapse
|
31
|
Khosropanah MH, Majidi Zolbin M, Kajbafzadeh AM, Amani L, Harririan I, Azimzadeh A, Nejatian T, Alizadeh Vaghsloo M, Hassannejad Z. Evaluation and Comparison of the Effects of Mature Silkworm ( Bombyx mori) and Silkworm Pupae Extracts on Schwann Cell Proliferation and Axon Growth: An In Vitro Study. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e133552. [PMID: 36896320 PMCID: PMC9990520 DOI: 10.5812/ijpr-133552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 02/23/2023]
Abstract
Background Silkworm products were first used by physicians more than 8500 years ago, in the early Neolithic period. In Persian medicine, silkworm extract has several uses for treating and preventing neurological, cardiac, and liver diseases. Mature silkworms (Bombyx mori) and their pupae contain a variety of growth factors and proteins that can be used in many repair processes, including nerve regeneration. Objectives The study aimed to evaluate the effects of mature silkworm (Bombyx mori), and silkworm pupae extract on Schwann cell proliferation and axon growth. Methods Silkworm (Bombyx mori) and silkworm pupae extracts were prepared. Then, the concentration and type of amino acids and proteins in the extracts were evaluated by Bradford assay, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and liquid chromatograph-mass spectrometer (LC-MS/MS). Also, the regenerative potential of extracts for improving Schwann cell proliferation and axon growth was examined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay, electron microscopy, and NeuroFilament-200 (NF-200) immunostaining. Results According to the results of the Bradford test, the total protein content of pupae extract was almost twice that of mature worm extract. Also, SDS-PAGE analysis revealed numerous proteins and growth factors, such as bombyrin and laminin, in extracts that are involved in the repair of the nervous system. In accordance with Bradford's results, the evaluation of extracts using LC-MS/MS revealed that the number of amino acids in pupae extract was higher than in mature silkworm extract. It was found that the proliferation of Schwann cells at a concentration of 0.25 mg/mL in both extracts was higher than the concentrations of 0.01 and 0.05 mg/mL. When using both extracts on dorsal root ganglion (DRGs), an increase in length and number was observed in axons. Conclusions The findings of this study demonstrated that extracts obtained from silkworms, especially pupae, can play an effective role in Schwann cell proliferation and axonal growth, which can be strong evidence for nerve regeneration, and, consequently, repairing peripheral nerve damage.
Collapse
Affiliation(s)
- Mohammad Hossein Khosropanah
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Leili Amani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ismaeil Harririan
- Department of Pharmaceutical Biomaterials, Medical Biomaterials Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashkan Azimzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Touraj Nejatian
- AFHEA Prosthodontics and ORE University College London, London, England
| | - Mahdi Alizadeh Vaghsloo
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Persian Medicine Network, Universal Scientific Education and Research Network, Tehran, Iran
- Corresponding Author: Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Corresponding Author: Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Ye XX, Li KY, Li YF, Lu JN, Guo PT, Liu HY, Zhou LW, Xue SS, Huang CY, Fang SM, Gan QF. The effects of Clostridium butyricum on Ira rabbit growth performance, cecal microbiota and plasma metabolome. Front Microbiol 2022; 13:974337. [PMID: 36246250 PMCID: PMC9563143 DOI: 10.3389/fmicb.2022.974337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Clostridium butyricum (C. butyricum) can provide many benefits for animals’ growth performance and gut health. In this study, we investigated the effects of C. butyricum on the growth performance, cecal microbiota, and plasma metabolome in Ira rabbits. A total of 216 Ira rabbits at 32 days of age were randomly assigned to four treatments supplemented with basal diets containing 0 (CG), 200 (LC), 400 (MC), and 600 mg/kg (HC) C. butyricum for 35 days, respectively. In comparison with the CG group, C. butyricum supplementation significantly improved the average daily gain (ADG) and feed conversion rate (FCR) at 53 and 67 days of age (P < 0.05) and digestibilities of crude protein (CP) and crude fiber (CF) at 67 days of age (P < 0.05). The cellulase activity in the HC group was higher respectively by 50.14 and 90.13% at 53 and 67 days of age, than those in the CG groups (P < 0.05). Moreover, at 67 days of age, the diet supplemented with C. butyricum significantly increased the relative abundance of Verrucomicrobia at the phylum level (P < 0.05). Meanwhile, the concentrations of different metabolites, such as amino acids and purine, were significantly altered by C. butyricum (P < 0.05). In addition, 10 different genera were highly correlated with 52 different metabolites at 53-day-old and 6 different genera were highly correlated with 18 different metabolites at 67-day-old Ira rabbits. These findings indicated that the C. butyricum supplementation could significantly improve the growth performance by modifying the cecal microbiota structure and plasma metabolome of weaned Ira rabbits.
Collapse
|
33
|
Canibe N, Højberg O, Kongsted H, Vodolazska D, Lauridsen C, Nielsen TS, Schönherz AA. Review on Preventive Measures to Reduce Post-Weaning Diarrhoea in Piglets. Animals (Basel) 2022; 12:2585. [PMID: 36230326 PMCID: PMC9558551 DOI: 10.3390/ani12192585] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 02/08/2023] Open
Abstract
In many countries, medical levels of zinc (typically as zinc oxide) are added to piglet diets in the first two weeks post-weaning to prevent the development of post-weaning diarrhoea (PWD). However, high levels of zinc constitute an environmental polluting agent, and may contribute to the development and/or maintenance of antimicrobial resistance (AMR) among bacteria. Consequently, the EU banned administering medical levels of zinc in pig diets as of June 2022. However, this may result in an increased use of antibiotic therapeutics to combat PWD and thereby an increased risk of further AMR development. The search for alternative measures against PWD with a minimum use of antibiotics and in the absence of medical levels of zinc has therefore been intensified over recent years, and feed-related measures, including feed ingredients, feed additives, and feeding strategies, are being intensively investigated. Furthermore, management strategies have been developed and are undoubtedly relevant; however, these will not be addressed in this review. Here, feed measures (and vaccines) are addressed, these being probiotics, prebiotics, synbiotics, postbiotics, proteobiotics, plants and plant extracts (in particular essential oils and tannins), macroalgae (particularly macroalgae-derived polysaccharides), dietary fibre, antimicrobial peptides, specific amino acids, dietary fatty acids, milk replacers, milk components, creep feed, vaccines, bacteriophages, and single-domain antibodies (nanobodies). The list covers measures with a rather long history and others that require significant development before their eventual use can be extended. To assess the potential of feed-related measures in combating PWD, the literature reviewed here has focused on studies reporting parameters of PWD (i.e., faeces score and/or faeces dry matter content during the first two weeks post-weaning). Although the impact on PWD (or related parameters) of the investigated measures may often be inconsistent, many studies do report positive effects. However, several studies have shown that control pigs do not suffer from diarrhoea, making it difficult to evaluate the biological and practical relevance of these improvements. From the reviewed literature, it is not possible to rank the efficacy of the various measures, and the efficacy most probably depends on a range of factors related to animal genetics and health status, additive doses used, composition of the feed, etc. We conclude that a combination of various measures is probably most recommendable in most situations. However, in this respect, it should be considered that combining strategies may lead to additive (e.g., synbiotics), synergistic (e.g., plant materials), or antagonistic (e.g., algae compounds) effects, requiring detailed knowledge on the modes of action in order to design effective strategies.
Collapse
Affiliation(s)
- Nuria Canibe
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | | | | | | | | | | | | |
Collapse
|
34
|
Liu Z, Shao J, Lai S, Wang J, Zhao K, Tang T, Wang M. The Use of Metabolomics as a Tool to Compare the Regulatory Mechanisms in the Cecum, Ileum, and Jejunum in Healthy Rabbits and with Diarrhea. Animals (Basel) 2022; 12:ani12182438. [PMID: 36139297 PMCID: PMC9495174 DOI: 10.3390/ani12182438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary The problems caused by antibiotic abuse have swept the world, and the Chinese government has responded to calls for a comprehensive ban on antibiotics. However, not using antibiotics also challenges China’s existing livestock industry. Based on this, we carried out a nontargeted metabolomics analysis of the jejunum, ileum, and cecum of diarrhea rabbits and normal rabbits fed with antibiotic-free diets, respectively, to find out the mechanism of action of each intestinal segment group and between different intestinal segments. The screened differential metabolites were mostly related to intestinal barrier, intestinal inflammation, and autophagy after a KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. In this paper, we analyzed the metabolic pathways that were significantly different between different intestinal segments and illustrated the mechanism and potential connections of the screened differential metabolites in different intestinal segments in the form of charts. Abstract For many years, antibiotics in feed have been an effective and economical means to promote growth and disease resistance in livestock production. However, the rampant abuse of antibiotics has also brought very serious harm to human health and the environment. Therefore, the Chinese government promulgated laws and regulations on 1 July 2020, to prohibit the use of antibiotics in feed. To improve the effect of antibiotic-free feeding on China’s existing rabbit industry, we used the nontargeted metabolomics method to detect the differences between diarrhea rabbits (Dia) and normal rabbits (Con) on an antibiotic-free diet. A total of 1902 different metabolites were identified. A KEGG analysis showed that in the cecum, metabolites were mainly concentrated in bile secretion, antifolate resistance, aldosterone synthesis, and secretion pathways. The ileal metabolites were mainly concentrated in tyrosine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, steroid hormone biosynthesis, alanine, aspartate, and glutamate metabolism. The metabolites in the jejunum were mainly rich in panquinone and other terpenoid compound quinone biosynthesis, AMPK (adenosine 5′-monophosphate (AMP)-activated protein kinase) signal, inositol phosphate metabolism, and pentose phosphate pathway. After a deep excavation of the discovered differential metabolites and metabolic pathways with large differences between groups, it was found that these metabolic pathways mainly involved intestinal inflammation, intestinal barrier, and autophagy. The results showed that panquinone and other terpenoids could increase AMPK activity to promote cell metabolism and autophagy, thus trying to prevent inflammation and alleviate intestinal disease symptoms. In addition, we discussed the possible reasons for the changes in the levels of seven intestinal endogenous metabolites in rabbits in the diarrhea group. The possibility of improving diarrhea by adding amino acids to feed was discussed. In addition, the intermediate products produced by the pentose phosphate pathway and coenzyme Q had a positive effect on steroid hormone biosynthesis to combat intestinal inflammation.
Collapse
Affiliation(s)
- Zheliang Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiahao Shao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Songjia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence:
| | - Jie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Kaisen Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Meigui Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
35
|
Guan Y, Xu F, Zhang X, Fu X, Wang J, Song S, Sun Y, Yuan Q, Zhu F. Roles of ursodeoxycholic acid in the bile biochemistry and metabolomics in patients with choledocholithiasis: a prospective study. Metabolomics 2022; 18:46. [PMID: 35778620 DOI: 10.1007/s11306-022-01906-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 06/15/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Recurrence after the endoscopic treatment of common bile duct stones (CBDS) is related to bile metabolism and bile compositions. Ursodeoxycholic acid (UDCA) has been proved effective in reducing the recurrence of CBDS. However, the detailed effects of UDCA on bile metabolism are still not extensively explored. OBJECTIVES This study aimed to analyze the role of UDCA in patients with choledocholithiasis (CDC) from the perspective of biochemistry and metabolomics. METHODS A total of 89 patients with CDC who underwent endoscopic retrograde cholangiopancreatography were prospectively examined and randomly assigned to control and UDCA groups. The biochemical detections (cholesterol, bilirubin, and so on) were performed on the collected bile. Moreover, the metabolomics analysis was conducted based on bile from 20 patients in the UDCA group. RESULTS The bile levels of cholesterol and endotoxins significantly decreased after UDCA treatment. Regarding bile metabolomics, the levels of 25 metabolites changed significantly after UDCA treatment. The pathway enrichment analysis showed that the UDCA addition evoked a common response related to phenylalanine, tyrosine, and tryptophan biosynthesis; phenylalanine metabolism; arachidonic acid metabolism; and terpenoid backbone biosynthesis. CONCLUSIONS UDCA treatment within a short time interval (7 days) did not improve the circulating laboratory values in patients with CDC who had undergone endoscopy surgery. However, relevant decreases in the bile levels of cholesterol and endotoxin were observed. UDCA evoked a common response related to lipid metabolism and amino acid metabolism, which probably reduced the bile level of cholesterol, protected hepatocytes, and corrected the abnormality of lipid metabolism caused by CDC.
Collapse
Affiliation(s)
- Yaping Guan
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China
| | - Fei Xu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China
| | - Xiaodong Zhang
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China
| | - Xiao Fu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China
| | - Jing Wang
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China
| | - Sentao Song
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China
| | - Yan Sun
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China
| | - Qiongying Yuan
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China
| | - Feng Zhu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China.
| |
Collapse
|
36
|
Sun M, Ma N, Liu H, Liu Y, Zhou Y, Zhao J, Wang X, Li H, Ma B, Jiao H, Lin H. The optimal dietary arginine level of laying hens fed with low-protein diets. J Anim Sci Biotechnol 2022; 13:63. [PMID: 35715827 PMCID: PMC9206374 DOI: 10.1186/s40104-022-00719-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background Arginine (Arg) is an essential amino acid (EAA) in poultry, an important substrate for protein synthesis and a precursor of several molecules. Supplementation of EAAs with low protein (LP) diet increases the utilization efficiency of dietary crude protein (CP). However, if the EAA requirement is changed in hens fed a LP diet remains to be elucidated. The aim of the present study was to evaluate the optimal level of dietary Arg in the LP diet of hens. A total of 1350 Hy-Line Brown laying hens were randomly allocated to six dietary treatments: a basal diet (16% CP, positive control), or an isoenergetic LP diet (14% CP, 0.80% Arg) supplemented 0, 0.05%, 0.10%, 0.15%, and 0.20% L-Arg, corresponding to 0.80%, 0.85%, 0.90%, 0.95% and 1.00% dietary Arg, respectively. Results The feed efficiency was decreased (P < 0.05) by 0.80% and 1.00% Arg-LP diets, compared to control. Within LP diets, dietary Arg level had significant quadratic effects (P < 0.05) on laying rate, egg mass, and feed efficiency. Compared to control, the plasma CAT activity or T-AOC content were decreased by 0.80% (P < 0.001). However, the hens offered 0.85% and 0.90% Arg-LP diets had higher CAT activity (P < 0.001) than 0.80% Arg-LP diet. In contrast, 1.00% Arg-LP group had the highest MDA and the lowest T-AOC content in plasma, liver, duodenal and jejunal mucosa (P < 0.05). Compared to control, the villus height was decreased by 0.80%, 0.95% and 1.00% Arg-LP diets, while the villus height to crypt depth (V/C) ratio was reduced by 0.95% and 1.00% Arg-LP diets in duodenum. Conclusion The result demonstrates that LP diet (14% CP) deficient in Arg (0.80% Arg) result in augmented oxidative damage and impaired development of intestinal mucosa. According to the quadratic broken-line regression model, the optimal dietary arginine levels for Hy-Line Brown laying hens fed with low protein diet (14% CP) aged 33 to 40 weeks are 0.85%, 0.86%, and 0.86% to obtained the maximum laying rate, egg mass, and feed efficiency, respectively. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00719-x.
Collapse
Affiliation(s)
- Mingfa Sun
- Department of Animal Science, Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, 61 Daizong Street, Taian City, 271018, Shandong Province, China
| | - Ning Ma
- Department of Animal Science, Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, 61 Daizong Street, Taian City, 271018, Shandong Province, China
| | - Hui Liu
- Department of Animal Science, Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, 61 Daizong Street, Taian City, 271018, Shandong Province, China
| | - Yu Liu
- Department of Animal Science, Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, 61 Daizong Street, Taian City, 271018, Shandong Province, China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Shandong Agricultural University, Taian City, 271018, Shandong Province, China
| | - Jingpeng Zhao
- Department of Animal Science, Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, 61 Daizong Street, Taian City, 271018, Shandong Province, China
| | - Xiaojuan Wang
- Department of Animal Science, Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, 61 Daizong Street, Taian City, 271018, Shandong Province, China
| | - Haifang Li
- College of Life Sciences, Shandong Agricultural University, Taian City, 271018, Shandong Province, China
| | - Baishun Ma
- Shandong He-Mei-Hua Agricultural Technology Co., Ltd, Jinan City, 250101, Shandong Province, China
| | - Hongchao Jiao
- Department of Animal Science, Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, 61 Daizong Street, Taian City, 271018, Shandong Province, China.
| | - Hai Lin
- Department of Animal Science, Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, 61 Daizong Street, Taian City, 271018, Shandong Province, China.
| |
Collapse
|
37
|
Fu Y, Wang Y, Wang X, Sun Y, Ren J, Fang B. Responses of human gut microbiota abundance and amino acid metabolism in vitro to berberine. Food Funct 2022; 13:6329-6337. [PMID: 35611943 DOI: 10.1039/d1fo04003k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The intestine is a potential location for berberine (BBR) to exert its therapeutic effects, but the understanding of the influences of BBR on the gut microbiota is limited. Through in vitro fermentation of human intestinal microbiota, we investigated the effects of BBR on microbiota composition and metabolism. The result indicated that BBR reduced the production of acetic acid and propionic acid and had no effect on the content of butyric acid. Analysis of the 16S rRNA gene-based community revealed that BBR increased the abundance of Faecalibacterium and decreased the abundance of Bifidobacterium, Streptococcus and Enterococcus. Through metabolomics analysis, BBR treatment regulated various amino acid metabolism pathways of intestinal microbiota, especially tyrosine, serine and L-glutamate. Our study presented direct impacts of BBR on the intestinal microbiota, which provided the probable targets of the therapies by BBR and supported further exploration of the underlying mechanisms.
Collapse
Affiliation(s)
- Yousi Fu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
| | - Yali Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
| | - Xingguo Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
| | - Yidan Sun
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
| | - Jianlin Ren
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China.
| | - Baishan Fang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
| |
Collapse
|
38
|
Ma P, Fang P, Ren T, Fang L, Xiao S. Porcine Intestinal Organoids: Overview of the State of the Art. Viruses 2022; 14:1110. [PMID: 35632851 PMCID: PMC9147602 DOI: 10.3390/v14051110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
The intestinal tract is a crucial part of the body for growth and development, and its dysregulation can cause several diseases. The lack of appropriate in vitro models hampers the development of effective preventions and treatments against these intestinal tract diseases. Intestinal organoids are three-dimensional (3D) polarized structures composed of different types of cells capable of self-organization and self-renewal, resembling their organ of origin in architecture and function. Porcine intestinal organoids (PIOs) have been cultured and are used widely in agricultural, veterinary, and biomedical research. Based on the similarity of the genomic sequence, anatomic morphology, and drug metabolism with humans and the difficulty in obtaining healthy human tissue, PIOs are also considered ideal models relative to rodents. In this review, we summarize the current knowledge on PIOs, emphasizing their culturing, establishment and development, and applications in the study of host-microbe interactions, nutritional development, drug discovery, and gene editing potential.
Collapse
Affiliation(s)
- Panpan Ma
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.M.); (T.R.); (L.F.); (S.X.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.M.); (T.R.); (L.F.); (S.X.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Tianze Ren
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.M.); (T.R.); (L.F.); (S.X.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.M.); (T.R.); (L.F.); (S.X.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.M.); (T.R.); (L.F.); (S.X.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
39
|
Liu Y, Wang D, Zhao L, Zhang J, Huang S, Ma Q. Effect of Methionine Deficiency on the Growth Performance, Serum Amino Acids Concentrations, Gut Microbiota and Subsequent Laying Performance of Layer Chicks. Front Vet Sci 2022; 9:878107. [PMID: 35548049 PMCID: PMC9083200 DOI: 10.3389/fvets.2022.878107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/31/2022] [Indexed: 11/24/2022] Open
Abstract
This study was conducted to investigate the effect of methionine (Met) deficiency in the rearing period on the growth performance, amino acids metabolism, intestinal development and gut microbiome of egg-laying chicks and the continuous effects on the performance, egg quality, and serum amino acids metabolism of the subsequent development process. Three hundred sixty one-day-old chicks were randomly divided into two groups and fed on a basal diet (NC group, Met 0.46%) and Met deficiency diet (Met- group, Met 0.27%). Each group included six replicates with 30 chicks per replicate. The trial lasted 6 weeks (0–6 weeks), both groups were fed the same basal diet which met the needs of Met during the observation period (7–24 weeks). Results showed that Met deficiency significantly decreased (P < 0.05) body weight (BW), average daily weight gain (ADG), average daily feed intake (ADFI) and tibia length (TL) compared to the NC group during the trial period (0–6 weeks). Also, Met deficiency dramatically increased (P < 0.05) feed conversion ratio (FCR) during the trial and observation period (7–24 weeks). In addition, during the observation period, the BW and ADG were decreased (P < 0.05) in the Met- group. Moreover, Met- group decreased (P < 0.05) villi height and villi height/crypt depth ratio in jejunum at 6th weeks. In addition, the concentrations of serum main free amino acids (FAA) in the Met- group were significantly increased (P < 0.05) at 6th weeks, while were decreased at 16th weeks. Based on the α-diversity and PCoA analysis in β-diversity, there were no significant differences in the cecal microbial composition between NC and Met- groups. However, the LEfSe analysis revealed that differential genera were enriched in the NC or Met- groups. The Haugh unit, shell thickness and egg production in the Met- group were significantly lower (P < 0.05) than in the NC group. In conclusion, these results revealed that dietary supplementation of appropriate Met could substantially improve the growth performance, host amino acid metabolism and intestinal development and continuously improve the laying performance and thus boost the health of growing hens.
Collapse
|
40
|
Dietary methionine source alters the lipidome in the small intestinal epithelium of pigs. Sci Rep 2022; 12:4863. [PMID: 35318410 PMCID: PMC8941097 DOI: 10.1038/s41598-022-08933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/15/2022] [Indexed: 11/28/2022] Open
Abstract
Methionine (Met) as an essential amino acid has key importance in a variety of metabolic pathways. This study investigated the influence of three dietary Met supplements (0.21% L-Met, 0.21% DL-Met and 0.31% DL-2-hydroxy-4-(methylthio)butanoic acid (DL-HMTBA)) on the metabolome and inflammatory status in the small intestine of pigs. Epithelia from duodenum, proximal jejunum, middle jejunum and ileum were subjected to metabolomics analysis and qRT-PCR of caspase 1, NLR family pyrin domain containing 3 (NLRP3), interleukins IL1β, IL8, IL18, and transforming growth factor TGFβ. Principal component analysis of the intraepithelial metabolome revealed strong clustering of samples by intestinal segment but not by dietary treatment. However, pathway enrichment analysis revealed that after L-Met supplementation polyunsaturated fatty acids (PUFA) and tocopherol metabolites were lower across small intestinal segments, whereas monohydroxy fatty acids were increased in distal small intestine. Pigs supplemented with DL-HMTBA showed a pronounced shift of secondary bile acids (BA) and sphingosine metabolites from middle jejunum to ileum. In the amino acid super pathway, only histidine metabolism tended to be altered in DL-Met-supplemented pigs. Diet did not affect the expression of inflammation-related genes. These findings suggest that dietary supplementation of young pigs with different Met sources selectively alters lipid metabolism without consequences for inflammatory status.
Collapse
|
41
|
Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther 2022; 7:48. [PMID: 35165272 PMCID: PMC8844085 DOI: 10.1038/s41392-022-00904-4] [Citation(s) in RCA: 804] [Impact Index Per Article: 268.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/08/2023] Open
Abstract
Peptide drug development has made great progress in the last decade thanks to new production, modification, and analytic technologies. Peptides have been produced and modified using both chemical and biological methods, together with novel design and delivery strategies, which have helped to overcome the inherent drawbacks of peptides and have allowed the continued advancement of this field. A wide variety of natural and modified peptides have been obtained and studied, covering multiple therapeutic areas. This review summarizes the efforts and achievements in peptide drug discovery, production, and modification, and their current applications. We also discuss the value and challenges associated with future developments in therapeutic peptides.
Collapse
|
42
|
Wu J, Zhang X, Tan Z, Jiao J. Distribution of free amino acids and mRNA expression of their corresponding transporters in the intestinal mucosa of goats feeding on a corn grain versus corn gluten diet. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:868-875. [PMID: 34218447 DOI: 10.1002/jsfa.11412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/10/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Intestinal amino acid (AA) chemosensing has been implicated in the regulation of AA absorption, nitrogen metabolism and hormone release, thereby playing an indispensable role in maintaining metabolic homeostasis in mammals. The objective of this experiment was to study the distribution of free AA and the expression of AA transporting related genes along the small and large intestines of Liuyang black goats, together with the effects of dietary corn grain replaced by dietary corn gluten feed (CGF). RESULTS The CGF replacement did not alter (P > 0.05) AA profiles and the expression of AA transporting related genes in the intestinal mucosa. Intriguingly, in terms of gut regions, the concentrations of aspartic acid and glutamic acid in the mucosa of ileum were remarkably less (P < 0.001) than those in the large intestine. Moreover, the concentrations of most cationic and neutral AAs shared the same distribution pattern, with the jejunum and ileum holding the greatest and least levels (P < 0.05), respectively. It was notable that the expression of both anionic and cationic AA transporters in the small intestine was exceedingly greater (P < 0.001) than those in the large intestine. As for transporters of neutral AA, system ASC, L, and A showed an extremely distinctive expression pattern. CONCLUSION The jejunum would be the primary site of transporting AA, while CGF substitution does not exert a disadvantageous influence on the AA chemosensing systems of the first-pass metabolism. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jian Wu
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiaoli Zhang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Zhiliang Tan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, P. R. China
| | - Jinzhen Jiao
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, P. R. China
| |
Collapse
|
43
|
Święch E, Tuśnio A, Taciak M, Barszcz M. Modulation of Mucin Secretion in the Gut of Young Pigs by Dietary Threonine and Non-Essential Amino Acid Levels. Animals (Basel) 2022; 12:ani12030270. [PMID: 35158594 PMCID: PMC8833754 DOI: 10.3390/ani12030270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The mucus layer is an important part of the system protecting the gut against injuries and bacterial infections. The main components of mucus responsible for its properties are mucins. They are large glycoproteins with a protein core rich in threonine (Thr) and many sugar side chains that differ in structure and affect mucin functions. Diet composition affects the amount of secreted mucins and their quality. Therefore, the aim of the study was to determine the effect of Thr and wheat gluten (WG) protein, added as a source of non-essential amino acids, on the content of tissue and luminal mucins in different parts of the intestine of young pigs. Results showed that tissue and luminal mucin content was only affected by WG levels in the duodenum and middle jejunum, and in the proximal colon, respectively. The effect of WG on luminal mucin content in the proximal colon depended on the analytical method applied. Abstract The aim of the study was to determine the effect of threonine (Thr) and non-essential amino acid (NEAA) levels on mucin secretion and sugar composition of digesta and crude mucin preparations analyzed in different segments of the gut in young pigs. A two-factorial experiment was conducted on 72 pigs using the following factors: Thr level (5.1, 5.7, 6.3 and 6.9 g standardized ileal digestible(SID) Thr/kg) and wheat gluten (WG) level used as a source of NEAA (20.4, 40.4 and 60.4 g WG protein in WG20, WG40 and WG60 diets, respectively). Mucin content was affected only by WG level. Tissue mucin content in the duodenum was higher in WG60 pigs than in WG20 and WG40 pigs, whereas in the middle jejunum was higher in WG40 and WG60 pigs than in WG20 pigs. In contrast, luminal crude mucin content in the proximal colon was lower in WG60 pigs compared to WG40 pigs. The lowest and highest Thr levels reduced arabinose and xylose contents and increased glucose content in ileal digesta. The highest WG level reduced arabinose and xylose contents and increased glucose content in ileal digesta. The lowest WG level increased mannose content in ileal digesta. WG60 level decreased the content of arabinose and galactose compared to lower WG levels in colonic digesta. Arabinose content was higher, while glucose and galactose contents were lower in crude mucin preparations isolated from colonic digesta in pigs fed diets containing the highest Thr level. The content of tissue mucin was higher in the ileum and proximal colon and lower in the duodenum than in the middle jejunum, whereas luminal mucin content was lower in the proximal colon than in the ileum. Ileal digesta contained less arabinose and glucose and more galactose as compared to colonic digesta. In conclusion, no effect of dietary Thr levels on mucin secretion in the gut of young pigs was found. Wheat gluten added to the diet with adequate Thr content positively affected mucin secretion only in the duodenum and middle jejunum.
Collapse
|
44
|
Antoniussen CS, Rasmussen HH, Holst M, Lauridsen C. Reducing Disease Activity of Inflammatory Bowel Disease by Consumption of Plant-Based Foods and Nutrients. Front Nutr 2021; 8:733433. [PMID: 34957174 PMCID: PMC8696360 DOI: 10.3389/fnut.2021.733433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/07/2021] [Indexed: 01/04/2023] Open
Abstract
Inflammatory bowel disease is a chronic and recurring inflammatory condition of the gastrointestinal tract encompassing ulcerative colitis and Crohn's disease. Although the pathogenesis of inflammatory bowel disease remains to be fully elucidated, environmental factors such as diet are believed to play a pivotal role in the onset and management of inflammatory bowel disease. Diet is thought to play an essential role in intestinal inflammation due to its regulatory effects on the microbiota, gut immune system, and epithelial barrier function. Although the evidence remains insufficient to draw firm conclusions on the role of specific dietary components in gastrointestinal diseases, studies have suggested that a Western diet with high intakes of total fats, omega-6 fatty acids, and meat have been associated with intestinal inflammation and relapse of inflammatory bowel disease. In contrast to a Western diet, plant-based diets often result in a reduced intake of total fats and meats and an increased intake of plant fibers which may contribute to reduced intestinal inflammation. This review critically examines the influence of plant-based dietary components on the clinical disease course of inflammatory bowel disease. Furthermore, this review discusses the benefits and possible limitations of plant-derived dietary components in the treatment of inflammatory bowel disease while addressing the principal type of disease and the anatomic site of inflammation within the gastrointestinal tract. Finally, this review points out important directions for future research on the role of diet in inflammatory bowel disease. A better understanding of the role of diet and intestinal inflammation may pave the way for novel dietary interventions and specific foods- or food supplements, which can support the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
| | - Henrik H Rasmussen
- Department of Clinical Medicine, Faculty of Medicine, Aalborg University, Aalborg, Denmark.,Department of Gastroenterology, Center for Nutrition and Bowel Disease, Aalborg University Hospital, Aalborg, Denmark
| | - Mette Holst
- Department of Clinical Medicine, Faculty of Medicine, Aalborg University, Aalborg, Denmark.,Department of Gastroenterology, Center for Nutrition and Bowel Disease, Aalborg University Hospital, Aalborg, Denmark
| | - Charlotte Lauridsen
- Department of Clinical Medicine, Faculty of Medicine, Aalborg University, Aalborg, Denmark.,Department of Animal Science, Faculty of Technical Sciences, Aarhus University, Foulum, Denmark
| |
Collapse
|
45
|
Rastgoo S, Ebrahimi-Daryani N, Agah S, Karimi S, Taher M, Rashidkhani B, Hejazi E, Mohseni F, Ahmadzadeh M, Sadeghi A, Hekmatdoost A. Glutamine Supplementation Enhances the Effects of a Low FODMAP Diet in Irritable Bowel Syndrome Management. Front Nutr 2021; 8:746703. [PMID: 34977110 PMCID: PMC8716871 DOI: 10.3389/fnut.2021.746703] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Background and Aims: Although irritable bowel syndrome is one of the most common gastrointestinal disorders presented to gastroenterologists, therapeutic strategies are not yet well-established. Accordingly, we conducted a randomized, double-blind, placebo-controlled, clinical trial to evaluate the possible superiority of adding glutamine supplement to low fermentable oligo- di- monosaccharides and polyols (FODMAP) diet in patients with irritable bowel syndrome (IBS). Methods: Eligible adults were randomized to receive a low FODMAP diet either with glutamine (15 g/day) or a placebo for 6 weeks. The primary endpoint was a significant reduction in IBS-symptom severity score (IBS-SSS). Secondary endpoints were changes in IBS symptoms, stool frequency, consistency, and quality of life. Results: The study group enrolled 50 patients, among which 22 participants from each group completed the study protocol. The glutamine group had significant changes in total IBS-severity score, dissatisfaction of bowel habit and interference with community function (58% reduction; P < 0.001, 57% reduction; P < 0.001, 51% reduction; P = 0.043, respectively). Improvement in IBS-severity score of more than 45% was observed in 22 of 25 participants (88%) in the glutamine group, while it was only 15 of 25 participants (60%) in the control group (p = 0.015). No serious adverse events were observed. Conclusions: Our findings indicated the superiority of adding glutamine supplementation to a low FODMAP diet in amelioration of IBS symptoms while confirming the beneficial effects of a low FODMAP diet in IBS management.
Collapse
Affiliation(s)
- Samira Rastgoo
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasser Ebrahimi-Daryani
- Department of Gastroenterology and Hepatology, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Karimi
- Department of Gastroenterology and Hepatology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taher
- Department of Gastroenterology and Hepatology, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Rashidkhani
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Hejazi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mohseni
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Ahmadzadeh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Genton L, Teta D, Pruijm M, Stoermann C, Marangon N, Mareschal J, Bassi I, Wurzner‐Ghajarzadeh A, Lazarevic V, Cynober L, Cani PD, Herrmann FR, Schrenzel J. Glycine increases fat-free mass in malnourished haemodialysis patients: a randomized double-blind crossover trial. J Cachexia Sarcopenia Muscle 2021; 12:1540-1552. [PMID: 34519439 PMCID: PMC8718019 DOI: 10.1002/jcsm.12780] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/22/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Protein energy wasting is associated with negative outcome in patients under chronic haemodialysis (HD). Branched-chain amino acids (BCAAs) may increase the muscle mass. This post hoc analysis of a controlled double-blind randomized crossover study assessed the impact of BCAAs on nutritional status, physical function, and quality of life. METHODS We included 36 chronic HD patient features of protein energy wasting as plasma albumin <38 g/L, and dietary intakes <30 kcal/kg/day and <1 g protein/kg/day. Patients received either oral BCAA (2 × 7 g/day) or glycine (2 × 7 g/day) for 4 months (Period 1), followed by a washout period of 1 month, and then received the opposite supplement (Period 2). The outcomes were lean body mass measured by dual-energy X-ray absorptiometry, fat-free mass index measured by bioelectrical impedance, resting energy expenditure, dietary intake and appetite rating, physical activity and function, quality of life, and blood parameters. Analyses were performed by multiple mixed linear regressions including type of supplementation, months, period, sex, and age as fixed effects and subjects as random intercepts. RESULTS Twenty-seven patients (61.2 ± 13.7 years, 41% women) were compliant to the supplementations (consumption >80% of packs) and completed the study. BCAA did not affect lean body mass index and body weight, but significantly decreased fat-free mass index, as compared with glycine (coeff -0.27, 95% confidence interval -0.43 to -0.10, P = 0.002, respectively). BCAA and glycine intake had no effect on the other clinical parameters, blood chemistry tests, or plasma amino acids. CONCLUSIONS Branched-chain amino acid did not improve lean body mass as compared with glycine. Unexpectedly, glycine improved fat-free mass index in HD patients, as compared with BCAA. Whether long-term supplementation with glycine improves the clinical outcome remains to be demonstrated.
Collapse
Affiliation(s)
- Laurence Genton
- Unit of Clinical NutritionGeneva University Hospitals and University of GenevaGenevaSwitzerland
| | - Daniel Teta
- Service of NephrologyCantonal Hospital of SionSionSwitzerland
| | - Menno Pruijm
- Service of NephrologyUniversity Hospital of Lausanne and University of LausanneLausanneSwitzerland
| | - Catherine Stoermann
- Service of NephrologyGeneva University Hospitals and University of GenevaGenevaSwitzerland
| | - Nicola Marangon
- Service of NephrologyGeneva University Hospitals and Clinique of ChampelGenevaSwitzerland
| | - Julie Mareschal
- Unit of Clinical NutritionGeneva University Hospitals and University of GenevaGenevaSwitzerland
| | - Isabelle Bassi
- Service of NephrologyCantonal Hospital of SionSionSwitzerland
| | | | - Vladimir Lazarevic
- Genomic Research Lab and Service of Infectious DiseasesGeneva University Hospitals and University of GenevaGenevaSwitzerland
| | - Luc Cynober
- EA 4466, Faculty of PharmacyParis University, and Clin Chem Lab, Cochin HospitalParisFrance
| | - Patrice D. Cani
- Louvain Drug Research Institute Metabolism and Nutrition Research Group, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO)Université catholique de LouvainBrusselsBelgium
| | - François R. Herrmann
- Department of Rehabilitation and GeriatricsGeneva University Hospitals and University of GenevaGenevaSwitzerland
| | - Jacques Schrenzel
- Genomic Research Lab and Service of Infectious DiseasesGeneva University Hospitals and University of GenevaGenevaSwitzerland
| |
Collapse
|
47
|
Chen MJ, Zhou JY, Chen YJ, Wang XQ, Yan HC, Gao CQ. The in ovo injection of methionine improves intestinal cell proliferation and differentiation in chick embryos by activating the JAK2/STAT3 signaling pathway. ACTA ACUST UNITED AC 2021; 7:1031-1038. [PMID: 34738033 PMCID: PMC8536505 DOI: 10.1016/j.aninu.2021.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/25/2021] [Accepted: 03/09/2021] [Indexed: 12/15/2022]
Abstract
The intestinal health of chick embryos is vital for their life-long growth, and exogenous nutrition intervention may provide sufficient nutrition for embryonic development. In the present study, we investigated the effect of in ovo injection of L-methionine (L-Met) on the intestinal structure and barrier function of chick embryos. There were 4 groups of treatments: the control (CON) group injected with phosphate-buffered saline (PBS) and the other 3 groups injected with 5, 10, and 20 mg L-Met/egg, respectively. The injection was performed on embryonic day 9 (E9), and intestinal samples were collected on the day of hatching for analysis. The results showed that, compared with the CON group, the groups administered an in ovo injection of L-Met increased relative weights of the duodenum, jejunum, and ileum (P < 0.05). Hematoxylin and eosin (H&E) staining showed that the groups injected with 5, 10, and 20 mg L-Met significantly increased villus height and crypt depth (P < 0.05). Moreover, in ovo injection of 10 mg L-Met also increased the transepithelial electrical resistance (TEER) of the jejunum (P < 0.05). Injection with 10 and 20 mg L-Met increased the expression of the tight junction proteins (ZO-1 and claudin-1) and the fluorescence signal intensity of Ki67 and villin proteins (P < 0.05). Further, the protein expression of phospho-Janus kinase 2 (p-JAK2) and phospho-signal transducer and activator of transcription 3 (p-STAT3) was significantly increased by 10 or 20 mg L-Met injection (P < 0.05). In conclusion, the injection of L-Met, especially at a dose of 10 mg, showed beneficial effects on the intestinal integrity of chick embryos due to the activation of the JAK2/STAT3 signaling pathway. Our results may provide new insights for regulating the intestinal development of embryonic chicks and the rapid growth of chicks after hatching.
Collapse
|
48
|
Cantet JM, Yu Z, Ríus AG. Heat Stress-Mediated Activation of Immune-Inflammatory Pathways. Antibiotics (Basel) 2021; 10:antibiotics10111285. [PMID: 34827223 PMCID: PMC8615052 DOI: 10.3390/antibiotics10111285] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/23/2022] Open
Abstract
Physiological changes in animals exposed to elevated ambient temperature are characterized by the redistribution of blood toward the periphery to dissipate heat, with a consequent decline in blood flow and oxygen and nutrient supply to splanchnic tissues. Metabolic adaptations and gut dysfunction lead to oxidative stress, translocation of lumen contents, and release of proinflammatory mediators, activating a systemic inflammatory response. This review discusses the activation and development of the inflammatory response in heat-stressed models.
Collapse
|
49
|
Zhang Q, Li X, Gao X, Cao C, Hu Y, Guo H. Total saponins from stems and leaves of Panax quinquefolius L. ameliorate podophyllotoxin-induced myelosuppression and gastrointestinal toxicity. Biomed Chromatogr 2021; 36:e5266. [PMID: 34648200 DOI: 10.1002/bmc.5266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 11/06/2022]
Abstract
Podophyllotoxin (POD), a natural lignan distributed in podophyllum species, possesses significant antitumor and antiviral activities. But POD often causes serious side effects, such as myelosuppression, gastrointestinal toxicity, neurotoxicity, hepatic and renal dysfunction, and even death, which not only hinder its clinical application but also threaten the patient's health. Therefore, an effective treatment against POD-induced toxicity is important. Our preliminary study found that the total saponins from the stems and leaves of Panax quinquefolius L. (PQS) could significantly reduce the death of mice caused by POD. To reveal how PQS can alleviate POD-induced toxicity, further study was needed. Peripheral blood cell analysis, diarrhea score, and histological examination demonstrated that PQS could relieve myelosuppression and gastrointestinal side effects induced by POD. Then, metabolomics was performed to investigate the possible protective mechanism of PQS on POD-induced myelosuppression and gastrointestinal toxicity. Metabolomics analysis showed that metabolic changes caused by POD could be reversed by PQS to some extent; 23 metabolites altered significantly after POD exposure, and 11 metabolites significantly reversed by PQS pretreatment. Metabolic pathway analysis suggested that PQS might exhibit its protective effects by rebalancing disordered arginine, glutamine, and unsaturated fatty acid metabolism.
Collapse
Affiliation(s)
- Qianqian Zhang
- Beijing Institute for Drug Control, NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing, China.,School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xuemei Li
- Beijing Institute for Drug Control, NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing, China
| | - Xiaoxin Gao
- Beijing Institute for Drug Control, NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing, China
| | - Chunran Cao
- Beijing Institute for Drug Control, NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing, China
| | - Yuchi Hu
- Beijing Institute for Drug Control, NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing, China
| | - Hongzhu Guo
- Beijing Institute for Drug Control, NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing, China
| |
Collapse
|
50
|
Romanet S, Aschenbach JR, Pieper R, Zentek J, Htoo JK, Whelan RA, Mastrototaro L. Expression of proposed methionine transporters along the gastrointestinal tract of pigs and their regulation by dietary methionine sources. GENES AND NUTRITION 2021; 16:14. [PMID: 34488623 PMCID: PMC8422629 DOI: 10.1186/s12263-021-00694-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/25/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Given the key role of methionine (Met) in biological processes like protein translation, methylation, and antioxidant defense, inadequate Met supply can limit performance. This study investigated the effect of different dietary Met sources on the expression profile of various Met transporters along the gastrointestinal tract (GIT) of pigs. METHODS A total of 27 pigs received a diet supplemented with 0.21% DL-Met, 0.21% L-Met, or 0.31% DL-2-hydroxy-4-(methylthio)butanoic acid (DL-HMTBA). Changes in mRNA expression of B0AT1, ATB0,+, rBAT, ASCT2, IMINO, LAT4, y+LAT1, LAT2, and SNAT2 were evaluated in the oral mucosa, cardia, fundus, pylorus, duodenum, proximal jejunum, middle jejunum, ileum, cecum, proximal colon, and distal colon, complemented by protein expression analysis of B0AT1, ASCT2, LAT2, and LAT4. RESULTS Expression of all investigated transcripts differed significantly along the GIT. B0AT1, rBAT, y+LAT1, LAT2, and LAT4 showed strongest mRNA expression in small intestinal segments. ASCT2, IMINO, and SNAT2 were similarly expressed along the small and large intestines but expression differed in the oral mucosa and stomach. ATB0,+ showed highest mRNA expression in large intestinal tissues, cardia, and pylorus. In pigs fed DL-Met, mRNA expression of ASCT2 was higher than in pigs fed DL-HMTBA in small intestinal tissues and mRNA expression of IMINO was lower than in pigs fed L-Met in large intestinal tissues. Dietary DL-HMTBA induced a stronger mRNA expression of basolateral uptake systems either in the small (LAT2) or large (y+LAT1) intestine. Protein expression of B0AT1 was higher in the middle jejunum and ileum in pigs fed DL-Met when compared with the other Met supplements. LAT4 expression was higher in pigs fed DL-HMTBA when compared with DL-Met (small intestine) and L-Met (small intestine, oral mucosa, and stomach). CONCLUSION A high expression of several Met transporters in small intestinal segments underlines the primary role of these segments in amino acid absorption; however, some Met transporters show high transcript and protein levels also in large intestine, oral mucosa, and stomach. A diet containing DL-Met has potential to increase apical Met transport in the small intestine, whereas a diet containing DL-HMTBA has potential to increase basolateral Met transport in the small intestine and, partly, other gastrointestinal tissues.
Collapse
Affiliation(s)
- Stella Romanet
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - Jörg R Aschenbach
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany.
| | - Robert Pieper
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - Jürgen Zentek
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - John K Htoo
- Evonik Operations GmbH, Animal Nutrition Services, Hanau-Wolfgang, Germany
| | - Rose A Whelan
- Evonik Operations GmbH, Animal Nutrition Services, Hanau-Wolfgang, Germany
| | - Lucia Mastrototaro
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| |
Collapse
|