1
|
Justs KA, Latner Nee Riboul DV, Oliva CD, Arab Y, Bonassi GG, Mahneva O, Crill S, Sempertegui S, Kirchman PA, Fily Y, Macleod GT. Optimal Neuromuscular Performance Requires Motor Neuron Phosphagen Kinases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643998. [PMID: 40166281 PMCID: PMC11956927 DOI: 10.1101/2025.03.18.643998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Phosphagen systems are crucial for muscle bioenergetics - rapidly regenerating ATP to support the high metabolic demands of intense musculoskeletal activity. However, their roles in motor neurons that drive muscle contraction have received little attention. Here, we knocked down expression of the primary phosphagen kinase [Arginine Kinase 1; ArgK1] in Drosophila larval motor neurons and assessed the impact on presynaptic energy metabolism and neurotransmission in situ . Fluorescent metabolic probes showed a deficit in presynaptic energy metabolism and some glycolytic compensation. Glycolytic compensation was revealed through a faster elevation in lactate at high firing frequencies, and the accumulation of pyruvate subsequent to firing. Our performance assays included two tests of endurance: enforced cycles of presynaptic calcium pumping, and, separately, enforced body-wall contractions for extended periods. Neither test of endurance revealed deficits when ArgK1 was knocked down. The only performance deficits were detected at firing frequencies that approached, or exceeded, twice the firing frequencies recorded during fictive locomotion, where both electrophysiology and SynaptopHluorin imaging showed an inability to sustain neurotransmitter release. Our computational modeling of presynaptic bioenergetics indicates that the phosphagen system's contribution to motor neuron performance is likely through the removal of ADP in microdomains close to sites of ATP hydrolysis, rather than the provision of a deeper reservoir of ATP. Taken together, these data demonstrate that, as in muscle fibers, motor neurons rely on phosphagen systems during activity that imposes intense energetic demands.
Collapse
|
2
|
Sousa MDC, Cavalcanti CM, Conde AJH, Alves BVDF, Cesar LFB, de Sena JN, Miguel YH, Fernandes CCL, Alves JPM, Teixeira DÍA, Rondina D. Short Supply of High Levels of Guanidine Acetic Acid, Alters Ovarian Artery Flow and Improves Intraovarian Blood Perfusion Area Associated with Follicular Growth in Sheep. Animals (Basel) 2025; 15:143. [PMID: 39858143 PMCID: PMC11758299 DOI: 10.3390/ani15020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Guanidinoacetic acid (GAA), a precursor of creatine, has a recognized effect on ruminant performance when used as a dietary supplement. However, its impact on reproductive response remains to be elucidated. Therefore, this study aimed to contribute initially to this area by supplementing the diets of ewes with a high dose of GAA, evaluating its effects on reproductive response. Twenty adult sheep had their estrus synchronized using an MPA sponge, eCG, and PGF2α. After estrus detection ewes were mated. For 10 days until mating, ewes were grouped in groups of baseline diet (BSD; n = 10) and GAA diet (GAAD; n = 10), which was the BSD with daily 0.9 g/kg DM of GAA. After the eCG + PGF2α dose, the GAAD group exhibited an increase in the peak diastolic and pulsatility of the ovarian artery, a reduction in the systolic/diastolic peaks ratio, and a larger intraovarian blood perfusion area. A greater depletion of follicles with <3 mm was observed in the GAAD group and a higher number of follicles ≥3 mm. No differences were observed between the diets respect to pregnancy, and twin rates. Thus, a high GAA supply before mating significantly alters ovarian vasculature and improves follicular growth in ewes but does not affect the pregnancy rate.
Collapse
Affiliation(s)
- Marta da Costa Sousa
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza 60714-903, Ceará, Brazil; (M.d.C.S.); (C.M.C.); (A.J.H.C.); (B.V.d.F.A.); (L.F.B.C.); (J.N.d.S.); (Y.H.M.); (J.P.M.A.); (D.Í.A.T.)
| | - Camila Muniz Cavalcanti
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza 60714-903, Ceará, Brazil; (M.d.C.S.); (C.M.C.); (A.J.H.C.); (B.V.d.F.A.); (L.F.B.C.); (J.N.d.S.); (Y.H.M.); (J.P.M.A.); (D.Í.A.T.)
| | - Alfredo José Herrera Conde
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza 60714-903, Ceará, Brazil; (M.d.C.S.); (C.M.C.); (A.J.H.C.); (B.V.d.F.A.); (L.F.B.C.); (J.N.d.S.); (Y.H.M.); (J.P.M.A.); (D.Í.A.T.)
| | - Bruna Vitória de Freitas Alves
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza 60714-903, Ceará, Brazil; (M.d.C.S.); (C.M.C.); (A.J.H.C.); (B.V.d.F.A.); (L.F.B.C.); (J.N.d.S.); (Y.H.M.); (J.P.M.A.); (D.Í.A.T.)
| | - Larissa Fernandes Baia Cesar
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza 60714-903, Ceará, Brazil; (M.d.C.S.); (C.M.C.); (A.J.H.C.); (B.V.d.F.A.); (L.F.B.C.); (J.N.d.S.); (Y.H.M.); (J.P.M.A.); (D.Í.A.T.)
| | - Jhennyfe Nobre de Sena
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza 60714-903, Ceará, Brazil; (M.d.C.S.); (C.M.C.); (A.J.H.C.); (B.V.d.F.A.); (L.F.B.C.); (J.N.d.S.); (Y.H.M.); (J.P.M.A.); (D.Í.A.T.)
| | - Yohana Huicho Miguel
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza 60714-903, Ceará, Brazil; (M.d.C.S.); (C.M.C.); (A.J.H.C.); (B.V.d.F.A.); (L.F.B.C.); (J.N.d.S.); (Y.H.M.); (J.P.M.A.); (D.Í.A.T.)
| | | | - Juliana Paula Martins Alves
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza 60714-903, Ceará, Brazil; (M.d.C.S.); (C.M.C.); (A.J.H.C.); (B.V.d.F.A.); (L.F.B.C.); (J.N.d.S.); (Y.H.M.); (J.P.M.A.); (D.Í.A.T.)
| | - Dárcio Ítalo Alves Teixeira
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza 60714-903, Ceará, Brazil; (M.d.C.S.); (C.M.C.); (A.J.H.C.); (B.V.d.F.A.); (L.F.B.C.); (J.N.d.S.); (Y.H.M.); (J.P.M.A.); (D.Í.A.T.)
| | - Davide Rondina
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza 60714-903, Ceará, Brazil; (M.d.C.S.); (C.M.C.); (A.J.H.C.); (B.V.d.F.A.); (L.F.B.C.); (J.N.d.S.); (Y.H.M.); (J.P.M.A.); (D.Í.A.T.)
| |
Collapse
|
3
|
Lasisi-Sholola AS, Hammed SO, Ajike RA, Akhigbe RE, Afolabi OA. Estrogen replacement therapy reverses spatial memory loss and pyramidal cell neurodegeneration in the prefrontal cortex of lead-exposed ovariectomized Wistar rats. Curr Res Toxicol 2024; 7:100200. [PMID: 39583742 PMCID: PMC11582547 DOI: 10.1016/j.crtox.2024.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/16/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Although menopause is a component of chronological aging, it may be induced by exposure to heavy metals like lead. Interestingly, lead exposure, just like the postmenopausal state, has been associated with spatial memory loss and neurodegeneration; however, the impact of hormone replacement therapy (HRT) on menopause and lead-induced spatial memory loss and neurodegeneration is yet to be reported. AIM The present study investigated the effect and associated mechanism of HRT on ovariectomized-driven menopausal state and lead exposure-induced spatial memory loss and neurodegeneration. MATERIALS AND METHODS Thirty adult female Wistar rats were randomized into 6 groups (n = 5 rats/group); the sham-operated vehicle-treated, ovariectomized (OVX), OVX + HRT, lead-exposed, OVX + lead, and OVX + Lead + HRT groups. Treatment was daily via gavage and lasted for 28 days. RESULTS Ovariectomy and lead exposure impaired spatial memory deficit evidenced by a significant reduction in novel arm entry, time spent in the novel arm, alternation, time exploring novel and familiar objects, and discrimination index. These findings were accompanied by a marked distortion in the histology of the prefrontal cortex, and a decline in serum dopamine level and pyramidal neurons. In addition, ovariectomy and lead exposure induced metabolic disruption (as depicted by a marked rise in lactate level and lactate dehydrogenase and creatinine kinase activities), oxidative stress (evidenced by a significant increase in MDA level, and decrease in GSH level, and SOD and catalase activities), inflammation (as shown by significant upregulation of myeloperoxidase activity, and TNF-α and IL-1β), and apoptosis (evidenced by a rise in caspase 3 activity) of the prefrontal cortex. The observed biochemical and histological perturbations were attenuated by HRT. CONCLUSIONS This study revealed that HRT attenuated ovariectomy and lead-exposure-induced spatial memory deficit and pyramidal neurodegeneration by suppressing oxidative stress, inflammation, and apoptosis of the prefrontal cortex.
Collapse
Affiliation(s)
- Abiodun Shukrat Lasisi-Sholola
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - Sodiq Opeyemi Hammed
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Richard Adedamola Ajike
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Roland Eghoghosoa Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - Oladele Ayobami Afolabi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
4
|
Wang Z, Qiu B, Li R, Han Y, Petersen C, Liu S, Zhang Y, Liu C, Candow DG, Del Coso J. Effects of Creatine Supplementation and Resistance Training on Muscle Strength Gains in Adults <50 Years of Age: A Systematic Review and Meta-Analysis. Nutrients 2024; 16:3665. [PMID: 39519498 PMCID: PMC11547435 DOI: 10.3390/nu16213665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Numerous meta-analyses have assessed the efficacy of creatine supplementation in increasing muscle strength. However, most have not considered the effect of the participants' age, training duration, or other confounding variables on strength outcomes. Therefore, the purpose of this study was to consider the effect of these variables on the potential efficacy of creatine supplementation and resistance training for improving measures of muscle strength. METHODS Four databases were searched (MEDLINE, Scopus, Embase, and SPORTDiscus) with a search end date of 22 May 2024. Twenty-three studies were included, with 20 studies involving males (447 male participants), 2 studies involving females (40 female participants), and 1 study involving both males and females (13 male participants and 9 female participants). RESULTS In comparison with a placebo, creatine supplementation combined with resistance training significantly increased upper-body (WMD = 4.43 kg, p < 0.001) and lower-body strength (WMD = 11.35 kg, p < 0.001). Subgroup analyses showed a trend for greater upper-body strength improvements for males on creatine compared with females on creatine (p = 0.067, Q = 3.366). Additionally, males who consumed creatine combined with resistance training significantly increased both upper- and lower-body strength, whereas females showed no significant gains. There was a trend indicating greater lower-body strength gains from high-dose creatine compared with lower doses (p = 0.068, Q = 3.341). No other variables influenced the effect of creatine supplementation. In conclusions, creatine supplementation with resistance training enhances upper- and lower-body muscle strength in adults aged < 50, with greater benefits likely to be seen in males than females.
Collapse
Affiliation(s)
- Ziyu Wang
- China Swimming College, Beijing Sport University, Beijing 100084, China
| | - Bopeng Qiu
- School of Strength and Conditioning Training, Beijing Sport University, Beijing 100084, China
| | - Ruoling Li
- China Swimming College, Beijing Sport University, Beijing 100084, China
| | - Yunzhi Han
- School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China
| | - Carl Petersen
- Faculty of Health, University of Canterbury, Christchurch 8041, New Zealand
| | - Shuting Liu
- School of Strength and Conditioning Training, Beijing Sport University, Beijing 100084, China
| | - Yinkai Zhang
- China Wushu School, Beijing Sport University, Beijing 100084, China
| | - Chang Liu
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S 0A2, Canada
| | - Juan Del Coso
- Sport Sciences Research Centre, Rey Juan Carlos University, 28943 Fuenlabrada, Spain
| |
Collapse
|
5
|
Redwood-Sawyerr C, Howe G, Evans Theodore A, Nesbeth DN. Genetically Encoded Trensor Circuits Report HeLa Cell Treatment with Polyplexed Plasmid DNA and Small-Molecule Transfection Modulators. ACS Synth Biol 2024; 13:3163-3172. [PMID: 39240234 PMCID: PMC11494703 DOI: 10.1021/acssynbio.4c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/07/2024]
Abstract
HeLa cell transfection with plasmid DNA (pDNA) is widely used to materialize biologicals and as a preclinical test of nucleic acid-based vaccine efficacy. We sought to genetically encode mammalian transfection sensor (Trensor) circuits and test their utility in HeLa cells for detecting molecules and methods for their propensity to influence transfection. We intended these Trensor circuits to be triggered if their host cell was treated with polyplexed pDNA or certain small-molecule modulators of transfection. We prioritized three promoters, implicated by others in feedback responses as cells import and process foreign material and stably integrated each into the genomes of three different cell lines, each upstream of a green fluorescent protein (GFP) open reading frame within a transgene. All three Trensor circuits showed an increase in their GFP expression when their host HeLa cells were incubated with pDNA and the degraded polyamidoamine dendrimer reagent, SuperFect. We next experimentally demonstrated the modulation of PEI-mediated HeLa cell transient transfection by four different small molecules, with Trichostatin A (TSA) showing the greatest propensity to boost transgene expression. The Trensor circuit based on the TRA2B promoter (Trensor-T) was triggered by incubation with TSA alone and not the other three small molecules. These data suggest that mammalian reporter circuits could enable low-cost, high-throughput screening to identify novel transfection methods and reagents without the need to perform actual transfections requiring costly plasmids or expensive fluorescent labels.
Collapse
Affiliation(s)
- Chileab Redwood-Sawyerr
- Department of Biochemical
Engineering, University College London, Bernard Katz Building, London WC1E 6BT, U.K.
| | - Geoffrey Howe
- Department of Biochemical
Engineering, University College London, Bernard Katz Building, London WC1E 6BT, U.K.
| | - Andalucia Evans Theodore
- Department of Biochemical
Engineering, University College London, Bernard Katz Building, London WC1E 6BT, U.K.
| | - Darren N. Nesbeth
- Department of Biochemical
Engineering, University College London, Bernard Katz Building, London WC1E 6BT, U.K.
| |
Collapse
|
6
|
Gonzalez DE, Forbes SC, Zapp A, Jagim A, Luedke J, Dickerson BL, Root A, Gil A, Johnson SE, Coles M, Brager A, Sowinski RJ, Candow DG, Kreider RB. Fueling the Firefighter and Tactical Athlete with Creatine: A Narrative Review of a Key Nutrient for Public Safety. Nutrients 2024; 16:3285. [PMID: 39408252 PMCID: PMC11478539 DOI: 10.3390/nu16193285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Firefighters, tactical police officers, and warriors often engage in periodic, intermittent, high-intensity physical work in austere environmental conditions and have a heightened risk of premature mortality. In addition, tough decision-making challenges, routine sleep deprivation, and trauma exacerbate this risk. Therefore, identifying strategies to bolster these personnel's health and occupational performance is critical. Creatine monohydrate (CrM) supplementation may offer several benefits to firefighters and tactical athletes (e.g., police, security, and soldiers) due to its efficacy regarding physical performance, muscle, cardiovascular health, mental health, and cognitive performance. Methods: We conducted a narrative review of the literature with a focus on the benefits and application of creatine monohydrate among firefighters. Results: Recent evidence demonstrates that CrM can improve anaerobic exercise capacity and muscular fitness performance outcomes and aid in thermoregulation, decision-making, sleep, recovery from traumatic brain injuries (TBIs), and mental health. Emerging evidence also suggests that CrM may confer an antioxidant/anti-inflammatory effect, which may be particularly important for firefighters and those performing tactical occupations exposed to oxidative and physiological stress, which can elicit systemic inflammation and increase the risk of chronic diseases. Conclusions: This narrative review highlights the potential applications of CrM for related tactical occupations, with a particular focus on firefighters, and calls for further research into these populations.
Collapse
Affiliation(s)
- Drew E. Gonzalez
- Exercise and Sport Nutrition Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.L.D.); (S.E.J.); (R.J.S.); (R.B.K.)
- Tactical Athlete Research Unit, Texas A&M University, College Station, TX 77843, USA;
| | - Scott C. Forbes
- Department of Physical Education Studies, Faculty of Education, Brandon University, Brandon, MB R7A 6A9, Canada;
| | | | - Andrew Jagim
- Sports Medicine, Mayo Clinic Health System, La Crosse, WI 54601, USA;
| | - Joel Luedke
- Olmsted Medical Center-Sports Medicine, La Crosse, WI 54601, USA;
| | - Broderick L. Dickerson
- Exercise and Sport Nutrition Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.L.D.); (S.E.J.); (R.J.S.); (R.B.K.)
| | | | - Adriana Gil
- College of Medicine, University of Houston, Houston, TX 77021, USA;
| | - Sarah E. Johnson
- Exercise and Sport Nutrition Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.L.D.); (S.E.J.); (R.J.S.); (R.B.K.)
- Tactical Athlete Research Unit, Texas A&M University, College Station, TX 77843, USA;
| | - Macilynn Coles
- Tactical Athlete Research Unit, Texas A&M University, College Station, TX 77843, USA;
| | - Allison Brager
- U.S. Army John F. Kennedy Special Warfare Center and School, Fort Liberty, NC 48397, USA;
| | - Ryan J. Sowinski
- Exercise and Sport Nutrition Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.L.D.); (S.E.J.); (R.J.S.); (R.B.K.)
| | - Darren G. Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S 0A2, Canada;
| | - Richard B. Kreider
- Exercise and Sport Nutrition Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.L.D.); (S.E.J.); (R.J.S.); (R.B.K.)
| |
Collapse
|
7
|
Zheng T, Kotol D, Sjöberg R, Mitsios N, Uhlén M, Zhong W, Edfors F, Mulder J. Characterization of reduced astrocyte creatine kinase levels in Alzheimer's disease. Glia 2024; 72:1590-1603. [PMID: 38856187 DOI: 10.1002/glia.24569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024]
Abstract
The creatine-phosphocreatine cycle serves as a crucial temporary energy buffering system in the brain, regulated by brain creatine kinase (CKB), in maintaining Adenosine triphosphate (ATP) levels. Alzheimer's disease (AD) has been linked to increased CKB oxidation and loss of its regulatory function, although specific pathological processes and affected cell types remain unclear. In our study, cerebral cortex samples from individuals with AD, dementia with Lewy bodies (DLB), and age-matched controls were analyzed using antibody-based methods to quantify CKB levels and assess alterations associated with disease processes. Two independently validated antibodies exclusively labeled astrocytes in the human cerebral cortex. Combining immunofluorescence (IF) and mass spectrometry (MS), we explored CKB availability in AD and DLB cases. IF and Western blot analysis demonstrated a loss of CKB immunoreactivity correlated with increased plaque load, severity of tau pathology, and Lewy body pathology. However, transcriptomics data and targeted MS demonstrated unaltered total CKB levels, suggesting posttranslational modifications (PTMs) affecting antibody binding. This aligns with altered efficiency at proteolytic cleavage sites indicated in the targeted MS experiment. These findings highlight that the proper function of astrocytes, understudied in the brain compared with neurons, is highly affected by PTMs. Reduction in ATP levels within astrocytes can disrupt ATP-dependent processes, such as the glutamate-glutamine cycle. As CKB and the creatine-phosphocreatine cycle are important in securing constant ATP availability, PTMs in CKB, and astrocyte dysfunction may disturb homeostasis, driving excitotoxicity in the AD brain. CKB and its activity could be promising biomarkers for monitoring early-stage energy deficits in AD.
Collapse
Affiliation(s)
- Tianyu Zheng
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - David Kotol
- Department of Proteomics and Nanobiotechnology, Royal Institute of Technology, Stockholm, Sweden
| | - Rebecca Sjöberg
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas Mitsios
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mathias Uhlén
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Proteomics and Nanobiotechnology, Royal Institute of Technology, Stockholm, Sweden
| | - Wen Zhong
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Fredrik Edfors
- Department of Proteomics and Nanobiotechnology, Royal Institute of Technology, Stockholm, Sweden
| | - Jan Mulder
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Li Y, Wu Y, Li H, Wang M, Gao Y, Pei S, Liu S, Liu Z, Liu Z, Men L. UPLC-QTOF-MS based metabolomics unravels the modulatory effect of ginseng water extracts on rats with Qi-deficiency. J Pharm Biomed Anal 2024; 242:116019. [PMID: 38382315 DOI: 10.1016/j.jpba.2024.116019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
Ginseng is commonly used as a nutritional supplement and daily wellness product due to its ability to invigorate qi. As a result, individuals with Qi-deficiency often use ginseng as a health supplement. Ginsenosides and polysaccharides are the primary components of ginseng. However, the therapeutic effects and mechanisms of action of these components in Qi-deficiency remain unclear. This study aimed to determine the modulatory effects and mechanisms of ginseng water extract, ginsenosides, and ginseng polysaccharides in a rat model of Qi-deficiency using metabolomics and network analysis. The rat model of Qi-deficiency was established via swimming fatigue and a restricted diet. Oral administration of different ginseng water extracts for 30 days primarily alleviated oxidative stress and disrupted energy metabolism and immune response dysfunction caused by Qi-deficiency in rats. Ultra-high-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) was used for untargeted serum metabolomic analysis. Based on the analysis results, the active constituents of ginseng significantly reversed the changes in serum biomarkers related to Qi-deficiency in rats, particularly energy, amino acid, and unsaturated fatty acid metabolism. Furthermore, analysis of the metabolite-gene network suggested that the anti-Qi-deficiency effects of the ginseng components were mainly associated with toll-like receptor (TLR) signaling and inflammatory response. Additional verification revealed that treatment with the ginseng components effectively reduced the inflammatory response and activation of the myocardial TLR4/NF-κB pathway induced by Qi-deficiency, especially the ginseng water extracts. Therefore, ginseng could be an effective preventive measure against the progression of Qi-deficiency by regulating metabolic and inflammatory responses.
Collapse
Affiliation(s)
- Yanyi Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Yi Wu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China.
| | - Hanlin Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Meiyuan Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Yang Gao
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Shuhua Pei
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130021, PR China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130021, PR China
| | - Zhongying Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Lihui Men
- College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
9
|
Davies TW, Watson N, Pilkington JJ, McClelland TJ, Azzopardi G, Pearse RM, Prowle J, Puthucheary Z. Creatine supplementation for optimization of physical function in the patient at risk of functional disability: A systematic review and meta-analysis. JPEN J Parenter Enteral Nutr 2024; 48:389-405. [PMID: 38417175 DOI: 10.1002/jpen.2607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/22/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND The efficacy of creatine replacement through supplementation for the optimization of physical function in the population at risk of functional disability is unclear. METHODS We conducted a systematic literature search of MEDLINE, EMBASE, the Cochrane Library, and CINAHL from inception to November 2022. Studies included were randomized controlled trials (RCTs) comparing creatine supplementation with placebos in older adults and adults with chronic disease. The primary outcome was physical function measured by the sit-to-stand test after pooling data using random-effects modeling. We also performed a Bayesian meta-analysis to describe the treatment effect in probability terms. Secondary outcomes included other measures of physical function, muscle function, and body composition. The risk of bias was assessed using the Cochrane risk-of-bias tool. RESULTS We identified 33 RCTs, comprising 1076 participants. From six trials reporting the primary outcome, the pooled standardized mean difference (SMD) was 0.51 (95% confidence interval [CI]: 0.01-1.00; I2 = 62%; P = 0.04); using weakly informative priors, the posterior probability that creatine supplementation improves physical function was 66.7%. Upper-body muscle strength (SMD: 0.25; 95% CI: 0.06-0.44; I2 = 0%; P = 0.01), handgrip strength (SMD 0.23; 95% CI: 0.01-0.45; I2 = 0%; P = 0.04), and lean tissue mass (MD 1.08 kg; 95% CI: 0.77-1.38; I2 = 26%; P < 0.01) improved with creatine supplementation. The quality of evidence for all outcomes was low or very low because of a high risk of bias. CONCLUSION Creatine supplementation improves sit-to-stand performance, muscle function, and lean tissue mass. It is crucial to conduct high-quality prospective RCTs to confirm these hypotheses (PROSPERO number, CRD42023354929).
Collapse
Affiliation(s)
- Thomas W Davies
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
- Adult Critical Care Unit, Royal London Hospital, London, UK
| | - Naomi Watson
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
- Adult Critical Care Unit, Royal London Hospital, London, UK
| | - James J Pilkington
- Centre for Bioscience, Manchester Metropolitan University, John Dalton Building, Manchester, UK
| | - Thomas J McClelland
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
- Adult Critical Care Unit, Royal London Hospital, London, UK
| | - Giada Azzopardi
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
- Adult Critical Care Unit, Royal London Hospital, London, UK
| | - Rupert M Pearse
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
- Adult Critical Care Unit, Royal London Hospital, London, UK
| | - John Prowle
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
- Adult Critical Care Unit, Royal London Hospital, London, UK
| | - Zudin Puthucheary
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
- Adult Critical Care Unit, Royal London Hospital, London, UK
| |
Collapse
|
10
|
Branovets J, Soodla K, Vendelin M, Birkedal R. Rat and mouse cardiomyocytes show subtle differences in creatine kinase expression and compartmentalization. PLoS One 2023; 18:e0294718. [PMID: 38011179 PMCID: PMC10681188 DOI: 10.1371/journal.pone.0294718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Creatine kinase (CK) and adenylate kinase (AK) are energy transfer systems. Different studies on permeabilized cardiomyocytes suggest that ADP-channelling from mitochondrial CK alone stimulates respiration to its maximum, VO2_max, in rat but not mouse cardiomyocytes. Results are ambiguous on ADP-channelling from AK to mitochondria. This study was undertaken to directly compare the CK and AK systems in rat and mouse hearts. In homogenates, we assessed CK- and AK-activities, and the CK isoform distribution. In permeabilized cardiomyocytes, we assessed mitochondrial respiration stimulated by ADP from CK and AK, VO2_CK and VO2_AK, respectively. The ADP-channelling from CK or AK to mitochondria was assessed by adding PEP and PK to competitively inhibit the respiration rate. We found that rat compared to mouse hearts had a lower aerobic capacity, higher VO2_CK/VO2_max, and different CK-isoform distribution. Although rat hearts had a larger fraction of mitochondrial CK, less ADP was channeled from CK to the mitochondria. This suggests different intracellular compartmentalization in rat and mouse cardiomyocytes. VO2_AK/VO2_max was similar in mouse and rat cardiomyocytes, and AK did not channel ADP to the mitochondria. In the absence of intracellular compartmentalization, the AK- and CK-activities in homogenate should have been similar to the ADP-phosphorylation rates estimated from VO2_AK and VO2_CK in permeabilized cardiomyocytes. Instead, we found that the ADP-phosphorylation rates estimated from permeabilized cardiomyocytes were 2 and 9 times lower than the activities recorded in homogenate for CK and AK, respectively. Our results highlight the importance of energetic compartmentalization in cardiac metabolic regulation and signalling.
Collapse
Affiliation(s)
- Jelena Branovets
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Kärol Soodla
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Marko Vendelin
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Rikke Birkedal
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
11
|
Fear EJ, Torkelsen FH, Zamboni E, Chen K, Scott M, Jeffery G, Baseler H, Kennerley AJ. Use of 31 P magnetisation transfer magnetic resonance spectroscopy to measure ATP changes after 670 nm transcranial photobiomodulation in older adults. Aging Cell 2023; 22:e14005. [PMID: 37803929 PMCID: PMC10652330 DOI: 10.1111/acel.14005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023] Open
Abstract
Mitochondrial function declines with age, and many pathological processes in neurodegenerative diseases stem from this dysfunction when mitochondria fail to produce the necessary energy required. Photobiomodulation (PBM), long-wavelength light therapy, has been shown to rescue mitochondrial function in animal models and improve human health, but clinical uptake is limited due to uncertainty around efficacy and the mechanisms responsible. Using 31 P magnetisation transfer magnetic resonance spectroscopy (MT-MRS) we quantify, for the first time, the effects of 670 nm PBM treatment on healthy ageing human brains. We find a significant increase in the rate of ATP synthase flux in the brain after PBM in a cohort of older adults. Our study provides initial evidence of PBM therapeutic efficacy for improving mitochondrial function and restoring ATP flux with age, but recognises that wider studies are now required to confirm any resultant cognitive benefits.
Collapse
Affiliation(s)
- Elizabeth J. Fear
- Hull York Medical SchoolUniversity of YorkYorkUK
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | | | - Elisa Zamboni
- Department of PsychologyUniversity of YorkYorkUK
- School of PsychologyUniversity of NottinghamNottinghamUK
| | | | - Martin Scott
- Department of PsychologyUniversity of YorkYorkUK
- Department of PsychologyStanford UniversityStanfordCaliforniaUSA
| | - Glenn Jeffery
- Faculty of Brain SciencesInstitute of Ophthalmology, UCLLondonUK
| | - Heidi Baseler
- Hull York Medical SchoolUniversity of YorkYorkUK
- Department of PsychologyUniversity of YorkYorkUK
| | - Aneurin J. Kennerley
- Department of ChemistryUniversity of YorkYorkUK
- Institute of SportManchester Metropolitan UniversityManchesterUK
| |
Collapse
|
12
|
Fam96b recruits brain-type creatine kinase to fuel mitotic spindle formation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119410. [PMID: 36503010 DOI: 10.1016/j.bbamcr.2022.119410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
Mitosis is a complicated and ordered process with high energy demands and metabolite fluxes. Cytosolic creatine kinase (CK), an enzyme involved in ATP homeostasis, has been shown to be essential to chromosome movement during mitotic anaphase in sea urchin. However, it remains elusive for the molecular mechanism underlying the recruitment of cytosolic CK by the mitotic apparatus. In this study, Fam96b/MIP18, a component of the MMXD complex with a function in Fe/S cluster supply, was identified as a brain-type CK (CKB)-binding protein. The binding of Fam96b with CKB was independent of the presence of CKB substrates and did not interfere with CKB activity. Fam96b was prone to oligomerize via the formation of intermolecular disulfide bonds, while the binding of enzymatically active CKB could modulate Fam96b oligomerization. Oligomerized Fam96b recruited CKB and the MMXD complex to associate with the mitotic spindle. Depletion of Fam96b or CKB by siRNA in the HeLa cells led to mitotic defects, which further resulted in retarded cell proliferation, increased cell death and aberrant cell cycle progression. Rescue experiments indicated that both Fam96b oligomerization and CKB activity were essential to the proper formation of mitotic spindle. These findings suggest that Fam96b may act as a scaffold protein to coordinate the supply and homeostasis of ATP and Fe/S clusters during mitosis.
Collapse
|
13
|
Armstrong FA, Cheng B, Herold RA, Megarity CF, Siritanaratkul B. From Protein Film Electrochemistry to Nanoconfined Enzyme Cascades and the Electrochemical Leaf. Chem Rev 2022; 123:5421-5458. [PMID: 36573907 PMCID: PMC10176485 DOI: 10.1021/acs.chemrev.2c00397] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein film electrochemistry (PFE) has given unrivalled insight into the properties of redox proteins and many electron-transferring enzymes, allowing investigations of otherwise ill-defined or intractable topics such as unstable Fe-S centers and the catalytic bias of enzymes. Many enzymes have been established to be reversible electrocatalysts when attached to an electrode, and further investigations have revealed how unusual dependences of catalytic rates on electrode potential have stark similarities with electronics. A special case, the reversible electrochemistry of a photosynthetic enzyme, ferredoxin-NADP+ reductase (FNR), loaded at very high concentrations in the 3D nanopores of a conducting metal oxide layer, is leading to a new technology that brings PFE to myriad enzymes of other classes, the activities of which become controlled by the primary electron exchange. This extension is possible because FNR-based recycling of NADP(H) can be coupled to a dehydrogenase, and thence to other enzymes linked in tandem by the tight channelling of cofactors and intermediates within the nanopores of the material. The earlier interpretations of catalytic wave-shapes and various analogies with electronics are thus extended to initiate a field perhaps aptly named "cascade-tronics", in which the flow of reactions along an enzyme cascade is monitored and controlled through an electrochemical analyzer. Unlike in photosynthesis where FNR transduces electron transfer and hydride transfer through the unidirectional recycling of NADPH, the "electrochemical leaf" (e-Leaf) can be used to drive reactions in both oxidizing and reducing directions. The e-Leaf offers a natural way to study how enzymes are affected by nanoconfinement and crowding, mimicking the physical conditions under which enzyme cascades operate in living cells. The reactions of the trapped enzymes, often at very high local concentration, are thus studied electrochemically, exploiting the potential domain to control rates and direction and the current-rate analogy to derive kinetic data. Localized NADP(H) recycling is very efficient, resulting in very high cofactor turnover numbers and new opportunities for controlling and exploiting biocatalysis.
Collapse
Affiliation(s)
- Fraser A. Armstrong
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Beichen Cheng
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Ryan A. Herold
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Clare F. Megarity
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Bhavin Siritanaratkul
- Stephenson Institute for Renewable Energy and the Department of Chemistry, University of Liverpool, Liverpool L69 7ZF, United Kingdom
| |
Collapse
|
14
|
An HE, Choi TJ, Kim CB. Comparative Transcriptome Analysis of Eriocheir sinensis from Wild Habitats in Han River, Korea. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122027. [PMID: 36556395 PMCID: PMC9781331 DOI: 10.3390/life12122027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Eriocheir sinensis is an euryhaline crab found from East Asia to Europe and North America. This species can live in freshwater and seawater due to the unique physiological characteristics of their life cycle, which allows them to adapt and inhabit different habitats in a wide range of environments. Despite the wealth of studies focusing on adaptation mechanism of E. sinensis to specific environmental factors, the adaptation mechanisms to wild habitats with coexisting environmental factors are not well understood. In this study, we conducted a transcriptome analysis to investigate gene expression differences related to habitat adaptation of E. sinensis from two wild habitats with different environmental factors in the Han River, Korea. A total of 138,261 unigenes were analyzed, of which 228 were analyzed as differentially expressed genes (DEGs) between the two wild habitats. Among 228 DEGs, 110 DEGs were annotated against databases; most DEGs were involved in energy metabolism, immunity, and osmoregulation. Moreover, DEG enrichment analysis showed that upregulated genes were related to biosynthesis, metabolism, and immunity in an habitat representing relatively high salinity whereas downregulated genes were related to ion transport and hypoxia response in habitats with relatively low salinity and dissolved oxygen. The present findings can serve as foundation for future E. sinensis culture or conservation approaches in natural conditions.
Collapse
Affiliation(s)
| | | | - Chang-Bae Kim
- Correspondence: ; Tel.: +82-(0)2-2287-5288; Fax: +82-(0)2-2287-0070
| |
Collapse
|
15
|
Nersesova LS, Petrosyan MS, Arutjunyan AV. Neuroprotective Potential of Creatine. Hidden Resources of Its Therapeutic and Preventive Use. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Interaction Between Caffeine and Creatine When Used as Concurrent Ergogenic Supplements: A Systematic Review. Int J Sport Nutr Exerc Metab 2022; 32:285-295. [PMID: 35016154 DOI: 10.1123/ijsnem.2021-0262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 11/18/2022]
Abstract
There is some controversy regarding the interactions between creatine (CRE) and caffeine (CAF) supplements. The aim of this systematic review was to study whether such ergogenic interaction occurs and to analyze the protocol to optimize their synchronous use. The PubMed, Web of Science, MEDLINE, CINAHL, and SPORTDiscus databases were searched until November 2021 following the PRISMA guidelines. Ten studies were included. Three studies observed that CRE loading before an acute dose of CAF before exercise did not interfere in the beneficial effect of CAF, whereas one study reported that only an acute supplementation (SUP) of CAF was beneficial but not the acute SUP of both. When chronic SUP with CRE + CAF was used, two studies reported that CAF interfered in the beneficial effect of CRE, whereas three studies did not report interaction between concurrent SUP, and one study reported synergy. Possible mechanisms of interaction are opposite effects on relaxation time and gastrointestinal distress derived from concurrent SUP. CRE loading does not seem to interfere in the acute effect of CAF. However, chronic SUP of CAF during CRE loading could interfere in the beneficial effect of CRE.
Collapse
|
17
|
Wang C, Kim K, Yu X. Rapid In Vivo Quantification of Creatine Kinase Activity by Phosphorous-31 Magnetic Resonance Spectroscopic Fingerprinting ( 31P-MRSF). Methods Mol Biol 2022; 2393:597-609. [PMID: 34837201 DOI: 10.1007/978-1-0716-1803-5_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Creatine kinase (CK) plays an important role in tissue metabolism by providing a buffering mechanism for maintaining a constant supply of adenosine triphosphate (ATP) during metabolic perturbations. Phosphorous-31 magnetic resonance spectroscopy (31P-MRS) employing magnetization transfer techniques is the only noninvasive method for measuring the rate of ATP synthesis via creatine kinase. However, due to the low concentrations of phosphate metabolites, current 31P-MRS methods require long acquisition time to achieve adequate measurement accuracy. In this chapter, we present a new framework of data acquisition and parameter estimation, the 31P magnetic resonance spectroscopic fingerprinting (31P-MRSF) method, for rapid quantification of CK reaction rate constant in the hindlimb of small laboratory animals.
Collapse
Affiliation(s)
- Charlie Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Kihwan Kim
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
18
|
Sandebring-Matton A, Axenhus M, Bogdanovic N, Winblad B, Schedin-Weiss S, Nilsson P, Tjernberg LO. Microdissected Pyramidal Cell Proteomics of Alzheimer Brain Reveals Alterations in Creatine Kinase B-Type, 14-3-3-γ, and Heat Shock Cognate 71. Front Aging Neurosci 2021; 13:735334. [PMID: 34867272 PMCID: PMC8641652 DOI: 10.3389/fnagi.2021.735334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022] Open
Abstract
Novel insights on proteins involved in Alzheimer’s disease (AD) are needed. Since multiple cell types and matrix components are altered in AD, bulk analysis of brain tissue maybe difficult to interpret. In the current study, we isolated pyramidal cells from the cornu ammonis 1 (CA1) region of the hippocampus from five AD and five neurologically healthy donors using laser capture microdissection (LCM). The samples were analyzed by proteomics using 18O-labeled internal standard and nano-high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) for relative quantification. Fold change between AD and control was calculated for the proteins that were identified in at least two individual proteomes from each group. From the 10 cases analyzed, 62 proteins were identified in at least two AD cases and two control cases. Creatine kinase B-type (CKB), 14-3-3-γ, and heat shock cognate 71 (Hsc71), which have not been extensively studied in the context of the human AD brain previously, were selected for further studies by immunohistochemistry (IHC). In hippocampus, semi-quantitative measures of IHC staining of the three proteins confirmed the findings from our proteomic analysis. Studies of the same proteins in the frontal cortex revealed that the alterations remained for CKB and 14-3-3-γ but not for Hsc71. Protein upregulation in CA1 neurons of final stage AD is either a result of detrimental, pathological effects, or from cell-specific protective response mechanisms in surviving neurons. Based on previous findings from experimental studies, CKB and Hsc71 likely exhibit protective effects, whereas 14-3-3-γ may represent a detrimental pathway. These new players could reflect pathways of importance for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Anna Sandebring-Matton
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.,Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.,Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, United Kingdom
| | - Michael Axenhus
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.,Theme Inflammation and Aging, Karolinska University Hospital, Huddinge, Sweden
| | - Nenad Bogdanovic
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.,Theme Inflammation and Aging, Karolinska University Hospital, Huddinge, Sweden
| | - Bengt Winblad
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Sophia Schedin-Weiss
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Per Nilsson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Lars O Tjernberg
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.,Clinical Chemistry, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
19
|
CKB inhibits epithelial-mesenchymal transition and prostate cancer progression by sequestering and inhibiting AKT activation. Neoplasia 2021; 23:1147-1165. [PMID: 34706306 PMCID: PMC8551525 DOI: 10.1016/j.neo.2021.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 12/26/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) contributes to tumor invasion, metastasis and drug resistance. AKT activation is key in a number of cellular processes. While many positive regulators for either EMT or AKT activation have been reported, few negative regulators are established. Through kinase cDNA screen, we identified brain-type creatine kinase (CKB or BCK) as a potent suppressor for both. As a ubiquitously expressed kinase in normal tissues, CKB is significantly downregulated in several solid cancer types. Lower CKB expression is significantly associated with worse prognosis. Phenotypically, CKB overexpression suppresses, while its silencing promotes, EMT and cell migration, xenograft tumor growth and metastasis of prostate cancer cells. AKT activation is one of the most prominent signaling events upon CKB silencing in prostate cancer cells, which is in line with prostate cancer TCGA data. EMT enhanced by CKB silencing is abolished by AKT inhibition. Mechanistically, CKB interacts with AKT and sequestrates it from activation by mTOR. We further elucidated that an 84aa fragment at C-terminus of CKB protein interacts with AKT's PH domain. Ectopic expression of the 84aa CKB fragment inhibits AKT activation, EMT and cell proliferation. Interestingly, molecular dynamics simulation on crystal structures of AKT and CKB independently demonstrates that AKT's PH domain and CKB's 84aa fragment establish their major interaction interface. In summary, we have discovered CKB as a negative regulator of EMT and AKT activation, revealing a new mode of their regulation . We have also demonstrated that CKB downregulation is a poor prognosticator, which is sufficient to promote prostate cancer progression.
Collapse
|
20
|
Biomarkers Utility: At the Borderline between Cardiology and Neurology. J Cardiovasc Dev Dis 2021; 8:jcdd8110139. [PMID: 34821692 PMCID: PMC8621331 DOI: 10.3390/jcdd8110139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 12/21/2022] Open
Abstract
Biomarkers are important diagnostic and prognostic tools as they provide results in a short time while still being an inexpensive, reproducible and accessible method. Their well-known benefits have placed them at the forefront of research in recent years, with new and innovative discoveries being implemented. Cardiovascular and neurological diseases often share common risk factors and pathological pathways which may play an important role in the use and interpretation of biomarkers' values. Among the biomarkers used extensively in clinical practice in cardiology, hs-TroponinT, CK-MB and NTproBNP have been shown to be strongly influenced by multiple neurological conditions. Newer ones such as galectin-3, lysophosphatidylcholine, copeptin, sST2, S100B, myeloperoxidase and GDF-15 have been extensively studied in recent years as alternatives with an increased sensitivity for cardiovascular diseases, but also with significant results in the field of neurology. Thus, given their low specificity, the values interpretation must be correlated with the clinical judgment and other available investigations.
Collapse
|
21
|
Lujan BJ, Singh M, Singh A, Renden RB. Developmental shift to mitochondrial respiration for energetic support of sustained transmission during maturation at the calyx of Held. J Neurophysiol 2021; 126:976-996. [PMID: 34432991 PMCID: PMC8560424 DOI: 10.1152/jn.00333.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
A considerable amount of energy is expended following presynaptic activity to regenerate electrical polarization and maintain efficient release and recycling of neurotransmitter. Mitochondria are the major suppliers of neuronal energy, generating ATP via oxidative phosphorylation. However, the specific utilization of energy from cytosolic glycolysis rather than mitochondrial respiration at the presynaptic terminal during synaptic activity remains unclear and controversial. We use a synapse specialized for high-frequency transmission in mice, the calyx of Held, to test the sources of energy used to maintain energy during short activity bursts (<1 s) and sustained neurotransmission (30-150 s). We dissect the role of presynaptic glycolysis versus mitochondrial respiration by acutely and selectively blocking these ATP-generating pathways in a synaptic preparation where mitochondria and synaptic vesicles are prolific, under near-physiological conditions. Surprisingly, if either glycolysis or mitochondrial ATP production is intact, transmission during repetitive short bursts of activity is not affected. In slices from young animals before the onset of hearing, where the synapse is not yet fully specialized, both glycolytic and mitochondrial ATP production are required to support sustained, high-frequency neurotransmission. In mature synapses, sustained transmission relies exclusively on mitochondrial ATP production supported by bath lactate, but not glycolysis. At both ages, we observe that action potential propagation begins to fail before defects in synaptic vesicle recycling. Our data describe a specific metabolic profile to support high-frequency information transmission at the mature calyx of Held, shifting during postnatal synaptic maturation from glycolysis to rely on monocarboxylates as a fuel source.NEW & NOTEWORTHY We dissect the role of presynaptic glycolysis versus mitochondrial respiration in supporting high-frequency neurotransmission, by acutely blocking these ATP-generating pathways at a synapse tuned for high-frequency transmission. We find that massive energy expenditure is required to generate failure when only one pathway is inhibited. Action potential propagation is lost before impaired synaptic vesicle recycling. Synaptic transmission is exclusively dependent on oxidative phosphorylation in mature synapses, indicating presynaptic glycolysis may be dispensable for ATP maintenance.
Collapse
Affiliation(s)
- Brendan J Lujan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Mahendra Singh
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Abhyudai Singh
- Electrical & Computer Engineering, University of Delaware, Newark, Delaware
| | - Robert B Renden
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada
| |
Collapse
|
22
|
Anders JPV, Neltner TJ, Smith RW, Keller JL, Housh TJ, Daugherty FJ, Tempesta MS, Dash AK, Munt DJ, Schmidt RJ, Johnson GO. The effects of phosphocreatine disodium salts plus blueberry extract supplementation on muscular strength, power, and endurance. J Int Soc Sports Nutr 2021; 18:60. [PMID: 34503541 PMCID: PMC8427883 DOI: 10.1186/s12970-021-00456-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Numerous studies have demonstrated the efficacy of creatine supplementation for improvements in exercise performance. Few studies, however, have examined the effects of phosphocreatine supplementation on exercise performance. Furthermore, while polyphenols have antioxidant and anti-inflammatory properties, little is known regarding the influence of polyphenol supplementation on muscular strength, power, and endurance. Thus, the purpose of the present study was to compare the effects of 28 days of supplementation with phosphocreatine disodium salts plus blueberry extract (PCDSB), creatine monohydrate (CM), and placebo on measures of muscular strength, power, and endurance. METHODS Thirty-three men were randomly assigned to consume either PCDSB, CM, or placebo for 28 days. Peak torque (PT), average power (AP), and percent decline for peak torque (PT%) and average power (AP%) were assessed from a fatigue test consisting of 50 maximal, unilateral, isokinetic leg extensions at 180°·s- 1 before and after the 28 days of supplementation. Individual responses were assessed to examine the proportion of subjects that exceeded a minimal important difference (MID). RESULTS The results demonstrated significant (p < 0.05) improvements in PT for the PCDSB and CM groups from pre- (99.90 ± 22.47 N·m and 99.95 ± 22.50 N·m, respectively) to post-supplementation (119.22 ± 29.87 N·m and 111.97 ± 24.50 N·m, respectively), but no significant (p = 0.112) change for the placebo group. The PCDSB and CM groups also exhibited significant improvements in AP from pre- (140.18 ± 32.08 W and 143.42 ± 33.84 W, respectively) to post-supplementation (170.12 ± 42.68 W and 159.78 ± 31.20 W, respectively), but no significant (p = 0.279) change for the placebo group. A significantly (p < 0.05) greater proportion of subjects in the PCDSB group exceeded the MID for PT compared to the placebo group, but there were no significant (p > 0.05) differences in the proportion of subjects exceeding the MID between the CM and placebo groups or between the CM and PCDSB groups. CONCLUSIONS These findings indicated that for the group mean responses, 28 days of supplementation with both PCDSB and CM resulted in increases in PT and AP. The PCDSB, however, may have an advantage over CM when compared to the placebo group for the proportion of individuals that respond favorably to supplementation with meaningful increases in muscular strength.
Collapse
Affiliation(s)
- John Paul V Anders
- Department of Nutrition and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA.
| | - Tyler J Neltner
- Department of Nutrition and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| | - Robert W Smith
- Department of Nutrition and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| | - Joshua L Keller
- Department of Health, Kinesiology and Sport, University of South Alabama, Mobile, AL, 36688, USA
| | - Terry J Housh
- Department of Nutrition and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| | | | | | - Alekha K Dash
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Omaha, NE, 68178, USA
| | - Daniel J Munt
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Omaha, NE, 68178, USA
| | - Richard J Schmidt
- Department of Nutrition and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| | - Glen O Johnson
- Department of Nutrition and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| |
Collapse
|
23
|
Steinritz D, Lüling R, Siegert M, Mückter H, Popp T, Reinemer P, Gudermann T, Thiermann H, John H. Alkylation of rabbit muscle creatine kinase surface methionine residues inhibits enzyme activity in vitro. Arch Toxicol 2021; 95:3253-3261. [PMID: 34396457 PMCID: PMC8448711 DOI: 10.1007/s00204-021-03137-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/11/2021] [Indexed: 11/30/2022]
Abstract
Creatine kinase (CK) catalyzes the formation of phosphocreatine from adenosine triphosphate (ATP) and creatine. The highly reactive free cysteine residue in the active site of the enzyme (Cys283) is considered essential for the enzymatic activity. In previous studies we demonstrated that Cys283 is targeted by the alkylating chemical warfare agent sulfur mustard (SM) yielding a thioether with a hydroxyethylthioethyl (HETE)-moiety. In the present study, the effect of SM on rabbit muscle CK (rmCK) activity was investigated with special focus on the alkylation of Cys283 and of reactive methionine (Met) residues. For investigation of SM-alkylated amino acids in rmCK, micro liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry measurements were performed using the Orbitrap technology. The treatment of rmCK with SM resulted in a decrease of enzyme activity. However, this decrease did only weakly correlate to the modification of Cys283 but was conclusive for the formation of Met70-HETE and Met179-HETE. In contrast, the activity of mutants of rmCK produced by side-directed mutagenesis that contained substitutions of the respective Met residues (Met70Ala, Met179Leu, and Met70Ala/Met179Leu) was highly resistant against SM. Our results point to a critical role of the surface exposed Met70 and Met179 residues for CK activity.
Collapse
Affiliation(s)
- Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany. .,Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich (LMU), Goethestraße 33, 80366, Munich, Germany. .,Bundeswehr Medical Service Academy, Ingolstädter Straße 240, 80939, Munich, Germany.
| | - Robin Lüling
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany.,Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich (LMU), Goethestraße 33, 80366, Munich, Germany
| | - Markus Siegert
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany.,Proteros Biostructures GmbH, Bunsenstraße 7a, 82152, Planegg, Germany
| | - Harald Mückter
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich (LMU), Goethestraße 33, 80366, Munich, Germany
| | - Tanja Popp
- Bundeswehr Institute of Radiobiology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Peter Reinemer
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany.,AM1 Ventures GmbH, Fasanenstraße 27a, 81247, Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich (LMU), Goethestraße 33, 80366, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany
| |
Collapse
|
24
|
Papegay B, Nuyens V, Albert A, Cherkaoui-Malki M, Andreoletti P, Leo O, Kruys V, Boogaerts JG, Vamecq J. Adenosine Diphosphate and the P2Y13 Receptor Are Involved in the Autophagic Protection of Ex Vivo Perfused Livers From Fasted Rats: Potential Benefit for Liver Graft Preservation. Liver Transpl 2021; 27:997-1006. [PMID: 33306256 DOI: 10.1002/lt.25970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/18/2020] [Accepted: 12/08/2020] [Indexed: 01/13/2023]
Abstract
Studies on how to protect livers perfused ex vivo can help design strategies for hepatoprotection and liver graft preservation. The protection of livers isolated from 24-hour versus 18-hour starved rats has been previously attributed to autophagy, which contributes to the energy-mobilizing capacity ex vivo. Here, we explored the signaling pathways responsible for this protection. In our experimental models, 3 major signaling candidates were considered in view of their abilities to trigger autophagy: high mobility group box 1 (HMGB1), adenosine monophosphate-activated protein kinase (AMPK), and purinergic receptor P2Y13. To this end, ex vivo livers isolated from starved rats were perfused for 135 minutes, after which perfusate samples were studied for protein release and biopsies were performed for evaluating signaling protein contents. For HMGB1, no significant difference was observed between livers isolated from rats starved for 18 and 24 hours at perfusion times of both 0 and 135 minutes. The phosphorylated and total forms of AMPK, but not their ratios, were significantly higher in 24-hour fasted than in 18-hour fasted livers. However, although the level of phosphorylated AMPK increased, perfusing ex vivo 18-hour fasted livers with 1 mM 5-aminoimidazole-4-carboxamide ribonucleotide, an AMPK activator, did not protect the livers. In addition, the adenosine diphosphate (ADP; and not adenosine monophosphate [AMP]) to AMP + ADP + adenosine triphosphate ratio increased in the 24-hour starved livers compared with that in the 18-hour starved livers. Moreover, perfusing 24-hour starved livers with 0.1 mM 2-[(2-chloro-5-nitrophenyl)azo]-5-hydroxy-6-methyl-3-[(phosphonooxy)methyl]-4-pyridinecarboxaldehyde (MRS2211), a specific antagonist of the P2Y13 receptor, induced an increase in cytolysis marker levels in the perfusate samples and a decrease in the levels of autophagic marker microtubule-associated proteins 1 light chain 3 II (LC3II)/actin (and a loss of p62/actin decrease), indicating autophagy inhibition and a loss of protection. The P2Y13 receptor and ADP (a physiological activator of this receptor) are involved in the protection of ex vivo livers. Therapeutic opportunities for improving liver graft preservation through the stimulation of the ADP/P2Y13 receptor axis are further discussed.
Collapse
Affiliation(s)
- Bérengère Papegay
- Divisions of Experimental Medicine (ULB Unit 222), University Hospital Center, Charleroi, Belgium
| | - Vincent Nuyens
- Divisions of Experimental Medicine (ULB Unit 222), University Hospital Center, Charleroi, Belgium
| | - Adelin Albert
- Department of Biostatistics, University Hospital of Liège, Liège, Belgium
| | - Mustapha Cherkaoui-Malki
- BioPeroxIL Laboratory (Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism) EA 7270, University of Bourgogne-Franche Comté, Dijon, France
| | - Pierre Andreoletti
- BioPeroxIL Laboratory (Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism) EA 7270, University of Bourgogne-Franche Comté, Dijon, France
| | - Oberdan Leo
- Laboratory of Immunobiology and ULB Centre for Research in Immunology (U-CRI), Free University of Brussels (ULB), Gosselies, Belgium
| | - Véronique Kruys
- Molecular Biology of the Gene, Department of Molecular Biology, Free University of Brussels (ULB), Gosselies, Belgium
| | - Jean G Boogaerts
- Divisions of Experimental Medicine (ULB Unit 222), University Hospital Center, Charleroi, Belgium
| | - Joseph Vamecq
- Inserm, and Hormonology/Metabolism/Nutrition/Oncology Department of the Centre of Biology and Pathology, Metabolism Branch, University Hospital Center of Lille and EA 7364-RADEME (Rare Developmental and Metabolic Disorders), North France University Lille, Lille, France
| |
Collapse
|
25
|
Sprenger J, Trifan A, Patel N, Vanderbeck A, Bredfelt J, Tajkhorshid E, Rowlett R, Lo Leggio L, Åkerfeldt KS, Linse S. Calmodulin complexes with brain and muscle creatine kinase peptides. Curr Res Struct Biol 2021; 3:121-132. [PMID: 34235492 PMCID: PMC8244255 DOI: 10.1016/j.crstbi.2021.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 01/18/2023] Open
Abstract
Calmodulin (CaM) is a ubiquitous Ca2+ sensing protein that binds to and modulates numerous target proteins and enzymes during cellular signaling processes. A large number of CaM-target complexes have been identified and structurally characterized, revealing a wide diversity of CaM-binding modes. A newly identified target is creatine kinase (CK), a central enzyme in cellular energy homeostasis. This study reports two high-resolution X-ray structures, determined to 1.24 Å and 1.43 Å resolution, of calmodulin in complex with peptides from human brain and muscle CK, respectively. Both complexes adopt a rare extended binding mode with an observed stoichiometry of 1:2 CaM:peptide, confirmed by isothermal titration calorimetry, suggesting that each CaM domain independently binds one CK peptide in a Ca2+-depended manner. While the overall binding mode is similar between the structures with muscle or brain-type CK peptides, the most significant difference is the opposite binding orientation of the peptides in the N-terminal domain. This may extrapolate into distinct binding modes and regulation of the full-length CK isoforms. The structural insights gained in this study strengthen the link between cellular energy homeostasis and Ca2+-mediated cell signaling and may shed light on ways by which cells can 'fine tune' their energy levels to match the spatial and temporal demands.
Collapse
Key Words
- ADP, Adenosine diphosphate
- ATP, Adenosine triphosphate
- CK, Creatine kinase
- CKB, Creatine kinase, brain-type
- CKM, Creatine kinase, muscle-type
- Ca2+, Calcium ion (divalent)
- CaM, Calmodulin
- Calcium signaling
- Calmodulin X-ray structure
- Cellular energy metabolism
- Cr, Creatine
- CrP, Creatine phosphate
- Enzyme regulation
- Fmoc, Fluorenylmethoxycarbonyl
- ITC, Isothermal titration calorimetry
- Isothermal titration calorimetry
- MR, Molecular replacement
- PDB, Protein data bank
Collapse
Affiliation(s)
- Janina Sprenger
- Department of Biochemistry and Structural Biology, Chemical Center, PO Box 124, SE-221 00, Lund, Sweden
- Chemistry Department, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Anda Trifan
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 405 N Matthews, Urbana, IL, 61801, USA
| | - Neal Patel
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, PA, 19041, USA
| | - Ashley Vanderbeck
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, PA, 19041, USA
| | - Jenny Bredfelt
- Department of Biochemistry and Structural Biology, Chemical Center, PO Box 124, SE-221 00, Lund, Sweden
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 405 N Matthews, Urbana, IL, 61801, USA
| | - Roger Rowlett
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Leila Lo Leggio
- Chemistry Department, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Karin S. Åkerfeldt
- Department of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, PA, 19041, USA
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Chemical Center, PO Box 124, SE-221 00, Lund, Sweden
| |
Collapse
|
26
|
Creatine Levels in Patients with Phenylketonuria and Mild Hyperphenylalaninemia: A Pilot Study. Life (Basel) 2021; 11:life11050425. [PMID: 34066566 PMCID: PMC8148514 DOI: 10.3390/life11050425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Creatine (Cr) levels are strongly dependent on diets, including animal-derived proteins. Cr is an important metabolite as it represents a source of stored energy to support physical performance and potentially sustain positive effects such as improving memory or intelligence. This study was planned to assess Cr levels in PKU children adhering to a diet low in phenylalanine (Phe) content and compared with those of children with mild hyperphenylalaninemia (MHP) on a free diet. Methods: This retrospective pilot study analyzed Cr levels from Guthrie cards in 25 PKU and 35 MHP subjects. Anthropomorphic and nutritional data of the study populations were assessed, compared and correlated. Results: Cr levels of PKU subjects were significantly lower than those of MHP subjects and correlated to the low intake of animal proteins. Although no deficiencies in PKU subjects were identified, PKU subjects were found to have a 26-fold higher risk of displaying Cr levels <25° percentile than MHP counterparts. Conclusions: This pilot study suggests that Cr levels might be concerningly low in PKU children adhering to a low-Phe diet. Confirmatory studies are needed in PKU patients of different age groups to assess Cr levels and the potential benefits on physical and intellectual performance of Cr supplementation.
Collapse
|
27
|
Bonilla DA, Kreider RB, Stout JR, Forero DA, Kerksick CM, Roberts MD, Rawson ES. Metabolic Basis of Creatine in Health and Disease: A Bioinformatics-Assisted Review. Nutrients 2021; 13:nu13041238. [PMID: 33918657 PMCID: PMC8070484 DOI: 10.3390/nu13041238] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Creatine (Cr) is a ubiquitous molecule that is synthesized mainly in the liver, kidneys, and pancreas. Most of the Cr pool is found in tissues with high-energy demands. Cr enters target cells through a specific symporter called Na+/Cl−-dependent Cr transporter (CRT). Once within cells, creatine kinase (CK) catalyzes the reversible transphosphorylation reaction between [Mg2+:ATP4−]2− and Cr to produce phosphocreatine (PCr) and [Mg2+:ADP3−]−. We aimed to perform a comprehensive and bioinformatics-assisted review of the most recent research findings regarding Cr metabolism. Specifically, several public databases, repositories, and bioinformatics tools were utilized for this endeavor. Topics of biological complexity ranging from structural biology to cellular dynamics were addressed herein. In this sense, we sought to address certain pre-specified questions including: (i) What happens when creatine is transported into cells? (ii) How is the CK/PCr system involved in cellular bioenergetics? (iii) How is the CK/PCr system compartmentalized throughout the cell? (iv) What is the role of creatine amongst different tissues? and (v) What is the basis of creatine transport? Under the cellular allostasis paradigm, the CK/PCr system is physiologically essential for life (cell survival, growth, proliferation, differentiation, and migration/motility) by providing an evolutionary advantage for rapid, local, and temporal support of energy- and mechanical-dependent processes. Thus, we suggest the CK/PCr system acts as a dynamic biosensor based on chemo-mechanical energy transduction, which might explain why dysregulation in Cr metabolism contributes to a wide range of diseases besides the mitigating effect that Cr supplementation may have in some of these disease states.
Collapse
Affiliation(s)
- Diego A. Bonilla
- Research Division, Dynamical Business & Science Society–DBSS International SAS, Bogotá 110861, Colombia
- Research Group in Biochemistry and Molecular Biology, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
- kDNA Genomics, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
- Correspondence: ; Tel.: +57-320-335-2050
| | - Richard B. Kreider
- Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA;
| | - Jeffrey R. Stout
- Physiology of Work and Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL 32816, USA;
| | - Diego A. Forero
- Professional Program in Sport Training, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia;
| | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, Saint Charles, MO 63301, USA;
| | - Michael D. Roberts
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA;
- Edward via College of Osteopathic Medicine, Auburn, AL 36849, USA
| | - Eric S. Rawson
- Department of Health, Nutrition and Exercise Science, Messiah University, Mechanicsburg, PA 17055, USA;
| |
Collapse
|
28
|
Zervou S, McAndrew DJ, Whittington HJ, Lake HA, Park KC, Cha KM, Ostrowski PJ, Eykyn TR, Schneider JE, Neubauer S, Lygate CA. Subtle Role for Adenylate Kinase 1 in Maintaining Normal Basal Contractile Function and Metabolism in the Murine Heart. Front Physiol 2021; 12:623969. [PMID: 33867998 PMCID: PMC8044416 DOI: 10.3389/fphys.2021.623969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/15/2021] [Indexed: 11/22/2022] Open
Abstract
Aims Adenylate kinase 1 (AK1) catalyses the reaction 2ADP ↔ ATP + AMP, extracting extra energy under metabolic stress and promoting energetic homeostasis. We hypothesised that increased AK1 activity would have negligible effects at rest, but protect against ischaemia/reperfusion (I/R) injury. Methods and Results Cardiac-specific AK1 overexpressing mice (AK1-OE) had 31% higher AK1 activity (P = 0.009), with unchanged total creatine kinase and citrate synthase activities. Male AK1-OE exhibited mild in vivo dysfunction at baseline with lower LV pressure, impaired relaxation, and contractile reserve. LV weight was 19% higher in AK1-OE males due to higher tissue water content in the absence of hypertrophy or fibrosis. AK1-OE hearts had significantly raised creatine, unaltered total adenine nucleotides, and 20% higher AMP levels (P = 0.05), but AMP-activated protein kinase was not activated (P = 0.85). 1H-NMR revealed significant differences in LV metabolite levels compared to wild-type, with aspartate, tyrosine, sphingomyelin, cholesterol all elevated, whereas taurine and triglycerides were significantly lower. Ex vivo global no-flow I/R, caused four-of-seven AK1-OE hearts to develop terminal arrhythmia (cf. zero WT), yet surviving AK1-OE hearts had improved functional recovery. However, AK1-OE did not influence infarct size in vivo and arrhythmias were only observed ex vivo, probably as an artefact of adenine nucleotide loss during cannulation. Conclusion Modest elevation of AK1 may improve functional recovery following I/R, but has unexpected impact on LV weight, function and metabolite levels under basal resting conditions, suggesting a more nuanced role for AK1 underpinning myocardial energy homeostasis and not just as a response to stress.
Collapse
Affiliation(s)
- Sevasti Zervou
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.,British Heart Foundation Centre for Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Debra J McAndrew
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.,British Heart Foundation Centre for Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Hannah J Whittington
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.,British Heart Foundation Centre for Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Hannah A Lake
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.,British Heart Foundation Centre for Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Kyung Chan Park
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.,British Heart Foundation Centre for Research Excellence, University of Oxford, Oxford, United Kingdom.,Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Kuan Minn Cha
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.,British Heart Foundation Centre for Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Philip J Ostrowski
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.,British Heart Foundation Centre for Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Thomas R Eykyn
- British Heart Foundation Centre for Research Excellence, King's College London, St. Thomas Hospital, London, United Kingdom
| | - Jürgen E Schneider
- Experimental and Preclinical Imaging Centre (ePIC), Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.,British Heart Foundation Centre for Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.,British Heart Foundation Centre for Research Excellence, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
29
|
Temiz Karadag D, Cetinarslan B, Kasap M, Canturk NZ, Akpinar G, Canturk Z, Tarkun I, Simsek T, Selek A. Proteomic analysis of thyroid tissue reveals enhanced catabolic activity in Graves' disease compared to toxic multinodular goitre. Cell Biochem Funct 2021; 39:658-666. [PMID: 33728674 DOI: 10.1002/cbf.3632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 11/08/2022]
Abstract
Graves' disease (GD) and toxic multinodular goitre (TMNG) are the most common thyroid diseases which mainly lead to thyrotoxicosis, however, the underlying mechanism of distinct clinical presentations remains unclear. Protein extracts from the thyroid tissue specimens of the patients with GD and TMNG were subjected to Difference Gel Electrophoresis (DIGE). Differentially regulated protein spots were determined by image analysis, and the spots displaying statistically significant differences were identified by Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometer (MALDI-TOF) followed by MASCOT search. Western blot analysis was used to verify changes occurring at the protein levels. The identified proteins were classified based on their functions in metabolic pathways using bioinformatics algorithms. Fifteen proteins showed significant alterations in abundance between the two disease groups. Bioinformatic analysis revealed the differentially regulated proteins were particularly related to catabolism, oxidative stress and especially energy utilization pathways, including glycolysis, proteolysis, ketone body catabolism and other energy metabolism-related pathways. SIGNIFICANCE OF THE STUDY: Previously, GD has been the subject of many studies that performed the proteomics approaches in the orbital tissue samples or tear. This is one of the very few studies that investigate the changes in the proteome of thyroid tissue in GD. We demonstrated mainly the upregulation of catabolic activity-related proteins in patients with GD compared to TMNG. Although it remains to be elucidated, some of these proteins can be used as markers for GD or have a role in the pathogenesis of the disease. Our study contributes the increasing data over time by providing new biomarker candidates for GD.
Collapse
Affiliation(s)
- Duygu Temiz Karadag
- Department of Internal Medicine, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Berrin Cetinarslan
- Department of Endocrinology and Metabolism, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Murat Kasap
- Department of Medical Biology/DEKART Proteomics Laboratory, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Nuh Zafer Canturk
- Department of General Surgery, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Gurler Akpinar
- Department of Medical Biology/DEKART Proteomics Laboratory, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Zeynep Canturk
- Department of Endocrinology and Metabolism, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Ilhan Tarkun
- Department of Endocrinology and Metabolism, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Turgay Simsek
- Department of General Surgery, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Alev Selek
- Department of Endocrinology and Metabolism, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| |
Collapse
|
30
|
Creatine Metabolism in Female Reproduction, Pregnancy and Newborn Health. Nutrients 2021; 13:nu13020490. [PMID: 33540766 PMCID: PMC7912953 DOI: 10.3390/nu13020490] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 12/12/2022] Open
Abstract
Creatine metabolism is an important component of cellular energy homeostasis. Via the creatine kinase circuit, creatine derived from our diet or synthesized endogenously provides spatial and temporal maintenance of intracellular adenosine triphosphate (ATP) production; this is particularly important for cells with high or fluctuating energy demands. The use of this circuit by tissues within the female reproductive system, as well as the placenta and the developing fetus during pregnancy is apparent throughout the literature, with some studies linking perturbations in creatine metabolism to reduced fertility and poor pregnancy outcomes. Maternal dietary creatine supplementation during pregnancy as a safeguard against hypoxia-induced perinatal injury, particularly that of the brain, has also been widely studied in pre-clinical in vitro and small animal models. However, there is still no consensus on whether creatine is essential for successful reproduction. This review consolidates the available literature on creatine metabolism in female reproduction, pregnancy and the early neonatal period. Creatine metabolism is discussed in relation to cellular bioenergetics and de novo synthesis, as well as the potential to use dietary creatine in a reproductive setting. We highlight the apparent knowledge gaps and the research “road forward” to understand, and then utilize, creatine to improve reproductive health and perinatal outcomes.
Collapse
|
31
|
Kim K, Gu Y, Wang CY, Clifford B, Huang S, Liang ZP, Yu X. Quantification of creatine kinase reaction rate in mouse hindlimb using phosphorus-31 magnetic resonance spectroscopic fingerprinting. NMR IN BIOMEDICINE 2021; 34:e4435. [PMID: 33111456 PMCID: PMC8324327 DOI: 10.1002/nbm.4435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/10/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
The goal of this study was to evaluate the accuracy, reproducibility, and efficiency of a 31 P magnetic resonance spectroscopic fingerprinting (31 P-MRSF) method for fast quantification of the forward rate constant of creatine kinase (CK) in mouse hindlimb. The 31 P-MRSF method acquired spectroscopic fingerprints using interleaved acquisition of phosphocreatine (PCr) and γATP with ramped flip angles and a saturation scheme sensitive to chemical exchange between PCr and γATP. Parameter estimation was performed by matching the acquired fingerprints to a dictionary of simulated fingerprints generated from the Bloch-McConnell model. The accuracy of 31 P-MRSF measurements was compared with the magnetization transfer (MT-MRS) method in mouse hindlimb at 9.4 T (n = 8). The reproducibility of 31 P-MRSF was also assessed by repeated measurements. Estimation of the CK rate constant using 31 P-MRSF (0.39 ± 0.03 s-1 ) showed a strong agreement with that using MT-MRS measurements (0.40 ± 0.05 s-1 ). Variations less than 10% were achieved with 2 min acquisition of 31 P-MRSF data. Application of the 31 P-MRSF method to mice subjected to an electrical stimulation protocol detected an increase in CK rate constant in response to stimulation-induced muscle contraction. These results demonstrated the potential of the 31 P-MRSF framework for rapid, accurate, and reproducible quantification of the chemical exchange rate of CK in vivo.
Collapse
Affiliation(s)
- Kihwan Kim
- Department of Biomedical Engineering and Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio
| | - Yuning Gu
- Department of Biomedical Engineering and Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio
| | - Charlie Y. Wang
- Department of Biomedical Engineering and Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio
| | - Bryan Clifford
- Department of Electrical and Computer Engineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Sherry Huang
- Department of Biomedical Engineering and Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio
| | - Zhi-Pei Liang
- Department of Electrical and Computer Engineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Xin Yu
- Department of Biomedical Engineering and Case Center for Imaging Research, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
32
|
Kreider RB, Stout JR. Creatine in Health and Disease. Nutrients 2021; 13:nu13020447. [PMID: 33572884 PMCID: PMC7910963 DOI: 10.3390/nu13020447] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Although creatine has been mostly studied as an ergogenic aid for exercise, training, and sport, several health and potential therapeutic benefits have been reported. This is because creatine plays a critical role in cellular metabolism, particularly during metabolically stressed states, and limitations in the ability to transport and/or store creatine can impair metabolism. Moreover, increasing availability of creatine in tissue may enhance cellular metabolism and thereby lessen the severity of injury and/or disease conditions, particularly when oxygen availability is compromised. This systematic review assesses the peer-reviewed scientific and medical evidence related to creatine's role in promoting general health as we age and how creatine supplementation has been used as a nutritional strategy to help individuals recover from injury and/or manage chronic disease. Additionally, it provides reasonable conclusions about the role of creatine on health and disease based on current scientific evidence. Based on this analysis, it can be concluded that creatine supplementation has several health and therapeutic benefits throughout the lifespan.
Collapse
Affiliation(s)
- Richard B. Kreider
- Human Clinical Research Facility, Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
- Correspondence:
| | - Jeffery R. Stout
- Physiology of Work and Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Physical Therapy, University of Central Florida, 12494 University Blvd., Orlando, FL 32816, USA;
| |
Collapse
|
33
|
Barbosa J, Faria J, Garcez F, Leal S, Afonso LP, Nascimento AV, Moreira R, Pereira FC, Queirós O, Carvalho F, Dinis-Oliveira RJ. Repeated Administration of Clinically Relevant Doses of the Prescription Opioids Tramadol and Tapentadol Causes Lung, Cardiac, and Brain Toxicity in Wistar Rats. Pharmaceuticals (Basel) 2021; 14:97. [PMID: 33513867 PMCID: PMC7912343 DOI: 10.3390/ph14020097] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 12/18/2022] Open
Abstract
Tramadol and tapentadol, two structurally related synthetic opioid analgesics, are widely prescribed due to the enhanced therapeutic profiles resulting from the synergistic combination between μ-opioid receptor (MOR) activation and monoamine reuptake inhibition. However, the number of adverse reactions has been growing along with their increasing use and misuse. The potential toxicological mechanisms for these drugs are not completely understood, especially for tapentadol, owing to its shorter market history. Therefore, in the present study, we aimed to comparatively assess the putative lung, cardiac, and brain cortex toxicological damage elicited by the repeated exposure to therapeutic doses of both prescription opioids. To this purpose, male Wistar rats were intraperitoneally injected with single daily doses of 10, 25, and 50 mg/kg tramadol or tapentadol, corresponding to a standard analgesic dose, an intermediate dose, and the maximum recommended daily dose, respectively, for 14 consecutive days. Such treatment was found to lead mainly to lipid peroxidation and inflammation in lung and brain cortex tissues, as shown through augmented thiobarbituric acid reactive substances (TBARS), as well as to increased serum inflammation biomarkers, such as C reactive protein (CRP) and tumor necrosis factor-α (TNF-α). Cardiomyocyte integrity was also shown to be affected, since both opioids incremented serum lactate dehydrogenase (LDH) and α-hydroxybutyrate dehydrogenase (α-HBDH) activities, while tapentadol was associated with increased serum creatine kinase muscle brain (CK-MB) isoform activity. In turn, the analysis of metabolic parameters in brain cortex tissue revealed increased lactate concentration upon exposure to both drugs, as well as augmented LDH and creatine kinase (CK) activities following tapentadol treatment. In addition, pneumo- and cardiotoxicity biomarkers were quantified at the gene level, while neurotoxicity biomarkers were quantified both at the gene and protein levels; changes in their expression correlate with the oxidative stress, inflammatory, metabolic, and histopathological changes that were detected. Hematoxylin and eosin (H & E) staining revealed several histopathological alterations, including alveolar collapse and destruction in lung sections, inflammatory infiltrates, altered cardiomyocytes and loss of striation in heart sections, degenerated neurons, and accumulation of glial and microglial cells in brain cortex sections. In turn, Masson's trichrome staining confirmed fibrous tissue deposition in cardiac tissue. Taken as a whole, these results show that the repeated administration of both prescription opioids extends the dose range for which toxicological injury is observed to lower therapeutic doses. They also reinforce previous assumptions that tramadol and tapentadol are not devoid of toxicological risk even at clinical doses.
Collapse
Affiliation(s)
- Joana Barbosa
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Juliana Faria
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Fernanda Garcez
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Sandra Leal
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- Department of Biomedicine, Unit of Anatomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- CINTESIS—Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Luís Pedro Afonso
- Department of Pathology, Portuguese Institute of Oncology of Porto, 4200-072 Porto, Portugal;
| | - Ana Vanessa Nascimento
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Roxana Moreira
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Frederico C. Pereira
- Institute of Pharmacology and Experimental Therapeutics/iCBR, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal;
| | - Odília Queirós
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Félix Carvalho
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Ricardo Jorge Dinis-Oliveira
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
34
|
Cuenoud B, Ipek Ö, Shevlyakova M, Beaumont M, Cunnane SC, Gruetter R, Xin L. Brain NAD Is Associated With ATP Energy Production and Membrane Phospholipid Turnover in Humans. Front Aging Neurosci 2020; 12:609517. [PMID: 33390929 PMCID: PMC7772416 DOI: 10.3389/fnagi.2020.609517] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
The brain requires a large amount of energy, mostly derived from the metabolism of glucose, which decreases substantially with age and neurological diseases. While mounting evidence in model organisms illustrates the central role of brain nicotinamide adenine dinucleotide (NAD) for maintaining energy homeostasis, similar data are sparse in humans. This study explores the correlations between brain NAD, energy production and membrane phospholipid metabolism by 31-phosphorous magnetic resonance spectroscopy (31P-MRS) across 50 healthy participants including a young (mean age 27.1-year-old) and middle-aged (mean age 56.4-year-old) group. The analysis revealed that brain NAD level and NAD+/NADH redox ratio were positively associated with ATP level and the rate of energy production, respectively. Moreover, a metabolic network linking NAD with membrane phospholipid metabolism, energy production, and aging was identified. An inverted trend between age and NAD level was detected. These results pave the way for the use of 31P-MRS as a powerful non-invasive tool to support the development of new therapeutic interventions targeting NAD associated phospho-metabolic pathways in brain aging and neurological diseases.
Collapse
Affiliation(s)
| | - Özlem Ipek
- School of Biomedical Imaging & Imaging Sciences, King's College London, London, United Kingdom
| | - Maya Shevlyakova
- Clinical Development Unit, Nestlé Research Center, Lausanne, Switzerland
| | - Maurice Beaumont
- Clinical Development Unit, Nestlé Research Center, Lausanne, Switzerland
| | - Stephen C Cunnane
- Department of Medicine, Université de Sherbrooke and Research Center on Aging, Sherbrooke, QC, Canada
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lijing Xin
- Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
35
|
Kirwan R, McCullough D, Butler T, Perez de Heredia F, Davies IG, Stewart C. Sarcopenia during COVID-19 lockdown restrictions: long-term health effects of short-term muscle loss. GeroScience 2020; 42:1547-1578. [PMID: 33001410 PMCID: PMC7528158 DOI: 10.1007/s11357-020-00272-3] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
The COVID-19 pandemic is an extraordinary global emergency that has led to the implementation of unprecedented measures in order to stem the spread of the infection. Internationally, governments are enforcing measures such as travel bans, quarantine, isolation, and social distancing leading to an extended period of time at home. This has resulted in reductions in physical activity and changes in dietary intakes that have the potential to accelerate sarcopenia, a deterioration of muscle mass and function (more likely in older populations), as well as increases in body fat. These changes in body composition are associated with a number of chronic, lifestyle diseases including cardiovascular disease (CVD), diabetes, osteoporosis, frailty, cognitive decline, and depression. Furthermore, CVD, diabetes, and elevated body fat are associated with greater risk of COVID-19 infection and more severe symptomology, underscoring the importance of avoiding the development of such morbidities. Here we review mechanisms of sarcopenia and their relation to the current data on the effects of COVID-19 confinement on physical activity, dietary habits, sleep, and stress as well as extended bed rest due to COVID-19 hospitalization. The potential of these factors to lead to an increased likelihood of muscle loss and chronic disease will be discussed. By offering a number of home-based strategies including resistance exercise, higher protein intakes and supplementation, we can potentially guide public health authorities to avoid a lifestyle disease and rehabilitation crisis post-COVID-19. Such strategies may also serve as useful preventative measures for reducing the likelihood of sarcopenia in general and in the event of future periods of isolation.
Collapse
Affiliation(s)
- Richard Kirwan
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK.
| | - Deaglan McCullough
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Tom Butler
- Department of Clinical Sciences and Nutrition, University of Chester, Chester, UK.
| | - Fatima Perez de Heredia
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Ian G Davies
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Claire Stewart
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
36
|
Treberg JR, Martyniuk CJ, Moyes CD. Getting the most out of reductionist approaches in comparative biochemistry and physiology. Comp Biochem Physiol B Biochem Mol Biol 2020; 250:110483. [DOI: 10.1016/j.cbpb.2020.110483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022]
|
37
|
Wallimann T, Tokarska-Schlattner M, Kay L, Schlattner U. Role of creatine and creatine kinase in UCP1-independent adipocyte thermogenesis. Am J Physiol Endocrinol Metab 2020; 319:E944-E946. [PMID: 32954822 DOI: 10.1152/ajpendo.00367.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | - Malgorzata Tokarska-Schlattner
- University Grenoble Alpes and Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics & SFR Environmental and Systems Biology, Grenoble, France
| | - Laurence Kay
- University Grenoble Alpes and Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics & SFR Environmental and Systems Biology, Grenoble, France
| | - Uwe Schlattner
- University Grenoble Alpes and Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics & SFR Environmental and Systems Biology, Grenoble, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
38
|
Abstract
Perturbations in metabolic processes are associated with diseases such as obesity, type 2 diabetes mellitus, certain infections and some cancers. A resurgence of interest in creatine biology is developing, with new insights into a diverse set of regulatory functions for creatine. This resurgence is primarily driven by technological advances in genetic engineering and metabolism as well as by the realization that this metabolite has key roles in cells beyond the muscle and brain. Herein, we highlight the latest advances in creatine biology in tissues and cell types that have historically received little attention in the field. In adipose tissue, creatine controls thermogenic respiration and loss of this metabolite impairs whole-body energy expenditure, leading to obesity. We also cover the various roles that creatine metabolism has in cancer cell survival and the function of the immune system. Renewed interest in this area has begun to showcase the therapeutic potential that lies in understanding how changes in creatine metabolism lead to metabolic disease.
Collapse
Affiliation(s)
- Lawrence Kazak
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.
- Department of Biochemistry, McGill University, Montreal, QC, Canada.
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
39
|
Yousefi F, Movahedpour A, Shabaninejad Z, Ghasemi Y, Rabbani S, Sobnani-Nasab A, Mohammadi S, Hajimoradi B, Rezaei S, Savardashtaki A, Mazoochi M, Mirzaei H. Electrochemical-Based Biosensors: New Diagnosis Platforms for Cardiovascular Disease. Curr Med Chem 2020; 27:2550-2575. [DOI: 10.2174/0929867326666191024114207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 02/05/2023]
Abstract
One of the major reasons for mortality throughout the world is cardiovascular diseases.
Therefore, bio-markers of cardiovascular disease are of high importance to diagnose and manage procedure.
Detecting biomarkers provided a promising procedure in developing bio-sensors. Fast, selective,
portable, accurate, inexpensive, and sensitive biomarker sensing instruments will be necessary for
detecting and predicting diseases. One of the cardiac biomarkers may be ordered as C-reactive proteins,
lipoprotein-linked phospho-lipase, troponin I or T, myoglobin, interleukin-6, interleukin-1, tumor necrosis
factor alpha, LDL and myeloperoxidase. The biomarkers are applied to anticipate cardio-vascular
illnesses. Initial diagnoses of these diseases are possible by several techniques; however, they are laborious
and need costly apparatus. Current researches designed various bio-sensors for resolving the respective
issues. Electrochemical instruments and the proposed bio-sensors are preferred over other
methods due to its inexpensiveness, mobility, reliability, repeatability. The present review comprehensively
dealt with detecting biomarkers of cardiovascular disease through electro-chemical techniques.
Collapse
Affiliation(s)
- Fatemeh Yousefi
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Shabaninejad
- Department of Biological Sciences, Faculty of Nanotechnology, Tarbiat Modares University, Tehran, Iran
| | - Younes Ghasemi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Sobnani-Nasab
- Social Determinants of Health (SDH) Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Soheila Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behzad Hajimoradi
- Cardiology Department of Shohaday-e-Tajrish Hospital Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Samaneh Rezaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Mazoochi
- Department of Cardiology, Cardiac Electrophysiology Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
40
|
Baldissera MD, de Freitas Souza C, Boaventura TP, Nakayama CL, Baldisserotto B, Luz RK. Involvement of the phosphoryl transfer network in gill bioenergetic imbalance of pacamã (Lophiosilurus alexandri) subjected to hypoxia: notable participation of creatine kinase. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:405-416. [PMID: 31784931 DOI: 10.1007/s10695-019-00728-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Hypoxia is among the most critical environmental stressors for fish in aquatic environments, and several energetic alterations have been associated with it. The aim of the present study was to evaluate the involvement of the phosphoryl transfer network and its effects on adenosine triphosphate (ATP)-dependent enzymes during hypoxia, as well as the role of oxidative stress in the activity of the phosphoryl transfer network in pacamã (Lophiosilurus alexandri) subjected to severe hypoxia. Branchial creatine kinase (CK; cytosolic and mitochondrial fractions), adenylate kinase (AK), and pyruvate kinase (PK) activities were inhibited after 72 h of exposure to hypoxia compared to their respective normoxia groups, and remained low (except for AK) after 24 and 72 h of re-oxygenation. Activities of the branchial sodium-potassium pump (Na+, K+-ATPase) and proton pump (H+-ATPase) were inhibited in fish exposed to 72 h of hypoxia compared to the normoxia group, remained inhibited after 24 h of re-oxygenation, and were restored to physiological levels after 72 h of re-oxygenation. Levels of branchial reactive oxygen species (ROS) were higher in fish exposed to hypoxia for 72 h compared to the normoxia group, and increased during re-oxygenation. Lipid peroxidation (LOOH) levels were higher in fish subjected to 72 h of hypoxia compared to the normoxia group, and remained higher during re-oxygenation. On the other hand, protein sulfhydryl (PSH) levels were lower in fish exposed to hypoxia for 72 h compared to the normoxia group, and remained low during re-oxygenation. Based on this evidence, inhibition of the activities of enzymes belonging to phosphoryl transfer network contributed to impairing energetic homeostasis linked to ATP production and ATP utilization in gills of pacamã subjected to hypoxia, and remained inhibited during re-oxygenation (except AK activity). Moreover, inhibition of the phosphoryl transfer network impaired activity of ATP-dependent enzymes, which can be mediated by ROS overproduction, lipid peroxidation, and oxidation of SH groups.
Collapse
Affiliation(s)
- Matheus D Baldissera
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Carine de Freitas Souza
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Tulio P Boaventura
- Laboratório de Aquacultura da Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cintia L Nakayama
- Laboratório de Aquacultura da Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Ronald K Luz
- Laboratório de Aquacultura da Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
41
|
The Effects of Early-Onset Pre-Eclampsia on Placental Creatine Metabolism in the Third Trimester. Int J Mol Sci 2020; 21:ijms21030806. [PMID: 31991880 PMCID: PMC7036877 DOI: 10.3390/ijms21030806] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 02/06/2023] Open
Abstract
Creatine is a metabolite important for cellular energy homeostasis as it provides spatio-temporal adenosine triphosphate (ATP) buffering for cells with fluctuating energy demands. Here, we examined whether placental creatine metabolism was altered in cases of early-onset pre-eclampsia (PE), a condition known to cause placental metabolic dysfunction. We studied third trimester human placentae collected between 27–40 weeks’ gestation from women with early-onset PE (n = 20) and gestation-matched normotensive control pregnancies (n = 20). Placental total creatine and creatine precursor guanidinoacetate (GAA) content were measured. mRNA expression of the creatine synthesizing enzymes arginine:glycine aminotransferase (GATM) and guanidinoacetate methyltransferase (GAMT), the creatine transporter (SLC6A8), and the creatine kinases (mitochondrial CKMT1A & cytosolic BBCK) was assessed. Placental protein levels of arginine:glycine aminotransferase (AGAT), GAMT, CKMT1A and BBCK were also determined. Key findings; total creatine content of PE placentae was 38% higher than controls (p < 0.01). mRNA expression of GATM (p < 0.001), GAMT (p < 0.001), SLC6A8 (p = 0.021) and BBCK (p < 0.001) was also elevated in PE placentae. No differences in GAA content, nor protein levels of AGAT, GAMT, BBCK or CKMT1A were observed between cohorts. Advancing gestation and birth weight were associated with a down-regulation in placental GATM mRNA expression, and a reduction in GAA content, in control placentae. These relationships were absent in PE cases. Our results suggest PE placentae may have an ongoing reliance on the creatine kinase circuit for maintenance of cellular energetics with increased total creatine content and transcriptional changes to creatine synthesizing enzymes and the creatine transporter. Understanding the functional consequences of these changes warrants further investigation.
Collapse
|
42
|
Morselli MB, Baldissera MD, Souza CF, Reis JH, Baldisserotto B, Sousa AA, Zimmer F, Lopes DLA, Petrolli TG, Da Silva AS. Effects of thymol supplementation on performance, mortality and branchial energetic metabolism in grass carp experimentally infected by Aeromonas hydrophila. Microb Pathog 2019; 139:103915. [PMID: 31809794 DOI: 10.1016/j.micpath.2019.103915] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/26/2022]
Abstract
We determined whether thymol supplementation of would minimize the negative effects of Aeromonas hydrophila infection on branchial energy metabolism, weight loss and mortality in grass carp (Ctenopharyngodon idella). We found that the infected fish all died, while 62.5% of those supplemented with 100 mg/kg thymol survived. Cytosolic and mitochondrial creatine kinase (CK) activities, as well as adenylate kinase (AK) and pyruvate kinase (PK) activities were significant lower in gills of A. hydrophila-infected fish than those of the control group, and adenosine triphosphate (ATP) levels were significant lower in the infected group. Finally, branchial reactive oxygen species (ROS) were significant higher in A. hydrophila-infected fish than in the control group. Supplementation with 100 and 300 mg thymol/kg diet prevented inhibition of branchial cytosolic and mitochondrial CK activities caused by infection, and also inhibited the reduction of branchial ATP levels. Supplementation with 100, 200 and 300 mg thymol/kg prevented the inhibition of branchial AK and PK activities induced by aeromonosis. Supplementation of 100 mg thymol/kg prevented weight loss after A. hydrophila infection. These data suggest that supplementation with 100 mg thymol/kg exerts potent bactericidal properties and augments longevity. Supplementation at all concentrations of thymol prevented A. hydrophila-induced branchial bioenergetics; nevertheless, higher concentrations were associated with side-effects.
Collapse
Affiliation(s)
- Monique B Morselli
- Graduate Program of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, RS, Brazil
| | - Matheus D Baldissera
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Carine F Souza
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - João H Reis
- Graduate Program of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, RS, Brazil
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Alison A Sousa
- Graduate Program of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, RS, Brazil
| | - Fernando Zimmer
- Graduate Program of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, RS, Brazil
| | - Diogo L A Lopes
- Graduate Program of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, RS, Brazil
| | | | - Aleksandro S Da Silva
- Graduate Program of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, RS, Brazil.
| |
Collapse
|
43
|
Bortoluzzi VT, Brust L, Preissler T, de Franceschi ID, Wannmacher CMD. Creatine plus pyruvate supplementation prevents oxidative stress and phosphotransfer network disturbances in the brain of rats subjected to chemically-induced phenylketonuria. Metab Brain Dis 2019; 34:1649-1660. [PMID: 31352540 DOI: 10.1007/s11011-019-00472-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 07/14/2019] [Indexed: 12/13/2022]
Abstract
Phenylketonuria (PKU) is the most common inborn error of amino acid metabolism. Usually diagnosed within the first month of birth, it is essential that the patient strictly follow the dietary restriction of natural protein intake. Otherwise, PKU impacts the development of the brain severely and may result in microcephaly, epilepsy, motor deficits, intellectual disability, and psychiatric and behavioral disorders. The neuropathology associated with PKU includes defects of myelination, insufficient synthesis of monoamine neurotransmitters, amino acid imbalance across the blood-brain barrier, and involves intermediary metabolic pathways supporting energy homeostasis and antioxidant defenses in the brain. Considering that the production of reactive oxygen species (ROS) is inherent to energy metabolism, we investigated the association of creatine+pyruvate (Cr + Pyr), both energy substrates with antioxidants properties, as a possible treatment to mitigate oxidative stress and phosphotransfer network impairment elicited in the brain of young Wistar rats by chemically-induced PKU. We induced PKU through the administration of α-methyl-L-phenylalanine and phenylalanine for 7 days, with and without Cr + Pyr supplementation, until postpartum day 14. The cotreatment with Cr + Pyr administered concurrently with PKU induction prevented ROS formation and part of the alterations observed in antioxidants defenses and phosphotransfer network enzymes in the cerebral cortex, hippocampus, and cerebellum. If such prevention also occurs in PKU patients, supplementing the phenylalanine-restricted diet with antioxidants and energetic substrates might be beneficial to these patients.
Collapse
Affiliation(s)
- Vanessa Trindade Bortoluzzi
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, CEP 90.035-003, Brazil.
| | - Letícia Brust
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, CEP 90.035-003, Brazil
| | - Thales Preissler
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, CEP 90.035-003, Brazil
| | - Itiane Diehl de Franceschi
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, CEP 90.035-003, Brazil
| | - Clovis Milton Duval Wannmacher
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, CEP 90.035-003, Brazil
| |
Collapse
|
44
|
Experimental infection by Neospora caninum in gerbil reduces activity of enzymes involved in energy metabolism. Exp Parasitol 2019; 208:107790. [PMID: 31697939 DOI: 10.1016/j.exppara.2019.107790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/24/2019] [Accepted: 11/02/2019] [Indexed: 11/24/2022]
Abstract
Neospora caninum is a protozoan that has tropism for the central nervous system. The aim of this study was to determine whether experimental infection of gerbils would interfere with activity of enzymes associated with energy metabolism. We randomized 20 gerbils into two groups (ten animals per group): the control group (healthy animals; uninfected) and the infected group (experimentally infected with dose 7.8 × 102 tachyzoites of N. caninum per gerbil). On day six and twelve post-infection (PI), brain and spleen tissues were collected for biochemical and histopathological analyses. No histopathological lesions were observed in the brains of infected animals; however, inflammatory infiltrates were found in the spleen. Significantly greater levels of reactive oxygen species (ROS) were observed in the brain and spleen of infected gerbils than in the control group at 12 days PI. Cytosolic creatine kinase (CK-CYT), mitochondrial creatine kinase (CK-MIT), and pyruvate kinase (PK) activities were lower in the brains of infected gerbils than in those of the control group on day 12 PI. There was significantly less CK-CYT activity in the spleens of infected gerbils on day 6 and 12 PI. Finally, there was significantly less sodium-potassium ion pump (Na+/K+ ATPase) activity in the brains and spleens of infected gerbils on day 12 PI. These data suggest that experimental infection with N. caninum interfered with energy metabolism associated with ATP homeostasis in the brain and spleen, directly or indirectly, apparently mediated by ROS overproduction, contributing to inhibition of Na+/K+ ATPase activity.
Collapse
|
45
|
Branchial bioenergetics dysfunction as a relevant pathophysiological mechanism in freshwater silver catfish (Rhamdia quelen) experimentally infected with Flavobacterium columnare. Microb Pathog 2019; 138:103817. [PMID: 31672529 DOI: 10.1016/j.micpath.2019.103817] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 01/20/2023]
Abstract
Flavobacterium columnare, the causative agent of columnaris disease, is a serious bacterial disease responsible for causing devastating mortality rates in several species of freshwater fish, leading to severe economic losses in the aquaculture industry. Notwithstanding the enormous impacts this disease can have, very little is known regarding the interaction between the host and bacterium in terms of the mortality rate of silver catfish (Rhamdia quelen), as well its linkage to gill energetic homeostasis. Therefore, we conducted independent experiments to evaluate the mortality rates caused by F. columnare in silver catfish, as well as whether columnaris disease impairs the enzymes of the phosphoryl transfer network in gills of silver catfish and the pathways involved in this inhibition. Experiment I revealed that clinical signs started to appear 72 h post-infection (hpi), manifesting as lethargy, skin necrosis, fin erosion and gill discoloration. Silver catfish began to die at 96 hpi, and 100% mortality was observed at 120 hpi. Experiment II revealed that creatine kinase (CK, cytosolic and mitochondrial) and pyruvate kinase (PK) activities were inhibited in silver catfish experimentally infected with F. columnare, while no significant difference was observed between experimental and control groups with respect to adenylate kinase activity. Activity of the branchial sodium-potassium pump (Na+, K+-ATPase) was inhibited while reactive oxygen species (ROS) and lipid peroxidation levels were higher in silver catfish experimentally infected with F. columnare than in the control group at 72 hpi. Based on these data, the impairment of CK activity elicited by F. columnare caused a disruption in branchial energetic balance, possibly reducing ATP availability in the gills and provoking impairment of Na+, K +ATPase activity. The inhibition of CK and PK activities appears to be mediated by ROS overproduction and lipid peroxidation, both of which contribute to disease pathogenesis associated with branchial tissue.
Collapse
|
46
|
Gronczewska J, Niedźwiecka N, Grzyb K, Skorkowski EF. Bioenergetics of fish spermatozoa with focus on some herring (Clupea harengus) enzymes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1615-1625. [PMID: 31111318 PMCID: PMC6815267 DOI: 10.1007/s10695-019-00650-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/25/2019] [Indexed: 06/02/2023]
Abstract
Herring (Clupea harengus) shows the unique behavior of reproductive biology in which spermatozoa remains in the surrounding media for extended periods. It is an excellent model for studying the malic enzyme (ME) and creatine kinase (CK) biochemical properties because of their high activity and variability of molecular isoforms. The specific activity of NAD-preferring ME in herring spermatozoa is the highest among other fish spermatozoa and is localized in its large mitochondrion. Two different CK isoforms, dimer and octamer, were detected in herring spermatozoa. It has already been shown that CK isoforms play an important role in energy homeostasis by catalyzing a reversible transfer of the phosphate of ATP to creatine to yield ADP and creatine phosphate (CP) (creatine/CP circuit). Two lactate dehydrogenase (LDH) isoenzymes were also shown in herring spermatozoa, LDH-B4 and LDH-A2B2. In this mini-review, the role of ME and energy transport system with easily diffusible creatine and CP in herring spermatozoa is discussed.
Collapse
Affiliation(s)
- J. Gronczewska
- Department of Molecular Evolution, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| | - N. Niedźwiecka
- Department of Molecular Evolution, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| | - K. Grzyb
- Department of Molecular Evolution, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| | - E. F. Skorkowski
- Department of Molecular Evolution, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| |
Collapse
|
47
|
Baldissera MD, Freitas Souza CD, Dias JB, Da Silva AS, Baldisserotto B. Caffeine supplementation in diet mitigates Aeromonas hydrophila-induced impairment of the gill phosphotransfer network in grass carp Ctenopharyngodon idella. Microb Pathog 2019; 136:103710. [PMID: 31493503 DOI: 10.1016/j.micpath.2019.103710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 01/20/2023]
Abstract
Some evidence suggests the involvement of phosphotransfer network in the pathogenesis of fish bacterial diseases, catalyzed by creatine kinase (CK), pyruvate kinase (PK) and adenylate kinase (AK); nevertheless, the effects on fish affected by Aeromonas hydrophila remain unknown. Recent evidence suggested a potent protective effect of caffeine on the branchial phosphotransfer network of fish subjected to challenge conditions. Therefore, the aim of this study was to evaluate whether A. hydrophila infection impaired branchial bioenergetics. We also determined whether dietary supplementation with caffeine protected against A. hydrophila-induced gill bioenergetic imbalance. We found that branchial cytosolic CK and AK activities were significant lower in fish experimentally infected with A. hydrophila than in uninfected fish, while mitochondrial CK activity was significant higher. Branchial lactate dehydrogenase (LDH) activity and lactate levels were significant higher in fish experimentally infected by A. hydrophila than in uninfected fish, while sodium-potassium ion pump (Na+, K+-ATPase) activity and adenosine triphosphate (ATP) levels were significant lower. No significant difference was observed between groups with respect to branchial PK activity. The dietary supplementation with 8% caffeine improved the branchial CK (cytosolic and mitochondrial), AK, and LDH activities, as well as ATP levels, but did not prevent increases in branchial lactate levels or the inhibition of Na+, K+-ATPase activity elicited by aeromonosis. Based on this evidence, we believe that reduction of CK (cytosolic) and AK activities contributes to impairment of bioenergetic homeostasis, while augmentation of mitochondrial CK activity can be considered an attempt to prevent or reduce the energetic imbalance during aeromonosis caused by A. hydrophila. The use of 8% caffeine dietary supplementation improved the energetic metabolism via protective effects on CK and AK activities, avoiding the necessity of using anaerobic metabolism. In summary, 8% dietary caffeine can be used to improve branchial energetic homeostasis during aeromonosis caused by A. hydrophila.
Collapse
Affiliation(s)
- Matheus D Baldissera
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Carine de Freitas Souza
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Juliane B Dias
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Aleksandro S Da Silva
- Department of Animal Science, Universidade Do Estado de Santa Catarina, Chapecó, RS, Brazil
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
48
|
Prole DL, Taylor CW. A genetically encoded toolkit of functionalized nanobodies against fluorescent proteins for visualizing and manipulating intracellular signalling. BMC Biol 2019; 17:41. [PMID: 31122229 PMCID: PMC6533734 DOI: 10.1186/s12915-019-0662-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Intrabodies enable targeting of proteins in live cells, but generating specific intrabodies against the thousands of proteins in a proteome poses a challenge. We leverage the widespread availability of fluorescently labelled proteins to visualize and manipulate intracellular signalling pathways in live cells by using nanobodies targeting fluorescent protein tags. RESULTS We generated a toolkit of plasmids encoding nanobodies against red and green fluorescent proteins (RFP and GFP variants), fused to functional modules. These include fluorescent sensors for visualization of Ca2+, H+ and ATP/ADP dynamics; oligomerising or heterodimerising modules that allow recruitment or sequestration of proteins and identification of membrane contact sites between organelles; SNAP tags that allow labelling with fluorescent dyes and targeted chromophore-assisted light inactivation; and nanobodies targeted to lumenal sub-compartments of the secretory pathway. We also developed two methods for crosslinking tagged proteins: a dimeric nanobody, and RFP-targeting and GFP-targeting nanobodies fused to complementary hetero-dimerizing domains. We show various applications of the toolkit and demonstrate, for example, that IP3 receptors deliver Ca2+ to the outer membrane of only a subset of mitochondria and that only one or two sites on a mitochondrion form membrane contacts with the plasma membrane. CONCLUSIONS This toolkit greatly expands the utility of intrabodies and will enable a range of approaches for studying and manipulating cell signalling in live cells.
Collapse
Affiliation(s)
- David L Prole
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK.
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK.
| |
Collapse
|
49
|
Candow DG, Forbes SC, Chilibeck PD, Cornish SM, Antonio J, Kreider RB. Effectiveness of Creatine Supplementation on Aging Muscle and Bone: Focus on Falls Prevention and Inflammation. J Clin Med 2019; 8:E488. [PMID: 30978926 PMCID: PMC6518405 DOI: 10.3390/jcm8040488] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/25/2022] Open
Abstract
Sarcopenia, defined as the age-related decrease in muscle mass, strength and physical performance, is associated with reduced bone mass and elevated low-grade inflammation. From a healthy aging perspective, interventions which overcome sarcopenia are clinically relevant. Accumulating evidence suggests that exogenous creatine supplementation has the potential to increase aging muscle mass, muscle performance, and decrease the risk of falls and possibly attenuate inflammation and loss of bone mineral. Therefore, the purpose of this review is to: (1) summarize the effects of creatine supplementation, with and without resistance training, in aging adults and discuss possible mechanisms of action, (2) examine the effects of creatine on bone biology and risk of falls, (3) evaluate the potential anti-inflammatory effects of creatine and (4) determine the safety of creatine supplementation in aging adults.
Collapse
Affiliation(s)
- Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S 0A2, Canada.
| | - Scott C Forbes
- Department of Physical Education, Brandon University, Brandon, MB R7A 6A9, Canada.
| | - Philip D Chilibeck
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada.
| | - Stephen M Cornish
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL 33314, USA.
| | - Richard B Kreider
- Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843-4253, USA.
| |
Collapse
|
50
|
Prusinkiewicz MA, Mymryk JS. Metabolic Reprogramming of the Host Cell by Human Adenovirus Infection. Viruses 2019; 11:E141. [PMID: 30744016 PMCID: PMC6409786 DOI: 10.3390/v11020141] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/02/2019] [Accepted: 02/03/2019] [Indexed: 12/19/2022] Open
Abstract
Viruses are obligate intracellular parasites that alter many cellular processes to create an environment optimal for viral replication. Reprogramming of cellular metabolism is an important, yet underappreciated feature of many viral infections, as this ensures that the energy and substrates required for viral replication are available in abundance. Human adenovirus (HAdV), which is the focus of this review, is a small DNA tumor virus that reprograms cellular metabolism in a variety of ways. It is well known that HAdV infection increases glucose uptake and fermentation to lactate in a manner resembling the Warburg effect observed in many cancer cells. However, HAdV infection induces many other metabolic changes. In this review, we integrate the findings from a variety of proteomic and transcriptomic studies to understand the subtleties of metabolite and metabolic pathway control during HAdV infection. We review how the E4ORF1 protein of HAdV enacts some of these changes and summarize evidence for reprogramming of cellular metabolism by the viral E1A protein. Therapies targeting altered metabolism are emerging as cancer treatments, and similar targeting of aberrant components of virally reprogrammed metabolism could have clinical antiviral applications.
Collapse
Affiliation(s)
- Martin A Prusinkiewicz
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada.
| | - Joe S Mymryk
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada.
- Department of Otolaryngology, Head & Neck Surgery, Western University, London, ON N6A 3K7, Canada.
- Department of Oncology, Western University, London, ON N6A 3K7, Canada.
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6C 2R5, Canada.
| |
Collapse
|