1
|
Breitenstein P, Visser VL, Motta SE, Martin M, Generali M, Baaijens FPT, Loerakker S, Breuer CK, Hoerstrup SP, Emmert MY. Modulating biomechanical and integrating biochemical cues to foster adaptive remodeling of tissue engineered matrices for cardiovascular implants. Acta Biomater 2025; 197:48-67. [PMID: 40118167 DOI: 10.1016/j.actbio.2025.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Cardiovascular disease remains one of the leading causes of mortality in the Western world. Congenital heart disease affects nearly 1 % of newborns, with approximately one-fourth requiring reconstructive surgery during their lifetime. Current cardiovascular replacement options have significant limitations. Their inability to grow poses particular challenges for pediatric patients. Tissue Engineered Matrix (TEM)-based in situ constructs, with their self-repair and growth potential, offer a promising solution to overcome the limitations of current clinically used replacement options. Various functionalization strategies, involving the integration of biomechanical or biochemical components to enhance biocompatibility, have been developed for Tissue Engineered Vascular Grafts (TEVG) and Tissue Engineered Heart Valves (TEHV) to foster their capacity for in vivo remodeling. In this review, we present the current state of clinical translation for TEVG and TEHV, and provide a comprehensive overview of biomechanical and biochemical functionalization strategies for TEVG and TEHV. We discuss the rationale for functionalization, the implementation of functionalization cues in TEM-based TEVG and TEHV, and the interrelatedness of biomechanical and biochemical cues in the in vivo response. Finally, we address the challenges associated with functionalization and discuss how interdisciplinary research, especially when combined with in silico models, could enhance the translation of these strategies into clinical applications. STATEMENT OF SIGNIFICANCE: Cardiovascular disease remains one of the leading causes of mortality, with current replacements being unable to grow and regenerate. In this review, we present the current state of clinical translation for tissue engineered vascular grafts (TEVG) and heart valves (TEHV). Particularly, we discuss the rationale and implementation for functionalization cues in tissue engineered matrix-based TEVGs and TEHVs, and for the first time we introduce the interrelatedness of biomechanical and biochemical cues in the in-vivo response. These insights pave the way for next-generation cardiovascular implants that promise better durability, biocompatibility, and growth potential. Finally, we address the challenges associated with functionalization and discuss how interdisciplinary research, especially when combined with in silico models, could enhance the translation of these strategies into clinical applications .
Collapse
Affiliation(s)
- Pascal Breitenstein
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Valery L Visser
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Sarah E Motta
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Marcy Martin
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Melanie Generali
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Frank P T Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Christopher K Breuer
- Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Surgery, Nationwide Children's Hospital, Columbus, OH, USA; Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Simon P Hoerstrup
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland; Wyss Zurich Translational Center, University of Zurich and ETH Zurich, Zurich 8092, Switzerland
| | - Maximilian Y Emmert
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland; Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin 13353, Germany; Charité Universitätsmedizin Berlin, Berlin 10117, Germany.
| |
Collapse
|
2
|
Mao Y, Wickström SA. Mechanical state transitions in the regulation of tissue form and function. Nat Rev Mol Cell Biol 2024; 25:654-670. [PMID: 38600372 DOI: 10.1038/s41580-024-00719-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 04/12/2024]
Abstract
From embryonic development, postnatal growth and adult homeostasis to reparative and disease states, cells and tissues undergo constant changes in genome activity, cell fate, proliferation, movement, metabolism and growth. Importantly, these biological state transitions are coupled to changes in the mechanical and material properties of cells and tissues, termed mechanical state transitions. These mechanical states share features with physical states of matter, liquids and solids. Tissues can switch between mechanical states by changing behavioural dynamics or connectivity between cells. Conversely, these changes in tissue mechanical properties are known to control cell and tissue function, most importantly the ability of cells to move or tissues to deform. Thus, tissue mechanical state transitions are implicated in transmitting information across biological length and time scales, especially during processes of early development, wound healing and diseases such as cancer. This Review will focus on the biological basis of tissue-scale mechanical state transitions, how they emerge from molecular and cellular interactions, and their roles in organismal development, homeostasis, regeneration and disease.
Collapse
Affiliation(s)
- Yanlan Mao
- Laboratory for Molecular Cell Biology, University College London, London, UK.
- Institute for the Physics of Living Systems, University College London, London, UK.
| | - Sara A Wickström
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
3
|
Smits JJHM, van der Pol A, Goumans MJ, Bouten CVC, Jorba I. GelMA hydrogel dual photo-crosslinking to dynamically modulate ECM stiffness. Front Bioeng Biotechnol 2024; 12:1363525. [PMID: 38966190 PMCID: PMC11222782 DOI: 10.3389/fbioe.2024.1363525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/16/2024] [Indexed: 07/06/2024] Open
Abstract
The dynamic nature of the extracellular matrix (ECM), particularly its stiffness, plays a pivotal role in cellular behavior, especially after myocardial infarction (MI), where cardiac fibroblasts (cFbs) are key in ECM remodeling. This study explores the effects of dynamic stiffness changes on cFb activation and ECM production, addressing a gap in understanding the dynamics of ECM stiffness and their impact on cellular behavior. Utilizing gelatin methacrylate (GelMA) hydrogels, we developed a model to dynamically alter the stiffness of cFb environment through a two-step photocrosslinking process. By inducing a quiescent state in cFbs with a TGF-β inhibitor, we ensured the direct observation of cFbs-responses to the engineered mechanical environment. Our findings demonstrate that the mechanical history of substrates significantly influences cFb activation and ECM-related gene expression. Cells that were initially cultured for 24 h on the soft substrate remained more quiescent when the hydrogel was stiffened compared to cells cultured directly to a stiff static substrate. This underscores the importance of past mechanical history in cellular behavior. The present study offers new insights into the role of ECM stiffness changes in regulating cellular behavior, with significant implications for understanding tissue remodeling processes, such as in post-MI scenarios.
Collapse
Affiliation(s)
- Josephina J. H. M. Smits
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Atze van der Pol
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, Netherlands
| | - Marie José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, Netherlands
| | - Carlijn V. C. Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, Netherlands
| | - Ignasi Jorba
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, Netherlands
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Skillin NP, Kirkpatrick BE, Herbert KM, Nelson BR, Hach GK, Günay KA, Khan RM, DelRio FW, White TJ, Anseth KS. Stiffness anisotropy coordinates supracellular contractility driving long-range myotube-ECM alignment. SCIENCE ADVANCES 2024; 10:eadn0235. [PMID: 38820155 PMCID: PMC11141631 DOI: 10.1126/sciadv.adn0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/30/2024] [Indexed: 06/02/2024]
Abstract
The ability of cells to organize into tissues with proper structure and function requires the effective coordination of proliferation, migration, polarization, and differentiation across length scales. Skeletal muscle is innately anisotropic; however, few biomaterials can emulate mechanical anisotropy to determine its influence on tissue patterning without introducing confounding topography. Here, we demonstrate that substrate stiffness anisotropy coordinates contractility-driven collective cellular dynamics resulting in C2C12 myotube alignment over millimeter-scale distances. When cultured on mechanically anisotropic liquid crystalline polymer networks (LCNs) lacking topography, C2C12 myoblasts collectively polarize in the stiffest direction. Cellular coordination is amplified through reciprocal cell-ECM dynamics that emerge during fusion, driving global myotube-ECM ordering. Conversely, myotube alignment was restricted to small local domains with no directional preference on mechanically isotropic LCNs of the same chemical formulation. These findings provide valuable insights for designing biomaterials that mimic anisotropic microenvironments and underscore the importance of stiffness anisotropy in orchestrating tissue morphogenesis.
Collapse
Affiliation(s)
- Nathaniel P. Skillin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bruce E. Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Katie M. Herbert
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Benjamin R. Nelson
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Grace K. Hach
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Kemal Arda Günay
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Ryan M. Khan
- Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Frank W. DelRio
- Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Timothy J. White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
5
|
Jorba I, Gussenhoven S, van der Pol A, Groenen BG, van Zon M, Goumans MJ, Kurniawan NA, Ristori T, Bouten CV. Steering cell orientation through light-based spatiotemporal modulation of the mechanical environment. Biofabrication 2024; 16:035011. [PMID: 38574554 DOI: 10.1088/1758-5090/ad3aa6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
The anisotropic organization of cells and the extracellular matrix (ECM) is essential for the physiological function of numerous biological tissues, including the myocardium. This organization changes gradually in space and time, during disease progression such as myocardial infarction. The role of mechanical stimuli has been demonstrated to be essential in obtaining, maintaining and de-railing this organization, but the underlying mechanisms are scarcely known. To enable the study of the mechanobiological mechanisms involved,in vitrotechniques able to spatiotemporally control the multiscale tissue mechanical environment are thus necessary. Here, by using light-sensitive materials combined with light-illumination techniques, we fabricated 2D and 3Din vitromodel systems exposing cells to multiscale, spatiotemporally resolved stiffness anisotropies. Specifically, spatial stiffness anisotropies spanning from micron-sized (cellular) to millimeter-sized (tissue) were achieved. Moreover, the light-sensitive materials allowed to introduce the stiffness anisotropies at defined timepoints (hours) after cell seeding, facilitating the study of their temporal effects on cell and tissue orientation. The systems were tested using cardiac fibroblasts (cFBs), which are known to be crucial for the remodeling of anisotropic cardiac tissue. We observed that 2D stiffness micropatterns induced cFBs anisotropic alignment, independent of the stimulus timing, but dependent on the micropattern spacing. cFBs exhibited organized alignment also in response to 3D stiffness macropatterns, dependent on the stimulus timing and temporally followed by (slower) ECM co-alignment. In conclusion, the developed model systems allow improved fundamental understanding of the underlying mechanobiological factors that steer cell and ECM orientation, such as stiffness guidance and boundary constraints.
Collapse
Affiliation(s)
- Ignasi Jorba
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), PO Box 513, 5600 MB Eindhoven, The Netherlands
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Sil Gussenhoven
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Atze van der Pol
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Bart Gw Groenen
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Maarten van Zon
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Marie José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Nicholas A Kurniawan
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Carlijn Vc Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), PO Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
6
|
Wang H, Zhang W, Cai Y, Guo Q, Pan L, Chu G, Chen J, Yuan Z, Li B. Moderate mechanical stimulation antagonizes inflammation of annulus fibrosus cells through YAP-mediated suppression of NF-κB signaling. J Orthop Res 2023; 41:2667-2684. [PMID: 37132373 DOI: 10.1002/jor.25596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/04/2023]
Abstract
Intervertebral disc degeneration (IDD) is a leading cause of low back pain. The inflammatory responses caused by aberrant mechanical loading are one of the major factors leading to annulus fibrosus (AF) degeneration and IDD. Previous studies have suggested that moderate cyclic tensile strain (CTS) can regulate anti-inflammatory activities of AF cells (AFCs), and Yes-associated protein (YAP) as a mechanosensitive coactivator senses diverse types of biomechanical stimuli and translates them into biochemical signals controlling cell behaviors. However, it remains poorly understood whether and how YAP mediates the effect of mechanical stimuli on AFCs. In this study, we aimed to investigate the exact effects of different CTS on AFCs as well as the role of YAP signaling involving in it. Our results found that 5% CTS inhibited the inflammatory response and promoted cell growth through inhibiting the phosphorylation of YAP and nuclear localization of NF-κB, while 12% CTS had a significant proinflammatory effect with the inactivation of YAP activity and the activation of NF-κB signaling in AFCs. Furthermore, moderate mechanical stimulation may alleviate the inflammatory reaction of intervertebral discs through YAP-mediated suppression of NF-κB signaling in vivo. Therefore, moderate mechanical stimulation may serve as a promising therapeutic approach for the prevention and treatment of IDD.
Collapse
Affiliation(s)
- Huan Wang
- Department of Orthopaedic Surgery, School of Biology & Basic Medical Sciences, Suzhou Medical College, Orthopaedic Institute, The First Affiliated Hospital, Soochow University, Jiangsu, Suzhou, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, School of Biology & Basic Medical Sciences, Suzhou Medical College, Orthopaedic Institute, The First Affiliated Hospital, Soochow University, Jiangsu, Suzhou, China
- Department of Orthopaedic Surgery, Affiliated Hospital of Nantong University, Jiangsu, Nantong, China
| | - Yan Cai
- Department of Orthopaedic Surgery, School of Biology & Basic Medical Sciences, Suzhou Medical College, Orthopaedic Institute, The First Affiliated Hospital, Soochow University, Jiangsu, Suzhou, China
| | - Qianping Guo
- Department of Orthopaedic Surgery, School of Biology & Basic Medical Sciences, Suzhou Medical College, Orthopaedic Institute, The First Affiliated Hospital, Soochow University, Jiangsu, Suzhou, China
| | - Liangbin Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Jiangsu, Suzhou, China
| | - Genglei Chu
- Department of Orthopaedic Surgery, School of Biology & Basic Medical Sciences, Suzhou Medical College, Orthopaedic Institute, The First Affiliated Hospital, Soochow University, Jiangsu, Suzhou, China
| | - Jianquan Chen
- Department of Orthopaedic Surgery, School of Biology & Basic Medical Sciences, Suzhou Medical College, Orthopaedic Institute, The First Affiliated Hospital, Soochow University, Jiangsu, Suzhou, China
- School of Medicine, Hangzhou City University, Zhejiang, Hangzhou, China
| | - Zhangqin Yuan
- Department of Orthopaedic Surgery, School of Biology & Basic Medical Sciences, Suzhou Medical College, Orthopaedic Institute, The First Affiliated Hospital, Soochow University, Jiangsu, Suzhou, China
| | - Bin Li
- Department of Orthopaedic Surgery, School of Biology & Basic Medical Sciences, Suzhou Medical College, Orthopaedic Institute, The First Affiliated Hospital, Soochow University, Jiangsu, Suzhou, China
- School of Medicine, Hangzhou City University, Zhejiang, Hangzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Jiangsu, Suzhou, China
| |
Collapse
|
7
|
Ahmad F, Soe S, Albon J, Errington R, Theobald P. Quantifying the microstructural and biomechanical changes in the porcine ventricles during growth and remodelling. Acta Biomater 2023; 171:166-192. [PMID: 37797709 DOI: 10.1016/j.actbio.2023.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Cardiac tissue growth and remodelling (G & R) occur in response to the changing physiological demands of the heart after birth. The early shift to pulmonary circulation produces an immediate increase in ventricular workload, causing microstructural and biomechanical changes that serve to maintain overall physiological homoeostasis. Such cardiac G & R continues throughout life. Quantifying the tissue's mechanical and microstructural changes because of G & R is of increasing interest, dovetailing with the emerging fields of personalised and precision solutions. This study aimed to determine equibiaxial, and non-equibiaxial extension, stress-relaxation, and the underlying microstructure of the passive porcine ventricles tissue at four time points spanning from neonatal to adulthood. The three-dimensional microstructure was investigated via two-photon excited fluorescence and second-harmonic generation microscopy on optically cleared tissues, describing the 3D orientation, rotation and dispersion of the cardiomyocytes and collagen fibrils. The results revealed that during biomechanical testing, myocardial ventricular tissue possessed non-linear, anisotropic, and viscoelastic behaviour. An increase in stiffness and viscoelasticity was noted for the left and right ventricular free walls from neonatal to adulthood. Microstructural analyses revealed concomitant increases in cardiomyocyte rotation and dispersion. This study provides baseline data, describing the biomechanical and microstructural changes in the left and right ventricular myocardial tissue during G & R, which should prove valuable to researchers in developing age-specific, constitutive models for more accurate computational simulations. STATEMENT OF SIGNIFICANCE: There is a dearth of experimental data describing the growth and remodelling of left and right ventricular tissue. The published literature is fragmented, with data reported via different experimental techniques using tissues harvested from a variety of animals, with different gender and ages. This prevents developing a continuum of data spanning birth to death, so limiting the potential that can be leveraged to aid computational modelling and simulations. In this study, equibiaxial, non-equibiaxial, and stress-relaxation data are presented, describing directional-dependent material responses. The biomechanical data is consolidated with equivalent microstructural data, an important element for the development of future material models. Combined, these data describe microstructural and biomechanical changes in the ventricles, spanning G &R from neonatal to adulthood.
Collapse
Affiliation(s)
- Faizan Ahmad
- School of Engineering, Cardiff University, UK; School of Health Sciences, Birmingham City University, UK.
| | - Shwe Soe
- FET - Engineering, Design and Mathematics, University of West of England, UK
| | - Julie Albon
- School of Optometry and Vision Sciences, Cardiff University, UK; Viva Scientia Bioimaging Laboratories, Cardiff University, UK
| | | | | |
Collapse
|
8
|
Giverso C, Loy N, Lucci G, Preziosi L. Cell orientation under stretch: A review of experimental findings and mathematical modelling. J Theor Biol 2023; 572:111564. [PMID: 37391125 DOI: 10.1016/j.jtbi.2023.111564] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/15/2023] [Indexed: 07/02/2023]
Abstract
The key role of electro-chemical signals in cellular processes had been known for many years, but more recently the interplay with mechanics has been put in evidence and attracted substantial research interests. Indeed, the sensitivity of cells to mechanical stimuli coming from the microenvironment turns out to be relevant in many biological and physiological circumstances. In particular, experimental evidence demonstrated that cells on elastic planar substrates undergoing periodic stretches, mimicking native cyclic strains in the tissue where they reside, actively reorient their cytoskeletal stress fibres. At the end of the realignment process, the cell axis forms a certain angle with the main stretching direction. Due to the importance of a deeper understanding of mechanotransduction, such a phenomenon was studied both from the experimental and the mathematical modelling point of view. The aim of this review is to collect and discuss both the experimental results on cell reorientation and the fundamental features of the mathematical models that have been proposed in the literature.
Collapse
Affiliation(s)
- Chiara Giverso
- Department of Mathematical Sciences "G.L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10126, Italy.
| | - Nadia Loy
- Department of Mathematical Sciences "G.L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10126, Italy.
| | - Giulio Lucci
- Department of Mathematical Sciences "G.L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10126, Italy.
| | - Luigi Preziosi
- Department of Mathematical Sciences "G.L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10126, Italy.
| |
Collapse
|
9
|
Skillin NP, Kirkpatrick BE, Herbert KM, Nelson BR, Hach GK, Günay KA, Khan RM, DelRio FW, White TJ, Anseth KS. Stiffness anisotropy coordinates supracellular contractility driving long-range myotube-ECM alignment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552197. [PMID: 37609145 PMCID: PMC10441277 DOI: 10.1101/2023.08.08.552197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
In skeletal muscle tissue, injury-related changes in stiffness activate muscle stem cells through mechanosensitive signaling pathways. Functional muscle tissue regeneration also requires the effective coordination of myoblast proliferation, migration, polarization, differentiation, and fusion across multiple length scales. Here, we demonstrate that substrate stiffness anisotropy coordinates contractility-driven collective cellular dynamics resulting in C2C12 myotube alignment over millimeter-scale distances. When cultured on mechanically anisotropic liquid crystalline polymer networks (LCNs) lacking topographic features that could confer contact guidance, C2C12 myoblasts collectively polarize in the stiffest direction of the substrate. Cellular coordination is amplified through reciprocal cell-ECM dynamics that emerge during fusion, driving global myotube-ECM ordering. Conversely, myotube alignment was restricted to small local domains with no directional preference on mechanically isotropic LCNs of same chemical formulation. These findings reveal a role for stiffness anisotropy in coordinating emergent collective cellular dynamics, with implications for understanding skeletal muscle tissue development and regeneration.
Collapse
Affiliation(s)
- Nathaniel P. Skillin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Bruce E. Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Katie M. Herbert
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Benjamin R. Nelson
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Grace K. Hach
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Kemal Arda Günay
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Ryan M. Khan
- Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Frank W. DelRio
- Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Timothy J. White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Lead contact
| |
Collapse
|
10
|
Fernández‐Colino A, Kiessling F, Slabu I, De Laporte L, Akhyari P, Nagel SK, Stingl J, Reese S, Jockenhoevel S. Lifelike Transformative Materials for Biohybrid Implants: Inspired by Nature, Driven by Technology. Adv Healthc Mater 2023; 12:e2300991. [PMID: 37290055 PMCID: PMC11469152 DOI: 10.1002/adhm.202300991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/25/2023] [Indexed: 06/10/2023]
Abstract
Today's living world is enriched with a myriad of natural biological designs, shaped by billions of years of evolution. Unraveling the construction rules of living organisms offers the potential to create new materials and systems for biomedicine. From the close examination of living organisms, several concepts emerge: hierarchy, pattern repetition, adaptation, and irreducible complexity. All these aspects must be tackled to develop transformative materials with lifelike behavior. This perspective article highlights recent progress in the development of transformative biohybrid systems for applications in the fields of tissue regeneration and biomedicine. Advances in computational simulations and data-driven predictions are also discussed. These tools enable the virtual high-throughput screening of implant design and performance before committing to fabrication, thus reducing the development time and cost of biomimetic and biohybrid constructs. The ongoing progress of imaging methods also constitutes an essential part of this matter in order to validate the computation models and enable longitudinal monitoring. Finally, the current challenges of lifelike biohybrid materials, including reproducibility, ethical considerations, and translation, are discussed. Advances in the development of lifelike materials will open new biomedical horizons, where perhaps what is currently envisioned as science fiction will become a science-driven reality in the future.
Collapse
Affiliation(s)
- Alicia Fernández‐Colino
- Department of Biohybrid & Medical Textiles (BioTex)AME‐Institute of Applied Medical EngineeringHelmholtz InstituteRWTH Aachen UniversityForckenbeckstraße 5552074AachenGermany
| | - Fabian Kiessling
- Institute for Experimental Molecular ImagingFaculty of MedicineRWTH Aachen UniversityForckenbeckstraße 5552074AachenGermany
| | - Ioana Slabu
- Institute of Applied Medical EngineeringHelmholtz InstituteMedical FacultyRWTH Aachen UniversityPauwelsstraße 2052074AachenGermany
| | - Laura De Laporte
- DWI – Leibniz‐Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
- Institute of Technical and Macromolecular Chemistry (ITMC)RWTH Aachen UniversityWorringerweg 252074AachenGermany
- Advanced Materials for Biomedicine (AMB)Institute of Applied Medical Engineering (AME)University Hospital RWTH AachenCenter for Biohybrid Medical Systems (CMBS)Forckenbeckstraße 5552074AachenGermany
| | - Payam Akhyari
- Clinic for Cardiac SurgeryUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
| | - Saskia K. Nagel
- Applied Ethics GroupRWTH Aachen UniversityTheaterplatz 1452062AachenGermany
| | - Julia Stingl
- Institute of Clinical PharmacologyUniversity Hospital RWTH AachenWendlingweg 252074AachenGermany
| | - Stefanie Reese
- Institute of Applied MechanicsRWTH Aachen UniversityMies‐van‐der‐Rohe‐Str. 152074AachenGermany
| | - Stefan Jockenhoevel
- Department of Biohybrid & Medical Textiles (BioTex)AME‐Institute of Applied Medical EngineeringHelmholtz InstituteRWTH Aachen UniversityForckenbeckstraße 5552074AachenGermany
| |
Collapse
|
11
|
Navaee F, Renaud P, Piacentini N, Durand M, Bayat DZ, Ledroit D, Heub S, Boder-Pasche S, Kleger A, Braschler T, Weder G. Toward a Physiologically Relevant 3D Helicoidal-Oriented Cardiac Model: Simultaneous Application of Mechanical Stimulation and Surface Topography. Bioengineering (Basel) 2023; 10:bioengineering10020266. [PMID: 36829760 PMCID: PMC9952807 DOI: 10.3390/bioengineering10020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Myocardium consists of cardiac cells that interact with their environment through physical, biochemical, and electrical stimulations. The physiology, function, and metabolism of cardiac tissue are affected by this dynamic structure. Within the myocardium, cardiomyocytes' orientations are parallel, creating a dominant orientation. Additionally, local alignments of fibers, along with a helical organization, become evident at the macroscopic level. For the successful development of a reliable in vitro cardiac model, evaluation of cardiac cells' behavior in a dynamic microenvironment, as well as their spatial architecture, is mandatory. In this study, we hypothesize that complex interactions between long-term contraction boundary conditions and cyclic mechanical stimulation may provide a physiological mechanism to generate off-axis alignments in the preferred mechanical stretch direction. This off-axis alignment can be engineered in vitro and, most importantly, mirrors the helical arrangements observed in vivo. For this purpose, uniaxial mechanical stretching of dECM-fibrin hydrogels was performed on pre-aligned 3D cultures of cardiac cells. In view of the potential development of helical structures similar to those in native hearts, the possibility of generating oblique alignments ranging between 0° and 90° was explored. Indeed, our investigations of cell alignment in 3D, employing both mechanical stimulation and groove constraint, provide a reliable mechanism for the generation of helicoidal structures in the myocardium. By combining cyclic stretch and geometric alignment in grooves, an intermediate angle toward favored direction can be achieved experimentally: while cyclic stretch produces a perpendicular orientation, geometric alignment is associated with a parallel one. In our 2D and 3D culture conditions, nonlinear cellular addition of the strains and strain avoidance concept reliably predicted the preferred cellular alignment. The 3D dECM-fibrin model system in this study shows that cyclical stretching supports cell survival and development. Using mechanical stimulation of pre-aligned heart cells, maturation markers are augmented in neonatal cardiomyocytes, while the beating culture period is prolonged, indicating an improved model function. We propose a simplified theoretical model based on numerical simulation and nonlinear strain avoidance by cells to explain oblique alignment angles. Thus, this work lays a possible rational basis for understanding and engineering oblique cellular alignments, such as the helicoidal layout of the heart, using approaches that simultaneously enhance maturation and function.
Collapse
Affiliation(s)
- Fatemeh Navaee
- Microsystems Laboratory-LMIS4, EPFL, 1015 Lausanne, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, CMU, 1206 Geneva, Switzerland
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, 89081 Ulm, Germany
| | - Philippe Renaud
- Microsystems Laboratory-LMIS4, EPFL, 1015 Lausanne, Switzerland
| | | | - Mathilde Durand
- Swiss Center for Electronics and Microtechnology (CSEM), 2002 Neuchatel, Switzerland
| | - Dara Zaman Bayat
- Swiss Center for Electronics and Microtechnology (CSEM), 2002 Neuchatel, Switzerland
| | - Diane Ledroit
- Swiss Center for Electronics and Microtechnology (CSEM), 2002 Neuchatel, Switzerland
| | - Sarah Heub
- Swiss Center for Electronics and Microtechnology (CSEM), 2002 Neuchatel, Switzerland
| | | | - Alexander Kleger
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, 89081 Ulm, Germany
- Interdisciplinary Pancreatology, Department of Internal Medicine 1, Ulm University Hospital, 89081 Ulm, Germany
- Organoid Core Facility, Medical Faculty, Ulm University Hospital, 89081 Ulm, Germany
| | - Thomas Braschler
- Department of Pathology and Immunology, Faculty of Medicine, CMU, 1206 Geneva, Switzerland
- Correspondence:
| | - Gilles Weder
- Swiss Center for Electronics and Microtechnology (CSEM), 2002 Neuchatel, Switzerland
| |
Collapse
|
12
|
Das S, Ippolito A, McGarry P, Deshpande VS. Cell reorientation on a cyclically strained substrate. PNAS NEXUS 2022; 1:pgac199. [PMID: 36712366 PMCID: PMC9802216 DOI: 10.1093/pnasnexus/pgac199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/17/2022] [Indexed: 06/18/2023]
Abstract
Cyclic strain avoidance, the phenomenon of cell and cytoskeleton alignment perpendicular to the direction of cyclic strain of the underlying 2D substrate, is an important characteristic of the adherent cell organization. This alignment has typically been attributed to the stress-fiber reorganization although observations clearly show that stress-fiber reorganization under cyclic loading is closely coupled to cell morphology and reorientation of the cells. Here, we develop a statistical mechanics framework that couples the cytoskeletal stress-fiber organization with cell morphology under imposed cyclic straining and make quantitative comparisons with observations. The framework accurately predicts that cyclic strain avoidance stems primarily from cell reorientation away from the cyclic straining rather than cytoskeletal reorganization within the cell. The reorientation of the cell is a consequence of the cell lowering its free energy by largely avoiding the imposed cyclic straining. Furthermore, we investigate the kinetics of the cyclic strain avoidance mechanism and demonstrate that it emerges primarily due to the rigid body rotation of the cell rather than via a trajectory involving cell straining. Our results provide clear physical insights into the coupled dynamics of cell morphology and stress-fibers, which ultimately leads to cellular organization in cyclically strained tissues.
Collapse
Affiliation(s)
- Shuvrangsu Das
- Department of Engineering, Cambridge University, Trumpington St, Cambridge CB2 1PZ, UK
| | - Alberto Ippolito
- Department of Engineering, Cambridge University, Trumpington St, Cambridge CB2 1PZ, UK
| | - Patrick McGarry
- Department of Mechanical and Biomedical Engineering, National University of Ireland, University Road, Galway H91 CF50, Ireland
| | | |
Collapse
|
13
|
Senthilkumar I, Howley E, McEvoy E. Thermodynamically-motivated chemo-mechanical models and multicellular simulation to provide new insight into active cell and tumour remodelling. Exp Cell Res 2022; 419:113317. [PMID: 36028058 DOI: 10.1016/j.yexcr.2022.113317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/19/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022]
Abstract
Computational models can shape our understanding of cell and tissue remodelling, from cell spreading, to active force generation, adhesion, and growth. In this mini-review, we discuss recent progress in modelling of chemo-mechanical cell behaviour and the evolution of multicellular systems. In particular, we highlight recent advances in (i) free-energy based single cell models that can provide new fundamental insight into cell spreading, cancer cell invasion, stem cell differentiation, and remodelling in disease, and (ii) mechanical agent-based models to simulate large numbers of discrete interacting cells in proliferative tumours. We describe how new biological understanding has emerged from such theoretical models, and the trade-offs and constraints associated with current approaches. Ultimately, we aim to make a case for why theory should be integrated with an experimental workflow to optimise new in-vitro studies, to predict feedback between cells and their microenvironment, and to deepen understanding of active cell behaviour.
Collapse
Affiliation(s)
- Irish Senthilkumar
- School of Computer Science, College of Science and Engineering, National University of Ireland Galway, Ireland; Biomedical Engineering, College of Science and Engineering, National University of Ireland Galway, Ireland
| | - Enda Howley
- School of Computer Science, College of Science and Engineering, National University of Ireland Galway, Ireland
| | - Eoin McEvoy
- Biomedical Engineering, College of Science and Engineering, National University of Ireland Galway, Ireland.
| |
Collapse
|
14
|
Stracuzzi A, Britt BR, Mazza E, Ehret AE. Risky interpretations across the length scales: continuum vs. discrete models for soft tissue mechanobiology. Biomech Model Mechanobiol 2022; 21:433-454. [PMID: 34985590 PMCID: PMC8940853 DOI: 10.1007/s10237-021-01543-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/28/2021] [Indexed: 11/29/2022]
Abstract
Modelling and simulation in mechanobiology play an increasingly important role to unravel the complex mechanisms that allow resident cells to sense and respond to mechanical cues. Many of the in vivo mechanical loads occur on the tissue length scale, thus raising the essential question how the resulting macroscopic strains and stresses are transferred across the scales down to the cellular and subcellular levels. Since cells anchor to the collagen fibres within the extracellular matrix, the reliable representation of fibre deformation is a prerequisite for models that aim at linking tissue biomechanics and cell mechanobiology. In this paper, we consider the two-scale mechanical response of an affine structural model as an example of a continuum mechanical approach and compare it with the results of a discrete fibre network model. In particular, we shed light on the crucially different mechanical properties of the 'fibres' in these two approaches. While assessing the capability of the affine structural approach to capture the fibre kinematics in real tissues is beyond the scope of our study, our results clearly show that neither the macroscopic tissue response nor the microscopic fibre orientation statistics can clarify the question of affinity.
Collapse
Affiliation(s)
- Alberto Stracuzzi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland.
- ETH Zurich, Institute for Mechanical Systems, Leonhardstrasse 21, 8092, Zürich, Switzerland.
| | - Ben R Britt
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
- ETH Zurich, Institute for Mechanical Systems, Leonhardstrasse 21, 8092, Zürich, Switzerland
| | - Edoardo Mazza
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
- ETH Zurich, Institute for Mechanical Systems, Leonhardstrasse 21, 8092, Zürich, Switzerland
| | - Alexander E Ehret
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland.
- ETH Zurich, Institute for Mechanical Systems, Leonhardstrasse 21, 8092, Zürich, Switzerland.
| |
Collapse
|
15
|
Post JN, Loerakker S, Merks R, Carlier A. Implementing computational modeling in tissue engineering: where disciplines meet. Tissue Eng Part A 2022; 28:542-554. [PMID: 35345902 DOI: 10.1089/ten.tea.2021.0215] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In recent years, the mathematical and computational sciences have developed novel methodologies and insights that can aid in designing advanced bioreactors, microfluidic set-ups or organ-on-chip devices, in optimizing culture conditions, or predicting long-term behavior of engineered tissues in vivo. In this review, we introduce the concept of computational models and how they can be integrated in an interdisciplinary workflow for Tissue Engineering and Regenerative Medicine (TERM). We specifically aim this review of general concepts and examples at experimental scientists with little or no computational modeling experience. We also describe the contribution of computational models in understanding TERM processes and in advancing the TERM field by providing novel insights.
Collapse
Affiliation(s)
- Janine Nicole Post
- University of Twente, 3230, Tissue Regeneration, Enschede, Overijssel, Netherlands;
| | - Sandra Loerakker
- Eindhoven University of Technology, 3169, Department of Biomedical Engineering, Eindhoven, Noord-Brabant, Netherlands.,Eindhoven University of Technology, 3169, Institute for Complex Molecular Systems, Eindhoven, Noord-Brabant, Netherlands;
| | - Roeland Merks
- Leiden University, 4496, Institute for Biology Leiden and Mathematical Institute, Leiden, Zuid-Holland, Netherlands;
| | - Aurélie Carlier
- Maastricht University, 5211, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, 6229 ER Maastricht, Maastricht, Netherlands, 6200 MD;
| |
Collapse
|
16
|
He C, Liu M, Jiang D, Wu J, Qin C, Liang T, Wu P, Han C, Huang L, Hsia KJ, Wang P. Fabricating Tissues In Situ with the Controlled Cellular Alignments. Adv Healthc Mater 2022; 11:e2100934. [PMID: 34648692 DOI: 10.1002/adhm.202100934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/15/2021] [Indexed: 11/07/2022]
Abstract
Tissue engineering techniques have enabled to replicate the geometrical architecture of native tissues but usually fail to reproduce their exact cellular arrangements during the fabricating process, while it is critical for manufacturing physiologically relevant tissues. To address this problem, a "sewing-like" method of controlling cellular alignment during the fabricating process is reported here. By integrating the stretching step into the fabricating process, a static mechanical environment is created which, in turn, regulates the subsequent cellular alignment, elongation, and differentiation in the generated tissues. With this method, patterned cellular constructs can be fabricated with controlled cellular alignment. Moreover, this method shows a potent capability to fabricate physiologically relevant skeletal muscle constructs in vitro by mechanically inducing myoblast fusion and maturation. As a potential clinical application, aligned myofibers are directly fabricated onto injured muscles in vivo, which repair the damaged tissues effectively. This study shows that the "sewing-like" method can produce engineered tissues with precise control of cellular arrangements and more clinically viable functionalities.
Collapse
Affiliation(s)
- Chuanjiang He
- Biosensor National Special Laboratory Key Laboratory for Biomedical Engineering Ministry of Education Department of Biomedical Engineering Zhejiang University Hangzhou 310027 China
- State Key Laboratory of Transducer Technology Chinese Academy of Sciences Shanghai 200050 China
| | - Mengxue Liu
- Biosensor National Special Laboratory Key Laboratory for Biomedical Engineering Ministry of Education Department of Biomedical Engineering Zhejiang University Hangzhou 310027 China
| | - Deming Jiang
- Biosensor National Special Laboratory Key Laboratory for Biomedical Engineering Ministry of Education Department of Biomedical Engineering Zhejiang University Hangzhou 310027 China
| | - Jianguo Wu
- Biosensor National Special Laboratory Key Laboratory for Biomedical Engineering Ministry of Education Department of Biomedical Engineering Zhejiang University Hangzhou 310027 China
| | - Chunlian Qin
- Biosensor National Special Laboratory Key Laboratory for Biomedical Engineering Ministry of Education Department of Biomedical Engineering Zhejiang University Hangzhou 310027 China
| | - Tao Liang
- Biosensor National Special Laboratory Key Laboratory for Biomedical Engineering Ministry of Education Department of Biomedical Engineering Zhejiang University Hangzhou 310027 China
| | - Pan Wu
- Department of Burns and Wound Care Center The Second Affiliated Hospital of Zhejiang University School of Medicine Zhejiang University Hangzhou 310009 China
| | - Chunmao Han
- Department of Burns and Wound Care Center The Second Affiliated Hospital of Zhejiang University School of Medicine Zhejiang University Hangzhou 310009 China
| | - Liquan Huang
- College of Life Sciences Zhejiang University Hangzhou 310058 China
- Monell Chemical Senses Center Philadelphia PA 19104 USA
| | - K. Jimmy Hsia
- Schools of Chemical and Biomedical Engineering and Mechanical and Aerospace Engineering Nanyang Technological University Singapore 639798 Singapore
| | - Ping Wang
- Biosensor National Special Laboratory Key Laboratory for Biomedical Engineering Ministry of Education Department of Biomedical Engineering Zhejiang University Hangzhou 310027 China
- State Key Laboratory of Transducer Technology Chinese Academy of Sciences Shanghai 200050 China
| |
Collapse
|
17
|
Scandling BW, Gou J, Thomas J, Xuan J, Xue C, Gooch KJ. A Mechanistic Motor-Clutch Model That Explains Cell Shape Dynamics to Cyclic Stretch. Mol Biol Cell 2022; 33:ar27. [PMID: 35020463 PMCID: PMC9250388 DOI: 10.1091/mbc.e20-01-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Many cells in the body experience cyclic mechanical loading, which can impact cellular processes and morphology. In vitro studies often report that cells reorient in response to cyclic stretch of their substrate. To explore cellular mechanisms involved in this reorientation, a computational model was developed by adapting previous computational models of the actin–myosin–integrin motor-clutch system developed by others. The computational model predicts that under most conditions, actin bundles align perpendicular to the direction of applied cyclic stretch, but under specific conditions, such as low substrate stiffness, actin bundles align parallel to the direction of stretch. The model also predicts that stretch frequency impacts the rate of reorientation and that proper myosin function is critical in the reorientation response. These computational predictions are consistent with reports from the literature and new experimental results presented here. The model suggests that the impact of different stretching conditions (stretch type, amplitude, frequency, substrate stiffness, etc.) on the direction of cell alignment can largely be understood by considering their impact on cell–substrate detachment events, specifically whether detachments preferentially occur during stretching or relaxing of the substrate.
Collapse
Affiliation(s)
- Benjamin W Scandling
- Department of Biomedical Engineering, The Ohio State University.,The Frick Center for Heart Failure and Arrhythmia, Davis Heart Lung Research Institute, The Ohio State University
| | - Jia Gou
- Department of Mathematics, University of Minnesota.,Current Affiliation: Department of Mathematics, University of California, Riverside
| | - Jessica Thomas
- Department of Biomedical Engineering, The Ohio State University
| | - Jacqueline Xuan
- Department of Biomedical Engineering, The Ohio State University
| | - Chuan Xue
- School of Mathematics, University of Minnesota
| | - Keith J Gooch
- Department of Biomedical Engineering, The Ohio State University.,The Frick Center for Heart Failure and Arrhythmia, Davis Heart Lung Research Institute, The Ohio State University
| |
Collapse
|
18
|
Pitta Kruize C, Panahkhahi S, Putra NE, Diaz-Payno P, van Osch G, Zadpoor AA, Mirzaali MJ. Biomimetic Approaches for the Design and Fabrication of Bone-to-Soft Tissue Interfaces. ACS Biomater Sci Eng 2021. [PMID: 34784181 DOI: 10.1021/acsbiomaterials.1c00620] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bone-to-soft tissue interfaces are responsible for transferring loads between tissues with significantly dissimilar material properties. The examples of connective soft tissues are ligaments, tendons, and cartilages. Such natural tissue interfaces have unique microstructural properties and characteristics which avoid the abrupt transitions between two tissues and prevent formation of stress concentration at their connections. Here, we review some of the important characteristics of these natural interfaces. The native bone-to-soft tissue interfaces consist of several hierarchical levels which are formed in a highly specialized anisotropic fashion and are composed of different types of heterogeneously distributed cells. The characteristics of a natural interface can rely on two main design principles, namely by changing the local microarchitectural features (e.g., complex cell arrangements, and introducing interlocking mechanisms at the interfaces through various geometrical designs) and changing the local chemical compositions (e.g., a smooth and gradual transition in the level of mineralization). Implementing such design principles appears to be a promising approach that can be used in the design, reconstruction, and regeneration of engineered biomimetic tissue interfaces. Furthermore, prominent fabrication techniques such as additive manufacturing (AM) including 3D printing and electrospinning can be used to ease these implementation processes. Biomimetic interfaces have several biological applications, for example, to create synthetic scaffolds for osteochondral tissue repair.
Collapse
Affiliation(s)
- Carlos Pitta Kruize
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Sara Panahkhahi
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Niko Eka Putra
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Pedro Diaz-Payno
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Gerjo van Osch
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Mohammad J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| |
Collapse
|
19
|
Visser VL, Zaytseva P, Motta SE, Loerakker S, Hoerstrup SP, Emmert MY. Computational modelling to reduce outcome variability in tissue-engineered heart valves. Eur Heart J 2021; 42:2225-2229. [PMID: 33619542 DOI: 10.1093/eurheartj/ehab034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Valery L Visser
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Polina Zaytseva
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Sarah E Motta
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Wyss Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Simon P Hoerstrup
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Wyss Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Maximilian Y Emmert
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Wyss Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.,Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany.,Department of Cardiothoracic and Vascular surgery, German Heart Center Berlin, Berlin Germany
| |
Collapse
|
20
|
A Fully Integrated Arduino-Based System for the Application of Stretching Stimuli to Living Cells and Their Time-Lapse Observation: A Do-It-Yourself Biology Approach. Ann Biomed Eng 2021; 49:2243-2259. [PMID: 33728867 DOI: 10.1007/s10439-021-02758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/20/2021] [Indexed: 10/21/2022]
Abstract
Mechanobiology has nowadays acquired the status of a topic of fundamental importance in a degree in Biological Sciences. It is inherently a multidisciplinary topic where biology, physics and engineering competences are required. A course in mechanobiology should include lab experiences where students can appreciate how mechanical stimuli from outside affect living cell behaviour. Here we describe all the steps to build a cell stretcher inside an on-stage cell incubator. This device allows exposing living cells to a periodic mechanical stimulus similar to what happens in physiological conditions such as, for example, in the vascular system or in the lungs. The reaction of the cells to the periodic mechanical stretching represents a prototype of a mechanobiological signal integrated by living cells. We also provide the theoretical and experimental aspects related to the calibration of the stretcher apparatus at a level accessible to researchers not used to dealing with topics like continuum mechanics and analysis of deformations. We tested our device by stretching cells of two different lines, U87-MG and Balb-3T3 cells, and we analysed and discussed the effect of the periodic stimulus on both cell reorientation and migration. We also discuss the basic aspects related to the quantitative analysis of the reorientation process and of cell migration. We think that the device we propose can be easily reproduced at low-cost within a project-oriented course in the fields of biology, biotechnology and medical engineering.
Collapse
|
21
|
Lucci G, Preziosi L. A nonlinear elastic description of cell preferential orientations over a stretched substrate. Biomech Model Mechanobiol 2021; 20:631-649. [PMID: 33449274 PMCID: PMC7979636 DOI: 10.1007/s10237-020-01406-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/24/2020] [Indexed: 11/27/2022]
Abstract
The active response of cells to mechanical cues due to their interaction with the environment has been of increasing interest, since it is involved in many physiological phenomena, pathologies, and in tissue engineering. In particular, several experiments have shown that, if a substrate with overlying cells is cyclically stretched, they will reorient to reach a well-defined angle between their major axis and the main stretching direction. Recent experimental findings, also supported by a linear elastic model, indicated that the minimization of an elastic energy might drive this reorientation process. Motivated by the fact that a similar behaviour is observed even for high strains, in this paper we address the problem in the framework of finite elasticity, in order to study the presence of nonlinear effects. We find that, for a very large class of constitutive orthotropic models and with very general assumptions, there is a single linear relationship between a parameter describing the biaxial deformation and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\cos ^2\theta _{\mathrm{eq}}$$\end{document}cos2θeq, where \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\theta _{\mathrm{eq}}$$\end{document}θeq is the orientation angle of the cell, with the slope of the line depending on a specific combination of four parameters that characterize the nonlinear constitutive equation. We also study the effect of introducing a further dependence of the energy on the anisotropic invariants related to the square of the Cauchy–Green strain tensor. This leads to departures from the linear relationship mentioned above, that are again critically compared with experimental data.
Collapse
Affiliation(s)
- Giulio Lucci
- Department of Mathematical Sciences “G.L. Lagrange”, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
- Department of Mathematics “G. Peano”, Università degli Studi di Torino, Via Carlo Alberto 10, 10123 Turin, Italy
| | - Luigi Preziosi
- Department of Mathematical Sciences “G.L. Lagrange” Dipartimento di Eccellenza 2018-2022, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
22
|
Loerakker S, Ristori T. Computational modeling for cardiovascular tissue engineering: the importance of including cell behavior in growth and remodeling algorithms. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020; 15:1-9. [PMID: 33997580 PMCID: PMC8105589 DOI: 10.1016/j.cobme.2019.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Understanding cardiovascular growth and remodeling (G&R) is fundamental for designing robust cardiovascular tissue engineering strategies, which enable synthetic or biological scaffolds to transform into healthy living tissues after implantation. Computational modeling, particularly when integrated with experimental research, is key for advancing our understanding, predicting the in vivo evolution of engineered tissues, and efficiently optimizing scaffold designs. As cells are ultimately the drivers of G&R and known to change their behavior in response to mechanical cues, increasing efforts are currently undertaken to capture (mechano-mediated) cell behavior in computational models. In this selective review, we highlight some recent examples that are relevant in the context of cardiovascular tissue engineering and discuss the current and future biological and computational challenges for modeling cell-mediated G&R.
Collapse
Affiliation(s)
- Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Groene Loper Building 15, 5612 AP, Eindhoven, the Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Groene Loper Building 7, 5612 AJ, Eindhoven, the Netherlands
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, Groene Loper Building 15, 5612 AP, Eindhoven, the Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Groene Loper Building 7, 5612 AJ, Eindhoven, the Netherlands
| |
Collapse
|
23
|
Sakthivel K, Kumar H, Mohamed MGA, Talebjedi B, Shim J, Najjaran H, Hoorfar M, Kim K. High Throughput Screening of Cell Mechanical Response Using a Stretchable 3D Cellular Microarray Platform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000941. [PMID: 32588966 DOI: 10.1002/smll.202000941] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/10/2020] [Indexed: 06/11/2023]
Abstract
Cells in vivo are constantly subjected to multiple microenvironmental mechanical stimuli that regulate cell function. Although 2D cell responses to the mechanical stimulation have been established, these methods lack relevance as physiological cell microenvironments are in 3D. Moreover, the existing platforms developed for studying the cell responses to mechanical cues in 3D either offer low-throughput, involve complex fabrication, or do not allow combinatorial analysis of multiple cues. Considering this, a stretchable high-throughput (HT) 3D cell microarray platform is presented that can apply dynamic mechanical strain to cells encapsulated in arrayed 3D microgels. The platform uses inkjet-bioprinting technique for printing cell-laden gelatin methacrylate (GelMA) microgel array on an elastic composite substrate that is periodically stretched. The developed platform is highly biocompatible and transfers the applied strain from the stretched substrate to the cells. The HT analysis is conducted to analyze cell mechano-responses throughout the printed microgel array. Also, the combinatorial analysis of distinct cell behaviors is conducted for different GelMA microenvironmental stiffnesses in addition to the dynamic stretch. Considering its throughput and flexibility, the developed platform can readily be scaled up to introduce a wide range of microenvironmental cues and to screen the cell responses in a HT way.
Collapse
Affiliation(s)
- Kabilan Sakthivel
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Hitendra Kumar
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Mohamed G A Mohamed
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Bahram Talebjedi
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Justin Shim
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Homayoun Najjaran
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Keekyoung Kim
- School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
24
|
Nava MM, Miroshnikova YA, Biggs LC, Whitefield DB, Metge F, Boucas J, Vihinen H, Jokitalo E, Li X, García Arcos JM, Hoffmann B, Merkel R, Niessen CM, Dahl KN, Wickström SA. Heterochromatin-Driven Nuclear Softening Protects the Genome against Mechanical Stress-Induced Damage. Cell 2020; 181:800-817.e22. [PMID: 32302590 PMCID: PMC7237863 DOI: 10.1016/j.cell.2020.03.052] [Citation(s) in RCA: 363] [Impact Index Per Article: 72.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/02/2020] [Accepted: 03/20/2020] [Indexed: 01/06/2023]
Abstract
Tissue homeostasis requires maintenance of functional integrity under stress. A central source of stress is mechanical force that acts on cells, their nuclei, and chromatin, but how the genome is protected against mechanical stress is unclear. We show that mechanical stretch deforms the nucleus, which cells initially counteract via a calcium-dependent nuclear softening driven by loss of H3K9me3-marked heterochromatin. The resulting changes in chromatin rheology and architecture are required to insulate genetic material from mechanical force. Failure to mount this nuclear mechanoresponse results in DNA damage. Persistent, high-amplitude stretch induces supracellular alignment of tissue to redistribute mechanical energy before it reaches the nucleus. This tissue-scale mechanoadaptation functions through a separate pathway mediated by cell-cell contacts and allows cells/tissues to switch off nuclear mechanotransduction to restore initial chromatin state. Our work identifies an unconventional role of chromatin in altering its own mechanical state to maintain genome integrity in response to deformation.
Collapse
Affiliation(s)
- Michele M Nava
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland; Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Yekaterina A Miroshnikova
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland; Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Leah C Biggs
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland; Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Daniel B Whitefield
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Franziska Metge
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Jorge Boucas
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Helena Vihinen
- Electron Microscopy Unit, Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Xinping Li
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Juan Manuel García Arcos
- Institut Curie, PSL Research University, CNRS, UMR 144 and Institut Pierre-Gilles de Gennes, PSL Research University, 75005 Paris, France
| | - Bernd Hoffmann
- Forschungszentrum Jülich, Institute of Biological Information Processing-2: Mechanobiology, 52428 Jülich, Germany
| | - Rudolf Merkel
- Forschungszentrum Jülich, Institute of Biological Information Processing-2: Mechanobiology, 52428 Jülich, Germany
| | - Carien M Niessen
- Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Department of Dermatology, Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany
| | - Kris Noel Dahl
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Sara A Wickström
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland; Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
25
|
Kaunas R. Good advice for endothelial cells: Get in line, relax tension, and go with the flow. APL Bioeng 2020; 4:010905. [PMID: 32128470 PMCID: PMC7044000 DOI: 10.1063/1.5129812] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/19/2020] [Indexed: 11/26/2022] Open
Abstract
Endothelial cells (ECs) are continuously subjected to fluid wall shear stress (WSS) and cyclic strain caused by pulsatile blood flow and pressure. It is well established that these hemodynamic forces each play important roles in vascular disease, but their combined effects are not well understood. ECs remodel in response to both WSS and cyclic strain to align along the vessel axis, but in areas prone to atherogenesis, such an alignment is absent. In this perspective, experimental and clinical findings will be reviewed, which have revealed the characteristics of WSS and cyclic strain, which are associated with atherosclerosis, spanning studies on whole blood vessels to individual cells to mechanosensing molecules. Examples are described regarding the use of computational modeling to elucidate the mechanisms by which EC alignment contributes to mechanical homeostasis. Finally, the need to move toward an integrated understanding of how hemodynamic forces influence EC mechanotransduction is presented, which holds the potential to move our currently fragmented understanding to a true appreciation of the role of mechanical stimuli in atherosclerosis.
Collapse
Affiliation(s)
- Roland Kaunas
- Department of Biomedical Engineering and Department of Cellular and Molecular Medicine, Texas A&M University, College Station, Texas 77843-3120, USA
| |
Collapse
|
26
|
Emmert MY, Schmitt BA, Loerakker S, Sanders B, Spriestersbach H, Fioretta ES, Bruder L, Brakmann K, Motta SE, Lintas V, Dijkman PE, Frese L, Berger F, Baaijens FPT, Hoerstrup SP. Computational modeling guides tissue-engineered heart valve design for long-term in vivo performance in a translational sheep model. Sci Transl Med 2019; 10:10/440/eaan4587. [PMID: 29743347 DOI: 10.1126/scitranslmed.aan4587] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/20/2017] [Accepted: 04/09/2018] [Indexed: 12/14/2022]
Abstract
Valvular heart disease is a major cause of morbidity and mortality worldwide. Current heart valve prostheses have considerable clinical limitations due to their artificial, nonliving nature without regenerative capacity. To overcome these limitations, heart valve tissue engineering (TE) aiming to develop living, native-like heart valves with self-repair, remodeling, and regeneration capacity has been suggested as next-generation technology. A major roadblock to clinically relevant, safe, and robust TE solutions has been the high complexity and variability inherent to bioengineering approaches that rely on cell-driven tissue remodeling. For heart valve TE, this has limited long-term performance in vivo because of uncontrolled tissue remodeling phenomena, such as valve leaflet shortening, which often translates into valve failure regardless of the bioengineering methodology used to develop the implant. We tested the hypothesis that integration of a computationally inspired heart valve design into our TE methodologies could guide tissue remodeling toward long-term functionality in tissue-engineered heart valves (TEHVs). In a clinically and regulatory relevant sheep model, TEHVs implanted as pulmonary valve replacements using minimally invasive techniques were monitored for 1 year via multimodal in vivo imaging and comprehensive tissue remodeling assessments. TEHVs exhibited good preserved long-term in vivo performance and remodeling comparable to native heart valves, as predicted by and consistent with computational modeling. TEHV failure could be predicted for nonphysiological pressure loading. Beyond previous studies, this work suggests the relevance of an integrated in silico, in vitro, and in vivo bioengineering approach as a basis for the safe and efficient clinical translation of TEHVs.
Collapse
Affiliation(s)
- Maximilian Y Emmert
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,University Heart Center Zurich, University Hospital Zurich, Zurich, Switzerland.,Wyss Translational Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Boris A Schmitt
- German Heart Center Berlin and Charité-Universitätsmedizin Berlin, Department of Congenital Heart Disease, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Bart Sanders
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Hendrik Spriestersbach
- German Heart Center Berlin and Charité-Universitätsmedizin Berlin, Department of Congenital Heart Disease, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Emanuela S Fioretta
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Leon Bruder
- German Heart Center Berlin and Charité-Universitätsmedizin Berlin, Department of Congenital Heart Disease, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Kerstin Brakmann
- German Heart Center Berlin and Charité-Universitätsmedizin Berlin, Department of Congenital Heart Disease, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Sarah E Motta
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Valentina Lintas
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Petra E Dijkman
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Laura Frese
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Felix Berger
- German Heart Center Berlin and Charité-Universitätsmedizin Berlin, Department of Congenital Heart Disease, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Frank P T Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Simon P Hoerstrup
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland. .,Wyss Translational Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
van Kelle MAJ, Rausch MK, Kuhl E, Loerakker S. A computational model to predict cell traction-mediated prestretch in the mitral valve. Comput Methods Biomech Biomed Engin 2019; 22:1174-1185. [PMID: 31423837 DOI: 10.1080/10255842.2019.1647533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Prestretch is observed in many soft biological tissues, directly influencing the mechanical behavior of the tissue in question. The development of this prestretch occurs through complex growth and remodeling phenomena, which yet remain to be elucidated. In the present study it was investigated whether local cell-mediated traction forces can explain the development of global anisotropic tissue prestretch in the mitral valve. Towards this end, a model predicting actin stress fiber-generated traction forces was implemented in a finite element framework of the mitral valve. The overall predicted magnitude of prestretch induced valvular contraction after release of in vivo boundary constraints was in good agreement with data reported on valvular retraction after excision from the heart. Next, by using a systematic variation of model parameters and structural properties, a more anisotropic prestretch development in the valve could be obtained, which was also similar to physiological values. In conclusion, this study shows that cell-generated traction forces could explain prestretch magnitude and anisotropy in the mitral valve.
Collapse
Affiliation(s)
- M A J van Kelle
- Department of Biomedical Engineering, Eindhoven University of Technology , Eindhoven , The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology , Eindhoven , The Netherlands
| | - M K Rausch
- Department of Aerospace Engineering & Engineering Mechanics, University of Texas , Austin , TX , USA
| | - E Kuhl
- Department of Mechanical Engineering, Stanford University , Stanford , CA , USA
| | - S Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology , Eindhoven , The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology , Eindhoven , The Netherlands
| |
Collapse
|
28
|
McEvoy E, Deshpande VS, McGarry P. Transient active force generation and stress fibre remodelling in cells under cyclic loading. Biomech Model Mechanobiol 2019; 18:921-937. [PMID: 30783833 DOI: 10.1007/s10237-019-01121-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/21/2019] [Indexed: 12/27/2022]
Abstract
The active cytoskeleton is known to play an important mechanistic role in cellular structure, spreading, and contractility. Contractility is actively generated by stress fibres (SF), which continuously remodel in response to physiological dynamic loading conditions. The influence of actin-myosin cross-bridge cycling on SF remodelling under dynamic loading conditions has not previously been uncovered. In this study, a novel SF cross-bridge cycling model is developed to predict transient active force generation in cells subjected to dynamic loading. Rates of formation of cross-bridges within SFs are governed by the chemical potentials of attached and unattached myosin heads. This transient cross-bridge cycling model is coupled with a thermodynamically motivated framework for SF remodelling to analyse the influence of transient force generation on cytoskeletal evolution. A 1D implementation of the model is shown to correctly predict complex patterns of active cell force generation under a range of dynamic loading conditions, as reported in previous experimental studies.
Collapse
Affiliation(s)
- Eoin McEvoy
- Discipline of Biomedical Engineering, National University of Ireland Galway, Galway, Ireland
| | | | - Patrick McGarry
- Discipline of Biomedical Engineering, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
29
|
Keshavanarayana P, Ruess M, de Borst R. On the monolithic and staggered solution of cell contractility and focal adhesion growth. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e3138. [PMID: 30070031 DOI: 10.1002/cnm.3138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/22/2018] [Accepted: 07/22/2018] [Indexed: 06/08/2023]
Abstract
The mechanical response of cells to stimuli tightly couples biochemical and biomechanical processes, which describe fundamental properties such as cell growth and reorientation. Cells interact continuously with their external surroundings, the extracellular matrix (ECM), by establishing a bond between cell and ECM through the formation of focal adhesions. Focal adhesions are made up of integrins, which are mechanosensitive proteins and responsible for the communication between the cell and the ECM. The governing biochemomechanical processes can be modeled by means of a continuum approach considering mechanical and thermodynamic equilibrium to describe cell contractility and focal adhesion growth. The immanent multiphysical character of cell mechanics involves important aspects such as the coupling of fields of different scales and corresponding interface conditions that are sensitive to the solution of the governing numerical problem. These aspects become even more relevant when considering a feedback loop among the multiphysical solutions fields. In this contribution, we consider solution properties and sensitivity aspects of a nonlinear mechanical continuum model for the prognosis of stress fiber growth and reorientation incorporating a mechanosensitive feedback loop. We provide the governing equations of a Hill model-based stress fiber growth, which is coupled to a thermodynamical approach modeling the focal adhesions. Furthermore, a variational formulation including the algebraic equations is derived for staggered and monolithic solution approaches and the reaction-diffusion equation that models the feedback mechanism. We test both schemes with regard to reliability, accuracy, and numerical efficiency for different model parameters and loading scenarios. We present algorithmic aspects of the considered solution schemes and reveal their robustness with regard to model refinement in space and time and finally provide an assessment of their overall solution performance for multiphysics problems in the context of cell mechanics.
Collapse
Affiliation(s)
| | - Martin Ruess
- School of Engineering, University of Glasgow, Glasgow, UK
| | - René de Borst
- Department of Civil and Structural Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
30
|
Ristori T, Bouten CVC, Baaijens FPT, Loerakker S. Predicting and understanding collagen remodeling in human native heart valves during early development. Acta Biomater 2018; 80:203-216. [PMID: 30223090 DOI: 10.1016/j.actbio.2018.08.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/17/2018] [Accepted: 08/30/2018] [Indexed: 01/17/2023]
Abstract
The hemodynamic functionality of heart valves strongly depends on the distribution of collagen fibers, which are their main load-bearing constituents. It is known that collagen networks remodel in response to mechanical stimuli. Yet, the complex interplay between external load and collagen remodeling is poorly understood. In this study, we adopted a computational approach to simulate collagen remodeling occurring in native fetal and pediatric heart valves. The computational model accounted for several biological phenomena: cellular (re)orientation in response to both mechanical stimuli and topographical cues provided by collagen fibers; collagen deposition and traction forces along the main cellular direction; collagen degradation decreasing with stretch; and cell-mediated collagen prestretch. Importantly, the computational results were well in agreement with previous experimental data for all simulated heart valves. Simulations performed by varying some of the computational parameters suggest that cellular forces and (re)orientation in response to mechanical stimuli may be fundamental mechanisms for the emergence of the circumferential collagen alignment usually observed in native heart valves. On the other hand, the tendency of cells to coalign with collagen fibers is essential to maintain and reinforce that circumferential alignment during development. STATEMENT OF SIGNIFICANCE: The hemodynamic functionality of heart valves is strongly influenced by the alignment of load-bearing collagen fibers. Currently, the mechanisms that are responsible for the development of the circumferential collagen alignment in native heart valves are not fully understood. In the present study, cell-mediated remodeling of native human heart valves during early development was computationally simulated to understand the impact of individual mechanisms on collagen alignment. Our simulations successfully predicted the degree of collagen alignment observed in native fetal and pediatric semilunar valves. The computational results suggest that the circumferential collagen alignment arises from cell traction and cellular (re)orientation in response to mechanical stimuli, and with increasing age is reinforced by the tendency of cells to co-align with pre-existing collagen fibers.
Collapse
Affiliation(s)
- T Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - C V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - F P T Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - S Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.
| |
Collapse
|
31
|
Modelling The Combined Effects Of Collagen and Cyclic Strain On Cellular Orientation In Collagenous Tissues. Sci Rep 2018; 8:8518. [PMID: 29867153 PMCID: PMC5986791 DOI: 10.1038/s41598-018-26989-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 05/17/2018] [Indexed: 01/13/2023] Open
Abstract
Adherent cells are generally able to reorient in response to cyclic strain. In three-dimensional tissues, however, extracellular collagen can affect this cellular response. In this study, a computational model able to predict the combined effects of mechanical stimuli and collagen on cellular (re)orientation was developed. In particular, a recently proposed computational model (which only accounts for mechanical stimuli) was extended by considering two hypotheses on how collagen influences cellular (re)orientation: collagen contributes to cell alignment by providing topographical cues (contact guidance); or collagen causes a spatial obstruction for cellular reorientation (steric hindrance). In addition, we developed an evolution law to predict cell-induced collagen realignment. The hypotheses were tested by simulating bi- or uniaxially constrained cell-populated collagen gels with different collagen densities, subjected to immediate or delayed uniaxial cyclic strain with varying strain amplitudes. The simulation outcomes are in agreement with previous experimental reports. Taken together, our computational approach is a promising tool to understand and predict the remodeling of collagenous tissues, such as native or tissue-engineered arteries and heart valves.
Collapse
|
32
|
Chen K, Vigliotti A, Bacca M, McMeeking RM, Deshpande VS, Holmes JW. Role of boundary conditions in determining cell alignment in response to stretch. Proc Natl Acad Sci U S A 2018; 115:986-991. [PMID: 29343646 PMCID: PMC5798351 DOI: 10.1073/pnas.1715059115] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
The ability of cells to orient in response to mechanical stimuli is essential to embryonic development, cell migration, mechanotransduction, and other critical physiologic functions in a range of organs. Endothelial cells, fibroblasts, mesenchymal stem cells, and osteoblasts all orient perpendicular to an applied cyclic stretch when plated on stretchable elastic substrates, suggesting a common underlying mechanism. However, many of these same cells orient parallel to stretch in vivo and in 3D culture, and a compelling explanation for the different orientation responses in 2D and 3D has remained elusive. Here, we conducted a series of experiments designed specifically to test the hypothesis that differences in strains transverse to the primary loading direction give rise to the different alignment patterns observed in 2D and 3D cyclic stretch experiments ("strain avoidance"). We found that, in static or low-frequency stretch conditions, cell alignment in fibroblast-populated collagen gels correlated with the presence or absence of a restraining boundary condition rather than with compaction strains. Cyclic stretch could induce perpendicular alignment in 3D culture but only at frequencies an order of magnitude greater than reported to induce perpendicular alignment in 2D. We modified a published model of stress fiber dynamics and were able to reproduce our experimental findings across all conditions tested as well as published data from 2D cyclic stretch experiments. These experimental and model results suggest an explanation for the apparently contradictory alignment responses of cells subjected to cyclic stretch on 2D membranes and in 3D gels.
Collapse
Affiliation(s)
- Kellen Chen
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
| | - Andrea Vigliotti
- Department of Engineering, University of Cambridge, CB2 1PZ Cambridge, United Kingdom
- Innovative Material Laboratory, Italian Aerospace Research Center, 81043 Capua, Italy
| | - Mattia Bacca
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106
- Department of Materials, University of California, Santa Barbara, CA 93106
| | - Robert M McMeeking
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106
- Department of Materials, University of California, Santa Barbara, CA 93106
| | - Vikram S Deshpande
- Department of Engineering, University of Cambridge, CB2 1PZ Cambridge, United Kingdom
| | - Jeffrey W Holmes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908;
- Department of Medicine, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
33
|
Growth and remodeling play opposing roles during postnatal human heart valve development. Sci Rep 2018; 8:1235. [PMID: 29352179 PMCID: PMC5775310 DOI: 10.1038/s41598-018-19777-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/03/2018] [Indexed: 01/13/2023] Open
Abstract
Tissue growth and remodeling are known to govern mechanical homeostasis in biological tissue, but their relative contributions to homeostasis remain unclear. Here, we use mechanical models, fueled by experimental findings, to demonstrate that growth and remodeling have different effects on heart valve stretch homeostasis during physiological postnatal development. Two developmental stages were considered: early-stage (from infant to adolescent) and late-stage (from adolescent to adult) development. Our models indicated that growth and remodeling play opposing roles in preserving tissue stretch and with time. During early-stage development, excessive tissue stretch was decreased by tissue growth and increased by remodeling. In contrast, during late-stage development tissue stretch was decreased by remodeling and increased by growth. Our findings contribute to an improved understanding of native heart valve adaptation throughout life, and are highly relevant for the development of tissue-engineered heart valves.
Collapse
|
34
|
Oomen PJA, van Kelle MAJ, Oomens CWJ, Bouten CVC, Loerakker S. Nondestructive mechanical characterization of developing biological tissues using inflation testing. J Mech Behav Biomed Mater 2017; 74:438-447. [PMID: 28709754 DOI: 10.1016/j.jmbbm.2017.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/25/2017] [Accepted: 07/04/2017] [Indexed: 11/17/2022]
Abstract
One of the hallmarks of biological soft tissues is their capacity to grow and remodel in response to changes in their environment. Although it is well-accepted that these processes occur at least partly to maintain a mechanical homeostasis, it remains unclear which mechanical constituent(s) determine(s) mechanical homeostasis. In the current study a nondestructive mechanical test and a two-step inverse analysis method were developed and validated to nondestructively estimate the mechanical properties of biological tissue during tissue culture. Nondestructive mechanical testing was achieved by performing an inflation test on tissues that were cultured inside a bioreactor, while the tissue displacement and thickness were nondestructively measured using ultrasound. The material parameters were estimated by an inverse finite element scheme, which was preceded by an analytical estimation step to rapidly obtain an initial estimate that already approximated the final solution. The efficiency and accuracy of the two-step inverse method was demonstrated on virtual experiments of several material types with known parameters. PDMS samples were used to demonstrate the method's feasibility, where it was shown that the proposed method yielded similar results to tensile testing. Finally, the method was applied to estimate the material properties of tissue-engineered constructs. Via this method, the evolution of mechanical properties during tissue growth and remodeling can now be monitored in a well-controlled system. The outcomes can be used to determine various mechanical constituents and to assess their contribution to mechanical homeostasis.
Collapse
Affiliation(s)
- P J A Oomen
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600MB Eindhoven, Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600MB Eindhoven, Netherlands.
| | - M A J van Kelle
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600MB Eindhoven, Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600MB Eindhoven, Netherlands
| | - C W J Oomens
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600MB Eindhoven, Netherlands
| | - C V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600MB Eindhoven, Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600MB Eindhoven, Netherlands
| | - S Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600MB Eindhoven, Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600MB Eindhoven, Netherlands.
| |
Collapse
|
35
|
Foolen J, Wunderli SL, Loerakker S, Snedeker JG. Tissue alignment enhances remodeling potential of tendon-derived cells - Lessons from a novel microtissue model of tendon scarring. Matrix Biol 2017. [PMID: 28636876 DOI: 10.1016/j.matbio.2017.06.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tendinopathy is a widespread and unresolved clinical challenge, in which associated pain and hampered mobility present a major cause for work-related disability. Tendinopathy associates with a change from a healthy tissue with aligned extracellular matrix (ECM) and highly polarized cells that are connected head-to-tail, towards a diseased tissue with a disorganized ECM and randomly distributed cells, scar-like features that are commonly attributed to poor innate regenerative capacity of the tissue. A fundamental clinical dilemma with this scarring process is whether treatment strategies should focus on healing the affected (disorganized) tissue or strengthen the remaining healthy (anisotropic) tissue. The question was thus asked whether the intrinsic remodeling capacity of tendon-derived cells depends on the organization of the 3D extracellular matrix (isotropic vs anisotropic). Progress in this field is hampered by the lack of suitable in vitro tissue platforms. We aimed at filling this critical gap by creating and exploiting a next generation tissue platform that mimics aspects of the tendon scarring process; cellular response to a gradient in tissue organization from isotropic (scarred/non-aligned) to highly anisotropic (unscarred/aligned) was studied, as was a transient change from isotropic towards highly anisotropic. Strikingly, cells residing in an 'unscarred' anisotropic tissue indicated superior remodeling capacity (increased gene expression levels of collagen, matrix metalloproteinases MMPs, tissue inhibitors of MMPs), when compared to their 'scarred' isotropic counterparts. A numerical model then supported the hypothesis that cellular remodeling capacity may correlate to cellular alignment strength. This in turn may have improved cellular communication, and could thus relate to the more pronounced connexin43 gap junctions observed in anisotropic tissues. In conclusion, increased tissue anisotropy was observed to enhance the cellular potential for functional remodeling of the matrix. This may explain the poor regenerative capacity of tenocytes in chronic tendinopathy, where the pathological process has resulted in ECM disorganization. Additionally, it lends support to treatment strategies that focus on strengthening the remaining healthy tissue, rather than regenerating scarred tissue.
Collapse
Affiliation(s)
- Jasper Foolen
- Department of Orthopaedics, University Hospital Balgrist, Lengghalde 5, CH-8008 Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Lengghalde 5, CH-8008 Zurich, Switzerland; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Stefania L Wunderli
- Department of Orthopaedics, University Hospital Balgrist, Lengghalde 5, CH-8008 Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Lengghalde 5, CH-8008 Zurich, Switzerland
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jess G Snedeker
- Department of Orthopaedics, University Hospital Balgrist, Lengghalde 5, CH-8008 Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Lengghalde 5, CH-8008 Zurich, Switzerland.
| |
Collapse
|
36
|
Jayyosi C, Affagard JS, Ducourthial G, Bonod-Bidaud C, Lynch B, Bancelin S, Ruggiero F, Schanne-Klein MC, Allain JM, Bruyère-Garnier K, Coret M. Affine kinematics in planar fibrous connective tissues: an experimental investigation. Biomech Model Mechanobiol 2017; 16:1459-1473. [DOI: 10.1007/s10237-017-0899-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 03/15/2017] [Indexed: 02/07/2023]
|
37
|
Parandakh A, Tafazzoli-Shadpour M, Khani MM. Stepwise morphological changes and cytoskeletal reorganization of human mesenchymal stem cells treated by short-time cyclic uniaxial stretch. In Vitro Cell Dev Biol Anim 2017; 53:547-553. [PMID: 28205142 DOI: 10.1007/s11626-017-0131-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/02/2017] [Indexed: 11/26/2022]
Abstract
This study aimed to investigate stepwise remodeling of human mesenchymal stem cells (hMSCs) in response to cyclic stretch through rearrangement and alignment of cells and cytoskeleton regulation toward smooth muscle cell (SMC) fate in different time spans. Image analysis techniques were utilized to calculate morphological parameters. Cytoskeletal reorganization was observed by investigating F-actin filaments using immunofluorescence staining, and expression level of contractile SMC markers was followed by a quantitative polymerase chain reaction method. Applying cyclic uniaxial stretch on cultured hMSCs, utilizing a costume-made device, led to alteration in fractal dimension (FD) and cytoskeleton structure toward continuous alignment and elongation of cells by elevation of strain duration. Actin filaments became more aligned perpendicular to the axis of mechanical stretch by increasing uniaxial loading duration. At first, FD met a significant decrease in 4 h loading duration then increased significantly by further loading up to 16 h, followed by another decrease up to 1 d of uniaxial stretching. HMSCs subjected to 24 h cyclic uniaxial stretching significantly expressed early and intermediate contractile SM markers. It was hypothesized that the increase in FD after 4 h while cells continuously became more aligned and elongated was due to initiation of change in phenotype that influenced arrangement of cells. At this point, change in cell phenotype started leading to change in morphology while mechanical loading still caused cell alignment and rearrangement. Results can be helpful when optimized engineered cells are needed based on mechanical condition for functional engineered tissue and cell therapy.
Collapse
Affiliation(s)
- Azim Parandakh
- Cardiovascular Engineering Lab, Faculty of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mohammad Tafazzoli-Shadpour
- Cardiovascular Engineering Lab, Faculty of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Mohammad-Mehdi Khani
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
van Loosdregt IAEW, Dekker S, Alford PW, Oomens CWJ, Loerakker S, Bouten CVC. Intrinsic Cell Stress is Independent of Organization in Engineered Cell Sheets. Cardiovasc Eng Technol 2016; 9:181-192. [PMID: 27778297 PMCID: PMC5988777 DOI: 10.1007/s13239-016-0283-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/11/2016] [Indexed: 11/27/2022]
Abstract
Understanding cell contractility is of fundamental importance for cardiovascular tissue engineering, due to its major impact on the tissue’s mechanical properties as well as the development of permanent dimensional changes, e.g., by contraction or dilatation of the tissue. Previous attempts to quantify contractile cellular stresses mostly used strongly aligned monolayers of cells, which might not represent the actual organization in engineered cardiovascular tissues such as heart valves. In the present study, therefore, we investigated whether differences in organization affect the magnitude of intrinsic stress generated by individual myofibroblasts, a frequently used cell source for in vitro engineered heart valves. Four different monolayer organizations were created via micro-contact printing of fibronectin lines on thin PDMS films, ranging from strongly anisotropic to isotropic. Thin film curvature, cell density, and actin stress fiber distribution were quantified, and subsequently, intrinsic stress and contractility of the monolayers were determined by incorporating these data into sample-specific finite element models. Our data indicate that the intrinsic stress exerted by the monolayers in each group correlates with cell density. Additionally, after normalizing for cell density and accounting for differences in alignment, no consistent differences in intrinsic contractility were found between the different monolayer organizations, suggesting that the intrinsic stress exerted by individual myofibroblasts is independent of the organization. Consequently, this study emphasizes the importance of choosing proper architectural properties for scaffolds in cardiovascular tissue engineering, as these directly affect the stresses in the tissue, which play a crucial role in both the functionality and remodeling of (engineered) cardiovascular tissues.
Collapse
Affiliation(s)
- Inge A E W van Loosdregt
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Sylvia Dekker
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Patrick W Alford
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Cees W J Oomens
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
39
|
Askari F, Solouk A, Shafieian M, Seifalian AM. Stem cells for tissue engineered vascular bypass grafts. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:999-1010. [DOI: 10.1080/21691401.2016.1198366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Forough Askari
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Atefeh Solouk
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mehdi Shafieian
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Alexander M. Seifalian
- Centre for Nanotechnology and Regenerative Medicine, University College London, London, UK
- Royal Free Hampstead National Health Service Trust Hospital, London, UK
| |
Collapse
|
40
|
Ristori T, Obbink-Huizer C, Oomens CWJ, Baaijens FPT, Loerakker S. Efficient computational simulation of actin stress fiber remodeling. Comput Methods Biomech Biomed Engin 2016; 19:1347-58. [PMID: 26823159 DOI: 10.1080/10255842.2016.1140748] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Understanding collagen and stress fiber remodeling is essential for the development of engineered tissues with good functionality. These processes are complex, highly interrelated, and occur over different time scales. As a result, excessive computational costs are required to computationally predict the final organization of these fibers in response to dynamic mechanical conditions. In this study, an analytical approximation of a stress fiber remodeling evolution law was derived. A comparison of the developed technique with the direct numerical integration of the evolution law showed relatively small differences in results, and the proposed method is one to two orders of magnitude faster.
Collapse
Affiliation(s)
- T Ristori
- a Department of Biomedical Engineering , Eindhoven University of Technology , Eindhoven , The Netherlands .,b Institute for Complex Molecular Systems , Eindhoven University of Technology , Eindhoven , The Netherlands
| | - C Obbink-Huizer
- a Department of Biomedical Engineering , Eindhoven University of Technology , Eindhoven , The Netherlands
| | - C W J Oomens
- a Department of Biomedical Engineering , Eindhoven University of Technology , Eindhoven , The Netherlands
| | - F P T Baaijens
- a Department of Biomedical Engineering , Eindhoven University of Technology , Eindhoven , The Netherlands .,b Institute for Complex Molecular Systems , Eindhoven University of Technology , Eindhoven , The Netherlands
| | - S Loerakker
- a Department of Biomedical Engineering , Eindhoven University of Technology , Eindhoven , The Netherlands .,b Institute for Complex Molecular Systems , Eindhoven University of Technology , Eindhoven , The Netherlands
| |
Collapse
|
41
|
Vigliotti A, McMeeking RM, Deshpande VS. Simulation of the cytoskeletal response of cells on grooved or patterned substrates. J R Soc Interface 2015; 12:rsif.2014.1320. [PMID: 25762648 DOI: 10.1098/rsif.2014.1320] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We analyse the response of osteoblasts on grooved substrates via a model that accounts for the cooperative feedback between intracellular signalling, focal adhesion development and stress fibre contractility. The grooved substrate is modelled as a pattern of alternating strips on which the cell can adhere and strips on which adhesion is inhibited. The coupled modelling scheme is shown to capture some key experimental observations including (i) the observation that osteoblasts orient themselves randomly on substrates with groove pitches less than about 150 nm but they align themselves with the direction of the grooves on substrates with larger pitches and (ii) actin fibres bridge over the grooves on substrates with groove pitches less than about 150 nm but form a network of fibres aligned with the ridges, with nearly no fibres across the grooves, for substrates with groove pitches greater than about 300 nm. Using the model, we demonstrate that the degree of bridging of the stress fibres across the grooves, and consequently the cell orientation, is governed by the diffusion of signalling proteins activated at the focal adhesion sites on the ridges. For large groove pitches, the signalling proteins are dephosphorylated before they can reach the regions of the cell above the grooves and hence stress fibres cannot form in those parts of the cell. On the other hand, the stress fibre activation signal diffuses to a reasonably spatially homogeneous level on substrates with small groove pitches and hence stable stress fibres develop across the grooves in these cases. The model thus rationalizes the responsiveness of osteoblasts to the topography of substrates based on the complex feedback involving focal adhesion formation on the ridges, the triggering of signalling pathways by these adhesions and the activation of stress fibre networks by these signals.
Collapse
Affiliation(s)
- A Vigliotti
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
| | - R M McMeeking
- Department of Mechanical and Environmental Engineering, University of California, Santa Barbara, CA 93106, USA School of Engineering, University of Aberdeen, King's College, Aberdeen AB24 3UE, UK
| | - V S Deshpande
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
| |
Collapse
|
42
|
Heading in the Right Direction: Understanding Cellular Orientation Responses to Complex Biophysical Environments. Cell Mol Bioeng 2015; 9:12-37. [PMID: 26900408 PMCID: PMC4746215 DOI: 10.1007/s12195-015-0422-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/10/2015] [Indexed: 01/09/2023] Open
Abstract
The aim of cardiovascular regeneration is to mimic the biological and mechanical functioning of tissues. For this it is crucial to recapitulate the in vivo cellular organization, which is the result of controlled cellular orientation. Cellular orientation response stems from the interaction between the cell and its complex biophysical environment. Environmental
biophysical cues are continuously detected and transduced to the nucleus through entwined mechanotransduction pathways. Next to the biochemical cascades invoked by the mechanical stimuli, the structural mechanotransduction pathway made of focal adhesions and the actin cytoskeleton can quickly transduce the biophysical signals directly to the nucleus. Observations linking cellular orientation response to biophysical cues have pointed out that the anisotropy and cyclic straining of the substrate influence cellular orientation. Yet, little is known about the mechanisms governing cellular orientation responses in case of cues applied separately and in combination. This review provides the state-of-the-art knowledge on the structural mechanotransduction pathway of adhesive cells, followed by an overview of the current understanding of cellular orientation responses to substrate anisotropy and uniaxial cyclic strain. Finally, we argue that comprehensive understanding of cellular orientation in complex biophysical environments requires systematic approaches based on the dissection of (sub)cellular responses to the individual cues composing the biophysical niche.
Collapse
|
43
|
Loerakker S, Ristori T, Baaijens FPT. A computational analysis of cell-mediated compaction and collagen remodeling in tissue-engineered heart valves. J Mech Behav Biomed Mater 2015; 58:173-187. [PMID: 26608336 DOI: 10.1016/j.jmbbm.2015.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/28/2015] [Accepted: 10/01/2015] [Indexed: 12/11/2022]
Abstract
One of the most critical problems in heart valve tissue engineering is the progressive development of valvular insufficiency due to leaflet retraction. Understanding the underlying mechanisms of this process is crucial for developing tissue-engineered heart valves (TEHVs) that maintain their functionality in the long term. In the present study, we adopted a computational approach to predict the remodeling process in TEHVs subjected to dynamic pulmonary and aortic pressure conditions, and to assess the risk of valvular insufficiency. In addition, we investigated the importance of the intrinsic cell contractility on the final outcome of the remodeling process. For valves implanted in the aortic position, the model predictions suggest that valvular insufficiency is not likely to occur as the blood pressure is high enough to prevent the development of leaflet retraction. In addition, the collagen network was always predicted to remodel towards a circumferentially aligned network, which is corresponding to the native situation. In contrast, for valves implanted in the pulmonary position, our model predicted that there is a high risk for the development of valvular insufficiency, unless the cell contractility is very low. Conversely, the development of a circumferential collagen network was only predicted at these pressure conditions when cell contractility was high. Overall, these results, therefore, suggest that tissue remodeling at aortic pressure conditions is much more stable and favorable compared to tissue remodeling at pulmonary pressure conditions.
Collapse
Affiliation(s)
- Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Frank P T Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
44
|
Sears C, Kaunas R. The many ways adherent cells respond to applied stretch. J Biomech 2015; 49:1347-1354. [PMID: 26515245 DOI: 10.1016/j.jbiomech.2015.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/05/2015] [Accepted: 10/10/2015] [Indexed: 10/24/2022]
Abstract
Cells in various tissues are subjected to mechanical stress and strain that have profound effects on cell architecture and function. The specific response of the cell to applied strain depends on multiple factors, including cell contractility, spatial and temporal strain pattern, and substrate dimensionality and rigidity. Recent work has demonstrated that the cell response to applied strain depends on a complex combination of these factors, but the way these factors interact to elicit a specific response is not intuitive. We submit that an understanding of the integrated response of a cell to these factors will provide new insight into mechanobiology and contribute to the effective design of deformable engineered scaffolds meant to provide appropriate mechanical cues to the resident cells.
Collapse
Affiliation(s)
- Candice Sears
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120, USA
| | - Roland Kaunas
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120, USA.
| |
Collapse
|
45
|
A thermodynamically motivated model for stress-fiber reorganization. Biomech Model Mechanobiol 2015; 15:761-89. [DOI: 10.1007/s10237-015-0722-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
|
46
|
Bleuel J, Zaucke F, Brüggemann GP, Niehoff A. Effects of cyclic tensile strain on chondrocyte metabolism: a systematic review. PLoS One 2015; 10:e0119816. [PMID: 25822615 PMCID: PMC4379081 DOI: 10.1371/journal.pone.0119816] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/16/2015] [Indexed: 12/25/2022] Open
Abstract
Chondrocytes reorganize the extracellular matrix of articular cartilage in response to externally applied loads. Thereby, different loading characteristics lead to different biological responses. Despite of active research in this area, it is still unclear which parts of the extracellular matrix adapt in what ways, and how specific loading characteristics affect matrix changes. This review focuses on the influence of cyclic tensile strain on chondrocyte metabolism in vitro. It also aimed to identify anabolic or catabolic chondrocyte responses to different loading protocols. The key findings show that loading cells up to 3% strain, 0.17 Hz, and 2 h, resulted in weak or no biological responses. Loading between 3–10% strain, 0.17–0.5 Hz, and 2–12 h led to anabolic responses; and above 10% strain, 0.5 Hz, and 12 h catabolic events predominated. However, this review also discusses that various other factors are involved in the remodeling of the extracellular matrix in response to loading, and that parameters like an inflammatory environment might influence the biological response.
Collapse
Affiliation(s)
- Judith Bleuel
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Köln, Germany
- * E-mail:
| | - Frank Zaucke
- Center for Biochemistry, Medical Faculty, University of Cologne, Köln, Germany
- Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, Köln, Germany
| | - Gert-Peter Brüggemann
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Köln, Germany
- Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, Köln, Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Köln, Germany
- Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, Köln, Germany
| |
Collapse
|
47
|
Cooperative contractility: The role of stress fibres in the regulation of cell-cell junctions. J Biomech 2015; 48:520-8. [DOI: 10.1016/j.jbiomech.2014.11.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 11/13/2014] [Accepted: 11/19/2014] [Indexed: 01/13/2023]
|
48
|
Obbink-Huizer C, Foolen J, Oomens CWJ, Borochin M, Chen CS, Bouten CVC, Baaijens FPT. Computational and experimental investigation of local stress fiber orientation in uniaxially and biaxially constrained microtissues. Biomech Model Mechanobiol 2014; 13:1053-63. [DOI: 10.1007/s10237-014-0554-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 01/10/2014] [Indexed: 10/25/2022]
|
49
|
A physically motivated constitutive model for cell-mediated compaction and collagen remodeling in soft tissues. Biomech Model Mechanobiol 2013; 13:985-1001. [DOI: 10.1007/s10237-013-0549-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/15/2013] [Indexed: 11/26/2022]
|