1
|
Ford CT, Yasa S, Obeid K, Jaimes R, Tomezsko PJ, Guirales-Medrano S, White RA, Janies D. Large-scale computational modelling of H5 influenza variants against HA1-neutralising antibodies. EBioMedicine 2025; 114:105632. [PMID: 40101386 PMCID: PMC11960665 DOI: 10.1016/j.ebiom.2025.105632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 02/08/2025] [Accepted: 02/21/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND The United States Department of Agriculture has recently released reports that show samples collected from 2022 to 2025 of highly pathogenic avian influenza (H5N1) have been detected in mammals and birds. Up to February 2025, the United States Centres for Disease Control and Prevention reports that there have been 67 humans infected with H5N1 since 2024 with 1 death. The broader potential impact on human health remains unclear. METHODS In this study, we computationally model 1804 protein complexes consisting of various H5 isolates from 1959 to 2024 against 11 haemagglutinin domain 1 (HA1)-neutralising antibodies. This was performed using AI-based protein folding and physics-based simulations of the antibody-antigen interactions. We analysed binding affinity changes over time and across various antibodies using multiple biochemical and biophysical binding metrics. FINDINGS This study shows a trend of weakening binding affinity of existing antibodies against H5 isolates over time, indicating that the H5N1 virus is evolving immune escape from our therapeutic and immunological defences. We also found that based on the wide variety of host species and geographic locations in which H5N1 was observed to have been transmitted from birds to mammals, there is not a single central reservoir host species or location associated with H5N1's spread. INTERPRETATION These results indicate that the virus has potential to move from epidemic to pandemic status. This study illustrates the value of high-performance computing to rapidly model protein-protein interactions and viral genomic sequence data at-scale for functional insights into medical preparedness. FUNDING No external funding was used in this study.
Collapse
MESH Headings
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/genetics
- Humans
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Antibodies, Viral/immunology
- Animals
- Influenza, Human/virology
- Influenza, Human/immunology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/chemistry
- Influenza in Birds/virology
- Influenza in Birds/immunology
- Computer Simulation
- Protein Binding
- Models, Molecular
Collapse
Affiliation(s)
- Colby T Ford
- Center for Computational Intelligence to Predict Health and Environmental Risks (CIPHER), University of North Carolina at Charlotte, Charlotte, NC, USA; Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA; School of Data Science, University of North Carolina at Charlotte, Charlotte, NC, USA; Tuple LLC, Charlotte, NC, USA
| | - Shirish Yasa
- Center for Computational Intelligence to Predict Health and Environmental Risks (CIPHER), University of North Carolina at Charlotte, Charlotte, NC, USA; Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Khaled Obeid
- Center for Computational Intelligence to Predict Health and Environmental Risks (CIPHER), University of North Carolina at Charlotte, Charlotte, NC, USA; Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Rafael Jaimes
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Sayal Guirales-Medrano
- Center for Computational Intelligence to Predict Health and Environmental Risks (CIPHER), University of North Carolina at Charlotte, Charlotte, NC, USA; Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Richard Allen White
- Center for Computational Intelligence to Predict Health and Environmental Risks (CIPHER), University of North Carolina at Charlotte, Charlotte, NC, USA; Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA; North Carolina Research Campus (NCRC), Kannapolis, NC, USA
| | - Daniel Janies
- Center for Computational Intelligence to Predict Health and Environmental Risks (CIPHER), University of North Carolina at Charlotte, Charlotte, NC, USA; Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA.
| |
Collapse
|
2
|
Zhang C, Zhao C, Huang J, Wang Y, Jiang B, Zheng H, Zhuang M, Peng Y, Zhang X, Liu S, Qiang H, Wang H, Zeng X, Guo G, Chen JL, Ma S. Emergence of a novel reassortant H3N3 avian influenza virus with enhanced pathogenicity and transmissibility in chickens in China. Vet Res 2025; 56:56. [PMID: 40069883 PMCID: PMC11899391 DOI: 10.1186/s13567-025-01484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/07/2025] [Indexed: 03/14/2025] Open
Abstract
H3N3 avian influenza viruses (AIVs) are less prevalent in poultry than H3N8 viruses. However, although relatively rare, reassortant H3N3 viruses have been known to appear in both domestic poultry and wild birds. In this study, we isolated the H3N3 virus in chickens sourced from a live poultry market in China. A comprehensive genomic analysis revealed that the virus possessed a single basic amino acid in the cleavage site of the hemagglutinin (HA) gene. Phylogenetic analysis indicated that eight genes in the H3N3 virus belong to the Eurasian lineage. Specifically, the HA and NA genes were clustered with H3N2 and H11N3, respectively, while the internal genes were closely related to the H3N8 and H9N2 viruses. Furthermore, the H3N3 virus exhibited high and moderate stability in thermal and acidic conditions and efficient replication capabilities in mammalian cells. The H3N3 virus demonstrated that it could infect and replicate in the upper and lower respiratory tract of BALB/c mice without prior adaptation, triggering hemagglutination inhibition (HI) antibody titres ranging from 80 to 160; notably, the H3N3 virus replicated vigorously within the chicken respiratory and digestive tracts. The virus also transmitted efficiently and swiftly among chickens through direct contact, leading to higher levels of HI antibodies in both the inoculated and contact birds. These findings suggest that the H3N3 virus may be a novel reassortant originating from viruses circulating in domestic poultry, thus demonstrating an increased pathogenicity and transmissibility in chickens. Our study determines that H3N3 AIV potentially threatens the poultry industry and public health, highlighting the importance of active surveillance of AIVs.
Collapse
Affiliation(s)
- Chunping Zhang
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Conghui Zhao
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jiacheng Huang
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yang Wang
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Bo Jiang
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Hangyu Zheng
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Mingzhi Zhuang
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yanni Peng
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Xiaoxuan Zhang
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Sha Liu
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Haoxi Qiang
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Huanhuan Wang
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Xiancheng Zeng
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Guijie Guo
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Ji-Long Chen
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Shujie Ma
- Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
3
|
Ramos I, Nogales A. Editorial: Updates on immunity to influenza A virus in humans and animals. Front Immunol 2022; 13:1115406. [PMID: 36643917 PMCID: PMC9837102 DOI: 10.3389/fimmu.2022.1115406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Affiliation(s)
- Irene Ramos
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States,*Correspondence: Irene Ramos, ; Aitor Nogales,
| | - Aitor Nogales
- Animal Health Research Centre (CISA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Madrid, Spain,*Correspondence: Irene Ramos, ; Aitor Nogales,
| |
Collapse
|
4
|
Martins de Camargo M, Caetano AR, Ferreira de Miranda Santos IK. Evolutionary pressures rendered by animal husbandry practices for avian influenza viruses to adapt to humans. iScience 2022; 25:104005. [PMID: 35313691 PMCID: PMC8933668 DOI: 10.1016/j.isci.2022.104005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Commercial poultry operations produce and crowd billions of birds every year, which is a source of inexpensive animal protein. Commercial poultry is intensely bred for desirable production traits, and currently presents very low variability at the major histocompatibility complex. This situation dampens the advantages conferred by the MHC’s high genetic variability, and crowding generates immunosuppressive stress. We address the proteins of influenza A viruses directly and indirectly involved in host specificities. We discuss how mutants with increased virulence and/or altered host specificity may arise if few class I alleles are the sole selective pressure on avian viruses circulating in immunocompromised poultry. This hypothesis is testable with peptidomics of MHC ligands. Breeding strategies for commercial poultry can easily and inexpensively include high variability of MHC as a trait of interest, to help save billions of dollars as a disease burden caused by influenza and decrease the risk of selecting highly virulent strains.
Collapse
|
5
|
Dorna J, Kaufmann A, Bockmann V, Raifer H, West J, Matrosovich M, Bauer S. Effects of Receptor Specificity and Conformational Stability of Influenza A Virus Hemagglutinin on Infection and Activation of Different Cell Types in Human PBMCs. Front Immunol 2022; 13:827760. [PMID: 35359920 PMCID: PMC8963867 DOI: 10.3389/fimmu.2022.827760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
Humans can be infected by zoonotic avian, pandemic and seasonal influenza A viruses (IAVs), which differ by receptor specificity and conformational stability of their envelope glycoprotein hemagglutinin (HA). It was shown that receptor specificity of the HA determines the tropism of IAVs to human airway epithelial cells, the primary target of IAVs in humans. Less is known about potential effects of the HA properties on viral attachment, infection and activation of human immune cells. To address this question, we studied the infection of total human peripheral blood mononuclear cells (PBMCs) and subpopulations of human PBMCs with well characterized recombinant IAVs differing by the HA and the neuraminidase (NA) but sharing all other viral proteins. Monocytes and all subpopulations of lymphocytes were significantly less susceptible to infection by IAVs with avian-like receptor specificity as compared to human-like IAVs, whereas plasmacytoid dendritic cells (pDCs) and myeloid dendritic cells were equally susceptible to IAVs with avian-like and human-like receptor specificity. This tropism correlated with the surface expression of 2-3-linked sialic acids (avian-type receptors) and 2-6-linked sialic acids (human-type receptors). Despite a reduced infectivity of avian-like IAVs for PBMCs, these viruses were not less efficient than human-like IAVs in terms of cell activation as judged by the induction of cellular mRNA of IFN-α, CCL5, RIG-I, and IL-6. Elevated levels of IFN-α mRNA were accompanied by elevated IFN-α protein secretion in primary human pDC. We found that high basal expression in monocytes of antiviral interferon-induced transmembrane protein 3 (IFITM3) limited viral infection in these cells. siRNA-mediated knockdown of IFITM3 in monocytes demonstrated that viral sensitivity to inhibition by IFITM3 correlated with the conformational stability of the HA. Our study provides new insights into the role of host- and strain-specific differences of HA in the interaction of IAVs with human immune cells and advances current understanding of the mechanisms of viral cell tropism, pathogenesis and markers of virulence.
Collapse
Affiliation(s)
- Jens Dorna
- Institute for Immunology, Philipps University Marburg, Marburg, Germany
| | - Andreas Kaufmann
- Institute for Immunology, Philipps University Marburg, Marburg, Germany
| | - Viktoria Bockmann
- Institute for Immunology, Philipps University Marburg, Marburg, Germany
| | - Hartmann Raifer
- Core Facility FACS, Philipps University Marburg, Marburg, Germany
| | - Johanna West
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | | | - Stefan Bauer
- Institute for Immunology, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
6
|
Abstract
The COVID-19 pandemic has given the study of virus evolution and ecology new relevance. Although viruses were first identified more than a century ago, we likely know less about their diversity than that of any other biological entity. Most documented animal viruses have been sampled from just two phyla - the Chordata and the Arthropoda - with a strong bias towards viruses that infect humans or animals of economic and social importance, often in association with strong disease phenotypes. Fortunately, the recent development of unbiased metagenomic next-generation sequencing is providing a richer view of the animal virome and shedding new light on virus evolution. In this Review, we explore our changing understanding of the diversity, composition and evolution of the animal virome. We outline the factors that determine the phylogenetic diversity and genomic structure of animal viruses on evolutionary timescales and show how this impacts assessment of the risk of disease emergence in the short term. We also describe the ongoing challenges in metagenomic analysis and outline key themes for future research. A central question is how major events in the evolutionary history of animals, such as the origin of the vertebrates and periodic mass extinction events, have shaped the diversity and evolution of the viruses they carry.
Collapse
|
7
|
Hervé S, Schmitz A, Briand FX, Gorin S, Quéguiner S, Niqueux É, Paboeuf F, Scoizec A, Le Bouquin-Leneveu S, Eterradossi N, Simon G. Serological Evidence of Backyard Pig Exposure to Highly Pathogenic Avian Influenza H5N8 Virus during 2016-2017 Epizootic in France. Pathogens 2021; 10:pathogens10050621. [PMID: 34070190 PMCID: PMC8158469 DOI: 10.3390/pathogens10050621] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/21/2021] [Accepted: 05/14/2021] [Indexed: 12/20/2022] Open
Abstract
In autumn/winter 2016-2017, HPAI-H5N8 viruses belonging to the A/goose/Guandong/1/1996 (Gs/Gd) lineage, clade 2.3.4.4b, were responsible for outbreaks in domestic poultry in Europe, and veterinarians were requested to reinforce surveillance of pigs bred in HPAI-H5Nx confirmed mixed herds. In this context, ten pig herds were visited in southwestern France from December 2016 to May 2017 and serological analyses for influenza A virus (IAV) infections were carried out by ELISA and hemagglutination inhibition assays. In one herd, one backyard pig was shown to have produced antibodies directed against a virus bearing a H5 from clade 2.3.4.4b, suggesting it would have been infected naturally after close contact with HPAI-H5N8 contaminated domestic ducks. Whereas pigs and other mammals, including humans, may have limited sensitivity to HPAI-H5 clade 2.3.4.4b, this information recalls the importance of implementing appropriate biosecurity measures in pig and poultry farms to avoid IAV interspecies transmission, a prerequisite for co-infections and subsequent emergence of new viral genotypes whose impact on both animal and human health cannot be predicted.
Collapse
Affiliation(s)
- Séverine Hervé
- Swine Virology Immunology Unit, National Reference Laboratory for Swine Influenza, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.G.); (S.Q.); (G.S.)
- Correspondence:
| | - Audrey Schmitz
- Avian and Rabbit Virology Immunology and Parasitology Unit, National Reference Laboratory for Avian Influenza, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (A.S.); (F.-X.B.); (É.N.); (N.E.)
| | - François-Xavier Briand
- Avian and Rabbit Virology Immunology and Parasitology Unit, National Reference Laboratory for Avian Influenza, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (A.S.); (F.-X.B.); (É.N.); (N.E.)
| | - Stéphane Gorin
- Swine Virology Immunology Unit, National Reference Laboratory for Swine Influenza, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.G.); (S.Q.); (G.S.)
| | - Stéphane Quéguiner
- Swine Virology Immunology Unit, National Reference Laboratory for Swine Influenza, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.G.); (S.Q.); (G.S.)
| | - Éric Niqueux
- Avian and Rabbit Virology Immunology and Parasitology Unit, National Reference Laboratory for Avian Influenza, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (A.S.); (F.-X.B.); (É.N.); (N.E.)
| | - Frédéric Paboeuf
- SPF Pig Production and Experimentation, Ploufragan-Plouzané-Niort Laboratory, French Agency for food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France;
| | - Axelle Scoizec
- Epidemiology, Health and Welfare Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (A.S.); (S.L.B.-L.)
| | - Sophie Le Bouquin-Leneveu
- Epidemiology, Health and Welfare Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (A.S.); (S.L.B.-L.)
| | - Nicolas Eterradossi
- Avian and Rabbit Virology Immunology and Parasitology Unit, National Reference Laboratory for Avian Influenza, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (A.S.); (F.-X.B.); (É.N.); (N.E.)
| | - Gaëlle Simon
- Swine Virology Immunology Unit, National Reference Laboratory for Swine Influenza, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.G.); (S.Q.); (G.S.)
| |
Collapse
|
8
|
Systematic Review of Important Viral Diseases in Africa in Light of the 'One Health' Concept. Pathogens 2020; 9:pathogens9040301. [PMID: 32325980 PMCID: PMC7238228 DOI: 10.3390/pathogens9040301] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022] Open
Abstract
Emerging and re-emerging viral diseases are of great public health concern. The recent emergence of Severe Acute Respiratory Syndrome (SARS) related coronavirus (SARS-CoV-2) in December 2019 in China, which causes COVID-19 disease in humans, and its current spread to several countries, leading to the first pandemic in history to be caused by a coronavirus, highlights the significance of zoonotic viral diseases. Rift Valley fever, rabies, West Nile, chikungunya, dengue, yellow fever, Crimean-Congo hemorrhagic fever, Ebola, and influenza viruses among many other viruses have been reported from different African countries. The paucity of information, lack of knowledge, limited resources, and climate change, coupled with cultural traditions make the African continent a hotspot for vector-borne and zoonotic viral diseases, which may spread globally. Currently, there is no information available on the status of virus diseases in Africa. This systematic review highlights the available information about viral diseases, including zoonotic and vector-borne diseases, reported in Africa. The findings will help us understand the trend of emerging and re-emerging virus diseases within the African continent. The findings recommend active surveillance of viral diseases and strict implementation of One Health measures in Africa to improve human public health and reduce the possibility of potential pandemics due to zoonotic viruses.
Collapse
|
9
|
Li YT, Linster M, Mendenhall IH, Su YCF, Smith GJD. Avian influenza viruses in humans: lessons from past outbreaks. Br Med Bull 2019; 132:81-95. [PMID: 31848585 PMCID: PMC6992886 DOI: 10.1093/bmb/ldz036] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Human infections with avian influenza viruses (AIV) represent a persistent public health threat. The principal risk factor governing human infection with AIV is from direct contact with infected poultry and is primarily observed in Asia and Egypt where live-bird markets are common. AREAS OF AGREEMENT Changing patterns of virus transmission and a lack of obvious disease manifestations in avian species hampers early detection and efficient control of potentially zoonotic AIV. AREAS OF CONTROVERSY Despite extensive studies on biological and environmental risk factors, the exact conditions required for cross-species transmission from avian species to humans remain largely unknown. GROWING POINTS The development of a universal ('across-subtype') influenza vaccine and effective antiviral therapeutics are a priority. AREAS TIMELY FOR DEVELOPING RESEARCH Sustained virus surveillance and collection of ecological and physiological parameters from birds in different environments is required to better understand influenza virus ecology and identify risk factors for human infection.
Collapse
Affiliation(s)
- Yao-Tsun Li
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Martin Linster
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Ian H Mendenhall
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Yvonne C F Su
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Gavin J D Smith
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
- SingHealth Duke-NUS Global Health Institute, 31 Third Hospital Ave, Singapore 168753
- Duke Global Health Institute, Duke University, 310 Trent Drive, Durham, NC 27710, USA
| |
Collapse
|
10
|
Abstract
Influenza A viruses are one of the most important and most studied pathogens in humans and domestic animals but little is known about viral prevalence in non-avian wildlife. Serum samples from three free-ranging cervid species (red [ Cervus elaphus], fallow [ Dama dama] , and roe deer [ Capreolus capreolus]) were collected from six German national parks between 2000 and 2002. The serum was tested for the presence of influenza A antibodies using a commercial competitive enzyme-linked immunosorbent assay. Only one of 137 samples tested positive.
Collapse
|
11
|
Świętoń E, Olszewska-Tomczyk M, Giza A, Śmietanka K. Evolution of H9N2 low pathogenic avian influenza virus during passages in chickens. INFECTION GENETICS AND EVOLUTION 2019; 75:103979. [PMID: 31351233 DOI: 10.1016/j.meegid.2019.103979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 11/16/2022]
Abstract
The process of avian influenza virus (AIV) evolution in a new host was investigated in the experiment in which ten serial passages of a turkey-derived H9N2 AIV were carried out in specific pathogen free chickens (3 birds/group) inoculated by oculonasal route. Oropharyngeal swabs collected 3 days post infection were used for inoculation of birds in the next passage and subjected to analysis using deep sequencing. In total, eight mutations in the consensus sequence were found in the viral pool derived from the 10th passage: four mutations (2 in PB1 and 2 in HA) were present in the inoculum as minority variants while the other four (2 in NP, 1 in PA and 1 in HA) emerged during the passages in chickens. The detected fluctuations in the genetic heterogeneity of viral pools from consecutive passages were most likely attributed to the selective bottleneck. The genes known for bearing molecular determinants of the AIV host specificity (HA, PB2, PB1, PA) contributed most to the overall virus diversity. In some cases, a fast selection of the novel variant was noticed. For example, the amino-acid substitution N337K in the haemagglutinin (HA) cleavage site region detected in the 6th passage as low frequency variant had undergone rapid selection and became predominant in the 7th passage. Interestingly, detection of identical mutation in the field H9N2 isolates 1-year apart suggests that this substitution might provide the virus with a selective advantage. However, the role of specific mutations and their influence on the virus adaptation or fitness are mostly unknown and require further investigations.
Collapse
Affiliation(s)
- Edyta Świętoń
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland.
| | - Monika Olszewska-Tomczyk
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland
| | - Aleksandra Giza
- Department of Omics Analyses, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland
| | - Krzysztof Śmietanka
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland
| |
Collapse
|
12
|
Adlhoch C, Dabrera G, Penttinen P, Pebody R. Protective Measures for Humans against Avian Influenza A(H5N8) Outbreaks in 22 European Union/European Economic Area Countries and Israel, 2016-17. Emerg Infect Dis 2018; 24:1-8. [PMID: 29989531 PMCID: PMC6154149 DOI: 10.3201/eid2410.180269] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We sought to better understand national approaches for managing potential human health risks during outbreaks of infection with avian influenza A(H5N8) virus during 2016–17. Twenty-three countries in the Union/European Economic Area and Israel participated in this study. Risk to the general public was assessed as low in 18 countries and medium in 1 country. Of 524 exposed persons identified, 274 were passively monitored and 250 were actively monitored. Of 29 persons tested, all were negative for H5N8 virus. Vaccination and antiviral drug recommendations varied across countries. A high level of personal protection was recommended although a low risk was assessed. No transmission of this virus to humans was identified.
Collapse
|
13
|
Russell CJ, Hu M, Okda FA. Influenza Hemagglutinin Protein Stability, Activation, and Pandemic Risk. Trends Microbiol 2018; 26:841-853. [PMID: 29681430 PMCID: PMC6150828 DOI: 10.1016/j.tim.2018.03.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/21/2018] [Accepted: 03/28/2018] [Indexed: 01/09/2023]
Abstract
For decades, hemagglutinin (HA) protein structure and its refolding mechanism have served as a paradigm for understanding protein-mediated membrane fusion. HA trimers are in a high-energy state and are functionally activated by low pH. Over the past decade, HA stability (or the pH at which irreversible conformational changes are triggered) has emerged as an important determinant in influenza virus host range, infectivity, transmissibility, and human pandemic potential. Here, we review HA protein structure, assays to measure its stability, measured HA stability values, residues and mutations that regulate its stability, the effect of HA stability on interspecies adaptation and transmissibility, and mechanistic insights into this process. Most importantly, HA stabilization appears to be necessary for adapting emerging influenza viruses to humans.
Collapse
Affiliation(s)
- Charles J Russell
- Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA; Department of Microbiology, Immunology & Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Meng Hu
- Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Faten A Okda
- Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| |
Collapse
|
14
|
Gonzales JL, Roberts H, Smietanka K, Baldinelli F, Ortiz-Pelaez A, Verdonck F. Assessment of low pathogenic avian influenza virus transmission via raw poultry meat and raw table eggs. EFSA J 2018; 16:e05431. [PMID: 32625713 PMCID: PMC7009628 DOI: 10.2903/j.efsa.2018.5431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A rapid qualitative assessment has been done by performing a theoretical analysis on the transmission of low pathogenic avian influenza (LPAI) via fresh meat from poultry reared or kept in captivity for the production of meat (raw poultry meat) or raw table eggs. A predetermined transmission pathway followed a number of steps from a commercial or non-commercial poultry establishment within the EU exposed to LPAI virus (LPAIV) to the onward virus transmission to animals and humans. The combined probability of exposure and subsequent LPAIV infection via raw poultry meat containing LPAIV is negligible for commercial poultry and humans exposed via consumption whereas it is very unlikely for non-commercial poultry, wild birds and humans exposed via handling and manipulation. The probability of LPAIV transmission from an individual infected via raw poultry meat containing LPAIV is negligible for commercial poultry and humans, whereas it is very unlikely for non-commercial poultry and wild birds. The combined probability of exposure and subsequent LPAIV infection via raw table eggs containing LPAIV is negligible for commercial poultry and humans and extremely unlikely to negligible for non-commercial poultry and wild birds. The probability of LPAIV transmission from an individual infected via raw table eggs containing LPAIV is negligible for commercial poultry and humans and very unlikely to negligible for non-commercial poultry and wild birds. Although the presence of LPAIV in raw poultry meat and table eggs is very unlikely to negligible, there is in general a high level of uncertainty on the estimation of the subsequent probabilities of key steps of the transmission pathways for poultry and wild birds, mainly due to the limited number of studies available, for instance on the viral load required to infect a bird via raw poultry meat or raw table eggs containing LPAIV.
Collapse
|
15
|
Goneau LW, Mehta K, Wong J, L'Huillier AG, Gubbay JB. Zoonotic Influenza and Human Health-Part 1: Virology and Epidemiology of Zoonotic Influenzas. Curr Infect Dis Rep 2018; 20:37. [PMID: 30069735 DOI: 10.1007/s11908-018-0642-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Zoonotic influenza viruses are those that cross the animal-human barrier and can cause disease in humans, manifesting from minor respiratory illnesses to multiorgan dysfunction. They have also been implicated in the causation of deadly pandemics in recent history. The increasing incidence of infections caused by these viruses worldwide has necessitated focused attention to improve both diagnostic as well as treatment modalities. In this first part of a two-part review, we describe the structure of zoonotic influenza viruses, the relationship between mutation and pandemic capacity, pathogenesis of infection, and also discuss history and epidemiology. RECENT FINDINGS We are currently witnessing the fifth and the largest wave of the avian influenza A(H7N9) epidemic. Also in circulation are a number of other zoonotic influenza viruses, including avian influenza A(H5N1) and A(H5N6); avian influenza A(H7N2); and swine influenza A(H1N1)v, A(H1N2)v, and A(H3N2)v viruses. Most recently, the first human case of avian influenza A(H7N4) infection has been documented. By understanding the virology and epidemiology of emerging zoonotic influenzas, we are better prepared to face a new pandemic. However, continued effort is warranted to build on this knowledge in order to efficiently combat the constant threat posed by the zoonotic influenza viruses.
Collapse
Affiliation(s)
- L W Goneau
- Public Health Ontario Laboratory, 661 University Avenue, Suite 1701, Toronto, ON, M5G 1M1, Canada
- University of Toronto, 27 King's College Circle, Toronto, ON, M5S 1A1, Canada
| | - K Mehta
- Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - J Wong
- Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Department of Paediatrics, North York General Hospital, Toronto, ON, Canada
| | - A G L'Huillier
- Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - J B Gubbay
- Public Health Ontario Laboratory, 661 University Avenue, Suite 1701, Toronto, ON, M5G 1M1, Canada.
- University of Toronto, 27 King's College Circle, Toronto, ON, M5S 1A1, Canada.
- Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
16
|
Meseko C, Globig A, Ijomanta J, Joannis T, Nwosuh C, Shamaki D, Harder T, Hoffman D, Pohlmann A, Beer M, Mettenleiter T, Starick E. Evidence of exposure of domestic pigs to Highly Pathogenic Avian Influenza H5N1 in Nigeria. Sci Rep 2018; 8:5900. [PMID: 29651056 PMCID: PMC5897404 DOI: 10.1038/s41598-018-24371-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/14/2018] [Indexed: 12/15/2022] Open
Abstract
Avian influenza viruses (AIV) potentially transmit to swine as shown by experiments, where further reassortment may contribute to the generation of pandemic strains. Associated risks of AIV inter-species transmission are greater in countries like Nigeria with recurrent epidemics of highly pathogenic AI (HPAI) in poultry and significant pig population. Analysis of 129 tracheal swab specimens collected from apparently healthy pigs at slaughterhouse during presence of HPAI virus H5N1 in poultry in Nigeria for influenza A by RT-qPCR yielded 43 positive samples. Twenty-two could be determined by clade specific RT-qPCR as belonging to the H5N1 clade 2.3.2.1c and confirmed by partial hemagglutinin (HA) sequence analysis. In addition, 500 swine sera were screened for antibodies against influenza A virus nucleoprotein and H5 HA using competition ELISAs and hemagglutination inhibition (HI) tests. Serologically, 222 (44.4%) and 42 (8.4%) sera were positive for influenza A virus NP and H5 antibodies, respectively. Sera reacted to H5N1 and A/H1N1pdm09 strains by HI suggesting exposure of the Nigerian domestic pig population to these viruses. We report for the first time in Nigeria, exposure of domestic pigs to H5N1 virus. This poses potential public health and pandemic risk due to interspecies transmission of avian and human influenza viruses.
Collapse
Affiliation(s)
- Clement Meseko
- Regional Laboratory for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria.
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany.
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Insel Riems, Germany.
| | - Anja Globig
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Jeremiah Ijomanta
- Regional Laboratory for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria
| | - Tony Joannis
- Regional Laboratory for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria
| | - Chika Nwosuh
- Regional Laboratory for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria
| | - David Shamaki
- Regional Laboratory for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Donata Hoffman
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Thomas Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Elke Starick
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| |
Collapse
|
17
|
Trapp S, Soubieux D, Lidove A, Esnault E, Lion A, Guillory V, Wacquiez A, Kut E, Quéré P, Larcher T, Ledevin M, Nadan V, Camus-Bouclainville C, Marc D. Major contribution of the RNA-binding domain of NS1 in the pathogenicity and replication potential of an avian H7N1 influenza virus in chickens. Virol J 2018; 15:55. [PMID: 29587792 PMCID: PMC5870492 DOI: 10.1186/s12985-018-0960-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/11/2018] [Indexed: 11/10/2022] Open
Abstract
Background Non-structural protein NS1 of influenza A viruses harbours several determinants of pathogenicity and host-range. However it is still unclear to what extent each of its two structured domains (i.e. RNA-binding domain, RBD, and effector domain, ED) contribute to its various activities. Methods To evaluate the respective contributions of the two domains, we genetically engineered two variants of an H7N1 low pathogenicity avian influenza virus harbouring amino-acid substitutions that impair the functionality of either domain. The RBD- and ED-mutant viruses were compared to their wt- counterpart in vivo and in vitro, notably in chicken infection and avian cell culture models. Results The double substitution R38A-K41A in the RBD dramatically reduced the pathogenicity and replication potential of the virus, whereas the substitution A149V that was considered to abrogate the IFN-antagonistic activity of the effector domain entailed much less effects. While all three viruses initiated the viral life cycle in avian cells, replication of the R38A-K41A virus was severely impaired. This defect was associated with a delayed synthesis of nucleoprotein NP and a reduced accumulation of NS1, which was found to reach a concentration of about 30 micromol.L− 1 in wt-infected cells at 8 h post-infection. When overexpressed in avian lung epithelial cells, both the wt-NS1 and 3841AA-NS1, but not the A149V-NS1, reduced the poly(I:C)-induced activation of the IFN-sensitive chicken Mx promoter. Unexpectedly, the R38A-K41A substitution in the recombinant RBD did not alter its in vitro affinity for a model dsRNA. When overexpressed in avian cells, both the wt- and A149V-NS1s, as well as the individually expressed wt-RBD to a lesser extent, enhanced the activity of the reconstituted viral RNA-polymerase in a minireplicon assay. Conclusions Collectively, our data emphasized the critical importance and essential role of the RNA-binding domain in essential steps of the virus replication cycle, notably expression and translation of viral mRNAs.
Collapse
Affiliation(s)
- Sascha Trapp
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France.,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France
| | - Denis Soubieux
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France.,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France
| | - Alexandra Lidove
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France.,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France
| | - Evelyne Esnault
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France.,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France
| | - Adrien Lion
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France.,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France
| | - Vanaique Guillory
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France.,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France
| | - Alan Wacquiez
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France.,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France
| | - Emmanuel Kut
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France.,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France
| | - Pascale Quéré
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France.,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France
| | - Thibaut Larcher
- INRA UMR 703, APEX, Oniris-La Chantrerie, F-44307, Nantes, France.,LUNAM Université, École Nationale Vétérinaire, agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Nantes, France
| | - Mireille Ledevin
- INRA UMR 703, APEX, Oniris-La Chantrerie, F-44307, Nantes, France.,LUNAM Université, École Nationale Vétérinaire, agro-alimentaire et de l'alimentation Nantes-Atlantique (Oniris), Nantes, France
| | - Virginie Nadan
- Centre de Biophysique Moléculaire, CNRS, Orléans, France
| | | | - Daniel Marc
- Equipe PIA, UMR1282-ISP Infectiologie et Santé Publique, INRA, 37380, Nouzilly, France. .,UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37000, Tours, France.
| |
Collapse
|
18
|
Havers FP, Campbell AP, Uyeki TM, Fry AM. Commentary: A Historical Review of Centers for Disease Control and Prevention Antiviral Treatment and Postexposure Chemoprophylaxis Guidance for Human Infections With Novel Influenza A Viruses Associated With Severe Human Disease. J Infect Dis 2017; 216:S575-S580. [PMID: 28934460 DOI: 10.1093/infdis/jix065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human infections with novel influenza A viruses are of global public health concern, and antiviral medications have a potentially important role in treatment and prevention of human illness. Initial guidance was developed by the U.S. Centers for Disease Control and Prevention after the emergence of human infections with avian influenza A(H5N1) and has evolved over time, with identification of influenza A(H7N9) virus infections in humans, as well as detection of avian influenza viruses in birds in the United States. This commentary describes the historical context and current guidance for the use of influenza antiviral medications for treatment and post-exposure chemoprophylaxis of human infections with novel influenza A viruses associated with severe human illness, or with the potential to cause severe human disease, and provides the scientific rationale behind current recommendations.
Collapse
Affiliation(s)
- Fiona P Havers
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Angela P Campbell
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Timothy M Uyeki
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Alicia M Fry
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
19
|
Layton DS, Choudhary A, Bean AGD. Breaking the chain of zoonoses through biosecurity in livestock. Vaccine 2017; 35:5967-5973. [PMID: 28826750 DOI: 10.1016/j.vaccine.2017.07.110] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/24/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022]
Abstract
Increases in global travel, trade and urbanisation are leading to greater incidence of zoonotic disease, and livestock are often a key link in the spread of disease to humans. As such, livestock vaccination strategies, as a part of broader biosecurity solutions, are critical to both animal and human health. Importantly, approaches that restrict infectious agents in livestock, not only protects their economic value but should reduce the potential for spill over infections in humans. Biosecurity solutions to livestock health can take a number of different forms and are generally heavily weighted towards prevention of infection rather than treatment. Therefore, vaccination can provide an effective component of a strategic approach, particularly as production economics dictate the use of cost effective solutions. Furthermore, in an evolving global environment there is a need for vaccines that accommodate for lower socioeconomic and rapidly emerging zoonotics.
Collapse
Affiliation(s)
- Daniel S Layton
- CSIRO Health and Biosecurity, Australian Animal Health Laboratories, Geelong, Australia
| | - Anupma Choudhary
- CSIRO Health and Biosecurity, Australian Animal Health Laboratories, Geelong, Australia
| | - Andrew G D Bean
- CSIRO Health and Biosecurity, Australian Animal Health Laboratories, Geelong, Australia.
| |
Collapse
|
20
|
pH Optimum of Hemagglutinin-Mediated Membrane Fusion Determines Sensitivity of Influenza A Viruses to the Interferon-Induced Antiviral State and IFITMs. J Virol 2017; 91:JVI.00246-17. [PMID: 28356532 DOI: 10.1128/jvi.00246-17] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/20/2017] [Indexed: 12/24/2022] Open
Abstract
The replication and pathogenicity of influenza A viruses (IAVs) critically depend on their ability to tolerate the antiviral interferon (IFN) response. To determine a potential role for the IAV hemagglutinin (HA) in viral sensitivity to IFN, we studied the restriction of IAV infection in IFN-β-treated human epithelial cells by using 2:6 recombinant IAVs that shared six gene segments of A/Puerto Rico/8/1934 virus (PR8) and contained HAs and neuraminidases of representative avian, human, and zoonotic H5N1 and H7N9 viruses. In A549 and Calu-3 cells, viruses displaying a higher pH optimum of HA-mediated membrane fusion, H5N1-PR8 and H7N9-PR8, were less sensitive to the IFN-induced antiviral state than their counterparts with HAs from duck and human viruses, which fused at a lower pH. The association between a high pH optimum of fusion and reduced IFN sensitivity was confirmed by using HA point mutants of A/Hong Kong/1/1968-PR8 that differed solely by their fusion properties. Furthermore, similar effects of the viral fusion pH on IFN sensitivity were observed in experiments with (i) primary human type II alveolar epithelial cells and differentiated cultures of human airway epithelial cells, (ii) nonrecombinant zoonotic and pandemic IAVs, and (iii) preparations of IFN-α and IFN-λ1. A higher pH of membrane fusion and reduced sensitivity to IFN correlated with lower restriction of the viruses in MDCK cells stably expressing the IFN-inducible transmembrane proteins IFITM2 and IFITM3, which are known to inhibit viral fusion. Our results reveal that the pH optimum of HA-driven membrane fusion of IAVs is a determinant of their sensitivity to IFN and IFITM proteins.IMPORTANCE The IFN system constitutes an important innate defense against viral infection. Substantial information is available on how IAVs avoid detection by sensors of the IFN system and disable IFN signaling pathways. Much less is known about the ability of IAVs to tolerate the antiviral activity of IFN-induced cellular proteins. The IFN-induced proteins of the IFITM family block IAV entry into target cells and can restrict viral spread and pathogenicity. Here we show for the first time that the sensitivity of IAVs to the IFN-induced antiviral state and IFITM2 and IFITM3 proteins depends on the pH value at which the viral HA undergoes a conformational transition and mediates membrane fusion. Our data imply that the high pH optimum of membrane fusion typical of zoonotic IAVs of gallinaceous poultry, such as H5N1 and H7N9, may contribute to their enhanced virulence in humans.
Collapse
|
21
|
Bodewes R, Zohari S, Krog JS, Hall MD, Harder TC, Bestebroer TM, van de Bildt MWG, Spronken MI, Larsen LE, Siebert U, Wohlsein P, Puff C, Seehusen F, Baumgärtner W, Härkönen T, Smits SL, Herfst S, Osterhaus ADME, Fouchier RAM, Koopmans MP, Kuiken T. Spatiotemporal Analysis of the Genetic Diversity of Seal Influenza A(H10N7) Virus, Northwestern Europe. J Virol 2016; 90:4269-4277. [PMID: 26819311 PMCID: PMC4836327 DOI: 10.1128/jvi.03046-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/22/2016] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Influenza A viruses are major pathogens for humans, domestic animals, and wildlife, and these viruses occasionally cross the species barrier. In spring 2014, increased mortality of harbor seals (Phoca vitulina), associated with infection with an influenza A(H10N7) virus, was reported in Sweden and Denmark. Within a few months, this virus spread to seals of the coastal waters of Germany and the Netherlands, causing the death of thousands of animals. Genetic analysis of the hemagglutinin (HA) and neuraminidase (NA) genes of this seal influenza A(H10N7) virus revealed that it was most closely related to various avian influenza A(H10N7) viruses. The collection of samples from infected seals during the course of the outbreak provided a unique opportunity to follow the adaptation of the avian virus to its new seal host. Sequence data for samples collected from 41 different seals from four different countries between April 2014 and January 2015 were obtained by Sanger sequencing and next-generation sequencing to describe the molecular epidemiology of the seal influenza A(H10N7) virus. The majority of sequence variation occurred in the HA gene, and some mutations corresponded to amino acid changes not found in H10 viruses isolated from Eurasian birds. Also, sequence variation in the HA gene was greater at the beginning than at the end of the epidemic, when a number of the mutations observed earlier had been fixed. These results imply that when an avian influenza virus jumps the species barrier from birds to seals, amino acid changes in HA may occur rapidly and are important for virus adaptation to its new mammalian host. IMPORTANCE Influenza A viruses are major pathogens for humans, domestic animals, and wildlife. In addition to the continuous circulation of influenza A viruses among various host species, cross-species transmission of influenza A viruses occurs occasionally. Wild waterfowl and shorebirds are the main reservoir for most influenza A virus subtypes, and spillover of influenza A viruses from birds to humans or other mammalian species may result in major outbreaks. In the present study, various sequencing methods were used to elucidate the genetic changes that occurred after the introduction and subsequent spread of an avian influenza A(H10N7) virus among harbor seals of northwestern Europe by use of various samples collected during the outbreak. Such detailed knowledge of genetic changes necessary for introduction and adaptation of avian influenza A viruses to mammalian hosts is important for a rapid risk assessment of such viruses soon after they cross the species barrier.
Collapse
Affiliation(s)
- Rogier Bodewes
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Siamak Zohari
- Department of Virology, Immunobiology and Parasitology, National Veterinary Institute, Uppsala, Sweden
| | - Jesper S Krog
- National Veterinary Institute, Technical University of Denmark, Frederiksberg, Denmark
| | - Matthew D Hall
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Timm C Harder
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Greifswald Insel-Riems, Germany
| | | | | | | | - Lars E Larsen
- National Veterinary Institute, Technical University of Denmark, Frederiksberg, Denmark
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Büsum, Germany
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Frauke Seehusen
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Tero Härkönen
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, Stockholm, Sweden
| | - Saskia L Smits
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Sander Herfst
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Albert D M E Osterhaus
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
- Artemis One Health, Utrecht, the Netherlands
- Research Centre for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Marion P Koopmans
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
- National Institute of Public Health and the Environment, Centre for Infectious Disease Control, Bilthoven, the Netherlands
| | - Thijs Kuiken
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
22
|
H1N1 Swine Influenza Viruses Differ from Avian Precursors by a Higher pH Optimum of Membrane Fusion. J Virol 2015; 90:1569-77. [PMID: 26608319 DOI: 10.1128/jvi.02332-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/19/2015] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED The H1N1 Eurasian avian-like swine (EAsw) influenza viruses originated from an avian H1N1 virus. To characterize potential changes in the membrane fusion activity of the hemagglutinin (HA) during avian-to-swine adaptation of the virus, we studied EAsw viruses isolated in the first years of their circulation in pigs and closely related contemporary H1N1 viruses of wild aquatic birds. Compared to the avian viruses, the swine viruses were less sensitive to neutralization by lysosomotropic agent NH4Cl in MDCK cells, had a higher pH optimum of hemolytic activity, and were less stable at acidic pH. Eight amino acid substitutions in the HA were found to separate the EAsw viruses from their putative avian precursor; four substitutions-T492S, N722D, R752K, and S1132F-were located in the structural regions of the HA2 subunit known to play a role in acid-induced conformational transition of the HA. We also studied low-pH-induced syncytium formation by cell-expressed HA proteins and found that the HAs of the 1918, 1957, 1968, and 2009 pandemic viruses required a lower pH for fusion induction than did the HA of a representative EAsw virus. Our data show that transmission of an avian H1N1 virus to pigs was accompanied by changes in conformational stability and fusion promotion activity of the HA. We conclude that distinctive host-determined fusion characteristics of the HA may represent a barrier for avian-to-swine and swine-to-human transmission of influenza viruses. IMPORTANCE Continuing cases of human infections with zoonotic influenza viruses highlight the necessity to understand which viral properties contribute to interspecies transmission. Efficient binding of the HA to cellular receptors in a new host species is known to be essential for the transmission. Less is known about required adaptive changes in the membrane fusion activity of the HA. Here we show that adaptation of an avian influenza virus to pigs in Europe in 1980s was accompanied by mutations in the HA, which decreased its conformational stability and increased pH optimum of membrane fusion activity. This finding represents the first formal evidence of alteration of the HA fusion activity/stability during interspecies transmission of influenza viruses under natural settings.
Collapse
|