1
|
Xiao H, Yao Z, Li T, Fang X, Xu X, Hu S, Yang Y, Jin C, Fei Y, Liu C, Du Q. SERPINH1 secretion by cancer-associated fibroblasts promotes hepatocellular carcinoma malignancy through SENP3-mediated SP1/SQLE pathway. Int Immunopharmacol 2025; 150:114259. [PMID: 39946769 DOI: 10.1016/j.intimp.2025.114259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 03/03/2025]
Abstract
Cancer-associated fibroblasts (CAFs) have garnered significant attention due to their ability to shape the tumor microenvironment, thereby facilitating tumor progression and metastasis. Serpin peptidase inhibitor clade H member 1 (SERPINH1) is known for its role in the proper folding and secretion of collagen. However, its biological significance in hepatocellular carcinoma (HCC) remains unclear. We observed higher levels of SERPINH1 in the conditioned medium (CM) of CAFs compared to normal fibroblasts (NFs) via ELISA assays. To investigate its impact on HCC, we knocked down SERPINH1 in CAFs by shRNA, which led to a notable reduction in HCC cell proliferation, migration, and invasion induced by CM of CAFs, measured by colony formation and Transwell assays. SERPINH1 also inhibited HCC cell apoptosis, decreased the percentage of cells arrested in the G0/G1 phase, and increased the proportion of cells in the S phase, which were detected by flow cytometry. We further performed co-injections of HepG2 cells liver orthotopic transplantation model with either shCtrl-CAFs or shSERPINH1-CAFs. Interestingly, the presence of shCtrl-CAFs significantly enhanced tumor-initiating capacity compared to HepG2 cells alone or when co-injected with shSERPINH1-CAFs. Mechanistically, CAFs-derived SERPINH1 activated the SENP3/SP1 signaling pathways, substantially promoting the growth of HCC cells. Notably, we found that the transcription factor SP1 directly binds to the SQLE promoter and activates its transcription via ChIP-qPCR assay. Inhibition of SP1 expression using the specific inhibitor plicamycin effectively reversed CAFs-derived SERPINH1-induced HCC growth in vivo. Collectively, our findings highlighted the pathological role CAFs-derived SERPINH1 played in driving malignant of HCC cells through the SENP3/SP1/SQLE signaling axis, which offered a explanation of how SERPINH1 promotes HCC progress. Besides, we also demonstrated that targeting SERPINH1 signaling shall be a promising direction to develop effective therapeutical strategies for anti-HCC clinical management.
Collapse
Affiliation(s)
- Hua Xiao
- Department of General Surgery Nanjing First Hospital Nanjing Medical University Nanjing Jiangsu PR China
| | - Zhaoying Yao
- Department of Pharmacy, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Tao Li
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, PR China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xin Fang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xuejiao Xu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Sheng Hu
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, PR China
| | - Ya Yang
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, PR China
| | - Chenchen Jin
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yuxiang Fei
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, PR China.
| | - Chao Liu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, PR China.
| | - Qianming Du
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, PR China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
2
|
Angeli S, Neophytou C, Kalli M, Stylianopoulos T, Mpekris F. The mechanopathology of the tumor microenvironment: detection techniques, molecular mechanisms and therapeutic opportunities. Front Cell Dev Biol 2025; 13:1564626. [PMID: 40171226 PMCID: PMC11958720 DOI: 10.3389/fcell.2025.1564626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
The mechanical properties of the tumor microenvironment (TME) undergo significant changes during tumor growth, primarily driven by alterations in extracellular (ECM) stiffness and tumor viscoelasticity. These mechanical changes not only promote tumor progression but also hinder therapeutic efficacy by impairing drug delivery and activating mechanotransduction pathways that regulate crucial cellular processes such as migration, proliferation, and resistance to therapy. In this review, we examine the mechanisms through which tumor cells sense and transmit mechanical signals to maintain homeostasis in the biomechanically altered TME. We explore current computational modelling strategies for mechanotransduction pathways, highlighting the need for developing models that incorporate additional components of the mechanosignaling machinery. Furthermore, we review available methods for measuring the mechanical properties of tumors in clinical settings and strategies aiming at restoring the TME and blocking deregulated mechanotransduction pathways. Finally, we propose that proper characterization and a deeper understanding of the mechanical landscape of the TME, both at the tissue and cellular levels, are essential for developing therapeutic strategies that account for the influence of mechanical forces on treatment efficacy.
Collapse
Affiliation(s)
| | | | | | | | - Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
3
|
Berry LK, Pullikuth AK, Stearns KL, Wang Y, Wagner CJ, Chou JW, Darby JP, Kelly MG, Mall R, Leung M, Chifman J, Miller LD. A patient stratification signature mirrors the immunogenic potential of high grade serous ovarian cancers. J Transl Med 2024; 22:1048. [PMID: 39568014 PMCID: PMC11577735 DOI: 10.1186/s12967-024-05846-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND While high-grade serous ovarian cancer (HGSC) has proven largely resistant to immunotherapy, sporadic incidents of partial and complete response have been observed in clinical trials and case reports. These observations suggest that a molecular basis for effective immunity may exist within a subpopulation of HGSC. Herein, we developed an algorithm, CONSTRU (Computing Prognostic Marker Dependencies by Successive Testing of Gene-Stratified Subgroups), to facilitate the discovery and characterization of molecular backgrounds of HGSC that confer resistance or susceptibility to protective anti-tumor immunity. METHODS We used CONSTRU to identify genes from tumor expression profiles that influence the prognostic power of an established immune cytolytic activity signature (CYTscore). From the identified genes, we developed a stratification signature (STRATsig) that partitioned patient populations into tertiles that varied markedly by CYTscore prognostic power. The tertile groups were then analyzed for distinguishing biological, clinical and immunological properties using integrative bioinformatics approaches. RESULTS Patient survival and molecular measures of immune suppression, evasion and dysfunction varied significantly across STRATsig tertiles in validation cohorts. Tumors comprising STRATsig tertile 1 (S-T1) showed no immune-survival benefit and displayed a hyper-immune suppressed state marked by activation of TGF-β, Wnt/β-catenin and adenosine-mediated immunosuppressive pathways, with concurrent T cell dysfunction, reduced potential for antigen presentation, and enrichment of cancer-associated fibroblasts. By contrast, S-T3 tumors exhibited diminished immunosuppressive signaling, heightened antigen presentation machinery, lowered T cell dysfunction, and a significant CYTscore-survival benefit that correlated with mutational burden in a manner consistent with anti-tumor immunoediting. These tumors also showed elevated activity of DNA damage/repair, cell cycle/proliferation and oxidative phosphorylation, and displayed greater proportions of Th1 CD4 + T cells. In these patients, but not those of S-T1 or S-T2, validated predictors of immunotherapy response were prognostic of longer patient survival. Further analyses showed that STRATsig tertile properties were not explained by known HGSC molecular or clinical subtypes or singular immune mechanisms. CONCLUSIONS STRATsig is a composite of parallel immunoregulatory pathways that mirrors tumor immunogenic potential. Approximately one-third of HGSC cases classify as S-T3 and display a hypo-immunosuppressed and antigenic molecular composition that favors immunologic tumor control. These patients may show heightened responsiveness to current immunotherapies.
Collapse
Affiliation(s)
- Laurel K Berry
- Department of Obstetrics and Gynecology, Section on Gynecologic Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Ashok K Pullikuth
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Kristen L Stearns
- Department of Obstetrics and Gynecology, Section on Gynecologic Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Yuezhu Wang
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Calvin J Wagner
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Jeff W Chou
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, 27157, USA
| | - Janelle P Darby
- Department of Obstetrics and Gynecology, Section on Gynecologic Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Michael G Kelly
- Department of Obstetrics and Gynecology, Section on Gynecologic Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Raghvendra Mall
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Biotechnology Research Center, Technology Innovation Institute, P.O. Box 9639, Abu Dhabi, United Arab Emirates
| | - Ming Leung
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, 27157, USA
| | - Julia Chifman
- Department of Mathematics and Statistics, American University, Washington, DC, 20016, USA
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
4
|
Dhungel N, Dragoi AM. Exploring the multifaceted role of direct interaction between cancer cells and fibroblasts in cancer progression. Front Mol Biosci 2024; 11:1379971. [PMID: 38863965 PMCID: PMC11165130 DOI: 10.3389/fmolb.2024.1379971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/24/2024] [Indexed: 06/13/2024] Open
Abstract
The interaction between the tumor microenvironment (TME) and the cancer cells is a complex and mutually beneficial system that leads to rapid cancer cells proliferation, metastasis, and resistance to therapy. It is now recognized that cancer cells are not isolated, and tumor progression is governed among others, by many components of the TME. The reciprocal cross-talk between cancer cells and their microenvironment can be indirect through the secretion of extracellular matrix (ECM) proteins and paracrine signaling through exosomes, cytokines, and growth factors, or direct by cell-to-cell contact mediated by cell surface receptors and adhesion molecules. Among TME components, cancer-associated fibroblasts (CAFs) are of unique interest. As one of the most abundant components of the TME, CAFs play key roles in the reorganization of the extracellular matrix, facilitating metastasis and chemotherapy evasion. Both direct and indirect roles have been described for CAFs in modulating tumor progression. In this review, we focus on recent advances in understanding the role of direct contact between cancer cells and cancer-associated fibroblasts (CAFs) in driving tumor development and metastasis. We also summarize recent findings on the role of direct contact between cancer cells and CAFs in chemotherapy resistance.
Collapse
Affiliation(s)
- Nilu Dhungel
- Department of Molecular and Cellular Physiology, LSUHSC, Shreveport, LA, United States
| | - Ana-Maria Dragoi
- Department of Molecular and Cellular Physiology, LSUHSC, Shreveport, LA, United States
- Feist-Weiller Cancer Center, INLET Core, LSUHSC, Shreveport, LA, United States
| |
Collapse
|
5
|
Cambria E, Coughlin MF, Floryan MA, Offeddu GS, Shelton SE, Kamm RD. Linking cell mechanical memory and cancer metastasis. Nat Rev Cancer 2024; 24:216-228. [PMID: 38238471 PMCID: PMC11146605 DOI: 10.1038/s41568-023-00656-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 03/01/2024]
Abstract
Metastasis causes most cancer-related deaths; however, the efficacy of anti-metastatic drugs is limited by incomplete understanding of the biological mechanisms that drive metastasis. Focusing on the mechanics of metastasis, we propose that the ability of tumour cells to survive the metastatic process is enhanced by mechanical stresses in the primary tumour microenvironment that select for well-adapted cells. In this Perspective, we suggest that biophysical adaptations favourable for metastasis are retained via mechanical memory, such that the extent of memory is influenced by both the magnitude and duration of the mechanical stress. Among the mechanical cues present in the primary tumour microenvironment, we focus on high matrix stiffness to illustrate how it alters tumour cell proliferation, survival, secretion of molecular factors, force generation, deformability, migration and invasion. We particularly centre our discussion on potential mechanisms of mechanical memory formation and retention via mechanotransduction and persistent epigenetic changes. Indeed, we propose that the biophysical adaptations that are induced by this process are retained throughout the metastatic process to improve tumour cell extravasation, survival and colonization in the distant organ. Deciphering mechanical memory mechanisms will be key to discovering a new class of anti-metastatic drugs.
Collapse
Affiliation(s)
- Elena Cambria
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Mark F Coughlin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marie A Floryan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giovanni S Offeddu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah E Shelton
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Roger D Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
6
|
González-Callejo P, Vázquez-Aristizabal P, García-Astrain C, Jimenez de Aberasturi D, Henriksen-Lacey M, Izeta A, Liz-Marzán LM. 3D bioprinted breast tumor-stroma models for pre-clinical drug testing. Mater Today Bio 2023; 23:100826. [PMID: 37928251 PMCID: PMC10622882 DOI: 10.1016/j.mtbio.2023.100826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 11/07/2023] Open
Abstract
The use of three-dimensional (3D) bioprinting has been proposed for the reproducible production of 3D disease models that can be used for high-throughput drug testing and personalized medicine. However, most such models insufficiently reproduce the features and environment of real tumors. We report the development of bioprinted in vitro 3D tumor models for breast cancer, which physically and biochemically mimic important aspects of the native tumor microenvironment, designed to study therapeutic efficacy. By combining a mix of breast decellularized extracellular matrix and methacrylated hyaluronic acid with tumor-derived cells and non-cancerous stromal cells of biological relevance to breast cancer, we show that biological signaling pathways involved in tumor progression can be replicated in a carefully designed tumor-stroma environment. Finally, we demonstrate proof-of-concept application of these models as a reproducible platform for investigating therapeutic responses to commonly used chemotherapeutic agents.
Collapse
Affiliation(s)
| | - Paula Vázquez-Aristizabal
- CIC BiomaGUNE, Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastián, Spain
- Biodonostia Health Research Institute, Tissue Engineering Group, Paseo Dr. Beguiristain s/n, 20014, Donostia-San Sebastián, Spain
| | - Clara García-Astrain
- CIC BiomaGUNE, Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastián, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014, Donostia-San Sebastián, Spain
| | - Dorleta Jimenez de Aberasturi
- CIC BiomaGUNE, Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastián, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Malou Henriksen-Lacey
- CIC BiomaGUNE, Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastián, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014, Donostia-San Sebastián, Spain
| | - Ander Izeta
- Biodonostia Health Research Institute, Tissue Engineering Group, Paseo Dr. Beguiristain s/n, 20014, Donostia-San Sebastián, Spain
| | - Luis M. Liz-Marzán
- CIC BiomaGUNE, Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastián, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain
| |
Collapse
|
7
|
Levis M, Gastino A, De Giorgi G, Mantovani C, Bironzo P, Mangherini L, Ricci AA, Ricardi U, Cassoni P, Bertero L. Modern Stereotactic Radiotherapy for Brain Metastases from Lung Cancer: Current Trends and Future Perspectives Based on Integrated Translational Approaches. Cancers (Basel) 2023; 15:4622. [PMID: 37760591 PMCID: PMC10526239 DOI: 10.3390/cancers15184622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Brain metastases (BMs) represent the most frequent metastatic event in the course of lung cancer patients, occurring in approximately 50% of patients with non-small-cell lung cancer (NSCLC) and in up to 70% in patients with small-cell lung cancer (SCLC). Thus far, many advances have been made in the diagnostic and therapeutic procedures, allowing improvements in the prognosis of these patients. The modern approach relies on the integration of several factors, such as accurate histological and molecular profiling, comprehensive assessment of clinical parameters and precise definition of the extent of intracranial and extracranial disease involvement. The combination of these factors is pivotal to guide the multidisciplinary discussion and to offer the most appropriate treatment to these patients based on a personalized approach. Focal radiotherapy (RT), in all its modalities (radiosurgery (SRS), fractionated stereotactic radiotherapy (SRT), adjuvant stereotactic radiotherapy (aSRT)), is the cornerstone of BM management, either alone or in combination with surgery and systemic therapies. We review the modern therapeutic strategies available to treat lung cancer patients with brain involvement. This includes an accurate review of the different technical solutions which can be exploited to provide a "state-of-art" focal RT and also a detailed description of the systemic agents available as effective alternatives to SRS/SRT when a targetable molecular driver is present. In addition to the validated treatment options, we also discuss the future perspective for focal RT, based on emerging clinical reports (e.g., SRS for patients with many BMs from NSCLC or SRS for BMs from SCLC), together with a presentation of innovative and promising findings in translational research and the combination of novel targeted agents with SRS/SRT.
Collapse
Affiliation(s)
- Mario Levis
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Alessio Gastino
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Greta De Giorgi
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Cristina Mantovani
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Paolo Bironzo
- Oncology Unit, Department of Oncology, San Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Italy;
| | - Luca Mangherini
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| | - Alessia Andrea Ricci
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| | - Umberto Ricardi
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Paola Cassoni
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| |
Collapse
|
8
|
Xiong J, Chi H, Yang G, Zhao S, Zhang J, Tran LJ, Xia Z, Yang F, Tian G. Revolutionizing anti-tumor therapy: unleashing the potential of B cell-derived exosomes. Front Immunol 2023; 14:1188760. [PMID: 37342327 PMCID: PMC10277631 DOI: 10.3389/fimmu.2023.1188760] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
B cells occupy a vital role in the functioning of the immune system, working in tandem with T cells to either suppress or promote tumor growth within the tumor microenvironment(TME). In addition to direct cell-to-cell communication, B cells and other cells release exosomes, small membrane vesicles ranging in size from 30-150 nm, that facilitate intercellular signaling. Exosome research is an important development in cancer research, as they have been shown to carry various molecules such as major histocompatibility complex(MHC) molecules and integrins, which regulate the TME. Given the close association between TME and cancer development, targeting substances within the TME has emerged as a promising strategy for cancer therapy. This review aims to present a comprehensive overview of the contributions made by B cells and exosomes to the tumor microenvironment (TME). Additionally, we delve into the potential role of B cell-derived exosomes in the progression of cancer.
Collapse
Affiliation(s)
- Jingwen Xiong
- Department of Sports Rehabilitation, Southwest Medical University, Luzhou, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| | - Songyun Zhao
- Department of Neurosurgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jing Zhang
- Division of Basic Biomedical Sciences, The University of South Dakota Sanford School of Medicine, Vermillion, SD, United States
| | - Lisa Jia Tran
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Fang Yang
- Department of Ophthalmology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Gang Tian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
9
|
Siddhartha R, Garg M. Interplay Between Extracellular Matrix Remodeling and Angiogenesis in Tumor Ecosystem. Mol Cancer Ther 2023; 22:291-305. [PMID: 36861362 DOI: 10.1158/1535-7163.mct-22-0595] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/27/2022] [Accepted: 12/16/2022] [Indexed: 03/03/2023]
Abstract
Studying the complex mechanisms of tumorigenesis and examining the interactions of neoplastic cells within tumor ecosystem are critical to explore the possibility of effective cancer treatment modalities. Dynamic tumor ecosystem is constantly evolving and is composed of tumor cells, extracellular matrix (ECM), secreted factors, and stromal cancer-associated fibroblasts (CAF), pericytes, endothelial cells (EC), adipocytes, and immune cells. ECM remodeling by synthesis, contraction, and/or proteolytic degradation of ECM components and release of matrix-sequestered growth factors create a microenvironment that promotes EC proliferation, migration, and angiogenesis. Stromal CAFs release multiple angiogenic cues (angiogenic growth factors, cytokines, and proteolytic enzymes) which interact with ECM proteins, thus contribute to enhance proangiogenic/promigratory properties and support aggressive tumor growth. Targeting angiogenesis brings about vascular changes including reduced adherence junction proteins, basement membrane and pericyte coverage, and increased leakiness. This facilitates ECM remodeling, metastatic colonization and chemoresistance. Owing to significant role of denser and stiffer ECM in inducing chemoresistance, direct or indirect targeting of ECM components is being reported as major axis of anticancer treatment. Exploring the agents targeting angiogenesis and ECM in a context specific manner may lead to reduced tumor burden by promoting conventional therapeutic effectiveness and overcoming the hurdles of therapy resistance.
Collapse
Affiliation(s)
- Rohit Siddhartha
- Department of Biochemistry, University of Lucknow, Lucknow, India
| | - Minal Garg
- Department of Biochemistry, University of Lucknow, Lucknow, India
| |
Collapse
|
10
|
Reprogramming of cancer-associated fibroblasts by apoptotic cancer cells inhibits lung metastasis via Notch1-WISP-1 signaling. Cell Mol Immunol 2022; 19:1373-1391. [PMID: 36241874 PMCID: PMC9708692 DOI: 10.1038/s41423-022-00930-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/14/2022] [Indexed: 12/05/2022] Open
Abstract
The interplay between apoptotic cancer cells and the tumor microenvironment modulates cancer progression and metastasis. Cancer-associated fibroblasts (CAFs) play a crucial role in promoting these events through paracrine communication. Here, we demonstrate that conditioned medium (CM) from lung CAFs exposed to apoptotic cancer cells suppresses TGF-β1-induced migration and invasion of cancer cells and CAFs. Direct exposure of CAFs to apoptotic 344SQ cells (ApoSQ) inhibited CAF migration and invasion and the expression of CAF activation markers. Enhanced secretion of Wnt-induced signaling protein 1 (WISP-1) by CAFs exposed to ApoSQ was required for these antimigratory and anti-invasive effects. Pharmacological inhibition of Notch1 activation or siRNA-mediated Notch1 silencing prevented WISP-1 production by CAFs and reversed the antimigratory and anti-invasive effects. Enhanced expression of the Notch ligand delta-like protein 1 on the surface of ultraviolet-irradiated apoptotic lung cancer cells triggered Notch1-WISP-1 signaling. Phosphatidylserine receptor brain-specific angiogenesis inhibitor 1 (BAI1)-Rac1 signaling, which facilitated efferocytosis by CAFs, participated in crosstalk with Notch1 signaling for optimal production of WISP-1. In addition, a single injection of ApoSQ enhanced WISP-1 production, suppressed the expression of CAF activation markers in isolated Thy1+ CAFs, and inhibited lung metastasis in syngeneic immunocompetent mice via Notch1 signaling. Treatment with CM from CAFs exposed to ApoSQ suppressed tumor growth and lung metastasis, whereas treatment with WISP-1-immunodepleted CM from CAFs exposed to ApoSQ reversed the antitumorigenic and antimetastatic effects. Therefore, treatment with CM from CAFs exposed to apoptotic lung cancer cells could be therapeutically applied to suppress CAF activation, thereby preventing cancer progression and metastasis.
Collapse
|
11
|
Cerro PA, Mascaraque M, Gallego-Rentero M, Almenara-Blasco M, Nicolás-Morala J, Santiago JL, González S, Gracia-Cazaña T, Juarranz Á, Gilaberte Y. Tumor microenvironment in non-melanoma skin cancer resistance to photodynamic therapy. Front Oncol 2022; 12:970279. [PMID: 36338755 PMCID: PMC9634550 DOI: 10.3389/fonc.2022.970279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2022] Open
Abstract
Non-melanoma skin cancer has recently seen an increase in prevalence, and it is estimated that this grow will continue in the coming years. In this sense, the importance of therapy effectiveness has increased, especially photodynamic therapy. Photodynamic therapy has attracted much attention as a minimally invasive, selective and repeatable approach for skin cancer treatment and prevention. Although its high efficiency, this strategy has also faced problems related to tumor resistance, where the tumor microenvironment has gained a well-deserved role in recent years. Tumor microenvironment denotes a wide variety of elements, such as cancer-associated fibroblasts, immune cells, endothelial cells or the extracellular matrix, where their interaction and the secretion of a wide diversity of cytokines. Therefore, the need of designing new strategies targeting elements of the tumor microenvironment to overcome the observed resistance has become evident. To this end, in this review we focus on the role of cancer-associated fibroblasts and tumor-associated macrophages in the resistance to photodynamic therapy. We are also exploring new approaches consisting in the combination of new and old drugs targeting these cells with photodynamic therapy to enhance treatment outcomes of non-melanoma skin cancer.
Collapse
Affiliation(s)
- Paulina A. Cerro
- Department of Dermatology, Miguel Servet University Hospital, Instituto Investigación Sanitaria (IIS), Zaragoza, Aragón, Spain
| | - Marta Mascaraque
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Experminetal Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, Madrid, Spain
| | - María Gallego-Rentero
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Experminetal Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, Madrid, Spain
| | - Manuel Almenara-Blasco
- Department of Dermatology, Miguel Servet University Hospital, Instituto Investigación Sanitaria (IIS), Zaragoza, Aragón, Spain
| | - Jimena Nicolás-Morala
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Experminetal Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, Madrid, Spain
| | - Juan Luis Santiago
- Servicio de Dermatología, Hospital General de Ciudad Real, Ciudad Real, Spain
| | - Salvador González
- Department of Medicine and Medical Specialties, Universidad de Alcalá, Madrid, Spain
| | - Tamara Gracia-Cazaña
- Department of Dermatology, Miguel Servet University Hospital, Instituto Investigación Sanitaria (IIS), Zaragoza, Aragón, Spain
| | - Ángeles Juarranz
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Experminetal Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, Madrid, Spain
- *Correspondence: Ángeles Juarranz, ; Yolanda Gilaberte,
| | - Yolanda Gilaberte
- Department of Dermatology, Miguel Servet University Hospital, Instituto Investigación Sanitaria (IIS), Zaragoza, Aragón, Spain
- *Correspondence: Ángeles Juarranz, ; Yolanda Gilaberte,
| |
Collapse
|
12
|
Amabebe E, Ogidi H, Anumba DO. Matrix metalloproteinase-induced cervical extracellular matrix remodelling in pregnancy and cervical cancer. REPRODUCTION AND FERTILITY 2022; 3:R177-R191. [PMID: 37931406 PMCID: PMC9422233 DOI: 10.1530/raf-22-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
Abstract The phenomenal extracellular matrix (ECM) remodelling of the cervix that precedes the myometrial contraction of labour at term or preterm appears to share some common mechanisms with the occurrence, growth, invasion and metastasis of cervical carcinoma. Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that are pivotal to the complex extracellular tissue modulation that includes degradation, remodelling and exchange of ECM components, which contribute to homeostasis under normal physiological conditions such as cervical remodelling during pregnancy and puerperium. However, in cancer such as that of the uterine cervix, this extensive network of extracellular tissue modulation is altered leading to disrupted cell-cell and cell-basement membrane adhesion, abnormal tissue growth, neovascularization and metastasis that disrupt homeostasis. Cervical ECM remodelling during pregnancy and puerperium could be a physiological albeit benign neoplasm. In this review, we examined the pathophysiologic differences and similarities in the role of MMPs in cervical remodelling and cervical carcinoma. Lay summary During pregnancy and childbirth, the cervix, which is the barrel-shaped lower portion of the womb that connects to the vagina, gradually softens, shortens and opens to allow birth of the baby. This process requires structural and biochemical changes in the cervix that are stimulated by enzymes known as matrix metalloproteinases. Interestingly, these enzymes also affect the structural and biochemical framework of the cervix during cervical cancer, although cervical cancers usually occur after infection by human papillomavirus. This review is intended to identify and explain the similarities and differences between the structural and chemical changes in the cervix during pregnancy and childbirth and the changes seen in cervical cancer.
Collapse
Affiliation(s)
- Emmanuel Amabebe
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Henry Ogidi
- Department of Obstetrics and Gynaecology, Glan Clwyd Hospital North Wales, Gwynedd, UK
| | - Dilly O Anumba
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
13
|
Chang YH, Hoang NN, Khanh VC, Yamashita T, Osaka M, Hiramatsu Y, Ohneda O. Type 2 Diabetes Mellitus Promotes the Differentiation of Adipose Tissue-derived Mesenchymal Stem Cells into Cancer-associated Fibroblasts, Induced by Breast Cancer Cells. Stem Cells Dev 2022; 31:659-671. [PMID: 35734905 DOI: 10.1089/scd.2022.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Triple Negative Breast Cancer (TNBC) is a highly aggressive and invasive type of breast cancer. In addition, type 2 diabetes mellitus (T2DM) is recognized as a risk factor for cancer metastasis, which is associated with mortality in patients with breast cancer. Cancer-associated fibroblasts (CAFs) generated from adipose tissue-derived mesenchymal stem cells (AT-MSCs) play a vital role in the progression of TNBC. However, to date, whether T2DM affects the ability of AT-MSCs to differentiate into CAFs is still unclear. In the present study, we found that in coculture with TNBC cells (BCCs) under hypoxic conditions, AT-MSCs derived from T2DM donors (dAT-MSCs) were facilitated to differentiate into CAFs, which showed fibroblastic morphology, and the induced expression of fibroblastic markers, such as FAP, FSP and vimentin. This was involved in the higher expression of TGFRand the phosphorylation of Smad2/3. Furthermore, T2DM affected the fate and functions of CAFs derived from dAT-MSCs. While CAFs derived from AT-MSCs of healthy donors (AT-CATs) exhibited the markers of inflammatory CAFs, those derived from dAT-MSCs (dAT-CAFs) showed the markers of myofibroblastic CAFs. Of note, in comparison to AT-CAFs, dAT-CAFs showed a higher ability to induce the proliferation and in vivo metastasis of BCCs, which was involved in the activation of the TGF-Smad2/3 signaling pathway. Collectively, our study suggests that T2DM contributes to metastasis of BCCs by inducing the myofibroblastic CAFs differentiation of dAT-MSCs. In addition, targeting the TGF-Smad2/3 signaling pathway in dAT-MSCs may be useful in cancer therapy for TNBC patients with T2DM.
Collapse
Affiliation(s)
- Yun-Hsuan Chang
- University of Tsukuba, 13121, Regenerative Medicine and Stem Cell Biology, Tsukuba, Ibaraki, Japan;
| | - Ngo Nhat Hoang
- University of Tsukuba, 13121, Regenerative Medicine and Stem Cell Biology, Tsukuba, Ibaraki, Japan;
| | - Vuong Cat Khanh
- University of Tsukuba, Regenerative Medicine, Tsukuba, Japan;
| | | | - Motoo Osaka
- University of Tsukuba, Cardiovascular Surgery, Tsukuba, Japan;
| | - Yuji Hiramatsu
- University of Tsukuba, Cardiovascular Surgery, Tsukuba, Japan;
| | - Osamu Ohneda
- University of Tsukuba, Regenerative Medicine, 1-1-1 Tennoudai, Tsukuba, Japan, 305-8575;
| |
Collapse
|
14
|
Shah K, Mallik SB, Gupta P, Iyer A. Targeting Tumour-Associated Fibroblasts in Cancers. Front Oncol 2022; 12:908156. [PMID: 35814453 PMCID: PMC9258494 DOI: 10.3389/fonc.2022.908156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Tumours develop within complex tissue environments consisting of aberrant oncogenic cancer cells, diverse innate and adaptive immune cells, along with structural stromal cells, extracellular matrix and vascular networks, and many other cellular and non-cellular soluble constituents. Understanding the heterogeneity and the complex interplay between these cells remains a key barrier in treating tumours and cancers. The immune status of the pre-tumour and tumour milieu can dictate if the tumour microenvironment (TME) supports either a pro-malignancy or an anti-malignancy phenotype. Identification of the factors and cell types that regulate the dysfunction of the TME is crucial in order to understand and modulate the immune status of tumours. Among these cell types, tumour-associated fibroblasts are emerging as a major component of the TME that is often correlated with poor prognosis and therapy resistance, including immunotherapies. Thus, a deeper understanding of the complex roles of tumour-associated fibroblasts in regulating tumour immunity and cancer therapy could provide new insight into targeting the TME in various human cancers. In this review, we summarize recent studies investigating the role of immune and key stromal cells in regulating the immune status of the TME and discuss the therapeutic potential of targeting stromal cells, especially tumour-associated fibroblasts, within the TME as an adjuvant therapy to sensitize immunosuppressive tumours and prevent cancer progression, chemo-resistance and metastasis.
Collapse
Affiliation(s)
- Kairav Shah
- Alembic Discovery & Innovation, Alembic Pharmaceuticals, Hyderabad, India
| | | | - Praveer Gupta
- Alembic Discovery & Innovation, Alembic Pharmaceuticals, Hyderabad, India
| | - Abishek Iyer
- Alembic Discovery & Innovation, Alembic Pharmaceuticals, Hyderabad, India
| |
Collapse
|
15
|
Tian L, Long F, Hao Y, Li B, Li Y, Tang Y, Li J, Zhao Q, Chen J, Liu M. A Cancer Associated Fibroblasts-Related Six-Gene Panel for Anti-PD-1 Therapy in Melanoma Driven by Weighted Correlation Network Analysis and Supervised Machine Learning. Front Med (Lausanne) 2022; 9:880326. [PMID: 35479936 PMCID: PMC9035939 DOI: 10.3389/fmed.2022.880326] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/22/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Melanoma is a highly aggressive skin cancer with a poor prognosis and mortality. Immune checkpoint blockade (ICB) therapy (e.g., anti-PD-1 therapy) has opened a new horizon in melanoma treatment, but some patients present a non-responsive state. Cancer-associated fibroblasts (CAFs) make up the majority of stromal cells in the tumor microenvironment (TME) and have an important impact on the response to immunotherapy. There is still a lack of identification of CAFs-related predictors for anti-PD-1 therapy, although the establishment of immunotherapy biomarkers is well underway. This study aims to explore the potential CAFs-related gene panel for predicting the response to anti-PD-1 therapy in melanoma patients and elucidating their potential effect on TME. METHODS Three gene expression datasets from melanoma patients without anti-PD-1 treatment, in a total of 87 samples, were downloaded from Gene Expression Omnibus (GEO) as the discovery sets (GSE91061) and validation sets (GSE78220 and GSE122220). The CAFs-related module genes were identified from the discovery sets by weighted gene co-expression network analysis (WGCNA). Concurrently, we utilized differential gene analysis on the discovery set to obtain differentially expressed genes (DEGs). Then, CAFs-related key genes were screened with the intersection of CAFs-related module genes and DEGs, succeeded by supervised machine learning-based identification. As a consequence of expression analysis, gene set enrichment analysis, survival analysis, staging analysis, TME analysis, and correlation analysis, the multidimensional systematic characterizations of the key genes were uncovered. The diagnostic performance of the CAFs-related gene panel was assessed by receiver operating characteristic (ROC) curves in the validation sets. Eventually, the CAFs-related gene panel was verified by the expression from the single-cell analysis. RESULTS The six-gene panel associated with CAFs were finally identified for predicting the response to anti-PD-1 therapy, including CDK14, SYNPO2, TCF4, GJA1, CPXM1, and TFPI. The multigene panel demonstrated excellent combined diagnostic performance with the area under the curve of ROC reaching 90.5 and 75.4% ~100% in the discovery and validation sets, respectively. CONCLUSION Confirmed by clinical treatment outcomes, the identified CAFs-related genes can be used as a promising biomarker panel for prediction to anti-PD-1 therapy response, which may serve as new immunotherapeutic targets to improve survival outcomes of melanoma patients.
Collapse
Affiliation(s)
- Luyao Tian
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Fei Long
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Youjin Hao
- Cell Biology and Bioinformatics, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Bo Li
- Cell Biology and Bioinformatics, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Yinghong Li
- Key Laboratory on Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Ying Tang
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jing Li
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Qi Zhao
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Juan Chen
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Mingwei Liu
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Hu B, Wu C, Mao H, Gu H, Dong H, Yan J, Qi Z, Yuan L, Dong Q, Long J. Subpopulations of cancer-associated fibroblasts link the prognosis and metabolic features of pancreatic ductal adenocarcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:262. [PMID: 35402584 PMCID: PMC8987890 DOI: 10.21037/atm-22-407] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/07/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are a vital constituent of the tumor microenvironment (TME) and have several activities, but the effect of CAF heterogeneity on the molecular features and clinical outcomes of pancreatic ductal adenocarcinoma (PDAC) remains unknown. METHODS An algorithm "scFrac" based on single-cell sequencing data from the Gene Expression Omnibus was introduced to emulate the enrichment of CAF subtypes in a TCGA-PDAC cohort and their prognostic influence, and confirmed by an external validation group (66 patients with PDAC) with multiplex immunohistochemistry staining. A comprehensive analysis including metabolic profile and transcription factor regulon activity was carried out among CAF subtypes. RESULTS Three distinct CAF populations were confirmed: myofibroblast (myCAF), inflammatory CAF (iCAF), and antigen-presenting CAF (apCAF). These subtypes expressed distinct metabolic profiles and transcriptional regulon activity. KEGG pathway annotation demonstrated that complement and coagulation cascades, as well as cytokine-cytokine receptor interaction were dominant in iCAFs, and pathways related to focal adhesion, and ECM-receptor interaction showed dominance in myCAFs, while antigen processing and presentation were the top enriched pathways in apCAFs. iCAFs trended to glycolysis with CREB3L1, EGR2 and SOX4 activation, whereas myCAFs depend on the tricarboxylic acid cycle and its derivatives with NRF2, CEBPD and YBX1 activation. iCAF is a protective factor associated with an inflammatory phenotype, but myCAF is an important factor in the poor prognosis of PDAC. CONCLUSIONS We identified distinct molecular characteristics of 3 CAF subtypes in PDAC and plotted their metabolism profile. We introduced a novel algorism, scFrac, for exploring how CAF subgroups dysregulate cancer biology, and also shed a new therapeutic light on targeting the CAF subtype in TME.
Collapse
Affiliation(s)
- Beiyuan Hu
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuntao Wu
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huarong Mao
- Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai, China
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Haitao Gu
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanguang Dong
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiuliang Yan
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zihao Qi
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Yuan
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiongzhu Dong
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Jiang Long
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Lappano R, Todd LA, Stanic M, Cai Q, Maggiolini M, Marincola F, Pietrobon V. Multifaceted Interplay between Hormones, Growth Factors and Hypoxia in the Tumor Microenvironment. Cancers (Basel) 2022; 14:539. [PMID: 35158804 PMCID: PMC8833523 DOI: 10.3390/cancers14030539] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Hormones and growth factors (GFs) are signaling molecules implicated in the regulation of a variety of cellular processes. They play important roles in both healthy and tumor cells, where they function by binding to specific receptors on target cells and activating downstream signaling cascades. The stages of tumor progression are influenced by hormones and GF signaling. Hypoxia, a hallmark of cancer progression, contributes to tumor plasticity and heterogeneity. Most solid tumors contain a hypoxic core due to rapid cellular proliferation that outgrows the blood supply. In these circumstances, hypoxia-inducible factors (HIFs) play a central role in the adaptation of tumor cells to their new environment, dramatically reshaping their transcriptional profile. HIF signaling is modulated by a variety of factors including hormones and GFs, which activate signaling pathways that enhance tumor growth and metastatic potential and impair responses to therapy. In this review, we summarize the role of hormones and GFs during cancer onset and progression with a particular focus on hypoxia and the interplay with HIF proteins. We also discuss how hypoxia influences the efficacy of cancer immunotherapy, considering that a hypoxic environment may act as a determinant of the immune-excluded phenotype and a major hindrance to the success of adoptive cell therapies.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Lauren A. Todd
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Mia Stanic
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Qi Cai
- Kite Pharma Inc., Santa Monica, CA 90404, USA; (Q.C.); (F.M.)
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | | | | |
Collapse
|
18
|
Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, Zhang B, Meng Q, Yu X, Shi S. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer 2021; 20:131. [PMID: 34635121 PMCID: PMC8504100 DOI: 10.1186/s12943-021-01428-1] [Citation(s) in RCA: 1227] [Impact Index Per Article: 306.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/11/2021] [Indexed: 01/04/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs), a stromal cell population with cell-of-origin, phenotypic and functional heterogeneity, are the most essential components of the tumor microenvironment (TME). Through multiple pathways, activated CAFs can promote tumor growth, angiogenesis, invasion and metastasis, along with extracellular matrix (ECM) remodeling and even chemoresistance. Numerous previous studies have confirmed the critical role of the interaction between CAFs and tumor cells in tumorigenesis and development. However, recently, the mutual effects of CAFs and the tumor immune microenvironment (TIME) have been identified as another key factor in promoting tumor progression. The TIME mainly consists of distinct immune cell populations in tumor islets and is highly associated with the antitumor immunological state in the TME. CAFs interact with tumor-infiltrating immune cells as well as other immune components within the TIME via the secretion of various cytokines, growth factors, chemokines, exosomes and other effector molecules, consequently shaping an immunosuppressive TME that enables cancer cells to evade surveillance of the immune system. In-depth studies of CAFs and immune microenvironment interactions, particularly the complicated mechanisms connecting CAFs with immune cells, might provide novel strategies for subsequent targeted immunotherapies. Herein, we shed light on recent advances regarding the direct and indirect crosstalk between CAFs and infiltrating immune cells and further summarize the possible immunoinhibitory mechanisms induced by CAFs in the TME. In addition, we present current related CAF-targeting immunotherapies and briefly describe some future perspectives on CAF research in the end.
Collapse
Affiliation(s)
- Xiaoqi Mao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
19
|
Kay EJ, Koulouras G, Zanivan S. Regulation of Extracellular Matrix Production in Activated Fibroblasts: Roles of Amino Acid Metabolism in Collagen Synthesis. Front Oncol 2021; 11:719922. [PMID: 34513697 PMCID: PMC8429785 DOI: 10.3389/fonc.2021.719922] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer associated fibroblasts (CAFs) are a major component of the tumour microenvironment in most tumours, and are key mediators of the response to tissue damage caused by tumour growth and invasion, contributing to the observation that tumours behave as 'wounds that do not heal'. CAFs have been shown to play a supporting role in all stages of tumour progression, and this is dependent on the highly secretory phenotype CAFs develop upon activation, of which extracellular matrix (ECM) production is a key element. A collagen rich, stromal ECM has been shown to influence tumour growth and metastasis, exclude immune cells and impede drug delivery, and is associated with poor prognosis in many cancers. CAFs also extensively remodel their metabolism to support cancer cells, however, it is becoming clear that metabolic rewiring also supports intrinsic functions of activated fibroblasts, such as increased ECM production. In this review, we summarise how fibroblasts metabolically regulate ECM production, focussing on collagen production, at the transcriptional, translational and post-translational level, and discuss how this can provide possible strategies for effectively targeting CAF activation and formation of a tumour-promoting stroma.
Collapse
Affiliation(s)
- Emily J. Kay
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Grigorios Koulouras
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
20
|
TGF-β Signaling: From Tissue Fibrosis to Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22147575. [PMID: 34299192 PMCID: PMC8303588 DOI: 10.3390/ijms22147575] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor-β (TGF-β) signaling triggers diverse biological actions in inflammatory diseases. In tissue fibrosis, it acts as a key pathogenic regulator for promoting immunoregulation via controlling the activation, proliferation, and apoptosis of immunocytes. In cancer, it plays a critical role in tumor microenvironment (TME) for accelerating invasion, metastasis, angiogenesis, and immunosuppression. Increasing evidence suggest a pleiotropic nature of TGF-β signaling as a critical pathway for generating fibrotic TME, which contains numerous cancer-associated fibroblasts (CAFs), extracellular matrix proteins, and remodeling enzymes. Its pathogenic roles and working mechanisms in tumorigenesis are still largely unclear. Importantly, recent studies successfully demonstrated the clinical implications of fibrotic TME in cancer. This review systematically summarized the latest updates and discoveries of TGF-β signaling in the fibrotic TME.
Collapse
|
21
|
Belhabib I, Zaghdoudi S, Lac C, Bousquet C, Jean C. Extracellular Matrices and Cancer-Associated Fibroblasts: Targets for Cancer Diagnosis and Therapy? Cancers (Basel) 2021; 13:3466. [PMID: 34298680 PMCID: PMC8303391 DOI: 10.3390/cancers13143466] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Solid cancer progression is dictated by neoplastic cell features and pro-tumoral crosstalks with their microenvironment. Stroma modifications, such as fibroblast activation into cancer-associated fibroblasts (CAFs) and extracellular matrix (ECM) remodeling, are now recognized as critical events for cancer progression and as potential therapeutic or diagnostic targets. The recent appreciation of the key, complex and multiple roles of the ECM in cancer and of the CAF diversity, has revolutionized the field and raised innovative but challenging questions. Here, we rapidly present CAF heterogeneity in link with their specific ECM remodeling features observed in cancer, before developing each of the impacts of such ECM modifications on tumor progression (survival, angiogenesis, pre-metastatic niche, chemoresistance, etc.), and on patient prognosis. Finally, based on preclinical studies and recent results obtained from clinical trials, we highlight key mechanisms or proteins that are, or may be, used as potential therapeutic or diagnostic targets, and we report and discuss benefits, disappointments, or even failures, of recently reported stroma-targeting strategies.
Collapse
Affiliation(s)
| | | | | | | | - Christine Jean
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, 31037 Toulouse, France; (I.B.); (S.Z.); (C.L.); (C.B.)
| |
Collapse
|
22
|
Overexpression of TGF-β1 and SDF-1 in cervical cancer-associated fibroblasts promotes cell growth, invasion and migration. Arch Gynecol Obstet 2021; 305:179-192. [PMID: 34196798 DOI: 10.1007/s00404-021-06137-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/23/2021] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The purpose of this study was to investigate the effect of overexpression of transforming growth factor β1 (TGF-β1) and stromal cell-derived factor 1 (SDF-1) in cervical cancer-associated fibroblasts (CAFs) on regulating cell growth, invasion and migration. METHODS CAF cells and normal fibroblast cells (NFs) were obtained from patients with cervical squamous cell carcinoma and multiple uterine leiomyomas, respectively. Immunofluorescence assay and western blot were used to determine the expression of Vimentin and α-smooth muscle actin (α-SMA). CCK-8 assay was used to detect cell viability. Giemsa dyer was used to detect the colony formation. Flow cytometry was used to detect the growth state of cells. Transwell assays were used to detect the migration and invasion. RESULTS Vimentin and α-SMA expression in CAFs were significantly increased than those in NFs. In addition, TGF-β1 and SDF-1 expression were notably increased, and transforming growth factor beta receptor 2 (TβRII) expression was markedly decreased in CAF cells than those in NFs. Similarly, TGF-β1 and SDF-1 expression in the co-culture of CAFs and Hela cells were significantly increased, and cell proliferation, migration, invasion, colony formation and cell cycle progression were also promoted, while cell apoptosis was decreased. Those phenomena were reversed in the co-culture system with neutralizing antibodies to TGF-β1 and SDF-1. Furthermore, exogenous TGF-β1 and SDF-1 enhanced proliferation, colony formation, cell cycle progression, migration and invasion while decreased apoptosis of cells. These phenomena were also reversed by the addition of neutralizing antibodies to TGF-β1 and SDF-1. CONCLUSION Overexpression of TGF-β1 and SDF-1 in CAFs can promote the growth, invasion and migration of cervical cancer cells.
Collapse
|
23
|
Sadras F, Stewart TA, Robitaille M, Peters AA, Croft PKD, Soon PS, Saunus JM, Lakhani SR, Roberts-Thomson SJ, Monteith GR. Altered Calcium Influx Pathways in Cancer-Associated Fibroblasts. Biomedicines 2021; 9:biomedicines9060680. [PMID: 34208665 PMCID: PMC8234491 DOI: 10.3390/biomedicines9060680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) represent an important component of the tumour microenvironment and are implicated in disease progression. Two outstanding questions in cancer biology are how CAFs arise and how they might be targeted therapeutically. The calcium signal also has an important role in tumorigenesis. To date, the role of calcium signalling pathways in the induction of the CAF phenotype remains unexplored. A CAF model was generated through exogenous transforming growth factor beta 1 (TGFβ1) stimulation of the normal human mammary fibroblast cell line, HMF3S (HMF3S-CAF), and changes in calcium signalling were investigated. Functional changes in HMF3S-CAF calcium signalling pathways were assessed using a fluorescent indicator, gene expression, gene-silencing and pharmacological approaches. HMF3S-CAF cells demonstrated functionally altered calcium influx pathways with reduced store-operated calcium entry. In support of a calcium signalling switch, two voltage-gated calcium channel (VGCC) family members, CaV1.2 and CaV3.2, were upregulated in HMF3S-CAFs and a subset of patient-derived breast CAFs. Both siRNA-mediated silencing and pharmacological inhibition of CaV1.2 or CaV3.2 significantly impaired CAF activation in HMF3S cells. Our findings show that VGCCs contribute to TGFβ1-mediated induction of HMF3S-CAF cells and both transcriptional interference and pharmacological antagonism of CaV1.2 and CaV3.2 inhibit CAF induction. This suggests a potential therapeutic role for targeting calcium signalling in breast CAFs.
Collapse
Affiliation(s)
- Francisco Sadras
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; (F.S.); (M.R.); (A.A.P.); (S.J.R.-T.)
| | - Teneale A. Stewart
- Mater Research, Translational Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia;
| | - Mélanie Robitaille
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; (F.S.); (M.R.); (A.A.P.); (S.J.R.-T.)
| | - Amelia A. Peters
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; (F.S.); (M.R.); (A.A.P.); (S.J.R.-T.)
| | - Priyakshi Kalita-de Croft
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia; (P.K.-d.C.); (J.M.S.); (S.R.L.)
| | - Patsy S. Soon
- South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW 2170, Australia;
- Department of Surgery, Bankstown Hospital, Bankstown, NSW 2200, Australia
- Medical Oncology Group, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| | - Jodi M. Saunus
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia; (P.K.-d.C.); (J.M.S.); (S.R.L.)
| | - Sunil R. Lakhani
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia; (P.K.-d.C.); (J.M.S.); (S.R.L.)
- Pathology Queensland, The Royal Brisbane and Women’s Hospital, Herston, QLD 4029, Australia
| | - Sarah J. Roberts-Thomson
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; (F.S.); (M.R.); (A.A.P.); (S.J.R.-T.)
| | - Gregory R. Monteith
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; (F.S.); (M.R.); (A.A.P.); (S.J.R.-T.)
- Mater Research, Translational Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia;
- Correspondence:
| |
Collapse
|
24
|
Scott EN, Gocher AM, Workman CJ, Vignali DAA. Regulatory T Cells: Barriers of Immune Infiltration Into the Tumor Microenvironment. Front Immunol 2021; 12:702726. [PMID: 34177968 PMCID: PMC8222776 DOI: 10.3389/fimmu.2021.702726] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Regulatory T cells (Tregs) are key immunosuppressive cells that promote tumor growth by hindering the effector immune response. Tregs utilize multiple suppressive mechanisms to inhibit pro-inflammatory responses within the tumor microenvironment (TME) by inhibition of effector function and immune cell migration, secretion of inhibitory cytokines, metabolic disruption and promotion of metastasis. In turn, Tregs are being targeted in the clinic either alone or in combination with other immunotherapies, in efforts to overcome the immunosuppressive TME and increase anti-tumor effects. However, it is now appreciated that Tregs not only suppress cells intratumorally via direct engagement, but also serve as key interactors in the peritumor, stroma, vasculature and lymphatics to limit anti-tumor immune responses prior to tumor infiltration. We will review the suppressive mechanisms that Tregs utilize to alter immune and non-immune cells outside and within the TME and discuss how these mechanisms collectively allow Tregs to create and promote a physical and biological barrier, resulting in an immune-excluded or limited tumor microenvironment.
Collapse
Affiliation(s)
- Ellen N. Scott
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Angela M. Gocher
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
| | - Creg J. Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
| | - Dario A. A. Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| |
Collapse
|
25
|
Dzobo K, Dandara C. Architecture of Cancer-Associated Fibroblasts in Tumor Microenvironment: Mapping Their Origins, Heterogeneity, and Role in Cancer Therapy Resistance. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 24:314-339. [PMID: 32496970 DOI: 10.1089/omi.2020.0023] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The tumor stroma, a key component of the tumor microenvironment (TME), is a key determinant of response and resistance to cancer treatment. The stromal cells, extracellular matrix (ECM), and blood vessels influence cancer cell response to therapy and play key roles in tumor relapse and therapeutic outcomes. Of the stromal cells present in the TME, much attention has been given to cancer-associated fibroblasts (CAFs) as they are the most abundant and important in cancer initiation, progression, and therapy resistance. Besides releasing several factors, CAFs also synthesize the ECM, a key component of the tumor stroma. In this expert review, we examine the role of CAFs in the regulation of tumor cell behavior and reveal how CAF-derived factors and signaling influence tumor cell heterogeneity and development of novel strategies to combat cancer. Importantly, CAFs display both phenotypic and functional heterogeneity, with significant ramifications on CAF-directed therapies. Principal anti-cancer therapies targeting CAFs take the form of: (1) CAFs' ablation through use of immunotherapies, (2) re-education of CAFs to normalize the cells, (3) cellular therapies involving CAFs delivering drugs such as oncolytic adenoviruses, and (4) stromal depletion via targeting the ECM and its related signaling. The CAFs' heterogeneity could be a result of different cellular origins and the cancer-specific tumor microenvironmental effects, underscoring the need for further multiomics and biochemical studies on CAFs and the subsets. Lastly, we present recent advances in therapeutic targeting of CAFs and the success of such endeavors or their lack thereof. We recommend that to advance global public health and personalized medicine, treatments in the oncology clinic should be combinatorial in nature, strategically targeting both cancer cells and stromal cells, and their interactions.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
26
|
Giorello MB, Borzone FR, Labovsky V, Piccioni FV, Chasseing NA. Cancer-Associated Fibroblasts in the Breast Tumor Microenvironment. J Mammary Gland Biol Neoplasia 2021; 26:135-155. [PMID: 33398516 DOI: 10.1007/s10911-020-09475-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Years of investigation have shed light on a theory in which breast tumor epithelial cells are under the effect of the stromal microenvironment. This review aims to discuss recent findings concerning the phenotypic and functional characteristics of cancer associated fibroblasts (CAFs) and their involvement in tumor evolution, as well as their potential implications for anti-cancer therapy. In this manuscript, we reviewed that CAFs play a fundamental role in initiation, growth, invasion, and metastasis of breast cancer, and also serve as biomarkers in the clinical diagnosis, therapy, and prognosis of this disease.
Collapse
Affiliation(s)
- María Belén Giorello
- Laboratorio de Inmunohematología (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP, 1428, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
| | - Francisco Raúl Borzone
- Laboratorio de Inmunohematología (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP, 1428, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Vivian Labovsky
- Laboratorio de Inmunohematología (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP, 1428, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Flavia Valeria Piccioni
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos (IBYME) y Laboratorio de Inmunohematología (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP, 1428, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Norma Alejandra Chasseing
- Laboratorio de Inmunohematología (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP, 1428, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
27
|
Goulet CR, Pouliot F. TGFβ Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1270:89-105. [PMID: 33123995 DOI: 10.1007/978-3-030-47189-7_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transforming growth factor beta (TGFβ) is a pleiotropic growth factor. Under normal physiological conditions, TGFβ maintains homeostasis in mammalian tissues by restraining the growth of cells and stimulating apoptosis. However, the role of TGFβ signaling in the carcinogenesis is complex. TGFβ acts as a tumor suppressor in the early stages of disease and as a tumor promoter in its later stages where cancer cells have been relieved from TGFβ growth controls. Overproduction of TGFβ by cancer cells lead to a local fibrotic and immune-suppressive microenvironment that fosters tumor growth and correlates with invasive and metastatic behavior of the cancer cells. Here, we present an overview of the complex biology of the TGFβ family, and we discuss the roles of TGFβ signaling in carcinogenesis and how this knowledge is being leveraged to develop TGFβ inhibition therapies against the tumor.
Collapse
Affiliation(s)
- Cassandra Ringuette Goulet
- Oncology Division, CHU de Québec Research Center, Quebec, QC, Canada
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC, Canada
| | - Frédéric Pouliot
- Oncology Division, CHU de Québec Research Center, Quebec, QC, Canada.
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC, Canada.
- Department of surgery, CHU de Québec Research Center - Laval University, Quebec City, QC, Canada.
| |
Collapse
|
28
|
Dysregulation of Transcription Factor Activity During Formation of Cancer-Associated Fibroblasts. Int J Mol Sci 2020; 21:ijms21228749. [PMID: 33228208 PMCID: PMC7699520 DOI: 10.3390/ijms21228749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/08/2020] [Accepted: 11/17/2020] [Indexed: 01/22/2023] Open
Abstract
The reciprocal interactions between cancer cells and the quiescent fibroblasts leading to the activation of cancer-associated fibroblasts (CAFs) serve an important role in cancer progression. Here, we investigated the activation of transcription factors (TFs) in prostate fibroblasts (WPMY cell line) co-cultured with normal prostate or tumorous cells (RWPE1 and RWPE2 cell lines, respectively). After indirect co-cultures, we performed mRNA-seq and predicted TF activity using mRNA expression profiles with the Systems EPigenomics Inference of Regulatory Activity (SEPIRA) package and the GTEx and mRNA-seq data of 483 cultured fibroblasts. The initial differential expression analysis between time points and experimental conditions showed that co-culture with normal epithelial cells mainly promotes an inflammatory response in fibroblasts, whereas with the cancerous epithelial, it stimulates transformation by changing the expression of the genes associated with microfilaments. TF activity analysis revealed only one positively regulated TF in the RWPE1 co-culture alone, while we observed dysregulation of 45 TFs (7 decreased activity and 38 increased activity) uniquely in co-culture with RWPE2. Pathway analysis showed that these 45 dysregulated TFs in fibroblasts co-cultured with RWPE2 cells may be associated with the RUNX1 and PTEN pathways. Moreover, we showed that observed dysregulation could be associated with FER1L4 expression. We conclude that phenotypic changes in fibroblast responses to co-culturing with cancer epithelium result from orchestrated dysregulation of signaling pathways that favor their transformation and motility rather than proinflammatory status. This dysregulation can be observed both at the TF and transcriptome levels.
Collapse
|
29
|
Three-Dimensional Culture System of Cancer Cells Combined with Biomaterials for Drug Screening. Cancers (Basel) 2020; 12:cancers12102754. [PMID: 32987868 PMCID: PMC7601447 DOI: 10.3390/cancers12102754] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary For the research and development of drug discovery, it is of prime importance to construct the three-dimensional (3D) tissue models in vitro. To this end, the enhancement design of cell function and activity by making use of biomaterials is essential. In this review, 3D culture systems of cancer cells combined with several biomaterials for anticancer drug screening are introduced. Abstract Anticancer drug screening is one of the most important research and development processes to develop new drugs for cancer treatment. However, there is a problem resulting in gaps between the in vitro drug screening and preclinical or clinical study. This is mainly because the condition of cancer cell culture is quite different from that in vivo. As a trial to mimic the in vivo cancer environment, there has been some research on a three-dimensional (3D) culture system by making use of biomaterials. The 3D culture technologies enable us to give cancer cells an in vitro environment close to the in vivo condition. Cancer cells modified to replicate the in vivo cancer environment will promote the biological research or drug discovery of cancers. This review introduces the in vitro research of 3D cell culture systems with biomaterials in addition to a brief summary of the cancer environment.
Collapse
|
30
|
Bordignon P, Bottoni G, Xu X, Popescu AS, Truan Z, Guenova E, Kofler L, Jafari P, Ostano P, Röcken M, Neel V, Dotto GP. Dualism of FGF and TGF-β Signaling in Heterogeneous Cancer-Associated Fibroblast Activation with ETV1 as a Critical Determinant. Cell Rep 2020; 28:2358-2372.e6. [PMID: 31461652 PMCID: PMC6718812 DOI: 10.1016/j.celrep.2019.07.092] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/17/2019] [Accepted: 07/24/2019] [Indexed: 12/14/2022] Open
Abstract
Heterogeneity of cancer-associated fibroblasts (CAFs) can result from activation of distinct signaling pathways. We show that in primary human dermal fibroblasts (HDFs), fibroblast growth factor (FGF) and transforming growth factor β (TGF-β) signaling oppositely modulate multiple CAF effector genes. Genetic abrogation or pharmacological inhibition of either pathway results in induction of genes responsive to the other, with the ETV1 transcription factor mediating the FGF effects. Duality of FGF/TGF-β signaling and differential ETV1 expression occur in multiple CAF strains and fibroblasts of desmoplastic versus non-desmoplastic skin squamous cell carcinomas (SCCs). Functionally, HDFs with opposite TGF-β versus FGF modulation converge on promoting cancer cell proliferation. However, HDFs with increased TGF-β signaling enhance invasive properties and epithelial-mesenchymal transition (EMT) of SCC cells, whereas HDFs with increased FGF signaling promote macrophage infiltration. The findings point to a duality of FGF versus TGF-β signaling in distinct CAF populations that promote cancer development through modulation of different processes. FGF and TGF-β signaling exert opposite control over multiple CAF effector genes ETV1 transcription factor mediates FGF effects and suppresses those of TGF-β Modulation of either pathway leads to different tumor-promoting CAF populations TGF-β-activated CAFs promote EMT, but FGF-activated CAFs increase inflammation
Collapse
Affiliation(s)
- Pino Bordignon
- Department of Biochemistry, University of Lausanne, Epalinges 1066, Switzerland
| | - Giulia Bottoni
- Department of Biochemistry, University of Lausanne, Epalinges 1066, Switzerland; Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Xiaoying Xu
- Department of Biochemistry, University of Lausanne, Epalinges 1066, Switzerland
| | - Alma S Popescu
- Department of Biochemistry, University of Lausanne, Epalinges 1066, Switzerland
| | - Zinnia Truan
- Department of Otolaryngology-Head and Neck Surgery, Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - Emmanuella Guenova
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Lukas Kofler
- Department of Dermatology, Eberhard Karls University, Tübingen 72076, Germany
| | - Paris Jafari
- Department of Biochemistry, University of Lausanne, Epalinges 1066, Switzerland; Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02129, USA; International Cancer Prevention Institute, Epalinges 1066, Switzerland
| | - Paola Ostano
- Cancer Genomics Laboratory, Edo and Elvo Tempia Valenta Foundation, Biella 13900, Italy
| | - Martin Röcken
- Department of Dermatology, Eberhard Karls University, Tübingen 72076, Germany
| | - Victor Neel
- Department of Dermatology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - G Paolo Dotto
- Department of Biochemistry, University of Lausanne, Epalinges 1066, Switzerland; Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02129, USA; International Cancer Prevention Institute, Epalinges 1066, Switzerland.
| |
Collapse
|
31
|
Yin H, Cui C, Han S, Chen Y, Zhao J, He H, Li D, Zhu Q. Fibromodulin Modulates Chicken Skeletal Muscle Development via the Transforming Growth Factor-β Signaling Pathway. Animals (Basel) 2020; 10:ani10091477. [PMID: 32842630 PMCID: PMC7552301 DOI: 10.3390/ani10091477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Fibromodulin (Fmod) plays critical roles in skeletal muscle development and maintenance, but the roles of Fmod in skeletal muscle atrophy and development in chickens are unclear. Here, we demonstrate that Fmod plays important roles in the differentiation and atrophy of chicken skeletal muscle by regulating the transforming growth factor-β signaling pathway. These results suggest that Fmod plays important roles in skeletal muscle growth and development in chickens. Abstract Fibromodulin (Fmod), which is an extracellular matrix protein, belongs to the extracellular matrix small-leucine-rich proteoglycan family. Fmod is abundantly expressed in muscles and connective tissues and is involved in biological regulation processes, including cell apoptosis, cell adhesion, and modulation of cytokine activity. Fmod is the main regulator of myostatin, which controls the development of muscle cells, but its regulatory path is unknown. Chicken models are ideal for studying embryonic skeletal muscle development; therefore, to investigate the mechanism of Fmod in muscle development, Fmod-silenced and Fmod-overexpressed chicken myoblasts were constructed. The results showed that Fmod plays a positive role in differentiation by detecting the expression of myogenic differentiation markers, immunofluorescence of MyHC protein, and myotube formation in myoblasts. Fmod regulates expression of atrophy-related genes to alleviate muscle atrophy, which was confirmed by histological analysis of breast muscles in Fmod-modulated chicks in vivo. Additionally, genes differentially expressed between Fmod knockdown and normal myoblasts were enriched in the signaling pathway of transforming growth factor β (TGF-β). Both Fmod-silenced and Fmod-overexpressed myoblasts regulated the expression of TGFBR1 and p-Smad3. Thus, Fmod can promote differentiation but not proliferation of myoblasts by regulating the TGF-β signaling pathway, which may serve a function in muscular atrophy.
Collapse
|
32
|
Avagliano A, Fiume G, Ruocco MR, Martucci N, Vecchio E, Insabato L, Russo D, Accurso A, Masone S, Montagnani S, Arcucci A. Influence of Fibroblasts on Mammary Gland Development, Breast Cancer Microenvironment Remodeling, and Cancer Cell Dissemination. Cancers (Basel) 2020; 12:E1697. [PMID: 32604738 PMCID: PMC7352995 DOI: 10.3390/cancers12061697] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
The stromal microenvironment regulates mammary gland development and tumorigenesis. In normal mammary glands, the stromal microenvironment encompasses the ducts and contains fibroblasts, the main regulators of branching morphogenesis. Understanding the way fibroblast signaling pathways regulate mammary gland development may offer insights into the mechanisms of breast cancer (BC) biology. In fact, the unregulated mammary fibroblast signaling pathways, associated with alterations in extracellular matrix (ECM) remodeling and branching morphogenesis, drive breast cancer microenvironment (BCM) remodeling and cancer growth. The BCM comprises a very heterogeneous tissue containing non-cancer stromal cells, namely, breast cancer-associated fibroblasts (BCAFs), which represent most of the tumor mass. Moreover, the different components of the BCM highly interact with cancer cells, thereby generating a tightly intertwined network. In particular, BC cells activate recruited normal fibroblasts in BCAFs, which, in turn, promote BCM remodeling and metastasis. Thus, comparing the roles of normal fibroblasts and BCAFs in the physiological and metastatic processes, could provide a deeper understanding of the signaling pathways regulating BC dissemination. Here, we review the latest literature describing the structure of the mammary gland and the BCM and summarize the influence of epithelial-mesenchymal transition (EpMT) and autophagy in BC dissemination. Finally, we discuss the roles of fibroblasts and BCAFs in mammary gland development and BCM remodeling, respectively.
Collapse
Affiliation(s)
- Angelica Avagliano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (G.F.); (E.V.)
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
| | - Nunzia Martucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Eleonora Vecchio
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (G.F.); (E.V.)
| | - Luigi Insabato
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (L.I.); (D.R.)
| | - Daniela Russo
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (L.I.); (D.R.)
| | - Antonello Accurso
- Department of General, Oncological, Bariatric and Endocrine-Metabolic Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Stefania Masone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Stefania Montagnani
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| |
Collapse
|
33
|
Nii T, Makino K, Tabata Y. A cancer invasion model of cancer-associated fibroblasts aggregates combined with TGF-β1 release system. Regen Ther 2020; 14:196-204. [PMID: 32154334 PMCID: PMC7058408 DOI: 10.1016/j.reth.2020.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/02/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction The objective of this study is to design a cancer invasion model where the cancer invasion rate can be regulated in vitro. Methods Cancer-associated fibroblasts (CAF) aggregates incorporating gelatin hydrogel microspheres (GM) containing various concentrations of transforming growth factor-β1 (TGF-β1) (CAF-GM-TGF-β1) were prepared. Alpha-smooth muscle actin (α-SMA) for the CAF aggregates was measured to investigate the CAF activation level by changing the concentration of TGF-β1. An invasion assay was performed to evaluate the cancer invasion rate by co-cultured of cancer cells with various CAF-GM-TGF-β1. Results The expression level of α-SMA for CAF increased with an increased in the TGF-β1 concentration. When co-cultured with various types of CAF-GM-TGF-β1, the cancer invasion rate was well correlated with the α-SMA level. It is conceivable that the TGF-β1 concentration could modify the level of CAF activation, leading to the invasion rate of cancer cells. In addition, at the high concentrations of TGF-β1, the effect of a matrix metalloproteinase (MMP) inhibitor on the cancer invasion rate was observed. The higher invasion rate would be achieved through the higher MMP production. Conclusions The present model is promising to realize the cancer invasion whose rate can be modified by changing the TGF-β1 concentration. This invasion model would be a promising tool for anti-cancer drug screening. TGF-β1 was controlled release from gelatin hydrogel microspheres. CAF were activated by increased TGF-β1 concentration. There was a good correlation between invasion rate and TGF-β1 concentration. Higher invasion rate would be achieved through matrix metalloproteinase production.
Collapse
Key Words
- 2D, two-dimensional
- 3D, three-dimensional
- Anti-cancer drug screening
- CAF, cancer-associated fibroblasts
- Cancer invasion model
- DDW, double-distilled water
- Drug delivery system
- ELISA, enzyme-linked immunosolvent assay
- FCS, fetal calf serum
- GM, gelatin hydrogel microspheres
- Gelatin hydrogel microspheres
- MEM, minimum essential medium
- MMP, matrix metalloproteinase
- PBS, phosphate buffered-saline
- PLGA, poly (lactic-co-glycolic acid)
- PVA, poly (vinyl alcohol)
- TGF-β1, transforming growth factor-β1
- Three-dimensional cell culture
- α-SMA, alpha-smooth muscle actin
Collapse
Affiliation(s)
- Teruki Nii
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, 278-8510, Japan
| | - Kimiko Makino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, 278-8510, Japan.,Center for Drug Delivery Research, Tokyo University of Science, 2641, Yamazaki, Noda, 278-8510, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
34
|
Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, Hynes RO, Jain RK, Janowitz T, Jorgensen C, Kimmelman AC, Kolonin MG, Maki RG, Powers RS, Puré E, Ramirez DC, Scherz-Shouval R, Sherman MH, Stewart S, Tlsty TD, Tuveson DA, Watt FM, Weaver V, Weeraratna AT, Werb Z. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer 2020; 20:174-186. [PMID: 31980749 PMCID: PMC7046529 DOI: 10.1038/s41568-019-0238-1] [Citation(s) in RCA: 2356] [Impact Index Per Article: 471.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are a key component of the tumour microenvironment with diverse functions, including matrix deposition and remodelling, extensive reciprocal signalling interactions with cancer cells and crosstalk with infiltrating leukocytes. As such, they are a potential target for optimizing therapeutic strategies against cancer. However, many challenges are present in ongoing attempts to modulate CAFs for therapeutic benefit. These include limitations in our understanding of the origin of CAFs and heterogeneity in CAF function, with it being desirable to retain some antitumorigenic functions. On the basis of a meeting of experts in the field of CAF biology, we summarize in this Consensus Statement our current knowledge and present a framework for advancing our understanding of this critical cell type within the tumour microenvironment.
Collapse
Affiliation(s)
- Erik Sahai
- The Francis Crick Institute, London, UK.
| | - Igor Astsaturov
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Edna Cukierman
- Cancer Biology Program, Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - David G DeNardo
- Division of Oncology, Washington University Medical School, St Louis, MO, USA
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Douglas Fearon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
| | | | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Richard O Hynes
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rakesh K Jain
- Edwin L Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tobias Janowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Northwell Health Cancer Institute, New Hyde Park, NY, USA
| | - Claus Jorgensen
- Cancer Research UK Manchester Institute, University of Manchester, Nether Alderley, UK
| | - Alec C Kimmelman
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University Medical Center, New York, NY, USA
| | - Mikhail G Kolonin
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Robert G Maki
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Northwell Health Cancer Institute, New York, NY, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - R Scott Powers
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Ellen Puré
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel C Ramirez
- Zucker School of Medicine at Hofstra/Northwell Health System, New York, NY, USA
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Mara H Sherman
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Sheila Stewart
- Department of Cell Biology and Physiology, Department of Medicine, ICCE Institute, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA
| | - Thea D Tlsty
- UCSF Helen Diller Comprehensive Cancer Center, San Francisco, CA, USA
- Department of Pathology, UCSF, San Francisco, CA, USA
| | | | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London, UK
| | - Valerie Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Ashani T Weeraratna
- Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
35
|
Abstract
The tumor microenvironment (TME) is a complex ecosystem, including blood vessels,
immune cells, fibroblasts, extracellular matrix, cytokines, hormones, and so on.
The TME differs from the normal tissue environment (NTE) in many aspects, such
as tissue architecture, chronic inflammation, level of oxygen and pH,
nutritional state of the cells, as well as tissue firmness. The NTE can inhibit
the growth of cancer at the early tumorigenesis phase, whereas the TME promotes
the growth of cancer in general, although it may have some anticancer effects.
In particular, the TME plays a crucial role in the generation and maintenance of
cancer stem cells, which lie at the root of cancer growth. Therefore,
normalization of the TME to the NTE may inhibit cancer growth or improve cancer
therapeutic efficiency. This review focuses on the recent emerging approaches
for this normalization and the action mechanisms.
Collapse
Affiliation(s)
- Jie Zheng
- 1 Southeast University, Nanjing, China
| | - Peng Gao
- 2 Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
36
|
Liu N, Guo XH, Liu JP, Cong YS. Role of telomerase in the tumour microenvironment. Clin Exp Pharmacol Physiol 2019; 47:357-364. [PMID: 31799699 DOI: 10.1111/1440-1681.13223] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/28/2019] [Accepted: 12/01/2019] [Indexed: 12/14/2022]
Abstract
Telomeres are specialized genomic structures that protect chromosomal ends to maintain genomic stability. Telomeric length is primarily regulated by the telomerase complex, essentially consisting of an RNA template (TERC), an enzymatic subunit (telomerase reverse transcriptase, TERT). In humans, telomerase activity is repressed during embryonic differentiation and is absent in most somatic cells. However, it is upregulated or reactivated in 80%-90% of the primary tumours in humans. The human TERT (hTERT) plays a pivotal role in cellular immortality and tumourigenesis. However, the molecular mechanisms of telomerase functioning in cancer have not been fully understood beyond the telomere maintenance. Several research groups, including ours, have demonstrated that hTERT possesses vital functions independent of its telomere maintenance, including angiogenesis, inflammation, cancer cell stemness, and epithelial-mesenchymal transformation (EMT). All these telomere-independent activities of hTERT may contribute to the regulation of the dynamics and homeostasis of the tumour microenvironment (TME), thereby promoting tumour growth and development. Cancer progression and metastasis largely depend upon the interactions between cancer cells and their microenvironment. In this review, the involvement of TERT in the tumour microenvironment and the underlying implications in cancer therapeutics have been summarized.
Collapse
Affiliation(s)
- Ning Liu
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Xue-Hua Guo
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Jun-Ping Liu
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Yu-Sheng Cong
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China.,Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou, China
| |
Collapse
|
37
|
Targets for improving tumor response to radiotherapy. Int Immunopharmacol 2019; 76:105847. [PMID: 31466051 DOI: 10.1016/j.intimp.2019.105847] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
|
38
|
Presence of Stromal Cells Enhances Epithelial-to-Mesenchymal Transition (EMT) Induction in Lung Bronchial Epithelium after Protracted Exposure to Oxidative Stress of Gamma Radiation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4120379. [PMID: 31583039 PMCID: PMC6754954 DOI: 10.1155/2019/4120379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/19/2019] [Accepted: 07/23/2019] [Indexed: 02/03/2023]
Abstract
The aim of the study was to investigate the role of a microenvironment in the induction of epithelial-to-mesenchymal transition (EMT) as a sign of early stages of carcinogenesis in human lung epithelial cell lines after protracted low-dose rate γ-radiation exposures. BEAS-2B and HBEC-3KT lung cell lines were irradiated with low-dose rate γ-rays (137Cs, 1.4 or 14 mGy/h) to 0.1 or 1 Gy with or without adding TGF-β. TGF-β-treated samples were applied as positive EMT controls and tested in parallel to find out if the radiation has a potentiating effect on the EMT induction. To evaluate the effect of the stromal component, the epithelial cells were irradiated in cocultures with stromal MRC-9 lung fibroblasts. On day 3 post treatment, the EMT markers: α-SMA, vimentin, fibronectin, and E-cadherin, were analyzed. The oxidative stress levels were evaluated by 8-oxo-dG analysis in both epithelial and fibroblast cells. The protracted exposure to low Linear Energy Transfer (LET) radiation at the total absorbed dose of 1 Gy was able to induce changes suggestive of EMT. The results show that the presence of the stromal component and its signaling (TGF-β) in the cocultures enhances the EMT. Radiation had a minor cumulative effect on the TGF-β-induced EMT with both doses. The oxidative stress levels were higher than the background in both epithelial and stromal cells post chronic irradiation (0.1 and 1 Gy); as for the BEAS-2B cell line, the increase was statistically significant. We suggest that the induction of EMT in bronchial epithelial cells by radiation requires more than single acute exposure and the presence of stromal component might enhance the effect through free radical production and accumulation.
Collapse
|
39
|
Hu J, Zhou L, Song Z, Xiong M, Zhang Y, Yang Y, Chen K, Chen Z. The identification of new biomarkers for bladder cancer: A study based on TCGA and GEO datasets. J Cell Physiol 2019; 234:15607-15618. [PMID: 30779109 DOI: 10.1002/jcp.28208] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Bladder cancer (BC) is one of the most common neoplastic diseases worldwide. With the highest recurrence rate among all cancers, treatment of BC only improved a little in the last 30 years. Available biomarkers are not sensitive enough for the diagnosis of BC, whereas the standard diagnostic method, cystoscopy, is an invasive test and expensive. Hence, seeking new biomarkers of BC is urgent and challenging. With that order, we screened the overlapped differentially expressed genes (DEGs) of GSE13507 and TCGA BLCA datasets. Subsequent protein-protein interactions network analysis recognized the hub genes among these DEGs. Further functional analysis including Gene Ontology and KEGG pathway analysis and gene set enrichment analysis were processed to investigate the role of these genes and potential underlying mechanisms in BC. Kaplan-Meier analysis and Cox hazard ratio analysis were carried out to clarify the diagnostic and prognostic role of these genes. In conclusion, our present study demonstrated that ACTA2, CDC20, MYH11, TGFB3, TPM1, VIM, and DCN are all potential diagnostic biomarkers for BC. And may also be potential treatment targets for clinical implication in the future.
Collapse
Affiliation(s)
- Junyi Hu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lijie Zhou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhengshuai Song
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youpeng Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Yang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhaohui Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
40
|
Schwörer S, Vardhana SA, Thompson CB. Cancer Metabolism Drives a Stromal Regenerative Response. Cell Metab 2019; 29:576-591. [PMID: 30773467 PMCID: PMC6692899 DOI: 10.1016/j.cmet.2019.01.015] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/12/2018] [Accepted: 01/20/2019] [Indexed: 01/07/2023]
Abstract
The metabolic reprogramming associated with malignant transformation has led to a growing appreciation of the nutrients required to support anabolic cell growth. Less well studied is how cancer cells satisfy those demands in vivo, where they are dispersed within a complex microenvironment. Tumor-associated stromal components can support tumor growth by providing nutrients that supplement those provided by the local vasculature. These non-malignant stromal cells are phenotypically similar to those that accumulate during wound healing. Owing to their immediate proximity, stromal cells are inevitably affected by the metabolic activity of their cancerous neighbors. Until recently, a role for tumor cell metabolism in influencing the cell fate decisions of neighboring stromal cells has been underappreciated. Here, we propose that metabolites consumed and released by tumor cells act as paracrine factors that regulate the non-malignant cellular composition of a developing tumor by driving stromal cells toward a regenerative response that supports tumor growth.
Collapse
Affiliation(s)
- Simon Schwörer
- Memorial Sloan Kettering Cancer Center, Cancer Biology and Genetics Program, New York, NY 10065, USA
| | - Santosha A Vardhana
- Memorial Sloan Kettering Cancer Center, Cancer Biology and Genetics Program, New York, NY 10065, USA
| | - Craig B Thompson
- Memorial Sloan Kettering Cancer Center, Cancer Biology and Genetics Program, New York, NY 10065, USA.
| |
Collapse
|
41
|
Devarasetty M, Skardal A, Cowdrick K, Marini F, Soker S. Bioengineered Submucosal Organoids for In Vitro Modeling of Colorectal Cancer. Tissue Eng Part A 2018; 23:1026-1041. [PMID: 28922975 DOI: 10.1089/ten.tea.2017.0397] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The physical nature of the tumor microenvironment significantly impacts tumor growth, invasion, and response to drugs. Most in vitro tumor models are designed to study the effects of extracellular matrix (ECM) stiffness on tumor cells, while not addressing the effects of ECM's specific topography. In this study, we bioengineered submucosal organoids, using primary smooth muscle cells embedded in collagen I hydrogel, which produce aligned and parallel fiber topography similar to those found in vivo. The fiber organization in the submucosal organoids induced an epithelial phenotype in spheroids of colorectal carcinoma cells (HCT-116), which were embedded within the organoids. Conversely, unorganized fibers drove a mesenchymal phenotype in the tumor cells. HCT-116 cells in organoids with aligned fibers showed no WNT signaling activation, and conversely, WNT signaling activation was observed in organoids with disrupted fibers. Consequently, HCT-116 cells in the aligned condition exhibited decreased cellular proliferation and reduced sensitivity to 5-fluorouracil chemotherapeutic treatment compared to cells in the unorganized construct. Collectively, the results establish a unique colorectal tumor organoid model to study the effects of stromal topography on cancer cell phenotype, proliferation, and ultimately, chemotherapeutic susceptibility. In the future, such organoids can utilize patient-derived cells for precision medicine applications.
Collapse
Affiliation(s)
- Mahesh Devarasetty
- 1 Wake Forest Institute for Regenerative Medicine , Wake Forest School of Medicine, Winston-Salem, North Carolina.,2 Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | - Aleksander Skardal
- 1 Wake Forest Institute for Regenerative Medicine , Wake Forest School of Medicine, Winston-Salem, North Carolina.,2 Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine , Winston-Salem, North Carolina.,3 Comprehensive Cancer Center at Wake Forest Baptist Medical , Winston-Salem, North Carolina.,4 Department of Cancer Biology, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | - Kyle Cowdrick
- 1 Wake Forest Institute for Regenerative Medicine , Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Frank Marini
- 1 Wake Forest Institute for Regenerative Medicine , Wake Forest School of Medicine, Winston-Salem, North Carolina.,3 Comprehensive Cancer Center at Wake Forest Baptist Medical , Winston-Salem, North Carolina.,4 Department of Cancer Biology, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | - Shay Soker
- 1 Wake Forest Institute for Regenerative Medicine , Wake Forest School of Medicine, Winston-Salem, North Carolina.,2 Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine , Winston-Salem, North Carolina.,3 Comprehensive Cancer Center at Wake Forest Baptist Medical , Winston-Salem, North Carolina.,4 Department of Cancer Biology, Wake Forest School of Medicine , Winston-Salem, North Carolina
| |
Collapse
|
42
|
Burgstaller G, Sengupta A, Vierkotten S, Preissler G, Lindner M, Behr J, Königshoff M, Eickelberg O. Distinct niches within the extracellular matrix dictate fibroblast function in (cell free) 3D lung tissue cultures. Am J Physiol Lung Cell Mol Physiol 2018; 314:L708-L723. [DOI: 10.1152/ajplung.00408.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cues from the extracellular matrix (ECM) and their functional interplay with cells play pivotal roles for development, tissue repair, and disease. However, the precise nature of this interplay remains elusive. We used an innovative 3D cell culture ECM model by decellularizing 300-µm-thick ex vivo lung tissue scaffolds (d3D-LTCs) derived from diseased and healthy mouse lungs, which widely mimics the native (patho)physiological in vivo ECM microenvironment. We successfully repopulated all d3D-LTCs with primary human and murine fibroblasts, and moreover, we demonstrated that the cells also populated the innermost core regions of the d3D-LTCs in a real 3D fashion. The engrafted fibroblasts revealed a striking functional plasticity, depending on their localization in distinct ECM niches of the d3D-LTCs, affecting the cells’ tissue engraftment, cellular migration rates, cell morphologies, and protein expression and phosphorylation levels. Surprisingly, we also observed fibroblasts that were homing to the lung scaffold’s interstitium as well as fibroblasts that were invading fibrotic areas. To date, the functional nature and even the existence of 3D cell matrix adhesions in vivo as well as in 3D culture models is still unclear and controversial. Here, we show that attachment of fibroblasts to the d3D-LTCs evidently occurred via focal adhesions, thus advocating for a relevant functional role in vivo. Furthermore, we found that protein levels of talin, paxillin, and zyxin and phosphorylation levels of paxillin Y118, as well as the migration-relevant small GTPases RhoA, Rac, and CDC42, were significantly reduced compared with their attachment to 2D plastic dishes. In summary, our results strikingly indicate that inherent physical or compositional characteristics of the ECM act as instructive cues altering the functional behavior of engrafted cells. Thus, d3D-LTCs might aid to obtain more realistic data in vitro, with a high relevance for drug discovery and mechanistic studies alike.
Collapse
Affiliation(s)
- Gerald Burgstaller
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Arunima Sengupta
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Sarah Vierkotten
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Gerhard Preissler
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Thoraxchirurgisches Zentrum, Klinik für Allgemeine-, Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, Klinikum Großhadern, Ludwig-Maximilians-Universität, Munich, Germany
| | - Michael Lindner
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Asklepios Fachkliniken München-Gauting, Munich, Germany
| | - Jürgen Behr
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Asklepios Fachkliniken München-Gauting, Medizinische Klinik und Poliklinik V, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Division of Respiratory Sciences and Critical Care Medicine, University of Colorado, Denver, Colorado
| | - Oliver Eickelberg
- Division of Respiratory Sciences and Critical Care Medicine, University of Colorado, Denver, Colorado
| |
Collapse
|
43
|
Ringuette Goulet C, Bernard G, Tremblay S, Chabaud S, Bolduc S, Pouliot F. Exosomes Induce Fibroblast Differentiation into Cancer-Associated Fibroblasts through TGFβ Signaling. Mol Cancer Res 2018; 16:1196-1204. [PMID: 29636362 DOI: 10.1158/1541-7786.mcr-17-0784] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/19/2018] [Accepted: 03/26/2018] [Indexed: 11/16/2022]
Abstract
A particularly important tumor microenvironment relationship exists between cancer cells and surrounding stromal cells. Fibroblasts, in response to cancer cells, become activated and exhibit myofibroblastic characteristics that favor invasive growth and metastasis. However, the mechanism by which cancer cells promote activation of healthy fibroblasts into cancer-associated fibroblasts (CAF) is still not well understood. Exosomes are nanometer-sized vesicles that shuttle proteins and nucleic acids between cells to establish intercellular communication. Here, bladder cancer-derived exosomes were investigated to determine their role in the activation of healthy primary vesical fibroblasts. Exosomes released by bladder cancer cells are internalized by fibroblasts and promoted the proliferation and expression of CAF markers. In addition, cancer cell-derived exosomes contain TGFβ and in exosome-induced CAFs SMAD-dependent signaling is activated. Furthermore, TGFβ inhibitors attenuated CAF marker expression in healthy fibroblasts. Therefore, these data demonstrate that bladder cancer cells trigger the differentiation of fibroblasts to CAFs by exosomes-mediated TGFβ transfer and SMAD pathway activation. Finally, exosomal TGFβ localized inside the vesicle and contributes 53.4% to 86.3% of the total TGFβ present in the cancer cell supernatant. This study highlights a new function for bladder cancer exosomes as novel modulators of stromal cell differentiation.Implication: This study identifies exosomal TGFβ as new molecular mechanism involved in cancer-associated fibroblast activation. Mol Cancer Res; 16(7); 1196-204. ©2018 AACR.
Collapse
Affiliation(s)
- Cassandra Ringuette Goulet
- Centre de recherche en organogénèse expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec Research Center, Quebec, Canada.,Urology Division, Department of Surgery, Laval University, Quebec, Canada.,Laboratoire d'Urologie-Oncologie Expérimentale, Cancer Axis, CHU de Québec Research Center, Quebec, Canada
| | - Geneviève Bernard
- Centre de recherche en organogénèse expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec Research Center, Quebec, Canada.,Urology Division, Department of Surgery, Laval University, Quebec, Canada
| | - Sarah Tremblay
- Centre de recherche en organogénèse expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec Research Center, Quebec, Canada
| | - Stéphane Chabaud
- Centre de recherche en organogénèse expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec Research Center, Quebec, Canada.,Urology Division, Department of Surgery, Laval University, Quebec, Canada
| | - Stéphane Bolduc
- Centre de recherche en organogénèse expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec Research Center, Quebec, Canada.,Urology Division, Department of Surgery, Laval University, Quebec, Canada
| | - Frédéric Pouliot
- Urology Division, Department of Surgery, Laval University, Quebec, Canada. .,Laboratoire d'Urologie-Oncologie Expérimentale, Cancer Axis, CHU de Québec Research Center, Quebec, Canada
| |
Collapse
|
44
|
Lee SW, Kwak HS, Kang MH, Park YY, Jeong GS. Fibroblast-associated tumour microenvironment induces vascular structure-networked tumouroid. Sci Rep 2018; 8:2365. [PMID: 29403007 PMCID: PMC5799156 DOI: 10.1038/s41598-018-20886-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/24/2018] [Indexed: 01/13/2023] Open
Abstract
In vitro three-dimensional (3D) tumour models mimic natural cancer tissue in vivo, bridging the gap between conventional 2D in vitro testing and animal models. Stromal and cancer tissues with extracellular matrix (ECM) can provide a tumour microenvironment (TME) with cell-to-cell and cell-to-ECM interactions. These interactions induce the exchange of biophysical factors, contributing to the progression, metastasis, and drug resistance of cancer. Here, we describe a 3D in vitro lung cancer model cultured in a microfluidic channel that is able to confirm the role and function of various stromal cells in tumourigenesis, thereby representing an in vivo-like TME. We founded that biophysical factors contribute to the role of fibroblast cells in tumour formation, especially, producing a nascent vessel-like tubular structure, resulting in the formation of vascularized tumour tissue. Fibroblast cells altered the gene expression of the cancer cells to enhance metastasis, survival, and angiogenesis. The device could be used for developing and screening anti-cancer drugs through the formation of the same multicellular tumour spheroids under TME interactions. We believe this microfluidic system provides interaction of TME for cancer research by culturing stromal tissue.
Collapse
Affiliation(s)
- Sang Woo Lee
- Biomedical Engineering Research Center, Asan Medical Center, Seoul, Korea.,Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Hyeong Seob Kwak
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Myoung-Hee Kang
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Yun-Yong Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Korea
| | - Gi Seok Jeong
- Biomedical Engineering Research Center, Asan Medical Center, Seoul, Korea. .,Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea.
| |
Collapse
|
45
|
Lu M, Xu X, Xi B, Dai Q, Li C, Su L, Zhou X, Tang M, Yao Y, Yang J. Molecular Network-Based Identification of Competing Endogenous RNAs in Thyroid Carcinoma. Genes (Basel) 2018; 9:E44. [PMID: 29351231 PMCID: PMC5793195 DOI: 10.3390/genes9010044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 12/14/2022] Open
Abstract
RNAs may act as competing endogenous RNAs (ceRNAs), a critical mechanism in determining gene expression regulations in many cancers. However, the roles of ceRNAs in thyroid carcinoma remains elusive. In this study, we have developed a novel pipeline called Molecular Network-based Identification of ceRNA (MNIceRNA) to identify ceRNAs in thyroid carcinoma. MNIceRNA first constructs micro RNA (miRNA)-messenger RNA (mRNA)long non-coding RNA (lncRNA) networks from miRcode database and weighted correlation network analysis (WGCNA), based on which to identify key drivers of differentially expressed RNAs between normal and tumor samples. It then infers ceRNAs of the identified key drivers using the long non-coding competing endogenous database (lnCeDB). We applied the pipeline into The Cancer Genome Atlas (TCGA) thyroid carcinoma data. As a result, 598 lncRNAs, 1025 mRNAs, and 90 microRNA (miRNAs) were inferred to be differentially expressed between normal and thyroid cancer samples. We then obtained eight key driver miRNAs, among which hsa-mir-221 and hsa-mir-222 were key driver RNAs identified by both miRNA-mRNA-lncRNA and WGCNA network. In addition, hsa-mir-375 was inferred to be significant for patients' survival with 34 associated ceRNAs, among which RUNX2, DUSP6 and SEMA3D are known oncogenes regulating cellular proliferation and differentiation in thyroid cancer. These ceRNAs are critical in revealing the secrets behind thyroid cancer progression and may serve as future therapeutic biomarkers.
Collapse
Affiliation(s)
- Minjia Lu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Xingyu Xu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Baohang Xi
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Qi Dai
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Chenli Li
- School of Mathematics and Statistics, Hainan Normal University, Haikou 570100, China.
| | - Li Su
- School of Mathematics and Statistics, Hainan Normal University, Haikou 570100, China.
| | - Xiaonan Zhou
- Institute of Basic Medical Sciences, Wannan Medical College, Hefei 241000, China.
| | - Min Tang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA.
| | - Yuhua Yao
- School of Mathematics and Statistics, Hainan Normal University, Haikou 570100, China.
| | - Jialiang Yang
- School of Mathematics and Statistics, Hainan Normal University, Haikou 570100, China.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA.
| |
Collapse
|
46
|
Bhome R, Goh RW, Bullock MD, Pillar N, Thirdborough SM, Mellone M, Mirnezami R, Galea D, Veselkov K, Gu Q, Underwood TJ, Primrose JN, De Wever O, Shomron N, Sayan AE, Mirnezami AH. Exosomal microRNAs derived from colorectal cancer-associated fibroblasts: role in driving cancer progression. Aging (Albany NY) 2017; 9:2666-2694. [PMID: 29283887 PMCID: PMC5764398 DOI: 10.18632/aging.101355] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/17/2017] [Indexed: 12/12/2022]
Abstract
Colorectal cancer is a global disease with increasing incidence. Mortality is largely attributed to metastatic spread and therefore, a mechanistic dissection of the signals which influence tumor progression is needed. Cancer stroma plays a critical role in tumor proliferation, invasion and chemoresistance. Here, we sought to identify and characterize exosomal microRNAs as mediators of stromal-tumor signaling. In vitro, we demonstrated that fibroblast exosomes are transferred to colorectal cancer cells, with a resultant increase in cellular microRNA levels, impacting proliferation and chemoresistance. To probe this further, exosomal microRNAs were profiled from paired patient-derived normal and cancer-associated fibroblasts, from an ongoing prospective biomarker study. An exosomal cancer-associated fibroblast signature consisting of microRNAs 329, 181a, 199b, 382, 215 and 21 was identified. Of these, miR-21 had highest abundance and was enriched in exosomes. Orthotopic xenografts established with miR-21-overexpressing fibroblasts and CRC cells led to increased liver metastases compared to those established with control fibroblasts. Our data provide a novel stromal exosome signature in colorectal cancer, which has potential for biomarker validation. Furthermore, we confirmed the importance of stromal miR-21 in colorectal cancer progression using an orthotopic model, and propose that exosomes are a vehicle for miR-21 transfer between stromal fibroblasts and cancer cells.
Collapse
Affiliation(s)
- Rahul Bhome
- Cancer Sciences, University of Southampton, Somers Building, Southampton General Hospital, Southampton SO16 6YD, UK
- University Surgical Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Rebecca W. Goh
- Cancer Sciences, University of Southampton, Somers Building, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Marc D. Bullock
- Cancer Sciences, University of Southampton, Somers Building, Southampton General Hospital, Southampton SO16 6YD, UK
- University Surgical Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Nir Pillar
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Stephen M. Thirdborough
- Cancer Sciences, University of Southampton, Somers Building, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Massimiliano Mellone
- Cancer Sciences, University of Southampton, Somers Building, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Reza Mirnezami
- Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, London SW7 2BB, UK
| | - Dieter Galea
- Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, London SW7 2BB, UK
| | - Kirill Veselkov
- Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, London SW7 2BB, UK
| | - Quan Gu
- University of Glasgow Centre for Virus Research, 117 Sir Michael Stoker Building, Glasgow G61 1QH, UK
| | - Timothy J. Underwood
- Cancer Sciences, University of Southampton, Somers Building, Southampton General Hospital, Southampton SO16 6YD, UK
- University Surgical Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - John N. Primrose
- University Surgical Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Olivier De Wever
- Department of Experimental Cancer Research, Ghent University, Radiotherapiepark, 9000 Ghent, Belgium
| | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - A. Emre Sayan
- Cancer Sciences, University of Southampton, Somers Building, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Alex H. Mirnezami
- Cancer Sciences, University of Southampton, Somers Building, Southampton General Hospital, Southampton SO16 6YD, UK
- University Surgical Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| |
Collapse
|
47
|
CR6-interacting factor 1 inhibits invasiveness by suppressing TGF-β-mediated epithelial-mesenchymal transition in hepatocellular carcinoma. Oncotarget 2017; 8:94759-94768. [PMID: 29212264 PMCID: PMC5706910 DOI: 10.18632/oncotarget.21925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 08/09/2017] [Indexed: 02/07/2023] Open
Abstract
CR6-interacting factor 1 (CRIF1) regulates cell cycle progression and the DNA damage response. Here, we show that CRIF1 expression is decreased in hepatocellular carcinoma (HCC) tissues and positively correlates with patients’ survival. In vitro, down-regulation of CRIF1 promotes HCC cell proliferation and invasiveness, while over-expression has the opposite effect. in vivo, CRIF1 knockdown enhances growth of HCC xenografts. Analysis of mRNA microarrays showed that CRIF1 knockdown activates genes involved in TGF-β RI/Smad2/3 signaling, leading to epithelial-mesenchymal transition (EMT) and increased matrix metalloproteinase-3 (MMP3) expression. However, cell invasion and EMT are abrogated in HCC cells treated with SB525334, a specific TGF-β RI inhibitor, which indicates the inhibitory effect of CRIF1 on HCC tumor growth is mediated by TGF-β signaling. These results demonstrate that CRIF1 benefits patient survival by inhibiting HCC cell invasiveness through suppression of TGF-β-mediated EMT and MMP3 expression. This suggests CRIF1 may serve as a novel target for inhibiting HCC metastasis.
Collapse
|
48
|
Shi J, Feng J, Xie J, Mei Z, Shi T, Wang S, Du Y, Yang G, Wu Y, Cheng X, Li S, Zhu L, Yang CS, Tu S, Jie Z. Targeted blockade of TGF-β and IL-6/JAK2/STAT3 pathways inhibits lung cancer growth promoted by bone marrow-derived myofibroblasts. Sci Rep 2017; 7:8660. [PMID: 28819126 PMCID: PMC5561133 DOI: 10.1038/s41598-017-09020-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/14/2017] [Indexed: 02/06/2023] Open
Abstract
To investigate the role of TGF-β and IL-6 in myofibroblasts (MFs) - lung cancer cell interactions, lung cancer cells (Lewis and CTM-167 cell lines) were stimulated by IL-6, MF-conditioned medium (MF-CM) or MFs, with or without TGF-β signaling inhibitor - SB431542 and/or JAK2/STAT3 inhibitor - JSI-124. MFs were stimulated by TGF-β, cancer cell-CM or cancer cells, with or without SB431542 and JSI-124. Cell proliferation, the levels of cytokines, expression of mRNA and protein were determined. Mice bearing xenograft tumors were intraperitoneally treated with SB431542 or JSI-124 and monitored for up to 45 days. In co-culture systems, MFs secreted high levels of IL-6, while cancer cells produced high levels of TGF-β. Recombinant IL-6 and MF-CM activated STAT3 and upregulated TGF-β in cancer cells. In contrast, cancer cell-CM or TGF-β stimulated MFs to produce IL-6. Blockade of JAK2/STAT3 and TGF-β signaling by specific inhibitors significantly inhibited cell proliferation in vitro and tumor growth in vivo of lung cancer cells. Our study demontrated that the TGF-β and IL-6/JAK2/STAT3 signaling pathways form a positive feedback signaling loop that mediated the interactions between MFs and lung cancer cells. Targeted inhibiton of this signaling loop could be a new approach for lung cancer prevention and therapy.
Collapse
Affiliation(s)
- Jindong Shi
- Department of Respiratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Jingjing Feng
- Department of Respiratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Juan Xie
- Department of Respiratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Zhoufang Mei
- Department of Respiratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Tianyun Shi
- Department of Respiratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Shengmei Wang
- Department of Respiratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Yong Du
- Department of Respiratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Gong Yang
- Department of Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Yougen Wu
- Department of Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Xiaojiao Cheng
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.,Department of Gastroenterology, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, 201821, China
| | - Shanqun Li
- Departments of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Liming Zhu
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Shuiping Tu
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China. .,Department of Gastroenterology, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, 201821, China.
| | - Zhijun Jie
- Department of Respiratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China.
| |
Collapse
|
49
|
Yeong J, Thike AA, Ikeda M, Lim JCT, Lee B, Nakamura S, Iqbal J, Tan PH. Caveolin-1 expression as a prognostic marker in triple negative breast cancers of Asian women. J Clin Pathol 2017; 71:161-167. [PMID: 28735300 DOI: 10.1136/jclinpath-2017-204495] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/15/2017] [Accepted: 06/16/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND Triple-negative breast cancers (TNBCs) are defined by their lack of oestrogen receptor, progesterone receptor and epidermal growth factor receptor 2. Although heterogeneous, the majority are aggressive and treatment options are limited. Caveolin acts as tumour suppressor or promoter depending on the cancer type. AIM In this study, we aimed to determine if the expression levels of the candidate biomarker caveolin-1 on stromal or tumour cells were associated with clinicopathological parameters and disease outcomes in TNBCs from an ethnically diverse cohort of Asian women. METHODS Tumour specimens from 699 women with TNBC were subjected to immunohistochemical analysis of the frequency and intensity of caveolin-1 expression in tumour and stromal cells. A subset of 141 tumour samples also underwent Nanostring measurement of CAV1 mRNA. Results were correlated with clinicopathological parameters and disease outcomes. RESULTS Expression of caveolin-1 in stromal cells was observed in 14.4% of TNBC cases. TNBCs of the basal-like phenotype (85% of samples) were significantly more likely to exhibit stromal cell caveolin-1 expression (p=0.028), as were those with a trabecular growth pattern (p=0.007). Lack of stromal caveolin-1 expression in both TNBCs and those with the basal-like phenotype was significantly associated with worse overall survival (p=0.009 and p=0.026, respectively): accordingly, increasing mRNA levels of CAV1 in TNBC samples predicted better overall survival. Caveolin-1 expression on TNBC tumour cells was not associated with clinical outcome. CONCLUSION Stromal, but not tumoural, caveolin-1 expression is significantly associated with survival in Asian women with TNBC.
Collapse
Affiliation(s)
- Joe Yeong
- Division of Pathology, Singapore General Hospital, Singapore.,Singapore Immunology Network (SIgN), Agency of Science, Technology and Research (A*STAR), Singapore
| | - Aye Aye Thike
- Division of Pathology, Singapore General Hospital, Singapore
| | - Murasaki Ikeda
- Division of Breast Surgical Oncology, Showa University School of Medicine, Tokyo, Japan
| | | | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency of Science, Technology and Research (A*STAR), Singapore
| | - Seigo Nakamura
- Division of Breast Surgical Oncology, Showa University School of Medicine, Tokyo, Japan
| | - Jabed Iqbal
- Division of Pathology, Singapore General Hospital, Singapore
| | - Puay Hoon Tan
- Division of Pathology, Singapore General Hospital, Singapore
| |
Collapse
|
50
|
Xi H, Shuai QG, Shao LL. Involvement of the TGFβ1/Smad2/MMP3 signaling pathway in SB431542-induced inhibition of cell invasion in multiple myeloma RPMI 8226 cells. Oncol Lett 2017; 14:541-546. [PMID: 28693203 PMCID: PMC5494695 DOI: 10.3892/ol.2017.6263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 01/19/2017] [Indexed: 01/17/2023] Open
Abstract
Multiple myeloma (MM) is a malignancy characterized by plasma cell hyperplasia. The majority of patients with MM suffer from mortality due to tumor recurrence and metastasis, which has become an emerging clinical problem. Transforming growth factor β1 (TGFβ1) has been implicated in tumor metastasis; however, its role in RPMI 8226 cells remains to be elucidated. In the present study, RPMI 8226 cells were treated with various concentrations of SB431542, a TGFβ1 inhibitor, for 12, 24 and 48 h. RPMI 8226 cells were transfected with lentiviral-TGFβ1 vectors to overexpress TGFβ1. Cell proliferation rate was subsequently determined by cell-counting kit-8 assay and cell invasion was assessed by Transwell assay. Expression of TGFβ1, SMAD family member 2 (Smad2) and matrix metallopeptidase 3 (MMP3) were analyzed by western blotting. The results demonstrated that cell proliferation and invasion of RPMI 8226 cells was significantly inhibited by SB431542 (P<0.05). SB431542 was able to significantly downregulate the expression of TGFβ1, phosphorylated (p)-Smad2 and MMP3; however, the overexpression of TGFβ1 significantly upregulated the expression of TGFβ1, p-Smad2 and MMP3. In conclusion, SB431542 reduced cell invasion in RPMI 8226 cells, and this effect may be mediated via the TGFβ1/Smad2/MMP3 signaling pathway.
Collapse
Affiliation(s)
- Huang Xi
- Department of Radiology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China.,Department of Hematology, Hechuan Hospital of The First Affiliated Hospital of Chongqing Medical University, Chongqing 401520, P.R. China
| | - Qi-Guo Shuai
- Department of Radiology, Chongqing Cancer Institute, Chongqing 400016, P.R. China
| | - Lin-Li Shao
- Department of Radiology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|