1
|
Wang R, Mao Y, Yu C, Rong Z, Wang R, Wang Y, Lv L, Gao Y, Wang Z, Zhang H. Research Progress of Natural Products with the Activity of Anti-nonalcoholic Steatohepatitis. Mini Rev Med Chem 2024; 24:1894-1929. [PMID: 38752645 DOI: 10.2174/0113895575306598240503054317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 10/16/2024]
Abstract
Nonalcoholic steatohepatitis (NASH), a multi-target disease, is becoming a global epidemic. Although several anti-NASH drug candidates are being evaluated in late-stage clinical trials, none have been approved by the FDA to date. Given the global prevalence of the disease, the lack of effective drugs, and the very limited therapeutic efficacy of most of the existing synthetic drugs focusing on a single target, there is an urgent need to continue to develop new therapeutic agents. In contrast, many natural products, including pure compounds and crude extracts, possess hepatoprotective activities. Usually, these natural components are characterized by multi-targeting and low side effects. Therefore, natural products are important resources for the development of new anti- NASH drugs. In this paper, we focus on reviewing the anti-NASH potential, structure, and some of the side effects of natural products based on structural classification. We hope this mini-review will help researchers design and develop new anti-NASH drugs, especially based on the structure of natural products.
Collapse
Affiliation(s)
- Rui Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuheng Mao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Chunping Yu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhenji Rong
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ruyue Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yixin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Linjin Lv
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yang Gao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhigang Wang
- Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hailong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
2
|
Saeedi F, Farkhondeh T, Roshanravan B, Amirabadizadeh A, Ashrafizadeh M, Samarghandian S. Curcumin and blood lipid levels: an updated systematic review and meta-analysis of randomised clinical trials. Arch Physiol Biochem 2022; 128:1493-1502. [PMID: 36264280 DOI: 10.1080/13813455.2020.1779309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The present study was designed to indicate the protective effects of curcumin on dyslipidemia. Main databases were searched to recognise randomised clinical trials evaluating the effect of curcumin on blood lipid profiles. The pooled odds ratio with a 95% confidence interval (CI) was used to evaluate the effect of curcumin on blood lipid parameters. HDL-C levels in the curcumin group were 0.04-fold lower than placebo (95% CI:-0.36-0.29; Z = 0.23; p = .82). LDL-C levels in the curcumin group reduced by 0.17 versus the placebo group (95% CI: -0.43-0.09; Z = 1.27; p = .2). TC levels in the curcumin group were 0.21 lower versus the placebo group (95% CI: -0.55-0.13; Z = 1.22; p = .22). TG level in the curcumin group were 0.05 lower versus the placebo (95% CI: -0.20-0.11; Z = 0.58; p = .56). This study suggests that curcumin may reduce blood lipid levels and can be used as a hypolipidemic agent.
Collapse
Affiliation(s)
- Farhad Saeedi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Babak Roshanravan
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | - Alireza Amirabadizadeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
3
|
Curcumin and Weight Loss: Does It Work? Int J Mol Sci 2022; 23:ijms23020639. [PMID: 35054828 PMCID: PMC8775659 DOI: 10.3390/ijms23020639] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
Obesity is a global health problem needing urgent research. Synthetic anti-obesity drugs show side effects and variable effectiveness. Thus, there is a tendency to use natural compounds for the management of obesity. There is a considerable body of knowledge, supported by rigorous experimental data, that natural polyphenols, including curcumin, can be an effective and safer alternative for managing obesity. Curcumin is a is an important compound present in Curcuma longa L. rhizome. It is a lipophilic molecule that rapidly permeates cell membrane. Curcumin has been used as a pharmacological traditional medicinal agent in Ayurvedic medicine for ∼6000 years. This plant metabolite doubtless effectiveness has been reported through increasingly detailed in vitro, in vivo and clinical trials. Regarding its biological effects, multiple health-promoting, disease-preventing and even treatment attributes have been remarkably highlighted. This review documents the status of research on anti-obesity mechanisms and evaluates the effectiveness of curcumin for management of obesity. It summarizes different mechanisms of anti-obesity action, associated with the enzymes, energy expenditure, adipocyte differentiation, lipid metabolism, gut microbiota and anti-inflammatory potential of curcumin. However, there is still a need for systematic and targeted clinical studies before curcumin can be used as the mainstream therapy for managing obesity.
Collapse
|
4
|
Stadler JT, Marsche G. Dietary Strategies to Improve Cardiovascular Health: Focus on Increasing High-Density Lipoprotein Functionality. Front Nutr 2021; 8:761170. [PMID: 34881279 PMCID: PMC8646038 DOI: 10.3389/fnut.2021.761170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease is one of the leading causes of morbidity and mortality worldwide, with increasing incidence. A cornerstone of cardiovascular disease prevention is lifestyle modification through dietary changes to influence various risk factors such as obesity, hypertension and diabetes. The effects of diet on cardiovascular health are complex. Some dietary components and metabolites directly affect the composition and structure of high-density lipoproteins (HDL) and increase anti-inflammatory and vasoprotective properties. HDLs are composed of distinct subpopulations of particles of varying size and composition that have several dynamic and context-dependent functions. The identification of potential dietary components that improve HDL functionality is currently an important research goal. One of the best-studied diets for cardiovascular health is the Mediterranean diet, consisting of fish, olive oil, fruits, vegetables, whole grains, legumes/nuts, and moderate consumption of alcohol, most commonly red wine. The Mediterranean diet, especially when supplemented with extra virgin olive oil rich in phenolic compounds, has been shown to markedly improve metrics of HDL functionality and reduce the burden, or even prevent the development of cardiovascular disease. Particularly, the phenolic compounds of extra virgin olive oil seem to exert the significant positive effects on HDL function. Moreover, supplementation of anthocyanins as well as antioxidants such as lycopene or the omega-3 fatty acid eicosapentaenoic acid improve parameters of HDL function. In this review, we aim to highlight recent discoveries on beneficial dietary patterns as well as nutritional components and their effects on cardiovascular health, focusing on HDL function.
Collapse
Affiliation(s)
- Julia T. Stadler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
5
|
Tan C, Zhou L, Wen W, Xiao N. Curcumin promotes cholesterol efflux by regulating ABCA1 expression through miR-125a-5p/SIRT6 axis in THP-1 macrophage to prevent atherosclerosis. J Toxicol Sci 2021; 46:209-222. [PMID: 33952798 DOI: 10.2131/jts.46.209] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
OBJECTIVE To seek out the effect of curcumin on cholesterol efflux in THP-1 macrophages and clarify its specific mechanism. METHODS THP-1 macrophages were cultured with curcumin at different concentrations, followed by detection of the toxicity of curcumin to cells utilizing CCK-8 assay. Following culturing with serum-free ox-LDL, THP-1 macrophages were transfected with mi-miR-125a-5p, or in-miR-125a-5p, or pcDNA3.1-SIRT6, or si-SIRT6 for 24 hr, prior to treatment with curcumin at different concentrations. Oil red O staining was applied to examine the formation rate of foam cells, the kits were used for measuring intracellular lipid content of THP-1 macrophages, and the fluorescence detection kit for observing the cholesterol efflux rate. The expressions of miR-125a-5p, SIRT6, and ABCA1 were assayed by qRT-PCR and Western blot. ELISA was adopted to assess the contents of TNF-α, IL-6, and MCP-1. The interaction between miR-125a-5p and SIRT6 was evaluated by dual-luciferase reporter gene assay. RESULTS The optimal dosage of curcumin could reduce foam cell formation and intracellular lipid content, and promote cholesterol efflux in THP-1 macrophages. Meanwhile, curcumin markedly suppressed the expression of miR-125a-5p and upregulated the expression of SIRT6. MiR-125a-5p negatively targeted SIRT6. Overexpression of SIRT6 partially reversed the inhibition role of miR-125a-5p mimic in the biological function of curcumin. Silencing of SIRT6 could partially reverse the effect of the miR-125a-5p inhibitor on the biological function of curcumin. CONCLUSION urcumin could promote cholesterol efflux of THP-1 macrophages through miR-125a-5p/SIRT6 axis and regulate the expression of ABCA1.
Collapse
Affiliation(s)
- Chao Tan
- Department of Internal Medicine, the First Affiliated Hospital of Hunan University of Chinese Medicine, China.,The Domestic First-class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, China.,Inherit Workroom of Medical Master Professor Jibo Xiong's Experiences, China
| | - Lan Zhou
- Graduate School of Hunan University of Chinese Medicine, China
| | - Weinong Wen
- Inherit Workroom of Medical Master Professor Jibo Xiong's Experiences, China
| | - Nan Xiao
- Graduate School of Hunan University of Chinese Medicine, China
| |
Collapse
|
6
|
Mai CT, Zheng DC, Li XZ, Zhou H, Xie Y. Liver X receptors conserve the therapeutic target potential for the treatment of rheumatoid arthritis. Pharmacol Res 2021; 170:105747. [PMID: 34186192 DOI: 10.1016/j.phrs.2021.105747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 01/03/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic multi-system autoimmune disease with extremely complex pathogenesis. Significantly altered lipid paradox related to the inflammatory burden is reported in RA patients, inducing 50% higher cardiovascular risks. Recent studies have also demonstrated that lipid metabolism can regulate many functions of immune cells in which metabolic pathways have altered. The nuclear liver X receptors (LXRs), including LXRα and LXRβ, play a central role in regulating lipid homeostasis and inflammatory responses. Undoubtedly, LXRs have been considered as an attractive therapeutic target for the treatment of RA. However, there are some contradictory effects of LXRs agonists observed in previous animal studies where both pro-inflammatory role and anti-inflammatory role were revealed for LXRs activation in RA. Therefore, in addition to updating the knowledge of LXRs as the prominent regulators of lipid homeostasis, the purpose of this review is to summarize the effects of LXRs agonists in RA-associated immune cells, to explore the underlying reasons for the contradictory therapeutic effects of LXRs agonists observed in RA animal models, and to discuss future strategy for the treatment of RA with LXRs modulators.
Collapse
Affiliation(s)
- Chu-Tian Mai
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau; Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - De-Chong Zheng
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau; Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Xin-Zhi Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau; Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Ying Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau.
| |
Collapse
|
7
|
Fan Q, Xu F, Liang B, Zou X. The Anti-Obesity Effect of Traditional Chinese Medicine on Lipid Metabolism. Front Pharmacol 2021; 12:696603. [PMID: 34234682 PMCID: PMC8255923 DOI: 10.3389/fphar.2021.696603] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/01/2021] [Indexed: 01/01/2023] Open
Abstract
With the improvement of living conditions and the popularity of unhealthy eating and living habits, obesity is becoming a global epidemic. Obesity is now recognized as a disease that not only increases the risk of metabolic diseases such as type 2 diabetes (T2D), non-alcoholic fatty liver disease (NAFLD), cardiovascular disease (CVD), and cancer but also negatively affects longevity and the quality of life. The traditional Chinese medicines (TCMs) are highly enriched in bioactive compounds and have been used for the treatment of obesity and obesity-related metabolic diseases over a long period of time. In this review, we selected the most commonly used anti-obesity or anti-hyperlipidemia TCMs and, where known, their major bioactive compounds. We then summarized their multi-target molecular mechanisms, specifically focusing on lipid metabolism, including the modulation of lipid absorption, reduction of lipid synthesis, and increase of lipid decomposition and lipid transportation, as well as the regulation of appetite. This review produces a current and comprehensive understanding of integrative and systematic mechanisms for the use of TCMs for anti-obesity. We also advocate taking advantage of TCMs as another therapy for interventions on obesity-related diseases, as well as stressing the fact that more is needed to be done, scientifically, to determine the active compounds and modes of action of the TCMs.
Collapse
Affiliation(s)
- Qijing Fan
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Furong Xu
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Bin Liang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Xiaoju Zou
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
8
|
Soltani S, Boozari M, Cicero AFG, Jamialahmadi T, Sahebkar A. Effects of phytochemicals on macrophage cholesterol efflux capacity: Impact on atherosclerosis. Phytother Res 2021; 35:2854-2878. [PMID: 33464676 DOI: 10.1002/ptr.6991] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/19/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022]
Abstract
High-density lipoprotein cholesterol (HDL) is the major promoter of reverse cholesterol transport and efflux of excess cellular cholesterol. The functions of HDL, such as cholesterol efflux, are associated with cardiovascular disease rather than HDL levels. We have reviewed the evidence base on the major classes of phytochemicals, including polyphenols, alkaloids, carotenoids, phytosterols, and fatty acids, and their effects on macrophage cholesterol efflux and its major pathways. Phytochemicals show the potential to improve the efficiency of each of these pathways. The findings are mainly in preclinical studies, and more clinical research is warranted in this area to develop novel clinical applications.
Collapse
Affiliation(s)
- Saba Soltani
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Motahareh Boozari
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arrigo F G Cicero
- Hypertension and Cardiovascular Risk Factors Research Center, Medical and Surgical Sciences Department, University of Bologna, Bologna, Italy
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran.,Department of Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Halal Research Center of IRI, FDA, Tehran, Iran.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| |
Collapse
|
9
|
Intravenous Curcumin Mitigates Atherosclerosis Progression in Cholesterol-Fed Rabbits. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:45-54. [PMID: 33861436 DOI: 10.1007/978-3-030-64872-5_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Orally administered curcumin has been found to have a moderate therapeutic effect on dyslipidemia and atherosclerosis. The present study was conducted to determine lipid-modulating and antiatherosclerosis effects of injectable curcumin in the rabbit model of atherosclerosis induced by a high cholesterol diet (HCD). New Zealand white male rabbits were fed on a normal chow enriched with 0.5% (w/w) cholesterol for 8 weeks. Atherosclerotic rabbits were randomly divided into three groups, including a control group receiving intravenous (IV) injection of the saline buffer, two treatment groups receiving IV administration of the injectable curcumin at low (1 mg/kg/week) and high (10 mg/kg/week) over 4 weeks. Plasma lipid parameters, including low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), and total cholesterol (TC) were measured. Aortic arch atherosclerotic lesions were assessed using hematoxylin and eosin (H&E) staining. The low dose of curcumin significantly reduced plasma levels of TC, LDL-C, and TG by -14.19 ± 5.19%, -6.22 ± 1.77%, and - 29.84 ± 10.14%, respectively, and increased HDL-C by 14.05 ± 6.39% (p < 0.05). High dose of curcumin exerted greater lipid-modifying effects, in which plasma levels of TC, LDL-C, and TG were significantly (p < 0.05) decreased by -56.59 ± 10.22%, -44.36 ± 3.24%, and - 25.92 ± 5.57%, respectively, and HDL-C was significantly increased by 36.24 ± 12.5%. H&E staining showed that the lesion severity was lowered significantly in the high dose (p = 0.03) but not significantly (p > 0.05) in the low-dose curcumin groups, compared to control rabbits. The median (interquartile range) of plaque grades in the high dose and low dose, and control groups was found to be 2 [2-3], 3 [2-3], and 4 [3-4], respectively. The injectable curcumin could significantly improve dyslipidemia and alleviate atherosclerotic lesion in HCD-induced atherosclerotic rabbits.
Collapse
|
10
|
Analysis of Low Molecular Weight Substances and Related Processes Influencing Cellular Cholesterol Efflux. Pharmaceut Med 2020; 33:465-498. [PMID: 31933239 PMCID: PMC7101889 DOI: 10.1007/s40290-019-00308-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cholesterol efflux is the key process protecting the vascular system from the development of atherosclerotic lesions. Various extracellular and intracellular events affect the ability of the cell to efflux excess cholesterol. To explore the possible pathways and processes that promote or inhibit cholesterol efflux, we applied a combined cheminformatic and bioinformatic approach. We performed a comprehensive analysis of published data on the various substances influencing cholesterol efflux and found 153 low molecular weight substances that are included in the Chemical Entities of Biological Interest (ChEBI) database. Pathway enrichment was performed for substances identified within the Reactome database, and 45 substances were selected in 93 significant pathways. The most common pathways included the energy-dependent processes related to active cholesterol transport from the cell, lipoprotein metabolism and lipid transport, and signaling pathways. The activators and inhibitors of cholesterol efflux were non-uniformly distributed among the different pathways: the substances influencing ‘biological oxidations’ activate cholesterol efflux and the substances influencing ‘Signaling by GPCR and PTK6’ inhibit efflux. This analysis may be used in the search and design of efflux effectors for therapies targeting structural and functional high-density lipoprotein deficiency.
Collapse
|
11
|
Zhong Y, Liu C, Feng J, Li JF, Fan ZC. Curcumin affects ox-LDL-induced IL-6, TNF-α, MCP-1 secretion and cholesterol efflux in THP-1 cells by suppressing the TLR4/NF-κB/miR33a signaling pathway. Exp Ther Med 2020; 20:1856-1870. [PMID: 32782494 PMCID: PMC7401289 DOI: 10.3892/etm.2020.8915] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 02/26/2020] [Indexed: 12/21/2022] Open
Abstract
The aim of the present study was to study the molecular mechanism of how curcumin decreases the formation of ox-LDL induced human monocyte macrophage foam cells, promotes the efflux of cholesterol and reduces the secretion of inflammatory cytokines. In vitro cultured THP-1 cells were induced to become macrophages using phorbol-12-myristate-13-acetate. The cells were then pre-treated with curcumin before inducing the foam cell model by addition of oxidized low-density lipoprotein (ox-LDL). Western blot assays were used to detect expression levels of toll-like receptor (TLR)4, nuclear factor κB (NF-κB), NF-κB inhibitor α (IκBα), phosphorylated-IκBα and ATP binding cassette transporter (ABC)A1. Reverse transcription-quantitative PCR was employed to examine mRNA levels of TLR4, microRNA (miR)33a and ABCA1. ELISAs were used to detect inflammatory factors, including tumor necrosis factor (TNF)-α, monocyte chemotactic protein (MCP)-1 and interleukin (IL)-6. ox-LDL successfully induced the foam cell model, promoted phosphorylation of IκBα, promoted nuclear translocation of NF-κB, promoted the expression of TLR4 and miR33a, and promoted the secretion of TNF-α, MCP-1 and Il-6. Additionally, ox-LDL reduced the expression of ABCA1 and cholesterol efflux. However, pretreatment with curcumin increased the expression of ABCA1 and cholesterol efflux and suppressed secretion of TNF-α, MCP-1 and Il-6. TLR4 antibodies, the NF-κB blocker, PDTC, and the miR33a inhibitor also reduced the abnormal transformations induced by ox-LDL. Curcumin promoted cholesterol efflux by suppressing the TLR4/NF-κB/miR33a signaling pathway, and reduced the formation of foam cells and the secretion of inflammatory factors.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Cardiology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Cheng Liu
- Department of Cardiovascular Ultrasound and Cardiac Function, Sichuan Provincial People's Hospital, Chengdu, Sichuan 610000, P.R. China.,Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Chengdu, Sichuan 610000, P.R. China
| | - Jian Feng
- Department of Cardiology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jia-Fu Li
- Department of Cardiology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Zhong-Cai Fan
- Department of Cardiology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
12
|
Li Z, Zhang Z, Ke L, Sun Y, Li W, Feng X, Zhu W, Chen S. Resveratrol promotes white adipocytes browning and improves metabolic disorders in Sirt1-dependent manner in mice. FASEB J 2020; 34:4527-4539. [PMID: 32003501 DOI: 10.1096/fj.201902222r] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 01/09/2023]
Abstract
Obesity has become an epidemic concern in modern society. The chronic obesity is associated with metabolic disorders, such as hyperglycemia, hyperlipidemia, fatty liver, and cadiovascular disease, which cause high risk for mortality. The novel potential strategy to overcome obesity is to "burn out" the extra fat via "browning" of the white adipose tissues. The phytochemical resveratrol (Res) has attracted substantial attention due to its powerful amelioratory effects in metabolic diseases. However, how Res regulates the browning of adipose tissues remains largely elusive. Our data show that the NAD+ -dependent deacetylase silent information regulator 1 (Sirt1) mediates Res-induced browning and fat reduction of adipocytes, as well as other Res-improved metabolic phenotypes including hyperglycemina and hyperlipidemia in mice. Interestingly, we found that the major metabolites of Res in vivo (Res-3-O-glucuronide, Res-4'-O-glucuronide, and Res-3-O-sulfate) were much less potent in promoting browning gene expressions and reducing fat content in comparison to Res itself in mouse and human adipocytes in vitro, suggesting the importance and necessarity to enhance the bioavailability of Res in vivo in consideration of therapeutic application. Taken together, our findings clarify the beneficial effects of Res on excess fat utilization via promotion of browning in a Sirt1-dependent manner, suggesting the potential therapeutic application of Res in the treatment of obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Zilun Li
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zili Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Liangru Ke
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, P.R. China
| | - Yanshuang Sun
- School of Public Health, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Wenxue Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou, P.R. China
| | - Xiang Feng
- School of Public Health, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Wei Zhu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, P.R. China
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| |
Collapse
|
13
|
Den Hartogh DJ, Gabriel A, Tsiani E. Antidiabetic Properties of Curcumin I: Evidence from In Vitro Studies. Nutrients 2020; 12:nu12010118. [PMID: 31906278 PMCID: PMC7019345 DOI: 10.3390/nu12010118] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a growing metabolic disease characterized by insulin resistance and hyperglycemia. Current preventative and treatment strategies for T2DM and insulin resistance lack in efficacy resulting in the need for new approaches to prevent and manage/treat the disease better. In recent years, epidemiological studies have suggested that diets rich in fruits and vegetables have beneficial health effects including protection against insulin resistance and T2DM. Curcumin, a polyphenol found in turmeric, and curcuminoids have been reported to have antioxidant, anti-inflammatory, hepatoprotective, nephroprotective, neuroprotective, immunomodulatory and antidiabetic properties. The current review (I of II) summarizes the existing in vitro studies examining the antidiabetic effects of curcumin, while a second (II of II) review summarizes evidence from existing in vivo animal studies and clinical trials focusing on curcumin’s antidiabetic properties.
Collapse
Affiliation(s)
- Danja J. Den Hartogh
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (D.J.D.H.); (A.G.)
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Alessandra Gabriel
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (D.J.D.H.); (A.G.)
| | - Evangelia Tsiani
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (D.J.D.H.); (A.G.)
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
- Correspondence: or ; Tel.: +1-905-688-5550 (ext. 3881)
| |
Collapse
|
14
|
Naeini MB, Momtazi AA, Jaafari MR, Johnston TP, Barreto G, Banach M, Sahebkar A. Antitumor effects of curcumin: A lipid perspective. J Cell Physiol 2019; 234:14743-14758. [PMID: 30741424 DOI: 10.1002/jcp.28262] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/06/2019] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Lipid metabolism plays an important role in cancer development due to the necessities of rapidly dividing cells to increase structural, energetic, and biosynthetic demands for cell proliferation. Basically, obesity, type 2 diabetes, and other related diseases, and cancer are associated with a common hyperactivated "lipogenic state." Recent evidence suggests that metabolic reprogramming and overproduction of enzymes involved in the synthesis of fatty acids are the new hallmarks of cancer, which occur in an early phase of tumorigenesis. As the first evidence to confirm dysregulated lipid metabolism in cancer cells, the overexpression of fatty acid synthase (FAS) was observed in breast cancer patients and demonstrated the role of FAS in cancer. Other enzymes of fatty acid synthesis have recently been found to be dysregulated in cancer, including ATP-dependent citrate lyase and acetyl-CoA carboxylase, which further underscores the connection of these metabolic pathways with cancer cell survival and proliferation. The degree of overexpression of lipogenic enzymes and elevated lipid utilization in tumors is closely associated with cancer progression. The question that arises is whether the progression of cancer can be suppressed, or at least decelerated, by modulating gene expression related to fatty acid metabolism. Curcumin, due to its effects on the regulation of lipogenic enzymes, might be able to suppress, or even cause regression of tumor growth. This review discusses recent evidence concerning the important role of lipogenic enzymes in the metabolism of cancer cells and whether the inhibitory effects of curcumin on lipogenic enzymes is therapeutically efficacious.
Collapse
Affiliation(s)
- Mehri Bemani Naeini
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Momtazi
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri
| | - George Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Maciej Banach
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
He J, Hong B, Bian M, Jin H, Chen J, Shao J, Zhang F, Zheng S. Docosahexaenoic acid inhibits hepatic stellate cell activation to attenuate liver fibrosis in a PPARγ-dependent manner. Int Immunopharmacol 2019; 75:105816. [PMID: 31437794 DOI: 10.1016/j.intimp.2019.105816] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/16/2019] [Accepted: 08/09/2019] [Indexed: 12/13/2022]
Abstract
Docosahexaenoic acid (DHA) has been found to have a hepatoprotective effect. In this study, we investigated the role of peroxisome proliferator-activated receptor γ (PPARγ) in DHA regulation of liver fibrosis. DHA was found to inhibit hepatic stellate cell (HSC)-LX2 cell viability and downregulate marker proteins of HSC activation. Furthermore, DHA induced cell cycle arrest at G1 phase in HSCs. Antagonism of PPARγ by GW9662 abrogated the effects of DHA on HSCs. Computer-aided molecular docking predicted that DHA bound to PPARγ via hydrogen bonding with residues Ser289, His323, Tyr473, and His499. We overexpressed Ser289 mutant PPARγ in HSC-LX2 cells and investigated fibrotic marker modulation, and found that DHA effects on HSCs were diminished. Thus, bonding with the Ser289 residue might be indispensable for DHA to activate PPARγ to exert its inhibiting effect on activated HSCs. Last, data from a CCl4-treated mouse model confirmed that PPARγ activation was required for DHA to attenuate liver fibrosis.
Collapse
Affiliation(s)
- Jianlin He
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China; Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Bihong Hong
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China
| | - Mianli Bian
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Huanhuan Jin
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu 241000, PR China
| | - Junde Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China
| | - Jiangjuan Shao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Feng Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029, PR China.
| | - Shizhong Zheng
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029, PR China.
| |
Collapse
|
16
|
Ni M, Zhang B, Zhao J, Feng Q, Peng J, Hu Y, Zhao Y. Biological mechanisms and related natural modulators of liver X receptor in nonalcoholic fatty liver disease. Biomed Pharmacother 2019; 113:108778. [PMID: 30897538 DOI: 10.1016/j.biopha.2019.108778] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is becoming a worldwide health problem, but no approved medical treatment exists so far. Nuclear receptors are one of the drug targets for nonalcoholic steatohepatitis (NASH). Among them, liver X receptor (LXR) has been studied in recent years in tumors, metabolic diseases and inflammatory diseases, but its physiological and pharmacological effects in the treatment of NASH are controversial. Activation of LXR has the potential to modulate cholesterol homeostasis, induce anti-inflammatory effects and increase insulin sensitivity, but liver lipid deposition and hypertriglyceridemia are also increased. Inhibition of liver LXR transcriptional activity in the context of NAFLD can effectively alleviate hepatic steatosis, inflammation, and fibrosis but elevates the risk of potential cardiovascular disease. The contradictory pharmacodynamic effects of LXR in the treatment of NASH increase the difficulty of developing targeted drugs. Moreover, natural compounds play an important part in drug development, and in recent years, some natural compounds have been reported to treat NAFLD by acting on LXR or LXR pathways with fewer adverse reactions, presenting a promising therapeutic prospect. In this review, we discuss the mechanisms of LXR in NASH and summarize the natural products reported to modulate NAFLD via LXR or the LXR pathway, offering an alternative approach for LXR-related drug development in NAFLD.
Collapse
Affiliation(s)
- Mingzhu Ni
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Binbin Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianan Zhao
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qin Feng
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key laboratory of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinghua Peng
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key laboratory of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiyang Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key laboratory of Traditional Chinese Medicine, Shanghai 201203, China; E-Institute of Shanghai Municipal Education Commission, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yu Zhao
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key laboratory of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
17
|
Liu YW, An SB, Yang T, Xiao YJ, Wang L, Hu YH. Protection Effect of Curcumin for Macrophage-Involved Polyethylene Wear Particle-Induced Inflammatory Osteolysis by Increasing the Cholesterol Efflux. Med Sci Monit 2019; 25:10-20. [PMID: 30599093 PMCID: PMC6327781 DOI: 10.12659/msm.914197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Periprosthetic osteolysis, induced by wear particles and inflammation, is a common reason for failure of primary arthroplasty. Curcumin, a nature phenol from plants, has been reported to reduce the inflammation in macrophages. This study aimed to investigate the potential effect of curcumin on macrophage involved, wear particle-induced osteolysis and its mechanism. MATERIAL AND METHODS RAW264.7 macrophages were used to test the effects of polyethylene (PE) particles and curcumin on macrophage cholesterol efflux and phenotypic changes. A mouse model of PE particle-induced calvarial osteolysis was established to test the effects of curcumin in vivo. After 14 days of treatment, the bone quality of the affected areas was analyzed by micro-computed tomography (micro-CT) and histology, and the bone surrounding soft tissues were analyzed at the cellular and molecular levels. RESULTS We found that PE particles can stimulate osteoclastogenesis and produce an M1-like phenotype in macrophages in vitro. Curcumin enhanced the cholesterol efflux in macrophages, and maintained the M0-like phenotype under the influence of PE particles in vitro. Additionally, the cholesterol transmembrane regulators ABCA1, ABCG1, and CAV1 were enhanced by curcumin in vivo. We also found enhanced bone density, reduced osteoclastogenesis, and fewer inflammatory responses in the curcumin treated groups in our mouse osteolysis model. CONCLUSIONS Our study findings indicated that curcumin can inhibit macrophage involved osteolysis and inflammation via promoting cholesterol efflux. Maintaining the cholesterol efflux might be a potential strategy to prevent periprosthetic osteolysis after total joint arthroplasty surgery.
Collapse
Affiliation(s)
- Yu-Wei Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Sen-Bo An
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Tao Yang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Yue-Jun Xiao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Long Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Yi-He Hu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| |
Collapse
|
18
|
Kim Y, Clifton P. Curcumin, Cardiometabolic Health and Dementia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15102093. [PMID: 30250013 PMCID: PMC6210685 DOI: 10.3390/ijerph15102093] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/15/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023]
Abstract
Current research indicates curcumin [diferuloylmethane; a polyphenolic compound isolated from the rhizomes of the dietary spice turmeric (Curcuma longa)] exerts a beneficial effect on health which may be partly attributable to its anti-oxidative and anti-inflammatory properties. The aim of this review is to examine potential mechanisms of the actions of curcumin in both animal and human studies. Curcumin modulates relevant molecular target pathways to improve glucose and lipid metabolism, suppress inflammation, stimulate antioxidant enzymes, facilitate insulin signalling and reduce gut permeability. Curcumin also inhibits Aβ and tau accumulation in animal models and enhances mitochondria and synaptic function. In conclusion, in high-dose animal studies and in vitro, curcumin exerts a potential beneficial effect on cardiometabolic disease. However, human studies are relatively unconvincing. More intervention studies should be conducted with the new curcumin formulation with improved oral bioavailability.
Collapse
Affiliation(s)
- Yoona Kim
- Department of Food and Nutrition/Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea.
| | - Peter Clifton
- School of Pharmacy and Medical Sciences, University of South Australia, General Post Office Box 2471, Adelaide, SA 5001, Australia.
| |
Collapse
|
19
|
Wang K, Tan SL, Lu Q, Xu R, Cao J, Wu SQ, Wang YH, Zhao XK, Zhong ZH. Curcumin Suppresses microRNA-7641-Mediated Regulation of p16 Expression in Bladder Cancer. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1357-1368. [PMID: 30149755 DOI: 10.1142/s0192415x18500714] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bladder cancer has a high recurrence rate and requires adjuvant intravesical management after surgery. The use of traditional agents for bladder cancer therapy is constrained by their toxicity and limited efficacy. This emphasizes the need for the development of safer, more effective compounds such as instillation agents. Curcumin is the major component of turmeric, the powdered root of Curcuma longa, which is known for its anti-inflammatory, anti-oxidant and anticancer properties. First, a microarray profiling and qPCR analysis were conducted in the T24 and SV-HUC-1 cell lines. Then, we examined the potential tumorigenicity of miR-7641 in the T24 and SV-HUC-1 cell lines with or without curcumin. Western blot analysis showed that p16 is a target of miR-7641 in T24 cells. We found that, for the first time, curcumin directly downregulates a tumor-promoting microRNA (miRNA), miR-7641, in bladder cancer, which has tumor-promoting characteristics. Curcumin induces the downregulation of miR-7641 and subsequent upregulation of p16 which is a target of miR-7641 at the post-transcriptional level, which leads to the decreased invasion and increased apoptosis of bladder cancer cells. This is the first report to show a direct effect of curcumin on inducing changes in a miRNA suppressor with direct anticancer consequences in bladder cancer. Our study shows that curcumin may be a candidate agent for the clinical management of non-muscle-invasive bladder cancer.
Collapse
Affiliation(s)
- Kai Wang
- * Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P. R. China.,‡ Department of Pharmacy, Hunan Provincial People's Hospital, Changsha, Hunan 410011, P. R. China
| | - Sheng-Lan Tan
- * Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P. R. China
| | - Qiong Lu
- * Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P. R. China
| | - Ran Xu
- † Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P. R. China
| | - Jian Cao
- § Department of Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P. R. China
| | - Shui-Qing Wu
- † Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P. R. China
| | - Yin-Huai Wang
- † Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P. R. China
| | - Xiao-Kun Zhao
- † Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P. R. China
| | - Zhao-Hui Zhong
- † Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P. R. China
| |
Collapse
|
20
|
Perakakis N, Ghaly W, Peradze N, Boutari C, Batirel S, Douglas VP, Mantzoros CS. Research advances in metabolism 2017. Metabolism 2018; 83:280-289. [PMID: 29378200 DOI: 10.1016/j.metabol.2018.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 01/19/2018] [Indexed: 11/19/2022]
Affiliation(s)
- Nikolaos Perakakis
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Wael Ghaly
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Physiology, Fayoum University, Fayoum, Egypt
| | - Natia Peradze
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Chrysoula Boutari
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Saime Batirel
- Department of Medical Biochemistry, Faculty of Medicine, Marmara University, Istanbul 34854, Turkey; Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Istanbul 34854, Turkey
| | - Vivian Paraskevi Douglas
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
21
|
Ferguson JJA, Stojanovski E, MacDonald-Wicks L, Garg ML. Curcumin potentiates cholesterol-lowering effects of phytosterols in hypercholesterolaemic individuals. A randomised controlled trial. Metabolism 2018; 82:22-35. [PMID: 29291429 DOI: 10.1016/j.metabol.2017.12.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/24/2017] [Accepted: 12/08/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Dietary phytosterols (PS) are well-known hypocholesterolaemic agents. Curcumin elicits hypolipidaemic and anti-inflammatory effects in preclinical studies, however, consistent findings in humans are lacking. OBJECTIVE Concurrent PS and curcumin supplementation may exhibit enhanced hypocholesterolaemic and anti-inflammatory effects to optimise cardio-protection. The objective of this trial was to investigate the effects of dietary intervention with PS with or without curcumin on blood lipids (primary outcome) in hypercholesterolaemic individuals. METHODS A double-blinded, randomised, placebo-controlled, 2 × 2 factorial trial was conducted in hypercholesterolaemic individuals. Participants received either placebo (PL, no phytosterols or curcumin), phytosterols (PS, 2 g/d), curcumin (CC, 200 mg/d) or a combination of PS and curcumin (PS-CC, 2 g/d-200 mg/d respectively) for four weeks. Primary outcomes included fasting total cholesterol (TC), LDL-cholesterol, HDL-cholesterol, triglycerides (TG), TC-to-HDL-C ratio (TC:HDL-C). Secondary outcomes included anthropometrics and fasting blood glucose concentrations. RESULTS Seventy participants with a mean (±SEM) fasting TC concentration of 6.57 ± 0.13 mmol/L completed the study (PL, n = 18; PS, n = 17; CC, n = 18; PS-CC, n = 17). PS and PS-CC supplementation significantly lowered TC, LDL-cholesterol and TC:HDL-C post-intervention (p < 0.05). Reductions from baseline in the PS group were 4.8% and 8.1% for TC and LDL-cholesterol respectively (p < 0.05). CC exhibited non-significant reduction (2.3% and 2.6%) in TC and LDL-C respectively, however, the PS-CC resulted in a greater reduction in TC (11.0%) and LDL-cholesterol (14.4%) than either of the treatments alone (p < 0.0001). The reduction in the PS-CC treatment was significantly greater compared to those for CC (p < 0.05) or PL (p < 0.01) alone. Plasma HDL-cholesterol and TG concentrations remained unchanged across all groups. No adverse side effects were reported. CONCLUSIONS The addition of curcumin to phytosterol therapy provides a complementary cholesterol-lowering effect that is larger than phytosterol therapy alone. Implications of these findings include the development of a single functional food containing both the active ingredients for enhanced lipid-lowering and compliance in hypercholesterolaemic individuals. ANZCTR identifier: 1261500095650.
Collapse
Affiliation(s)
- Jessica J A Ferguson
- Nutraceuticals Research Program, School of Biomedical Sciences & Pharmacy, 305C Medical Science Building, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Elizabeth Stojanovski
- School of Mathematics and Physical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Lesley MacDonald-Wicks
- School of Health Sciences, Faculty of Health & Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Manohar L Garg
- Nutraceuticals Research Program, School of Biomedical Sciences & Pharmacy, 305C Medical Science Building, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
22
|
Sáenz J, Alba G, Reyes-Quiroz ME, Geniz I, Jiménez J, Sobrino F, Santa-María C. Curcumin enhances LXRα in an AMP-activated protein kinase-dependent manner in human macrophages. J Nutr Biochem 2018; 54:48-56. [DOI: 10.1016/j.jnutbio.2017.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/11/2017] [Accepted: 11/11/2017] [Indexed: 12/19/2022]
|
23
|
Wang F, Wu Y, Xie X, Sun J, Chen W. Essential role of nuclear receptors for the evaluation of the benefits of bioactive herbal extracts on liver function. Pharmacotherapy 2018; 99:798-809. [DOI: 10.1016/j.biopha.2018.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/29/2017] [Accepted: 01/03/2018] [Indexed: 02/07/2023]
|
24
|
Zhang F, Lu S, He J, Jin H, Wang F, Wu L, Shao J, Chen A, Zheng S. Ligand Activation of PPARγ by Ligustrazine Suppresses Pericyte Functions of Hepatic Stellate Cells via SMRT-Mediated Transrepression of HIF-1α. Am J Cancer Res 2018; 8:610-626. [PMID: 29344293 PMCID: PMC5771080 DOI: 10.7150/thno.22237] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 10/22/2017] [Indexed: 12/31/2022] Open
Abstract
Rationale: Hepatic stellate cells (HSCs) are liver-specific pericytes regulating vascular remodeling during hepatic fibrosis. Here, we investigated how ligustrazine affects HSC pericyte functions. Methods: Rat HSC-T6 and human HSC-LX2 cells were cultured, and multiple molecular experiments including real-time PCR, Western blot, flow cytometry, immunofluorescence, electrophoretic mobility shift assay and co-immunoprecipitation were used to elucidate the underlying mechanisms. Molecular simulation and site-directed mutagenesis were performed to uncover the target molecule of ligustrazine. Rats were intoxicated with CCl4 for evaluating ligustrazine's effects in vivo. Results: Ligustrazine inhibited angiogenic cytokine production, migration, adhesion and contraction in HSCs, and activated PPARγ. Selective PPARγ inhibitor GW9662 potently abrogated ligustrazine suppression of HSC pericyte functions. Additionally, HIF-1α inhibitor PX-478 repressed HSC pericyte functions, and ligustrazine inhibited the transcription of HIF-1α, which was diminished by GW9662. Moreover, ligustrazine downregulation of HIF-1α was rescued by knockdown of SMRT, and ligustrazine increased PPARγ physical interaction with SMRT, which was abolished by GW9662. These findings collectively indicated that activation of PPARγ by ligustrazine led to transrepression of HIF-1α via a SMRT-dependent mechanism. Furthermore, molecular docking evidence revealed that ligustrazine bound to PPARγ in a unique double-molecule manner via hydrogen bonding with the residues Ser289 and Ser342. Site-directed mutation of Ser289 and/or Ser342 resulted in the loss of ligustrazine transrepression of HIF-1α in HSCs, indicating that interactions with both the residues were indispensable for ligustrazine effects. Finally, ligustrazine improved hepatic injury, angiogenesis and vascular remodeling in CCl4-induced liver fibrosis in rats. Conclusions: We discovered a novel ligand activation pattern for PPARγ transrepression of the target gene with therapeutic implications in HSC pericyte biology and liver fibrosis.
Collapse
|
25
|
Aryaeian N, Sedehi SK, Arablou T. Polyphenols and their effects on diabetes management: A review. Med J Islam Repub Iran 2017; 31:134. [PMID: 29951434 PMCID: PMC6014790 DOI: 10.14196/mjiri.31.134] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Indexed: 12/15/2022] Open
Abstract
Background: Type 2 diabetes is a growing public health problem and is associated with increased morbidity and mortality. The worldwide prevalence of type 2 diabetes is rising. Polyphenols, such as flavonoids, phenolic acid, and stilbens, are a large and heterogeneous group of phytochemicals in plant-based foods. In this review, we aimed at assessing the studies on polyphenols and diabetes management. Methods: A literature search in the PubMed, EMBASE, Scopus, and ISI Web of Science databases was conducted to identify relevant studies published from 1986 to Jan 2017. Results: Several animal models and a limited number of human studies have revealed that polyphenols decrease hyperglycemia and improve acute insulin secretion and insulin sensitivity. The possible mechanisms include decrease in glucose absorption in the intestine, inhibition of carbohydrates digestion, stimulation of insulin secretion, modulation of glucose release from the liver, activation of insulin receptors and glucose uptake in insulin-sensitive tissues, modulation of intracellular signaling pathways, and gene expression. Conclusion: Growing evidence indicates that various dietary polyphenols may influence blood glucose at different levels and may also help control and prevent diabetes complication. However, we still need more clinical trials to determine the effects of polyphenols- rich foods, their effective dose, and mechanisms of their effects in managing diabetes.
Collapse
Affiliation(s)
- Naheed Aryaeian
- Research Center for Environmental Health Technology, Iran University of Medical Sciences and Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Khorshidi Sedehi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Tahereh Arablou
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Lipid lowering agents of natural origin: An account of some promising chemotypes. Eur J Med Chem 2017; 140:331-348. [DOI: 10.1016/j.ejmech.2017.09.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/07/2017] [Accepted: 09/12/2017] [Indexed: 12/22/2022]
|
27
|
Mucaji P, Atanasov AG, Bak A, Kozik V, Sieron K, Olsen M, Pan W, Liu Y, Hu S, Lan J, Haider N, Musiol R, Vanco J, Diederich M, Ji S, Zitko J, Wang D, Agbaba D, Nikolic K, Oljacic S, Vucicevic J, Jezova D, Tsantili-Kakoulidou A, Tsopelas F, Giaginis C, Kowalska T, Sajewicz M, Silberring J, Mielczarek P, Smoluch M, Jendrzejewska I, Polanski J, Jampilek J. The Forty-Sixth Euro Congress on Drug Synthesis and Analysis: Snapshot †. Molecules 2017; 22:molecules22111848. [PMID: 29143778 PMCID: PMC6150335 DOI: 10.3390/molecules22111848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/26/2017] [Accepted: 10/26/2017] [Indexed: 01/08/2023] Open
Abstract
The 46th EuroCongress on Drug Synthesis and Analysis (ECDSA-2017) was arranged within the celebration of the 65th Anniversary of the Faculty of Pharmacy at Comenius University in Bratislava, Slovakia from 5-8 September 2017 to get together specialists in medicinal chemistry, organic synthesis, pharmaceutical analysis, screening of bioactive compounds, pharmacology and drug formulations; promote the exchange of scientific results, methods and ideas; and encourage cooperation between researchers from all over the world. The topic of the conference, "Drug Synthesis and Analysis," meant that the symposium welcomed all pharmacists and/or researchers (chemists, analysts, biologists) and students interested in scientific work dealing with investigations of biologically active compounds as potential drugs. The authors of this manuscript were plenary speakers and other participants of the symposium and members of their research teams. The following summary highlights the major points/topics of the meeting.
Collapse
Affiliation(s)
- Pavel Mucaji
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, Odbojarov 10, 83232 Bratislava, Slovakia.
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A, 05-552 Jastrzebiec, Poland.
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Andrzej Bak
- Institute of Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland.
| | - Violetta Kozik
- Department of Synthesis Chemistry, Faculty of Mathematics, Physics and Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland.
| | - Karolina Sieron
- Department of Physical Medicine, Medical University of Silesia, Medykow 18, 40752 Katowice, Poland.
| | - Mark Olsen
- Department of Pharmaceutical Sciences, College of Pharmacy Glendale, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA.
| | - Weidong Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Baijin Road, Guiyang 550014, China.
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Baijin Road, Guiyang, 550014, China.
| | - Yazhou Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Baijin Road, Guiyang 550014, China.
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Baijin Road, Guiyang, 550014, China.
| | - Shengchao Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Baijin Road, Guiyang 550014, China.
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Baijin Road, Guiyang, 550014, China.
| | - Junjie Lan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Baijin Road, Guiyang 550014, China.
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Baijin Road, Guiyang, 550014, China.
| | - Norbert Haider
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria.
| | - Robert Musiol
- Institute of Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland.
| | - Jan Vanco
- Department of Inorganic Chemistry & Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, 17. listopadu 12, 77146 Olomouc, Czech Republic.
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Seoul 08826, Korea.
| | - Seungwon Ji
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Seoul 08826, Korea.
| | - Jan Zitko
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic.
| | - Dongdong Wang
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A, 05-552 Jastrzebiec, Poland.
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Danica Agbaba
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Slavica Oljacic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Jelica Vucicevic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Daniela Jezova
- Laboratory of Pharmacological Neuroendocrinology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia.
| | - Anna Tsantili-Kakoulidou
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece.
| | - Fotios Tsopelas
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 15780 Athens, Greece.
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Myrina, Lemnos, Greece.
| | - Teresa Kowalska
- Institute of Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland.
| | - Mieczyslaw Sajewicz
- Institute of Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland.
| | - Jerzy Silberring
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30059 Krakow, Poland.
| | - Przemyslaw Mielczarek
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30059 Krakow, Poland.
| | - Marek Smoluch
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30059 Krakow, Poland.
| | - Izabela Jendrzejewska
- Department of Crystallography, Faculty of Mathematics, Physics and Chemistry, University of Silesia, Bankowa 12, 40006 Katowice, Poland.
| | - Jaroslaw Polanski
- Institute of Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland.
| | - Josef Jampilek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojarov 10, 83232 Bratislava, Slovakia.
| |
Collapse
|
28
|
Gupta A, Singh VK, Kumar D, Yadav P, Kumar S, Beg M, Shankar K, Varshney S, Rajan S, Srivastava A, Choudhary R, Balaramnavar VM, Bhatta R, Tadigoppula N, Gaikwad AN. Curcumin-3,4-Dichloro Phenyl Pyrazole (CDPP) overcomes curcumin's low bioavailability, inhibits adipogenesis and ameliorates dyslipidemia by activating reverse cholesterol transport. Metabolism 2017; 73:109-124. [PMID: 28732567 DOI: 10.1016/j.metabol.2017.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/02/2017] [Accepted: 05/16/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND Adipocyte dysfunction, obesity and associated metabolic disorders are of prime healthcare concern worldwide. Among available medications, natural products and inspired molecules hold 40% space in clinically prescribed medicines. In queue, this study overcomes the drawback of curcumin's low bioavailability with potent anti-adipogenic and anti-dyslipidemic activity. METHODS To evaluate the role of CDPP on adipocyte differentiation, 3T3-L1 adipocytes were used as an in-vitro model. Flow cytometry was performed for cell cycle analysis. Syrian golden hamsters were used to study pharmacokinetic profile and dyslipidemic activity exhibited by CDPP. RESULT CDPP was found to be a potent inhibitor of adipogenesis in-vitro. It blocked mitotic clonal expansion by causing cell cycle arrest. CDPP showed marked improvement in gastrointestinal stability and bioavailability in-vivo as compared to curcumin. Administration of CDPP (100mg/kg) significantly improved HFD induced dyslipidemic profile in hamsters and activated reverse cholesterol transport machinery. CONCLUSION CDPP could be used as a potential drug candidate against adipogenesis and dyslipidemia with enhanced gastrointestinal stability and bioavailability.
Collapse
Affiliation(s)
- Abhishek Gupta
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Vinay Kumar Singh
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Durgesh Kumar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, New Delhi 110025, India
| | - Pragya Yadav
- Academy of Scientific and Innovative Research, New Delhi 110025, India; Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Santosh Kumar
- Division of Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Muheeb Beg
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Kripa Shankar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Salil Varshney
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, New Delhi 110025, India
| | - Sujith Rajan
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, New Delhi 110025, India
| | - Ankita Srivastava
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, New Delhi 110025, India
| | - Rakhi Choudhary
- Global Institute of Pharmaceutical Education and Research, Jaspur Road, Kashipur 244713, India
| | - Vishal M Balaramnavar
- Global Institute of Pharmaceutical Education and Research, Jaspur Road, Kashipur 244713, India
| | - Rabi Bhatta
- Division of Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Narender Tadigoppula
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| | - Anil Nilkanth Gaikwad
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
29
|
Panahi Y, Ahmadi Y, Teymouri M, Johnston TP, Sahebkar A. Curcumin as a potential candidate for treating hyperlipidemia: A review of cellular and metabolic mechanisms. J Cell Physiol 2017; 233:141-152. [DOI: 10.1002/jcp.25756] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Yunes Panahi
- Chemical Injuries Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Yasin Ahmadi
- Tabriz University of Medical SciencesStudent Research CommitteeTabrizIran
| | - Manouchehr Teymouri
- Biotechnology Research Center, Nanotechnology Research Center, School of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Thomas P. Johnston
- Division of Pharmaceutical Sciences, School of PharmacyUniversity of Missouri‐Kansas CityKansas CityMissouri
| | | |
Collapse
|
30
|
|
31
|
Maithilikarpagaselvi N, Sridhar MG, Swaminathan RP, Sripradha R. Preventive effect of curcumin on inflammation, oxidative stress and insulin resistance in high-fat fed obese rats. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2017; 13:137-43. [PMID: 26845728 DOI: 10.1515/jcim-2015-0070] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/15/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND The present study investigated the beneficial effects of curcumin on inflammation, oxidative stress and insulin resistance in high-fat fed male Wistar rats. METHODS Five-month-old male Wistar rats (n=20) were divided into two groups (10 rats in each group). Among the two groups, one group received 30 % high-fat diet (HFD) and another group received 30 % HFD with curcumin (200 mg/kg body weight). Food intake, body weight and biochemical parameters were measured at the beginning and at the end of the study. After 10 weeks, oxidative stress parameters in skeletal muscle and hepatic triacylglycerol (TAG) content were estimated. Histological examinations of the liver samples were performed at the end of the experiment. RESULTS High-fat feeding caused increase in body weight, liver and adipose tissue mass. Rats fed with HFD showed increased levels of fasting plasma glucose, insulin, Homeostasis Model Assessment for Insulin resistance (HOMA-IR), total cholesterol (TC), TAG, very low density lipoprotein cholesterol (VLDL-c) and decreased high-density lipoprotein cholesterol (HDL-c). There was also increase in the plasma inflammatory markers [tumor necrosis factor-α (TNF-α), C-reactive protein (CRP)] and skeletal muscle oxidative stress parameters [malondialdehyde (MDA), total oxidant status (TOS)] in these rats. In addition, high-fat feeding increased liver TAG content and caused fat accumulation in the liver. Treatment with curcumin significantly reduced body weight, relative organ weights (liver, adipose tissue), glucose, insulin and HOMA-IR. Curcumin supplementation decreased plasma levels of TC, TAG, VLDL-c, TNF-α and increased HDL-c. Administration of curcumin also reduced MDA, TOS in skeletal muscle, hepatic TAG content and liver fat deposition. CONCLUSIONS Curcumin supplementation improved HFD-induced dyslipidemia, oxidative stress, inflammation and insulin resistance.
Collapse
|
32
|
Carrasco-Pozo C, Tan KN, Reyes-Farias M, De La Jara N, Ngo ST, Garcia-Diaz DF, Llanos P, Cires MJ, Borges K. The deleterious effect of cholesterol and protection by quercetin on mitochondrial bioenergetics of pancreatic β-cells, glycemic control and inflammation: In vitro and in vivo studies. Redox Biol 2016; 9:229-243. [PMID: 27591402 PMCID: PMC5011185 DOI: 10.1016/j.redox.2016.08.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 07/22/2016] [Accepted: 08/18/2016] [Indexed: 12/16/2022] Open
Abstract
Studying rats fed high cholesterol diet and a pancreatic β-cell line (Min6), we aimed to determine the mechanisms by which quercetin protects against cholesterol-induced pancreatic β-cell dysfunction and impairments in glycemic control. Quercetin prevented the increase in total plasma cholesterol, but only partially prevented the high cholesterol diet-induced alterations in lipid profile. Quercetin prevented cholesterol-induced decreases in pancreatic ATP levels and mitochondrial bioenergetic dysfunction in Min6 cells, including decreases in mitochondrial membrane potentials and coupling efficiency in the mitochondrial respiration (basal and maximal oxygen consumption rate (OCR), ATP-linked OCR and reserve capacity). Quercetin protected against cholesterol-induced apoptosis of Min6 cells by inhibiting caspase-3 and -9 activation and cytochrome c release. Quercetin prevented the cholesterol-induced decrease in antioxidant defence enzymes from pancreas (cytosolic and mitochondrial homogenates) and Min6 cells and the cholesterol-induced increase of cellular and mitochondrial oxidative status and lipid peroxidation. Quercetin counteracted the cholesterol-induced activation of the NFκB pathway in the pancreas and Min6 cells, normalizing the expression of pro-inflammatory cytokines. Quercetin inhibited the cholesterol-induced decrease in sirtuin 1 expression in the pancreas and pancreatic β-cells. Taken together, the anti-apoptotic, antioxidant and anti-inflammatory properties of quercetin, and its ability to protect and improve mitochondrial bioenergetic function are likely to contribute to its protective action against cholesterol-induced pancreatic β-cell dysfunction, thereby preserving glucose-stimulated insulin secretion (GSIS) and glycemic control. Specifically, the improvement of ATP-linked OCR and the reserve capacity are important mechanisms for protection of quercetin. In addition, the inhibition of the NFκB pathway is an important mechanism for the protection of quercetin against cytokine mediated cholesterol-induced glycemic control impairment. In summary, our data highlight cellular, molecular and bioenergetic mechanisms underlying quercetin's protective effects on β-cells in vitro and in vivo, and provide a scientifically tested foundation upon which quercetin can be developed as a nutraceutical to preserve β-cell function. Quercetin prevents the impairment in glycemic control induced by cholesterol. Quercetin prevents cholesterol-impaired insulin secretion in pancreatic β-cells. Quercetin improves mitochondrial bioenergetics impaired by cholesterol. Quercetin prevents the decrease in SIRT1 expression induced by cholesterol. Quercetin prevents NF-kB activation and prevents cholesterol-induced inflammation.
Collapse
Affiliation(s)
- Catalina Carrasco-Pozo
- Department of Nutrition, Faculty of Medicine, University of Chile, P.O. Box 8380453, Santiago, Chile; School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Australia.
| | - Kah Ni Tan
- School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Australia
| | - Marjorie Reyes-Farias
- Department of Nutrition, Faculty of Medicine, University of Chile, P.O. Box 8380453, Santiago, Chile
| | - Nicole De La Jara
- Department of Nutrition, Faculty of Medicine, University of Chile, P.O. Box 8380453, Santiago, Chile
| | - Shyuan Thieu Ngo
- School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Australia; The University of Queensland Centre for Clinical Research, Brisbane QLD 4006, Australia
| | | | - Paola Llanos
- Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Maria Jose Cires
- Department of Nutrition, Faculty of Medicine, University of Chile, P.O. Box 8380453, Santiago, Chile
| | - Karin Borges
- School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
33
|
Septembre-Malaterre A, Le Sage F, Hatia S, Catan A, Janci L, Gonthier MP. Curcuma longa polyphenols improve insulin-mediated lipid accumulation and attenuate proinflammatory response of 3T3-L1 adipose cells during oxidative stress through regulation of key adipokines and antioxidant enzymes. Biofactors 2016; 42:418-30. [PMID: 27094023 DOI: 10.1002/biof.1288] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 03/13/2016] [Accepted: 03/15/2016] [Indexed: 12/31/2022]
Abstract
Plant polyphenols may exert beneficial action against obesity-related oxidative stress and inflammation which promote insulin resistance. This study evaluated the effect of polyphenols extracted from French Curcuma longa on 3T3-L1 adipose cells exposed to H2 O2 -mediated oxidative stress. We found that Curcuma longa extract exhibited high amounts of curcuminoids identified as curcumin, demethoxycurcumin, and bisdemethoxycurcumin, which exerted free radical-scavenging activities. Curcuma longa polyphenols improved insulin-mediated lipid accumulation and upregulated peroxisome proliferator-activated receptor-gamma gene expression and adiponectin secretion which decreased in H2 O2 -treated cells. Curcuminoids attenuated H2 O2 -enhanced production of pro-inflammatory molecules such as interleukin-6, tumor necrosis factor-alpha, monocyte chemoattractant protein-1, and nuclear factor κappa B. Moreover, they reduced intracellular levels of reactive oxygen species elevated by H2 O2 and modulated the expression of genes encoding superoxide dismutase and catalase antioxidant enzymes. Collectively, these findings highlight that Curcuma longa polyphenols protect adipose cells against oxidative stress and may improve obesity-related metabolic disorders. © 2016 BioFactors, 42(4):418-430, 2016.
Collapse
Affiliation(s)
- Axelle Septembre-Malaterre
- Inserm, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien, Plateforme CYROI 2 rue Maxime, 97490 Sainte-Clotilde, La Réunion, France
- Université de La Réunion, UFR Santé, 1 Allée des Aigues Marines, 97487 Saint-Denis, La Réunion, France
| | - Fanny Le Sage
- Inserm, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien, Plateforme CYROI 2 rue Maxime, 97490 Sainte-Clotilde, La Réunion, France
- Université de La Réunion, UFR Santé, 1 Allée des Aigues Marines, 97487 Saint-Denis, La Réunion, France
| | - Sarah Hatia
- Inserm, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien, Plateforme CYROI 2 rue Maxime, 97490 Sainte-Clotilde, La Réunion, France
- Université de La Réunion, UFR Santé, 1 Allée des Aigues Marines, 97487 Saint-Denis, La Réunion, France
| | - Aurélie Catan
- Inserm, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien, Plateforme CYROI 2 rue Maxime, 97490 Sainte-Clotilde, La Réunion, France
- Université de La Réunion, UFR Santé, 1 Allée des Aigues Marines, 97487 Saint-Denis, La Réunion, France
| | - Laurent Janci
- Coopérative Agricole des Huiles Essentielles de Bourbon, 83 rue Kervéguen, 97430 Le Tampon, La Réunion, France
| | - Marie-Paule Gonthier
- Inserm, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien, Plateforme CYROI 2 rue Maxime, 97490 Sainte-Clotilde, La Réunion, France
- Université de La Réunion, UFR Santé, 1 Allée des Aigues Marines, 97487 Saint-Denis, La Réunion, France
| |
Collapse
|
34
|
Mostafa AM, Hamdy NM, El-Mesallamy HO, Abdel-Rahman SZ. Glucagon-like peptide 1 (GLP-1)-based therapy upregulates LXR-ABCA1/ABCG1 cascade in adipocytes. Biochem Biophys Res Commun 2015; 468:900-5. [PMID: 26603933 DOI: 10.1016/j.bbrc.2015.11.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 11/11/2015] [Indexed: 01/31/2023]
Abstract
A promising treatment for obesity involves the use of therapeutic agents that increase the level of the glucagon-like peptide (GLP-1) which reduces appetite and food intake. Native GLP-1 is rapidly metabolized by the dipeptidyl peptidase-4 (DPP-4) enzyme and, as such, GLP-1 mimetics or DPP-4 inhibitors represent promising treatment approaches. Interestingly, obese patient receiving such medications showed improved lipid profiles and cholesterol homeostasis, however the mechanism(s) involved are not known. Members of the ATP-binding cassette (ABC) transporters, including ABCA1 and ABCG1, play essential roles in reverse cholesterol transport and in high density lipoprotein (HDL) formation. These transporters are under the transcriptional regulation of liver X receptor alpha (LXR-α). We hypothesize that GLP-1 mimetics and/or DPP-4 inhibitors modulate ABCA1/ABCG1 expression in adipocytes through an LXR-α mediated process and thus affecting cholesterol homeostasis. 3T3-L1 adipocytes were treated with the DPP-4 inhibitor vildagliptin (2 nM) or the GLP-1 mimetic exendin-4 (5 nM). Gene and protein expression of ABCA1, ABCG1 and LXR-α were determined and correlated with cholesterol efflux. Expression levels of interleukin-6 (IL-6), leptin and the glucose transporter-4 (GLUT-4) were also determined. Treatment with both medications significantly increased the expression of ABCA1, ABCG1, LXR-α and GLUT-4, decreased IL-6 and leptin, and improved cholesterol efflux from adipocytes (P < 0.05). Our data suggest that GLP-1-based therapy modulate ABCA1/ABCG1 expression in adipocytes potentially through an LXR-α mediated process.
Collapse
Affiliation(s)
- Ahmed M Mostafa
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch, Galveston, TX, USA; Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nadia M Hamdy
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Hala O El-Mesallamy
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sherif Z Abdel-Rahman
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
35
|
Mansoori A, Sotoudeh G, Djalali M, Eshraghian MR, Keramatipour M, Nasli-Esfahani E, Shidfar F, Alvandi E, Toupchian O, Koohdani F. Effect of DHA-rich fish oil on PPARγ target genes related to lipid metabolism in type 2 diabetes: A randomized, double-blind, placebo-controlled clinical trial. J Clin Lipidol 2015; 9:770-777. [PMID: 26687697 DOI: 10.1016/j.jacl.2015.08.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 08/19/2015] [Accepted: 08/22/2015] [Indexed: 01/04/2023]
Abstract
BACKGROUND The beneficial effects of omega-3 polyunsaturated fatty acids on lipid levels are well documented. However, the related molecular mechanisms are widely unknown. Omega-3 polyunsaturated fatty acids are natural ligand for peroxisome proliferator-activated receptor γ (PPARγ). OBJECTIVE The aim of this study was to evaluate the effect of docosahexaenoic acid (DHA)-rich fish oil supplementation on modulation of some PPARγ-responsive genes related to lipid metabolism. METHODS Patients with type 2 diabetes were randomly assigned to consume either DHA-rich fish oil (containing 2400 mg/d fish oil; DHA: 1450 mg and eicosapentaenoic acid: 400 mg) or placebo for 8 weeks. Lipid profile and glycemic control parameters as well as the gene expression of PPARγ, liver x receptor-a, ATP-binding cassette A1, and CD36 in peripheral blood mononuclear cells were measured at baseline and after 8 weeks. RESULTS DHA-rich fish oil supplementation resulted in decreased triglycerides (TG) level compared with placebo group, independently of the baseline value of TG (all patients (P = .003), hypertriglyceridemic subjects (P = .01), and normotriglyceridemic subjects (P = .02)). Moreover, a higher reduction in TG level was observed in hypertriglyceridemic subjects, comparing to normotriglyceridemic subjects with DHA-rich fish oil supplementation (P = .01). Other lipid parameters as well as the expression of PPARγ, liver x receptor-a, ATP-binding cassette A1, and CD36 were not affected by DHA-rich fish oil supplementation. Only in hypertriglyceridemic subjects, DHA-rich fish oil supplementation upregulated CD36 expression, compared with the placebo group (P = .01). CONCLUSIONS DHA-rich fish oil supplementation for 8 weeks increased CD36 expression in hypertriglyceridemic subjects, which might result to higher reduction in TG level, comparing with normotriglyceridemic subjects. However, this finding should be investigated in further studies.
Collapse
Affiliation(s)
- Anahita Mansoori
- Cellular and Molecular Nutrition Department, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Gity Sotoudeh
- Community Nutrition Department, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Djalali
- Cellular and Molecular Nutrition Department, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Eshraghian
- Epidemiology and Biostatistics Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Keramatipour
- Medical Genetics Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensieh Nasli-Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- Nutrition Department, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Alvandi
- Cellular and Molecular Nutrition Department, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Toupchian
- Cellular and Molecular Nutrition Department, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Koohdani
- Cellular and Molecular Nutrition Department, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Curcumin Mitigates the Intracellular Lipid Deposit Induced by Antipsychotics In Vitro. PLoS One 2015; 10:e0141829. [PMID: 26517556 PMCID: PMC4627744 DOI: 10.1371/journal.pone.0141829] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 10/13/2015] [Indexed: 12/17/2022] Open
Abstract
SCOPE First- and second-generation antipsychotics (FGAs and SGAs, respectively), both inhibit cholesterol biosynthesis and impair the intracellular cholesterol trafficking, leading to lipid accumulation in the late endosome/lysosome compartment. In this study we examined if curcumin, a plant polyphenol that stimulates exosome release, can alleviate antipsychotic-induced intracellular lipid accumulation. METHODS HepG2 hepatocarcinoma cells were treated with antipsychotics or placebo and DiI-labelled LDL for 18 h and then exposed to curcumin for the last 2 h. Cells and media were collected separately and used for biochemical analyses, electron microscopy and immunocytochemistry. Exosomes were isolated from the incubation medium by ultracentrifugation. RESULTS Curcumin treatment reduced the number of heterolysosomes and shifted their subcellular localization to the periphery, as revealed by electron microscopy, and stimulated the release of lysosomal β-hexosaminidase and exosome markers flotillin-2 and CD63 into the media. The presence of DiI in exosomes released by cells preloaded with DiI-LDL demonstrated the endolysosomal origin of the microvesicles. Furthermore, curcumin increased the secretion of cholesterol as well as LDL-derived DiI and [3H]-cholesterol, in association with a decrease of intracellular lipids. Thus, the disruption of lipid trafficking induced by FGAs or SGAs can be relieved by curcumin treatment. This polyphenol, however, did not mitigate the reduction of cholesterol esterification induced by antipsychotics. CONCLUSION Curcumin stimulates exosome release to remove cholesterol (and presumably other lipids) accumulated within the endolysosomal compartment, thereby normalizing intracellular lipid homeostasis. This action may help minimize the adverse metabolic effects of antipsychotic treatment, which should now be evaluated in clinical trials.
Collapse
|
37
|
Curcumin retunes cholesterol transport homeostasis and inflammation response in M1 macrophage to prevent atherosclerosis. Biochem Biophys Res Commun 2015; 467:872-8. [PMID: 26471308 DOI: 10.1016/j.bbrc.2015.10.051] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/09/2015] [Indexed: 11/24/2022]
Abstract
Lipoprotein cholesterol metabolism dysfunction in the arterial wall is a major contributor to atherosclerosis, and excessive lipid intake and failed cholesterol homeostasis may accelerate the atherogenic process. Curcumin exerts multiple effects by alleviating inflammation, hyperlipidemia, and atherosclerosis; however, its role in cholesterol transport homeostasis and its underlying impact on inflammatory M1 macrophages are poorly understood. This work aimed to investigate the effect of curcumin on cholesterol transport, the inflammatory response and cell apoptosis in M1 macrophages. RAW264.7 macrophages (M0) were induced with LPS plus IFN-γ for 12 h to develop a M1 subtype and were then incubated with curcumin at different concentrations (6.25 and 12.5 μmol/L) in the presence or absence of oxLDL. Then, cholesterol influx/efflux and foam cell formation as well as inflammation and apoptosis were evaluated. It was found that curcumin increased cholesterol uptake measured by the Dil-oxLDL binding assay, and simultaneously increased cholesterol efflux carried out by Apo-A1 and HDL in M1 cells. Curcumin further reinforced ox-LDL-induced cholesterol esterification and foam cell formation as determined by Oil Red O and BODIPY staining. Moreover, curcumin dramatically reduced ox-LDL-induced cytokine production such as IL-1β, IL-6 as well as TNF-α and M1 cell apoptosis. We also found that curcumin upregulated CD36 and ABCA1 in M1 macrophages. Curcumin increased PPARγ expression, which in turn promoted CD36 and ABCA1 expression. In conclusion, curcumin may increase the ability of M1 macrophages to handle harmful lipids, thus promoting lipid processing, disposal and removal, which may support cholesterol homeostasis and exert an anti-atherosclerotic effect.
Collapse
|
38
|
Lin XL, Liu MH, Hu HJ, Feng HR, Fan XJ, Zou WW, Pan YQ, Hu XM, Wang Z. Curcumin Enhanced Cholesterol Efflux by Upregulating ABCA1 Expression Through AMPK-SIRT1-LXRα Signaling in THP-1 Macrophage-Derived Foam Cells. DNA Cell Biol 2015; 34:561-72. [PMID: 26102194 DOI: 10.1089/dna.2015.2866] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Xiao-long Lin
- Department of Pathology, Affiliated Hui Zhou Hospital (The Third People's Hospital of Huizhou), Guangzhou Medical University Huizhou City, Huizhou, People's Republic of China
- Key Laboratory for Atherosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, People's Republic of China
| | - Mi-Hua Liu
- Department of Clinical Laboratory, Affiliated Nanhua Hospital, University of South China, Hengyang, People's Republic of China
| | - Hui-Jun Hu
- Department of Pathology, Affiliated Hui Zhou Hospital (The Third People's Hospital of Huizhou), Guangzhou Medical University Huizhou City, Huizhou, People's Republic of China
| | - Hong-ru Feng
- Department of Ultrasonic Diagnosis, Affiliated First Hospital, Hebei Medical University, Shi Jiazhuang, People's Republic of China
| | - Xiao-Juan Fan
- Department of Pathology, Affiliated Hui Zhou Hospital (The Third People's Hospital of Huizhou), Guangzhou Medical University Huizhou City, Huizhou, People's Republic of China
| | - Wei-wen Zou
- Department of Pathology, Affiliated Hui Zhou Hospital (The Third People's Hospital of Huizhou), Guangzhou Medical University Huizhou City, Huizhou, People's Republic of China
| | - Yong-quan Pan
- Department of Pathology, Affiliated Hui Zhou Hospital (The Third People's Hospital of Huizhou), Guangzhou Medical University Huizhou City, Huizhou, People's Republic of China
| | - Xue-mei Hu
- Department of Pathology, Affiliated Hui Zhou Hospital (The Third People's Hospital of Huizhou), Guangzhou Medical University Huizhou City, Huizhou, People's Republic of China
| | - Zuo Wang
- Key Laboratory for Atherosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, People's Republic of China
| |
Collapse
|
39
|
Cabanillas BJ, Le Lamer AC, Olagnier D, Castillo D, Arevalo J, Valadeau C, Coste A, Pipy B, Bourdy G, Sauvain M, Fabre N. Leishmanicidal compounds and potent PPARγ activators from Renealmia thyrsoidea (Ruiz & Pav.) Poepp. & Endl. JOURNAL OF ETHNOPHARMACOLOGY 2014; 157:149-155. [PMID: 25251262 DOI: 10.1016/j.jep.2014.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/04/2014] [Accepted: 09/06/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Leaves and rhizomes of Renealmia thyrsoidea (Ruiz & Pav.) Poepp. & Endl. traditionally used in the Yanesha pharmacopoeia to treat skin infections such as leishmaniasis ulcers, or to reduce fever were chemically investigated to identify leishmanicidal compounds, as well as PPARγ activators. METHODS Compounds were isolated through a bioassay-guided fractionation and their structures were determined via detailed spectral analysis. The viability of Leishmania amazonensis axenic amastigotes was assessed by the reduction of tetrazolium salt (MTT), the cytotoxicity on macrophage was evaluated using trypan blue dye exclusion method, while the percentage of infected macrophages was determined microscopically in the intracellular macrophage-infected assay. The CD36, mannose receptor (MR) and dectin-1 mRNA expression on human monocytes-derived macrophages was evaluated by quantitative real-time PCR. RESULTS Six sesquiterpenes (1-6), one dihydrobenzofuranone (7) and four flavonoids (8-11) were isolated from the leaves. Alongside, two flavonoids (12-13) and five diarylheptanoids (14-18) were identified in the rhizomes. Leishmanicidal activity against Leishmania amazonensis axenic amastigotes was evaluated for all compounds. Compounds 6, 7, and 11, isolated from the leaves, showed to be the most active derivatives. Diarylheptanoids 14-18 were also screened for their ability to activate PPARγ nuclear receptor in macrophages. Compounds 17 and 18 bearing a Michael acceptor moiety strongly increased the expression of PPARγ target genes such as CD36, Dectin-1 and mannose receptor (MR), thus revealing interesting immunomodulatory properties. CONCLUSIONS Phytochemical investigation of Renealmia thyrsoidea has led to the isolation of leishmanicidal compounds from the leaves and potent PPARγ activators from the rhizomes. These results are in agreement with the traditional uses of the different parts of Renealmia thyrsoidea.
Collapse
Affiliation(s)
- Billy Joel Cabanillas
- Université de Toulouse III, UPS, PHARMA-DEV, UMR 152, 118 Route de Narbonne, F-31062 Toulouse Cedex 9, France; IRD, UMR 152, F-31062 Toulouse Cedex 9, France; IRD, UMR 152, Mission IRD Casilla 18-1209, Lima, Peru
| | - Anne-Cécile Le Lamer
- Université de Toulouse III, UPS, PHARMA-DEV, UMR 152, 118 Route de Narbonne, F-31062 Toulouse Cedex 9, France; IRD, UMR 152, F-31062 Toulouse Cedex 9, France.
| | - David Olagnier
- Université de Toulouse III, UPS, PHARMA-DEV, UMR 152, 118 Route de Narbonne, F-31062 Toulouse Cedex 9, France; IRD, UMR 152, F-31062 Toulouse Cedex 9, France
| | - Denis Castillo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Avenida Honorio Delgado 430, San Martin de Porres, Lima, Peru
| | - Jorge Arevalo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Avenida Honorio Delgado 430, San Martin de Porres, Lima, Peru
| | - Céline Valadeau
- Université de Toulouse III, UPS, PHARMA-DEV, UMR 152, 118 Route de Narbonne, F-31062 Toulouse Cedex 9, France; IRD, UMR 152, F-31062 Toulouse Cedex 9, France; IRD, UMR 152, Mission IRD Casilla 18-1209, Lima, Peru
| | - Agnès Coste
- Université de Toulouse III, UPS, PHARMA-DEV, UMR 152, 118 Route de Narbonne, F-31062 Toulouse Cedex 9, France; IRD, UMR 152, F-31062 Toulouse Cedex 9, France
| | - Bernard Pipy
- Université de Toulouse III, UPS, PHARMA-DEV, UMR 152, 118 Route de Narbonne, F-31062 Toulouse Cedex 9, France; IRD, UMR 152, F-31062 Toulouse Cedex 9, France
| | - Geneviève Bourdy
- Université de Toulouse III, UPS, PHARMA-DEV, UMR 152, 118 Route de Narbonne, F-31062 Toulouse Cedex 9, France; IRD, UMR 152, F-31062 Toulouse Cedex 9, France; IRD, UMR 152, Mission IRD Casilla 18-1209, Lima, Peru
| | - Michel Sauvain
- Université de Toulouse III, UPS, PHARMA-DEV, UMR 152, 118 Route de Narbonne, F-31062 Toulouse Cedex 9, France; IRD, UMR 152, F-31062 Toulouse Cedex 9, France; IRD, UMR 152, Mission IRD Casilla 18-1209, Lima, Peru
| | - Nicolas Fabre
- Université de Toulouse III, UPS, PHARMA-DEV, UMR 152, 118 Route de Narbonne, F-31062 Toulouse Cedex 9, France; IRD, UMR 152, F-31062 Toulouse Cedex 9, France
| |
Collapse
|
40
|
Wang L, Waltenberger B, Pferschy-Wenzig EM, Blunder M, Liu X, Malainer C, Blazevic T, Schwaiger S, Rollinger JM, Heiss EH, Schuster D, Kopp B, Bauer R, Stuppner H, Dirsch VM, Atanasov AG. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochem Pharmacol 2014; 92:73-89. [PMID: 25083916 PMCID: PMC4212005 DOI: 10.1016/j.bcp.2014.07.018] [Citation(s) in RCA: 432] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 12/13/2022]
Abstract
Agonists of the nuclear receptor PPARγ are therapeutically used to combat hyperglycaemia associated with the metabolic syndrome and type 2 diabetes. In spite of being effective in normalization of blood glucose levels, the currently used PPARγ agonists from the thiazolidinedione type have serious side effects, making the discovery of novel ligands highly relevant. Natural products have proven historically to be a promising pool of structures for drug discovery, and a significant research effort has recently been undertaken to explore the PPARγ-activating potential of a wide range of natural products originating from traditionally used medicinal plants or dietary sources. The majority of identified compounds are selective PPARγ modulators (SPPARMs), transactivating the expression of PPARγ-dependent reporter genes as partial agonists. Those natural PPARγ ligands have different binding modes to the receptor in comparison to the full thiazolidinedione agonists, and on some occasions activate in addition PPARα (e.g. genistein, biochanin A, sargaquinoic acid, sargahydroquinoic acid, resveratrol, amorphastilbol) or the PPARγ-dimer partner retinoid X receptor (RXR; e.g. the neolignans magnolol and honokiol). A number of in vivo studies suggest that some of the natural product activators of PPARγ (e.g. honokiol, amorfrutin 1, amorfrutin B, amorphastilbol) improve metabolic parameters in diabetic animal models, partly with reduced side effects in comparison to full thiazolidinedione agonists. The bioactivity pattern as well as the dietary use of several of the identified active compounds and plant extracts warrants future research regarding their therapeutic potential and the possibility to modulate PPARγ activation by dietary interventions or food supplements.
Collapse
Affiliation(s)
- Limei Wang
- Department of Pharmacognosy, University of Vienna, Austria
| | - Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Austria
| | | | - Martina Blunder
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Austria
| | - Xin Liu
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Austria
| | | | - Tina Blazevic
- Department of Pharmacognosy, University of Vienna, Austria
| | - Stefan Schwaiger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Austria
| | - Judith M Rollinger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Austria
| | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, Austria
| | - Daniela Schuster
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Austria
| | - Brigitte Kopp
- Department of Pharmacognosy, University of Vienna, Austria
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Austria
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Austria
| | | | | |
Collapse
|
41
|
Li Y, Feng T, Liu P, Liu C, Wang X, Li D, Li N, Chen M, Xu Y, Si S. Optimization of Rutaecarpine as ABCA1 Up-Regulator for Treating Atherosclerosis. ACS Med Chem Lett 2014; 5:884-8. [PMID: 25147608 DOI: 10.1021/ml500131a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/24/2014] [Indexed: 02/08/2023] Open
Abstract
ATP-binding cassette transporter A1 (ABCA1) is a key transporter and receptor in promoting cholesterol efflux, and increasing the expression level of ABCA1 is antiatherogenic. In our previous study, rutaecarpine (RUT) was found to protect ApoE(-/-) mice from developing atherosclerosis through preferentially up-regulating ABCA1 expression. In the present work, a series of RUT derivatives were synthesized and examined as ABCA1 expression up-regulators. Compounds CD1, CD6, and BCD1-2 were found to possess the most potential activity as antiatherosclerotic agents among all compounds tested.
Collapse
Affiliation(s)
- Yongzhen Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No. 1, Beijing 100050, China
| | - Tingting Feng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No. 1, Beijing 100050, China
| | - Peng Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No. 1, Beijing 100050, China
| | - Chang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No. 1, Beijing 100050, China
| | - Xiao Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No. 1, Beijing 100050, China
| | - Dongsheng Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No. 1, Beijing 100050, China
| | - Ni Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No. 1, Beijing 100050, China
| | - Minghua Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No. 1, Beijing 100050, China
| | - Yanni Xu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No. 1, Beijing 100050, China
| | - Shuyi Si
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No. 1, Beijing 100050, China
| |
Collapse
|
42
|
Novel insights of dietary polyphenols and obesity. J Nutr Biochem 2014; 25:1-18. [PMID: 24314860 DOI: 10.1016/j.jnutbio.2013.09.001] [Citation(s) in RCA: 644] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 07/15/2013] [Accepted: 09/04/2013] [Indexed: 12/14/2022]
Abstract
The prevalence of obesity has steadily increased over the past three decades both in the United States and worldwide. Recent studies have shown the role of dietary polyphenols in the prevention of obesity and obesity-related chronic diseases. Here, we evaluated the impact of commonly consumed polyphenols, including green tea catechins, especially epigallocatechin gallates, resveratrol and curcumin, on obesity and obesity-related inflammation. Cellular studies demonstrated that these dietary polyphenols reduce viability of adipocytes and proliferation of preadipocytes, suppress adipocyte differentiation and triglyceride accumulation, stimulate lipolysis and fatty acid β-oxidation, and reduce inflammation. Concomitantly, the polyphenols modulate signaling pathways including the adenosine-monophosphate-activated protein kinase, peroxisome proliferator activated receptor γ, CCAAT/enhancer binding protein α, peroxisome proliferator activator receptor gamma activator 1-alpha, sirtuin 1, sterol regulatory element binding protein-1c, uncoupling proteins 1 and 2, and nuclear factor-κB that regulate adipogenesis, antioxidant and anti-inflammatory responses. Animal studies strongly suggest that commonly consumed polyphenols described in this review have a pronounced effect on obesity as shown by lower body weight, fat mass and triglycerides through enhancing energy expenditure and fat utilization, and modulating glucose hemostasis. Limited human studies have been conducted in this area and are inconsistent about the antiobesity impact of dietary polyphenols probably due to the various study designs and lengths, variation among subjects (age, gender, ethnicity), chemical forms of the dietary polyphenols used and confounding factors such as other weight-reducing agents. Future randomized controlled trials are warranted to reconcile the discrepancies between preclinical efficacies and inconclusive clinic outcomes of these polyphenols.
Collapse
|
43
|
Zhang X, Chen Q, Wang Y, Peng W, Cai H. Effects of curcumin on ion channels and transporters. Front Physiol 2014; 5:94. [PMID: 24653706 PMCID: PMC3949287 DOI: 10.3389/fphys.2014.00094] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/21/2014] [Indexed: 01/04/2023] Open
Abstract
Curcumin [1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione], a polyphenolic compound isolated from the rhizomes of Curcuma longa (turmeric), has been shown to exhibit a wide range of pharmacological activities including anti-inflammatory, anti-cancer, anti-oxidant, anti-atherosclerotic, anti-microbial, and wound healing effects. These activities of curcumin are based on its complex molecular structure and chemical features, as well as its ability to interact with multiple signaling molecules. The ability of curcumin to regulate ion channels and transporters was recognized a decade ago. The cystic fibrosis transmembrane conductance regulator (CFTR) is a well-studied ion channel target of curcumin. During the process of studying its anti-cancer properties, curcumin was found to inhibit ATP-binding cassette (ABC) family members including ABCA1, ABCB1, ABCC1, and ABCG2. Recent studies have revealed that many channels and transporters are modulated by curcumin, such as voltage-gated potassium (Kv) channels, high-voltage-gated Ca(2+) channels (HVGCC), volume-regulated anion channel (VRAC), Ca(2+) release-activated Ca(2+) channel (CRAC), aquaporin-4 (AQP-4), glucose transporters, etc., In this review, we aim to provide an overview of the interactions of curcumin with different types of ion channels and transporters and to help better understand and integrate the underlying molecular mechanisms of the multiple pharmacological activities of curcumin.
Collapse
Affiliation(s)
- Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University Shanghai, China
| | - Qijing Chen
- Department of Pharmacology, School of Pharmacy, Fudan University Shanghai, China
| | - Yunman Wang
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Wen Peng
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Hui Cai
- Renal Division, Department of Medicine, Department of Physiology, Emory University School of Medicine Atlanta, GA, USA ; Section of Nephrology, Atlanta Veterans Administration Medical Center Decatur, GA, USA
| |
Collapse
|
44
|
Do HJ, Lee SM, Kim YS, Shin MJ. Effect of 1-deoxynojirimycin on cholesterol efflux through ABCA1-LXRα pathway in 3T3-L1 adipocytes. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.12.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
45
|
Valacchi G, Belmonte G, Miracco C, Eo H, Lim Y. Effect of combined mulberry leaf and fruit extract on liver and skin cholesterol transporters in high fat diet-induced obese mice. Nutr Res Pract 2014; 8:20-6. [PMID: 24611101 PMCID: PMC3944151 DOI: 10.4162/nrp.2014.8.1.20] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 11/12/2013] [Accepted: 11/14/2013] [Indexed: 12/25/2022] Open
Abstract
Obesity is an epidemic disease characterized by an increased inflammatory state and chronic oxidative stress with high levels of pro-inflammatory cytokines and lipid peroxidation. Moreover, obesity alters cholesterol metabolism with increases in low-density lipoprotein (LDL) cholesterols and triglycerides and decreases in high-density lipoprotein (HDL) cholesterols. It has been shown that mulberry leaf and fruit ameliorated hyperglycemic and hyperlipidemic conditions in obese and diabetic subjects. We hypothesized that supplementation with mulberry leaf combined with mulberry fruit (MLFE) ameliorate cholesterol transfer proteins accompanied by reduction of oxidative stress in the high fat diet induced obesity. Mice were fed control diet (CON) or high fat diet (HF) for 9 weeks. After obesity was induced, the mice were administered either the HF or the HF with combination of equal amount of mulberry leaf and fruit extract (MLFE) at 500mg/kg/day by gavage for 12 weeks. MLFE treatment ameliorated HF induced oxidative stress demonstrated by 4-hydroxynonenal (4-HNE) and modulated the expression of 2 key proteins involved in cholesterol transfer such as scavenger receptor class B type 1 (SR-B1) and ATP-binding cassette transporter A1 (ABCA1) in the HF treated animals. This effect was mainly noted in liver tissue rather than in cutaneous tissue. Collectively, this study demonstrated that MLFE treatment has beneficial effects on the modulation of high fat diet-induced oxidative stress and on the regulation of cholesterol transporters. These results suggest that MLFE might be a beneficial substance for conventional therapies to treat obesity and its complications.
Collapse
Affiliation(s)
- Giuseppe Valacchi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy. ; Department of Food and Nutrition, Kyung Hee University, 26, Kyunghee-ro, Dongdaemun-gu, Seoul 130-701, Korea
| | - Giuseppe Belmonte
- Dipartimento di Scienze Mediche, Chirurgiche e Neuroscienze, University of Siena, Siena, Italy
| | - Clelia Miracco
- Dipartimento di Scienze Mediche, Chirurgiche e Neuroscienze, University of Siena, Siena, Italy
| | - Hyeyoon Eo
- Department of Food and Nutrition, Kyung Hee University, 26, Kyunghee-ro, Dongdaemun-gu, Seoul 130-701, Korea
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, 26, Kyunghee-ro, Dongdaemun-gu, Seoul 130-701, Korea
| |
Collapse
|
46
|
Canfrán-Duque A, Pastor Ó, Quintana-Portillo R, Lerma M, de la Peña G, Martín-Hidalgo A, Fernández-Hernando C, Lasunción MA, Busto R. Curcumin promotes exosomes/microvesicles secretion that attenuates lysosomal cholesterol traffic impairment. Mol Nutr Food Res 2013; 58:687-97. [DOI: 10.1002/mnfr.201300350] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/10/2013] [Accepted: 09/20/2013] [Indexed: 01/24/2023]
Affiliation(s)
- Alberto Canfrán-Duque
- Servicio de Bioquímica-Investigación; Hospital Universitario Ramón y Cajal; Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS); Madrid Spain
| | - Óscar Pastor
- Servicio de Bioquímica-Clínica; Hospital Universitario Ramón y Cajal; IRyCIS; Madrid Spain
| | - Rocío Quintana-Portillo
- Servicio de Bioquímica-Investigación; Hospital Universitario Ramón y Cajal; Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS); Madrid Spain
| | - Milagros Lerma
- Servicio de Bioquímica-Clínica; Hospital Universitario Ramón y Cajal; IRyCIS; Madrid Spain
| | - Gema de la Peña
- Servicio de Bioquímica-Investigación; Hospital Universitario Ramón y Cajal; Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS); Madrid Spain
| | - Antonia Martín-Hidalgo
- Servicio de Bioquímica-Investigación; Hospital Universitario Ramón y Cajal; Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS); Madrid Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn); ISCIII; Spain
| | - Carlos Fernández-Hernando
- Marc and Ruti Bell Vascular Biology and Disease Program; Leon H. Charney Division of Cardiology; Departments of Medicine and Cell Biology; New York University School of Medicine; New York NY USA
| | - Miguel A. Lasunción
- Servicio de Bioquímica-Investigación; Hospital Universitario Ramón y Cajal; Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS); Madrid Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn); ISCIII; Spain
| | - Rebeca Busto
- Servicio de Bioquímica-Investigación; Hospital Universitario Ramón y Cajal; Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS); Madrid Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn); ISCIII; Spain
| |
Collapse
|
47
|
Tian M, Zhang X, Wang L, Li Y. Curcumin Induces ABCA1 Expression and Apolipoprotein A-I-Mediated Cholesterol Transmembrane in the Chronic Cerebral Hypoperfusion Aging Rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2013; 41:1027-42. [DOI: 10.1142/s0192415x13500699] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cerebral hypoperfusion or aging often results in the disturbances of cholesterol and lipoprotein, which have been well depicted as a common pathological status contributing to neurodegenerative diseases such as vascular dementia (VaD) and Alzheimer's dementia (AD). The pathway of the liver X receptor-β (LXR-β)/retinoic X receptor-α (RXR-α)/ABCA1 plays a vital role in lipoprotein metabolism. Curcumin, a kind of phenolic compound, has been widely used. It has been reported that curcumin can reduce the levels of cholesterol in serum, but the underlying mechanisms are poorly understood. In this study, we evaluated the effects of curcumin on the cholesterol level in brain, vascular cognitive impairment and explored whether the mechanisms for those effects are through activating LXR-β/RXR-α and ABCA1 expression and apoA-I. With a Morris water test, we found that curcumin treatment could attenuate cognitive impairment. With HE and Nissl staining, we found that curcumin could significantly ameliorate the abnormal changes of pyramidal neurons. Meanwhile, the expression of LXR-β, RXR-α, ABCA1 and apoA-I mRNA and protein were increased in a dose-dependent manner after curcumin treatment. Interestingly, both serum HDL cholesterol and total cholesterol levels were statistically higher in the curcumin treatment group than those other groups. We conclude that curcumin has the ability to activate permissive LXR-β/RXR-α signaling and thereby modulate ABCA1 and apoA-I-mediated cholesterol transmembrane transportation, which is a new preventive and therapeutic strategy for cerevascular diseases.
Collapse
Affiliation(s)
- Mingyuan Tian
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, China
| | - Xiong Zhang
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, China
| | - Linhui Wang
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, China
| | - Yu Li
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
48
|
Yan JQ, Tan CZ, Wu JH, Zhang DC, Chen JL, Zeng BY, Jiang YP, Nie J, Liu W, Liu Q, Dai H. Neopterin negatively regulates expression of ABCA1 and ABCG1 by the LXRα signaling pathway in THP-1 macrophage-derived foam cells. Mol Cell Biochem 2013; 379:123-31. [PMID: 23564066 DOI: 10.1007/s11010-013-1634-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 03/27/2013] [Indexed: 12/15/2022]
Abstract
To investigate the effects of neopterin on ABCA1 expression and cholesterol efflux in human THP-1 macrophage-derived foam cells, and to explore the role of the liver X receptor alpha (LXRα) involved. In the present study, THP-1 cells were pre-incubated with ox-LDL to become foam cells. The protein and mRNA expression were examined by Western blot assays and real-time quantitative PCR, respectively. Liquid scintillation counting and high performance liquid chromatography assays were used to test cellular cholesterol efflux and cholesterol content. Neopterin decreased ABCA1 expression and cholesterol efflux in a time- and concentration-dependent manner in THP-1 macrophage-derived foam cells, and the LXRα siRNA can reverse the inhibitory effects induced by neopterin. Neoterin has a negative regulation on ABCA1 expression via the LXRα signaling pathway, which suggests the aggravated effects of neopterin on atherosclerosis.
Collapse
Affiliation(s)
- Jin-quan Yan
- Affiliated Hospital of Shaoyang Medical College, Shaoyang, Hunan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zingg JM, Hasan ST, Meydani M. Molecular mechanisms of hypolipidemic effects of curcumin. Biofactors 2013; 39:101-21. [PMID: 23339042 DOI: 10.1002/biof.1072] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/19/2012] [Indexed: 12/14/2022]
Abstract
Recent evidence suggests potential benefits from phytochemicals and micronutrients in reducing the elevated oxidative and lipid-mediated stress associated with inflammation, obesity, and atherosclerosis. These compounds may either directly scavenge reactive oxygen or nitrogen species or they may modulate the activity of signal transduction enzymes leading to changes in the expression of antioxidant genes. Alternatively, they may reduce plasma lipid levels by modulating lipid metabolic genes in tissues and thus reduce indirectly lipid-mediated oxidative and endoplasmic reticulum stress through their hypolipidemic effect. Here we review the proposed molecular mechanisms by which curcumin, a polyphenol present in the rhizomes of turmeric (Curcuma longa) spice, influences oxidative and lipid-mediated stress in the vascular system. At the molecular level, mounting experimental evidence suggests that curcumin may act chemically as scavenger of free radicals and/or influences signal transduction (e.g., Akt, AMPK) and modulates the activity of specific transcription factors (e.g., FOXO1/3a, NRF2, SREBP1/2, CREB, CREBH, PPARγ, and LXRα) that regulate the expression of genes involved in free radicals scavenging (e.g., catalase, MnSOD, and heme oxygenase-1) and lipid homeostasis (e.g., aP2/FABP4, CD36, HMG-CoA reductase, and carnitine palmitoyltransferase-I (CPT-1)). At the cellular level, curcumin may induce a mild oxidative and lipid-metabolic stress leading to an adaptive cellular stress response by hormetic stimulation of these cellular antioxidant defense systems and lipid metabolic enzymes. The resulting lower oxidative and lipid-mediated stress may not only explain the beneficial effects of curcumin on inflammation, cardiovascular, and neurodegenerative disease, but may also contribute to the increase in maximum life-span observed in animal models.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Vascular Biology Laboratory, Jean Mayer USDA-Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA.
| | | | | |
Collapse
|
50
|
Sawada H, Saito Y, Noguchi N. Enhanced CD36 expression changes the role of Nrf2 activation from anti-atherogenic to pro-atherogenic in apoE-deficient mice. Atherosclerosis 2012; 225:83-90. [PMID: 22963983 DOI: 10.1016/j.atherosclerosis.2012.08.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/31/2012] [Accepted: 08/14/2012] [Indexed: 02/05/2023]
Abstract
Oxidative stress has been implicated as a causative factor of atherosclerosis. Defense systems against oxidative stress are maintained by radical scavenging antioxidants and/or by regulating the expression of antioxidant genes by activating oxidative stress-sensitive transcription factor: nuclear factor (erythroid-derived 2)-like 2 (Nrf2). We investigated the anti-atherogenic effects of three synthesized compounds (shogaol A: radical scavenging antioxidant activity; shogaol N: Nrf2-activating activity; shogaol N + A: both activities) and curcumin (both activities) in apolipoprotein E (apoE)-deficient mice. We expected compounds with both activities to have additive or synergistic anti-atherogenic effects; however, atherosclerosis was exacerbated significantly by curcumin and slightly by shogaol N + A. Shogaol A, shogaol N, and shogaol N + A showed no significant effect on atherosclerosis development. Immunohistochemical analysis of the aorta revealed that expression of CD36, an Nrf2-regulated gene, was strongly induced by treatment with curcumin. The total antioxidant capacity of plasma collected from mice administered the three compounds was evaluated using a hydrophilic probe, pyranine. Shogaol N or shogaol N + A significantly enhanced the antioxidant capacity of plasma, whereas shogaol A and curcumin did not show this activity. The concentrations of the three shogaol derivatives in plasma were similar (approximately 100 nM), while that of curcumin was much lower. These results suggest that plasma antioxidant capacity is maintained at high levels via Nrf2 activation and that CD36 expression enhances atherosclerosis development.
Collapse
Affiliation(s)
- Hirotaka Sawada
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan.
| | | | | |
Collapse
|