1
|
Akkaya A, Aykan D, Gencturk S, Unal G. Intermittent environmental enrichment induces behavioral despair, while intermittent social isolation impairs spatial learning in rats. Pharmacol Biochem Behav 2025; 250:174001. [PMID: 40118218 DOI: 10.1016/j.pbb.2025.174001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 03/01/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
Environmental enrichment and social isolation constitute two well-studied experimental manipulations that result in several behavioral, neural, and molecular changes in rodents. Enrichment is linked to enhanced cognitive performance, and mitigation of different nervous system injuries and disorders. In contrast, social isolation or impoverished environment often induce negative effects on cognitive and affective systems. Both manipulations are typically examined with a short-term or chronic exposure, which cannot capture the actual human experiences. In this study, we explored the behavioral and neural alterations led by intermittent environmental enrichment or social isolation in adult Wistar rats. Animals were assigned to an enriched condition (EC), isolation/impoverished condition (IC), or standard condition (SC). The differential housing protocol involved transferring the animals to their respective cages for two days at the end of each five-day standard housing period for 8 weeks. Enriched animals exhibited behavioral despair in the forced swim test without differential overall locomotor activity. In the Morris water maze, impoverished animals displayed a slower learning rate compared to the SC and EC groups. In line with this, the IC group had fewer parvalbumin (PV) immunopositive (+) cells in the CA1 and dentate gyrus. No differences were observed in PV+ cell levels in the amygdala, while the IC group had more c-Fos+ cells in the same region following acute restraint stress. These findings implicate that intermittent isolation or enrichment are sufficient to trigger distinct behavioral changes at the cognitive and affective domains, and pinpoint PV as a biomarker for environmentally induced alterations in hippocampal memory performance.
Collapse
Affiliation(s)
- Aybuke Akkaya
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Deren Aykan
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Sinem Gencturk
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Gunes Unal
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey.
| |
Collapse
|
2
|
Gomes BAQ, dos Santos SM, Gato LDS, Espíndola KMM, da Silva RKM, Davis K, Navegantes-Lima KC, Burbano RMR, Romao PRT, Coleman MD, Monteiro MC. Alpha-Lipoic Acid Reduces Neuroinflammation and Oxidative Stress Induced by Dapsone in an Animal Model. Nutrients 2025; 17:791. [PMID: 40077661 PMCID: PMC11901491 DOI: 10.3390/nu17050791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/07/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objectives: Chronic treatment with dapsone (DDS) has been linked to adverse reactions involving all organ systems, such as dapsone hypersensitivity syndrome, methemoglobinemia and hemolytic anemia, besides neuroinflammation and neurodegeneration due to iron accumulation and oxidative stress. These effects probably occur due to the presence of its toxic metabolite DDS-NOH, which can generate reactive oxygen species (ROS) and iron overload. In this sense, antioxidant compounds with chelating properties, such as alpha-lipoic acid (ALA), may be an interesting adjuvant therapy strategy in treating or preventing these effects. Thus, the aim of this study was to evaluate the effects of ALA on oxidative and neuroinflammatory changes caused by DDS treatment in the prefrontal cortex and hippocampus of mice. Materials and Methods:Mus musculus male mice that were pre-treated with DDS (40 mg/kg) and post-treated with ALA (25 mg/kg) underwent analyses for oxidative stress, antioxidant capacity, cytokine expression and microglial/astrocytic activity. Results: DDS did not activate macrophages/microglia or astrocytes in the prefrontal cortex but induced their activation in the hippocampus. ALA stimulated a protective microglial profile and reduced astrocyte reactivity, especially in the hippocampus. DDS increased the pro-inflammatory cytokine IL-1β and reduced brain-derived neurotrophic factor (BDNF), effects reversed by ALA. DDS also reduced antioxidant capacity (TEAC, GSH, SOD, CAT) and increased oxidative damage (lipid peroxidation, iron accumulation), while ALA restored antioxidant levels and reduced oxidative stress. Conclusions: ALA was able to reduce the effects of DDS, such as reducing microglial and astrocytic activation, as well as to decrease the levels of pro-inflammatory cytokines and increase BDNF, in addition to increasing antioxidant capacity and reducing oxidative damage caused by iron accumulation. Therefore, ALA is considered a useful and promising therapeutic alternative for the treatment of diseases related to oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Bruno Alexandre Quadros Gomes
- Postgraduate Program in Neuroscience and Cell Biology, Federal University of Pará/UFPA, Rua Augusto Corrêa 01, Bairro Guamá, Belém 66075-110, PA, Brazil; (B.A.Q.G.); (S.M.d.S.); (K.M.M.E.); (R.K.M.d.S.)
| | - Savio Monteiro dos Santos
- Postgraduate Program in Neuroscience and Cell Biology, Federal University of Pará/UFPA, Rua Augusto Corrêa 01, Bairro Guamá, Belém 66075-110, PA, Brazil; (B.A.Q.G.); (S.M.d.S.); (K.M.M.E.); (R.K.M.d.S.)
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Pará/UFPA, Rua Augusto Corrêa 01, Bairro Guamá, Belém 66075-110, PA, Brazil;
| | - Lucas da Silva Gato
- Laboratory Immunology, Microbiology and In Vitro Assays (LABEIM), Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil;
| | - Kaio Murilo Monteiro Espíndola
- Postgraduate Program in Neuroscience and Cell Biology, Federal University of Pará/UFPA, Rua Augusto Corrêa 01, Bairro Guamá, Belém 66075-110, PA, Brazil; (B.A.Q.G.); (S.M.d.S.); (K.M.M.E.); (R.K.M.d.S.)
- Postgraduate Program in Pharmacology and Biochemistry, Faculty of Pharmacy, Federal University of Pará/UFPA, Rua Augusto Corrêa 01, Bairro Guamá, Belém 66075-110, PA, Brazil;
| | - Rana Karen Mesquita da Silva
- Postgraduate Program in Neuroscience and Cell Biology, Federal University of Pará/UFPA, Rua Augusto Corrêa 01, Bairro Guamá, Belém 66075-110, PA, Brazil; (B.A.Q.G.); (S.M.d.S.); (K.M.M.E.); (R.K.M.d.S.)
| | - Kelly Davis
- Postgraduate Program in Pharmacology and Biochemistry, Faculty of Pharmacy, Federal University of Pará/UFPA, Rua Augusto Corrêa 01, Bairro Guamá, Belém 66075-110, PA, Brazil;
| | - Kely Campos Navegantes-Lima
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Pará/UFPA, Rua Augusto Corrêa 01, Bairro Guamá, Belém 66075-110, PA, Brazil;
- Laboratory Immunology, Microbiology and In Vitro Assays (LABEIM), Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil;
| | | | - Pedro Roosevelt Torres Romao
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, RS, Brazil;
| | - Michael D. Coleman
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK;
| | - Marta Chagas Monteiro
- Postgraduate Program in Neuroscience and Cell Biology, Federal University of Pará/UFPA, Rua Augusto Corrêa 01, Bairro Guamá, Belém 66075-110, PA, Brazil; (B.A.Q.G.); (S.M.d.S.); (K.M.M.E.); (R.K.M.d.S.)
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Pará/UFPA, Rua Augusto Corrêa 01, Bairro Guamá, Belém 66075-110, PA, Brazil;
- Laboratory Immunology, Microbiology and In Vitro Assays (LABEIM), Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil;
- Postgraduate Program in Pharmacology and Biochemistry, Faculty of Pharmacy, Federal University of Pará/UFPA, Rua Augusto Corrêa 01, Bairro Guamá, Belém 66075-110, PA, Brazil;
| |
Collapse
|
3
|
Yin T, Yuan J, Liu L, Wang Y, Lin Y, Ming K, Lv H. Confronting the anxiety of Generation Z: electroacupuncture therapy regulates oxidative stress and microglia activity in amygdala-basolateral of socially isolated mice. Front Psychiatry 2025; 15:1496201. [PMID: 39980591 PMCID: PMC11839672 DOI: 10.3389/fpsyt.2024.1496201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/31/2024] [Indexed: 02/22/2025] Open
Abstract
Introduction Anxiety disorders are prevalent mental health conditions characterized by significant impairments in daily functioning and social interactions. Despite the effectiveness of pharmacological treatments, challenges such as medication resistance, adverse side effects, and the high rate of relapse necessitate the exploration of alternative therapies. Recently, electroacupuncture (EA) has garnered attention as a promising non-pharmacological intervention for anxiety disorders; however, the mechanisms by which EA exerts its anxiolytic effects remain poorly understood. This study aims to elucidate the role of microglial cells in anxiety, specifically examining how EA modulates microglial morphology and function within the basolateral amygdala (BLA) in the context of anxiety induced by social isolation. Methods Utilizing a mouse model of social isolation-induced anxiety, we evaluated anxiety-like behaviors through the Elevated Plus Maze (EPM) and Open Field Test (OFT). Additionally, biochemical analyses and immunofluorescence imaging were performed to assess the expression of NADPH oxidase 2 (NOX2), microglial activation markers, and levels of oxidative stress. Results Our findings reveal that EA treatment significantly mitigates anxiety-like behaviors in mice, correlating with a reduction in NOX2 expression within BLA microglia and decreased levels of reactive oxygen species (ROS). Furthermore, EA was observed to restore normal microglial morphology, indicating its potential role in modulating microglial activity. Discussion The results of this study suggest that EA exerts its anxiolytic effects through the modulation of oxidative stress and the activity of microglia in the BLA. These findings provide new insights into the cellular mechanisms underlying the therapeutic effects of EA, highlighting the potential for non-pharmacological strategies in the management of anxiety disorders and paving the way for future research aimed at improving clinical outcomes for individuals suffering from anxiety.
Collapse
Affiliation(s)
- Tong Yin
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junyun Yuan
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Liu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yinxin Wang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanfang Lin
- Department of Tuina, The Fourth Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Kangwen Ming
- Department of Acupuncture and Rehabilitation, The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hang Lv
- Department of Acupuncture and Rehabilitation, The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Fontana BD, Alnassar N, Norton WHJ, Parker MO. Social isolation intensifies adgrl3.1-related externalizing and internalizing behaviors in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111193. [PMID: 39542203 DOI: 10.1016/j.pnpbp.2024.111193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/09/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Externalizing disorders (EDs) are characterized by outward-directed behaviors such as aggression and hyperactivity. They are influenced by gene-environment interactions, yet our understanding of the genetic predispositions and environmental contexts that give rise to them is incomplete. Additionally, people with EDs often exhibit comorbid internalizing symptoms, which can complicate the clinical presentation and treatment strategies. Following on from our previous studies, we examined genes x environment interaction as a risk factor for EDs by looking at internalizing and externalizing behaviors after social isolation. Specifically, we subjected adgrl3.1 knockout zebrafish - characterized by hyperactivity and impulsivity - to a 2-week social isolation protocol. We subsequently assessed the impact on anxiety-like behavior, abnormal repetitive behaviors, working memory, and social interactions. Genotype-specific additive effects emerged, with socially isolated adgrl3.1 knockout fish exhibiting intensified comorbid phenotypes, including increased anxiety, abnormal repetitive behaviors, reduced working memory, and altered shoaling, when compared to WT fish. The findings demonstrate that genetic predispositions interact with environmental stressors, such as social isolation, to exacerbate both externalizing and internalizing symptoms. This underlines the necessity for comprehensive diagnostic and intervention strategies.
Collapse
Affiliation(s)
- Barbara D Fontana
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Brazil.
| | - Nancy Alnassar
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - William H J Norton
- Department of Genetics, Genomics and Cancer Science, University of Leicester, Leicester LE1 7RH, UK
| | - Matthew O Parker
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK; Surrey Sleep Research Centre, University of Surrey, Guildford, UK.
| |
Collapse
|
5
|
Moradi Khankani A, Hossein Meftahi G. Pretreatment with 4-methylumbilliferon improves anxiety-like behaviors and memory impairment in stressed rats via modulation of neuronal cell death and oxidative stress. Brain Res 2024; 1844:149196. [PMID: 39181223 DOI: 10.1016/j.brainres.2024.149196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
This work was done to investigate the ameliorating impact of 4-methylumbilliferon (4-MU) on spatial learning and memory dysfunction and restraint stress (STR)-induced anxiety-like behaviors in male Wistar rats and the underlying mechanisms. Thirty-two animals were assigned into 4 cohorts: control, 4-MU, STR, and STR+4-MU. Animals were exposed to STR for 4 h per day for 14 consecutive days or kept in normal conditions (healthy animals without exposure to stress). 4-MU (25 mg/kg) was intraperitoneally administered once daily to STR rats before restraint stress for 14 consecutive days. The behavioral tests were performed through Morris water maze tests and elevated-plus maze to examine learning/memory function, and anxiety levels, respectively. The levels of the antioxidant defense biomarkers (GPX, SOD) and MDA as an oxidant molecule in the brain tissues were measured using commercial ELISA kits. Neuronal loss or density of neurons was evaluated using Nissl staining. STR exposure could cause significant alterations in the levels of the antioxidant defense biomarkers (MDA, GPX, and SOD) in the prefrontal cortex and hippocampus, induce anxiety, and impair spatial learning and memory function. Treatment with 4-MU markedly reduced anxiety levels and improved spatial learning and memory dysfunction via restoring the antioxidant defense biomarkers to normal values and reducing MDA levels. Moreover, more intact cells with normal morphologies were detected in STR-induced animals treated with 4-MU. 4-MU could attenuate the STR-induced anxiety-like behaviors and spatial learning and memory dysfunction by reducing oxidative damage and neuronal loss in the prefrontal cortex and hippocampus region. Taken together, our findings provide new insights regarding the potential therapeutic effects of 4-MU against neurobehavioral disorders induced by STR.
Collapse
Affiliation(s)
| | - Gholam Hossein Meftahi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Stanisavljević Ilić A, Filipović D. Mapping of c-Fos Expression in Rat Brain Sub/Regions Following Chronic Social Isolation: Effective Treatments of Olanzapine, Clozapine or Fluoxetine. Pharmaceuticals (Basel) 2024; 17:1527. [PMID: 39598437 PMCID: PMC11597560 DOI: 10.3390/ph17111527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
The c-Fos as a marker of cell activation is used to identify brain regions involved in stimuli processing. This review summarizes a pattern of c-Fos immunoreactivity and the overlapping brain sub/regions which may provide hints for the identification of neural circuits that underlie depressive- and anxiety-like behaviors of adult male rats following three and six weeks of chronic social isolation (CSIS), relative to controls, as well as the antipsychotic-like effects of olanzapine (Olz), and clozapine (Clz), and the antidepressant-like effect of fluoxetine (Flx) in CSIS relative to CSIS alone. Additionally, drug-treated controls relative to control rats were also characterized. The overlapping rat brain sub/regions with increased expression of c-Fos immunoreactivity following three or six weeks of CSIS were the retrosplenial granular cortex, c subregion, retrosplenial dysgranular cortex, dorsal dentate gyrus, paraventricular nucleus of the thalamus (posterior part, PVP), lateral/basolateral (LA/BL) complex of the amygdala, caudate putamen, and nucleus accumbens shell. Increased activity of the nucleus accumbens core following exposure of CSIS rats either to Olz, Clz, and Flx treatments was found, whereas these treatments in controls activated the LA/BL complex of the amygdala and PVP. We also outline sub/regions that might represent potential neuroanatomical targets for the aforementioned antipsychotics or antidepressant treatments.
Collapse
Affiliation(s)
| | - Dragana Filipović
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
7
|
Gigli V, Castellano P, Ghezzi V, Ang YS, Schettino M, Pizzagalli DA, Ottaviani C. Daily Social Isolation Maps Onto Distinctive Features of Anhedonic Behavior: A Combined Ecological and Computational Investigation. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100369. [PMID: 39282653 PMCID: PMC11400617 DOI: 10.1016/j.bpsgos.2024.100369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 09/19/2024] Open
Abstract
Background Loneliness and social isolation have detrimental consequences for mental health and act as vulnerability factors for the development of depressive symptoms, such as anhedonia. The mitigation strategies used to contain COVID-19, such as social distancing and lockdowns, allowed us to investigate putative associations between daily objective and perceived social isolation and anhedonic-like behavior. Methods Reward-related functioning was objectively assessed using the Probabilistic Reward Task. A total of 114 unselected healthy individuals (71% female) underwent both a laboratory and an ecological momentary assessment. Computational modeling was applied to performance on the Probabilistic Reward Task to disentangle reward sensitivity and learning rate. Results Findings revealed that objective, but not subjective, daily social interactions were associated with motivational behavior. Specifically, higher social isolation (less time spent with others) was associated with higher responsivity to rewarding stimuli and a reduced influence of a given reward on successive behavioral choices. Conclusions Overall, the current results broaden our knowledge of the potential pathways that link (COVID-19-related) social isolation to altered motivational functioning.
Collapse
Affiliation(s)
- Valeria Gigli
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Paola Castellano
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Valerio Ghezzi
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Yuen-Siang Ang
- Department of Social and Cognitive Computing, Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore
| | - Martino Schettino
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- IRCSS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Diego A Pizzagalli
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Cristina Ottaviani
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Neuroimaging Laboratory, IRCCS, Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
8
|
Filipović D, Inderhees J, Korda A, Tadić P, Schwaninger M, Inta D, Borgwardt S. Serum Metabolites as Potential Markers and Predictors of Depression-like Behavior and Effective Fluoxetine Treatment in Chronically Socially Isolated Rats. Metabolites 2024; 14:405. [PMID: 39195501 DOI: 10.3390/metabo14080405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Metabolic perturbation has been associated with depression. An untargeted metabolomics approach using liquid chromatography-high resolution mass spectrometry was employed to detect and measure the rat serum metabolic changes following chronic social isolation (CSIS), an animal model of depression, and effective antidepressant fluoxetine (Flx) treatment. Univariate and multivariate statistics were used for metabolic data analysis and differentially expressed metabolites (DEMs) determination. Potential markers and predictive metabolites of CSIS-induced depressive-like behavior and Flx efficacy in CSIS were evaluated by the receiver operating characteristic (ROC) curve, and machine learning (ML) algorithms, such as support vector machine with linear kernel (SVM-LK) and random forest (RF). Upregulated choline following CSIS may represent a potential marker of depressive-like behavior. Succinate, stachydrine, guanidinoacetate, kynurenic acid, and 7-methylguanine were revealed as potential markers of effective Flx treatment in CSIS rats. RF yielded better accuracy than SVM-LK (98.50% vs. 85.70%, respectively) in predicting Flx efficacy in CSIS vs. CSIS, however, it performed almost identically in classifying CSIS vs. control (75.83% and 75%, respectively). Obtained DEMs combined with ROC curve and ML algorithms provide a research strategy for assessing potential markers or predictive metabolites for the designation or classification of stress-induced depressive phenotype and mode of drug action.
Collapse
Affiliation(s)
- Dragana Filipović
- Department of Molecular Biology and Endocrinology, "VINČA", Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Julica Inderhees
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
- Bioanalytic Core Facility, Center of Brain Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Alexandra Korda
- Department of Psychiatry and Psychotherapy, Center of Brain Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Predrag Tadić
- School of Electrical Engineering, University of Belgrade, 11000 Belgrade, Serbia
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
- Bioanalytic Core Facility, Center of Brain Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Dragoš Inta
- Department for Community Health, Faculty of Natural Sciences, Medicine, University of Fribourg, 1700 Fribourg, Switzerland
- Department of Biomedicine, University of Basel, 4001 Basel, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry and Psychotherapy, Center of Brain Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
9
|
Yavuz M, Dayanc ED, Merve Antmen F, Keskinöz E, Altuntaş E, Dolu G, Koç B, Tunçcan E, Şakar D, Canözer U, Büyüker C, Polat E, Erkaya M, Azevedo R, Öz Arslan D, Almeida A, Süyen G. Relationships between trace elements and cognitive and depressive behaviors in sprague dawley and wistar albino rats. Front Pharmacol 2024; 15:1367469. [PMID: 38628647 PMCID: PMC11018905 DOI: 10.3389/fphar.2024.1367469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/15/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction: This study investigates the effects of social isolation on mental health and cognitive functions in Sprague Dawley (SD) and Wistar Albino (WIS) rat strains, prompted by the heightened awareness of such impacts amid the COVID-19 pandemic. This study aims to explore the impact of social isolation on memory, learning, and behavioral changes in middle-aged SD and WIS rat strains and to investigate cortical trace element levels, seeking potential correlations between these levels and the observed behavioral responses to social isolation. Methods: Four groups of 14-month-old male rats were established: control and isolated SDs and WIS rats (CONT-SD, ISO-SD, CONT-WIS, ISO-WIS). Morris Water Maze and Porsolt Forced Swimming tests were conducted for behavioral assessment. Following behavioral tests, rats were sacrificed under general anesthesia, and cortices were isolated for analysis of macro and trace element levels (ICP/MS). Results: In behavioral tests, CONT-SD rats exhibited superior performance in the Morris Water Maze test compared to CONT-WIS rats, but displayed increased depressive behaviors following social isolation, as evident in the Porsolt Forced Swimming test (p < 0.05). ISO-SD rats showed elevated levels of Co and Cu, along with reduced levels of Cs and As, compared to ISO-WIS rats. Moreover, isolation resulted in decreased Cu and Mo levels but increased Rb levels in WIS rats. Comparison of trace element levels in naïve groups from different strains revealed lower Zn levels in the WIS group compared to SD rats. Discussion: The findings suggest that the SD strain learns faster, but is more susceptible to depression after isolation compared to the WIS strain. Increased Co and Cu levels in ISO-SD align with previous findings, indicating potential trace element involvement in stress responses. Understanding these mechanisms could pave the way for preventive treatment strategies or therapeutic targets against the consequences of stressors, contributing to research and measures promoting a balanced diet to mitigate neurobehavioral abnormalities associated with social isolation in the future.
Collapse
Affiliation(s)
- Melis Yavuz
- Department of Pharmacology, Faculty of Pharmacy, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Ekin Dongel Dayanc
- Department of Physiology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Fatma Merve Antmen
- Department of Physiology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
- Biobank Unit, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Elif Keskinöz
- Department of Anatomy, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Esra Altuntaş
- Faculty of Pharmacy, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Gökçen Dolu
- Faculty of Pharmacy, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Berkcan Koç
- Department of Biophysics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Emre Tunçcan
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Damla Şakar
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Ufuk Canözer
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Ceyda Büyüker
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Ece Polat
- Faculty of Pharmacy, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Metincan Erkaya
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Rui Azevedo
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Devrim Öz Arslan
- Department of Biophysics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Agostinho Almeida
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Güldal Süyen
- Department of Physiology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| |
Collapse
|
10
|
Mohd Sahini SN, Mohd Nor Hazalin NA, Srikumar BN, Jayasingh Chellammal HS, Surindar Singh GK. Environmental enrichment improves cognitive function, learning, memory and anxiety-related behaviours in rodent models of dementia: Implications for future study. Neurobiol Learn Mem 2024; 208:107880. [PMID: 38103676 DOI: 10.1016/j.nlm.2023.107880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Environmental enrichment (EE) is a process of brain stimulation by modifying the surroundings, for example, by changing the sensory, social, or physical conditions. Rodents have been used in such experimental strategies through exposure to diverse physical, social, and exploration conditions. The present study conducted an extensive analysis of the existing literature surrounding the impact of EE on dementia rodent models. The review emphasised the two principal aspects that are very closely related to dementia: cognitive function (learning and memory) as well as psychological factors (anxiety-related behaviours such as phobias and unrealistic worries). Also highlighted were the mechanisms involved in the rodent models of dementia showing EE effects. Two search engines, PubMed and Science Direct, were used for data collection using the following keywords: environmental enrichment, dementia, rodent model, cognitive performance, and anxiety-related behaviour. Fifty-five articles were chosen depending on the criteria for inclusion and exclusion. The rodent models with dementia demonstrated improved learning and memory in the form of hampered inflammatory responses, enhanced neuronal plasticity, and sustained neuronal activity. EE housing also prevented memory impairment through the prevention of amyloid beta (Aβ) seeding formation, an early stage of Aβ plaque formation. The rodents subjected to EE were observed to present increased exploratory activity and exert less anxiety-related behaviour, compared to those in standard housing. However, some studies have proposed that EE intervention through exercise would be too mild to counteract the anxiety-related behaviour and risk assessment behaviour deficits in the Alzheimer's disease rodent model. Future studies should be conducted on old-aged rodents and the duration of EE exposure that would elicit the greatest benefits since the existing studies have been conducted on a range of ages and EE durations. In summary, EE had a considerable effect on dementia rodent models, with the most evident being improved cognitive function.
Collapse
Affiliation(s)
- Siti Norhafizah Mohd Sahini
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia; Outpatient Pharmacy Department, Hospital Raja Permaisuri Bainun, 30450 Ipoh, Perak, Malaysia
| | - Nurul Aqmar Mohd Nor Hazalin
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia; Integrative Pharmacogenomics Institute (iPROMiSE), Level 7, FF3, Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Bettadapura N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru - 560029, India
| | - Hanish Singh Jayasingh Chellammal
- Department of Pharmacology and Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia; Brain Degeneration and Therapeutics Group, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
| | - Gurmeet Kaur Surindar Singh
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia; Brain Degeneration and Therapeutics Group, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia.
| |
Collapse
|
11
|
Schilliger Z, Alemán-Gómez Y, Magnus Smith M, Celen Z, Meuleman B, Binz PA, Steullet P, Do KQ, Conus P, Merglen A, Piguet C, Dwir D, Klauser P. Sex-specific interactions between stress axis and redox balance are associated with internalizing symptoms and brain white matter microstructure in adolescents. Transl Psychiatry 2024; 14:30. [PMID: 38233401 PMCID: PMC10794182 DOI: 10.1038/s41398-023-02728-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024] Open
Abstract
Adolescence is marked by the maturation of systems involved in emotional regulation and by an increased risk for internalizing disorders (anxiety/depression), especially in females. Hypothalamic-pituitary-adrenal (HPA)-axis function and redox homeostasis (balance between reactive oxygen species and antioxidants) have both been associated with internalizing disorders and may represent critical factors for the development of brain networks of emotional regulation. However, sex-specific interactions between these factors and internalizing symptoms and their link with brain maturation remain unexplored. We investigated in a cohort of adolescents aged 13-15 from the general population (n = 69) whether sex-differences in internalizing symptoms were associated with the glutathione (GSH)-redox cycle homeostasis and HPA-axis function and if these parameters were associated with brain white matter microstructure development. Female adolescents displayed higher levels of internalizing symptoms, GSH-peroxidase (GPx) activity and cortisol/11-deoxycortisol ratio than males. There was a strong correlation between GPx and GSH-reductase (Gred) activities in females only. The cortisol/11-deoxycortisol ratio, related to the HPA-axis activity, was associated with internalizing symptoms in both sexes, whereas GPx activity was associated with internalizing symptoms in females specifically. The cortisol/11-deoxycortisol ratio mediated sex-differences in internalizing symptoms and the association between anxiety and GPx activity in females specifically. In females, GPx activity was positively associated with generalized fractional anisotropy in widespread white matter brain regions. We found that higher levels of internalizing symptoms in female adolescents than in males relate to sex-differences in HPA-axis function. In females, our results suggest an important interplay between HPA-axis function and GSH-homeostasis, a parameter strongly associated with brain white matter microstructure.
Collapse
Affiliation(s)
- Zoé Schilliger
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Yasser Alemán-Gómez
- Connectomics Lab, Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Mariana Magnus Smith
- Division of General Pediatrics, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Zeynep Celen
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ben Meuleman
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pierre-Alain Binz
- Service of Clinical Chemistry, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Arnaud Merglen
- Division of General Pediatrics, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Camille Piguet
- Division of General Pediatrics, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
12
|
Fisicaro F, Lanza G, Concerto C, Rodolico A, Di Napoli M, Mansueto G, Cortese K, Mogavero MP, Ferri R, Bella R, Pennisi M. COVID-19 and Mental Health: A "Pandemic Within a Pandemic". ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1458:1-18. [PMID: 39102186 DOI: 10.1007/978-3-031-61943-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The COVID-19 pandemic has brought significant changes in daily life for humanity and has had a profound impact on mental health. As widely acknowledged, the pandemic has led to notable increases in rates of anxiety, depression, distress, and other mental health-related issues, affecting both infected patients and non-infected individuals. COVID-19 patients and survivors face heightened risks for various neurological and psychiatric disorders and complications. Vulnerable populations, including those with pre-existing mental health conditions and individuals living in poverty or frailty, may encounter additional challenges. Tragically, suicide rates have also risen, particularly among young people, due to factors such as unemployment, financial crises, domestic violence, substance abuse, and social isolation. Efforts are underway to address these mental health issues, with healthcare professionals urged to regularly screen both COVID-19 and post-COVID-19 patients and survivors for psychological distress, ensuring rapid and appropriate interventions. Ongoing periodic follow-up and multidimensional, interdisciplinary approaches are essential for individuals experiencing long-term psychiatric sequelae. Preventive strategies must be developed to mitigate mental health problems during both the acute and recovery phases of COVID-19 infection. Vaccination efforts continue to prioritize vulnerable populations, including those with mental health conditions, to prevent future complications. Given the profound implications of mental health problems, including shorter life expectancy, diminished quality of life, heightened distress among caregivers, and substantial economic burden, it is imperative that political and health authorities prioritize the mental well-being of all individuals affected by COVID-19, including infected individuals, non-infected individuals, survivors, and caregivers.
Collapse
Affiliation(s)
- Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Via Santa Sofia 78, 95123, Catania, Italy.
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Via Conte Ruggero 78, 94018, Troina, Italy.
| | - Carmen Concerto
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Via Santa Sofia 89, 95123, Catania, Italy
| | - Alessandro Rodolico
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Via Santa Sofia 89, 95123, Catania, Italy
| | - Mario Di Napoli
- Neurological Service, SS Annunziata Hospital, Viale Mazzini 100, 67039, Sulmona, L'Aquila, Italy
| | - Gelsomina Mansueto
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Piazza L. Miraglia 2, 80138, Naples, Italy
- Clinical Department of Laboratory Services and Public Health-Legal Medicine Unit, University of Campania "Luigi Vanvitelli", Via Luciano Armanni 5, 80138, Naples, Italy
| | - Klizia Cortese
- Department of Educational Sciences, University of Catania, Via Teatro Greco 84, 95124, Catania, Italy
| | - Maria P Mogavero
- Sleep Disorders Center, Division of Neuroscience, San Raffaele Scientific Institute, Via Stamira d'Ancona 20, 20127, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Raffaele Ferri
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Via Conte Ruggero 78, 94018, Troina, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy
| |
Collapse
|
13
|
Filipović D, Novak B, Xiao J, Yan Y, Bernardi RE, Turck CW. Chronic fluoxetine treatment in socially-isolated rats modulates the prefrontal cortex synaptoproteome. J Proteomics 2023; 282:104925. [PMID: 37164273 DOI: 10.1016/j.jprot.2023.104925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
Exposure to chronic social isolation (CSIS) and synapse dysfunction have been implicated in the etiology of major depressive disorder (MDD). Fluoxetine (Flx) has been widely used to treat MDD, but its mechanisms of action remain elusive. We employed comparative synaptoproteomics to investigate the changes in the levels of proteins and molecular signaling pathways in prefrontal cortical samples of adult male Wistar rats exposed to CSIS, a rat model of depression, and CSIS rats treated with chronic Flx and controls, using liquid chromatography coupled to tandem mass spectrometry. Flx-treated control rats showed a decreased level of proteins involved in vesicle-mediated transport, and a predominantly increased level of exocytosis-associated proteins. CSIS significantly reduced the level of proteins involved in the ATP metabolic process, clathrin-dependent endocytosis, and proteolysis. Flx treatment in CSIS rats stimulated synaptic vesicle trafficking by increasing the regulation of exo/endocytosis-associated proteins, proteins involved in synaptic plasticity including neurogenesis, Cox5a, mitochondria-associated proteins involved in oxidative phosphorylation, and ion transport proteins (Slc8a2, Atp1b2). Flx treatment resulted in an increased synaptic vesicle dynamic, plasticity and mitochondrial functionality, and a suppression of CSIS-induced impairment of these processes. BIOLOGICAL SIGNIFICANCE: Identifying biomarkers of MDD and treatment response is the goal of many studies. Contemporary studies have shown that many molecular alterations associated with the pathophysiology of MDD reside within the synapse. As part of this research, a growing importance is the use of proteomics, as monitoring the changes in protein levels enables the identification of (possible) biochemical pathways and processes of importance for the development of depressive-like behavior and the efficacy of antidepressant treatments. We profiled proteomic changes representative of the development of CSIS-induced depressive-like behavior and the antidepressant effects of Flx. Our study has identified synaptosomal proteins and altered molecular pathways that may be potential markers of prefrontal cortical synaptic dysfunction associated with depressive-like behavior, and further clarified the mechanisms of depressive-like behavior and mode of action of Flx. Our findings indicate potential PFC synaptic targets for antidepressant treatment.
Collapse
Affiliation(s)
- Dragana Filipović
- Department of Molecular Biology and Endocrinology, "VINČA", Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Božidar Novak
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jinqiu Xiao
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Yu Yan
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Rick E Bernardi
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph W Turck
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
14
|
Broadfoot CK, Lenell C, Kelm-Nelson CA, Ciucci MR. Effects of social isolation on 50-kHz ultrasonic vocalizations, affective state, cognition, and neurotransmitter concentrations in the ventral tegmental and locus coeruleus of adult rats. Behav Brain Res 2023; 437:114157. [PMID: 36241070 PMCID: PMC9829432 DOI: 10.1016/j.bbr.2022.114157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/23/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
Abstract
Vocal communication, cognition, and affective state are key features of sustained health and wellness, and because vocalizations are often socially-motivated, social experience likely plays a role in these behaviors. The monoaminergic systems of the ventral tegmental area (VTA) and the locus coeruleus (LC) are associated with social and reward processing, vocalization production, and neurotransmitter changes in response to environmental stressors. The effect of social isolation on these complex behaviors and the underlying neural mechanisms is relatively unknown. To add to this body of literature, we randomized adult male Long-Evans rats to control (housed with a cagemate) or isolated (housed individually) conditions and assayed ultrasonic vocalizations, cognition (novel object recognition test), anxiety (elevated plus maze) and anhedonia (sucrose preference test) at 2, 4, 6, 8, and 10 months of age. At 10 months, VTA and LC samples were assayed for dopamine, norepinephrine, and serotonin using high performance liquid chromatography. We tested the hypotheses that isolation 1) diminishes vocalizations and cognition, 2) increases anxiety and depression, and 3) increases levels of dopamine, norepinephrine, and serotonin in the VTA and LC. Results showed isolation significantly reduced vocalization tonality (signal-to-noise ratio) and increased maximum frequency. There were no significant findings for cognition, anxiety, or anhedonia. Dopamine and serotonin and their respective metabolites were significantly increased in the VTA in isolated rats. These findings suggest chronic changes to social condition such as isolation affects vocalization production and levels of VTA neurotransmitters.
Collapse
Affiliation(s)
- Courtney K Broadfoot
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, 1975 Willow Drive, Madison, WI 53706, USA; Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, USA.
| | - Charles Lenell
- Department of Audiology and Speech-Language Sciences, University of Northern Colorado, 1400 Gunter Hall, Greenly, CO 80639, USA
| | - Cynthia A Kelm-Nelson
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, USA
| | - Michelle R Ciucci
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, 1975 Willow Drive, Madison, WI 53706, USA; Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, USA; Neuroscience Training Program, University of Wisconsin-Madison, 9531 MIMR II, 1111 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
15
|
Craine TJ, Race NS, Kutash LA, Iouchmanov AL, Moschonas EH, O'Neil DA, Sunleaf CR, Patel A, Patel N, Grobengeiser KO, Marshall IP, Magdelinic TN, Cheng JP, Bondi CO. Milnacipran Ameliorates Executive Function Impairments following Frontal Lobe Traumatic Brain Injury in Male Rats: A Multimodal Behavioral Assessment. J Neurotrauma 2023; 40:112-124. [PMID: 35979888 PMCID: PMC10024072 DOI: 10.1089/neu.2022.0289] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Traumatic brain injuries (TBIs) affect more than 10 million patients annually worldwide, causing long-term cognitive and psychosocial impairments. Frontal lobe TBIs commonly impair executive function, but laboratory models typically focus primarily on spatial learning and declarative memory. We implemented a multi-modal approach for clinically relevant cognitive-behavioral assessments of frontal lobe function in rats with TBI and assessed treatment benefits of the serotonin-norepinephrine reuptake inhibitor, milnacipran (MLN). Two attentional set-shifting tasks (AST) evaluated cognitive flexibility via the rats' ability to locate food-based rewards by learning, unlearning, and relearning sequential rule sets with shifting salient cues. Adult male rats reached stable pre-injury operant AST (oAST) performance in 3-4 weeks, then were isoflurane-anesthetized, subjected to a unilateral frontal lobe controlled cortical impact (2.4 mm depth, 4 m/sec velocity) or Sham injury, and randomized to treatment conditions. Milnacipran (30 mg/kg/day) or vehicle (VEH; 10% ethanol in saline) was administered intraperitoneally via implanted osmotic minipumps (continuous infusions post-surgery, 60 μL/h). Rats had a 10-day recovery post-TBI/Sham before performing light/location-based oAST for 10 days and, subsequently, odor/media-based digging AST (dAST) on the last test day (26-27 days post-injury) before sacrifice. Both AST tests revealed significant deficits in TBI+VEH rats, seen as elevated total trials and errors (p < 0.05), which generally normalized in MLN-treated rats (p < 0.05). This first simultaneous dual AST assessment demonstrates oAST and dAST are sufficiently sensitive and robust to detect subtle attentional and cognitive flexibility executive impairments after frontal lobe TBI in rats. Chronic MLN administration shows promise for attenuation of post-TBI executive function deficits, thus meriting further investigation.
Collapse
Affiliation(s)
- Timothy J. Craine
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- University of Bath, Claverton Down, Bath, United Kingdom
| | - Nicholas S. Race
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Association of Academic Physiatrists Rehabilitation Medicine Scientist Training Program, Owings Mills, Maryland, USA
| | - Lindsay A. Kutash
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anna L. Iouchmanov
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Eleni H. Moschonas
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Darik A. O'Neil
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Carlson R. Sunleaf
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aarti Patel
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nima Patel
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Katherine O. Grobengeiser
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ian P. Marshall
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Taylor N. Magdelinic
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jeffrey P. Cheng
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Corina O. Bondi
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurobiology, and University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
16
|
Zeng F, Parker K, Zhan Y, Miller M, Zhu MY. Upregulated DNA Damage-Linked Biomarkers in Parkinson's Disease Model Mice. ASN Neuro 2023; 15:17590914231152099. [PMID: 36683340 PMCID: PMC9880594 DOI: 10.1177/17590914231152099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
SUMMARY STATEMENT The present study examined expression of DNA damage markers in VMAT2 Lo PD model mice. The results demonstrate there is a significant increase in these DNA damage markers mostly in the brain regions of 18- and 23-month-old model mice, indicating oxidative stress-induced DNA lesion is an important pathologic feature of this mouse model.
Collapse
Affiliation(s)
- Fei Zeng
- Department of Neurology, Renmin Hospital of the Wuhan University,
Wuhan, China
- Departments of Biomedical Sciences, Quillen College of Medicine, East Tennessee State
University, Johnson City, TN, USA
| | - Karsten Parker
- Departments of Biomedical Sciences, Quillen College of Medicine, East Tennessee State
University, Johnson City, TN, USA
| | - Yanqiang Zhan
- Department of Neurology, Renmin Hospital of the Wuhan University,
Wuhan, China
- Departments of Biomedical Sciences, Quillen College of Medicine, East Tennessee State
University, Johnson City, TN, USA
| | - Matthew Miller
- Departments of Biomedical Sciences, Quillen College of Medicine, East Tennessee State
University, Johnson City, TN, USA
| | - Meng-Yang Zhu
- Departments of Biomedical Sciences, Quillen College of Medicine, East Tennessee State
University, Johnson City, TN, USA
| |
Collapse
|
17
|
Kaplan GB, Dadhi NA, Whitaker CS. Mitochondrial dysfunction in animal models of PTSD: Relationships between behavioral models, neural regions, and cellular maladaptation. Front Physiol 2023; 14:1105839. [PMID: 36923289 PMCID: PMC10009692 DOI: 10.3389/fphys.2023.1105839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a trauma-related condition that produces distressing fear memory intrusions, avoidance behaviors, hyperarousal, stress responses, insomnia and other symptoms. This review of rodent models of PTSD examines trauma effects on fear-related learning, cognition, and avoidance, emotional and arousal behaviors and on mitochondrial dysfunction in relevant neural pathways. The review focuses on research that includes four elements: consensus PTSD rodent models, behavioral phenotyping, mitochondrial dysfunction within key neural regions. This approach allows for the integration of behavioral, neural and cellular findings in PTSD models. The PTSD models reviewed include fear conditioning, predator/social stress, chronic restraint stress, single prolonged stress, social isolation, chronic unpredictable stress and early life stress. These models produce a variety of PTSD-related behaviors that include associative and non-associative fear- and stress-related responses, hyperarousal, avoidance behaviors, cognitive disturbances, social withdrawal, compulsive behaviors, anhedonia-, anxiety- and depression-related behaviors. Neural regions included fear- and stress-related regions of the prefrontal cortex, hippocampal, amygdala, nucleus accumbens and hypothalamus. PTSD models produced mitochondrial dysfunction that includes dysregulation of oxidative phosphorylation and other metabolic pathways including β-oxidation of fatty acids and the tricarboxylic acid pathway. These models generated neural reactive oxygen species that damage DNA, proteins, and lipids. Trauma models further altered mitochondrial structure and replication and affected neuroinflammatory responses, signal transduction and apoptosis. Antidepressant medications used for the treatment of PTSD reversed stress-induced changes in some PTSD-like behaviors and many elements of brain mitochondrial dysfunction. Future studies can develop PTSD models which are ecologically valid and result in a broader manifestation of PTSD-related behaviors as it is clinically defined. This review highlights mitochondrial mechanisms associated with PTSD-like behaviors that have been produced in an array of consensus PTSD models and identifies putative circuit-based targets for more effective treatment for this debilitating disorder.
Collapse
Affiliation(s)
- Gary B Kaplan
- Mental Health Service, VA Boston Healthcare System, West Roxbury, MA, United States.,Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States.,Graduate Program in Neuroscience, Boston University, Boston, MA, United States
| | | | | |
Collapse
|
18
|
Ji N, Lei M, Chen Y, Tian S, Li C, Zhang B. How Oxidative Stress Induces Depression? ASN Neuro 2023; 15:17590914231181037. [PMID: 37331994 DOI: 10.1177/17590914231181037] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023] Open
Abstract
Depression increasingly affects a wide range and a large number of people worldwide, both physically and psychologically, which makes it a social problem requiring prompt attention and management. Accumulating clinical and animal studies have provided us with substantial insights of disease pathogenesis, especially central monoamine deficiency, which considerably promotes antidepressant research and clinical treatment. The first-line antidepressants mainly target the monoamine system, whose drawbacks mainly include slow action and treatment resistant. The novel antidepressant esketamine, targeting on central glutamatergic system, rapidly and robustly alleviates depression (including treatment-resistant depression), whose efficiency is shadowed by potential addictive and psychotomimetic side effects. Thus, exploring novel depression pathogenesis is necessary, for seeking more safe and effective therapeutic methods. Emerging evidence has revealed vital involvement of oxidative stress (OS) in depression, which inspires us to pursue antioxidant pathway for depression prevention and treatment. Fully uncovering the underlying mechanisms of OS-induced depression is the first step towards the avenue, thus we summarize and expound possible downstream pathways of OS, including mitochondrial impairment and related ATP deficiency, neuroinflammation, central glutamate excitotoxicity, brain-derived neurotrophic factor/tyrosine receptor kinase B dysfunction and serotonin deficiency, the microbiota-gut-brain axis disturbance and hypothalamic-pituitary-adrenocortical axis dysregulation. We also elaborate on the intricate interactions between the multiple aspects, and molecular mechanisms mediating the interplay. Through reviewing the related research progress in the field, we hope to depict an integral overview of how OS induces depression, in order to provide fresh ideas and novel targets for the final goal of efficient treatment of the disease.
Collapse
Affiliation(s)
- Na Ji
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| | - Mengzhu Lei
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| | - Yating Chen
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| | - Shaowen Tian
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| | - Chuanyu Li
- The School of Public Health, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin Guangxi, China
| | - Bo Zhang
- The School of Public Health, Faculty of Basic Medical Sciences, Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin Guangxi, China
| |
Collapse
|
19
|
Filipović D, Costina V, Findeisen P, Inta D. Fluoxetine Enhances Synaptic Vesicle Trafficking and Energy Metabolism in the Hippocampus of Socially Isolated Rats. Int J Mol Sci 2022; 23:ijms232315351. [PMID: 36499675 PMCID: PMC9735484 DOI: 10.3390/ijms232315351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic social isolation (CSIS)-induced alternation in synaptic and mitochondrial function of specific brain regions is associated with major depressive disorder (MDD). Despite the wide number of available medications, treating MDD remains an important challenge. Although fluoxetine (Flx) is the most frequently prescribed antidepressant, its mode of action is still unknown. To delineate affected molecular pathways of depressive-like behavior and identify potential targets upon Flx treatment, we performed a comparative proteomic analysis of hippocampal purified synaptic terminals (synaptosomes) of rats exposed to six weeks of CSIS, an animal model of depression, and/or followed by Flx treatment (lasting three weeks of six-week CSIS) to explore synaptic protein profile changes. Results showed that Flx in controls mainly induced decreased expression of proteins involved in energy metabolism and the redox system. CSIS led to increased expression of proteins that mainly participate in Ca2+/calmodulin-dependent protein kinase II (Camk2)-related neurotransmission, vesicle transport, and ubiquitination. Flx treatment of CSIS rats predominantly increased expression of proteins involved in synaptic vesicle trafficking (exocytosis and endocytosis), and energy metabolism (glycolytic and mitochondrial respiration). Overall, these Flx-regulated changes in synaptic and mitochondrial proteins of CSIS rats might be critical targets for new therapeutic development for the treatment of MDD.
Collapse
Affiliation(s)
- Dragana Filipović
- Department of Molecular Biology and Endocrinology, “VINČA”, Institute of Nuclear Sciences—National Institute of thе Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
- Correspondence: ; Tel./Fax: +381-(11)-6455-561
| | - Victor Costina
- Institute for Clinical Chemistry, Medical Faculty Mannheim of the University of Heidelberg, University Hospital Mannheim, 68159 Mannhem, Germany
| | - Peter Findeisen
- Institute for Clinical Chemistry, Medical Faculty Mannheim of the University of Heidelberg, University Hospital Mannheim, 68159 Mannhem, Germany
| | - Dragos Inta
- Department for Community Health Faculty of Natural Sciences, Medicine University of Fribourg, 1700 Fribourg, Switzerland
- Department of Biomedicine, University of Basel, 4052 Basel, Switzerland
| |
Collapse
|
20
|
Yin W, Swanson SP, Biltz RG, Goodman EJ, Gallagher NR, Sheridan JF, Godbout JP. Unique brain endothelial profiles activated by social stress promote cell adhesion, prostaglandin E2 signaling, hypothalamic-pituitary-adrenal axis modulation, and anxiety. Neuropsychopharmacology 2022; 47:2271-2282. [PMID: 36104533 PMCID: PMC9630498 DOI: 10.1038/s41386-022-01434-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/06/2022] [Accepted: 08/16/2022] [Indexed: 02/05/2023]
Abstract
Chronic stress may precipitate psychiatric disorders including anxiety. We reported that Repeated Social Defeat (RSD) in mice increased accumulation of inflammatory monocytes within the brain vasculature, which corresponded with increased interleukin (IL)-1 Receptor 1-mediated activation of endothelia, and augmented anxiety-like behavior. One unknown, however, is the role of immune-activated endothelia in regulating the physiological and behavioral responses to social stress. Thus, we sought to determine the RNA profile of activated endothelia and delineate the pathways by which these endothelia communicate within the brain to influence key responses to social stress. First, endothelial-specific RiboTag mice were exposed to RSD and brain endothelial mRNA profiles from the whole brain and prefrontal cortex were determined using RNAseq. RSD increased expression of cell adhesion molecules (Icam1), inflammatory genes (Lrg1, Lcn2, Ackr1, Il1r1), and cyclooxygenase-2 (Ptgs2/COX-2). In studies with IL-1R1KO mice, there was clear dependence on IL-1R1 on endothelia-associated transcripts including Lrg1, Icam1, Lcn2. Moreover, prostaglandin (PG)E2 was increased in the brain after RSD and Ptgs2 was localized to endothelia, especially within the hypothalamus. Next, a selective COX-2 inhibitor, Celecoxib (CCB), was used with social stress. RSD increased PGE2 in the brain and this was abrogated by CCB. Moreover, CCB reduced RSD-induced Hypothalamic-Pituitary-Adrenal (HPA) axis activation with attenuation of hypothalamic paraventricular neuron activation, hypothalamic Crh expression, and corticosterone in circulation. Production, release, and accumulation of inflammatory monocytes after RSD was COX-2 independent. Nonetheless, CCB blocked anxiety-like behavior in response to RSD. Collectively, social stress stimulated specific endothelia RNA profiles associated with increased cell adhesion, IL-1 and prostaglandin signaling, HPA axis activation, and anxiety.
Collapse
Affiliation(s)
- Wenyuan Yin
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, 43210, Columbus, OH, USA
| | - Samuel P Swanson
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, 43210, Columbus, OH, USA
| | - Rebecca G Biltz
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, 43210, Columbus, OH, USA
| | - Ethan J Goodman
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, 43210, Columbus, OH, USA
| | - Natalie R Gallagher
- Institute for Behavioral Medicine Research, Wexner Medicine Center, The Ohio State University, 43210, Columbus, OH, USA
- Division of Biosciences, College of Dentistry, The Ohio State University, 43210, Columbus, OH, USA
| | - John F Sheridan
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, 43210, Columbus, OH, USA.
- Institute for Behavioral Medicine Research, Wexner Medicine Center, The Ohio State University, 43210, Columbus, OH, USA.
- Division of Biosciences, College of Dentistry, The Ohio State University, 43210, Columbus, OH, USA.
| | - Jonathan P Godbout
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, 43210, Columbus, OH, USA.
- Institute for Behavioral Medicine Research, Wexner Medicine Center, The Ohio State University, 43210, Columbus, OH, USA.
| |
Collapse
|
21
|
Dihydromyricetin ameliorates social isolation-induced anxiety by modulating mitochondrial function, antioxidant enzymes, and BDNF. Neurobiol Stress 2022; 21:100499. [DOI: 10.1016/j.ynstr.2022.100499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/08/2022] Open
|
22
|
Grigoryan GA, Pavlova IV, Zaichenko MI. Effects of Social Isolation on the Development of Anxiety and Depression-Like Behavior in Model Experiments in Animals. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2022; 52:722-738. [PMID: 36119650 PMCID: PMC9471030 DOI: 10.1007/s11055-022-01297-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/02/2021] [Indexed: 11/24/2022]
Abstract
This review describes the role of social isolation in the development of anxiety and depression-like behavior in rodents. The duration of social isolation, age from onset of social isolation, sex, species, and strain of animals, the nature of the model used, and other factors have been shown to have influences. The molecular-cellular mechanisms of development of anxiety and depression-like behavior under the influence of social isolation and the roles of the HHAS, oxidative and nitrosative stress, neuroinflammation, BDNF, neurogenesis, synaptic plasticity, as well as monoamines in these mechanisms are discussed. This review presents data on sex differences in the effects of social isolation, along with the effects of interactions with other types of stress, and the roles of an enriched environment and other factors in ameliorating the negative sequelae of social isolation.
Collapse
Affiliation(s)
- G. A. Grigoryan
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - I. V. Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - M. I. Zaichenko
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
23
|
Filipović D, Novak B, Xiao J, Yan Y, Yeoh K, Turck CW. Chronic Fluoxetine Treatment of Socially Isolated Rats Modulates Prefrontal Cortex Proteome. Neuroscience 2022; 501:52-71. [PMID: 35963583 DOI: 10.1016/j.neuroscience.2022.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022]
Abstract
Fluoxetine (Flx) is the most commonly used antidepressant to treat major depressive disorder. However, its molecular mechanisms of action are not defined as yet. A comparative proteomic approach was used to identify proteome changes in the prefrontal cortex (PFC) cytosolic and non-synaptic mitochondria (NSM)-enriched fractions of adult male Wistar rats following chronic social isolation (CSIS), a rat model of depression, and Flx treatment in CSIS and control rats, using liquid chromatography online tandem mass spectrometry. Flx reversed CSIS-induced depressive - like behavior according to preference for sucrose and immobility in the forced swim test, indicating its antidepressant effect. Flx treatment in controls led to an increase of the expression of cytosolic proteins involved in the microtubule cytoskeleton and intracellular calcium homeostasis and of enzymes involved in bioenergetic and transmembrane transport in NSM. CSIS downregulated the cytosolic proteins involved in proteasome pathway, and glutathione antioxidative system, and upregulated the expression of enzymes participating in mitochondrial-energy metabolism and transport. The presence of cytochrome c in the cytosol may suggest compromised mitochondrial membrane integrity. Flx treatment in CSIS rats downregulated protein involved in oxidative phosphorylation, such as complex III and manganese superoxide dismutase, and upregulated vesicle-mediated transport and synaptic signaling proteins in the cytosol, and neuronal calcium-binding protein 1 in NSM. Our study identified PFC modulated proteins and affected biochemical pathways that may represent potential markers/targets underlying CSIS-induced depression and effective Flx treatment, and highlights the role of protein systems involved in NSM and various metabolic pathways potentially involved in neuronal plasticity.
Collapse
Affiliation(s)
- Dragana Filipović
- Department of Molecular Biology and Endocrinology, "VINČA", Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Božidar Novak
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jinqiu Xiao
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Yu Yan
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Karin Yeoh
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Christoph W Turck
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
24
|
Guven EB, Pranic NM, Unal G. The differential effects of brief environmental enrichment following social isolation in rats. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:818-832. [PMID: 35199313 PMCID: PMC8865499 DOI: 10.3758/s13415-022-00989-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 11/08/2022]
Abstract
Environmental enrichment (EE) in rodents is associated with a wide range of physiological, affective, and cognitive benefits. A seemingly opposite housing condition, social isolation (SI), is used as a rodent model of stress, negatively affecting several neurobiological mechanisms and hampering cognitive performance. Experimental designs that involve switching between these housing conditions produced mixed results. We evaluated different behavioral and cognitive effects of brief EE following long-term, SI-induced stress. We revealed the influence of enrichment after 30 days of isolation on behavioral despair, anxiety-like behavior, and spatial working memory in adult male Wistar rats and found a substantial anxiolytic effect in the experimental (SI to EE) group. Interestingly, rats exposed to EE also showed increased behavioral despair compared with the control (continuous SI) group. There was no difference in spatial working memory performance at the end of a 5-day water Y-maze (WYM) test. However, the SI to EE animals displayed better memory performance in the first 2 days of the WYM, indicating faster learning. In line with this difference, we recorded significantly more c-Fos-immunopositive (c-Fos+) cells in the retrosplenial and perirhinal cortices of the SI to EE animals. The lateral and basolateral nuclei of the amygdala showed no such difference. These results suggest that brief enrichment following isolation stress leads to differential results in affective and cognitive systems.
Collapse
Affiliation(s)
- Elif Beyza Guven
- Department of Psychology, Behavioral Neuroscience Laboratory, Boğaziçi University, 34342, Istanbul, Turkey
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| | - Nicole Melisa Pranic
- Department of Psychology, Behavioral Neuroscience Laboratory, Boğaziçi University, 34342, Istanbul, Turkey
- Department of Psychology, Cornell University, Ithaca, NY, USA
| | - Gunes Unal
- Department of Psychology, Behavioral Neuroscience Laboratory, Boğaziçi University, 34342, Istanbul, Turkey.
| |
Collapse
|
25
|
Pan S, Ma Y, Yang R, Lu X, You Q, Ye T, Huang C. Indole-3-Carbinol Selectively Prevents Chronic Stress-Induced Depression-but not Anxiety-Like Behaviors via Suppressing Pro-Inflammatory Cytokine Production and Oxido-Nitrosative Stress in the Brain. Front Pharmacol 2022; 13:829966. [PMID: 35242039 PMCID: PMC8886242 DOI: 10.3389/fphar.2022.829966] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/24/2022] [Indexed: 01/01/2023] Open
Abstract
Indole-3-carbinol (I3C), a phytochemical enriched in most cruciferous vegetables, has been shown to display various biological activities such as anti-oxidative stress, anti-inflammation, and anti-carcinogenesis. In this study, we investigated the regulatory effect of I3C on chronic stress-induced behavioral abnormalities in mice. Results showed that repeated I3C treatment at the dose of 10, 30, and 60 mg/kg prevented chronic social defeat stress (CSDS)-induced behavioral abnormalities in the tail suspension test, forced swimming test, sucrose preference test, and social interaction test in mice, and did not affect CSDS-induced behavioral abnormalities in the elevated plus maze, light-dark test, and open-field test, suggesting that the I3C treatment selectively prevents the onset of depression- but not anxiety-like behaviors in chronically stressed mice. Further analysis demonstrated that repeated I3C treatment (60 mg/kg, 10 days) prevented CSDS-induced increases in levels of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) mRNA and protein, but did not affect CSDS-induced decreases in levels of IL-4, IL-10, and Ym-1 mRNA and/or protein in the hippocampus and prefrontal cortex, suggesting that I3C can selectively prevent chronic stress-induced pro-inflammatory but not anti-inflammatory responses in the brain. Further analysis showed that repeated I3C treatment (60 mg/kg, 10 days) prevented CSDS-induced increases in levels of nitrite and malondialdehyde (MDA), decreases in contents of glutathione (GSH), and decreases in levels of brain derived neurotrophic factor (BDNF) protein in the hippocampus and prefrontal cortex. These results demonstrated that I3C selectively prevents chronic stress-induced depression-like behaviors in mice likely through suppressing neuroinflammation and oxido-nitrosative stress in the brain.
Collapse
Affiliation(s)
- Shengying Pan
- Department of Neurology, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, China
| | - Yaoying Ma
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Rongrong Yang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Qingsheng You
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Ting Ye
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| |
Collapse
|
26
|
Abu-Elfotuh K, Al-Najjar AH, Mohammed AA, Aboutaleb AS, Badawi GA. Fluoxetine ameliorates Alzheimer's disease progression and prevents the exacerbation of cardiovascular dysfunction of socially isolated depressed rats through activation of Nrf2/HO-1 and hindering TLR4/NLRP3 inflammasome signaling pathway. Int Immunopharmacol 2022; 104:108488. [PMID: 35042170 DOI: 10.1016/j.intimp.2021.108488] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/29/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022]
Abstract
Depression is a risk factor for Alzheimer's (AD) and cardiovascular diseases (CVD). Therefore, depression treatment restricts its deteriorating effects on mood, memory and CV system. Fluoxetine is the most widely used antidepressant drug, it has neuroprotective effect through its antioxidant/anti-inflammatory properties. The current study investigated for the first-time the cross link between depression, AD and CVD besides, role of fluoxetine in mitigating such disorders. Depression was induced in rats by social isolation (SI) for 12 weeks, AlCL3 (70 mg/kg/day, i.p.) was used to induce AD which was administered either in SI or normal control (NC) grouped rats starting at 8th week till the end of the experiment, fluoxetine (10 mg/kg/day, p.o) treatment also was started at 8th week. SI and AD showed a statistically significant deteriorated effect on behavioral, neurochemical and histopathological analysis which was exaggerated when two disorder combined than each alone. Fluoxetine treatment showed protective effect against SI, AD and prevents exacerbation of CVD. Fluoxetine improved animals' behavior, increased brain monoamines, BDNF besides increased antioxidant defense mechanism of SOD, TAC contents and increased protein expression of Nrf2/HO-1 with significant decrease of AChE activity, β-amyloid, Tau protein, MDA, TNF-α, IL1β contents as well as decreased protein expression of NF-kB, TLR4, NLRP3 and caspase1. It also showed cardioprotective effects as it improved lipid profile with pronounced decrease of cardiac enzymes of CK-MB, troponin and MEF2. In conclusion, fluoxetine represents as a promising drug against central and peripheral disorders through its anti-inflammatory/antioxidant effects via targeting antioxidant Nrf2/HO-1 and hindering TLR4/NLRP3 inflammasome signaling pathways.
Collapse
Affiliation(s)
- Karema Abu-Elfotuh
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Aya H Al-Najjar
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Asmaa A Mohammed
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Amany S Aboutaleb
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Ghada A Badawi
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Sinai University, El Arish, Egypt.
| |
Collapse
|
27
|
Faborode OS, Dalle E, Mabandla MV. Inescapable footshocks induce molecular changes in the prefrontal cortex of rats in an amyloid-beta-42 model of Alzheimer's disease. Behav Brain Res 2022; 419:113679. [PMID: 34826515 DOI: 10.1016/j.bbr.2021.113679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD) affects several brain areas, including the prefrontal cortex (PFC) involved in execution, working memory, and fear extinction. Despite these critical roles, the PFC is understudied in AD pathology. People with post-traumatic stress disorder (PTSD) have twice the risk of developing AD, and the underlying mechanisms linking these two diseases are less understood. Here, we investigated the effect of footshock stress on behavioural vis-a-vis molecular changes in the PFC of an amyloid-beta (Aβ)-42 lesion rat model of AD. Trauma-like conditions were induced by exposing the animals to several footshocks. AD-like condition was induced via intra-hippocampal injection of Aβ-42 peptide. Following Aβ-42 injections, animals were tested for behavioural changes using the Open Field Test (OFT) and Y-maze test. The PFC was later harvested for neurochemical analyses. Our results showed an interactive effect of footshocks and Aβ-42 lesion on: reduced percentage alternation in the Y-maze test, suggesting memory impairment; reduced number of line crosses and time spent in the centre square of the OFT, indicating anxiogenic responses. Similarly, there was an interactive effect of footshocks and Aβ-42 lesion on: increased FK506 binding protein 51 (FKBP5) expression, which can be associated with stress-induced anxiogenic behaviours; and increased neuronal apoptosis in the PFC of the animals. In addition, footshocks, as well as Aβ-42 lesion, reduced superoxide dismutase levels and Bridging Integrator-1 (BIN1) expression in the PFC of the animals, which can be linked to the observed memory impairment. In conclusion, our findings indicate that footshocks exaggerate PFC-associated behavioural and molecular changes induced by an AD-like pathology.
Collapse
MESH Headings
- Alzheimer Disease/chemically induced
- Alzheimer Disease/etiology
- Alzheimer Disease/metabolism
- Alzheimer Disease/physiopathology
- Amyloid beta-Peptides/pharmacology
- Animals
- Anxiety/chemically induced
- Anxiety/etiology
- Anxiety/metabolism
- Anxiety/physiopathology
- Apoptosis/drug effects
- Apoptosis/physiology
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Disease Models, Animal
- Electroshock
- Male
- Memory Disorders/chemically induced
- Memory Disorders/etiology
- Memory Disorders/metabolism
- Memory Disorders/physiopathology
- Memory, Short-Term/drug effects
- Memory, Short-Term/physiology
- Peptide Fragments/pharmacology
- Prefrontal Cortex/metabolism
- Prefrontal Cortex/physiopathology
- Rats
- Rats, Sprague-Dawley
- Stress Disorders, Post-Traumatic/chemically induced
- Stress Disorders, Post-Traumatic/etiology
- Stress Disorders, Post-Traumatic/metabolism
- Stress Disorders, Post-Traumatic/physiopathology
- Tacrolimus Binding Proteins/metabolism
Collapse
Affiliation(s)
- Oluwaseun Samuel Faborode
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa.
| | - Ernest Dalle
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa.
| | - Musa Vuyisile Mabandla
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa.
| |
Collapse
|
28
|
Nemutlu Samur D, Akçay G, Yıldırım S, Özkan A, Çeker T, Derin N, Tanrıöver G, Aslan M, Ağar A, Özbey G. Vortioxetine ameliorates motor and cognitive impairments in the rotenone-induced Parkinson's disease via targeting TLR-2 mediated neuroinflammation. Neuropharmacology 2022; 208:108977. [PMID: 35092748 DOI: 10.1016/j.neuropharm.2022.108977] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/06/2022] [Accepted: 01/21/2022] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is characterized by motor and non-motor symptoms associated with dopaminergic and non-dopaminergic injury. Vortioxetine is a multimodal serotonergic antidepressant with potential procognitive effects. This study aimed to explore the effects of vortioxetine on motor functions, spatial learning and memory, and depression-like behavior in the rotenone-induced rat model of PD. Male Sprague-Dawley rats were daily administered with the rotenone (2 mg·kg-1, s.c.) and/or vortioxetine (10 mg·kg-1, s.c.) for 28 days. Motor functions (rotarod, catalepsy, open-field), depression-like behaviors (sucrose preference test), anxiety (elevated plus maze), and spatial learning and memory abilities (novel object recognition and Morris water maze) were evaluated in behavioral tests. Then immunohistochemical, neurochemical, and biochemical analysis on specific brain areas were performed. Vortioxetine treatment markedly reduced rotenone-induced neurodegeneration, improved motor and cognitive dysfunction, decreased depression-like behaviors without affecting anxiety-like parameters. Vortioxetine also restored the impaired inflammatory response and affected neurotransmitter levels in brain tissues. Interestingly, vortioxetine was thought to trigger a sort of dysfunction in basal ganglia as evidenced by increased Toll-like receptor-2 (TLR-2) and decreased TH immunoreactivity only in substantia nigra tissue of PD rats compared to the control group. The present study indicates that vortioxetine has beneficial effects on motor dysfunction as well as cognitive impairment associated with neurodegeneration in the rotenone-induced PD model. Possible mechanisms underlying these beneficial effects cover TLR-2 inhibition and neurochemical restoration of vortioxetine.
Collapse
Affiliation(s)
- Dilara Nemutlu Samur
- Akdeniz University, Faculty of Medicine, Department of Pharmacology, 07058, Antalya, Turkey.
| | - Güven Akçay
- Akdeniz University, Faculty of Medicine, Department of Biophysics, 07058, Antalya, Turkey
| | - Sendegül Yıldırım
- Akdeniz University, Faculty of Medicine, Department of Histology and Embryology, 07058, Antalya, Turkey
| | - Ayşe Özkan
- Akdeniz University, Faculty of Medicine, Department of Physiology, 07058, Antalya, Turkey
| | - Tuğçe Çeker
- Akdeniz University, Faculty of Medicine, Department of Biochemistry, 07058, Antalya, Turkey
| | - Narin Derin
- Akdeniz University, Faculty of Medicine, Department of Biophysics, 07058, Antalya, Turkey
| | - Gamze Tanrıöver
- Akdeniz University, Faculty of Medicine, Department of Histology and Embryology, 07058, Antalya, Turkey
| | - Mutay Aslan
- Akdeniz University, Faculty of Medicine, Department of Biochemistry, 07058, Antalya, Turkey
| | - Aysel Ağar
- Akdeniz University, Faculty of Medicine, Department of Physiology, 07058, Antalya, Turkey
| | - Gül Özbey
- Akdeniz University, Faculty of Medicine, Department of Pharmacology, 07058, Antalya, Turkey.
| |
Collapse
|
29
|
Benham RS, Choi C, Hodgson NW, Hewage NB, Kastli R, Donahue RJ, Muschamp JW, Engin E, Carlezon WA, Hensch TK, Rudolph U. α2-containing γ-aminobutyric acid type A receptors promote stress resiliency in male mice. Neuropsychopharmacology 2021; 46:2197-2206. [PMID: 34408277 PMCID: PMC8505491 DOI: 10.1038/s41386-021-01144-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/11/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023]
Abstract
Brain α2-containing GABAA receptors play a critical role in the modulation of anxiety- and fear-like behavior. However, it is unknown whether these receptors also play a role in modulating resilience to chronic stress, and in which brain areas and cell types such an effect would be mediated. We evaluated the role of α2-containing GABAA receptors following chronic social defeat stress using male mice deficient in the α2 subunit globally or conditionally in dopamine D1- or D2-receptor-expressing neurons, e.g., within the nucleus accumbens (NAc). In addition, we examined the effect of the lack of the α2 subunit on intermediates of the glutathione synthesis pathway. We found that α2-containing GABAA receptors on D2-receptor-positive but not on D1-receptor-positive neurons promote resiliency to chronic social defeat stress, as reflected in social interaction tests. The pro-resiliency effects of α2-containing GABAA receptors on D2-receptor-positive neurons do not appear to be directly related to alterations in anxiety-like behavior, as reflected in the elevated plus-maze, light-dark box, and novel open field tests. Increases in indices of oxidative stress-reflected by increases in cystathionine levels and reductions in GSH/GSSG ratios-were found in the NAc and prefrontal cortex but not in the hippocampus of mice lacking α2-containing GABAA receptors. We conclude that α2-containing GABAA receptors within specific brain areas and cell populations promote stress resiliency independently of direct effects on anxiety-like behaviors. A potential mechanism contributing to this increased resiliency is the protection that α2-containing GABAA receptors provide against oxidative stress in NAc and the prefrontal cortex.
Collapse
Affiliation(s)
- Rebecca S Benham
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Catherine Choi
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Nathaniel W Hodgson
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Nishani B Hewage
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Rahel Kastli
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Rachel J Donahue
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Laboratory of Behavioral Genetics, McLean Hospital, Belmont, MA, USA
| | - John W Muschamp
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Laboratory of Behavioral Genetics, McLean Hospital, Belmont, MA, USA
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Elif Engin
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - William A Carlezon
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Laboratory of Behavioral Genetics, McLean Hospital, Belmont, MA, USA
| | - Takao K Hensch
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Uwe Rudolph
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
30
|
Putri C, Arisa J, Hananto JE, Hariyanto TI, Kurniawan A. Psychiatric sequelae in COVID-19 survivors: A narrative review. World J Psychiatry 2021; 11:821-829. [PMID: 34733644 PMCID: PMC8546765 DOI: 10.5498/wjp.v11.i10.821] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/13/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
In December 2019, a novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was initially reported in Wuhan, China. Previous epidemics including SARS and middle east respiratory syndrome raises concern that COVID-19 infection may pose a significant threat to the mental health of affected individuals. Studies and reviews have shown the acute psychiatric manifestations in COVID-19 patients, although long term psychiatric sequelae are predicted, there are only few review studies about the long term psychiatry outcome in COVID-19 survivors. Clinically significant post-traumatic stress disorder, anxiety, and/or depression among COVID-19 survivors during 14-90 d were observed following the diagnosis. Risk of anxiety or depression were higher in patients with more severe illness at 6 mo follow-up, early convalescence, and at 1 mo follow-up. Diagnosis of COVID-19 Led to more first diagnoses and relapses of psychiatric illness during the first 14-90 d after COVID-19 diagnosis. The possible underlying mechanisms of psychiatric sequelae in COVID-19 infection are neurotropism, immune response to SARS-CoV-2, hypothalamo-pituitary-adrenal axis hyperactivity, disrupted neuronal circuits in several brain regions, increased stress levels, neuroinflammation, and neuronal death. This study will review the psychiatric sequelae in previous coronavirus pandemics, current studies, risk factors, and thorough explanation on pathophysiology of the psychiatric sequalae in COVID-19 survivors.
Collapse
Affiliation(s)
- Cynthia Putri
- Faculty of Medicine, Pelita Harapan University, Tangerang 15811, Indonesia
| | - Jessie Arisa
- Faculty of Medicine, Pelita Harapan University, Tangerang 15811, Indonesia
| | | | | | - Andree Kurniawan
- Department of Internal Medicine, Faculty of Medicine, Pelita Harapan University, Tangerang 15811, Indonesia
| |
Collapse
|
31
|
Wang HQ, Yang SW, Gao Y, Liu YJ, Li X, Ai QD, Lin MY, Yang YT, Zeng Q, Zhang Y, Wang ZZ, Chen NH. Novel antidepressant mechanism of ginsenoside Rg1: Regulating biosynthesis and degradation of connexin43. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114212. [PMID: 34087399 DOI: 10.1016/j.jep.2021.114212] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng C. A. Meyer is a valuable medicinal herb and "alternative" remedy for the prevention and treatment of depression. Dysfunction of connexin43 (Cx43)-gap junction in astrocytes is predisposed to the precipitation of depression. Ginsenoside Rg1 (Rg1), the main bioactive constituent extracted from ginseng, is efficacious in the management of depression by upregulating the content of Cx43. Our previous results indicated that pretreatment with Rg1 significantly improved Cx43-gap junction in corticosterone (CORT)-treated astrocytes. However, the antidepressant mechanism underlying how Rg1 upregulates Cx43-gap junction in astrocytes hasn't been proposed. AIM OF THE STUDY To dissect the mechanisms of Rg1 controlling Cx43 levels in primary astrocytes. METHODS We examined the changes of the level of Cx43 mRNA, the degradation of Cx43, as well as the ubiquitin-proteasomal and autophagy-lysosomal degradation pathways of Cx43 followed by Rg1 prior to CORT in rat primary astrocytes isolated from prefrontal cortex and hippocampus. Furthermore, the recognized method of scrape loading/dye transfer was performed to detect Cx43-gap junctional function, an essencial indicator of the antidepressant effect. RESULTS Pretreatment with Rg1 could reverse CORT-induced downregulation of Cx43 biosynthesis, acceleration of Cx43 degradation, and upregulation of two Cx43 degradation pathways in primary astrocytes. CONCLUSION The findings in the present study provide the first evidence highlighting that Rg1 increases Cx43 protein levels through the upregulation of Cx43 mRNA and downregulation of Cx43 degradation, which may be attributed to the effect of Rg1 on the ubiquitin-proteasomal and autophagy-lysosomal degradation pathways of Cx43.
Collapse
Affiliation(s)
- Hui-Qin Wang
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Song-Wei Yang
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China
| | - Yan Gao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ying-Jiao Liu
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China
| | - Xun Li
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China
| | - Qi-Di Ai
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China
| | - Mei-Yu Lin
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China
| | - Yan-Tao Yang
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China
| | - Qi Zeng
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Nai-Hong Chen
- Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
32
|
Peroxiredoxin 6 Knockout Mice Demonstrate Anxiety Behavior and Attenuated Contextual Fear Memory after Receiving Acute Immobilization Stress. Antioxidants (Basel) 2021; 10:antiox10091416. [PMID: 34573048 PMCID: PMC8466988 DOI: 10.3390/antiox10091416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
Stress can elicit glucocorticoid release to promote coping mechanisms and influence learning and memory performance. Individual memory performance varies in response to stress, and the underlying mechanism is not clear yet. Peroxiredoxin 6 (PRDX6) is a multifunctional enzyme participating in both physiological and pathological conditions. Several studies have demonstrated the correlation between PRDX6 expression level and stress-related disorders. Our recent finding indicates that lack of the Prdx6 gene leads to enhanced fear memory. However, it is unknown whether PRDX6 is involved in changes in anxiety response and memory performance upon stress. The present study reveals that hippocampal PRDX6 level is downregulated 30 min after acute immobilization stress (AIS) and trace fear conditioning (TFC). In human retinal pigment epithelium (ARPE-19) cells, the PRDX6 expression level decreases after being treated with stress hormone corticosterone. Lack of PRDX6 caused elevated basal H2O2 levels in the hippocampus, basolateral amygdala, and medial prefrontal cortex, brain regions involved in anxiety response and fear memory formation. Additionally, this H2O2 level was still high in the medial prefrontal cortex of the knockout mice under AIS. Anxiety behavior of Prdx6-/- mice was enhanced after immobilization for 30 min. After exposure to AIS before a contextual test, Prdx6-/- mice displayed a contextual fear memory deficit. Our results showed that the memory performance of Prdx6-/- mice was impaired when responding to AIS, accompanied by dysregulated H2O2 levels. The present study helps better understand the function of PRDX6 in memory performance after acute stress.
Collapse
|
33
|
Karimani A, Ramezani N, Afkhami Goli A, Nazem Shirazi MH, Nourani H, Jafari AM. Subchronic neurotoxicity of diazinon in albino mice: Impact of oxidative stress, AChE activity, and gene expression disturbances in the cerebral cortex and hippocampus on mood, spatial learning, and memory function. Toxicol Rep 2021; 8:1280-1288. [PMID: 34277358 PMCID: PMC8261896 DOI: 10.1016/j.toxrep.2021.06.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/06/2021] [Accepted: 06/14/2021] [Indexed: 02/03/2023] Open
Abstract
Diazinon (DZN) with prominent neurotoxic effects perturbs CNS function via multiple mechanisms. This investigation intends to explore mood, spatial learning, and memory dysfunction, acetylcholine esterase (AChE) activity, and neurodegeneration-related gene expression in the cortex and hippocampus regions of mice exposed to DZN for 63 consecutive days (subchronic exposure). Adult male albino mice were orally given sublethal DZN (DZNL = 0.1 mg/kg, DZNM = 1 mg/kg and DZNH = 10 mg/kg). All mice in the DZNH group died within 3 weeks postexposure. DZNL and DZNM caused body and brain weight loss (p < 0.05). Completing 9 weeks of DZN exposure, a marked decline in AChE activity and oxidative stress level was indicated in both brain regions (p < 0.05). Also, synaptophysin, vesicular acetylcholine transferase, and glutamate decarboxylase gene expressions were affected in both brain regions (p < 0.05). Furthermore, the present study revealed that DZN administration increased anxiety and depressive-like behaviors (p < 0.0001). Spatial learning and short- and long-memory were severely affected by DZNL and DZNM treatments (p < 0.0001). Taken together, subchronic exposure to low and medium doses of DZN can cause AChE inhibition, oxidative damage, and neurotransmitter disturbances in brain cells and induce neurodegeneration. These changes would impair mood, spatial learning, and memory function.
Collapse
Key Words
- AChE, acetylcholine esterase
- AD, Alzheimer’s disease
- Ach, acetylcholine
- COX-2, cyclooxygenase-2
- CX, cerebral cortex
- Cerebral cortex
- DZN, diazinon
- DZO, diazoxon
- Diazinon
- FRAP, ferric reducing antioxidant power
- FST, forced swim test
- GABA, ϒ-aminobutyric acid
- GAD65, glutamate decarboxylase 65
- HP, hippocampus
- Hippocampus
- LD50, lethal dose 50
- MB, marble burying test
- MDA, malondialdehyde
- MWM, Morris water maze test
- Memory
- NOAEL, no-observed-adverse-effect level
- Neurodegenerative diseases
- Ops, organophosphates
- PD, Parkinson’s disease
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- SEM, standard error of the mean
- SYP, synaptophysin
- Spatial learning
- VAChT, vesicular acetylcholine transferase
- qRT-PCR, quantitative reverse transcription-polymerase chain reaction
Collapse
Affiliation(s)
- Asieh Karimani
- Department of Toxicology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nasrin Ramezani
- Department of Toxicology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Afkhami Goli
- Department of Toxicology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Hosein Nourani
- Department of Pathology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Moghaddam Jafari
- Department of Toxicology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
34
|
Kolar D, Kleteckova L, Brozka H, Vales K. Mini-review: Brain energy metabolism and its role in animal models of depression, bipolar disorder, schizophrenia and autism. Neurosci Lett 2021; 760:136003. [PMID: 34098028 DOI: 10.1016/j.neulet.2021.136003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/13/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria are cellular organelles essential for energy metabolism and antioxidant defense. Mitochondrial impairment is implicated in many psychiatric disorders, including depression, bipolar disorder, schizophrenia, and autism. To characterize and eventually find effective treatments of bioenergetic impairment in psychiatric disease, researchers find animal models indispensable. The present review focuses on brain energetics in several environmental, genetic, drug-induced, and surgery-induced animal models of depression, bipolar disorder, schizophrenia, and autism. Most reported deficits included decreased activity in the electron transport chain, increased oxidative damage, decreased antioxidant defense, decreased ATP levels, and decreased mitochondrial potential. Models of depression, bipolar disorder, schizophrenia, and autism shared many bioenergetic deficits. This is in concordance with the absence of a disease-specific brain energy phenotype in human patients. Unfortunately, due to the absence of null results in examined literature, indicative of reporting bias, we refrain from making generalized conclusions. Present review can be a valuable tool for comparing current findings, generating more targeted hypotheses, and selecting fitting models for further preclinical research.
Collapse
Affiliation(s)
- David Kolar
- National Institute of Mental Health, Klecany, Czech Republic.
| | | | - Hana Brozka
- Institute of Physiology, Academy of Sciences, Prague, Czech Republic.
| | - Karel Vales
- National Institute of Mental Health, Klecany, Czech Republic.
| |
Collapse
|
35
|
Ferland-Beckham C, Chaby LE, Daskalakis NP, Knox D, Liberzon I, Lim MM, McIntyre C, Perrine SA, Risbrough VB, Sabban EL, Jeromin A, Haas M. Systematic Review and Methodological Considerations for the Use of Single Prolonged Stress and Fear Extinction Retention in Rodents. Front Behav Neurosci 2021; 15:652636. [PMID: 34054443 PMCID: PMC8162789 DOI: 10.3389/fnbeh.2021.652636] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a mental health condition triggered by experiencing or witnessing a terrifying event that can lead to lifelong burden that increases mortality and adverse health outcomes. Yet, no new treatments have reached the market in two decades. Thus, screening potential interventions for PTSD is of high priority. Animal models often serve as a critical translational tool to bring new therapeutics from bench to bedside. However, the lack of concordance of some human clinical trial outcomes with preclinical animal efficacy findings has led to a questioning of the methods of how animal studies are conducted and translational validity established. Thus, we conducted a systematic review to determine methodological variability in studies that applied a prominent animal model of trauma-like stress, single prolonged stress (SPS). The SPS model has been utilized to evaluate a myriad of PTSD-relevant outcomes including extinction retention. Rodents exposed to SPS express an extinction retention deficit, a phenotype identified in humans with PTSD, in which fear memory is aberrantly retained after fear memory extinction. The current systematic review examines methodological variation across all phases of the SPS paradigm, as well as strategies for behavioral coding, data processing, statistical approach, and the depiction of data. Solutions for key challenges and sources of variation within these domains are discussed. In response to methodological variation in SPS studies, an expert panel was convened to generate methodological considerations to guide researchers in the application of SPS and the evaluation of extinction retention as a test for a PTSD-like phenotype. Many of these guidelines are applicable to all rodent paradigms developed to model trauma effects or learned fear processes relevant to PTSD, and not limited to SPS. Efforts toward optimizing preclinical model application are essential for enhancing the reproducibility and translational validity of preclinical findings, and should be conducted for all preclinical psychiatric research models.
Collapse
Affiliation(s)
| | - Lauren E Chaby
- Cohen Veterans Bioscience, New York City, NY, United States
| | - Nikolaos P Daskalakis
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States.,McLean Hospital, Belmont, MA, United States
| | - Dayan Knox
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| | - Israel Liberzon
- Department of Psychiatry, Texas A&M University, Bryan, TX, United States
| | - Miranda M Lim
- Departments of Neurology, Behavioral Neuroscience, Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States.,Sleep Disorders Clinic, VA Portland Health Care System, Portland, OR, United States
| | - Christa McIntyre
- Department of Neuroscience, The University of Texas at Dallas, Richardson, TX, United States
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States.,Research Service, John. D. Dingell VA Medical Center, Detroit, MI, United States
| | - Victoria B Risbrough
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States.,Center for Excellence in Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, United States
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | | | - Magali Haas
- Cohen Veterans Bioscience, New York City, NY, United States
| |
Collapse
|
36
|
Scharf I, Stoldt M, Libbrecht R, Höpfner AL, Jongepier E, Kever M, Foitzik S. Social isolation causes downregulation of immune and stress response genes and behavioural changes in a social insect. Mol Ecol 2021; 30:2378-2389. [PMID: 33772940 DOI: 10.1111/mec.15902] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 12/27/2022]
Abstract
Humans and other social mammals experience isolation from their group as stressful, triggering behavioural and physiological anomalies that reduce fitness. While social isolation has been intensely studied in social mammals, it is less clear how social insects, which evolved sociality independently, respond to isolation. Here we examined whether the typical mammalian responses to social isolation, e.g., an impaired ability to interact socially and immune suppression are also found in social insects. We studied the consequences of social isolation on behaviour and brain gene expression in the ant Temnothorax nylanderi. Following isolation, workers interacted moderately less with adult nestmates, increased the duration of brood contact, and reduced the time spent self-grooming, an important sanitary behaviour. Our brain transcriptome analysis revealed that only a few behaviour-related genes had altered their expression with isolation time. Rather, many genes linked to immune system functioning and stress response had been downregulated. This probably sensitizes isolated individuals to various stressors, in particular because isolated workers exhibit reduced sanitary behaviour. We provide evidence of the diverse consequences of social isolation in social insects, some of which resemble those found in social mammals, suggesting a general link between social well-being, stress tolerance, and immune competence in social animals.
Collapse
Affiliation(s)
- Inon Scharf
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Marah Stoldt
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Romain Libbrecht
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Anna Lena Höpfner
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Evelien Jongepier
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Marion Kever
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
37
|
Huang T, Guo W, Wang Y, Chang L, Shang N, Chen J, Fan R, Zhang L, Gao X, Niu Q, Zhang Q. Involvement of Mitophagy in Aluminum Oxide Nanoparticle-Induced Impairment of Learning and Memory in Mice. Neurotox Res 2021; 39:378-391. [PMID: 32915414 DOI: 10.1007/s12640-020-00283-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022]
Abstract
Aluminum oxide nanoparticles (nano-aluminum) have been known to be widespread in the environment for decades. Exposure to nano-aluminum may impair learning and memory, but the potential mechanism has not yet been elucidated. In neurons, efficient clearance of damaged mitochondria through mitophagy plays an important role in mitochondrial energy supply, neuronal survival, and health. However, abnormal mitophagy induces accumulation of damaged mitochondria, which induces cellular dysfunction, contributing to the impairment of learning and memory. It is currently unclear whether nano-aluminum interferes with the function of nerve cells through mitophagy, leading to learning and memory disorders. Institute of Cancer Research (ICR) female mice were randomly divided into four groups, and treated with normal saline (control) and 50 nm nano-aluminum at concentrations of 25, 50, and 75 mg/kg for 30 days. Our results showed that exposure to nano-aluminum impaired the spatial learning and memory of mice. Superoxide dismutase levels decreased, whereas the levels of malondialdehyde increased. Moreover, there were significant pathological changes in the ultra-structure and function of mitochondria. Finally, expression of autophagy-related proteins LC3-II and Beclin-1 was upregulated and p62 expression decreased, but the expression of apoptotic and necrosis-related proteins had no significant difference among groups. Our results suggest that learning and memory impairment induced by nano-aluminum could be related to mitophagy.
Collapse
Affiliation(s)
- Tao Huang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Weiwei Guo
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Yanhong Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Lijun Chang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Nan Shang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Jin Chen
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Rong Fan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Lan Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaocheng Gao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, 030001, China
- Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, Taiyuan, 030001, China
| | - Qinli Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China.
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, 030001, China.
- Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
38
|
Amiri S, Dizaji R, Momeny M, Gauvin E, Hosseini MJ. Clozapine attenuates mitochondrial dysfunction, inflammatory gene expression, and behavioral abnormalities in an animal model of schizophrenia. Neuropharmacology 2021; 187:108503. [PMID: 33636190 DOI: 10.1016/j.neuropharm.2021.108503] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/24/2021] [Accepted: 02/16/2021] [Indexed: 10/22/2022]
Abstract
Beyond abnormalities in the neurotransmitter hypothesis, recent evidence suggests that mitochondrial dysfunction and immune-inflammatory responses contribute to the pathophysiology of schizophrenia. The prefrontal cortex (PFC) undergoes maturation and development during adolescence, which is a critical time window in life that is vulnerable to environmental adversities and the development of psychiatric disorders such as schizophrenia. Applying eight weeks of post-weaning social isolation stress (PWSI) to rats, as an animal model of schizophrenia, we decided to investigate the effects of PWSI on the mitochondrial function and expression of immune-inflammatory genes in the PFC of normal and stressed rats. To do this, control and PWSI rats were divided into treatment (clozapine; CLZ, 2.5 mg/kg/day for 28 days) and non-treatment sub-groups. Our results showed PWSI caused schizophrenic-like behaviors in rats and induced mitochondrial dysfunction as well as upregulation of genes associated with innate immunity in the PFC. Chronic treatment with CLZ attenuated the effects of PWSI on behavioral abnormalities, mitochondrial dysfunction, and immune-inflammatory responses in the PFC of rats. These results may advance our understanding about the mechanism of action of CLZ that targets mitochondrial dysfunction and immune-inflammatory responses as factors involved in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Shayan Amiri
- Department of Pharmacology, College of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rana Dizaji
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Majid Momeny
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Evan Gauvin
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Mir-Jamal Hosseini
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Departments of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
39
|
Savage K, Kingshott D, Gubko A, Thee AW, Burjawi T, Croft K, Sarris J, Stough C. The Relationship between Oxidative Stress and Anxiety in a Healthy Older Population. Exp Aging Res 2021; 47:322-346. [PMID: 33616006 DOI: 10.1080/0361073x.2021.1883966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background/study context: F2-Isoprostanes are putative markers of oxidative stress, one of the processes associated with biological senescence. Evidence exists for elevated F2-Isoprostanes in chronic conditions including psychiatric disorders. Few studies have examined the relationship between oxidative stress and mood in older healthy samples, to establish the influence on mental health. Given current aging demographics in many nations, management of brain and mental health is crucial for longevity, chronic disease management, and quality of life.Method: We investigated the relationship between F2-Isoprostanes, a marker for oxidative stress, and anxiety and mood in 262 healthy adults aged 60-75 years, using baseline data from the Australian Research Council Longevity Intervention (ARCLI; ANZCTR12611000487910), a 12-month nutraceutical intervention study.Results: Higher F2 levels significantly predicted increased Depression-dejection and Anger-hostility subscale scores from the Profile of Mood States (POMS). Fatigue-inertia subscale was predicted by increased Body Mass Index. Spielberger State-Trait Inventory (STAI) scores were significantly higher in females.Conclusion: While the primary outcome data did not find a definitive relationship between F2 and total mood or general anxiety levels, the sub-scale data adds weight toward growing literature that biological processes such as oxidative stress are in part related to mood. This is a modifiable risk factor contributing to physical and mental wellbeing that are crucial to healthy aging.
Collapse
Affiliation(s)
- Karen Savage
- Centre for Human Psychopharmacology, Swinburne University of Technology, Advanced Technologies Centre, Hawthorn, Australia.,Professorial Unit, the Melbourne Clinic, Department of Psychiatry, Melbourne University, Richmond, Australia
| | - Davy Kingshott
- Centre for Human Psychopharmacology, Swinburne University of Technology, Advanced Technologies Centre, Hawthorn, Australia
| | - Andrew Gubko
- Centre for Human Psychopharmacology, Swinburne University of Technology, Advanced Technologies Centre, Hawthorn, Australia
| | - Alicia Wt Thee
- Centre for Human Psychopharmacology, Swinburne University of Technology, Advanced Technologies Centre, Hawthorn, Australia
| | - Tamer Burjawi
- Centre for Human Psychopharmacology, Swinburne University of Technology, Advanced Technologies Centre, Hawthorn, Australia
| | - Kevin Croft
- School of Biomedical Science, The University of Western Australia, Crawley, Australia
| | - Jerome Sarris
- Professorial Unit, the Melbourne Clinic, Department of Psychiatry, Melbourne University, Richmond, Australia.,NICM Health Research Institute, Western Sydney University, Westmead, Australia
| | - Con Stough
- Centre for Human Psychopharmacology, Swinburne University of Technology, Advanced Technologies Centre, Hawthorn, Australia
| |
Collapse
|
40
|
Garrigos D, Martínez-Morga M, Toval A, Kutsenko Y, Barreda A, Do Couto BR, Navarro-Mateu F, Ferran JL. A Handful of Details to Ensure the Experimental Reproducibility on the FORCED Running Wheel in Rodents: A Systematic Review. Front Endocrinol (Lausanne) 2021; 12:638261. [PMID: 34040580 PMCID: PMC8141847 DOI: 10.3389/fendo.2021.638261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
A well-documented method and experimental design are essential to ensure the reproducibility and reliability in animal research. Experimental studies using exercise programs in animal models have experienced an exponential increase in the last decades. Complete reporting of forced wheel and treadmill exercise protocols would help to ensure the reproducibility of training programs. However, forced exercise programs are characterized by a poorly detailed methodology. Also, current guidelines do not cover the minimum data that must be included in published works to reproduce training programs. For this reason, we have carried out a systematic review to determine the reproducibility of training programs and experimental designs of published research in rodents using a forced wheel system. Having determined that most of the studies were not detailed enough to be reproducible, we have suggested guidelines for animal research using FORCED exercise wheels, which could also be applicable to any form of forced exercise.
Collapse
Affiliation(s)
- Daniel Garrigos
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Marta Martínez-Morga
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Angel Toval
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Yevheniy Kutsenko
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Alberto Barreda
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Bruno Ribeiro Do Couto
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- Faculty of Psychology, University of Murcia, Murcia, Spain
| | - Fernando Navarro-Mateu
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- Unidad de Docencia, Investigación y Formación en Salud Mental (UDIF-SM), Servicio Murciano de Salud, Murcia, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Departamento de Psicología Básica y Metodología, Universidad de Murcia, Murcia, Spain
| | - José Luis Ferran
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- *Correspondence: José Luis Ferran,
| |
Collapse
|
41
|
Le TM, Wang W, Zhornitsky S, Dhingra I, Chen Y, Zhang S, Li CSR. The Neural Processes Interlinking Social Isolation, Social Support, and Problem Alcohol Use. Int J Neuropsychopharmacol 2020; 24:333-343. [PMID: 33211853 PMCID: PMC8059487 DOI: 10.1093/ijnp/pyaa086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/19/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Subjective feeling of social isolation, as can be measured by perceived burdensomeness (PB), is a major risk factor for alcohol misuse. Heightened PB is associated with elevated stress response and diminished cognitive control, both of which contribute to problem drinking. Here, we sought to identify the neural substrates underlying the relationship between PB and alcohol misuse. METHODS We employed resting-state functional magnetic resonance imaging data collected from 61 problem drinkers to characterize the functional connectivity of the hypothalamus and ventral striatum (VS) in relation to PB. We specifically examined whether the connectivities of the hypothalamus and VS were differentially influenced by PB to produce contrasting effects on alcohol use. Finally, we evaluated how individual differences in social support modulate the inter-relationships of social isolation, neural connectivity, and the severity of problem drinking. RESULTS Whole-brain multiple regressions show a positive relationship between PB and hypothalamic connectivity with the hippocampus and an inverse pattern for VS connectivity with the middle frontal gyrus. Difference in strength between the 2 connectivities predicted the severity of problem drinking, suggesting an imbalance involving elevated hypothalamic and diminished prefrontal cortical modulation in socially isolated problem drinkers. A path analysis further revealed that the lack of social support was associated with a bias toward low prefrontal connectivity, which in turn increased PB and facilitated problem drinking. CONCLUSIONS Altered hypothalamus and VS connectivity may underlie problem drinking induced by social isolation. The current findings also highlight the important role of social support as a potential protective factor against alcohol misuse.
Collapse
Affiliation(s)
- Thang M Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA,Correspondence: Thang M. Le, PhD, Connecticut Mental Health Center, S105, 34 Park Street, New Haven, CT 06519-1109, USA ()
| | - Wuyi Wang
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Isha Dhingra
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Chiang-Shan R Li
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
42
|
Stanisavljević A, Perić I, Gass P, Inta D, Lang UE, Borgwardt S, Filipović D. Fluoxetine modulates neuronal activity in stress-related limbic areas of adult rats subjected to the chronic social isolation. Brain Res Bull 2020; 163:95-108. [DOI: 10.1016/j.brainresbull.2020.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/03/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022]
|
43
|
Du Preez A, Law T, Onorato D, Lim YM, Eiben P, Musaelyan K, Egeland M, Hye A, Zunszain PA, Thuret S, Pariante CM, Fernandes C. The type of stress matters: repeated injection and permanent social isolation stress in male mice have a differential effect on anxiety- and depressive-like behaviours, and associated biological alterations. Transl Psychiatry 2020; 10:325. [PMID: 32958745 PMCID: PMC7505042 DOI: 10.1038/s41398-020-01000-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/12/2020] [Accepted: 09/03/2020] [Indexed: 01/02/2023] Open
Abstract
Chronic stress can alter the immune system, adult hippocampal neurogenesis and induce anxiety- and depressive-like behaviour in rodents. However, previous studies have not discriminated between the effect(s) of different types of stress on these behavioural and biological outcomes. We investigated the effect(s) of repeated injection vs. permanent social isolation on behaviour, stress responsivity, immune system functioning and hippocampal neurogenesis, in young adult male mice, and found that the type of stress exposure does indeed matter. Exposure to 6 weeks of repeated injection resulted in an anxiety-like phenotype, decreased systemic inflammation (i.e., reduced plasma levels of TNFα and IL4), increased corticosterone reactivity, increased microglial activation and decreased neuronal differentiation in the dentate gyrus (DG). In contrast, exposure to 6 weeks of permanent social isolation resulted in a depressive-like phenotype, increased plasma levels of TNFα, decreased plasma levels of IL10 and VEGF, decreased corticosterone reactivity, decreased microglial cell density and increased cell density for radial glia, s100β-positive cells and mature neuroblasts-all in the DG. Interestingly, combining the two distinct stress paradigms did not have an additive effect on behavioural and biological outcomes, but resulted in yet a different phenotype, characterized by increased anxiety-like behaviour, decreased plasma levels of IL1β, IL4 and VEGF, and decreased hippocampal neuronal differentiation, without altered neuroinflammation or corticosterone reactivity. These findings demonstrate that different forms of chronic stress can differentially alter both behavioural and biological outcomes in young adult male mice, and that combining multiple stressors may not necessarily cause more severe pathological outcomes.
Collapse
Affiliation(s)
- Andrea Du Preez
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Thomas Law
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Diletta Onorato
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Yau M Lim
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paola Eiben
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Ksenia Musaelyan
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Martin Egeland
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Abdul Hye
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Patricia A Zunszain
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Cathy Fernandes
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| |
Collapse
|
44
|
The effect of voluntary wheel running on the antioxidant status is dependent on sociability conditions. Pharmacol Biochem Behav 2020; 198:173018. [PMID: 32827504 PMCID: PMC7438373 DOI: 10.1016/j.pbb.2020.173018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 01/04/2023]
Abstract
Voluntary wheel running is widely used as a physical activity (PA) model in rodents, but most studies investigate the beneficial effects of this intervention in socially isolated mice. Social isolation stress (SIS) is associated with vulnerability to oxidative stress and reduced mitochondrial activity. Thus, the aim of this study was to investigate the effects of free access to a running wheel for 21 days on the various markers of the cellular redox/antioxidant status as well as mitochondrial function of mice subjected to SIS or maintained in groups of 3 in the homecage. SIS increased thiobarbituric acid reactive substance (TBARS) levels in the cerebral cortex, and PA intervention was not able to reverse such alteration. PA reduced TBARS levels in the liver of grouped mice and gastrocnemius of socially isolated mice. PA increased nonprotein thiol (NPSH) levels in the cerebral cortex of grouped mice. Furthermore, socially isolated mice presented lower glutathione peroxidase (GPx) activity in the cerebellum and gastrocnemius, and glutathione reductase (GR) activity in the cerebral cortex and liver. By contrast, SIS induced higher GPx activity in the cerebral cortex and heart. PA reduced GPx (cerebral cortex) and GR (cerebral cortex and liver) activities of socially isolated mice. SIS caused higher activity of mitochondrial complexes I and II in the cerebral cortex, and the PA paradigm was not able to alter this effect. Interestingly, the PA produced antidepressant-like effect at both SIS and control groups. In conclusion, the results showed the influence of SIS for the effects of PA on the antioxidant status, but not on the mitochondrial function and emotionality. PA intervention produces antioxidant responses dependent on sociability conditions. SIS induces mitochondria function and antioxidant defense abnormalities. Running produces antidepressant-like behavior and does not change the ambulation. The distance travelled on the running wheel is correlated with immobility time in the TST. The lipoperoxidation index is negatively correlated with time spent on the running wheel.
Collapse
|
45
|
Emmerzaal TL, Jacobs L, Geenen B, Verweij V, Morava E, Rodenburg RJ, Kozicz T. Chronic fluoxetine or ketamine treatment differentially affects brain energy homeostasis which is not exacerbated in mice with trait suboptimal mitochondrial function. Eur J Neurosci 2020; 53:2986-3001. [PMID: 32644274 DOI: 10.1111/ejn.14901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022]
Abstract
Antidepressants have been shown to influence mitochondrial function directly, and suboptimal mitochondrial function (SMF) has been implicated in complex psychiatric disorders. In the current study, we used a mouse model for trait SMF to test the hypothesis that chronic fluoxetine treatment in mice subjected to chronic stress would negatively impact brain bioenergetics, a response that would be more pronounced in mice with trait SMF. In contrast, we hypothesized that chronic ketamine treatment would positively impact mitochondrial function in both WT and mice with SMF. We used an animal model for trait SMF, the Ndufs4GT/GT mice, which exhibit 25% lower mitochondrial complex I activity. In addition to antidepressant treatment, mice were subjected to chronic unpredictable stress (CUS). This paradigm is widely used to model complex behaviours expressed in various psychiatric disorders. We assayed several physiological indices as proxies for the impact of chronic stress and antidepressant treatment. Furthermore, we measured brain mitochondrial complex activities using clinically validated assays as well as established metabolic signatures using targeted metabolomics. As hypothesized, we found evidence that chronic fluoxetine treatment negatively impacted brain bioenergetics. This phenotype was, however, not further exacerbated in mice with trait SMF. Ketamine did not have a significant influence on brain mitochondrial function in either genotype. Here we report that trait SMF could be a moderator for an individual's response to antidepressant treatment. Based on these results, we propose that in individuals with SMF and comorbid psychopathology, fluoxetine should be avoided, whereas ketamine could be a safer choice of treatment.
Collapse
Affiliation(s)
- Tim L Emmerzaal
- Department of Anatomy, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Leah Jacobs
- Department of Anatomy, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bram Geenen
- Department of Anatomy, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vivienne Verweij
- Department of Anatomy, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Richard J Rodenburg
- Radboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tamas Kozicz
- Department of Anatomy, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
46
|
Li H, Xia N. The role of oxidative stress in cardiovascular disease caused by social isolation and loneliness. Redox Biol 2020; 37:101585. [PMID: 32709420 PMCID: PMC7767744 DOI: 10.1016/j.redox.2020.101585] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Loneliness and social isolation are common sources of chronic stress in modern society. Epidemiological studies have demonstrated that loneliness and social isolation increase mortality risk as much as smoking or alcohol consumption and more than physical inactivity or obesity. Loneliness in human is associated with higher blood pressure whereas enhanced atherosclerosis is observed in animal models of social isolation. Loneliness and social isolation lead to activation of the hypothalamic-pituitary-adrenocortical (HPA) axis, enhanced sympathetic nerve activity, impaired parasympathetic function and a proinflammatory immune response. These mechanisms have been implicated in the development of cardiovascular disease conferred by social isolation although a causal relationship has not been established so far. There is evidence that oxidative stress is likely to be a key molecular mechanism linking chronic psychosocial stress to cardiovascular disease. NADPH oxidase-mediated oxidative stress in the hypothalamus has been shown to be required for social isolation-induced HPA axis activation in socially isolated rats. Oxidative stress in the rostral ventrolateral medulla is also a key regulator of sympathetic nerve activity. In the vasculature, oxidative stress increases vascular tone and promote atherogenesis through multiple mechanisms. Thus, preventing oxidative stress may represent a therapeutic strategy to reduce the detrimental effects of social stress on health.
Collapse
Affiliation(s)
- Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131, Mainz, Germany.
| | - Ning Xia
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131, Mainz, Germany.
| |
Collapse
|
47
|
Raony Í, de Figueiredo CS, Pandolfo P, Giestal-de-Araujo E, Oliveira-Silva Bomfim P, Savino W. Psycho-Neuroendocrine-Immune Interactions in COVID-19: Potential Impacts on Mental Health. Front Immunol 2020; 11:1170. [PMID: 32574266 PMCID: PMC7267025 DOI: 10.3389/fimmu.2020.01170] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The impacts of the disease may be beyond the respiratory system, also affecting mental health. Several factors may be involved in the association between COVID-19 and psychiatric outcomes, such as fear inherent in the pandemic, adverse effects of treatments, as well as financial stress, and social isolation. Herein we discuss the growing evidence suggesting that the relationship between SARS-CoV-2 and host may also trigger changes in brain and behavior. Based on the similarity of SARS-CoV-2 with other coronaviruses, it is conceivable that changes in endocrine and immune response in the periphery or in the central nervous system may be involved in the association between SARS-CoV-2 infection and impaired mental health. This is likely to be further enhanced, since millions of people worldwide are isolated in quarantine to minimize the transmission of SARS-CoV-2 and social isolation can also lead to neuroendocrine-immune changes. Accordingly, we highlight here the hypothesis that neuroendocrine-immune interactions may be involved in negative impacts of SARS-CoV-2 infection and social isolation on psychiatric issues.
Collapse
Affiliation(s)
- Ícaro Raony
- School of Medicine, Federal Fluminense University, Niterói, Brazil.,Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, Brazil
| | - Camila Saggioro de Figueiredo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, Brazil
| | - Pablo Pandolfo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, Brazil
| | - Elizabeth Giestal-de-Araujo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation - INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Priscilla Oliveira-Silva Bomfim
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation - INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Wilson Savino
- National Institute of Science and Technology on Neuroimmunomodulation - INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
48
|
"JUMPing into Diabetes Control": A Group-Setting Self-Empowerment Lifestyle Intervention among Diabetes Patients. Healthcare (Basel) 2020; 8:healthcare8020090. [PMID: 32272756 PMCID: PMC7349322 DOI: 10.3390/healthcare8020090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 01/02/2023] Open
Abstract
We examined the impact of a group-based self-empowerment intervention among diabetes patients, which uses multidisciplinary education, collaborative learning, peer support, and development of diabetes-specific social capital to improve glycemic control and weight management. Thirty-five patients who had primary care established at the Prisma Health Upstate, Internal Medicine Resident clinic and held the diagnosis of diabetes for longer than one year were recruited for our single-arm pilot intervention. Each group intervention session involved one to two internal medicine resident physician facilitators, a clinical diabetic educator, and 5–10 patients. Each session had a framework facilitated by the resident, with most of the discussion being patient-led, aiming to provide a collaborative learning environment and create a support group atmosphere to encourage self-empowerment. Patients’ hemoglobin A1c level and body mass index (BMI) before the intervention and 3 to 6 months after completion were collected from the laboratory results obtained in the participants’ routine clinic visits. All graduates from this three-week intervention were invited to attend monthly maintenance sessions, and we tracked the HgbA1c measures of 29 JUMP graduates one year after the intervention, even though 13 of the 29 chose not to participate in the monthly maintenance sessions. The pre-intervention HgbA1c level averaged 8.84%, whereas the post-intervention HgbA1c level averaged 7.81%. A paired t test showed that this pre–post difference of 1.03 percentage points was statistically significant (p = 0.0007). For BMI, there was an average decline of 0.78 from the pre-intervention mean value of 40.56 to the post-intervention mean value of 39.78 (p = 0.03). Among the 29 participants who agreed to participate in our follow-up measure of their HgbA1c status one year after the intervention, a paired t test showed that there was no significant difference between the post-JUMP measure and the follow-up measure (p = 0.808). There was no statistically significant difference between the HgbA1c level of those participating in the maintenance program and that of those not participating (post-intervention t test of between-group difference: p = 0.271; follow-up t test of between-group difference: p = 0.457). Our single-arm, pilot study of the three-week group intervention of self-empowerment shows promising results in glycemic control and weight loss. The short duration and small number of sessions expected could make it more feasible for implementation and dissemination as compared with popular intervention protocols that require much longer periods of attendance, if the effectiveness of this patient group-based self-empowerment approach can be further established by randomized controlled studies in the future.
Collapse
|
49
|
Mohammed A, El-Bakly WM, Ali A, El-Demerdash E. Rosuvastatin improves olanzapine's effects on behavioral impairment and hippocampal, hepatic and metabolic damages in isolated reared male rats. Behav Brain Res 2020; 378:112305. [PMID: 31634496 DOI: 10.1016/j.bbr.2019.112305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/29/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIM Schizophrenia is a chronic, disabling neurological illness. This study investigated the effect of rosuvastatin (RSU) addition to the antipsychotic drug: olanzapine (OLZ) in treatment of post-weaning isolation rearing (IR) damaging effect and assessed behavioral impairment, metabolic and hepatic abnormalities, oxidative stress, and inflammatory markers. METHODS Treatment with OLZ (6 mg/kg, P.O.) and/or RSU (10 mg/kg, I.P.) have been started 6 weeks after isolation. We assessed behavioral tests, serum cortisol level, and hippocampal content of neurotransmitters. In addition, we assessed histopathology, inflammatory and oxidative stress markers of hippocampus, liver and adipose tissue RESULTS: Treatment of IR animals with OLZ, and/or RSU significantly counteracted the changes in hippocampus, liver and adipose tissue induced by post-weaning IR. Co-treatment of IR rats with both OLZ and RSU showed additive effects in some areas like improving both tumor necrosis factor alpha (TNFα) in both hippocampus and liver, histopathology of liver, oxidative stress markers of adipose tissue, β3 adrenergic receptors (ADRβ3), serum cortisol and total cholesterol. In addition, RSU alone alleviated the damage of IR rats by the same efficacy as OLZ with more benefit in cognition and exploration. CONCLUSION post-weaning IR as a model has behavioral, hippocampal, hepatic and marked metabolic changes more relevant to schizophrenia than drug-induced models. These effects were ameliorated by RSU and/or OLZ that are explained by their antioxidant, anti-inflammatory, anti-stress and anti-hyperlipidemic properties. Interestingly, co-treatment with both drugs showed a better effect.
Collapse
Affiliation(s)
- Aya Mohammed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Egypt
| | - Wesam M El-Bakly
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Egypt
| | - Azza Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Egypt.
| |
Collapse
|
50
|
Monte AS, da Silva FER, Lima CNDC, Vasconcelos GS, Gomes NS, Miyajima F, Vasconcelos SMM, Gama CS, Seeman MV, de Lucena DF, Macedo DS. Sex influences in the preventive effects of N-acetylcysteine in a two-hit animal model of schizophrenia. J Psychopharmacol 2020; 34:125-136. [PMID: 31556775 DOI: 10.1177/0269881119875979] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Schizophrenia (SCZ) is a neurodevelopmental disorder influenced by patient sex. Mechanisms underlying sex differences in SCZ remain unknown. A two-hit model of SCZ combines the exposure to perinatal infection (first-hit) with peripubertal unpredictable stress (PUS, second-hit). N-acetylcysteine (NAC) has been tested in SCZ because of the involvement of glutathione mechanisms in its neurobiology. AIMS We aim to investigate whether NAC administration to peripubertal rats of both sexes could prevent behavioral and neurochemical changes induced by the two-hit model. METHODS Wistar rats were exposed to polyinosinic:polycytidylic acid (a viral mimetic) or saline on postnatal days (PND) 5-7. On PND30-59 they received saline or NAC 220 mg/kg and between PND40-48 were subjected to PUS or left undisturbed. On PND60 behavioral and oxidative alterations were evaluated in the prefrontal cortex (PFC) and striatum. Mechanisms of hippocampal memory regulation such as immune expression of G protein-coupled estrogen receptor 1 (GPER), α7-nAChR and parvalbumin were also evaluated. RESULTS NAC prevented sensorimotor gating deficits only in females, while it prevented alterations in social interaction, working memory and locomotor activity in both sexes. Again, in rats of both sexes, NAC prevented the following neurochemical alterations: glutathione (GSH) and nitrite levels in the PFC and lipid peroxidation in the PFC and striatum. Striatal oxidative alterations in GSH and nitrite were observed in females and prevented by NAC. Two-hit induced hippocampal alterations in females, namely expression of GPER-1, α7-nAChR and parvalbumin, were prevented by NAC. CONCLUSION Our results highlights the influences of sex in NAC preventive effects in rats exposed to a two-hit schizophrenia model.
Collapse
Affiliation(s)
- Aline Santos Monte
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Francisco Eliclécio Rodrigues da Silva
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Camila Nayane de Carvalho Lima
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Germana Silva Vasconcelos
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Nayana Soares Gomes
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Fábio Miyajima
- Fundação Oswaldo Cruz (Fiocruz-CE), Fortaleza, Ceara, Brazil
| | - Silvania Maria Mendes Vasconcelos
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Clarissa S Gama
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mary V Seeman
- Department of Psychiatry, University of Toronto, ON, Canada
| | - David Freitas de Lucena
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Danielle S Macedo
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, SP, Brazil
| |
Collapse
|