1
|
Biricioiu MR, Sarbu M, Ica R, Vukelić Ž, Clemmer DE, Zamfir AD. Advanced profiling and structural analysis of anencephaly gangliosides by ion mobility tandem mass spectrometry. Biochimie 2025; 232:91-104. [PMID: 39884374 DOI: 10.1016/j.biochi.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/02/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Anencephaly, the most severe type of neural tube defects (NTDs) in humans, occurs between the third and fourth gestational weeks (GW), involves the cranial part of the NT and results in the absence of the forebrain and skull. Exposed to amniotic fluid toxicity, neural tissue is degraded and prevented from development. Currently, little is known about the molecular bases of the disease and the possible involvement of glycans. In this context, considering the role played by gangliosides (GGs) in fetal brain development and the previous achievements of ion mobility separation (IMS) mass spectrometry (MS) in biomarker discovery, we report here on the introduction of this advanced analytical technique in NTD research, and its optimization for a comprehensive determination of anencephaly gangliosidome. Three native GG extracts from residual brains of anencephalic fetuses in 28, 35 and 37 GW were comparatively profiled by IMS MS, structurally analyzed by IMS MS/MS, and finally assessed against a native GG mixture from normal fetal brain. IMS MS provided data on 343 anencephaly gangliosides vs. only 157 known before and revealed for the first time the incidence of the entire penta-to octasialylated series. The comparative assay disclosed variations in GG expression with fetal age and a correlation of the pattern with the developmental stage. In contrast to the normal fetal brain, the neural tissue in anencephaly was found to contain an elevated number of polysialogangliosides and a lower expression of O-Ac- and GalNAc-modified glycoforms. These species worth further detailed investigation as new potential anencephaly markers.
Collapse
Affiliation(s)
- Maria Roxana Biricioiu
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Plautius Andronescu Str. 1, 300224, Timisoara, Romania; Department of Physics, West University of Timisoara, Vasile Parvan, 4, 300223, Romania
| | - Mirela Sarbu
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Plautius Andronescu Str. 1, 300224, Timisoara, Romania
| | - Raluca Ica
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Plautius Andronescu Str. 1, 300224, Timisoara, Romania
| | - Željka Vukelić
- Department of Chemistry and Biochemistry, Faculty of Medicine, University of Zagreb, Šalata 2, 10000, Croatia
| | - David E Clemmer
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Alina D Zamfir
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Plautius Andronescu Str. 1, 300224, Timisoara, Romania; Department of Physics, West University of Timisoara, Vasile Parvan, 4, 300223, Romania; Institute for Research, Development and Innovation in Natural and Technical Sciences, Aurel Vlaicu University of Arad, B-dul Revoluţiei 77, 310130, Romania.
| |
Collapse
|
2
|
Radu KR, Baek KH. Insights on the Role of Sialic Acids in Acute Lymphoblastic Leukemia in Children. Int J Mol Sci 2025; 26:2233. [PMID: 40076855 PMCID: PMC11900591 DOI: 10.3390/ijms26052233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/11/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Sialic acids serve as crucial terminal sugars on glycoproteins or glycolipids present on cell surfaces. These sugars are involved in diverse physiological and pathological processes through their interactions with carbohydrate-binding proteins, facilitating cell-cell communication and influencing the outcomes of bacterial and viral infections. The role of hypersialylation in tumor growth and metastasis has been widely studied. Recent research has highlighted the significance of aberrant sialylation in enabling tumor cells to escape immune surveillance and sustain their malignant behavior. Acute lymphoblastic leukemia (ALL) is a heterogenous hematological malignancy that primarily affects children and is the second leading cause of mortality among individuals aged 1 to 14. ALL is characterized by the uncontrolled proliferation of immature lymphoid cells in the bone marrow, peripheral blood, and various organs. Sialic acid-binding immunoglobulin-like lectins (Siglecs) are cell surface proteins that can bind to sialic acids. Activation of Siglecs triggers downstream reactions, including induction of cell apoptosis. Siglec-7 and Siglec-9 have been reported to promote cancer progression by driving macrophage polarization, and their expressions on natural killer cells can inhibit tumor cell death. This comprehensive review aims to explore the sialylation mechanisms and their effects on ALL in children. Understanding the complex interplay between sialylation and ALL holds great potential for developing novel diagnostic tools and therapeutic interventions in managing this pediatric malignancy.
Collapse
Affiliation(s)
- Kimberley Rinai Radu
- Department of Life Science, Graduate School, CHA University, Seongnam-si 13488, Gyeonggi-do, Republic of Korea;
| | - Kwang-Hyun Baek
- Department of Life Science, Graduate School, CHA University, Seongnam-si 13488, Gyeonggi-do, Republic of Korea;
- Department of Bioconvergence, Graduate School, CHA University, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Puljko B, Štracak M, Kalanj-Bognar S, Todorić Laidlaw I, Mlinac-Jerkovic K. Gangliosides and Cholesterol: Dual Regulators of Neuronal Membrane Framework in Autism Spectrum Disorder. Int J Mol Sci 2025; 26:1322. [PMID: 39941090 PMCID: PMC11818915 DOI: 10.3390/ijms26031322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with heterogeneous clinical presentation. Diagnosing ASD is complex, and the criteria for diagnosis, as well as the term ASD, have changed during the last decades. Diagnosis is made based on observation and accomplishment of specific diagnostic criteria, while a particular biomarker of ASD does not yet exist. However, studies universally report a disequilibrium in membrane lipid content, pointing to a unique neurolipid signature of ASD. This review sheds light on the possible role of cholesterol and gangliosides, complex membrane glycosphingolipids, in the development of ASD. In addition to maintaining membrane integrity, neuronal signaling, and synaptic plasticity, these lipids play a role in neurotransmitter release and calcium signaling. Evidence linking ASD to lipidome changes includes low cholesterol levels, unusual ganglioside levels, and unique metabolic profiles. ASD symptoms may be mitigated with therapeutic interventions targeting the lipid composition of membranes. However, restoring membrane equilibrium in the central nervous system remains a challenge. This review underscores the need for comprehensive research into lipid metabolism to uncover practical insights into ASD etiology and treatment as lipidomics emerges as a major area in ASD research.
Collapse
Affiliation(s)
- Borna Puljko
- Laboratory for Molecular Neurobiology and Neurochemistry, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (B.P.); (S.K.-B.)
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Svjetlana Kalanj-Bognar
- Laboratory for Molecular Neurobiology and Neurochemistry, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (B.P.); (S.K.-B.)
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivana Todorić Laidlaw
- Department for Forensic Psychiatry, University Psychiatric Hospital Vrapče, 10090 Zagreb, Croatia
| | - Kristina Mlinac-Jerkovic
- Laboratory for Molecular Neurobiology and Neurochemistry, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (B.P.); (S.K.-B.)
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Ichikawa S, Mishima Y, Nagao M, Sakashita G, Furukawa K, Sato T, Miyazawa K, Hamamura K. Suppression of Bone Formation and Resorption by the Deletion of Complex Gangliosides. In Vivo 2025; 39:257-266. [PMID: 39740874 PMCID: PMC11705114 DOI: 10.21873/invivo.13824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND/AIM Gangliosides regulate bone formation and resorption. Bone formation is reduced in mice lacking ganglioside GM2/GD2 synthase due to a decrease in osteoblasts. However, the effects of the loss of complex gangliosides by the deletion of both GM2/GD2 and GD3 synthases are unknown. Therefore, we investigated whether deletion of complex gangliosides in mice affected bone metabolism. MATERIALS AND METHODS Twenty-six double-knockout mice lacking both GM2/GD2 and GD3 synthases (dKO) and 30 wild-type (WT) mice as controls were used. The mass of cancellous bone and bone strength in femurs were determined using three-dimensional micro-computed tomography and three-point bending test, respectively. Bone formation and resorption were assessed using histomorphometrical analysis with hematoxylin and eosin, and tartrate-resistant acid phosphatase (TRAP), respectively. Osteoblast proliferation was determined by bromodeoxyuridine assay and the differentiation into osteoclasts by TRAP staining; mRNA levels of osteoclast differentiation markers [nuclear factor of activated T-cells, cytoplasmic 1 (Nfatc1); Trap; and cathepsin K (Ctsk)] were also determined. RESULTS Bone mass increased in dKO mice, while bone formation and resorption decrease. In terms of bone strength, breaking displacement significantly increased in dKO mice. Furthermore, the proliferation of osteoblasts was suppressed, and the number of TRAP-positive multinucleated cells was reduced in dKO mice. Treatment with receptor activator of NF-[Formula: see text]B ligand significantly reduced Nfatc1, Trap and Ctsk mRNA levels in macrophages from dKO mice. CONCLUSION Bone formation and resorption were reduced by the deletion of genes for complex gangliosides. The slight increase in bone strength in dKO mice may be due to the cancellous bone volume increase in these mice.
Collapse
Affiliation(s)
- Shota Ichikawa
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Yoshitaka Mishima
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Mayu Nagao
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Gyosuke Sakashita
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Takuma Sato
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Ken Miyazawa
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Kazunori Hamamura
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan;
| |
Collapse
|
5
|
Xu M, Wang L, Meng Y, Kang G, Jiang Q, Yan T, Che F. The role of lipid metabolism in cognitive impairment. ARQUIVOS DE NEURO-PSIQUIATRIA 2025; 83:1-13. [PMID: 39814004 PMCID: PMC11735072 DOI: 10.1055/s-0044-1792097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/27/2024] [Indexed: 01/18/2025]
Abstract
Alzheimer's disease (AD), diabetic cognitive impairment (DCI), and vascular dementia (VD) are considered the most common causes of severe cognitive impairment in clinical practice. Numerous factors can influence their progression, and many studies have recently revealed that metabolic disorders play crucial roles in the progression of cognitive impairment. Mounting evidence indicate that the regulation of lipid metabolism is a major factor in maintaining brain homeostasis. Generally, abnormalities in lipid metabolism can affect amyloid-beta (Aβ) deposition, tau hyperphosphorylation, and insulin resistance through lipid metabolic signaling cascades; affect the neuronal membrane structure, neurotransmitter synthesis and release; and promote synapse growth, which can impact neural signal transmission and exacerbate disease progression in individuals with cognitive impairment, including AD, DCI, and VD. Moreover, apolipoprotein E (APOE), a key protein in lipid transport, is involved in the occurrence and development of the aforementioned diseases by regulating lipid metabolism. The present article mainly discusses how lipid metabolic disorders in the brain microenvironment are involved in regulating the progression of cognitive impairment, and it explores the regulatory effects of targeting the key lipid transport protein APOE in the context of the role of lipid metabolism in the common pathogenesis of three diseases-Aβ deposition, tau hyperphosphorylation, and insulin resistance-which will help elucidate the potential of targeting lipid metabolism for the treatment of cognitive impairment.
Collapse
Affiliation(s)
- Meifang Xu
- Second Medical University, School of Clinical Medicine, Weifang Shandong Province, China.
- Linyi People's Hospital, Department of Neurology, Linyi Shandong Province, China.
| | - Liyuan Wang
- Second Medical University, School of Clinical Medicine, Weifang Shandong Province, China.
| | - Yun Meng
- Linyi People's Hospital, Department of Neurology, Linyi Shandong Province, China.
| | - Guiqiong Kang
- Guangzhou University of Chinese Medicine, Linyi People's Hospital, Linyi Shandong Province, China.
| | - Qing Jiang
- Harbin Medical University, First Affiliated Hospital, Department of Neurosurgery, Harbin Heilongjiang Province, China.
- Key Colleges and Universities, Laboratory of Neurosurgery, Harbin Heilongjiang Province, China.
| | - Tao Yan
- Linyi People's Hospital, Department of Neurology, Linyi Shandong Province, China.
| | - Fengyuan Che
- Second Medical University, School of Clinical Medicine, Weifang Shandong Province, China.
- Linyi People's Hospital, Department of Neurology, Linyi Shandong Province, China.
| |
Collapse
|
6
|
Liu D, Xue Y, Ding D, Zhu B, Shen J, Jin Z, Sun S. Distinct O-Acetylation Patterns of Serum Glycoproteins among Humans, Mice, and Rats. J Proteome Res 2024; 23:5511-5519. [PMID: 39533701 DOI: 10.1021/acs.jproteome.4c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
O-Acetylation is a significant chemical modification of sialic acids on glycoproteins with diverse biological functions. As two important animal models, mice and rats have been widely used for various biomedical studies. In this study, we show that the sialic acid types and their O-acetylation patterns have large differences among serum glycoproteins of humans, rats, and mice. Based on intact N-glycopeptide analyses, all sialoglycopeptides in human sera were modified by Neu5Ac without any O-acetylation; 90% of sialoglycopeptides in rat sera were also modified by Neu5Ac, with more than 60% that were further O-acetylated. In contrast, 99% of sialoglycopeptides in mouse sera contained Neu5Gc including 12% in O-acetylated forms. Among all O-acetylated N-glycans, rat sera had hybrid glycans fivefold those of mouse sera, while mouse sera contained 5.5-fold core-fucosylated glycans and 4.6-31.5-fold mono-/penta-/hexa-antenna glycans compared to mice. The overall O-acetylation proportions of serum glycoproteins in rats were much higher than those in mice, and diverse O-acetylation proportions also commonly existed at different glycosites of the same glycoproteins. This study enhances our understanding of O-acetylated sialoglycan diversities and underscores the necessity of considering glycosylation profiles when selecting suitable animal models for various biomedical studies.
Collapse
Affiliation(s)
- Didi Liu
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Yue Xue
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Dan Ding
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Bojing Zhu
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Jiechen Shen
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Zhehui Jin
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Shisheng Sun
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
7
|
Kim J, Byeon SK, Oglesbee D, Schultz MJ, Matern D, Pandey A. A multiplexed targeted method for profiling of serum gangliosides and glycosphingolipids: application to GM2-gangliosidosis. Anal Bioanal Chem 2024; 416:5689-5699. [PMID: 39190143 PMCID: PMC11493836 DOI: 10.1007/s00216-024-05487-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
The analysis of gangliosides and glycosphingolipids is crucial for understanding cellular membrane structure and function as well as to accurately diagnose certain inborn errors of metabolism. GM2-gangliosidosis represents a rare and fatal group of lysosomal storage disorders characterized by accumulation of GM2 gangliosides in various tissues and organs. These disorders arise due to deficiency or functional impairment of the β-hexosaminidase A or B enzymes, which are responsible for degradation of GM2 ganglioside. Deficient enzyme activity primarily leads to the accumulation of GM2 gangliosides within the lysosomes of cells. Accurate and rapid diagnostic methods that detect increased levels of GM2 gangliosides in patients with GM2-gangliosidosis can play a significant role in early diagnosis and appropriate treatment of this condition. To address this need, we developed a multiplexed liquid chromatography-tandem mass spectrometry method targeting 84 species of gangliosides and other glycosphingolipids involved in ganglioside metabolism. Reproducibility, linearity, extraction efficiency, and sample stability were evaluated and proof-of-concept data obtained from analysis of serum samples from confirmed cases of GM2-gangliosidosis. This method has the potential to simultaneously monitor the biosynthesis of gangliosides and the lysosomal catabolic pathway serving as a valuable tool for screening and diagnosing an important group of lysosomal storage disorders.
Collapse
Affiliation(s)
- Jinyong Kim
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Seul Kee Byeon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Matthew J Schultz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Dietrich Matern
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
- Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
8
|
Xue J, Song Z, Zhao H, Yi Z, Li F, Yang C, Liu K, Zhang Y. A case of variant of GBS with positive serum ganglioside GD3 IgG antibody. Ital J Pediatr 2024; 50:109. [PMID: 38831339 PMCID: PMC11149178 DOI: 10.1186/s13052-024-01682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/28/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Acute bulbar palsy-plus (ABPp) syndrome is an unusual variant of Guillain-Barré syndrome (GBS). Anti-GT1a and anti-GQ1b antibodies have been reported in patients with ABPp, but without reports related to GD3 antibodies. METHODS Clinical data of a patient diagnosed as ABPp syndrome were reviewed clinically. And we summarized the GBS patients with ABP and facial paralysis reported in the literature. RESULTS We reported a 13-year-old girl presented with asymmetric bifacial weakness, bulbar palsy and transient limb numbness, and had positive serum IgG anti-GD3 antibody. Through reviewing the GBS patients with ABP and facial paralysis reported previously, we found that facial palsy could be unilateral or bilateral. The bilateral facial palsy could present successively or simultaneously, and could be symmetrical or asymmetrical. Other common symptoms included ophthalmoplegia, sensory abnormality and ataxia. IgG anti-GT1a and IgG anti-GQ1b antibodies were the most frequent. Most of the patients had full recovery within two weeks to one year of follow-up. CONCLUSIONS We reported a patient with asymmetric bifacial palsy and bulbar palsy, which seemed to fit the diagnosis of ABPp syndrome. This was the first report of ABPp variant of GBS with positive serum ganglioside GD3 IgG antibody.
Collapse
Affiliation(s)
- Jiao Xue
- Department of Pediatric Neurology, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, Shandong, 266000, China
| | - Zhenfeng Song
- Department of Pediatric Neurology, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, Shandong, 266000, China
| | - Hongshan Zhao
- Department of Anesthesiology, the Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, Shandong, 266000, China
| | - Zhi Yi
- Department of Pediatric Neurology, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, Shandong, 266000, China
| | - Fei Li
- Department of Pediatric Neurology, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, Shandong, 266000, China
| | - Chengqing Yang
- Department of Pediatric Neurology, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, Shandong, 266000, China
| | - Kaixuan Liu
- Department of Pediatric Neurology, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, Shandong, 266000, China
| | - Ying Zhang
- Department of Pediatric Neurology, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, Shandong, 266000, China.
| |
Collapse
|
9
|
Jamjoum R, Majumder S, Issleny B, Stiban J. Mysterious sphingolipids: metabolic interrelationships at the center of pathophysiology. Front Physiol 2024; 14:1229108. [PMID: 38235387 PMCID: PMC10791800 DOI: 10.3389/fphys.2023.1229108] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Metabolic pathways are complex and intertwined. Deficiencies in one or more enzymes in a given pathway are directly linked with genetic diseases, most of them having devastating manifestations. The metabolic pathways undertaken by sphingolipids are diverse and elaborate with ceramide species serving as the hubs of sphingolipid intermediary metabolism and function. Sphingolipids are bioactive lipids that serve a multitude of cellular functions. Being pleiotropic in function, deficiency or overproduction of certain sphingolipids is associated with many genetic and chronic diseases. In this up-to-date review article, we strive to gather recent scientific evidence about sphingolipid metabolism, its enzymes, and regulation. We shed light on the importance of sphingolipid metabolism in a variety of genetic diseases and in nervous and immune system ailments. This is a comprehensive review of the state of the field of sphingolipid biochemistry.
Collapse
Affiliation(s)
- Rama Jamjoum
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Saurav Majumder
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Rockville, MD, United States
| | - Batoul Issleny
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| |
Collapse
|
10
|
Sosnicki DM, Cohen R, Asano A, Nelson JL, Mukai C, Comizzoli P, Travis AJ. Segmental differentiation of the murine epididymis: identification of segment-specific, GM1-enriched vesicles and regulation by luminal fluid factors†. Biol Reprod 2023; 109:864-877. [PMID: 37694824 PMCID: PMC10724454 DOI: 10.1093/biolre/ioad120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/17/2023] [Accepted: 09/09/2023] [Indexed: 09/12/2023] Open
Abstract
The murine epididymis has 10 distinct segments that provide the opportunity to identify compartmentalized cell physiological mechanisms underlying sperm maturation. However, despite the essential role of the epididymis in reproduction, remarkably little is known about segment-specific functions of this organ. Here, we investigate the dramatic segmental localization of the ganglioside GM1, a glycosphingolipid already known to play key roles in sperm capacitation and acrosome exocytosis. Frozen tissue sections of epididymides from adult mice were treated with the binding subunit of cholera toxin conjugated to AlexaFluor 488 to label GM1. We report that GM1-enriched vesicles were found exclusively in principal and clear cells of segment 2. These vesicles were also restricted to the lumen of segment 2 and did not appear to flow with the sperm into segment 3, within the limits of detection by confocal microscopy. Interestingly, this segment-specific presence was altered in several azoospermic mouse models and in wild-type mice after efferent duct ligation. These findings indicate that a lumicrine factor, itself dependent on spermatogenesis, controls this segmental differentiation. The RNA sequencing results confirmed global de-differentiation of the proximal epididymal segments in response to efferent duct ligation. Additionally, GM1 localization on the surface of the sperm head increased as sperm transit through segment 2 and have contact with the GM1-enriched vesicles. This is the first report of segment-specific vesicles and their role in enriching sperm with GM1, a glycosphingolipid known to be critical for sperm function, providing key insights into the segment-specific physiology and function of the epididymis.
Collapse
Affiliation(s)
- Danielle M Sosnicki
- Cornell University, Baker Institute for Animal Health, Ithaca, NY, USA
- Smithsonian's National Zoo and Conservation Biology Institute, Department of Reproductive Sciences, Washington, DC, USA
| | - Roy Cohen
- Cornell University, Baker Institute for Animal Health, Ithaca, NY, USA
- Cornell University, Department of Public and Ecosystem Health, Ithaca, NY, USA
| | - Atsushi Asano
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Japan
| | | | - Chinatsu Mukai
- Cornell University, Baker Institute for Animal Health, Ithaca, NY, USA
| | - Pierre Comizzoli
- Smithsonian's National Zoo and Conservation Biology Institute, Department of Reproductive Sciences, Washington, DC, USA
| | - Alexander J Travis
- Cornell University, Baker Institute for Animal Health, Ithaca, NY, USA
- Cornell University, Department of Public and Ecosystem Health, Ithaca, NY, USA
| |
Collapse
|
11
|
Deschenes NM, Cheng C, Khanal P, Quinville BM, Ryckman AE, Mitchell M, Pshezhetsky AV, Walia JS. Characterization of a phenotypically severe animal model for human AB-Variant GM2 gangliosidosis. Front Mol Neurosci 2023; 16:1242814. [PMID: 38098938 PMCID: PMC10720325 DOI: 10.3389/fnmol.2023.1242814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/23/2023] [Indexed: 12/17/2023] Open
Abstract
AB-Variant GM2 gangliosidosis (ABGM2) is a rare and lethal genetic disorder caused by mutations in the GM2A gene that lead to fatal accumulation of GM2 gangliosides (GM2) in neurons of the central nervous system (CNS). GM2A encodes a transport protein known as GM2 activator (GM2A) protein, which is essential for degrading GM2 into their GM3 form. ABGM2 presents in infantile-, juvenile-, and adult-onset forms; of the three, the infantile-onset is the most prominent, and by far the most severe, as evidenced by high levels of GM2 accumulation, widespread neurodegeneration, and death by the age of 4. Gm2a-/- mice are commonly used as a model of ABGM2. These mice are characterized by phenotypes most representative of predicted adult-onset form of ABGM2, which include moderate GM2 accumulation and mild neurological defects. This mild phenotype has been attributed to compensation by alternative GM2 degradation pathways mediated by sialidase, neuraminidase 3 (NEU3), a pathway that is more prominent in mice than humans. To assess the extent to which NEU3 contributes to GM2 degradation, we generated double knock-out (Gm2a-/-Neu3-/-) mice. Compellingly, these mice present with a clinical phenotype resembling that of a more severe ABGM2, including ataxia, reduced mobility and coordination, weight loss, poor body scores, and lethality by 6-7 months. Furthermore, these phenotypes correlate with a dramatic increase in GM2 accumulation in the CNS compared to levels observed in either Gm2a-/- or Neu3-/- mice. Taken together, these studies, for the first-time, confirm that the mild neurological phenotype of Gm2a-/- mice is due to compensatory activity on GM2 catabolism through an alternate breakdown pathway involving NEU3. These studies support the use of double knockout mice as a novel and highly relevant model for pre-clinical drug studies in a more severe form of ABGM2.
Collapse
Affiliation(s)
| | - Camilyn Cheng
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | - Prem Khanal
- Department of Pediatrics, Queen’s University, Kingston, ON, Canada
| | | | - Alex E. Ryckman
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | - Melissa Mitchell
- Department of Pediatrics, Queen’s University, Kingston, ON, Canada
| | - Alexey V. Pshezhetsky
- Centre Hospitalier Universitaire Sainte-Justine Research Centre, Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| | - Jagdeep S. Walia
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
- Department of Pediatrics, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
12
|
Pawar A, Zabetakis I, Gavankar T, Lordan R. Milk polar lipids: Untapped potential for pharmaceuticals and nutraceuticals. PHARMANUTRITION 2023. [DOI: 10.1016/j.phanu.2023.100335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
13
|
Guo Z. Ganglioside GM1 and the Central Nervous System. Int J Mol Sci 2023; 24:ijms24119558. [PMID: 37298512 DOI: 10.3390/ijms24119558] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/18/2023] [Accepted: 05/04/2023] [Indexed: 06/12/2023] Open
Abstract
GM1 is one of the major glycosphingolipids (GSLs) on the cell surface in the central nervous system (CNS). Its expression level, distribution pattern, and lipid composition are dependent upon cell and tissue type, developmental stage, and disease state, which suggests a potentially broad spectrum of functions of GM1 in various neurological and neuropathological processes. The major focus of this review is the roles that GM1 plays in the development and activities of brains, such as cell differentiation, neuritogenesis, neuroregeneration, signal transducing, memory, and cognition, as well as the molecular basis and mechanisms for these functions. Overall, GM1 is protective for the CNS. Additionally, this review has also examined the relationships between GM1 and neurological disorders, such as Alzheimer's disease, Parkinson's disease, GM1 gangliosidosis, Huntington's disease, epilepsy and seizure, amyotrophic lateral sclerosis, depression, alcohol dependence, etc., and the functional roles and therapeutic applications of GM1 in these disorders. Finally, current obstacles that hinder more in-depth investigations and understanding of GM1 and the future directions in this field are discussed.
Collapse
Affiliation(s)
- Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
14
|
Khoury S, Soubeyre V, Cabaret S, Grégoire S, Mézière E, Masson E, Grosmaitre X, Bretillon L, Berdeaux O, Acar N, Le Bon AM. Impact of dietary n-3 polyunsaturated fatty acid intake during the perinatal and post-weaning periods on the phospholipid and ganglioside composition of olfactory tissues. Prostaglandins Leukot Essent Fatty Acids 2023; 191:102556. [PMID: 36870298 DOI: 10.1016/j.plefa.2023.102556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/02/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
The olfactory mucosa (OM) and olfactory bulb (OB) are neuronal tissues that contribute to the early processing of olfactory information. They contain significant amounts of n-3 and n-6 polyunsaturated fatty acids (PUFAs), which are crucial for neuronal tissue development. In this study, we evaluated the impact of feeding mice diets that are either deficient in α-linolenic acid (ALA) or supplemented with n-3 long-chain PUFAs from gestation to adolescence on the phospholipid and ganglioside composition of these tissues. Both diets modified the levels of some phospholipid classes, notably the phosphatidylserine and phosphatidylethanolamine levels. In addition, the low-ALA diet enriched n-6 PUFAs in the main phospholipid classes of both tissues, while the diet supplemented with n-3 PUFAs enhanced the n-3 PUFA-containing phospholipid species level, mainly in OM. The diets also modulated the levels and profiles of several ganglioside classes in OM and OB. These modifications may have repercussions on the olfactory sensitivity.
Collapse
Affiliation(s)
- Spiro Khoury
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, F-21000 Dijon, France; INRAE, PROBE Research Infrastructure, ChemoSens facility, F-21000 Dijon, France
| | - Vanessa Soubeyre
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Stéphanie Cabaret
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, F-21000 Dijon, France; INRAE, PROBE Research Infrastructure, ChemoSens facility, F-21000 Dijon, France
| | - Stéphane Grégoire
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Esther Mézière
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, F-21000 Dijon, France; INRAE, PROBE Research Infrastructure, ChemoSens facility, F-21000 Dijon, France
| | - Elodie Masson
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Xavier Grosmaitre
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Lionel Bretillon
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Olivier Berdeaux
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, F-21000 Dijon, France; INRAE, PROBE Research Infrastructure, ChemoSens facility, F-21000 Dijon, France
| | - Niyazi Acar
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Anne Marie Le Bon
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, F-21000 Dijon, France.
| |
Collapse
|
15
|
Pandey MK. Exploring Pro-Inflammatory Immunological Mediators: Unraveling the Mechanisms of Neuroinflammation in Lysosomal Storage Diseases. Biomedicines 2023; 11:biomedicines11041067. [PMID: 37189685 DOI: 10.3390/biomedicines11041067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Lysosomal storage diseases are a group of rare and ultra-rare genetic disorders caused by defects in specific genes that result in the accumulation of toxic substances in the lysosome. This excess accumulation of such cellular materials stimulates the activation of immune and neurological cells, leading to neuroinflammation and neurodegeneration in the central and peripheral nervous systems. Examples of lysosomal storage diseases include Gaucher, Fabry, Tay–Sachs, Sandhoff, and Wolman diseases. These diseases are characterized by the accumulation of various substrates, such as glucosylceramide, globotriaosylceramide, ganglioside GM2, sphingomyelin, ceramide, and triglycerides, in the affected cells. The resulting pro-inflammatory environment leads to the generation of pro-inflammatory cytokines, chemokines, growth factors, and several components of complement cascades, which contribute to the progressive neurodegeneration seen in these diseases. In this study, we provide an overview of the genetic defects associated with lysosomal storage diseases and their impact on the induction of neuro-immune inflammation. By understanding the underlying mechanisms behind these diseases, we aim to provide new insights into potential biomarkers and therapeutic targets for monitoring and managing the severity of these diseases. In conclusion, lysosomal storage diseases present a complex challenge for patients and clinicians, but this study offers a comprehensive overview of the impact of these diseases on the central and peripheral nervous systems and provides a foundation for further research into potential treatments.
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, Cincinnati, OH 45229-3026, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0515, USA
| |
Collapse
|
16
|
Lin TW, Chang JK, Wu YR, Sun TH, Cheng YY, Ren CT, Pan MH, Wu JL, Chang KH, Yang HI, Chen CM, Wu CY, Chen YR. Ganglioside-focused Glycan Array Reveals Abnormal Anti-GD1b Auto-antibody in Plasma of Preclinical Huntington's Disease. Mol Neurobiol 2023; 60:3873-3882. [PMID: 36976478 DOI: 10.1007/s12035-023-03307-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/08/2023] [Indexed: 03/29/2023]
Abstract
Huntington's disease (HD) is a progressive and devastating neurodegenerative disease marked by inheritable CAG nucleotide expansion. For offspring of HD patients carrying abnormal CAG expansion, biomarkers that predict disease onset are crucially important but still lacking. Alteration of brain ganglioside patterns has been observed in the pathology of patients carrying HD. Here, by using a novel and sensitive ganglioside-focused glycan array, we examined the potential of anti-glycan auto-antibodies for HD. In this study, we collected plasma from 97 participants including 42 control (NC), 16 pre-manifest HD (pre-HD), and 39 HD cases and measured the anti-glycan auto-antibodies by a novel ganglioside-focused glycan array. The association between plasma anti-glycan auto-antibodies and disease progression was analyzed using univariate and multivariate logistic regression. The disease-predictive capacity of anti-glycan auto-antibodies was further investigated by receiver operating characteristic (ROC) analysis. We found that anti-glycan auto-antibodies were generally higher in the pre-HD group when compared to the NC and HD groups. Specifically, anti-GD1b auto-antibody demonstrated the potential for distinguishing between pre-HD and control groups. Moreover, in combination with age and the number of CAG repeat, the level of anti-GD1b antibody showed excellent predictability with an area under the ROC curve (AUC) of 0.95 to discriminate between pre-HD carriers and HD patients. With glycan array technology, this study demonstrated abnormal auto-antibody responses that showed temporal changes from pre-HD to HD.
Collapse
Affiliation(s)
- Tien-Wei Lin
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Jung-Kai Chang
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsung-Hsien Sun
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Yang-Yu Cheng
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Chien-Tai Ren
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Mei-Hung Pan
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Jin-Lin Wu
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
- Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hwai-I Yang
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
17
|
He N, Zhao T. Propranolol induces large-scale remodeling of lipid bilayers: tubules, patches, and holes. RSC Adv 2023; 13:7719-7730. [PMID: 36908547 PMCID: PMC9994463 DOI: 10.1039/d3ra00319a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Herein, we report fluorescence microscopy analysis of the interaction between propranolol (PPN), a beta-adrenergic blocking agent, and planar supported lipid bilayers (SLBs), as model membranes. The results indicate that PPN can remarkably promote largescale remodeling in SLBs with various lipid compositions. It was found that PPN insertion induces the formation of long microtubules that can retract into hemispherical caps on the surface of the bilayer. These transformations are dynamic, partially reversible, and dependent upon the drug concentration. Quantitative analysis revealed a three-step model for PPN-lipid bilayer interaction, with the first step involving interfacial electrostatic adsorption, the second step centered on hydrophobic insertion, and the third step associated with membrane disruption and hole formation. By introducing cholesterol, phosphoethanolamine, phosphatidylglycerol, and phosphatidylserine lipids into the phosphocholine SLBs, it was illustrated that both the chemistry of the lipid headgroups and the packing of lipid acyl chains can substantially affect the particular steps in the interactions between PPN and lipid bilayers. Our findings may help to elucidate the possible mechanisms of PPN interaction with lipid membranes, the toxic behavior and overdosage scenarios of beta-blockers, and provide valuable information for drug development and modification.
Collapse
Affiliation(s)
- Ni He
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science Shanghai 201620 China +86-021-67791214
| | - Tao Zhao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science Shanghai 201620 China +86-021-67791214
| |
Collapse
|
18
|
Lenski M, Bruno C, Darrouzain F, Allorge D. Métabolomique : principes et applications en toxicologie biologique et médicolégale. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2023. [DOI: 10.1016/j.toxac.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
19
|
Itokazu Y, Fuchigami T, Yu RK. Functional Impairment of the Nervous System with Glycolipid Deficiencies. ADVANCES IN NEUROBIOLOGY 2023; 29:419-448. [PMID: 36255683 PMCID: PMC9793801 DOI: 10.1007/978-3-031-12390-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Patients with nervous system disorders suffer from impaired cognitive, sensory and motor functions that greatly inconvenience their daily life and usually burdens their family and society. It is difficult to achieve functional recovery for the damaged central nervous system (CNS) because of its limited ability to regenerate. Glycosphingolipids (GSLs) are abundant in the CNS and are known to play essential roles in cell-cell recognition, adhesion, signal transduction, and cellular migration, that are crucial in all phases of neurogenesis. Despite intense investigation of CNS regeneration, the roles of GSLs in neural regeneration remain unclear. Here we focus on the respective potentials of glycolipids to promote regeneration and repair of the CNS. Mice lacking glucosylceramide, lactosylceramide or gangliosides show lethal phenotypes. More importantly, patients with ganglioside deficiencies exhibit severe clinical phenotypes. Further, neurodegenerative diseases and mental health disorders are associated with altered GSL expression. Accumulating studies demonstrate that GSLs not only delimit physical regions but also play central roles in the maintenance of the biological functions of neurons and glia. We anticipate that the ability of GSLs to modulate behavior of a variety of molecules will enable them to ameliorate biochemical and neurobiological defects in patients. The use of GSLs to treat such defects in the human CNS will be a paradigm-shift in approach since GSL-replacement therapy has not yet been achieved in this manner clinically.
Collapse
Affiliation(s)
- Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| | - Takahiro Fuchigami
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
20
|
Zhao X, Zhang S, Sanders AR, Duan J. Brain Lipids and Lipid Droplet Dysregulation in Alzheimer's Disease and Neuropsychiatric Disorders. Complex Psychiatry 2023; 9:154-171. [PMID: 38058955 PMCID: PMC10697751 DOI: 10.1159/000535131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023] Open
Abstract
Background Lipids are essential components of the structure and for the function of brain cells. The intricate balance of lipids, including phospholipids, glycolipids, cholesterol, cholesterol ester, and triglycerides, is crucial for maintaining normal brain function. The roles of lipids and lipid droplets and their relevance to neurodegenerative and neuropsychiatric disorders (NPDs) remain largely unknown. Summary Here, we reviewed the basic role of lipid components as well as a specific lipid organelle, lipid droplets, in brain function, highlighting the potential impact of altered lipid metabolism in the pathogenesis of Alzheimer's disease (AD) and NDPs. Key Messages Brain lipid dysregulation plays a pivotal role in the pathogenesis and progression of neurodegenerative and NPDs including AD and schizophrenia. Understanding the cell type-specific mechanisms of lipid dysregulation in these diseases is crucial for identifying better diagnostic biomarkers and for developing therapeutic strategies aiming at restoring lipid homeostasis.
Collapse
Affiliation(s)
- Xiaojie Zhao
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Siwei Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Alan R. Sanders
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| |
Collapse
|
21
|
Bieberich E. Synthesis, Processing, and Function of N-Glycans in N-Glycoproteins. ADVANCES IN NEUROBIOLOGY 2023; 29:65-93. [PMID: 36255672 DOI: 10.1007/978-3-031-12390-0_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Many membrane-resident and secreted proteins, including growth factors and their receptors are N-glycosylated. The initial N-glycan structure is synthesized in the endoplasmic reticulum (ER) as a branched structure on a lipid anchor (dolicholpyrophosphate) and then co-translationally, "en bloc" transferred and linked via N-acetylglucosamine to asparagine within a specific N-glycosylation acceptor sequence of the nascent recipient protein. In the ER and then the Golgi apparatus, the N-linked glycan structure is modified by hydrolytic removal of sugar residues ("trimming") followed by re-glycosylation with additional sugar residues ("processing") such as galactose, fucose or sialic acid to form complex N-glycoproteins. While the sequence of the reactions leading to biosynthesis, "en bloc" transfer and processing of N-glycans is well investigated, it is still not completely understood how N-glycans affect the biological fate and function of N-glycoproteins. This review will discuss the biology of N-glycoprotein synthesis, processing and function with specific reference to the physiology and pathophysiology of the immune and nervous system, as well as infectious diseases such as Covid-19.
Collapse
Affiliation(s)
- Erhard Bieberich
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA.
- Veteran Affairs Medical Center, Lexington, KY, USA.
| |
Collapse
|
22
|
Kurzawa‐Akanbi M, Whitfield P, Burté F, Bertelli PM, Pathak V, Doherty M, Hilgen B, Gliaudelytė L, Platt M, Queen R, Coxhead J, Porter A, Öberg M, Fabrikova D, Davey T, Beh CS, Georgiou M, Collin J, Boczonadi V, Härtlova A, Taggart M, Al‐Aama J, Korolchuk VI, Morris CM, Guduric‐Fuchs J, Steel DH, Medina RJ, Armstrong L, Lako M. Retinal pigment epithelium extracellular vesicles are potent inducers of age-related macular degeneration disease phenotype in the outer retina. J Extracell Vesicles 2022; 11:e12295. [PMID: 36544284 PMCID: PMC9772497 DOI: 10.1002/jev2.12295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/18/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness. Vision loss is caused by the retinal pigment epithelium (RPE) and photoreceptors atrophy and/or retinal and choroidal angiogenesis. Here we use AMD patient-specific RPE cells with the Complement Factor H Y402H high-risk polymorphism to perform a comprehensive analysis of extracellular vesicles (EVs), their cargo and role in disease pathology. We show that AMD RPE is characterised by enhanced polarised EV secretion. Multi-omics analyses demonstrate that AMD RPE EVs carry RNA, proteins and lipids, which mediate key AMD features including oxidative stress, cytoskeletal dysfunction, angiogenesis and drusen accumulation. Moreover, AMD RPE EVs induce amyloid fibril formation, revealing their role in drusen formation. We demonstrate that exposure of control RPE to AMD RPE apical EVs leads to the acquisition of AMD features such as stress vacuoles, cytoskeletal destabilization and abnormalities in the morphology of the nucleus. Retinal organoid treatment with apical AMD RPE EVs leads to disrupted neuroepithelium and the appearance of cytoprotective alpha B crystallin immunopositive cells, with some co-expressing retinal progenitor cell markers Pax6/Vsx2, suggesting injury-induced regenerative pathways activation. These findings indicate that AMD RPE EVs are potent inducers of AMD phenotype in the neighbouring RPE and retinal cells.
Collapse
Affiliation(s)
- Marzena Kurzawa‐Akanbi
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Phillip Whitfield
- Glasgow Polyomics and Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Florence Burté
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Pietro Maria Bertelli
- The Welcome‐Wolfson Institute for Experimental MedicineQueen's University BelfastBelfastUK
| | - Varun Pathak
- The Welcome‐Wolfson Institute for Experimental MedicineQueen's University BelfastBelfastUK
| | - Mary Doherty
- Lipidomics Research FacilityUniversity of the Highlands and IslandsInvernessUK
| | - Birthe Hilgen
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Lina Gliaudelytė
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | | | - Rachel Queen
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Jonathan Coxhead
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Andrew Porter
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Maria Öberg
- Institute of Biomedicine, Department of Microbiology and Immunology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Wallenberg Center for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
| | - Daniela Fabrikova
- Institute of Biomedicine, Department of Microbiology and Immunology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Wallenberg Center for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
| | - Tracey Davey
- Electron Microscopy Research ServicesNewcastle UniversityNewcastle upon TyneUK
| | - Chia Shyan Beh
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Maria Georgiou
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Joseph Collin
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Veronika Boczonadi
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Anetta Härtlova
- Institute of Biomedicine, Department of Microbiology and Immunology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Wallenberg Center for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
- The Institute of Medical Microbiology and HygieneUniversity Medical Center Freiburg (Universitätklinikum Freiburg)FreiburgGermany
| | - Michael Taggart
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Jumana Al‐Aama
- Faculty of MedicineKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Christopher M Morris
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Jasenka Guduric‐Fuchs
- The Welcome‐Wolfson Institute for Experimental MedicineQueen's University BelfastBelfastUK
| | - David H Steel
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Reinhold J Medina
- The Welcome‐Wolfson Institute for Experimental MedicineQueen's University BelfastBelfastUK
| | - Lyle Armstrong
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Majlinda Lako
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
23
|
Hohenwallner K, Troppmair N, Panzenboeck L, Kasper C, El Abiead Y, Koellensperger G, Lamp LM, Hartler J, Egger D, Rampler E. Decoding Distinct Ganglioside Patterns of Native and Differentiated Mesenchymal Stem Cells by a Novel Glycolipidomics Profiling Strategy. JACS AU 2022; 2:2466-2480. [PMID: 36465531 PMCID: PMC9709940 DOI: 10.1021/jacsau.2c00230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 06/17/2023]
Abstract
Gangliosides are an indispensable glycolipid class concentrated on cell surfaces with a critical role in stem cell differentiation. Nonetheless, owing to the lack of suitable methods for scalable analysis covering the full scope of ganglioside molecular diversity, their mechanistic properties in signaling and differentiation remain undiscovered to a large extent. This work introduces a sensitive and comprehensive ganglioside assay based on liquid chromatography, high-resolution mass spectrometry, and multistage fragmentation. Complemented by an open-source data evaluation workflow, we provide automated in-depth lipid species-level and molecular species-level annotation based on decision rule sets for all major ganglioside classes. Compared to conventional state-of-the-art methods, the presented ganglioside assay offers (1) increased sensitivity, (2) superior structural elucidation, and (3) the possibility to detect novel ganglioside species. A major reason for the highly improved sensitivity is the optimized spectral readout based on the unique capability of two parallelizable mass analyzers for multistage fragmentation. We demonstrated the high-throughput universal capability of our novel analytical strategy by identifying 254 ganglioside species. As a proof of concept, 137 unique gangliosides were annotated in native and differentiated human mesenchymal stem cells including 78 potential cell-state-specific markers and 38 previously unreported gangliosides. A general increase of the ganglioside numbers upon differentiation was observed as well as cell-state-specific clustering based on the ganglioside species patterns. The combination of the developed glycolipidomics assay with the extended automated annotation tool enables comprehensive in-depth ganglioside characterization as shown on biological samples of interest. Our results suggest ganglioside patterns as a promising quality control tool for stem cells and their differentiation products. Additionally, we believe that our analytical workflow paves the way for probing glycolipid-based biochemical processes shedding light on the enigmatic processes of gangliosides and glycolipids in general.
Collapse
Affiliation(s)
- Katharina Hohenwallner
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna 1090, Austria
| | - Nina Troppmair
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna 1090, Austria
| | - Lisa Panzenboeck
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna 1090, Austria
| | - Cornelia Kasper
- Institute
of Cell and Tissue Culture Technologies, University of Natural Resources and Life Sciences, Vienna 1190, Austria
| | - Yasin El Abiead
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Gunda Koellensperger
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Leonida M. Lamp
- Institute
of Pharmaceutical Sciences, University of
Graz, Graz 8010, Austria
| | - Jürgen Hartler
- Institute
of Pharmaceutical Sciences, University of
Graz, Graz 8010, Austria
- Field
of Excellence BioHealth − University
of Graz, Graz 8010, Austria
| | - Dominik Egger
- Institute
of Cell and Tissue Culture Technologies, University of Natural Resources and Life Sciences, Vienna 1190, Austria
| | - Evelyn Rampler
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| |
Collapse
|
24
|
Agrawal I, Lim YS, Ng SY, Ling SC. Deciphering lipid dysregulation in ALS: from mechanisms to translational medicine. Transl Neurodegener 2022; 11:48. [DOI: 10.1186/s40035-022-00322-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractLipids, defined by low solubility in water and high solubility in nonpolar solvents, can be classified into fatty acids, glycerolipids, glycerophospholipids, sphingolipids, and sterols. Lipids not only regulate integrity and fluidity of biological membranes, but also serve as energy storage and bioactive molecules for signaling. Causal mutations in SPTLC1 (serine palmitoyltransferase long chain subunit 1) gene within the lipogenic pathway have been identified in amyotrophic lateral sclerosis (ALS), a paralytic and fatal motor neuron disease. Furthermore, lipid dysmetabolism within the central nervous system and circulation is associated with ALS. Here, we aim to delineate the diverse roles of different lipid classes and understand how lipid dysmetabolism may contribute to ALS pathogenesis. Among the different lipids, accumulation of ceramides, arachidonic acid, and lysophosphatidylcholine is commonly emerging as detrimental to motor neurons. We end with exploring the potential ALS therapeutics by reducing these toxic lipids.
Collapse
|
25
|
Mitchell MI, Ma J, Carter CL, Loudig O. Circulating Exosome Cargoes Contain Functionally Diverse Cancer Biomarkers: From Biogenesis and Function to Purification and Potential Translational Utility. Cancers (Basel) 2022; 14:3350. [PMID: 35884411 PMCID: PMC9318395 DOI: 10.3390/cancers14143350] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/12/2022] Open
Abstract
Although diagnostic and therapeutic treatments of cancer have tremendously improved over the past two decades, the indolent nature of its symptoms has made early detection challenging. Thus, inter-disciplinary (genomic, transcriptomic, proteomic, and lipidomic) research efforts have been focused on the non-invasive identification of unique "silver bullet" cancer biomarkers for the design of ultra-sensitive molecular diagnostic assays. Circulating tumor biomarkers, such as CTCs and ctDNAs, which are released by tumors in the circulation, have already demonstrated their clinical utility for the non-invasive detection of certain solid tumors. Considering that exosomes are actively produced by all cells, including tumor cells, and can be found in the circulation, they have been extensively assessed for their potential as a source of circulating cell-specific biomarkers. Exosomes are particularly appealing because they represent a stable and encapsulated reservoir of active biological compounds that may be useful for the non-invasive detection of cancer. T biogenesis of these extracellular vesicles is profoundly altered during carcinogenesis, but because they harbor unique or uniquely combined surface proteins, cancer biomarker studies have been focused on their purification from biofluids, for the analysis of their RNA, DNA, protein, and lipid cargoes. In this review, we evaluate the biogenesis of normal and cancer exosomes, provide extensive information on the state of the art, the current purification methods, and the technologies employed for genomic, transcriptomic, proteomic, and lipidomic evaluation of their cargoes. Our thorough examination of the literature highlights the current limitations and promising future of exosomes as a liquid biopsy for the identification of circulating tumor biomarkers.
Collapse
Affiliation(s)
- Megan I Mitchell
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Claire L Carter
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Olivier Loudig
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| |
Collapse
|
26
|
Cukier HN, Kim H, Griswold AJ, Codreanu SG, Prince LM, Sherrod SD, McLean JA, Dykxhoorn DM, Ess KC, Hedera P, Bowman AB, Neely MD. Genomic, transcriptomic, and metabolomic profiles of hiPSC-derived dopamine neurons from clinically discordant brothers with identical PRKN deletions. NPJ Parkinsons Dis 2022; 8:84. [PMID: 35768426 PMCID: PMC9243035 DOI: 10.1038/s41531-022-00346-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 05/27/2022] [Indexed: 11/25/2022] Open
Abstract
We previously reported on two brothers who carry identical compound heterozygous PRKN mutations yet present with significantly different Parkinson's Disease (PD) clinical phenotypes. Juvenile cases demonstrate that PD is not necessarily an aging-associated disease. Indeed, evidence for a developmental component to PD pathogenesis is accumulating. Thus, we hypothesized that the presence of additional genetic modifiers, including genetic loci relevant to mesencephalic dopamine neuron development, could potentially contribute to the different clinical manifestations of the two brothers. We differentiated human-induced pluripotent stem cells (hiPSCs) derived from the two brothers into mesencephalic neural precursor cells and early postmitotic dopaminergic neurons and performed wholeexome sequencing and transcriptomic and metabolomic analyses. No significant differences in the expression of canonical dopamine neuron differentiation markers were observed. Yet our transcriptomic analysis revealed a significant downregulation of the expression of three neurodevelopmentally relevant cell adhesion molecules, CNTN6, CNTN4 and CHL1, in the cultures of the more severely affected brother. In addition, several HLA genes, known to play a role in neurodevelopment, were differentially regulated. The expression of EN2, a transcription factor crucial for mesencephalic dopamine neuron development, was also differentially regulated. We further identified differences in cellular processes relevant to dopamine metabolism. Lastly, wholeexome sequencing, transcriptomics and metabolomics data all revealed differences in glutathione (GSH) homeostasis, the dysregulation of which has been previously associated with PD. In summary, we identified genetic differences which could potentially, at least partially, contribute to the discordant clinical PD presentation of the two brothers.
Collapse
Affiliation(s)
- Holly N Cukier
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
- John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hyunjin Kim
- School of Health Sciences, Purdue University, West Lafayette, Indiana, IN, USA
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Simona G Codreanu
- Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Lisa M Prince
- School of Health Sciences, Purdue University, West Lafayette, Indiana, IN, USA
| | - Stacy D Sherrod
- Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - John A McLean
- Center for Innovative Technology, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Derek M Dykxhoorn
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kevin C Ess
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter Hedera
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, University of Louisville, Louisville, KY, USA
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, Indiana, IN, USA.
| | - M Diana Neely
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
27
|
Li H, Liu Y, Wang Z, Xie Y, Yang L, Zhao Y, Tian R. Mass spectrometry-based ganglioside profiling provides potential insights into Alzheimer's disease development. J Chromatogr A 2022; 1676:463196. [PMID: 35716462 DOI: 10.1016/j.chroma.2022.463196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 01/01/2023]
Abstract
Gangliosides are a family of glycosphingolipids which are particularly enriched in the nervous system. They play crucial roles in neuroprotection and neurological diseases. Alzheimer's disease (AD) is a neurodegenerative disease with cognitive, judgment and memory dysfunction. In this study, a mass spectrometry-based data-dependent acquisition method assisted with fragmentation characteristics screening by computer algorithm was developed for qualitative and quantitative analysis of gangliosides at low concentration. The developed method was applied to obtain detailed ganglioside species content in hippocampus of model mice (APPswe/PS1dE9 transgenic mice) with AD at 3- to 8-month-old. Up-regulated acetylated and N-acetylgalactosaminylated ganglioside species, and the down-regulated major gangliosides were observed with the development of AD from early to late stage. We speculated that deterioration of AD may be related to the acetylation/N-acetylgalactosaminylation transformation of complex gangliosides due to the inhibition of GD3 synthase activity. Moreover, the ganglioside species di-O-Ac-GT1a (d36:1), O-Ac-GD1b (d36:1) and O-Ac-GD1b (d36:0) were considered as the time-coursed biomarkers, and O-Ac-GT1a (d36:2) could be a candidate for early diagnosis of AD.
Collapse
Affiliation(s)
- Hua Li
- SUSTech Core Research Facilities, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Yilian Liu
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Zhe Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yuping Xie
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206 China
| | - Lijun Yang
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, 518055 China; Department of Oncology, The First Affiliated Hospital of SUSTech and Shenzhen People's Hospital, Shenzhen, 518020, China
| | - Yanni Zhao
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Ruijun Tian
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, 518055 China.
| |
Collapse
|
28
|
Roncato R, Angelini J, Pani A, Talotta R. Lipid rafts as viral entry routes and immune platforms: A double-edged sword in SARS-CoV-2 infection? Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159140. [PMID: 35248801 PMCID: PMC8894694 DOI: 10.1016/j.bbalip.2022.159140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/13/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022]
Abstract
Lipid rafts are nanoscopic compartments of cell membranes that serve a variety of biological functions. They play a crucial role in viral infections, as enveloped viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can exploit rafts to enter or quit target cells. On the other hand, lipid rafts contribute to the formation of immune synapses and their proper functioning is a prerequisite for adequate immune response and viral clearance. In this narrative review we dissect the panorama focusing on this singular aspect of cell biology in the context of SARS-CoV-2 infection and therapy. A lipid raft-mediated mechanism can be hypothesized for many drugs recommended or considered for the treatment of SARS-CoV-2 infection, such as glucocorticoids, antimalarials, immunosuppressants and antiviral agents. Furthermore, the additional use of lipid-lowering agents, like statins, may affect the lipid composition of membrane rafts and thus influence the processes occurring in these compartments. The combination of drugs acting on lipid rafts may be successful in the treatment of more severe forms of the disease and should be reserved for further investigation.
Collapse
Affiliation(s)
- Rossana Roncato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a carattere Scientifico (IRCCS), via Gallini, 33081 Aviano (PN), Italy
| | - Jacopo Angelini
- Clinical Pharmacology Institute, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), via Pozzuolo, 33100 Udine, Italy
| | - Arianna Pani
- Toxicology Department of Oncology and Hemato-Oncology, University of Milan, via Vanvitelli, 20133 Milan, Italy
| | - Rossella Talotta
- Department of Clinical and Experimental Medicine, Rheumatology Unit, AOU "Gaetano Martino", University of Messina, 98100 Messina, Italy
| |
Collapse
|
29
|
Podbielska M, Ariga T, Pokryszko-Dragan A. Sphingolipid Players in Multiple Sclerosis: Their Influence on the Initiation and Course of the Disease. Int J Mol Sci 2022; 23:ijms23105330. [PMID: 35628142 PMCID: PMC9140914 DOI: 10.3390/ijms23105330] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023] Open
Abstract
Sphingolipids (SLs) play a significant role in the nervous system, as major components of the myelin sheath, contributors to lipid raft formation that organize intracellular processes, as well as active mediators of transport, signaling and the survival of neurons and glial cells. Alterations in SL metabolism and content are observed in the course of central nervous system diseases, including multiple sclerosis (MS). In this review, we summarize the current evidence from studies on SLs (particularly gangliosides), which may shed new light upon processes underlying the MS background. The relevant aspects of these studies include alterations of the SL profile in MS, the role of antibodies against SLs and complexes of SL-ligand-invariant NKT cells in the autoimmune response as the core pathomechanism in MS. The contribution of lipid-raft-associated SLs and SL-laden extracellular vesicles to the disease etiology is also discussed. These findings may have diagnostic implications, with SLs and anti-SL antibodies as potential markers of MS activity and progression. Intriguing prospects of novel therapeutic options in MS are associated with SL potential for myelin repair and neuroprotective effects, which have not been yet addressed by the available treatment strategies. Overall, all these concepts are promising and encourage the further development of SL-based studies in the field of MS.
Collapse
Affiliation(s)
- Maria Podbielska
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
- Correspondence: ; Tel.: +48-71-370-99-12
| | - Toshio Ariga
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | | |
Collapse
|
30
|
Demir R, Şahar U, Deveci R. Exploring the Candidate Terminal Glycan Profile in Neural Regeneration of the Sea Urchin Paracentrotus lividus, Using Lectin Blotting and Mass Spectrometry. THE BIOLOGICAL BULLETIN 2022; 242:118-126. [PMID: 35580027 DOI: 10.1086/718776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glycans are expressed as conjugates of glycoproteins, glycolipids, and proteoglycans. The huge diversity of glycans on glycoconjugates contributes to many biological processes, from glycan-based molecular recognition to developmental events, such as regeneration in the nervous system. Echinoderms, which have a close phylogenetic relationship with chordates, are an important group of marine invertebrates for body regeneration. Although many major roles of glycans on glycoconjugates are known, their role in the glycosylation profile of the nervous system in sea urchins is poorly understood. In this study, we aimed to determine the terminal glycan profile by lectin blotting and to quantify sialic acids by the capillary liquid chromatography electrospray ionization tandem mass spectrometry system in the nervous tissue of the sea urchin Paracentrotus lividus. We determined the N-acetyl-D-glucosamine, mannose, and sialic acids (mainly α2,3 linked) by lectin blotting and five types of sialic acids (N-glycolylneuraminic acid, N-acetylneuraminic acid, 9-O-acetyl-N-alycolylneuraminic acid, 5-N-acetyl-9-O-acetyl-N-acetylneuraminic acid, and di-O-acetylated-N-alycolylneuraminic acid) by capillary liquid chromatography electrospray ionization tandem mass spectrometry. This potential first description of the terminal glycan profile in the nervous system of the sea urchin is expected to help us understand its role in nervous system development and regeneration.
Collapse
|
31
|
Mandolfo O, Parker H, Bigger B. Innate Immunity in Mucopolysaccharide Diseases. Int J Mol Sci 2022; 23:1999. [PMID: 35216110 PMCID: PMC8879755 DOI: 10.3390/ijms23041999] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Mucopolysaccharidoses are rare paediatric lysosomal storage disorders, characterised by accumulation of glycosaminoglycans within lysosomes. This is caused by deficiencies in lysosomal enzymes involved in degradation of these molecules. Dependent on disease, progressive build-up of sugars may lead to musculoskeletal abnormalities and multi-organ failure, and in others, to cognitive decline, which is still a challenge for current therapies. The worsening of neuropathology, observed in patients following recovery from flu-like infections, suggests that inflammation is highly implicated in disease progression. This review provides an overview of the pathological features associated with the mucopolysaccharidoses and summarises current knowledge regarding the inflammatory responses observed in the central nervous system and periphery. We propose a model whereby progressive accumulation of glycosaminoglycans elicits an innate immune response, initiated by the Toll-like receptor 4 pathway, but also precipitated by secondary storage components. Its activation induces cells of the immune system to release pro-inflammatory cytokines, such as TNF-α and IL-1, which induce progression through chronic neuroinflammation. While TNF-α is mostly associated with bone and joint disease in mucopolysaccharidoses, increasing evidence implicates IL-1 as a main effector of innate immunity in the central nervous system. The (NOD)-like receptor protein 3 inflammasome is therefore implicated in chronic neuroinflammation and should be investigated further to identify novel anti-inflammatory treatments.
Collapse
Affiliation(s)
- Oriana Mandolfo
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3721 Stopford Building, Oxford Road, Manchester M13 9PT, UK;
| | - Helen Parker
- Division of Immunology, Immunity to Infection and Respiratory Medicine, The Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK;
| | - Brian Bigger
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 3721 Stopford Building, Oxford Road, Manchester M13 9PT, UK;
| |
Collapse
|
32
|
Gangliosides as Biomarkers of Human Brain Diseases: Trends in Discovery and Characterization by High-Performance Mass Spectrometry. Int J Mol Sci 2022; 23:ijms23020693. [PMID: 35054879 PMCID: PMC8775466 DOI: 10.3390/ijms23020693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 12/16/2022] Open
Abstract
Gangliosides are effective biochemical markers of brain pathologies, being also in the focus of research as potential therapeutic targets. Accurate brain ganglioside mapping is an essential requirement for correlating the specificity of their composition with a certain pathological state and establishing a well-defined set of biomarkers. Among all bioanalytical methods conceived for this purpose, mass spectrometry (MS) has developed into one of the most valuable, due to the wealth and consistency of structural information provided. In this context, the present article reviews the achievements of MS in discovery and structural analysis of gangliosides associated with severe brain pathologies. The first part is dedicated to the contributions of MS in the assessment of ganglioside composition and role in the specific neurodegenerative disorders: Alzheimer’s and Parkinson’s diseases. A large subsequent section is devoted to cephalic disorders (CD), with an emphasis on the MS of gangliosides in anencephaly, the most common and severe disease in the CD spectrum. The last part is focused on the major accomplishments of MS-based methods in the discovery of ganglioside species, which are associated with primary and secondary brain tumors and may either facilitate an early diagnosis or represent target molecules for immunotherapy oriented against brain cancers.
Collapse
|
33
|
Jia X, Zhang Y, Wang T, Fu Y. Highly Efficient Method for Intracellular Delivery of Proteins Mediated by Cholera Toxin-Induced Protein Internalization. Mol Pharm 2021; 18:4067-4078. [PMID: 34672633 DOI: 10.1021/acs.molpharmaceut.1c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Delivery of functional proteins into cells may help us understand how specific protein influences cell behavior as well as treat diseases caused by protein deficiency or loss-of-function mutations. However, protein cannot enter cells by diffusion. In this work, a novel cell biology tool for delivering recombinant proteins into mammalian cells was developed. We hijacked the intracellular transport routes used by the cholera toxin and took advantage of recent development on split intein that is compatible with denatured conditions and shows an exceptional splicing activity to deliver a protein of interest into mammalian cells. Here, we used green fluorescent protein and apoptin as proofs-of-concept. The results demonstrate that the cholera toxin B subunit alone could deliver other recombinant proteins into cells through either covalent conjugation or noncovalent interaction. Our method offers more than 10-fold better delivery efficiency than the tat cell-penetrating peptide and is selective for ganglioside-rich cells. This study adds a useful tool to the receptor-mediated intracellular targeting toolkit and opens possibility for the selective delivery of therapeutic proteins into ganglioside-rich cells.
Collapse
Affiliation(s)
- Xiaofan Jia
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yan Zhang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Ting Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yuan Fu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
34
|
Slováčková J, Slavík J, Kulich P, Večeřa J, Kováč O, Paculová H, Straková N, Fedr R, Silva JP, Carvalho F, Machala M, Procházková J. Polychlorinated environmental toxicants affect sphingolipid metabolism during neurogenesis in vitro. Toxicology 2021; 463:152986. [PMID: 34627992 DOI: 10.1016/j.tox.2021.152986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/17/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
Sphingolipids (SLs) are important signaling molecules and functional components of cellular membranes. Although SLs are known as crucial regulators of neural cell physiology and differentiation, modulations of SLs by environmental neurotoxicants in neural cells and their neuronal progeny have not yet been explored. In this study, we used in vitro models of differentiated neuron-like cells, which were repeatedly exposed during differentiation to model environmental toxicants, and we analyzed changes in sphingolipidome, cellular morphology and gene expression related to SL metabolism or neuronal differentiation. We compared these data with the results obtained in undifferentiated neural cells with progenitor-like features. As model polychlorinated organic pollutants, we used 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 3,3'-dichlorobiphenyl (PCB11) and 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153). PCB153 revealed itself as the most prominent deregulator of SL metabolism and as potent toxicant during early phases of in vitro neurogenesis. TCDD exerted only minor changes in the levels of analysed lipid species, however, it significantly changed the rate of pro-neuronal differentiation and deregulated expression of neuronal markers during neurogenesis. PCB11 acted as a potent disruptor of in vitro neurogenesis, which induced significant alterations in SL metabolism and cellular morphology in both differentiated neuron-like models (differentiated NE4C and NG108-15 cells). We identified ceramide-1-phosphate, lactosylceramides and several glycosphingolipids to be the most sensitive SL species to exposure to polychlorinated pollutants. Additionally, we identified deregulation of several genes related to SL metabolism, which may be explored in future as potential markers of developmental neurotoxicity.
Collapse
Affiliation(s)
- Jana Slováčková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic
| | - Josef Slavík
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic
| | - Pavel Kulich
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic
| | - Josef Večeřa
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic
| | - Ondrej Kováč
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic
| | - Hana Paculová
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic
| | - Nicol Straková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic
| | - Radek Fedr
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic
| | - João Pedro Silva
- Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - Félix Carvalho
- Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic.
| | - Jiřina Procházková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100, Brno, Czech Republic; Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic.
| |
Collapse
|
35
|
Cortés-Albornoz MC, García-Guáqueta DP, Velez-van-Meerbeke A, Talero-Gutiérrez C. Maternal Nutrition and Neurodevelopment: A Scoping Review. Nutrients 2021; 13:3530. [PMID: 34684531 PMCID: PMC8538181 DOI: 10.3390/nu13103530] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 01/31/2023] Open
Abstract
In this scoping review, we examined the association between maternal nutrition during pregnancy and neurodevelopment in offspring. We searched the Pubmed and ScienceDirect databases for articles published from 2000 to 2020 on inadequate intake of vitamins (B12, folate, vitamin D, vitamin A, vitamin E, vitamin K), micronutrients (cooper, iron, creatine, choline, zinc, iodine), macronutrients (fatty acids, proteins), high fat diets, ketogenic diets, hypercaloric diets, and maternal undernutrition. Some older relevant articles were included. The search produced a total of 3590 articles, and 84 studies were included in the qualitative synthesis. Data were extracted and analyzed using charts and the frequency of terms used. We concluded that inadequate nutrient intake during pregnancy was associated with brain defects (diminished cerebral volume, spina bifida, alteration of hypothalamic and hippocampal pathways), an increased risk of abnormal behavior, neuropsychiatric disorders (ASD, ADHD, schizophrenia, anxiety, depression), altered cognition, visual impairment, and motor deficits. Future studies should establish and quantify the benefits of maternal nutrition during pregnancy on neurodevelopment and recommend adequate supplementation.
Collapse
Affiliation(s)
| | | | | | - Claudia Talero-Gutiérrez
- Neuroscience Research Group (NEUROS), Centro Neurovitae, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia; (M.C.C.-A.); (D.P.G.-G.); (A.V.-v.-M.)
| |
Collapse
|
36
|
Ali AH, Wei W, Wang X. A review of milk gangliosides: Occurrence, biosynthesis, identification, and nutritional and functional significance. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Abdelmoneim H Ali
- Department of Food Science Faculty of Agriculture Zagazig University Zagazig 44511 Egypt
- International Joint Research Laboratory for Lipid Nutrition and Safety Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Wei Wei
- International Joint Research Laboratory for Lipid Nutrition and Safety Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Xingguo Wang
- International Joint Research Laboratory for Lipid Nutrition and Safety Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University Wuxi 214122 China
| |
Collapse
|
37
|
Han L, Du M, Ren F, Mao X. Milk Polar Lipids Supplementation to Obese Rats During Pregnancy and Lactation Benefited Skeletal Outcomes of Male Offspring. Mol Nutr Food Res 2021; 65:e2001208. [PMID: 34008920 DOI: 10.1002/mnfr.202001208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/17/2021] [Indexed: 01/14/2023]
Abstract
SCOPE Dietary intervention to obese dams during pregnancy and lactation period provides avenues for improving metabolic profiles of the offspring. In the current study, the effects of polar lipids-enriched milk fat globule membrane (MFGM-PL) supplementation to obese dams during pregnancy and lactation on the skeletal outcomes of male offspring are investigated. METHODS AND RESULTS MFGM-PL is supplemented to obese rats induced by high-fat diet during pregnancy and lactation at a dose of 400 mg kg-1 body weight. Results show that maternal MFGM-PL supplementation significantly ameliorates the stunted skeletal growth of male offspring at weaning. In adulthood offspring, maternal MFGM-PL supplementation protects against high-fat diet (HFD)-induced bone microstructure degeneration and bone marrow adipocyte accumulation. Further investigation shows that maternal supplementation of MFGM-PL significantly ameliorates insulin resistance and increases the mRNA expression of growth hormone releasing hormone (GHRH) in the hypothalamus of HFD offspring. The growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis is subsequently enhanced in MFGM-PL + HFD offspring, contributing to the beneficial skeletal outcomes. CONCLUSION The findings suggest that maternal MFGM-PL supplementation of HFD dam during pregnancy and lactation shows desirable effects on fetal skeletal development, with lasting beneficial programming impacts on skeletal outcomes of offspring.
Collapse
Affiliation(s)
- Lihua Han
- Key Laboratory of Precision, Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Fazheng Ren
- Key Laboratory of Precision, Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xueying Mao
- Key Laboratory of Precision, Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
38
|
Visser EA, Moons SJ, Timmermans SBPE, de Jong H, Boltje TJ, Büll C. Sialic acid O-acetylation: From biosynthesis to roles in health and disease. J Biol Chem 2021; 297:100906. [PMID: 34157283 PMCID: PMC8319020 DOI: 10.1016/j.jbc.2021.100906] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Sialic acids are nine-carbon sugars that frequently cap glycans at the cell surface in cells of vertebrates as well as cells of certain types of invertebrates and bacteria. The nine-carbon backbone of sialic acids can undergo extensive enzymatic modification in nature and O-acetylation at the C-4/7/8/9 position in particular is widely observed. In recent years, the detection and analysis of O-acetylated sialic acids have advanced, and sialic acid-specific O-acetyltransferases (SOATs) and O-acetylesterases (SIAEs) that add and remove O-acetyl groups, respectively, have been identified and characterized in mammalian cells, invertebrates, bacteria, and viruses. These advances now allow us to draw a more complete picture of the biosynthetic pathway of the diverse O-acetylated sialic acids to drive the generation of genetically and biochemically engineered model cell lines and organisms with altered expression of O-acetylated sialic acids for dissection of their roles in glycoprotein stability, development, and immune recognition, as well as discovery of novel functions. Furthermore, a growing number of studies associate sialic acid O-acetylation with cancer, autoimmunity, and infection, providing rationale for the development of selective probes and inhibitors of SOATs and SIAEs. Here, we discuss the current insights into the biosynthesis and biological functions of O-acetylated sialic acids and review the evidence linking this modification to disease. Furthermore, we discuss emerging strategies for the design, synthesis, and potential application of unnatural O-acetylated sialic acids and inhibitors of SOATs and SIAEs that may enable therapeutic targeting of this versatile sialic acid modification.
Collapse
Affiliation(s)
- Eline A Visser
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Sam J Moons
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Suzanne B P E Timmermans
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Heleen de Jong
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Thomas J Boltje
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands.
| | - Christian Büll
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Hubrecht Institute, Utrecht, the Netherlands.
| |
Collapse
|
39
|
Fil JE, Joung S, Hauser J, Rytz A, Hayes CA, Dilger RN. Influence of Dietary Polar Lipid Supplementation on Memory and Longitudinal Brain Development. Nutrients 2021; 13:2486. [PMID: 34444644 PMCID: PMC8398977 DOI: 10.3390/nu13082486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 12/13/2022] Open
Abstract
Polar lipids, which are found in human milk, serve essential functions within biological membranes, hence their importance in brain development and cognition. Therefore, we aimed to evaluate the longitudinal effects on brain macrostructural and microstructural development and recognition memory of early-life polar lipid supplementation using the translational pig model. Twenty-eight intact (i.e., not castrated) male pigs were provided either a control diet (n = 14) or the control diet supplemented with polar lipids (n = 14) from postnatal day 2 until postnatal week 4. After postnatal week 4, all animals were provided the same nutritionally-adequate diets until postnatal week 24. Pigs underwent magnetic resonance imaging at 8 longitudinal time-points to model brain macrostructural and microstructural developmental trajectories. The novel object recognition task was implemented at postnatal weeks 4 and 8 to evaluate recognition memory. Subtle differences were observed between groups in hippocampal absolute brain volumes and fractional anisotropy, and no differences in myelin water fraction developmental patterns were noted. Behavioral outcomes did not differ in recognition memory, and only minimal differences were observed in exploratory behaviors. Our findings suggest that early-life dietary supplementation of polar lipids has limited effect on brain developmental patterns, object recognition memory, and exploratory behaviors.
Collapse
Affiliation(s)
- Joanne E. Fil
- Neuroscience Program, University of Illinois, Urbana, IL 61801, USA; (J.E.F.); (S.J.)
| | - Sangyun Joung
- Neuroscience Program, University of Illinois, Urbana, IL 61801, USA; (J.E.F.); (S.J.)
| | - Jonas Hauser
- Société des Produits Nestlé, 1000 Lausanne, Switzerland; (J.H.); (A.R.)
| | - Andreas Rytz
- Société des Produits Nestlé, 1000 Lausanne, Switzerland; (J.H.); (A.R.)
| | - Courtney A. Hayes
- College of Veterinary Medicine, University of Illinois, Urbana, IL 61801, USA;
| | - Ryan N. Dilger
- Neuroscience Program, University of Illinois, Urbana, IL 61801, USA; (J.E.F.); (S.J.)
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
40
|
Abreu CA, Teixeira-Pinheiro LC, Lani-Louzada R, da Silva-Junior AJ, Vasques JF, Gubert F, Nascimento-Dos-Santos G, Mohana-Borges R, Matos EDS, Pimentel-Coelho PM, Santiago MF, Mendez-Otero R. GD3 synthase deletion alters retinal structure and impairs visual function in mice. J Neurochem 2021; 158:694-709. [PMID: 34081777 DOI: 10.1111/jnc.15443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 11/29/2022]
Abstract
Gangliosides are glycosphingolipids abundantly expressed in the vertebrate nervous system, and are classified into a-, b-, or c-series according to the number of sialic acid residues. The enzyme GD3 synthase converts GM3 (an a-series ganglioside) into GD3, a b-series ganglioside highly expressed in the developing and adult retina. The present study evaluated the visual system of GD3 synthase knockout mice (GD3s-/- ), morphologically and functionally. The absence of b- series gangliosides in the retinas of knockout animals was confirmed by mass spectrometry imaging, which also indicated an accumulation of a-series gangliosides, such as GM3. Retinal ganglion cell (RGC) density was significantly reduced in GD3s-/- mice, with a similar reduction in the number of axons in the optic nerve. Knockout animals also showed a 15% reduction in the number of photoreceptor nuclei, but no difference in the bipolar cells. The area occupied by GFAP-positive glial cells was smaller in GD3s-/- retinas, but the number of microglial cells/macrophages did not change. In addition to the morphological alterations, a 30% reduction in light responsiveness was detected through quantification of pS6-expressing RGC, an indicator of neural activity. Furthermore, electroretinography (ERG) indicated a significant reduction in RGC and photoreceptor electrical activity in GD3s-/- mice, as indicated by scotopic ERG and pattern ERG (PERG) amplitudes. Finally, evaluation of the optomotor response demonstrated that GD3s-/- mice have reduced visual acuity and contrast sensitivity. These results suggest that b-series gangliosides play a critical role in regulating the structure and function of the mouse visual system.
Collapse
Affiliation(s)
- Carla Andreia Abreu
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| | - Leandro Coelho Teixeira-Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| | - Rafael Lani-Louzada
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Almir Jordão da Silva-Junior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| | - Juliana F Vasques
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| | - Fernanda Gubert
- Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, RJ, Brazil.,Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Ronaldo Mohana-Borges
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eduardo de Souza Matos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Pedro Moreno Pimentel-Coelho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| | - Marcelo Felippe Santiago
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
41
|
Abed Rabbo M, Khodour Y, Kaguni LS, Stiban J. Sphingolipid lysosomal storage diseases: from bench to bedside. Lipids Health Dis 2021; 20:44. [PMID: 33941173 PMCID: PMC8094529 DOI: 10.1186/s12944-021-01466-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/14/2021] [Indexed: 01/13/2023] Open
Abstract
Johann Ludwig Wilhelm Thudicum described sphingolipids (SLs) in the late nineteenth century, but it was only in the past fifty years that SL research surged in importance and applicability. Currently, sphingolipids and their metabolism are hotly debated topics in various biochemical fields. Similar to other macromolecular reactions, SL metabolism has important implications in health and disease in most cells. A plethora of SL-related genetic ailments has been described. Defects in SL catabolism can cause the accumulation of SLs, leading to many types of lysosomal storage diseases (LSDs) collectively called sphingolipidoses. These diseases mainly impact the neuronal and immune systems, but other systems can be affected as well. This review aims to present a comprehensive, up-to-date picture of the rapidly growing field of sphingolipid LSDs, their etiology, pathology, and potential therapeutic strategies. We first describe LSDs biochemically and briefly discuss their catabolism, followed by general aspects of the major diseases such as Gaucher, Krabbe, Fabry, and Farber among others. We conclude with an overview of the available and potential future therapies for many of the diseases. We strive to present the most important and recent findings from basic research and clinical applications, and to provide a valuable source for understanding these disorders.
Collapse
Affiliation(s)
- Muna Abed Rabbo
- Department of Biology and Biochemistry, Birzeit University, P.O. Box 14, Ramallah, West Bank, 627, Palestine
| | - Yara Khodour
- Department of Biology and Biochemistry, Birzeit University, P.O. Box 14, Ramallah, West Bank, 627, Palestine
| | - Laurie S Kaguni
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, P.O. Box 14, Ramallah, West Bank, 627, Palestine.
| |
Collapse
|
42
|
Neov B, Krastanov J, Angelova T, Palova N, Laleva S, Hristov P. Sequence analysis of the Hex A gene in Jacob sheep from Bulgaria. Vet World 2021; 14:56-60. [PMID: 33642786 PMCID: PMC7896910 DOI: 10.14202/vetworld.2021.56-60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Jacob sheep are a rare ancient breed of sheep believed to have originated from the Mediterranean area but which are now kept throughout the world. These sheep have recently attracted medical interest due to the observation of a genetic disorder in the breed that can be used as an animal model of Tay–Sachs disease (TSD). This study aims to detect mutations in the Hexosaminidase A gene in Jacob sheep based on sequence analysis of the 284-bp fragment situated between exon 11 and intron 11 of the gene, a target sequence for site-specific mutation. This is the first study that has investigated Jacob sheep in Bulgaria for gene-specific mutations. Materials and Methods: A total of 20 blood samples were collected from Jacob sheep from the Rhodope Mountains. DNA was isolated from these samples, and a specific 284-bp fragment was amplified. The amplified products were purified using a polymerase chain reaction purification kit and sequenced in both directions. Results: Target sequences were successfully amplified from all 20 investigated sheep. Sequence analysis did not show the homozygous, recessive, missense (G-to-C transition) mutation at nucleotide position 1330 (G1330→C) in exon 11, demonstrating that all of these sheep were a normal genotype (wild-type). Conclusion: Jacob sheep are considered a potentially useful animal model in advancing the understanding of pathogenesis and developing potential therapies for orphan diseases, such as those characterized by mutant GM2 gangliosides. The clinical and biochemical features of the Jacob sheep model of TSD represent well the human classical late-infantile form of this disorder, indicating that the model can serve as a possible new research tool for further study of the pathogenesis and treatment of TSD.
Collapse
Affiliation(s)
- Boyko Neov
- Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Jivko Krastanov
- Department of Breeding and Technologies in Cattle Breeding, Agricultural Institute - Stara Zagora, Agricultural Academy, Stara Zagora 6000, Bulgaria
| | - Teodora Angelova
- Department of Breeding and Technologies in Cattle Breeding, Agricultural Institute - Stara Zagora, Agricultural Academy, Stara Zagora 6000, Bulgaria
| | - Nadezhda Palova
- Scientific Center of Agriculture, Sredets 8300, Agricultural Academy, Bulgaria
| | - Stayka Laleva
- Department of Breeding and Technologies in Cattle Breeding, Agricultural Institute - Stara Zagora, Agricultural Academy, Stara Zagora 6000, Bulgaria
| | - Peter Hristov
- Department of Animal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| |
Collapse
|
43
|
Sarbu M, Ica R, Zamfir AD. Developments and applications of separation and microfluidics methods coupled to electrospray mass spectrometry in glycomics of nervous system gangliosides. Electrophoresis 2021; 42:429-449. [PMID: 33314304 DOI: 10.1002/elps.202000236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/26/2020] [Accepted: 12/07/2020] [Indexed: 01/19/2023]
Abstract
Gangliosides are particularly abundant in the nervous system (NS) where their pattern and structure in a certain milieu or a defined region exhibit a pronounced specificity. Since gangliosides are useful biomarkers for diagnosis of NS ailments, a clear-cut mapping of individual components represents a prerequisite for designing ganglioside-based diagnostic procedures, treatments, or vaccines. These bioclinical aspects and the high diversity of ganglioside species claim for development of specific analytical strategies. This review summarizes the state-of-the-art in the implementation of separation techniques and microfluidics coupled to MS, which have contributed significantly to the advancement of the field. In the first part, the review discusses relevant approaches based on HPLC MS and CE coupled to ESI MS and their applications in the characterization of gangliosides expressed in healthy and diseased NS. A considerable section is dedicated to microfluidics MS and ion mobility separation MS, developed for the study of brain gangliosidome and its changes triggered by various factors, as well as for ganglioside biomarker discovery in neurodegenerative diseases and brain cancer. In the last part of the review, the benefits and perspectives in ganglioside research of these high-performance techniques are presented.
Collapse
Affiliation(s)
- Mirela Sarbu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Raluca Ica
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania.,Department of Physics, West University of Timisoara, Timisoara, Romania
| | - Alina D Zamfir
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania.,Department of Technical and Natural Sciences, "Aurel Vlaicu" University of Arad, Arad, Romania
| |
Collapse
|
44
|
Mani MS, Joshi MB, Shetty RR, DSouza VL, Swathi M, Kabekkodu SP, Dsouza HS. Lead exposure induces metabolic reprogramming in rat models. Toxicol Lett 2020; 335:11-27. [PMID: 32949623 DOI: 10.1016/j.toxlet.2020.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/14/2020] [Accepted: 09/12/2020] [Indexed: 11/17/2022]
Abstract
Lead is a toxin of great public health concern affecting the young and aging population. Several factors such as age, gender, lifestyle, dose, and genetic makeup result in interindividual variations to lead toxicity mainly due to variations in metabolic consequences. Hence, the present study aimed to examine dose-dependent lead-induced systemic changes in metabolism using rat model by administering specific doses of lead such as 10 (low lead; L-Pb), 50 (moderate lead; M-Pb), and 100 mg/kg (high lead; H-Pb) body weight for a period of one month. Biochemical and haematological analysis revealed that H-Pb was associated with low body weight and feed efficiency, low total protein levels (p ≤ 0.05), high blood lead (Pb-B) levels (p ≤ 0.001), low ALAD (δ-aminolevulinate dehydratase) activity (p ≤ 0.0001), high creatinine (p ≤ 0.0001) and blood urea nitrogen (BUN) (p ≤ 0.01) levels, elevated RBC and WBC counts, reduced haemoglobin and blood cell indices compared to control. Spatial learning and memory test revealed that H-Pb exposed animals presented high latency to the target quadrant and escape platform compared to other groups indicating H-Pb alters cognition function in rats. Histopathological changes were observed in liver and kidney as they are the main target organs of lead toxicity. LC-MS analysis further revealed that Butyryl-L-carnitine (p ≤ 0.01) and Ganglioside GD2 (d18:0/20:0) (p ≤ 0.05) levels were significantly reduced in H-Pb group compared to all groups. Further, pathway enrichment analysis revealed abundance and significantly modulated metabolites associated with oxidative stress pathways. The present study is the first in vivo model of dose-dependent lead exposure for serum metabolite profiling.
Collapse
Affiliation(s)
- Monica Shirley Mani
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Manjunath B Joshi
- Department of Ageing, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Rashmi R Shetty
- Department of Pathology, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Venzil Lavie DSouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - M Swathi
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Shama Prasada Kabekkodu
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Herman Sunil Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
45
|
Pathogenic Genome Signatures That Damage Motor Neurons in Amyotrophic Lateral Sclerosis. Cells 2020; 9:cells9122687. [PMID: 33333804 PMCID: PMC7765192 DOI: 10.3390/cells9122687] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most frequent motor neuron disease and a neurodegenerative disorder, affecting the upper and/or lower motor neurons. Notably, it invariably leads to death within a few years of onset. Although most ALS cases are sporadic, familial amyotrophic lateral sclerosis (fALS) forms 10% of the cases. In 1993, the first causative gene (SOD1) of fALS was identified. With rapid advances in genetics, over fifty potentially causative or disease-modifying genes have been found in ALS so far. Accordingly, routine diagnostic tests should encompass the oldest and most frequently mutated ALS genes as well as several new important genetic variants in ALS. Herein, we discuss current literatures on the four newly identified ALS-associated genes (CYLD, S1R, GLT8D1, and KIF5A) and the previously well-known ALS genes including SOD1, TARDBP, FUS, and C9orf72. Moreover, we review the pathogenic implications and disease mechanisms of these genes. Elucidation of the cellular and molecular functions of the mutated genes will bring substantial insights for the development of therapeutic approaches to treat ALS.
Collapse
|
46
|
Ica R, Simulescu A, Sarbu M, Munteanu CVA, Vukelić Ž, Zamfir AD. High resolution mass spectrometry provides novel insights into the ganglioside pattern of brain cavernous hemangioma. Anal Biochem 2020; 609:113976. [PMID: 32987010 DOI: 10.1016/j.ab.2020.113976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/27/2022]
Abstract
In this study we have optimized nanoelectrospray ionization (nanoESI) high resolution mass spectrometry (HR MS) performed on Orbitrap instrument in the negative ion mode for the determination of the composition and structure of gangliosides extracted from human brain cavernous hemangioma. The optimized HR MS platform, allowed the discrimination of 62 ions, corresponding to 52 different ganglioside species, which represents roughly twice the number of species existing in the current inventory of human brain hemangioma-associated gangliosides. The experiments revealed a ganglioside pattern dominated by GD-type of structures as well as an elevated incidence of species characterized by a low degree of sialylation and short glycan chains, including asialo GA1 (d18:1/18:0), which offer a new perspective upon the ganglioside composition in this benign tumor. Many of the structures are characteristic for this type of tumor only and are to be considered in further investigations for their potential use in early brain hemangioma diagnosis based on molecular markers. The detailed fragmentation analysis performed by collision-induced dissociation (CID) tandem MS provided information of structural elements related to the glycan core and ceramide moiety, which confirmed the molecular configuration of GD3 (d18:1/24:1) and GD3 (d18:1/24:2) species with potential biomarker role.
Collapse
Affiliation(s)
- Raluca Ica
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania; Faculty of Physics, West University of Timisoara, Romania
| | - Anca Simulescu
- "Victor Babes" University of Medicine and Pharmacy Timisoara, Romania
| | - Mirela Sarbu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | | | - Željka Vukelić
- Department of Chemistry and Biochemistry, University of Zagreb Medical School, Zagreb, Croatia
| | - Alina D Zamfir
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania; "Aurel Vlaicu" University of Arad, Arad, Romania.
| |
Collapse
|
47
|
Bouscary A, Quessada C, René F, Spedding M, Turner BJ, Henriques A, Ngo ST, Loeffler JP. Sphingolipids metabolism alteration in the central nervous system: Amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. Semin Cell Dev Biol 2020; 112:82-91. [PMID: 33160824 DOI: 10.1016/j.semcdb.2020.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
Sphingolipids are complex lipids. They play a structural role in neurons, but are also involved in regulating cellular communication, and neuronal differentiation and maturation. There is increasing evidence to suggest that dysregulated metabolism of sphingolipids is linked to neurodegenerative processes in amyotrophic lateral sclerosis (ALS), Parkinson's disease and Gaucher's disease. In this review, we provide an overview of the role of sphingolipids in the development and maintenance of the nervous system. We describe the implications of altered metabolism of sphingolipids in the pathophysiology of certain neurodegenerative diseases, with a primary focus on ALS. Finally, we provide an update of potential treatments that could be used to target the metabolism of sphingolipids in neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexandra Bouscary
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France; INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Cyril Quessada
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France; INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Frédérique René
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France; INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Michael Spedding
- Spedding Research Solutions SAS, 6 rue Ampere, 78650 Le Vesinet, France
| | - Bradley J Turner
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, VIC 3052, Australia
| | | | - Shyuan T Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Building 75, Cnr College Rd & Cooper Rd, Brisbane city, QLD 4072, Australia; Centre for Clinical Research, The University of Queensland, Building 71/918, Royal Brisbane & Women's Hospital Campus, Herston, QLD 4029, Australia; Queensland Brain Institute Building 79, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jean-Philippe Loeffler
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France; INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France.
| |
Collapse
|
48
|
Zhang Y, Wang R, Feng Y, Ma F. The role of sialyltransferases in gynecological malignant tumors. Life Sci 2020; 263:118670. [PMID: 33121992 DOI: 10.1016/j.lfs.2020.118670] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/17/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023]
Abstract
Sialylation is the addition of sialic acids to the terminus of various glycoconjugates, and it is involved in many essential biological processes, such as cell adhesion, signal transduction, immune regulation, etc. The levels of sialylation in a cell are tightly regulated by two groups of enzymes, sialyltransferases (STs, responsible for sialylation) and sialidases (responsible for desialylation). Many studies have reported that the occurrence, development, and survival rates of tumors are significantly associated with STs' abnormal changes. In recent years, the morbidity and mortality rates of gynecological malignant tumors have been continuously rising, which has caused great harm to women's reproduction and health. Abnormal changes of STs in gynecological malignant tumor cell membranes cause the changes of expression of sialic acids, promoting cell migration and, eventually, leading to tumor metastasis. In this review, we outlined the biological characteristics of STs and summarized the expression profiles of 20 STs in different tumors via transcriptome data from Gene Expression Profiling Interactive Analysis (GEPIA) database. Moreover, STs' functions in four common gynecological tumors (ovarian cancer, cervical cancer, endometrial cancer, and gestational trophoblast tumor) were reviewed.
Collapse
Affiliation(s)
- Yue Zhang
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruohan Wang
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ying Feng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
49
|
Tang FL, Wang J, Itokazu Y, Yu RK. Ganglioside GD3 regulates dendritic growth in newborn neurons in adult mouse hippocampus via modulation of mitochondrial dynamics. J Neurochem 2020; 156:819-833. [PMID: 32743804 DOI: 10.1111/jnc.15137] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/29/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022]
Abstract
Ganglioside GD3, a major ganglioside species in neural stem cells, plays a crucial role in maintenance of the self-renewal capacity of these cells. However, its bioactivity in postnatally differentiated neurons in the neurogenic regions of adult brains has not been elucidated. Here, we describe for the first time that deletion of GD3 not only impairs neurotrophin-induced stem cell proliferation, but also alters the dendritic structure as well as the number of synapses of nascent neurons in the dentate gyrus of adult brain. When examining the behavioral phenotypes, GD3 synthase-knockout (GD3S-KO) mice displayed impairment in hippocampus-dependent memory function. To further gain insight into its cellular function, we examined GD3-binding partners from mouse brain extract using a GD3-specific monoclonal antibody, R24, followed by LC-MS/MS analysis and identified a mitochondrial fission protein, the dynamin-related protein-1 (Drp1), as a novel GD3-binding protein. Biochemical and imaging analyses revealed mitochondrial fragmentation in GD3-depleted dentate gyrus neurons, suggesting that GD3 is essential for the mitochondrial Drp1 turnover that is required for efficient mitochondrial fission. These results suggest that GD3 is required for proper dendritic and spine maturation of newborn neurons in adult brain through the regulation of mitochondrial dynamics.
Collapse
Affiliation(s)
- Fu-Lei Tang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jing Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
50
|
Tang FL, Wang J, Itokazu Y, Yu RK. Enhanced Susceptibility to Chemoconvulsant-Induced Seizures in Ganglioside GM3 Synthase Knockout Mice. ASN Neuro 2020; 12:1759091420938175. [PMID: 32664815 PMCID: PMC7364800 DOI: 10.1177/1759091420938175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ganglioside GM3 synthase (α-2,3-sialyltransferase, ST3GAL5, GM3S) is a key enzyme involved in the biosynthesis of gangliosides. ST3GAL5 deficiency causes an absence of GM3 and all downstream biosynthetic derivatives. The affected individuals manifest deafness, severe irritability, intractable seizures, and profound intellectual disability. To investigate whether deficiency of GM3 is involved in seizure susceptibility, we induced seizures with different chemoconvulsants in ST3GAL5 knockout mice. We report here that ST3GAL5 knockout mice are hyperactive and more susceptible to seizures induced by chemoconvulsants, including kainate and pilocarpine, compared with normal controls. In the hippocampal dentate gyrus, loss of GM3 aggravates seizure-induced aberrant neurogenesis. These data indicate that GM3 and gangliosides derived from GM3 may serve as important regulators of epilepsy and may play an important role in aberrant neurogenesis associated with seizures.
Collapse
Affiliation(s)
- Fu-Lei Tang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, United States
| | - Jing Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, United States
| | - Yukata Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, United States
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, United States
| |
Collapse
|