1
|
Chaudhary S, Sindhu SS. Iron sensing, signalling and acquisition by microbes and plants under environmental stress: Use of iron-solubilizing bacteria in crop biofortification for sustainable agriculture. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112496. [PMID: 40222392 DOI: 10.1016/j.plantsci.2025.112496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/12/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
Iron is very crucial micronutrient prerequisite for growth of all cellular organisms including plants, microbes, animals and humans. Though iron (Fe) is present in abundance in earth's crust, but most of its forms present in soil are biologically unavailable, thus putting a constraint to utilize it. Plants and microorganisms maintain iron homeostasis to balance the supply of enough Fe for metabolism from their surrounding environments and to avoid excessive toxic levels. Microorganisms and plants employ different strategies for sensing, signaling, transportation and uptake of Fe under different types of stressed environments. Microbial communities present in soil and vicinity of roots contribute in biogeochemical cycling and uptake of different nutrients including Fe resulting into improved soil fertility and plant health. In this review, the regulation of iron uptake and transport under different kinds of biotic and abiotic stresses is described. In addition, the insights have been provided for enhancing bioavailability of Fe in sustainable agriculture practices. The inoculation of different crop plants with iron solubilizing microbes improved bioavailablilty of Fe in soil and increased plant growth and crop yield. Insights were provided about possible role of recent bioengineering techniques to improve Fe availability and uptake by plants. However, well-planned and large-scale field trials are required before recommending particular iron solubilizing microbes as biofertilizers for increasing Fe availability, improving plant development and crop yields in sustainable agriculture.
Collapse
Affiliation(s)
- Suman Chaudhary
- CSIR-Institute of Microbial Technology, Sector - 39A, Chandigarh, India
| | - Satyavir S Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, Haryana 125004, India.
| |
Collapse
|
2
|
Sousa LJD, Santos IR, Luz IS, Ribeiro DG, Oliveira-Neto OBD, Fontes W, Blum LEB, Mehta A. New potential susceptibility factors contributing to tomato bacterial spot disease. J Proteomics 2025; 314:105387. [PMID: 39863247 DOI: 10.1016/j.jprot.2025.105387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
The label-free shotgun proteomics analysis carried out in this study aimed to understand the molecular mechanisms that contribute towards tomato susceptibility to Xanthomonas euvesicatoria pv. perforans (Xep). To achieve this, comparative proteomics was performed on susceptible inoculated plants with the bacterium and the control group (saline solution) at 24 and 48 h after inoculation (hai). The results revealed that most of the identified proteins showed increased abundance in the infected group and were classified into different gene ontology groups. Eight of these proteins were related to susceptibility in other pathosystems, suggesting their potential involvement in the development of bacterial spot in tomato. Some of these proteins are involved in the negative regulation of salicylic acid, PR proteins and reactive oxygen species (ROS), as well as contributing to the acquisition of sugars by the pathogen. The results obtained in this study provided us with valuable information for understanding the molecular mechanisms that lead to tomato susceptibility to Xep and will help in developing tomato cultivars resistant to bacterial spot. SIGNIFICANCE: Our proteomic study of tomato plants during infection by Xep allowed for the identification of potential proteins that contribute to bacterial spot tomato disease development. These proteins can act in different ways to favor the pathogen, such as the negative modulation of phytohormones involved in plant defense, the inhibition of PR proteins and reactive oxygen species, as well as to collaborate in the acquisition of sugar for pathogen nutrition.
Collapse
Affiliation(s)
- Lucas José de Sousa
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final CEP 70770917, Brazil; Departamento de Fitopatologia, Universidade de Brasília, Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro, CEP 70910900, Brazil
| | - Ivonaldo Reis Santos
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final CEP 70770917, Brazil
| | - Isabelle Souza Luz
- Departamento de Biologia Celular, Universidade de Brasília, Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro, CEP 70910900, Brazil
| | - Daiane Gonzaga Ribeiro
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final CEP 70770917, Brazil; Departamento de Biologia Celular, Universidade de Brasília, Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro, CEP 70910900, Brazil
| | | | - Wagner Fontes
- Departamento de Biologia Celular, Universidade de Brasília, Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro, CEP 70910900, Brazil
| | - Luiz Eduardo Bassay Blum
- Departamento de Fitopatologia, Universidade de Brasília, Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro, CEP 70910900, Brazil
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final CEP 70770917, Brazil.
| |
Collapse
|
3
|
Rahikainen M, Berkowitz O, Whelan J, Kangasjärvi S, Pascual J. Role of aconitase in plant stress response and signaling. PHYSIOLOGIA PLANTARUM 2025; 177:e70128. [PMID: 39968683 DOI: 10.1111/ppl.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/20/2025]
Abstract
Mitochondria are the centres of carbon and energy metabolism in cells and are functionally integrated with other organelles. Under environmental stress, disturbances in organellar functions trigger stress signals that activate the necessary metabolic responses and maintain cell redox homeostasis. The tricarboxylic acid cycle enzyme aconitase has emerged as a key component in stress-induced organellar signalling and a regulator of metabolic and redox balance in photosynthetic organisms. Aconitase mediates mitochondrial and chloroplast retrograde signalling and contributes to the activation of the alternative oxidase (AOX) pathway in mitochondria. Aconitase-driven citrate metabolism plays a crucial role in providing reducing equivalents and metabolic precursors for cytosolic nitrogen metabolism and biosynthetic pathways relevant for stress acclimation. Besides its enzymatic activity, aconitase has a non-canonical function as it is a post-transcriptional regulator of specific gene transcripts. The varied functions of aconitase under stress are facilitated by the regulation of specific aconitase isoforms at multiple levels. This review discusses the emerging role of aconitase as a central regulator of stress responses and signalling in photosynthetic organisms.
Collapse
Affiliation(s)
- Moona Rahikainen
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, Australia
| | - James Whelan
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, P.R. China
- Provincial International Science and Technology Cooperation Base on Engineering Biology, Zhejiang University, Haining, P.R. China
| | - Saijaliisa Kangasjärvi
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| | - Jesús Pascual
- Genetics, Department of Functional Biology, University of Oviedo, Oviedo, Asturias, Spain
- Biotechnology Institute of Asturias, Oviedo, Asturias, Spain
| |
Collapse
|
4
|
Yang Y, Lu Z, Ye H, Li J, Zhou Y, Zhang L, Deng G, Li Z. Proteomic and metabolomic insights into the mechanisms of calcium-mediated salt stress tolerance in hemp. PLANT MOLECULAR BIOLOGY 2024; 114:126. [PMID: 39557670 DOI: 10.1007/s11103-024-01525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024]
Abstract
Industrial hemp (Cannabis sativa L.) is a multifaced crop that has the potential to be exploited for many industrial applications, and making use of salt lands is considered to be a sustainable development strategy for the hemp industry. However, no elite salt-tolerant hemp varieties have been developed, and therefore supplementing appropriate exogenous substances to saline soil is one possible solution. Calcium-containing compounds are well-known for their salt tolerance enhancing effects, but the underlying molecular mechanisms remain largely unclear. Here, we first assessed the ameliorative effects of calcium amendments on salt-stressed hemp plants and then investigated these mechanisms on hemp using integrative analysis of proteomics and metabolomics. The stress phenotypes could be lessened by Ca2+ treatment. Certain concentrations of Ca2+ maintained relative electrical conductivity and the contents of malondialdehyde and chlorophyll. Ca2+ treatment also generally led to greater accumulations of soluble proteins, soluble carbohydrates and proline, and enhanced the activities of superoxide dismutase and peroxidase. Through functional classification, pathway enrichment, and network analysis, our data reveal that accumulation of dipeptides is a prominent metabolic signature upon exogenous Ca2+ treatment, and that changes in mitochondrial properties may play an important role in enhancing the salt tolerance. Our results outline the complex metabolic alternations involved in calcium-mediated salt stress resistance, and these data and analyses would be useful for future functional studies.
Collapse
Affiliation(s)
- Yang Yang
- School of Agriculture, Yunnan University, Kunming, 650091, China
| | - Zhenhua Lu
- School of Agriculture, Yunnan University, Kunming, 650091, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, 650091, China
| | - Hailong Ye
- School of Agriculture, Yunnan University, Kunming, 650091, China
| | - Jiafeng Li
- School of Agriculture, Yunnan University, Kunming, 650091, China
| | - Yan Zhou
- School of Agriculture, Yunnan University, Kunming, 650091, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, 650091, China
| | - Ling Zhang
- School of Agriculture, Yunnan University, Kunming, 650091, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, 650091, China
| | - Gang Deng
- School of Agriculture, Yunnan University, Kunming, 650091, China
| | - Zheng Li
- School of Agriculture, Yunnan University, Kunming, 650091, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, 650091, China.
| |
Collapse
|
5
|
Zhou Z, Zhi T, Zou J, Chen G. Transcriptome analysis to identify genes related to programmed cell death resulted from manipulating of BnaFAH ortholog by CRISPR/Cas9 in Brassica napus. Sci Rep 2024; 14:26389. [PMID: 39488592 PMCID: PMC11531537 DOI: 10.1038/s41598-024-77877-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024] Open
Abstract
Fumarylacetoacetate hydrolase (FAH) catalyzes the final step of the tyrosine degradation pathway. In this study, we isolated and characterized two homologous BnaFAH genes in Brassica napus L. variant Westar, and then used CRISPR/Cas9-mediated targeted mutagenesis to generate a series of transgene-free mutant lines either with single or double-null bnafah alleles. Among these mutant lines, the aacc (bnafah) double-null mutant line, rather than the aaCC (bnaa06fah) mutant line, exhibited programmed cell death (PCD) under short days (SD). Histochemical staining and content measurement confirmed that the accumulation of reactive oxygen species (ROS) in bnafah was significantly higher than that in bnaa06fah. To further elucidate the mechanism of PCD, we performed transcriptomic analyses of bnaa06fah and bnafah at different SD stages. A heatmap cluster of differentially expressed genes (DEGs) revealed that PCD may be related to various redox regulatory genes involved in antioxidant activity, ROS-responsive regulation and calcium signaling. Combined with the results of previous studies, our work revealed that the expression levels of BnaC04CAT2, BnaA09/C09SAL1, BnaA08/C08ACO2, BnaA07/C06ERO1, BnaA08ACA1, BnaC04BIK1, BnaA09CRK36 and BnaA03CPK4 were significantly different and that these genes might be candidate hub genes for PCD. Together, our results underscore the ability of different PCD phenotypes to alter BnaFAH orthologs through gene editing and further elucidated the molecular mechanisms of oxidative stress-induced PCD in plants.
Collapse
Affiliation(s)
- Zhou Zhou
- Jiangxi Key Laboratory of Crop Growth and Development Regulation, College of Life Sciences and Resources and Environment, Yichun University, Yichun, 336000, China
| | - Tiantian Zhi
- Jiangxi Key Laboratory of Crop Growth and Development Regulation, College of Life Sciences and Resources and Environment, Yichun University, Yichun, 336000, China.
| | - Jie Zou
- Jiangxi Key Laboratory of Crop Growth and Development Regulation, College of Life Sciences and Resources and Environment, Yichun University, Yichun, 336000, China
| | - Gang Chen
- Jiangxi Key Laboratory of Crop Growth and Development Regulation, College of Life Sciences and Resources and Environment, Yichun University, Yichun, 336000, China
| |
Collapse
|
6
|
Singh D, Zhao H, Gupta SK, Kumar Y, Kim J, Pawar PAM. Characterization of Arabidopsis eskimo1 reveals a metabolic link between xylan O-acetylation and aliphatic glucosinolate metabolism. PHYSIOLOGIA PLANTARUM 2024; 176:e14618. [PMID: 39542838 DOI: 10.1111/ppl.14618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/16/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
Glucuronoxylan is present mainly in the dicot of the secondary cell walls, often O-acetylated, which stabilizes cell structure by maintaining interaction with cellulose and other cell wall components. Some members of the Golgi localized Trichome Birefringence-Like (TBL) family function as xylan O-acetyl transferase (XOAT). The primary XOAT in the stem of Arabidopsis is ESKIMO1/TBL29, and its disruption results in decreased xylan acetylation, stunted plant growth, and collapsed xylem vessels. To elucidate the effect on metabolic reprogramming and identify the underlying cause of the stunted growth in eskimo1, we performed transcriptomic, targeted, and untargeted metabolome analysis, mainly in the inflorescence stem tissue. RNA sequencing analysis revealed that the genes involved in the biosynthesis, regulation, and transport of aliphatic glucosinolates (GSLs) were upregulated, whereas those responsible for indolic GSL metabolism were unaffected in the eskimo1 inflorescence stem. Consistently, aliphatic GSLs, such as 4-methylsulfinylbutyl (4MSOB), were increased in stem tissues and seeds. This shift in the profile of aliphatic GSLs in eskimo1 was further supported by the quantification of the soluble acetate, decrease in accumulation of GSL precursor, i.e., methionine, and increase in the level of jasmonic acid.
Collapse
Affiliation(s)
- Deepika Singh
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Haohao Zhao
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Sonu Kumar Gupta
- Non-Communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Yashwant Kumar
- Non-Communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Jeongim Kim
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Prashant Anupama-Mohan Pawar
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| |
Collapse
|
7
|
Sharma A, Sharma D, Verma SK. A systematic in silico report on iron and zinc proteome of Zea mays. FRONTIERS IN PLANT SCIENCE 2023; 14:1166720. [PMID: 37662157 PMCID: PMC10469895 DOI: 10.3389/fpls.2023.1166720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/10/2023] [Indexed: 09/05/2023]
Abstract
Zea mays is an essential staple food crop across the globe. Maize contains macro and micronutrients but is limited in essential mineral micronutrients such as Fe and Zn. Worldwide, serious health concerns have risen due to the deficiencies of essential nutrients in human diets, which rigorously jeopardizes economic development. In the present study, the systematic in silico approach has been used to predict Fe and Zn binding proteins from the whole proteome of maize. A total of 356 and 546 putative proteins have been predicted, which contain sequence and structural motifs for Fe and Zn ions, respectively. Furthermore, the functional annotation of these predicted proteins, based on their domains, subcellular localization, gene ontology, and literature support, showed their roles in distinct cellular and biological processes, such as metabolism, gene expression and regulation, transport, stress response, protein folding, and proteolysis. The versatile roles of these shortlisted putative Fe and Zn binding proteins of maize could be used to manipulate many facets of maize physiology. Moreover, in the future, the predicted Fe and Zn binding proteins may act as relevant, novel, and economical markers for various crop improvement programs.
Collapse
Affiliation(s)
- Ankita Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India
| | - Dixit Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India
| | - Shailender Kumar Verma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India
- Department of Environmental Studies, University of Delhi, Delhi, India
| |
Collapse
|
8
|
Wang H, Zhu Y, Li M, Pan J, Li D, Guo WP, Xie G, Du L. Transcriptome profiling of A549 non-small cell lung cancer cells in response to Trichinella spiralis muscle larvae excretory/secretory products. Front Vet Sci 2023; 10:1208538. [PMID: 37601754 PMCID: PMC10433203 DOI: 10.3389/fvets.2023.1208538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Trichinella spiralis (T. spiralis) muscle-larva excretory/secretory products (ML-ESPs) is a complex array of proteins with antitumor activity. We previously demonstrated that ML-ESPs inhibit the proliferation of A549 non-small cell lung cancer (NSCLC) cell line. However, the mechanism of ML-ESPs against A549 cells, especially on the transcriptional level, remains unknow. In this study, we systematically investigated a global profile bioinformatics analysis of transcriptional response of A549 cells treated with ML-ESPs. And then, we further explored the transcriptional regulation of genes related to glucose metabolism in A549 cells by ML-ESPs. The results showed that ML-ESPs altered the expression of 2,860 genes (1,634 upregulated and 1,226 downregulated). GO and KEGG analysis demonstrated that differentially expressed genes (DEGs) were mainly associated with pathway in cancer and metabolic process. The downregulated genes interaction network of metabolic process is mainly associated with glucose metabolism. Furthermore, the expression of phosphofructokinase muscle (PFKM), phosphofructokinase liver (PFKL), enolase 2 (ENO2), lactate dehydrogenase B (LDHB), 6-phosphogluconolactonase (6PGL), ribulose-phosphate-3-epimerase (PRE), transketolase (TKT), transaldolase 1 (TALDO1), which genes mainly regulate glycolysis and pentose phosphate pathway (PPP), were suppressed by ML-ESPs. Interestingly, tricarboxylic acid cycle (TCA)-related genes, such as pyruvate dehydrogenase phosphatase 1 (PDP1), PDP2, aconitate hydratase 1 (ACO1) and oxoglutarate dehydrogenase (OGDH) were upregulated by ML-ESPs. In summary, the transcriptome profiling of A549 cells were significantly altered by ML-ESPs. And we also provide new insight into how ML-ESPs induced a transcriptional reprogramming of glucose metabolism-related genes in A549 cells.
Collapse
Affiliation(s)
- Haoxuan Wang
- Department of Pathogenic Biology, Chengde Medical University, Chengde, Hebei, China
| | - Yingying Zhu
- Department of Pathogenic Biology, Chengde Medical University, Chengde, Hebei, China
| | - Meichen Li
- Department of Clinical Laboratory, First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Jingdan Pan
- Department of Laboratory, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Dan Li
- Department of Pathogenic Biology, Chengde Medical University, Chengde, Hebei, China
| | - Wen-Ping Guo
- Department of Pathogenic Biology, Chengde Medical University, Chengde, Hebei, China
| | - Guangcheng Xie
- Department of Pathogenic Biology, Chengde Medical University, Chengde, Hebei, China
| | - Luanying Du
- Department of Pathogenic Biology, Chengde Medical University, Chengde, Hebei, China
| |
Collapse
|
9
|
Youssef WA, Feil R, Saint-Sorny M, Johnson X, Lunn JE, Grimm B, Brzezowski P. Singlet oxygen-induced signalling depends on the metabolic status of the Chlamydomonas reinhardtii cell. Commun Biol 2023; 6:529. [PMID: 37193883 DOI: 10.1038/s42003-023-04872-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 04/24/2023] [Indexed: 05/18/2023] Open
Abstract
Using a mutant screen, we identified trehalose 6-phosphate phosphatase 1 (TSPP1) as a functional enzyme dephosphorylating trehalose 6-phosphate (Tre6P) to trehalose in Chlamydomonas reinhardtii. The tspp1 knock-out results in reprogramming of the cell metabolism via altered transcriptome. As a secondary effect, tspp1 also shows impairment in 1O2-induced chloroplast retrograde signalling. From transcriptomic analysis and metabolite profiling, we conclude that accumulation or deficiency of certain metabolites directly affect 1O2-signalling. 1O2-inducible GLUTATHIONE PEROXIDASE 5 (GPX5) gene expression is suppressed by increased content of fumarate and 2-oxoglutarate, intermediates in the tricarboxylic acid cycle (TCA cycle) in mitochondria and dicarboxylate metabolism in the cytosol, but also myo-inositol, involved in inositol phosphate metabolism and phosphatidylinositol signalling system. Application of another TCA cycle intermediate, aconitate, recovers 1O2-signalling and GPX5 expression in otherwise aconitate-deficient tspp1. Genes encoding known essential components of chloroplast-to-nucleus 1O2-signalling, PSBP2, MBS, and SAK1, show decreased transcript levels in tspp1, which also can be rescued by exogenous application of aconitate. We demonstrate that chloroplast retrograde signalling involving 1O2 depends on mitochondrial and cytosolic processes and that the metabolic status of the cell determines the response to 1O2.
Collapse
Affiliation(s)
- Waeil Al Youssef
- Pflanzenphysiologie, Institut für Biologie, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Maureen Saint-Sorny
- Photosynthesis and Environment Team, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS, Institut de Biosciences et Biotechnologies d'Aix-Marseille, Aix-Marseille Université, UMR 7265, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Xenie Johnson
- Photosynthesis and Environment Team, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS, Institut de Biosciences et Biotechnologies d'Aix-Marseille, Aix-Marseille Université, UMR 7265, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Bernhard Grimm
- Pflanzenphysiologie, Institut für Biologie, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Pawel Brzezowski
- Pflanzenphysiologie, Institut für Biologie, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.
| |
Collapse
|
10
|
Chaudhary S, Sindhu SS, Dhanker R, Kumari A. Microbes-mediated sulphur cycling in soil: Impact on soil fertility, crop production and environmental sustainability. Microbiol Res 2023; 271:127340. [PMID: 36889205 DOI: 10.1016/j.micres.2023.127340] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/06/2023] [Accepted: 02/18/2023] [Indexed: 03/08/2023]
Abstract
Reduction in soil fertility and depletion of natural resources due to current intensive agricultural practices along with climate changes are the major constraints for crop productivity and global food security. Diverse microbial populations' inhabiting the soil and rhizosphere participate in biogeochemical cycling of nutrients and thereby, improve soil fertility and plant health, and reduce the adverse impact of synthetic fertilizers on the environment. Sulphur is 4th most common crucial macronutrient required by all organisms including plants, animals, humans and microorganisms. Effective strategies are required to enhance sulphur content in crops for minimizing adverse effects of sulphur deficiency on plants and humans. Various microorganisms are involved in sulphur cycling in soil through oxidation, reduction, mineralization, and immobilization, and volatalization processes of diverse sulphur compounds. Some microorganisms possess the unique ability to oxidize sulphur compounds into plant utilizable sulphate (SO42-) form. Considering the importance of sulphur as a nutrient for crops, many bacteria and fungi involved in sulphur cycling have been characterized from soil and rhizosphere. Some of these microbes have been found to positively affect plant growth and crop yield through multiple mechanisms including the enhanced mobilization of nutrients in soils (i.e., sulphate, phosphorus and nitrogen), production of growth-promoting hormones, inhibition of phytopathogens, protection against oxidative damage and mitigation of abiotic stresses. Application of these beneficial microbes as biofertilizers may reduce the conventional fertilizer application in soils. However, large-scale, well-designed, and long-term field trials are necessary to recommend the use of these microbes for increasing nutrient availability for growth and yield of crop plants. This review discusses the current knowledge regarding sulphur deficiency symptoms in plants, biogeochemical cycling of sulphur and inoculation effects of sulphur oxidizing microbes in improving plant biomass and crop yield in different crops.
Collapse
Affiliation(s)
- Suman Chaudhary
- Research Associate, EBL Laboratory, ICAR-Central Institute of Research on Buffaloes, Hisar 125001, Haryana, India.
| | - Satyavir Singh Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, Haryana, India.
| | - Rinku Dhanker
- International Institute of Veterinary, Education & Research, Bahuakbarpur, Rohtak 124001, Haryana, India.
| | - Anju Kumari
- Center of Food Science and Technology, CCS Haryana Agricultural University, Hisar 125004, Haryana, India.
| |
Collapse
|
11
|
Wellpott K, Jozefowicz AM, Meise P, Schum A, Seddig S, Mock HP, Winkelmann T, Bündig C. Combined nitrogen and drought stress leads to overlapping and unique proteomic responses in potato. PLANTA 2023; 257:58. [PMID: 36795167 PMCID: PMC9935667 DOI: 10.1007/s00425-023-04085-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Nitrogen deficient and drought-tolerant or sensitive potatoes differ in proteomic responses under combined (NWD) and individual stresses. The sensitive genotype 'Kiebitz' exhibits a higher abundance of proteases under NWD. Abiotic stresses such as N deficiency and drought affect the yield of Solanum tuberosum L. tremendously. Therefore, it is of importance to improve potato genotypes in terms of stress tolerance. In this study, we identified differentially abundant proteins (DAPs) in four starch potato genotypes under N deficiency (ND), drought stress (WD), or combined stress (NWD) in two rain-out shelter experiments. The gel-free LC-MS analysis generated a set of 1177 identified and quantified proteins. The incidence of common DAPs in tolerant and sensitive genotypes under NWD indicates general responses to this stress combination. Most of these proteins were part of the amino acid metabolism (13.9%). Three isoforms of S-adenosyl methionine synthase (SAMS) were found to be lower abundant in all genotypes. As SAMS were found upon application of single stresses as well, these proteins appear to be part of the general stress response in potato. Interestingly, the sensitive genotype 'Kiebitz' showed a higher abundance of three proteases (subtilase, carboxypeptidase, subtilase family protein) and a lower abundance of a protease inhibitor (stigma expressed protein) under NWD stress compared to control plants. The comparably tolerant genotype 'Tomba', however, displayed lower abundances of proteases. This indicates a better coping strategy for the tolerant genotype and a quicker reaction to WD when previously stressed with ND.
Collapse
Affiliation(s)
- Katharina Wellpott
- Department of Woody Plant and Propagation Physiology, Institute of Horticultural Production Systems, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Anna M Jozefowicz
- Applied Biochemistry, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr. 3, 06466, Seeland, Germany
| | - Philipp Meise
- Institute for Resistance Research and Stress Tolerance, Julius-Kühn-Institute (JKI), Bundesforschungsinstitut Für Kulturpflanzen, Rudolf-Schick-Platz 3a, 18190, Sanitz, Germany
| | - Annegret Schum
- Institute for Resistance Research and Stress Tolerance, Julius-Kühn-Institute (JKI), Bundesforschungsinstitut Für Kulturpflanzen, Rudolf-Schick-Platz 3a, 18190, Sanitz, Germany
| | - Sylvia Seddig
- Institute for Resistance Research and Stress Tolerance, Julius-Kühn-Institute (JKI), Bundesforschungsinstitut Für Kulturpflanzen, Rudolf-Schick-Platz 3a, 18190, Sanitz, Germany
| | - Hans-Peter Mock
- Applied Biochemistry, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr. 3, 06466, Seeland, Germany
- Universidad de Costa Rica, CIGRAS, 11501-2060, San Pedro, Costa Rica
| | - Traud Winkelmann
- Department of Woody Plant and Propagation Physiology, Institute of Horticultural Production Systems, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Christin Bündig
- Department of Woody Plant and Propagation Physiology, Institute of Horticultural Production Systems, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany.
| |
Collapse
|
12
|
Ahouvi Y, Haber Z, Zach YY, Rosental L, Toubiana D, Sharma D, Alseekh S, Tajima H, Fernie AR, Brotman Y, Blumwald E, Sade N. The Alteration of Tomato Chloroplast Vesiculation Positively Affects Whole-Plant Source-Sink Relations and Fruit Metabolism under Stress Conditions. PLANT & CELL PHYSIOLOGY 2023; 63:2008-2026. [PMID: 36161338 DOI: 10.1093/pcp/pcac133] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/14/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Changes in climate conditions can negatively affect the productivity of crop plants. They can induce chloroplast degradation (senescence), which leads to decreased source capacity, as well as decreased whole-plant carbon/nitrogen assimilation and allocation. The importance, contribution and mechanisms of action regulating source-tissue capacity under stress conditions in tomato (Solanum lycopersicum) are not well understood. We hypothesized that delaying chloroplast degradation by altering the activity of the tomato chloroplast vesiculation (CV) under stress would lead to more efficient use of carbon and nitrogen and to higher yields. Tomato CV is upregulated under stress conditions. Specific induction of CV in leaves at the fruit development stage resulted in stress-induced senescence and negatively affected fruit yield, without any positive effects on fruit quality. Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 (CRISPR/CAS9) knockout CV plants, generated using a near-isogenic tomato line with enhanced sink capacity, exhibited stress tolerance at both the vegetative and the reproductive stages, leading to enhanced fruit quantity, quality and harvest index. Detailed metabolic and transcriptomic network analysis of sink tissue revealed that the l-glutamine and l-arginine biosynthesis pathways are associated with stress-response conditions and also identified putative novel genes involved in tomato fruit quality under stress. Our results are the first to demonstrate the feasibility of delayed stress-induced senescence as a stress-tolerance trait in a fleshy fruit crop, to highlight the involvement of the CV pathway in the regulation of source strength under stress and to identify genes and metabolic pathways involved in increased tomato sink capacity under stress conditions.
Collapse
Affiliation(s)
- Yoav Ahouvi
- School of Plant Sciences and Food Security, Tel Aviv University, P.O.B. 39040, 55 Haim Levanon St., Tel Aviv 6139001, Israel
| | - Zechariah Haber
- School of Plant Sciences and Food Security, Tel Aviv University, P.O.B. 39040, 55 Haim Levanon St., Tel Aviv 6139001, Israel
| | - Yair Yehoshua Zach
- School of Plant Sciences and Food Security, Tel Aviv University, P.O.B. 39040, 55 Haim Levanon St., Tel Aviv 6139001, Israel
| | - Leah Rosental
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 1 David Ben Gurion Blvd., Beer-Sheva 8410501, Israel
| | - David Toubiana
- School of Plant Sciences and Food Security, Tel Aviv University, P.O.B. 39040, 55 Haim Levanon St., Tel Aviv 6139001, Israel
| | - Davinder Sharma
- School of Plant Sciences and Food Security, Tel Aviv University, P.O.B. 39040, 55 Haim Levanon St., Tel Aviv 6139001, Israel
| | - Saleh Alseekh
- Department of Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, 1 Am Mühlenberg, Golm, Potsdam 14476, Germany
- Department of Plant Metabolomics, Center for Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv 4000, Bulgaria
| | - Hiromi Tajima
- Department of Plant Sciences, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | - Alisdair R Fernie
- Department of Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, 1 Am Mühlenberg, Golm, Potsdam 14476, Germany
- Department of Plant Metabolomics, Center for Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv 4000, Bulgaria
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 1 David Ben Gurion Blvd., Beer-Sheva 8410501, Israel
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | - Nir Sade
- School of Plant Sciences and Food Security, Tel Aviv University, P.O.B. 39040, 55 Haim Levanon St., Tel Aviv 6139001, Israel
| |
Collapse
|
13
|
Licaj I, Di Meo MC, Fiorillo A, Samperna S, Marra M, Rocco M. Comparative Analysis of the Response to Polyethylene Glycol-Simulated Drought Stress in Roots from Seedlings of "Modern" and "Ancient" Wheat Varieties. PLANTS (BASEL, SWITZERLAND) 2023; 12:428. [PMID: 36771510 PMCID: PMC9921267 DOI: 10.3390/plants12030428] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Durum wheat is widely cultivated in the Mediterranean, where it is the basis for the production of high added-value food derivatives such as pasta. In the next few years, the detrimental effects of global climate change will represent a serious challenge to crop yields. For durum wheat, the threat of climate change is worsened by the fact that cultivation relies on a few genetically uniform, elite varieties, better suited to intensive cultivation than "traditional" ones but less resistant to environmental stress. Hence, the renewed interest in "ancient" traditional varieties are expected to be more tolerant to environmental stress as a source of genetic resources to be exploited for the selection of useful agronomic traits such as drought tolerance. The aim of this study was to perform a comparative analysis of the effect and response of roots from the seedlings of two durum wheat cultivars: Svevo, a widely cultivated elite variety, and Saragolla, a traditional variety appreciated for its organoleptic characteristics, to Polyethylene glycol-simulated drought stress. The effect of water stress on root growth was analyzed and related to biochemical data such as hydrogen peroxide production, electrolyte leakage, membrane lipid peroxidation, proline synthesis, as well as to molecular data such as qRT-PCR analysis of drought responsive genes and proteomic analysis of changes in the protein repertoire of roots from the two cultivars.
Collapse
Affiliation(s)
- Ilva Licaj
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Maria Chiara Di Meo
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Anna Fiorillo
- Department of Biology, University of Tor Vergata, 00133 Rome, Italy
| | - Simone Samperna
- Department of Biology, University of Tor Vergata, 00133 Rome, Italy
| | - Mauro Marra
- Department of Biology, University of Tor Vergata, 00133 Rome, Italy
| | - Mariapina Rocco
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| |
Collapse
|
14
|
A Proteomics Data Mining Strategy for the Identification of Quinoa Grain Proteins with Potential Immunonutritional Bioactivities. Foods 2023; 12:foods12020390. [PMID: 36673481 PMCID: PMC9858122 DOI: 10.3390/foods12020390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Quinoa proteins are attracting global interest for their wide amino acid profile and as a promising source for the development of biomedical treatments, including those against immune-mediated diseases. However, information about the bioactivity of quinoa proteins is scarce. In this study, a quinoa grain proteome map obtained by label-free mass spectrometry-based shotgun proteomics was investigated for the identification of quinoa grain proteins with potential immunonutritional bioactivities, including those related to cancer. After carefully examining the sequence similarities of the 1211 identified quinoa grain proteins against already described bioactive proteins from other plant organisms, 71, 48, and 3 of them were classified as antimicrobial peptides (AMPs), oxidative stress induced peptides (OSIPs), and serine-type protease inhibitors (STPIs), respectively, suggesting their potential as immunomodulatory, anti-inflammatory, and anticancer agents. In addition, data interpretation using Venn diagrams, heat maps, and scatterplots revealed proteome similarities and differences with respect to the AMPs, OSIPs, and STPIs, and the most relevant bioactive proteins in the predominant commercial quinoa grains (i.e., black, red, white (from Peru), and royal (white from Bolivia)). The presented proteomics data mining strategy allows easy screening for potentially relevant quinoa grain proteins and commercial classes for immunonutrition, as a basis for future bioactivity testing.
Collapse
|
15
|
Kesawat MS, Kherawat BS, Ram C, Singh A, Dey P, Gora JS, Misra N, Chung SM, Kumar M. Genome-Wide Identification and Expression Profiling of Aconitase Gene Family Members Reveals Their Roles in Plant Development and Adaptation to Diverse Stress in Triticum aestivum L. PLANTS 2022; 11:3475. [PMID: 36559588 PMCID: PMC9782157 DOI: 10.3390/plants11243475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/30/2022] [Indexed: 06/01/2023]
Abstract
Global warming is a serious threat to food security and severely affects plant growth, developmental processes, and, eventually, crop productivity. Respiratory metabolism plays a critical role in the adaptation of diverse stress in plants. Aconitase (ACO) is the main enzyme, which catalyzes the revocable isomerization of citrate to isocitrate in the Krebs cycle. The function of ACO gene family members has been extensively studied in model plants, for instance Arabidopsis. However, their role in plant developmental processes and various stress conditions largely remained unknown in other plant species. Thus, we identified 15 ACO genes in wheat to elucidate their function in plant developmental processes and different stress environments. The phylogenetic tree revealed that TaACO genes were classified into six groups. Further, gene structure analysis of TaACOs has shown a distinctive evolutionary path. Synteny analysis showed the 84 orthologous gene pairs in Brachypodium distachyon, Aegilops tauschii, Triticum dicoccoides, Oryza sativa, and Arabidopsis thaliana. Furthermore, Ka/Ks ratio revealed that most TaACO genes experienced strong purifying selection during evolution. Numerous cis-acting regulatory elements were detected in the TaACO promoters, which play a crucial role in plant development processes, phytohormone signaling, and are related to defense and stress. To understand the function of TaACO genes, the expression profiling of TaACO genes were investigated in different tissues, developmental stages, and stress conditions. The transcript per million values of TaACOs genes were retrieved from the Wheat Expression Browser Database. We noticed the differential expression of the TaACO genes in different tissues and various stress conditions. Moreover, gene ontology analysis has shown enrichment in the tricarboxylic acid metabolic process (GO:0072350), citrate metabolic process (GO:0006101), isocitrate metabolic process GO:0006102, carbohydrate metabolic (GO:0005975), and glyoxylate metabolic process (GO:0046487). Therefore, this study provided valuable insight into the ACO gene family in wheat and contributed to the further functional characterization of TaACO during different plant development processes and various stress conditions.
Collapse
Affiliation(s)
- Mahipal Singh Kesawat
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri Sri University, Cuttack 754006, India
| | - Bhagwat Singh Kherawat
- Krishi Vigyan Kendra, Bikaner II, Swami Keshwanand Rajasthan Agricultural University, Bikaner 334603, India
| | - Chet Ram
- ICAR-Central Institute for Arid Horticulture, Bikaner 334006, India
| | - Anupama Singh
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri Sri University, Cuttack 754006, India
| | - Prajjal Dey
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri Sri University, Cuttack 754006, India
| | - Jagan Singh Gora
- ICAR-Central Institute for Arid Horticulture, Bikaner 334006, India
| | - Namrata Misra
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology 13 (KIIT), Deemed to be University, Bhubaneswar 751024, India
| | - Sang-Min Chung
- Department of Life Science, Dongguk University, Dong-gu 10326, Republic of Korea
| | - Manu Kumar
- Department of Life Science, Dongguk University, Dong-gu 10326, Republic of Korea
| |
Collapse
|
16
|
Kreiner JM, Latorre SM, Burbano HA, Stinchcombe JR, Otto SP, Weigel D, Wright SI. Rapid weed adaptation and range expansion in response to agriculture over the past two centuries. Science 2022; 378:1079-1085. [PMID: 36480621 DOI: 10.1126/science.abo7293] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
North America has experienced a massive increase in cropland use since 1800, accompanied more recently by the intensification of agricultural practices. Through genome analysis of present-day and historical samples spanning environments over the past two centuries, we studied the effect of these changes in farming on the extent and tempo of evolution across the native range of the common waterhemp (Amaranthus tuberculatus), a now pervasive agricultural weed. Modern agriculture has imposed strengths of selection rarely observed in the wild, with notable shifts in allele frequency trajectories since agricultural intensification in the 1960s. An evolutionary response to this extreme selection was facilitated by a concurrent human-mediated range shift. By reshaping genome-wide diversity across the landscape, agriculture has driven the success of this weed in the 21st century.
Collapse
Affiliation(s)
- Julia M Kreiner
- Department of Botany, University of British Columbia, Vancouver, BC, Canada.,Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Sergio M Latorre
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK.,Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Hernán A Burbano
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK.,Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Sarah P Otto
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Rujimongkon K, Ampawong S, Isarangkul D, Reamtong O, Aramwit P. Sericin-mediated improvement of dysmorphic cardiac mitochondria from hypercholesterolaemia is associated with maintaining mitochondrial dynamics, energy production, and mitochondrial structure. PHARMACEUTICAL BIOLOGY 2022; 60:708-721. [PMID: 35348427 PMCID: PMC8967205 DOI: 10.1080/13880209.2022.2055088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 05/30/2023]
Abstract
CONTEXT Sericin is a component protein in the silkworm cocoon [Bombyx mori Linnaeus (Bombycidae)] that improves dysmorphic cardiac mitochondria under hypercholesterolemic conditions. This is the first study to explore cardiac mitochondrial proteins associated with sericin treatment. OBJECTIVE To investigate the mechanism of action of sericin in cardiac mitochondria under hypercholesterolaemia. MATERIALS AND METHODS Hypercholesterolaemia was induced in Wistar rats by feeding them 6% cholesterol-containing chow for 6 weeks. The hypercholesterolemic rats were separated into 2 groups (n = 6 for each): the sericin-treated (1,000 mg/kg daily) and nontreated groups. The treatment conditions were maintained for 4 weeks prior to cardiac mitochondria isolation. The mitochondrial structure was evaluated by immunolabeling electron microscopy, and differential mitochondrial protein expression was determined and quantitated by two-dimensional gel electrophoresis coupled with mass spectrometry. RESULTS A 32.22 ± 2.9% increase in the percent striated area of cardiac muscle was observed in sericin-treated hypercholesterolemic rats compared to the nontreatment group (4.18 ± 1.11%). Alterations in mitochondrial proteins, including upregulation of optic atrophy 1 (OPA1) and reduction of NADH-ubiquinone oxidoreductase 75 kDa subunit (NDUFS1) expression, are correlated with a reduction in mitochondrial apoptosis under sericin treatment. Differential proteomic observation also revealed that sericin may improve mitochondrial energy production by upregulating acetyl-CoA acetyltransferase (ACAT1) and NADH dehydrogenase 1α subcomplex subunit 10 (NDUFA10) expression. DISCUSSION AND CONCLUSIONS Sericin treatment could improve the dysmorphic mitochondrial structure, metabolism, and energy production of cardiac mitochondria under hypercholesterolaemia. These results suggest that sericin may be an alternative treatment molecule that is related to cardiac mitochondrial abnormalities.
Collapse
Affiliation(s)
- Kitiya Rujimongkon
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, Thailand
- Proteomics Research Team, National Omics Center, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Duangnate Isarangkul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetic, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, and
| | - Pornanong Aramwit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
18
|
Xiang G, Fu Q, Li G, Liu R, Liu G, Yin X, Chen T, Xu Y. The cytosolic iron-sulphur cluster assembly mechanism in grapevine is one target of a virulent Crinkler effector from Plasmopara viticola. MOLECULAR PLANT PATHOLOGY 2022; 23:1792-1806. [PMID: 36071584 PMCID: PMC9644279 DOI: 10.1111/mpp.13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/25/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Grapevine downy mildew is one of the most devastating diseases in grape production worldwide, but its pathogenesis remains largely unknown. A thorough understanding of the interaction between grapevine and the causal agent, Plasmopara viticola, is helpful to develop alternative disease control measures. Effector proteins that could be secreted to the interaction interface by pathogens are responsible for the susceptibility of host plants. In this study, a Crinkler effector, named PvCRN17, which is from P. viticola and showed virulent effects towards Nicotiana benthamiana previously, was further investigated. Consistently, PvCRN17 showed a virulent effect on grapevine plants. Protein-protein interaction experiments identified grapevine VAE7L1 (Vitis protein ASYMMETRIC LEAVES 1/2 ENHANCER 7-Like 1) as one target of PvCRN17. VAE7L1 was found to interact with VvCIA1 and VvAE7, thus it may function in the cytosolic iron-sulphur cluster assembly (CIA) pathway. Transient expression of VAE7L1 in Vitis riparia and N. benthamiana leaves enhanced the host resistance to oomycete pathogens. Downstream of the CIA pathway in grapevine, three iron-sulphur (Fe-S) proteins showed an enhancing effect on the disease resistance of N. benthamiana. Competitive co-immunoprecipitation assay showed PvCRN17 could compete with VvCIA1 to bind with VAE7L1 and VvAE7. Moreover, PvCRN17 and VAE7L1 were colocalized at the plasma membrane of the plant cell. To conclude, after intruding into the grapevine cell, PvCRN17 would compete with VCIA1 to bind with VAE7L1 and VAE7, demolishing the CIA Fe-S cluster transfer complex, interrupting the maturation of Fe-S proteins, to suppress Fe-S proteins-mediated defence responses.
Collapse
Affiliation(s)
- Gaoqing Xiang
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Horticulture, Northwest A & F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of Agriculture, College of Horticulture, Northwest A & F UniversityYanglingChina
- College of HorticultureNorthwest A & F UniversityYanglingChina
| | - Qingqing Fu
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Horticulture, Northwest A & F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of Agriculture, College of Horticulture, Northwest A & F UniversityYanglingChina
- College of HorticultureNorthwest A & F UniversityYanglingChina
| | - Guanggui Li
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Horticulture, Northwest A & F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of Agriculture, College of Horticulture, Northwest A & F UniversityYanglingChina
- College of HorticultureNorthwest A & F UniversityYanglingChina
| | - Ruiqi Liu
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Horticulture, Northwest A & F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of Agriculture, College of Horticulture, Northwest A & F UniversityYanglingChina
- College of HorticultureNorthwest A & F UniversityYanglingChina
| | - Guotian Liu
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Horticulture, Northwest A & F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of Agriculture, College of Horticulture, Northwest A & F UniversityYanglingChina
- College of HorticultureNorthwest A & F UniversityYanglingChina
| | - Xiao Yin
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Horticulture, Northwest A & F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of Agriculture, College of Horticulture, Northwest A & F UniversityYanglingChina
- College of HorticultureNorthwest A & F UniversityYanglingChina
| | - Tingting Chen
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Horticulture, Northwest A & F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of Agriculture, College of Horticulture, Northwest A & F UniversityYanglingChina
- College of HorticultureNorthwest A & F UniversityYanglingChina
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology in Arid AreasCollege of Horticulture, Northwest A & F UniversityYanglingChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of Agriculture, College of Horticulture, Northwest A & F UniversityYanglingChina
- College of HorticultureNorthwest A & F UniversityYanglingChina
| |
Collapse
|
19
|
Secgin Z, Uluisik S, Yıldırım K, Abdulla MF, Mostafa K, Kavas M. Genome-Wide Identification of the Aconitase Gene Family in Tomato ( Solanum lycopersicum) and CRISPR-Based Functional Characterization of SlACO2 on Male-Sterility. Int J Mol Sci 2022; 23:ijms232213963. [PMID: 36430441 PMCID: PMC9699144 DOI: 10.3390/ijms232213963] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Tomato (Solanum lycopersicum) is one of the most cultivated vegetables in the world due to its consumption in a large variety of raw, cooked, or processed foods. Tomato breeding and productivity highly depend on the use of hybrid seeds and their higher yield, environmental adaption, and disease tolerance. However, the emasculation procedure during hybridization raises tomato seed production costs and labor expenses. Using male sterility is an effective way to reduce the cost of hybrid seeds and ensure cultivar purity. Recent developments in CRISPR genome editing technology enabled tomato breeders to investigate the male sterility genes and to develop male-sterile tomato lines. In the current study, the tomato Acotinase (SlACO) gene family was investigated via in silico tools and functionally characterized with CRISPR/Cas9-mediated gene disruption. Genome-wide blast and HMM search represented two SlACO genes located on different tomato chromosomes. Both genes were estimated to have a segmental duplication in the tomato genome due to their identical motif and domain structure. One of these genes, SlACO2, showed a high expression profile in all generative cells of tomato. Therefore, the SlACO2 gene was targeted with two different gRNA/Cas9 constructs to identify their functional role in tomatoes. The gene was mutated in a total of six genome-edited tomato lines, two of which were homozygous. Surprisingly, pollen viability was found to be extremely low in mutant plants compared to their wild-type (WT) counterparts. Likewise, the number of seeds per fruit also sharply decreased more than fivefold in mutant lines (10-12 seeds) compared to that in WT (67 seeds). The pollen shape, anther structures, and flower colors/shapes were not significantly varied between the mutant and WT tomatoes. The mutated lines were also subjected to salt and mannitol-mediated drought stress to test the effect of SlACO2 on abiotic stress tolerance. The results of the study indicated that mutant tomatoes have higher tolerance with significantly lower MDA content under stress conditions. This is the first CRISPR-mediated characterization of ACO genes on pollen viability, seed formation, and abiotic stress tolerance in tomatoes.
Collapse
Affiliation(s)
- Zafer Secgin
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, 55270 Samsun, Turkey
| | - Selman Uluisik
- Burdur Food Agriculture and Livestock Vocational School, Burdur Mehmet Akif Ersoy University, 15030 Burdur, Turkey
| | - Kubilay Yıldırım
- Department of Molecular Biology and Genetics, Faculty of Science, Ondokuz Mayıs University, 55270 Samsun, Turkey
| | - Mohamed Farah Abdulla
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, 55270 Samsun, Turkey
| | - Karam Mostafa
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, 55270 Samsun, Turkey
- The Central Laboratory for Date Palm Research and Development, Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Musa Kavas
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, 55270 Samsun, Turkey
- Correspondence: ; Tel.: +90-3623121919; Fax: +90-3624576034
| |
Collapse
|
20
|
Li G, Zhao Y, Liu F, Shi M, Guan Y, Zhang T, Zhao F, Qiao Q, Geng Y. Transcriptional memory of gene expression across generations participates in transgenerational plasticity of field pennycress in response to cadmium stress. FRONTIERS IN PLANT SCIENCE 2022; 13:953794. [PMID: 36247570 PMCID: PMC9561902 DOI: 10.3389/fpls.2022.953794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Transgenerational plasticity (TGP) occurs when maternal environments influence the expression of traits in offspring, and in some cases may increase fitness of offspring and have evolutionary significance. However, little is known about the extent of maternal environment influence on gene expression of offspring, and its relationship with trait variations across generations. In this study, we examined TGP in the traits and gene expression of field pennycress (Thlaspi arvense) in response to cadmium (Cd) stress. In the first generation, along with the increase of soil Cd concentration, the total biomass, individual height, and number of seeds significantly decreased, whereas time to flowering, superoxide dismutase (SOD) activity, and content of reduced glutathione significantly increased. Among these traits, only SOD activity showed a significant effect of TGP; the offspring of Cd-treated individuals maintained high SOD activity in the absence of Cd stress. According to the results of RNA sequencing and bioinformatic analysis, 10,028 transcripts were identified as Cd-responsive genes. Among them, only 401 were identified as transcriptional memory genes (TMGs) that maintained the same expression pattern under normal conditions in the second generation as in Cd-treated parents in the first generation. These genes mainly participated in Cd tolerance-related processes such as response to oxidative stress, cell wall biogenesis, and the abscisic acid signaling pathways. The results of weighted correlation network analysis showed that modules correlated with SOD activity recruited more TMGs than modules correlated with other traits. The SOD-coding gene CSD2 was found in one of the modules correlated with SOD activity. Furthermore, several TMGs co-expressed with CSD2 were hub genes that were highly connected to other nodes and critical to the network's topology; therefore, recruitment of TMGs in offspring was potentially related to TGP. These findings indicated that, across generations, transcriptional memory of gene expression played an important role in TGP. Moreover, these results provided new insights into the trait evolution processes mediated by phenotypic plasticity.
Collapse
Affiliation(s)
- Gengyun Li
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Yuewan Zhao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Fei Liu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Minnuo Shi
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Yabin Guan
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Ticao Zhang
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Fangqing Zhao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Beijing Institute of Life Sciences, Chinese Academy of Sciences, Beijing, China
| | - Qin Qiao
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Yupeng Geng
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
21
|
Proteomic Changes in Paspalum fasciculatum Leaves Exposed to Cd Stress. PLANTS 2022; 11:plants11192455. [PMID: 36235321 PMCID: PMC9573290 DOI: 10.3390/plants11192455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022]
Abstract
(1) Background: Cadmium is a toxic heavy metal that is widely distributed in water, soil, and air. It is present in agrochemicals, wastewater, battery waste, and volcanic eruptions. Thus, it can be absorbed by plants and enter the trophic chain. P. fasciculatum is a plant with phytoremediation capacity that can tolerate Cd stress, but changes in its proteome related to this tolerance have not yet been identified. (2) Methods: We conducted a quantitative analysis of the proteins present in P. fasciculatum leaves cultivated under greenhouse conditions in mining soils doped with 0 mg kg−1 (control), 30 mg kg−1, or 50 mg kg−1. This was carried out using the label-free shotgun proteomics technique. In this way, we determined the changes in the proteomes of the leaves of these plants, which allowed us to propose some tolerance mechanisms involved in the response to Cd stress. (3) Results: In total, 329 variable proteins were identified between treatments, which were classified into those associated with carbohydrate and energy metabolism; photosynthesis; structure, transport, and metabolism of proteins; antioxidant stress and defense; RNA and DNA processing; and signal transduction. (4) Conclusions: Based on changes in the differences in the leaf protein profiles between treatments, we hypothesize that some proteins associated with signal transduction (Ras-related protein RABA1e), HSPs (heat shock cognate 70 kDa protein 2), growth (actin-7), and cellular development (actin-1) are part of the tolerance response to Cd stress.
Collapse
|
22
|
Prusty S, Sahoo RK, Nayak S, Poosapati S, Swain DM. Proteomic and Genomic Studies of Micronutrient Deficiency and Toxicity in Plants. PLANTS 2022; 11:plants11182424. [PMID: 36145825 PMCID: PMC9501179 DOI: 10.3390/plants11182424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/21/2022]
Abstract
Micronutrients are essential for plants. Their growth, productivity and reproduction are directly influenced by the supply of micronutrients. Currently, there are eight trace elements considered to be essential for higher plants: Fe, Zn, Mn, Cu, Ni, B, Mo, and Cl. Possibly, other essential elements could be discovered because of recent advances in nutrient solution culture techniques and in the commercial availability of highly sensitive analytical instrumentation for elemental analysis. Much remains to be learned about the physiology of micronutrient absorption, translocation and deposition in plants, and about the functions they perform in plant growth and development. With the recent advancements in the proteomic and molecular biology tools, researchers have attempted to explore and address some of these questions. In this review, we summarize the current knowledge of micronutrients in plants and the proteomic/genomic approaches used to study plant nutrient deficiency and toxicity.
Collapse
Affiliation(s)
- Suchismita Prusty
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneswar 752050, Odisha, India
| | - Ranjan Kumar Sahoo
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneswar 752050, Odisha, India
| | - Subhendu Nayak
- Division of Health Sciences, The Clorox Company, 210W Pettigrew Street, Durham, NC 27701, USA
| | - Sowmya Poosapati
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, CA 92093, USA
- Correspondence: (S.P.); (D.M.S.)
| | - Durga Madhab Swain
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, CA 92093, USA
- Correspondence: (S.P.); (D.M.S.)
| |
Collapse
|
23
|
Alimova AA, Sitnikov VV, Pogorelov DI, Boyko ON, Vitkalova IY, Gureev AP, Popov VN. High Doses of Pesticides Induce mtDNA Damage in Intact Mitochondria of Potato In Vitro and Do Not Impact on mtDNA Integrity of Mitochondria of Shoots and Tubers under In Vivo Exposure. Int J Mol Sci 2022; 23:2970. [PMID: 35328391 PMCID: PMC8955856 DOI: 10.3390/ijms23062970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
It is well known that pesticides are toxic for mitochondria of animals. The effect of pesticides on plant mitochondria has not been widely studied. The goal of this research is to study the impact of metribuzin and imidacloprid on the amount of damage in the mtDNA of potato (Solanum tuberosum L.) in various conditions. We developed a set of primers to estimate mtDNA damage for the fragments in three chromosomes of potato mitogenome. We showed that both metribuzin and imidacloprid considerably damage mtDNA in vitro. Imidacloprid reduces the rate of seed germination, but does not impact the rate of the growth and number of mtDNA damage in the potato shoots. Field experiments show that pesticide exposure does not induce change in aconitate hydratase activity, and can cause a decrease in the rate of H2O2 production. We can assume that the mechanism of pesticide-induced mtDNA damage in vitro is not associated with H2O2 production, and pesticides as electrophilic substances directly interact with mtDNA. The effect of pesticides on the integrity of mtDNA in green parts of plants and in crop tubers is insignificant. In general, plant mtDNA is resistant to pesticide exposure in vivo, probably due to the presence of non-coupled respiratory systems in plant mitochondria.
Collapse
Affiliation(s)
- Alina A. Alimova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.A.A.); (V.V.S.); (D.I.P.); (O.N.B.); (I.Y.V.); (V.N.P.)
| | - Vadim V. Sitnikov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.A.A.); (V.V.S.); (D.I.P.); (O.N.B.); (I.Y.V.); (V.N.P.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Daniil I. Pogorelov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.A.A.); (V.V.S.); (D.I.P.); (O.N.B.); (I.Y.V.); (V.N.P.)
| | - Olga N. Boyko
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.A.A.); (V.V.S.); (D.I.P.); (O.N.B.); (I.Y.V.); (V.N.P.)
| | - Inna Y. Vitkalova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.A.A.); (V.V.S.); (D.I.P.); (O.N.B.); (I.Y.V.); (V.N.P.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Artem P. Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.A.A.); (V.V.S.); (D.I.P.); (O.N.B.); (I.Y.V.); (V.N.P.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Vasily N. Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.A.A.); (V.V.S.); (D.I.P.); (O.N.B.); (I.Y.V.); (V.N.P.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| |
Collapse
|
24
|
Mauceri A, Aci MM, Toppino L, Panda S, Meir S, Mercati F, Araniti F, Lupini A, Panuccio MR, Rotino GL, Aharoni A, Abenavoli MR, Sunseri F. Uncovering Pathways Highly Correlated to NUE through a Combined Metabolomics and Transcriptomics Approach in Eggplant. PLANTS 2022; 11:plants11050700. [PMID: 35270170 PMCID: PMC8912549 DOI: 10.3390/plants11050700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 12/01/2022]
Abstract
Nitrogen (N) fertilization is one of the main inputs to increase crop yield and food production. However, crops utilize only 30–40% of N applied; the remainder is leached into the soil, causing environmental and health damage. In this scenario, the improvement of nitrogen-use efficiency (NUE) will be an essential strategy for sustainable agriculture. Here, we compared two pairs of NUE-contrasting eggplant (Solanum melongena L.) genotypes, employing GC-MS and UPLC-qTOF-MS-based technologies to determine the differential profiles of primary and secondary metabolites in root and shoot tissues, under N starvation as well as at short- and long-term N-limiting resupply. Firstly, differences in the primary metabolism pathways of shoots related to alanine, aspartate and glutamate; starch, sucrose and glycine; serine and threonine; and in secondary metabolites biosynthesis were detected. An integrated analysis between differentially accumulated metabolites and expressed transcripts highlighted a key role of glycine accumulation and the related glyA transcript in the N-use-efficient genotypes to cope with N-limiting stress. Interestingly, a correlation between both sucrose synthase (SUS)- and fructokinase (scrK)-transcript abundances, as well as D-glucose and D-fructose accumulation, appeared useful to distinguish the N-use-efficient genotypes. Furthermore, increased levels of L-aspartate and L-asparagine in the N-use-efficient genotypes at short-term low-N exposure were detected. Granule-bound starch synthase (WAXY) and endoglucanase (E3.2.1.4) downregulation at long-term N stress was observed. Therefore, genes and metabolites related to these pathways could be exploited to improve NUE in eggplant.
Collapse
Affiliation(s)
- Antonio Mauceri
- Department Agraria, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy; (M.M.A.); (A.L.); (M.R.P.); (F.S.)
- Correspondence: (A.M.); (M.R.A.)
| | - Meriem Miyassa Aci
- Department Agraria, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy; (M.M.A.); (A.L.); (M.R.P.); (F.S.)
| | - Laura Toppino
- CREA—Research Centre for Genomics and Bioinformatics, 26836 Montanaso Lombardo, Italy; (L.T.); (G.L.R.)
| | - Sayantan Panda
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (S.P.); (S.M.); (A.A.)
| | - Sagit Meir
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (S.P.); (S.M.); (A.A.)
| | - Francesco Mercati
- Institute Bioscience and Bioresources—National Research Council CNR, 90129 Palermo, Italy;
| | - Fabrizio Araniti
- Department of Agricultural and Environmental Sciences—Production, Territory, Agroenergy, University of Milano, 20133 Milan, Italy;
| | - Antonio Lupini
- Department Agraria, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy; (M.M.A.); (A.L.); (M.R.P.); (F.S.)
| | - Maria Rosaria Panuccio
- Department Agraria, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy; (M.M.A.); (A.L.); (M.R.P.); (F.S.)
| | - Giuseppe Leonardo Rotino
- CREA—Research Centre for Genomics and Bioinformatics, 26836 Montanaso Lombardo, Italy; (L.T.); (G.L.R.)
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (S.P.); (S.M.); (A.A.)
| | - Maria Rosa Abenavoli
- Department Agraria, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy; (M.M.A.); (A.L.); (M.R.P.); (F.S.)
- Correspondence: (A.M.); (M.R.A.)
| | - Francesco Sunseri
- Department Agraria, University Mediterranea of Reggio Calabria, 89122 Reggio Calabria, Italy; (M.M.A.); (A.L.); (M.R.P.); (F.S.)
- Institute Bioscience and Bioresources—National Research Council CNR, 90129 Palermo, Italy;
| |
Collapse
|
25
|
Qureshi MK, Gawroński P, Munir S, Jindal S, Kerchev P. Hydrogen peroxide-induced stress acclimation in plants. Cell Mol Life Sci 2022; 79:129. [PMID: 35141765 PMCID: PMC11073338 DOI: 10.1007/s00018-022-04156-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
Among all reactive oxygen species (ROS), hydrogen peroxide (H2O2) takes a central role in regulating plant development and responses to the environment. The diverse role of H2O2 is achieved through its compartmentalized synthesis, temporal control exerted by the antioxidant machinery, and ability to oxidize specific residues of target proteins. Here, we examine the role of H2O2 in stress acclimation beyond the well-studied transcriptional reprogramming, modulation of plant hormonal networks and long-distance signalling waves by highlighting its global impact on the transcriptional regulation and translational machinery.
Collapse
Affiliation(s)
- Muhammad Kamran Qureshi
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Bosan road, Multan, 60800, Pakistan
| | - Piotr Gawroński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw, University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Sana Munir
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Bosan road, Multan, 60800, Pakistan
| | - Sunita Jindal
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic
| | - Pavel Kerchev
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic.
| |
Collapse
|
26
|
Li SJ, Liu SC, Lin XH, Grierson D, Yin XR, Chen KS. Citrus heat shock transcription factor CitHsfA7-mediated citric acid degradation in response to heat stress. PLANT, CELL & ENVIRONMENT 2022; 45:95-104. [PMID: 34705284 DOI: 10.1111/pce.14207] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Heat stress is a major abiotic stress for plants, which can generate a range of biochemical and genetic responses. In 'Ponkan' mandarin fruit, hot air treatment (HAT) accelerates the degradation of citric acid. However, the transcriptional regulatory mechanisms of citrate degradation in response to HAT remain to be elucidated. Here, 17 heat shock transcription factor sequences were isolated, and dual-luciferase assays were employed to investigate whether the encoded proteins that could trans-activate the promoters of key genes in the GABA shunt, involved in citrate metabolism. We identified four heat shock transcription factors (CitHsfA7, CitHsfA3, CitHsfA4b and CitHsfA8) that showed trans-activation effects on CitAco3, CitIDH3 and CitGAD4, respectively. Transient expression of the CitHsfs in citrus fruits indicated that CitHsfA7 was the only factor that resulted in a significant lowering of the citric acid content, and these results were confirmed by a virus-induced gene silencing system (VIGS). Sub-cellar localization showed that CitHsfA7 is located in the nucleus and is capable of binding directly to a putative HSE in the CitAco3 promoter and enhance its expression. We proposed that the induction of CitHsfA7 transcript level contributes to citric acid degradation in citrus fruit, via modulation of CitAco3 in response to HAT.
Collapse
Affiliation(s)
- Shao-Jia Li
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, China
| | - Sheng-Chao Liu
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, China
| | - Xia-Hui Lin
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, China
| | - Donald Grierson
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, China
- Plant & Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Xue-Ren Yin
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, China
| | - Kun-Song Chen
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, China
| |
Collapse
|
27
|
Liu Y, Qu J, Shi Z, Zhang P, Ren M. Comparative genomic analysis of the tricarboxylic acid cycle members in four Solanaceae vegetable crops and expression pattern analysis in Solanum tuberosum. BMC Genomics 2021; 22:821. [PMID: 34773990 PMCID: PMC8590752 DOI: 10.1186/s12864-021-08109-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/20/2021] [Indexed: 11/26/2022] Open
Abstract
Background The tricarboxylic acid (TCA) cycle is crucial for energy supply in animal, plant, and microbial cells. It is not only the main pathway of carbohydrate catabolism but also the final pathway of lipid and protein catabolism. Some TCA genes have been found to play important roles in the growth and development of tomato and potato, but no comprehensive study of TCA cycle genes in Solanaceae crops has been reported. Results In this study, we analyzed TCA cycle genes in four important Solanaceae vegetable crops (potato (Solanum tuberosum), tomato (Solanum lycopersicum), eggplant (Solanum melongena), and pepper (Capsicum annuum)) based on comparative genomics. The four Solanaceae crops had a total of 180 TCA cycle genes: 43 in potato, 44 in tomato, 40 in eggplant, and 53 in pepper. Phylogenetic analysis, collinearity analysis, and tissue expression patterns revealed the conservation of and differences in TCA cycle genes between the four Solanaceae crops and found that there were unique subgroup members in Solanaceae crops that were independent of Arabidopsis genes. The expression analysis of potato TCA cycle genes showed that (1) they were widely expressed in various tissues, and some transcripts like Soltu.DM.01G003320.1(SCoAL) and Soltu.DM.04G021520.1 (SDH) mainly accumulate in vegetative organs, and some transcripts such as Soltu.DM.12G005620.3 (SDH) and Soltu.DM.02G007400.4 (MDH) are preferentially expressed in reproductive organs; (2) several transcripts can be significantly induced by hormones, such as Soltu.DM.08G023870.2 (IDH) and Soltu.DM.06G029290.1 (SDH) under ABA treatment, and Soltu.DM.07G021850.2 (CSY) and Soltu.DM.09G026740.1 (MDH) under BAP treatment, and Soltu.DM.02G000940.1 (IDH) and Soltu.DM.01G031350.4 (MDH) under GA treatment; (3) Soltu.DM.11G024650.1 (SDH) can be upregulated by the three disease resistance inducers including Phytophthora infestans, acibenzolar-S-methyl (BTH), and DL-β-amino-n-butyric acid (BABA); and (4) the levels of Soltu.DM.01G045790.1 (MDH), Soltu.DM.01G028520.3 (CSY), and Soltu.DM.12G028700.1 (CSY) can be activated by both NaCl and mannitol. The subcellular localization results of three potato citrate synthases showed that Soltu.DM.01G028520.3 was localized in mitochondria, while Soltu.DM.12G028700.1 and Soltu.DM.07G021850.1 were localized in the cytoplasm. Conclusions This study provides a scientific foundation for the comprehensive understanding and functional studies of TCA cycle genes in Solanaceae crops and reveals their potential roles in potato growth, development, and stress response. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08109-9.
Collapse
Affiliation(s)
- Yongming Liu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, 610213, Chengdu, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural, Sciences of Zhengzhou University, 450000, Zhengzhou, China.,Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, China
| | - Jingtao Qu
- Maize Research Institute, Sichuan Agricultural University, 611130, Chengdu, China
| | - Ziwen Shi
- Maize Research Institute, Sichuan Agricultural University, 611130, Chengdu, China
| | - Peng Zhang
- Maize Research Institute, Sichuan Agricultural University, 611130, Chengdu, China
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, 610213, Chengdu, China. .,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural, Sciences of Zhengzhou University, 450000, Zhengzhou, China. .,Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, China.
| |
Collapse
|
28
|
Leitão I, Leclercq CC, Ribeiro DM, Renaut J, Almeida AM, Martins LL, Mourato MP. Stress response of lettuce (Lactuca sativa) to environmental contamination with selected pharmaceuticals: A proteomic study. J Proteomics 2021; 245:104291. [PMID: 34089899 DOI: 10.1016/j.jprot.2021.104291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/29/2021] [Accepted: 05/24/2021] [Indexed: 11/19/2022]
Abstract
Pharmaceutical compounds have been found in rivers and treated wastewaters. They often contaminate irrigation waters and consequently accumulate in edible vegetables, causing changes in plants metabolism. The main objective of this work is to understand how lettuce plants cope with the contamination from three selected pharmaceuticals using a label free proteomic analysis. A lettuce hydroponic culture, grown for 36 days, was exposed to metformin, acetaminophen and carbamazepine (at 1 mg/L), during 8 days, after which roots and leaves were sampled and analysed using a liquid chromatography-mass spectrometry proteomics-based approach. In roots, a total of 612 proteins showed differentially accumulation while in leaves 237 proteins were identified with significant differences over controls. Carbamazepine was the contaminant that most affected protein abundance in roots, while in leaves the highest number of differentially accumulated proteins was observed for acetaminophen. In roots under carbamazepine, stress related protein species such as catalase, superoxide dismutase and peroxidases presented higher abundance. Ascorbate peroxidase increased in roots under metformin. Cell respiration protein species were affected by the presence of the three pharmaceuticals suggesting possible dysregulation of the Krebs cycle. Acetaminophen caused the main differences in respiration pathways, with more emphasis in leaves. Lettuce plants revealed different tolerance levels when contaminants were compared, being more tolerant to metformin presence and less tolerant to carbamazepine. SIGNIFICANCE: The significant increase of emerging contaminants in ecosystems makes essential to understand how these compounds may affect the metabolism of different organisms. Our study contributes with a detailed approach of the main interactions that may occur in plant metabolism when subjected to the stress induced by three different pharmaceuticals (acetaminophen, carbamazepine and metformin).
Collapse
Affiliation(s)
- Inês Leitão
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal.
| | - Céline C Leclercq
- LIST - Luxembourg Institute of Science and Technology Green Tech Platform, Environmental Research and Innovation Department (ERIN), L-4422 Belvaux, Luxembourg
| | - David M Ribeiro
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Jenny Renaut
- LIST - Luxembourg Institute of Science and Technology Green Tech Platform, Environmental Research and Innovation Department (ERIN), L-4422 Belvaux, Luxembourg
| | - André M Almeida
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Luisa L Martins
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Miguel P Mourato
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| |
Collapse
|
29
|
Pascual J, Rahikainen M, Angeleri M, Alegre S, Gossens R, Shapiguzov A, Heinonen A, Trotta A, Durian G, Winter Z, Sinkkonen J, Kangasjärvi J, Whelan J, Kangasjärvi S. ACONITASE 3 is part of theANAC017 transcription factor-dependent mitochondrial dysfunction response. PLANT PHYSIOLOGY 2021; 186:1859-1877. [PMID: 34618107 PMCID: PMC8331168 DOI: 10.1093/plphys/kiab225] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/21/2021] [Indexed: 05/26/2023]
Abstract
Mitochondria are tightly embedded within metabolic and regulatory networks that optimize plant performance in response to environmental challenges. The best-known mitochondrial retrograde signaling pathway involves stress-induced activation of the transcription factor NAC DOMAIN CONTAINING PROTEIN 17 (ANAC017), which initiates protective responses to stress-induced mitochondrial dysfunction in Arabidopsis (Arabidopsis thaliana). Posttranslational control of the elicited responses, however, remains poorly understood. Previous studies linked protein phosphatase 2A subunit PP2A-B'γ, a key negative regulator of stress responses, with reversible phosphorylation of ACONITASE 3 (ACO3). Here we report on ACO3 and its phosphorylation at Ser91 as key components of stress regulation that are induced by mitochondrial dysfunction. Targeted mass spectrometry-based proteomics revealed that the abundance and phosphorylation of ACO3 increased under stress, which required signaling through ANAC017. Phosphomimetic mutation at ACO3-Ser91 and accumulation of ACO3S91D-YFP promoted the expression of genes related to mitochondrial dysfunction. Furthermore, ACO3 contributed to plant tolerance against ultraviolet B (UV-B) or antimycin A-induced mitochondrial dysfunction. These findings demonstrate that ACO3 is both a target and mediator of mitochondrial dysfunction signaling, and critical for achieving stress tolerance in Arabidopsis leaves.
Collapse
Affiliation(s)
- Jesús Pascual
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku FI-20014, Finland
| | - Moona Rahikainen
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku FI-20014, Finland
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki FI-00014, Finland
| | - Martina Angeleri
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku FI-20014, Finland
| | - Sara Alegre
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku FI-20014, Finland
| | - Richard Gossens
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki FI-00014, Finland
- Viikki Plant Science Center, University of Helsinki, Helsinki FI-00014, Finland
| | - Alexey Shapiguzov
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki FI-00014, Finland
- Viikki Plant Science Center, University of Helsinki, Helsinki FI-00014, Finland
- Institute of Plant Physiology, Russian Academy of Sciences, Moscow 127276, Russia
| | - Arttu Heinonen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku FI-20520, Finland
| | - Andrea Trotta
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku FI-20014, Finland
- Institute of Biosciences and Bioresources, National Research Council of Italy, Sesto Fiorentino 50019, Italy
| | - Guido Durian
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku FI-20014, Finland
| | - Zsófia Winter
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku FI-20014, Finland
| | - Jari Sinkkonen
- Department of Chemistry, Instrument Centre, University of Turku, Turku FI-20014, Finland
| | - Jaakko Kangasjärvi
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki FI-00014, Finland
- Viikki Plant Science Center, University of Helsinki, Helsinki FI-00014, Finland
| | - James Whelan
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora 3086, Australia
| | - Saijaliisa Kangasjärvi
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki FI-00014, Finland
- Viikki Plant Science Center, University of Helsinki, Helsinki FI-00014, Finland
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki FI-00014, Finland
| |
Collapse
|
30
|
Zhang Y, Giese J, Kerbler SM, Siemiatkowska B, Perez de Souza L, Alpers J, Medeiros DB, Hincha DK, Daloso DM, Stitt M, Finkemeier I, Fernie AR. Two mitochondrial phosphatases, PP2c63 and Sal2, are required for posttranslational regulation of the TCA cycle in Arabidopsis. MOLECULAR PLANT 2021; 14:1104-1118. [PMID: 33798747 DOI: 10.1016/j.molp.2021.03.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/26/2021] [Accepted: 03/29/2021] [Indexed: 05/22/2023]
Abstract
Protein phosphorylation is a well-established post-translational mechanism that regulates protein functions and metabolic pathways. It is known that several plant mitochondrial proteins are phosphorylated in a reversible manner. However, the identities of the protein kinases/phosphatases involved in this mechanism and their roles in the regulation of the tricarboxylic acid (TCA) cycle remain unclear. In this study, we isolated and characterized plants lacking two mitochondrially targeted phosphatases (Sal2 and PP2c63) along with pyruvate dehydrogenase kinase (PDK). Protein-protein interaction analysis, quantitative phosphoproteomics, and enzymatic analyses revealed that PDK specifically regulates pyruvate dehydrogenase complex (PDC), while PP2c63 nonspecifically regulates PDC. When recombinant PP2c63 and Sal2 proteins were added to mitochondria isolated from mutant plants, protein-protein interaction and enzymatic analyses showed that PP2c63 directly phosphorylates and modulates the activity of PDC, while Sal2 only indirectly affects TCA cycle enzymes. Characterization of steady-state metabolite levels and fluxes in the mutant lines further revealed that these phosphatases regulate flux through the TCA cycle, and that altered metabolism in the sal2 pp2c63 double mutant compromises plant growth. These results are discussed in the context of current models of the control of respiration in plants.
Collapse
Affiliation(s)
- Youjun Zhang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria.
| | - Jonas Giese
- Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 7, 48149 Muenster, Germany
| | - Sandra M Kerbler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Beata Siemiatkowska
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Leonardo Perez de Souza
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jessica Alpers
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - David Barbosa Medeiros
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Dirk K Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Danilo M Daloso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brasil
| | - Mark Stitt
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 7, 48149 Muenster, Germany.
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria.
| |
Collapse
|
31
|
Sasidharan R, Schippers JHM, Schmidt RR. Redox and low-oxygen stress: signal integration and interplay. PLANT PHYSIOLOGY 2021; 186:66-78. [PMID: 33793937 PMCID: PMC8154046 DOI: 10.1093/plphys/kiaa081] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/26/2020] [Indexed: 05/21/2023]
Abstract
Plants are aerobic organisms relying on oxygen to serve their energy needs. The amount of oxygen available to sustain plant growth can vary significantly due to environmental constraints or developmental programs. In particular, flooding stress, which negatively impacts crop productivity, is characterized by a decline in oxygen availability. Oxygen fluctuations result in an altered redox balance and the formation of reactive oxygen/nitrogen species (ROS/RNS) during the onset of hypoxia and upon re-oxygenation. In this update, we provide an overview of the current understanding of the impact of redox and ROS/RNS on low-oxygen signaling and adaptation. We first focus on the formation of ROS and RNS during low-oxygen conditions. Following this, we examine the impact of hypoxia on cellular and organellar redox systems. Finally, we describe how redox and ROS/RNS participate in signaling events during hypoxia through potential post-translational modifications (PTMs) of hypoxia-relevant proteins. The aim of this update is to define our current understanding of the field and to provide avenues for future research directions.
Collapse
Affiliation(s)
- Rashmi Sasidharan
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Jos H M Schippers
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland 06466, Germany
| | - Romy R Schmidt
- Faculty of Biology, Plant Biotechnology Group, Bielefeld University, Bielefeld 33615, Germany
- Author for communication:
| |
Collapse
|
32
|
Liang W, Chen Y, Li X, Guo F, Sun J, Zhang X, Xu B, Gao W. Label-Free Proteomic Analysis of Smoke-Drying and Shade-Drying Processes of Postharvest Rhubarb: A Comparative Study. FRONTIERS IN PLANT SCIENCE 2021; 12:663180. [PMID: 34140961 PMCID: PMC8205111 DOI: 10.3389/fpls.2021.663180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Postharvest processing plays a very important role in improving the quality of traditional Chinese medicine. According to previous studies, smoke-drying could significantly promote the accumulation of the bioactive components and pharmacological activities of rhubarb, but so far, the molecular mechanism has not been studied yet. In this research, to study the molecular mechanisms of postharvest processing for rhubarb during shade-drying and smoke-drying, label-free proteomic analyses were conducted. In total, 1,927 differentially abundant proteins (DAPs) were identified from rhubarb samples treated by different drying methods. These DAPs were mainly involved in response and defense, signal transduction, starch, carbohydrate and energy metabolism, and anthraquinone and phenolic acid biosynthesis. Smoke-drying significantly enhanced the expression of proteins involved in these metabolic pathways. Accordingly, the molecular mechanism of the accumulation of effective ingredients of rhubarb was clarified, which provided a novel insight into the biosynthesis of active ingredients that occur during the rhubarb dry process.
Collapse
Affiliation(s)
- Wei Liang
- Gansu Provincial Key Lab of Arid Land Crop Science, College of Agronomy, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuan Chen
- Gansu Provincial Key Lab of Arid Land Crop Science, College of Agronomy, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xia Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Fengxia Guo
- Gansu Provincial Key Lab of Arid Land Crop Science, College of Agronomy, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiachen Sun
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Xuemin Zhang
- Key Laboratory of Modern Chinese Medicine Resources Research Enterprises, Tianjin, China
| | - Bo Xu
- Key Laboratory of Modern Chinese Medicine Resources Research Enterprises, Tianjin, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
33
|
Protein interaction patterns in Arabidopsis thaliana leaf mitochondria change in dependence to light. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148443. [PMID: 33965424 DOI: 10.1016/j.bbabio.2021.148443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 02/08/2023]
Abstract
Mitochondrial biology is underpinned by the presence and activity of large protein assemblies participating in the organelle-located steps of respiration, TCA-cycle, glycine oxidation, and oxidative phosphorylation. While the enzymatic roles of these complexes are undisputed, little is known about the interactions of the subunits beyond their presence in these protein complexes and their functions in regulating mitochondrial metabolism. By applying one of the most important regulatory cues for plant metabolism, the presence or absence of light, we here assess changes in the composition and molecular mass of protein assemblies involved in NADH-production in the mitochondrial matrix and in oxidative phosphorylation by employing a differential complexome profiling strategy. Covering a mass up to 25 MDa, we demonstrate dynamic associations of matrix enzymes and of components involved in oxidative phosphorylation. The data presented here form the basis for future studies aiming to advance our understanding of the role of protein:protein interactions in regulating plant mitochondrial functions.
Collapse
|
34
|
Przybyla-Toscano J, Boussardon C, Law SR, Rouhier N, Keech O. Gene atlas of iron-containing proteins in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:258-274. [PMID: 33423341 DOI: 10.1111/tpj.15154] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 12/17/2020] [Accepted: 01/04/2021] [Indexed: 05/27/2023]
Abstract
Iron (Fe) is an essential element for the development and physiology of plants, owing to its presence in numerous proteins involved in central biological processes. Here, we established an exhaustive, manually curated inventory of genes encoding Fe-containing proteins in Arabidopsis thaliana, and summarized their subcellular localization, spatiotemporal expression and evolutionary age. We have currently identified 1068 genes encoding potential Fe-containing proteins, including 204 iron-sulfur (Fe-S) proteins, 446 haem proteins and 330 non-Fe-S/non-haem Fe proteins (updates of this atlas are available at https://conf.arabidopsis.org/display/COM/Atlas+of+Fe+containing+proteins). A fourth class, containing 88 genes for which iron binding is uncertain, is indexed as 'unclear'. The proteins are distributed in diverse subcellular compartments with strong differences per category. Interestingly, analysis of the gene age index showed that most genes were acquired early in plant evolutionary history and have progressively gained regulatory elements, to support the complex organ-specific and development-specific functions necessitated by the emergence of terrestrial plants. With this gene atlas, we provide a valuable and updateable tool for the research community that supports the characterization of the molecular actors and mechanisms important for Fe metabolism in plants. This will also help in selecting relevant targets for breeding or biotechnological approaches aiming at Fe biofortification in crops.
Collapse
Affiliation(s)
| | - Clément Boussardon
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-90187, Sweden
| | - Simon R Law
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-90187, Sweden
| | | | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-90187, Sweden
| |
Collapse
|
35
|
Przybyla-Toscano J, Christ L, Keech O, Rouhier N. Iron-sulfur proteins in plant mitochondria: roles and maturation. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2014-2044. [PMID: 33301571 DOI: 10.1093/jxb/eraa578] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/05/2020] [Indexed: 05/22/2023]
Abstract
Iron-sulfur (Fe-S) clusters are prosthetic groups ensuring electron transfer reactions, activating substrates for catalytic reactions, providing sulfur atoms for the biosynthesis of vitamins or other cofactors, or having protein-stabilizing effects. Hence, metalloproteins containing these cofactors are essential for numerous and diverse metabolic pathways and cellular processes occurring in the cytoplasm. Mitochondria are organelles where the Fe-S cluster demand is high, notably because the activity of the respiratory chain complexes I, II, and III relies on the correct assembly and functioning of Fe-S proteins. Several other proteins or complexes present in the matrix require Fe-S clusters as well, or depend either on Fe-S proteins such as ferredoxins or on cofactors such as lipoic acid or biotin whose synthesis relies on Fe-S proteins. In this review, we have listed and discussed the Fe-S-dependent enzymes or pathways in plant mitochondria including some potentially novel Fe-S proteins identified based on in silico analysis or on recent evidence obtained in non-plant organisms. We also provide information about recent developments concerning the molecular mechanisms involved in Fe-S cluster synthesis and trafficking steps of these cofactors from maturation factors to client apoproteins.
Collapse
Affiliation(s)
- Jonathan Przybyla-Toscano
- Université de Lorraine, INRAE, IAM, Nancy, France
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Loïck Christ
- Université de Lorraine, INRAE, IAM, Nancy, France
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | | |
Collapse
|
36
|
Senoura T, Kobayashi T, An G, Nakanishi H, Nishizawa NK. Defects in the rice aconitase-encoding OsACO1 gene alter iron homeostasis. PLANT MOLECULAR BIOLOGY 2020; 104:629-645. [PMID: 32909184 DOI: 10.1007/s11103-020-01065-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/30/2020] [Indexed: 05/16/2023]
Abstract
Rice aconitase gene OsACO1 is involved in the iron deficiency-signaling pathway for the expression of iron deficiency-inducible genes, either thorough enzyme activity or possible specific RNA binding for post-transcriptional regulation. Iron (Fe) is an essential element for virtually all living organisms. When plants are deficient in Fe, Fe acquisition systems are activated to maintain Fe homeostasis, and this regulation is mainly executed at the gene transcription level. Many molecules responsible for Fe uptake, translocation, and storage in plants have been identified and characterized. However, how plants sense Fe status within cells and then induce a transcriptional response is still unclear. In the present study, we found that knockdown of the OsACO1 gene, which encodes an aconitase in rice, leads to the down-regulation of selected Fe deficiency-inducible genes involved in Fe uptake and translocation in roots, and a decrease in Fe concentration in leaves, even when grown under Fe-sufficient conditions. OsACO1 knockdown plants showed a delayed transcriptional response to Fe deficiency compared to wild-type plants. In contrast, overexpression of OsACO1 resulted in the opposite effects. These results suggest that OsACO1 is situated upstream of the Fe deficiency-signaling pathway. Furthermore, we found that the OsACO1 protein potentially has RNA-binding activity. In vitro screening of RNA interactions with OsACO1 revealed that RNA potentially forms a unique stem-loop structure that interacts with OsACO1 via a conserved GGUGG motif within the loop structure. These results suggest that OsACO1 regulate Fe deficiency response either thorough enzyme activity catalyzing isomerization of citrate, or specific RNA binding for post-transcriptional regulation.
Collapse
Affiliation(s)
- Takeshi Senoura
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Takanori Kobayashi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan.
| | - Gynheung An
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Hiromi Nakanishi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Naoko K Nishizawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan.
| |
Collapse
|
37
|
Leone M, Zavallo D, Venturuzzi A, Asurmendi S. RdDM pathway components differentially modulate Tobamovirus symptom development. PLANT MOLECULAR BIOLOGY 2020; 104:467-481. [PMID: 32813230 DOI: 10.1007/s11103-020-01051-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
The crop yield losses induced by phytoviruses are mainly associated with the symptoms of the disease. DNA modifications as methylation can modulate the information coded by the sequence, process named epigenetics. Viral infection can change the expression patterns of different genes linked to defenses and symptoms. This work represents the initial step to expose the role of epigenetic process, in the production of symptoms associated with plants-virus interactions. Small RNAs (sRNAs) are important molecules for gene regulation in plants and play an essential role in plant-pathogen interactions. Researchers have evaluated the relationship between viral infections as well as the endogenous accumulation of sRNAs and the transcriptional changes associated with the production of symptoms, but little is known about a possible direct role of epigenetics, mediated by 24-nt sRNAs, in the induction of these symptoms. Using different RNA directed DNA methylation (RdDM) pathway mutants and a triple demethylase mutant; here we demonstrate that the disruption of RdDM pathway during viral infection produce alterations in the plant transcriptome and in consequence changes in plant symptoms. This study represents the initial step in exposing that DNA methylation directed by endogenous sRNAs has an important role, uncoupled to defense, in the production of symptoms associated with plant-virus interactions.
Collapse
Affiliation(s)
- Melisa Leone
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De Los Reseros y N. Repetto S/N, Hurlingham, B1686IGC, Buenos Aires, Argentina
- Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Buenos Aires, Argentina
| | - Diego Zavallo
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De Los Reseros y N. Repetto S/N, Hurlingham, B1686IGC, Buenos Aires, Argentina
| | - Andrea Venturuzzi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De Los Reseros y N. Repetto S/N, Hurlingham, B1686IGC, Buenos Aires, Argentina
| | - Sebastián Asurmendi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De Los Reseros y N. Repetto S/N, Hurlingham, B1686IGC, Buenos Aires, Argentina.
| |
Collapse
|
38
|
Grabsztunowicz M, Rokka A, Farooq I, Aro EM, Mulo P. Gel-based proteomic map of Arabidopsis thaliana root plastids and mitochondria. BMC PLANT BIOLOGY 2020; 20:413. [PMID: 32887556 PMCID: PMC7650296 DOI: 10.1186/s12870-020-02635-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Non-photosynthetic plastids of plants are known to be involved in a range of metabolic and biosynthetic reactions, even if they have been difficult to study due to their small size and lack of color. The morphology of root plastids is heterogeneous and also the plastid size, density and subcellular distribution varies depending on the cell type and developmental stage, and therefore the functional features have remained obscure. Although the root plastid proteome is likely to reveal specific functional features, Arabidopsis thaliana root plastid proteome has not been studied to date. RESULTS In the present study, we separated Arabidopsis root protein fraction enriched with plastids and mitochondria by 2D-PAGE and identified 84 plastid-targeted and 77 mitochondrion-targeted proteins using LC-MS/MS. The most prevalent root plastid protein categories represented amino acid biosynthesis, carbohydrate metabolism and lipid biosynthesis pathways, while the enzymes involved in starch and sucrose metabolism were not detected. Mitochondrion-targeted proteins were classified mainly into the energetics category. CONCLUSIONS This is the first study presenting gel-based map of Arabidopsis thaliana root plastid and mitochondrial proteome. Our findings suggest that Arabidopsis root plastids have broad biosynthetic capacity, and that they do not play a major role in a long-term storage of carbohydrates. The proteomic map provides a tool for further studies to compare changes in the proteome, e.g. in response to environmental cues, and emphasizes the role of root plastids in nitrogen and sulfur metabolism as well as in amino acid and fatty acid biosynthesis. The results enable taking a first step towards an integrated view of root plastid/mitochondrial proteome and metabolic functions in Arabidopsis thaliana roots.
Collapse
Affiliation(s)
| | - Anne Rokka
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Irum Farooq
- Molecular Plant Biology, University of Turku, 20520, Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, University of Turku, 20520, Turku, Finland
| | - Paula Mulo
- Molecular Plant Biology, University of Turku, 20520, Turku, Finland.
| |
Collapse
|
39
|
Aconitase: To Be or not to Be Inside Plant Glyoxysomes, That Is the Question. BIOLOGY 2020; 9:biology9070162. [PMID: 32664680 PMCID: PMC7407140 DOI: 10.3390/biology9070162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/26/2022]
Abstract
After the discovery in 1967 of plant glyoxysomes, aconitase, one the five enzymes involved in the glyoxylate cycle, was thought to be present in the organelles, and although this was found not to be the case around 25 years ago, it is still suggested in some textbooks and recent scientific articles. Genetic research (including the study of mutants and transcriptomic analysis) is becoming increasingly important in plant biology, so metabolic pathways must be presented correctly to avoid misinterpretation and the dissemination of bad science. The focus of our study is therefore aconitase, from its first localization inside the glyoxysomes to its relocation. We also examine data concerning the role of the enzyme malate dehydrogenase in the glyoxylate cycle and data of the expression of aconitase genes in Arabidopsis and other selected higher plants. We then propose a new model concerning the interaction between glyoxysomes, mitochondria and cytosol in cotyledons or endosperm during the germination of oil-rich seeds.
Collapse
|
40
|
Poór P. Effects of Salicylic Acid on the Metabolism of Mitochondrial Reactive Oxygen Species in Plants. Biomolecules 2020; 10:E341. [PMID: 32098073 PMCID: PMC7072379 DOI: 10.3390/biom10020341] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 01/16/2023] Open
Abstract
Different abiotic and biotic stresses lead to the production and accumulation of reactive oxygen species (ROS) in various cell organelles such as in mitochondria, resulting in oxidative stress, inducing defense responses or programmed cell death (PCD) in plants. In response to oxidative stress, cells activate various cytoprotective responses, enhancing the antioxidant system, increasing the activity of alternative oxidase and degrading the oxidized proteins. Oxidative stress responses are orchestrated by several phytohormones such as salicylic acid (SA). The biomolecule SA is a key regulator in mitochondria-mediated defense signaling and PCD, but the mode of its action is not known in full detail. In this review, the current knowledge on the multifaceted role of SA in mitochondrial ROS metabolism is summarized to gain a better understanding of SA-regulated processes at the subcellular level in plant defense responses.
Collapse
Affiliation(s)
- Péter Poór
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| |
Collapse
|
41
|
Foyer CH, Baker A, Wright M, Sparkes IA, Mhamdi A, Schippers JHM, Van Breusegem F. On the move: redox-dependent protein relocation in plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:620-631. [PMID: 31421053 DOI: 10.1093/jxb/erz330] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/01/2019] [Indexed: 05/04/2023]
Abstract
Compartmentation of proteins and processes is a defining feature of eukaryotic cells. The growth and development of organisms is critically dependent on the accurate sorting of proteins within cells. The mechanisms by which cytosol-synthesized proteins are delivered to the membranes and membrane compartments have been extensively characterized. However, the protein complement of any given compartment is not precisely fixed and some proteins can move between compartments in response to metabolic or environmental triggers. The mechanisms and processes that mediate such relocation events are largely uncharacterized. Many proteins can in addition perform multiple functions, catalysing alternative reactions or performing structural, non-enzymatic functions. These alternative functions can be equally important functions in each cellular compartment. Such proteins are generally not dual-targeted proteins in the classic sense of having targeting sequences that direct de novo synthesized proteins to specific cellular locations. We propose that redox post-translational modifications (PTMs) can control the compartmentation of many such proteins, including antioxidant and/or redox-associated enzymes.
Collapse
Affiliation(s)
- Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, UK
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Alison Baker
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Centre for Plant Sciences, University of Leeds, Leeds, UK
| | - Megan Wright
- The Astbury Centre for Structural Biology, University of Leeds, Leeds, UK
- School of Chemistry, University of Leeds, Leeds, UK
| | - Imogen A Sparkes
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Amna Mhamdi
- VIB-UGent Center for Plant Systems Biology, Ghent University, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Jos H M Schippers
- Institute of Biology I, RWTH Aachen University, Aachen, Germany
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Frank Van Breusegem
- VIB-UGent Center for Plant Systems Biology, Ghent University, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| |
Collapse
|
42
|
Gu J, Xia Z, Luo Y, Jiang X, Qian B, Xie H, Zhu JK, Xiong L, Zhu J, Wang ZY. Spliceosomal protein U1A is involved in alternative splicing and salt stress tolerance in Arabidopsis thaliana. Nucleic Acids Res 2019; 46:1777-1792. [PMID: 29228330 PMCID: PMC5829640 DOI: 10.1093/nar/gkx1229] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/30/2017] [Indexed: 12/14/2022] Open
Abstract
Soil salinity is a significant threat to sustainable agricultural production worldwide. Plants must adjust their developmental and physiological processes to cope with salt stress. Although the capacity for adaptation ultimately depends on the genome, the exceptional versatility in gene regulation provided by the spliceosome-mediated alternative splicing (AS) is essential in these adaptive processes. However, the functions of the spliceosome in plant stress responses are poorly understood. Here, we report the in-depth characterization of a U1 spliceosomal protein, AtU1A, in controlling AS of pre-mRNAs under salt stress and salt stress tolerance in Arabidopsis thaliana. The atu1a mutant was hypersensitive to salt stress and accumulated more reactive oxygen species (ROS) than the wild-type under salt stress. RNA-seq analysis revealed that AtU1A regulates AS of many genes, presumably through modulating recognition of 5′ splice sites. We showed that AtU1A is associated with the pre-mRNA of the ROS detoxification-related gene ACO1 and is necessary for the regulation of ACO1 AS. ACO1 is important for salt tolerance because ectopic expression of ACO1 in the atu1a mutant can partially rescue its salt hypersensitive phenotype. Our findings highlight the critical role of AtU1A as a regulator of pre-mRNA processing and salt tolerance in plants.
Collapse
Affiliation(s)
- Jinbao Gu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China
| | - Zhiqiang Xia
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Yuehua Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China
| | - Xingyu Jiang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China
| | - Bilian Qian
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - He Xie
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA.,Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Liming Xiong
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences & Engineering Division, Thuwal 23955-6900, Saudi Arabia
| | - Jianhua Zhu
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Zhen-Yu Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
43
|
Chasapis CT, Makridakis M, Damdimopoulos AE, Zoidakis J, Lygirou V, Mavroidis M, Vlahou A, Miranda-Vizuete A, Spyrou G, Vlamis-Gardikas A. Implications of the mitochondrial interactome of mammalian thioredoxin 2 for normal cellular function and disease. Free Radic Biol Med 2019; 137:59-73. [PMID: 31018154 DOI: 10.1016/j.freeradbiomed.2019.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/15/2019] [Indexed: 12/23/2022]
Abstract
Multiple thioredoxin isoforms exist in all living cells. To explore the possible functions of mammalian mitochondrial thioredoxin 2 (Trx2), an interactome of mouse Trx2 was initially created using (i) a monothiol mouse Trx2 species for capturing protein partners from different organs and (ii) yeast two hybrid screens on human liver and rat brain cDNA libraries. The resulting interactome consisted of 195 proteins (Trx2 included) plus the mitochondrial 16S RNA. 48 of these proteins were classified as mitochondrial (MitoCarta2.0 human inventory). In a second step, the mouse interactome was combined with the current four-membered mitochondrial sub-network of human Trx2 (BioGRID) to give a 53-membered human Trx2 mitochondrial interactome (52 interactor proteins plus the mitochondrial 16S RNA). Although thioredoxins are thiol-employing disulfide oxidoreductases, approximately half of the detected interactions were not due to covalent disulfide bonds. This finding reinstates the extended role of thioredoxins as moderators of protein function by specific non-covalent, protein-protein interactions. Analysis of the mitochondrial interactome suggested that human Trx2 was involved potentially in mitochondrial integrity, formation of iron sulfur clusters, detoxification of aldehydes, mitoribosome assembly and protein synthesis, protein folding, ADP ribosylation, amino acid and lipid metabolism, glycolysis, the TCA cycle and the electron transport chain. The oxidoreductase functions of Trx2 were verified by its detected interactions with mitochondrial peroxiredoxins and methionine sulfoxide reductase. Parkinson's disease, triosephosphate isomerase deficiency, combined oxidative phosphorylation deficiency, and lactate dehydrogenase b deficiency are some of the diseases where the proposed mitochondrial network of Trx2 may be implicated.
Collapse
Affiliation(s)
- Christos T Chasapis
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation for Research and Technology, Hellas (FORTH), Platani 26504, Greece
| | | | - Anastassios E Damdimopoulos
- Department of Biosciences and Nutrition, Center for Innovative Medicine (CIMED), Karolinska Institutet, Huddinge, Sweden
| | - Jerome Zoidakis
- Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Vasiliki Lygirou
- Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Manolis Mavroidis
- Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Antonia Vlahou
- Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Antonio Miranda-Vizuete
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Giannis Spyrou
- Department of Clinical and Experimental Medicine, Division of Clinical Chemistry, Linköping University, S-581 85 Linköping, Sweden
| | | |
Collapse
|
44
|
Das P, Manna I, Sil P, Bandyopadhyay M, Biswas AK. Exogenous silicon alters organic acid production and enzymatic activity of TCA cycle in two NaCl stressed indica rice cultivars. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 136:76-91. [PMID: 30658287 DOI: 10.1016/j.plaphy.2018.12.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
The activities of TCA cycle enzymes viz., pyruvate dehydrogenase, citrate synthase, isocitrate dehydrogenase, succinate dehydrogenase and malate dehydrogenase as well as levels of different organic acids viz., pyruvic acid, citric acid, succinic acid and malic acid were studied in two rice cultivars viz. cv. Nonabokra and cv. MTU 1010 differing in salt tolerance grown under 25, 50 and 100 mM NaCl salinity levels. A contrasting response to salt stress on enzyme activities of TCA cycle and accumulation of organic acid was observed between two cultivars during twenty-one days period of study. Salinity caused enhanced organic acid production and increase in all five enzyme activities in cv. Nonabokra whereas in cv. MTU 1010 decrease in both organic acid production and enzymes activities were noted. Joint application of exogenous silicon along with NaCl, altered the organic acids levels and activities of enzymes in both cultivars of rice seedlings conferring tolerance against salt induced stress. Rice cv. MTU 1010 showed better response to exogenous silicon on parameters tested compared to cv. Nonabokra.
Collapse
Affiliation(s)
- Prabal Das
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Indrani Manna
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Palin Sil
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Maumita Bandyopadhyay
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| | - Asok K Biswas
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
45
|
Dumont S, Rivoal J. Consequences of Oxidative Stress on Plant Glycolytic and Respiratory Metabolism. FRONTIERS IN PLANT SCIENCE 2019; 10:166. [PMID: 30833954 PMCID: PMC6387960 DOI: 10.3389/fpls.2019.00166] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/31/2019] [Indexed: 05/03/2023]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are present at low and controlled levels under normal conditions. These reactive molecules can increase to high levels under various biotic and abiotic conditions, resulting in perturbation of the cellular redox state that can ultimately lead to oxidative or nitrosative stress. In this review, we analyze the various effects that result from alterations of redox homeostasis on plant glycolytic pathway and tricarboxylic acid (TCA) cycle. Most documented modifications caused by ROS or RNS are due to the presence of redox-sensitive cysteine thiol groups in proteins. Redox modifications include Cys oxidation, disulfide bond formation, S-glutathionylation, S-nitrosylation, and S-sulfhydration. A growing number of proteomic surveys and biochemical studies document the occurrence of ROS- or RNS-mediated modification in enzymes of glycolysis and the TCA cycle. In a few cases, these modifications have been shown to affect enzyme activity, suggesting an operational regulatory mechanism in vivo. Further changes induced by oxidative stress conditions include the proposed redox-dependent modifications in the subcellular distribution of a putative redox sensor, NAD-glyceraldehyde-3P dehydrogenase and the micro-compartmentation of cytosolic glycolytic enzymes. Data from the literature indicate that oxidative stress may induce complex changes in metabolite pools in central carbon metabolism. This information is discussed in the context of our understanding of plant metabolic response to oxidative stress.
Collapse
|
46
|
Roomi S, Masi A, Conselvan GB, Trevisan S, Quaggiotti S, Pivato M, Arrigoni G, Yasmin T, Carletti P. Protein Profiling of Arabidopsis Roots Treated With Humic Substances: Insights Into the Metabolic and Interactome Networks. FRONTIERS IN PLANT SCIENCE 2018; 9:1812. [PMID: 30619394 PMCID: PMC6299182 DOI: 10.3389/fpls.2018.01812] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/21/2018] [Indexed: 05/06/2023]
Abstract
Background and Aim: Humic substances (HSs) influence the chemical and physical properties of the soil, and are also known to affect plant physiology and nutrient uptake. This study aimed to elucidate plant metabolic pathways and physiological processes influenced by HS activity. Methods: Arabidopsis roots were treated with HS for 8 h. Quantitative mass spectrometry-based proteomics analysis of root proteins was performed using the iTRAQ (Isobaric Tag for Relative and Absolute Quantification) technique. Out of 902 protein families identified and quantified for HS treated vs. untreated roots, 92 proteins had different relative content. Bioinformatic tools such as STRING, KEGG, IIS and Cytoscape were used to interpret the biological function, pathway analysis and visualization of network amongst the identified proteins. Results: From this analysis it was possible to evaluate that all of the identified proteins were functionally classified into several categories, mainly redox homeostasis, response to inorganic substances, energy metabolism, protein synthesis, cell trafficking, and division. Conclusion: In the present study an overview of the metabolic pathways most modified by HS biological activity is provided. Activation of enzymes of the glycolytic pathway and up regulation of ribosomal protein indicated a stimulation in energy metabolism and protein synthesis. Regulation of the enzymes involved in redox homeostasis suggest a pivotal role of reactive oxygen species in the signaling and modulation of HS-induced responses.
Collapse
Affiliation(s)
- Sohaib Roomi
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Padua, Italy
| | | | - Sara Trevisan
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Padua, Italy
| | - Silvia Quaggiotti
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Padua, Italy
| | - Micaela Pivato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Padua, Italy
| | - Giorgio Arrigoni
- Proteomics Center, University of Padua and Azienda Ospedaliera di Padova, Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Tayyaba Yasmin
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Paolo Carletti
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Padua, Italy
| |
Collapse
|
47
|
Yuenyong W, Chinpongpanich A, Comai L, Chadchawan S, Buaboocha T. Downstream components of the calmodulin signaling pathway in the rice salt stress response revealed by transcriptome profiling and target identification. BMC PLANT BIOLOGY 2018; 18:335. [PMID: 30518322 PMCID: PMC6282272 DOI: 10.1186/s12870-018-1538-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/20/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND Calmodulin (CaM) is an important calcium sensor protein that transduces Ca2+ signals in plant stress signaling pathways. A previous study has revealed that transgenic rice over-expressing the calmodulin gene OsCam1-1 (LOC_Os03g20370) is more tolerant to salt stress than wild type. To elucidate the role of OsCam1-1 in the salt stress response mechanism, downstream components of the OsCam1-1-mediated response were identified and investigated by transcriptome profiling and target identification. RESULTS Transcriptome profiling of transgenic 'Khao Dawk Mali 105' rice over-expressing OsCam1-1 and wild type rice showed that overexpression of OsCam1-1 widely affected the expression of genes involved in several cellular processes under salt stress, including signaling, hormone-mediated regulation, transcription, lipid metabolism, carbohydrate metabolism, secondary metabolism, photosynthesis, glycolysis, tricarboxylic acid (TCA) cycle and glyoxylate cycle. Under salt stress, the photosynthesis rate in the transgenic rice was slightly lower than in wild type, while sucrose and starch contents were higher, suggesting that energy and carbon metabolism were affected by OsCam1-1 overexpression. Additionally, four known and six novel CaM-interacting proteins were identified by cDNA expression library screening with the recombinant OsCaM1. GO terms enriched in their associated proteins that matched those of the differentially expressed genes affected by OsCam1-1 overexpression revealed various downstream cellular processes that could potentially be regulated by OsCaM1 through their actions. CONCLUSIONS The diverse cellular processes affected by OsCam1-1 overexpression and possessed by the identified CaM1-interacting proteins corroborate the notion that CaM signal transduction pathways compose a complex network of downstream components involved in several cellular processes. These findings suggest that under salt stress, CaM activity elevates metabolic enzymes involved in central energy pathways, which promote or at least maintain the production of energy under the limitation of photosynthesis.
Collapse
Affiliation(s)
- Worawat Yuenyong
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Aumnart Chinpongpanich
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA 795616 USA
| | - Supachitra Chadchawan
- Center of Excellent in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Teerapong Buaboocha
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellent in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
48
|
Ampawong S, Isarangkul D, Reamtong O, Aramwit P. Adaptive effect of sericin on hepatic mitochondrial conformation through its regulation of apoptosis, autophagy and energy maintenance: a proteomics approach. Sci Rep 2018; 8:14943. [PMID: 30297713 PMCID: PMC6175853 DOI: 10.1038/s41598-018-33372-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/27/2018] [Indexed: 12/22/2022] Open
Abstract
We recently demonstrated that in addition to its protective effect on pancreatic and adrenal biosynthesis, antioxidant properties of sericin decrease blood cholesterol levels and improve the liver mitochondrial architecture. However, little is known about the detailed mechanisms underlying these effects. Using proteomics and electron microscopy, we identified mitochondrial proteins that play important roles in the preservation of the mitochondrial ultrastructure and cholesterol-lowering properties of sericin. Our results showed that sericin maintains the mitochondrial architecture during conditions of high blood cholesterol by regulating apoptotic (NADH-ubiquinone oxidoreductase 75 kDa subunit) and autophagic (mitochondrial elongation factor Tu and prohibitin-2) proteins as well as energy maintenance proteins [haloacid dehalogenase-like hydrolase domain-containing protein 3, succinate dehydrogenase (ubiquinone) flavoprotein subunit, ATP synthase-α subunit precursor, enoyl-CoA hydratase domain-containing protein 3 and electron transfer flavoprotein subunit-α]. Sericin also exerts anti-oxidative properties via aconitate hydratase and Chain A, crystal structure of rat carnitine palmitoyltrasferase 2 proteins. Together, these activities may reduce hepatocytic triglyceride deposition, thereby decreasing steatosis, as demonstrated by the modulatory effects on ornithine aminotransferase, mitochondrial aspartate aminotransferase, acyl-CoA synthase, hydroxyacyl-CoA dehydrogenase and D-beta-hydroxybutyrate dehydrogenase. Sericin activity further balanced nitrogenous waste detoxification, characterised by carbamoyl-phosphate synthase (ammonia), aldehyde dehydrogenase and uricase, or folate biosynthesis via sarcosine dehydrogenase and dimethyl glycine dehydrogenase. These results suggest that sericin maintains the hepatic mitochondrial architecture through apoptotic, autophagic, energy maintenance and anti-oxidative mitochondrial proteins for alleviating hepatic steatosis and promoting liver function under conditions of hypercholesterolaemia.
Collapse
Affiliation(s)
- Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Duangnate Isarangkul
- Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetic, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Pornanong Aramwit
- Bioactive Resources for Innovative Clinical Applications Research Unit and Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, PhayaThai Road, Phatumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
49
|
Zhang C, Meng J. Identification of differentially expressed proteins in Ostrinia furnacalis adults after exposure to ultraviolet A. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:25071-25079. [PMID: 29936613 DOI: 10.1007/s11356-018-2580-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
Ultraviolet A (UVA), the major component of solar UV irradiation, is an important environmental factor inducing damage to insects including cell death, photoreceptor damage, and oxidative stress. In order to improve understanding of the adaptation mechanisms of insect after UVA exposure, a comparative proteomic analysis was carried out to reveal differential protein expression in Ostrinia furnacalis. Three-day-old adults were treated with UVA for 1 h. Total proteins of control and UVA-treated insects were examined using two-dimensional electrophoresis (2-DE). 2-DE analysis demonstrated that 19 proteins were increased and 18 proteins were decreased significantly in O. furnacalis after UVA exposure, respectively. Thirty differentially expressed proteins were successfully identified by mass spectrometry. The identified proteins were involved in diverse biological processes, such as signal transduction, transport processing, cellular stress, metabolisms, and cytoskeleton organization. Our results reveal that the response patterns of O. furnacalis to UVA irradiation are complex and provide novel insights into the adaptation response to UVA irradiation stress.
Collapse
Affiliation(s)
- Changyu Zhang
- Guizhou Key Laboratory for Plant Pest Management of Mountain Region, College of Agriculture, Guizhou University, Guiyang, China.
| | - Jianyu Meng
- Guizhou Tobacco Science Research Institute, Guiyang, China
| |
Collapse
|
50
|
Gómez-Arroyo S, Barba-García A, Arenas-Huertero F, Cortés-Eslava J, de la Mora MG, García-Martínez R. Indicators of environmental contamination by heavy metals in leaves of Taraxacum officinale in two zones of the metropolitan area of Mexico City. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:4739-4749. [PMID: 29197063 DOI: 10.1007/s11356-017-0809-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/20/2017] [Indexed: 06/07/2023]
Abstract
The present study was designed to detect the effect of heavy metals in two zones of the Metropolitan Area of Mexico City (MAMC), the Centro de Ciencias de la Atmósfera (CCA), and the Altzomoni station in the Iztaccíhuatl-Popocatépetl National Park. Taraxacum officinale was selected as the indicator organism of responses to atmospheric contamination by heavy metals. Determinations of heavy metals were performed, and total mRNA was extracted to quantify the expression of microRNA398 (miR398), superoxide dismutase 2 (CSD2), and the amounts of free radicals using the bromide of 3-(4,5-dimethylthiazole-2-ilo)-2,5-diphenyltetrazole (MTT) salts reduction assay. Results from the Altzomoni station showed high concentrations of five heavy metals, especially Aluminum, while three heavy metals were identified in the CCA-UNAM zone, most importantly, Vanadium, both in the dry season; miR398 expression presented subtle changes but was greater in the leaves from the stations with higher concentrations of heavy metals. Observations included a significant expression of CSD2, mainly in the dry season in both study zones, where levels were significant with respect to controls (p < 0.05). Reduced MTT was also higher in the dry season than in the rainy season (p < 0.05). In conclusion, the increase in heavy metals on the leaves of Taraxacum officinale induces increased expression of the CSD2 gene and reduced MTT; thus, they can be used as indicators for biomonitoring heavy metal concentrations.
Collapse
Affiliation(s)
- Sandra Gómez-Arroyo
- Laboratorio de Genotoxicología Ambiental, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Arisbel Barba-García
- Laboratorio de Genotoxicología Ambiental, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Francisco Arenas-Huertero
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Josefina Cortés-Eslava
- Laboratorio de Genotoxicología Ambiental, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Michel Grutter de la Mora
- Laboratorio de Espectroscopía y Percepción Remota, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Rocío García-Martínez
- Laboratorio de Aerosoles Atmosféricos, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| |
Collapse
|