1
|
Edwards G, Riordan SM, Buchholz C, Mardelli M, Euritt CP, Perez-Magnelli R, Rafiq A, Engelmeyer A, Koulen P. Stratification of the Extent of Visual Impairment Identifies Sex-Specific Degenerative Changes in Retinal Structure and Function during Aging. J Integr Neurosci 2025; 24:25805. [PMID: 40152567 PMCID: PMC12091267 DOI: 10.31083/jin25805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Initial manifestations of neurodegenerative ocular conditions, including age-related macular degeneration (AMD) and glaucoma, often remain undetected in the early stages and can begin after the age of 50 years with the likelihood gradually increasing each year thereafter. This study aimed to explore variances in visual and retinal function and anatomy among C57BL/6J mice, aiming to pinpoint differences between biological age and sex factors that potentially lead to the onset of vision impairment. METHODS A longitudinal study evaluated visual acuity (VA) and contrast sensitivity (CS) using optomotor reflex (OMR), and retinal function, encompassing scotopic and photopic measurements, was recorded by electroretinogram (ERG) at 12 months of age. Tissue was subsequently harvested for histological analysis, complementing the in vivo findings. Disparities in visual function were observed between individual male and female mice, necessitating categorization of visual impairment levels to investigate further sex-specific differences in the study's aging population. Comparisons between sex and the degree of visual impairment were conducted using ANOVA followed by Tukey's or Bonferroni's post-hoc corrections and unpaired t-tests. Pearson correlation analysis determined the association between biological factors. RESULTS Sex-related disparities were found in the visual function of male (n = 13) and female (n = 18) mice aged 5-12 months. Eyes were categorized by vision impairment: normal vision, or low, moderate, or severe vision loss at the end of the study. Male and female mice differed in mean contrast sensitivity, indicating less sensitivity to fine detail and moving stimuli in female mice (11-12 months old, p < 0.001). Spectral-domain optical coherence tomography (SD-OCT) revealed a thinner retinal outer nuclear layer in male mice (p < 0.0001), although this did not vary across different levels of vision impairment. ERG indicated slower retinal responses in male mice (p < 0.05), while histology showed a significant reduction in the inner plexiform layer thickness in male mice with severe vision loss (p < 0.0001). Conversely, female mice exhibited greater thinning in the photoreceptor layer when vision was unimpaired (p < 0.01). CONCLUSIONS The study shows that sex and extent of vision impairment influence visual and retinal health, with individual retinal layers differentially changing in thickness over time.
Collapse
Affiliation(s)
- Genea Edwards
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Sean M. Riordan
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Caitlin Buchholz
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Marc Mardelli
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Carlyn P. Euritt
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Rodrigo Perez-Magnelli
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Ariej Rafiq
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Avery Engelmeyer
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Peter Koulen
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| |
Collapse
|
2
|
Walter S, Baumgarten P, Hegemann N, Häseli SP, Deubel S, Jelleschitz J, Höhn A, Berndt N, Kuebler WM, Grune J, Ott C. Comparative phenotyping of C57BL/6J substrains reveals distinctive patterns of cardiac aging. GeroScience 2025:10.1007/s11357-025-01543-7. [PMID: 39885113 DOI: 10.1007/s11357-025-01543-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/17/2025] [Indexed: 02/01/2025] Open
Abstract
Research in aging often refers to animal models, particularly C57BL/6J (B6J) mice, considered gold standard. However, B6J mice are distributed by different suppliers, which results in divers substrains exhibiting notable phenotypic differences. To ensure a suitable phenotype of cardiac aging, we performed heart analyses of young (5 months) and old B6J mice (24 months) from two substrains: B6JRj (Janvier) and B6JCrl mice (Charles River). In hearts of both substrains, myocardial fibrosis increased with age; however, only in old B6JRj mice cardiac hypertrophy associated with a decreased ejection fraction was observed. Gene set enrichment analysis in heart tissue using proteomic data revealed different age-associated pathway changes between the substrains, especially in oxidative phosphorylation. Functional assessment of isolated cardiomyocytes verified cardiac impairment during aging in B6JRj mice. Overall, results demonstrate that cardiac aging manifests as a moderate systolic dysfunction in B6JRj mice, while B6JCrl mice display no functional changes with age.
Collapse
Affiliation(s)
- Sophia Walter
- Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- TraceAge-DFG Research Unit On Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Patricia Baumgarten
- Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Niklas Hegemann
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum Der Charité (DHZC), Augustenburger Platz 1, 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Steffen P Häseli
- Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Stefanie Deubel
- Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Julia Jelleschitz
- Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Annika Höhn
- Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Nikolaus Berndt
- Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Computer-Assisted Cardiovascular Medicine, Deutsches Herzzentrum Der Charité (DHZC), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Jana Grune
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum Der Charité (DHZC), Augustenburger Platz 1, 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Christiane Ott
- Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany.
- TraceAge-DFG Research Unit On Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Ma T, Matsuo R, Kurogi K, Miyamoto S, Morita T, Shinozuka M, Taniguchi F, Ikegami K, Yasuo S. Sex-dependent effects of chronic jet lag on circadian rhythm and metabolism in mice. Biol Sex Differ 2024; 15:102. [PMID: 39639385 PMCID: PMC11619446 DOI: 10.1186/s13293-024-00679-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND The circadian clock integrates external environmental changes into the internal physiology of organisms. Perturbed circadian clocks due to misaligned light cycles increase the risk of diseases, including metabolic disorders. However, the effects of sex differences in this context remain unclear. METHODS Circadian misalignment was induced by a chronic jet lag (CJL) shift schedule (light-on time advanced by 6 h every 2 days) in C57BL/6N male and female mice. Core body temperature and activity rhythms were recorded using a nano tag, and the gene expression rhythms of clock and clock-controlled genes in the liver and adrenal glands were analyzed using qPCR. Glucose metabolism and insulin response were evaluated using glucose tolerance, insulin sensitivity, and glucose response assays. Castration and testosterone replacement were performed to assess the fundamental role of testosterone in male phenotypes under CJL. RESULTS Under CJL treatment, male mice exhibited increased weight gain, whereas females exhibited decreased weight gain compared to that of the respective controls. CJL treatment induced a lower robustness of circadian rhythms in core body temperature and a weaker rhythm of clock gene expression in the liver and adrenal glands in females, but not in males. Only male mice exhibited glucose intolerance under CJL conditions, without the development of insulin resistance. Castrated mice without testosterone exhibited decreased weight gain and reduced robustness of body temperature rhythm, as observed in intact females. Testosterone replacement in castrated mice recovered the CJL-induced weight gain, robustness of temperature rhythm, and glucose intolerance observed in intact males. CONCLUSIONS Significant sex-based differences were observed in circadian clock organization and metabolism under CJL. Testosterone plays a crucial role in maintaining the circadian clock and regulating CJL metabolism in males.
Collapse
Affiliation(s)
- Tiantian Ma
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ryohei Matsuo
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kaito Kurogi
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shunsuke Miyamoto
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tatsumi Morita
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Marina Shinozuka
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Fuka Taniguchi
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Keisuke Ikegami
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shinobu Yasuo
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
4
|
Kader L, Willits AB, Meriano S, Christianson JA, La JH, Feng B, Knight B, Kosova G, Deberry JJ, Coates MD, Hyams JS, Baumbauer KM, Young EE. Identification of Arginine-Vasopressin Receptor 1a (Avpr1a/Avpr1a) as a Novel Candidate Gene for Chronic Visceral Pain Sheds Light on the Potential Role of Enteric Neurons in the Development of Visceral Hypersensitivity. THE JOURNAL OF PAIN 2024; 25:104572. [PMID: 38768798 PMCID: PMC11571697 DOI: 10.1016/j.jpain.2024.104572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Chronic abdominal pain in the absence of ongoing disease is the hallmark of disorders of gut-brain interaction (DGBIs), including irritable bowel syndrome (IBS). While the etiology of DGBIs remains poorly understood, there is evidence that both genetic and environmental factors play a role. In this study, we report the identification and validation of arginine-vasopressin receptor 1A (Avpr1a) as a novel candidate gene for visceral hypersensitivity (VH), a primary peripheral mechanism underlying abdominal pain in DGBI/IBS. Comparing 2 C57BL/6 (BL/6) substrains (C57BL/6NTac and C57BL/6J) revealed differential susceptibility to the development of chronic VH following intrarectal zymosan instillation, a validated preclinical model for postinflammatory IBS. Using whole-genome sequencing, we identified a single-nucleotide polymorphism differentiating the 2 strains in the 5' intergenic region upstream of Avpr1a, encoding the protein Avpr1a. We used behavioral, histological, and molecular approaches to identify distal colon-specific gene expression and neuronal hyperresponsiveness covarying with Avpr1a genotype and VH susceptibility. While the 2 BL/6 substrains did not differ across other gastrointestinal phenotypes (eg, fecal water retention), VH-susceptible BL/6NTac mice had higher colonic Avpr1a mRNA and protein expression. These results parallel findings that patients' colonic Avpr1a mRNA expression corresponded to higher pain ratings. Moreover, neurons of the enteric nervous system were hyperresponsive to the Avpr1a agonist arginine-vasopressin, suggesting a role for enteric neurons in the pathology underlying VH. Taken together, these findings implicate differential regulation of Avpr1a as a novel mechanism of VH susceptibility as well as a potential therapeutic target specific to VH. PERSPECTIVE: This article presents evidence of Avpr1a as a novel candidate gene for VH in a mouse model of IBS. Avpr1a genotype and/or tissue-specific expression represents a potential biomarker for chronic abdominal pain susceptibility.
Collapse
Affiliation(s)
- Leena Kader
- Department of Anesthesiology, Pain, and Perioperative Medicine, KU Medical Center, Kansas City, Kansas; Neuroscience Graduate Program, KU Medical Center, Kansas City, Kansas
| | - Adam B Willits
- Department of Anesthesiology, Pain, and Perioperative Medicine, KU Medical Center, Kansas City, Kansas; Neuroscience Graduate Program, KU Medical Center, Kansas City, Kansas
| | - Sebastian Meriano
- Department of Anesthesiology, Pain, and Perioperative Medicine, KU Medical Center, Kansas City, Kansas; Department of Cell Biology and Physiology, KU Medical Center, Kansas City, Kansas
| | - Julie A Christianson
- Department of Cell Biology and Physiology, KU Medical Center, Kansas City, Kansas
| | - Jun-Ho La
- Department of Neurobiology, University of University of Texas Medical Branch, Galveston, Texas
| | - Bin Feng
- Biomedical Engineering Department, University of Connecticut, Storrs, Connecticut
| | - Brittany Knight
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| | - Gulum Kosova
- Division of Statistical Genetics,TenSixteen Bio, Suffolk, Massachusetts
| | - Jennifer J Deberry
- Department of Anesthesiology & Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Matthew D Coates
- Department of Medicine, Division of Gastroenterology & Hepatology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Jeffrey S Hyams
- Department of Gastroenterology, Connecticut Children's Medical Center, Hartford, Connecticut
| | - Kyle M Baumbauer
- Department of Anesthesiology, Pain, and Perioperative Medicine, KU Medical Center, Kansas City, Kansas; Department of Cell Biology and Physiology, KU Medical Center, Kansas City, Kansas
| | - Erin E Young
- Department of Anesthesiology, Pain, and Perioperative Medicine, KU Medical Center, Kansas City, Kansas; Neuroscience Graduate Program, KU Medical Center, Kansas City, Kansas; Department of Cell Biology and Physiology, KU Medical Center, Kansas City, Kansas.
| |
Collapse
|
5
|
Johnston RA, Pilkington AW, Atkins CL, Boots TE, Brown PL, Jackson WT, Spencer CY, Siddiqui SR, Haque IU. Inconsequential role for chemerin-like receptor 1 in the manifestation of ozone-induced lung pathophysiology in male mice. Physiol Rep 2024; 12:e16008. [PMID: 38631890 PMCID: PMC11023814 DOI: 10.14814/phy2.16008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024] Open
Abstract
We executed this study to determine if chemerin-like receptor 1 (CMKLR1), a Gi/o protein-coupled receptor expressed by leukocytes and non-leukocytes, contributes to the development of phenotypic features of non-atopic asthma, including airway hyperresponsiveness (AHR) to acetyl-β-methylcholine chloride, lung hyperpermeability, airway epithelial cell desquamation, and lung inflammation. Accordingly, we quantified sequelae of non-atopic asthma in wild-type mice and mice incapable of expressing CMKLR1 (CMKLR1-deficient mice) following cessation of acute inhalation exposure to either filtered room air (air) or ozone (O3), a criteria pollutant and non-atopic asthma stimulus. Following exposure to air, lung elastic recoil and airway responsiveness were greater while the quantity of adiponectin, a multi-functional adipocytokine, in bronchoalveolar lavage (BAL) fluid was lower in CMKLR1-deficient as compared to wild-type mice. Regardless of genotype, exposure to O3 caused AHR, lung hyperpermeability, airway epithelial cell desquamation, and lung inflammation. Nevertheless, except for minimal genotype-related effects on lung hyperpermeability and BAL adiponectin, we observed no other genotype-related differences following O3 exposure. In summary, we demonstrate that CMKLR1 limits the severity of innate airway responsiveness and lung elastic recoil but has a nominal effect on lung pathophysiology induced by acute exposure to O3.
Collapse
Affiliation(s)
- Richard A. Johnston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and PreventionUnited States Department of Health and Human ServicesMorgantownWest VirginiaUSA
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of MedicineWest Virginia UniversityMorgantownWest VirginiaUSA
- Division of Critical Care Medicine, Department of PediatricsMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
- Department of Integrative Biology and PharmacologyMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Albert W. Pilkington
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and PreventionUnited States Department of Health and Human ServicesMorgantownWest VirginiaUSA
| | - Constance L. Atkins
- Division of Pulmonary Medicine, Department of PediatricsMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Theresa E. Boots
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and PreventionUnited States Department of Health and Human ServicesMorgantownWest VirginiaUSA
| | - Philip L. Brown
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and PreventionUnited States Department of Health and Human ServicesMorgantownWest VirginiaUSA
| | - William T. Jackson
- Division of Critical Care Medicine, Department of PediatricsMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Chantal Y. Spencer
- Section of Pediatric Pulmonology, Department of PediatricsBaylor College of MedicineHoustonTexasUSA
| | - Saad R. Siddiqui
- Division of Critical Care Medicine, Department of PediatricsMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Ikram U. Haque
- Division of Critical Care Medicine, Department of PediatricsMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
- Division of Critical Care, Department of PediatricsSidra MedicineDohaQatar
| |
Collapse
|
6
|
Rice RC, Gil DV, Baratta AM, Frawley RR, Hill SY, Farris SP, Homanics GE. Inter- and transgenerational heritability of preconception chronic stress or alcohol exposure: Translational outcomes in brain and behavior. Neurobiol Stress 2024; 29:100603. [PMID: 38234394 PMCID: PMC10792982 DOI: 10.1016/j.ynstr.2023.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024] Open
Abstract
Chronic stress and alcohol (ethanol) use are highly interrelated and can change an individual's behavior through molecular adaptations that do not change the DNA sequence, but instead change gene expression. A recent wealth of research has found that these nongenomic changes can be transmitted across generations, which could partially account for the "missing heritability" observed in genome-wide association studies of alcohol use disorder and other stress-related neuropsychiatric disorders. In this review, we summarize the molecular and behavioral outcomes of nongenomic inheritance of chronic stress and ethanol exposure and the germline mechanisms that could give rise to this heritability. In doing so, we outline the need for further research to: (1) Investigate individual germline mechanisms of paternal, maternal, and biparental nongenomic chronic stress- and ethanol-related inheritance; (2) Synthesize and dissect cross-generational chronic stress and ethanol exposure; (3) Determine cross-generational molecular outcomes of preconception ethanol exposure that contribute to alcohol-related disease risk, using cancer as an example. A detailed understanding of the cross-generational nongenomic effects of stress and/or ethanol will yield novel insight into the impact of ancestral perturbations on disease risk across generations and uncover actionable targets to improve human health.
Collapse
Affiliation(s)
- Rachel C. Rice
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniela V. Gil
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Annalisa M. Baratta
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Remy R. Frawley
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shirley Y. Hill
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sean P. Farris
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregg E. Homanics
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Michaud SA, Pětrošová H, Sinclair NJ, Kinnear AL, Jackson AM, McGuire JC, Hardie DB, Bhowmick P, Ganguly M, Flenniken AM, Nutter LMJ, McKerlie C, Smith D, Mohammed Y, Schibli D, Sickmann A, Borchers CH. Multiple reaction monitoring assays for large-scale quantitation of proteins from 20 mouse organs and tissues. Commun Biol 2024; 7:6. [PMID: 38168632 PMCID: PMC10762018 DOI: 10.1038/s42003-023-05687-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Mouse is the mammalian model of choice to study human health and disease due to its size, ease of breeding and the natural occurrence of conditions mimicking human pathology. Here we design and validate multiple reaction monitoring mass spectrometry (MRM-MS) assays for quantitation of 2118 unique proteins in 20 murine tissues and organs. We provide open access to technical aspects of these assays to enable their implementation in other laboratories, and demonstrate their suitability for proteomic profiling in mice by measuring normal protein abundances in tissues from three mouse strains: C57BL/6NCrl, NOD/SCID, and BALB/cAnNCrl. Sex- and strain-specific differences in protein abundances are identified and described, and the measured values are freely accessible via our MouseQuaPro database: http://mousequapro.proteincentre.com . Together, this large library of quantitative MRM-MS assays established in mice and the measured baseline protein abundances represent an important resource for research involving mouse models.
Collapse
Affiliation(s)
- Sarah A Michaud
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada.
| | - Helena Pětrošová
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Nicholas J Sinclair
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Andrea L Kinnear
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Angela M Jackson
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Jamie C McGuire
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Darryl B Hardie
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Pallab Bhowmick
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Milan Ganguly
- The Center for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - Ann M Flenniken
- The Center for Phenogenomics, Toronto, ON, Canada
- Sinai Health Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Lauryl M J Nutter
- The Center for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Derek Smith
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Yassene Mohammed
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, 44139, Germany
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - David Schibli
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, 44139, Germany
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada.
- Gerald Bronfman Department of Oncology, Jewish General Hospital, Montreal, QC, Canada.
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada.
- Department of Pathology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
8
|
He Q, Sun C, Pan Y. Whole‑exome sequencing reveals Lewis lung carcinoma is a hypermutated Kras/Nras-mutant cancer with extensive regional mutation clusters in its genome. Sci Rep 2024; 14:100. [PMID: 38167599 PMCID: PMC10762126 DOI: 10.1038/s41598-023-50703-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024] Open
Abstract
Lewis lung carcinoma (LLC), as a widely used preclinical cancer model, has still not been genetically and genomically characterized. Here, we performed a whole-exome sequencing analysis on the LLC cell line to elucidate its molecular characteristics and etiologies. Our data showed that LLC originated from a male mouse belonging to C57BL/6L (a transitional strain between C57BL/6J and C57BL/6N) and contains substantial somatic SNV and InDel mutations (> 20,000). Extensive regional mutation clusters are present in its genome, which were caused mainly by the mutational processes underlying the SBS1, SBS5, SBS15, SBS17a, and SBS21 signatures during frequent structural rearrangements. Thirty three deleterious mutations are present in 30 cancer genes including Kras, Nras, Trp53, Dcc, and Cacna1d. Cdkn2a and Cdkn2b are biallelically deleted from the genome. Five pathways (RTK/RAS, p53, cell cycle, TGFB, and Hippo) are oncogenically deregulated or affected. The major mutational processes in LLC include chromosomal instability, exposure to metabolic mutagens, spontaneous 5-methylcytosine deamination, defective DNA mismatch repair, and reactive oxygen species. Our data also suggest that LLC is a lung cancer similar to human lung adenocarcinoma. This study lays a molecular basis for the more targeted application of LLC in preclinical research.
Collapse
Affiliation(s)
- Quan He
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Cuirong Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
9
|
Leinenga G, Padmanabhan P, Götz J. Improving Cognition Without Clearing Amyloid: Effects of Tau and Ultrasound Neuromodulation. J Alzheimers Dis 2024; 100:S211-S222. [PMID: 39058447 DOI: 10.3233/jad-240616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Alzheimer's disease is characterized by progressive impairment of neuronal functions culminating in neuronal loss and dementia. A universal feature of dementia is protein aggregation, a process by which a monomer forms intermediate oligomeric assembly states and filaments that develop into end-stage hallmark lesions. In Alzheimer's disease, this is exemplified by extracellular amyloid-β (Aβ) plaques which have been placed upstream of tau, found in intracellular neurofibrillary tangles and dystrophic neurites. This implies causality that can be modeled as a linear activation cascade. When Aβ load is reduced, for example, in response to an anti-Aβ immunotherapy, cognitive functions improve in plaque-forming mice. They also deteriorate less in clinical trial cohorts although real-world clinical benefits remain to be demonstrated. Given the existence of aged humans with unimpaired cognition despite a high plaque load, the central role of Aβ has been challenged. A counter argument has been that clinical symptoms would eventually develop if these aged individuals were to live long enough. Alternatively, intrinsic mechanisms that protect the brain in the presence of pathology may exist. In fact, Aβ toxicity can be abolished by either reducing or manipulating tau (through which Aβ signals), at least in preclinical models. In addition to manipulating steps in this linear pathocascade model, mechanisms of restoring brain reserve can also counteract Aβ toxicity. Low-intensity ultrasound is a neuromodulatory modality that can improve cognitive functions in Aβ-depositing mice without the need for removing Aβ. Together, this highlights a dissociation of Aβ and cognition, with important implications for therapeutic interventions.
Collapse
Affiliation(s)
- Gerhard Leinenga
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD, Australia
| | - Pranesh Padmanabhan
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Kader L, Willits A, Meriano S, Christianson JA, La JH, Feng B, Knight B, Kosova G, Deberry J, Coates M, Hyams J, Baumbauer K, Young EE. Identification of arginine-vasopressin receptor 1a (Avpr1a/AVPR1A) as a novel candidate gene for chronic visceral pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572390. [PMID: 38187732 PMCID: PMC10769202 DOI: 10.1101/2023.12.19.572390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Chronic abdominal pain in the absence of ongoing disease is the hallmark of disorders of gut-brain interaction (DGBIs), including irritable bowel syndrome (IBS). While the etiology of DGBIs remains poorly understood, there is evidence that both genetic and environmental factors play a role. In this study, we report the identification and validation of Avpr1a as a novel candidate gene for visceral hypersensitivity (VH), a primary peripheral mechanism underlying abdominal pain in DGBI/IBS. Comparing two C57BL/6 (BL/6) substrains (C57BL/6NTac and C57BL/6J) revealed differential susceptibility to the development of chronic VH following intrarectal zymosan (ZYM) instillation, a validated preclinical model for post-inflammatory IBS. Using whole genome sequencing, we identified a SNP differentiating the two strains in the 5' intergenic region upstream of Avpr1a, encoding the protein arginine-vasopressin receptor 1A (AVPR1A). We used behavioral, histological, and molecular approaches to identify distal colon-specific gene expression differences and neuronal hyperresponsiveness covarying with Avpr1a genotype and VH susceptibility. While the two BL/6 substrains did not differ across other gastrointestinal (GI) phenotypes (e.g., GI motility), VH-susceptible BL/6NTac mice had higher colonic Avpr1a mRNA and protein expression. Moreover, neurons of the enteric nervous system were hyperresponsive to the AVPR1A agonist AVP, suggesting a role for enteric neurons in the pathology underlying VH. These results parallel our findings that patients' colonic Avpr1a mRNA expression was higher in patients with higher pain ratings. Taken together, these findings implicate differential regulation of Avpr1a as a novel mechanism of VH-susceptibility as well as a potential therapeutic target specific to VH.
Collapse
Affiliation(s)
- Leena Kader
- Department of Anesthesiology, Pain, and Perioperative Medicine, KU Medical Center, Kansas City, KS, United States
- Neuroscience Graduate Program, KU Medical Center, Kansas City, KS, United States
| | - Adam Willits
- Department of Anesthesiology, Pain, and Perioperative Medicine, KU Medical Center, Kansas City, KS, United States
- Neuroscience Graduate Program, KU Medical Center, Kansas City, KS, United States
| | - Sebastian Meriano
- Department of Anesthesiology, Pain, and Perioperative Medicine, KU Medical Center, Kansas City, KS, United States
- Department of Cell Biology and Physiology, KU Medical Center, Kansas City, KS, United States
| | - Julie A. Christianson
- Department of Cell Biology and Physiology, KU Medical Center, Kansas City, KS, United States
| | - Jun-Ho La
- Department of Neurobiology, University of University of Texas Medical Branch, Galveston, TX
| | - Bin Feng
- Biomedical Engineering Department, University of Connecticut, Storrs, CT
| | - Brittany Knight
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, United States
| | | | - Jennifer Deberry
- Department of Anesthesiology & Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Matthew Coates
- Department of Medicine, Division of Gastroenterology & Hepatology, Penn State College of Medicine, Hershey, PA, United States
| | - Jeffrey Hyams
- Department of Gastroenterology, Connecticut Children’s Medical Center, Hartford, CT
| | - Kyle Baumbauer
- Department of Anesthesiology, Pain, and Perioperative Medicine, KU Medical Center, Kansas City, KS, United States
- Department of Cell Biology and Physiology, KU Medical Center, Kansas City, KS, United States
| | - Erin E. Young
- Department of Anesthesiology, Pain, and Perioperative Medicine, KU Medical Center, Kansas City, KS, United States
- Neuroscience Graduate Program, KU Medical Center, Kansas City, KS, United States
- Department of Cell Biology and Physiology, KU Medical Center, Kansas City, KS, United States
| |
Collapse
|
11
|
Kojima H, Kadono K, Hirao H, Dery KJ, Torgerson T, Yao S, Kaldas FM, Farmer DG, Blumberg RS, Kupiec-Weglinski JW. T Cell CEACAM1-TIM-3 Crosstalk Alleviates Liver Transplant Injury in Mice and Humans. Gastroenterology 2023; 165:1233-1248.e9. [PMID: 37479191 PMCID: PMC10592295 DOI: 10.1053/j.gastro.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/26/2023] [Accepted: 07/04/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND & AIMS Carcinoembryonic antigen-related cell adhesion molecule 1 (CC1) acts through homophilic and heterophilic interactions with T cell immunoglobulin domain and mucin domain-containing protein 3 (TIM-3), which regulates innate immune activation in orthotopic liver transplantation (OLT). We investigated whether cluster of differentiation (CD) 4+ T cell-dependent CC1-TIM-3 crosstalk may affect OLT outcomes in mice and humans. METHODS Wild-type (WT) and CC1-deficient (CC1 knock-out [KO]) mouse livers were transplanted into WT, CC1KO, or T-cell TIM-3 transgenic (TIM-3Tg)/CC1KO double-mutant recipients. CD4+ T cells were adoptively transferred into T/B cell-deficient recombination activating gene 2 protein (Rag2) KO recipients, followed by OLT. The perioperative liver-associated CC1 increase was analyzed in 50 OLT patients. RESULTS OLT injury in WT livers deteriorated in CC1KO compared with CC1-proficient (WT) recipients. The frequency of TIM-3+CD4+ T cells was higher in WT than CC1KO hosts. Reconstitution of Rag2KO mice with CC1KO-T cells increased nuclear factor (NF)-κB phosphorylation and OLT damage compared with recipients repopulated with WT T cells. T-cell TIM-3 enhancement in CC1KO recipients (WT → TIM3Tg/CC1KO) suppressed NF-κB phosphorylation in Kupffer cells and mitigated OLT injury. However, TIM-3-mediated protection was lost by pharmacologic TIM-3 blockade or an absence of CC1 in the donor liver (CC1KO → TIM-3Tg/CC1KO). The perioperative CC1 increase in human OLT reduced hepatocellular injury, early allograft dysfunction, and the cumulative rejection rate. CONCLUSIONS This translational study identifies T cell-specific CC1 signaling as a therapeutic means to alleviate OLT injury by promoting T cell-intrinsic TIM-3, which in turn interacts with liver-associated CC1 to suppress NF-κB in Kupffer cells. By suppressing peritransplant liver damage, promoting T-cell homeostasis, and improving OLT outcomes, recipient CC1 signaling serves as a novel cytoprotective sentinel.
Collapse
Affiliation(s)
- Hidenobu Kojima
- The Dumont-University of California Los Angeles Transplantation Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Kentaro Kadono
- The Dumont-University of California Los Angeles Transplantation Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Hirofumi Hirao
- The Dumont-University of California Los Angeles Transplantation Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Kenneth J Dery
- The Dumont-University of California Los Angeles Transplantation Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Taylor Torgerson
- The Dumont-University of California Los Angeles Transplantation Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Siyuan Yao
- The Dumont-University of California Los Angeles Transplantation Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Fady M Kaldas
- The Dumont-University of California Los Angeles Transplantation Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Douglas G Farmer
- The Dumont-University of California Los Angeles Transplantation Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Richard S Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jerzy W Kupiec-Weglinski
- The Dumont-University of California Los Angeles Transplantation Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California.
| |
Collapse
|
12
|
Sil A, Souza Matos M, Delibegovic M, Platt B. How stra(i)nge are your controls? A comparative analysis of metabolic phenotypes in commonly used C57BL/6 substrains. PLoS One 2023; 18:e0289472. [PMID: 37531359 PMCID: PMC10395817 DOI: 10.1371/journal.pone.0289472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023] Open
Abstract
In recent years, insufficiently characterised controls have been a contributing factor to irreproducibility in biomedical research including neuroscience and metabolism. There is now a growing awareness of phenotypic differences between the C57BL/6 substrains which are commonly used as control animals. We here investigated baseline metabolic characteristics such as glucose regulation, fasted serum insulin levels and hepatic insulin signalling in five different C57BL/6 substrains (N, J, JOla, JRcc) of both sexes, obtained from two commercial vendors, Charles River Laboratories (Crl) and Envigo (Env). Our results indicate systematic and tissue-specific differences between substrains, affected by both vendor and sex, in all parameters investigated, and not necessarily mediated by the presence of the NntC57BL/6J mutation. Not only were there differences between 6J and 6N as expected, all three 6J substrains exhibited different profiles, even from the same breeder. Two distinct metabolic profiles were identified, one in which low insulin levels resulted in impaired glucose clearance (6JCrl; both sexes) and the other, where sustained elevations in fasted basal insulin levels led to glucose intolerance (male 6JRccEnv). Further, 6JRccEnv displayed sex differences in both glucose clearance and hepatic insulin signalling markers. In comparison, the two 6N substrains of either sex, irrespective of vendor, did not exhibit considerable differences, with 6NCrl animals presenting a good choice as a healthy baseline 'control' for many types of experiments. Overall, our data emphasise the importance of selecting and characterising control subjects regarding background, sex, and supplier to ensure proper experimental outcomes in biomedical research.
Collapse
Affiliation(s)
- Annesha Sil
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Marina Souza Matos
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Mirela Delibegovic
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Bettina Platt
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| |
Collapse
|
13
|
Malm Tillgren S, Nieto-Fontarigo JJ, Cerps S, Ramu S, Menzel M, Mahmutovic Persson I, Meissner A, Akbarshahi H, Uller L. C57Bl/6N mice have an attenuated lung inflammatory response to dsRNA compared to C57Bl/6J and BALB/c mice. J Inflamm (Lond) 2023; 20:6. [PMID: 36810092 PMCID: PMC9942641 DOI: 10.1186/s12950-023-00331-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/26/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Lower respiratory infections caused by ssRNA viruses are a major health burden globally. Translational mouse models are a valuable tool for medical research, including research on respiratory viral infections. In in vivo mouse models, synthetic dsRNA can be used as a surrogate for ssRNA virus replication. However, studies investigating how genetic background of mice impacts the murine lung inflammatory response to dsRNA is lacking. Hence, we have compared lung immunological responses of BALB/c, C57Bl/6N and C57Bl/6J mice to synthetic dsRNA. METHODS dsRNA was administered intranasally to BALB/c, C57Bl/6N and C57Bl/6J mice once/day for three consecutive days. Lactate dehydrogenase (LDH) activity, inflammatory cells, and total protein concentration were analyzed in bronchoalveolar lavage fluid (BALF). Pattern recognition receptors levels (TLR3, MDA5 and RIG-I) were measured in lung homogenates using RT-qPCR and western blot. Gene expression of IFN-β, TNF-α, IL-1β and CXCL1 was assessed in lung homogenates by RT-qPCR. ELISA was used to analyze protein concentrations of CXCL1 and IL-1β in BALF and lung homogenates. RESULTS BALB/c and C57Bl/6J mice showed infiltration of neutrophils to the lung, and an increase in total protein concentration and LDH activity in response to dsRNA administration. Only modest increases in these parameters were observed for C57Bl/6N mice. Similarly, dsRNA administration evoked an upregulation of MDA5 and RIG-I gene and protein expression in BALB/c and C57Bl/6J, but not C57Bl/6N, mice. Further, dsRNA provoked an increase in gene expression of TNF-α in BALB/c and C57Bl/6J mice, IL-1β only in C57Bl/6N mice and CXCL1 exclusively in BALB/c mice. BALF levels of CXCL1 and IL-1β were increased in BALB/c and C57Bl/6J mice in response to dsRNA, whereas the response of C57Bl/6N was blunt. Overall, inter-strain comparisons of the lung reactivity to dsRNA revealed that BALB/c, followed by C57Bl/6J, had the most pronounced respiratory inflammatory responses, while the responses of C57Bl/6N mice were attenuated. CONCLUSIONS We report clear differences of the lung innate inflammatory response to dsRNA between BALB/c, C57Bl/6J and C57Bl/6N mice. Of particular note, the highlighted differences in the inflammatory response of C57Bl/6J and C57Bl/6N substrains underscore the value of strain selection in mouse models of respiratory viral infections.
Collapse
Affiliation(s)
- Sofia Malm Tillgren
- grid.4514.40000 0001 0930 2361Department of Experimental Medical Science, Unit of Respiratory immunopharmacology, Lund University, Lund, Sweden
| | - Juan José Nieto-Fontarigo
- grid.4514.40000 0001 0930 2361Department of Experimental Medical Science, Unit of Respiratory immunopharmacology, Lund University, Lund, Sweden
| | - Samuel Cerps
- grid.4514.40000 0001 0930 2361Department of Experimental Medical Science, Unit of Respiratory immunopharmacology, Lund University, Lund, Sweden
| | - Sangeetha Ramu
- grid.4514.40000 0001 0930 2361Department of Experimental Medical Science, Unit of Respiratory immunopharmacology, Lund University, Lund, Sweden
| | - Mandy Menzel
- grid.4514.40000 0001 0930 2361Department of Experimental Medical Science, Unit of Respiratory immunopharmacology, Lund University, Lund, Sweden
| | - Irma Mahmutovic Persson
- grid.4514.40000 0001 0930 2361Department of Experimental Medical Science, Unit of Respiratory immunopharmacology, Lund University, Lund, Sweden
| | - Anja Meissner
- grid.4514.40000 0001 0930 2361Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden ,grid.7307.30000 0001 2108 9006Department of Physiology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany ,grid.4514.40000 0001 0930 2361Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Hamid Akbarshahi
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences, Division of Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| | - Lena Uller
- Department of Experimental Medical Science, Unit of Respiratory immunopharmacology, Lund University, Lund, Sweden.
| |
Collapse
|
14
|
Roland M, Berglas E, Pines R, Carata I, Castillo A, Nashed M, Sclafani A, Bodnar RJ. Differential patterns of opioid and dopamine D1 receptor antagonism on nutritive and non-nutritive sweetener intakes in C57BL/6:129 hybrid mice relative to inbred C57BL/6 and 129 mice. Pharmacol Biochem Behav 2023; 223:173514. [PMID: 36642390 DOI: 10.1016/j.pbb.2023.173514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Opioid and dopamine (DA) D1 receptor antagonists differentially reduce nutritive and non-nutritive sweetener intakes in inbred mouse strains. Sucrose intake was more effectively reduced by naltrexone in C57BL/6 (B6) mice relative to 129P3 (129) mice, but more effectively reduced by SCH23390 in 129 mice relative to B6 mice. Opioid and DA D1 antagonists differentially reduced saccharin intakes in B6 mice relative to other strains. Given these differential patterns in sweetener intake in B6 and 129 mice, the present study examined whether systemic naltrexone (0.01-5 mg/kg) and SCH23390 (50-1600 nmol/kg) reduced intakes of 10 % sucrose or 0.2 % saccharin solutions over a 120 min time course in first-generation hybrid mice (B6:129) of B6 and 129 parents and reduced low-nutritive sweetener intakes in 129 mice. Naltrexone (5 mg/kg) significantly reduced 10 % sucrose intake in B6:129 hybrid mice more like that of 129 than B6 mice. In contrast, SCH23390 (400-1600 nmol/kg) reduced 10 % sucrose intake in B6:129 hybrid mice more effectively than that observed in B6 or 129 parental strains. Because 129 mice consumed relatively low amounts of 0.2 % saccharin, they were tested with a more attractive low-nutritive solution containing 0.2 % saccharin and 2 % sucrose. Naltrexone failed to reduce saccharin intake in B6:129 hybrid mice but suppressed saccharin+sucrose intake in 129 mice more like that observed in B6 mice. SCH23390 similarly inhibited saccharin or saccharin+sucrose intakes in hybrid B6:129, 129, and B6 mice with B6 mice more resistant to the lowest SCH23390 dose. Thus, whereas sucrose intake in B6:129 hybrid mice exhibited similar sensitivity to opioid and to a lesser degree DA D1 antagonism to their 129, but not B6 parents, opioid and DA D1 mediation of low- and non-nutritive sweet intake produced unique profiles among B6:129 hybrid and B6 and 129 strains which does not support a simple heritability explanation.
Collapse
Affiliation(s)
- Matthew Roland
- Department of Psychology, Queens College of the City University of New York, United States of America
| | - Eli Berglas
- Department of Psychology, Queens College of the City University of New York, United States of America
| | - Rachel Pines
- Department of Psychology, Queens College of the City University of New York, United States of America
| | - Ion Carata
- Department of Psychology, Queens College of the City University of New York, United States of America
| | - Alexander Castillo
- Department of Psychology, Queens College of the City University of New York, United States of America
| | - Mirna Nashed
- Department of Psychology, Queens College of the City University of New York, United States of America
| | - Anthony Sclafani
- Department of Psychology, Brooklyn College of the City University of New York, United States of America; Psychology Doctoral Program, Graduate Center of the City University of New York, United States of America
| | - Richard J Bodnar
- Department of Psychology, Queens College of the City University of New York, United States of America; Psychology Doctoral Program, Graduate Center of the City University of New York, United States of America.
| |
Collapse
|
15
|
Claes M, Moons L. Retinal Ganglion Cells: Global Number, Density and Vulnerability to Glaucomatous Injury in Common Laboratory Mice. Cells 2022; 11:2689. [PMID: 36078097 PMCID: PMC9454702 DOI: 10.3390/cells11172689] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022] Open
Abstract
How many RBPMS+ retinal ganglion cells (RGCs) does a standard C57BL/6 laboratory mouse have on average and is this number substrain- or sex-dependent? Do RGCs of (European) C57BL/6J and -N mice show a different intrinsic vulnerability upon glaucomatous injury? Global RGC numbers and densities of common laboratory mice were previously determined via axon counts, retrograde tracing or BRN3A immunohistochemistry. Here, we report the global RGC number and density by exploiting the freely available tool RGCode to automatically count RGC numbers and densities on entire retinal wholemounts immunostained for the pan-RGC marker RBPMS. The intrinsic vulnerability of RGCs from different substrains to glaucomatous injury was evaluated upon introduction of the microbead occlusion model, followed by RBPMS counts, retrograde tracing and electroretinography five weeks post-injury. We demonstrate that the global RGC number and density varies between substrains, yet is not sex-dependent. C57BL/6J mice have on average 46K ± 2K RBPMS+ RGCs per retina, representing a global RGC density of 3268 ± 177 RGCs/mm2. C57BL/6N mice, on the other hand, have on average less RBPMS+ RGCs (41K ± 3K RGCs) and a lower density (3018 ± 189 RGCs/mm2). The vulnerability of the RGC population of the two C57BL/6 substrains to glaucomatous injury did, however, not differ in any of the interrogated parameters.
Collapse
Affiliation(s)
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium
| |
Collapse
|
16
|
Controlling the uncontrolled variation in the diet induced obese mouse by microbiomic characterization. Sci Rep 2022; 12:13767. [PMID: 35962158 PMCID: PMC9374709 DOI: 10.1038/s41598-022-17242-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/22/2022] [Indexed: 11/24/2022] Open
Abstract
Group sizes in an animal study are calculated from estimates on variation, effect, power and significance level. Much of the variation in glucose related parameters of the diet-induced obese (DIO) mouse model is due to inter-individual variation in gut microbiota composition. In addition, standard tandem repeats (STRs) in the non-coding DNA shows that inbred mice are not always homogenic. C57BL/6NTac (B6NTac) mice from Taconic and C57BL/6NRj (B6NRj) mice from Janvier Labs were fed a high calorie diet and treated with liraglutide. The fecal microbiota was sequenced before high-calorie feeding (time 1) and after diet-induced obesity instantly before liraglutide treatment (time 2) and mice were divided into clusters on the basis of their microbiota. Although liraglutide in both sub-strains alleviated glucose intolerance and reduced body weight, in a one-way ANOVA a borderline reduction in glycosylated hemoglobin (HbA1c) could only be shown in B6NTac mice. However, if the microbiota clusters from time 1 or time 2 were incorporated in a two-way ANOVA, the HbA1c effect was significant in B6NTac mice in both analyses, while this did not change anything in B6NRj mice. In a one-way ANOVA the estimated group size needed for a significant HbA1c effect in B6NTac mice was 42, but in two-way ANOVAs based upon microbiota clusters of time 1 or time 2 it was reduced to 21 or 12, respectively. The lowering impact on glucose tolerance was also powered by incorporation of microbiota clusters of both times in both sub-strains. B6NRj had up to six, while B6NTac had maximum three alleles in some of their STRs. In B6NRj mice in 28.8% of the STRs the most prevalent allele had a gene frequency less than 90%, while this was only 6.6% in the B6NTac mice. However, incorporation of the STRs with the highest number of alleles or the most even distribution of frequencies in two-way ANOVAs only had little impact on the outcome of data evaluation. It is concluded that the inclusion of microbiota clusters in a two-way ANOVA in the evaluation of the glucose related effects of an intervention in the DIO mouse model might be an efficient tool for increasing power and reducing group sizes in mouse sub-strains, if these have a microbiota, which influences these parameters.
Collapse
|
17
|
Deletion in chromosome 6 spanning alpha-synuclein and multimerin1 loci in the Rab27a/b double knockout mouse. Sci Rep 2022; 12:9837. [PMID: 35701443 PMCID: PMC9197848 DOI: 10.1038/s41598-022-13557-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/25/2022] [Indexed: 11/08/2022] Open
Abstract
We report an incidental 358.5 kb deletion spanning the region encoding for alpha-synuclein (αsyn) and multimerin1 (Mmrn1) in the Rab27a/Rab27b double knockout (DKO) mouse line previously developed by Tolmachova and colleagues in 2007. Western blot and RT-PCR studies revealed lack of αsyn expression at either the mRNA or protein level in Rab27a/b DKO mice. PCR of genomic DNA from Rab27a/b DKO mice demonstrated at least partial deletion of the Snca locus using primers targeted to exon 4 and exon 6. Most genes located in proximity to the Snca locus, including Atoh1, Atoh2, Gm5570, Gm4410, Gm43894, and Grid2, were shown not to be deleted by PCR except for Mmrn1. Using whole genomic sequencing, the complete deletion was mapped to chromosome 6 (60,678,870–61,037,354), a slightly smaller deletion region than that previously reported in the C57BL/6J substrain maintained by Envigo. Electron microscopy of cortex from these mice demonstrates abnormally enlarged synaptic terminals with reduced synaptic vesicle density, suggesting potential interplay between Rab27 isoforms and αsyn, which are all highly expressed at the synaptic terminal. Given this deletion involving several genes, the Rab27a/b DKO mouse line should be used with caution or with appropriate back-crossing to other C57BL/6J mouse substrain lines without this deletion.
Collapse
|
18
|
Francisco A, Figueira TR, Castilho RF. Mitochondrial NAD(P) + Transhydrogenase: From Molecular Features to Physiology and Disease. Antioxid Redox Signal 2022; 36:864-884. [PMID: 34155914 DOI: 10.1089/ars.2021.0111] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Significance: Proton-translocating NAD(P)+ transhydrogenase, also known as nicotinamide nucleotide transhydrogenase (NNT), catalyzes a reversible reaction coupling the protonmotive force across the inner mitochondrial membrane and hydride (H-, a proton plus two electrons) transfer between the mitochondrial pools of NAD(H) and NADP(H). The forward NNT reaction is a source of NADPH in the mitochondrial matrix, fueling antioxidant and biosynthetic pathways with reductive potential. Despite the greater emphasis given to the net forward reaction, the reverse NNT reaction that oxidizes NADPH also occurs in physiological and pathological conditions. Recent Advances: NNT (dys)function has been linked to various metabolic pathways and disease phenotypes. Most of these findings have been based on spontaneous loss-of-function Nnt mutations found in the C57BL/6J mouse strain (NntC57BL/6J mutation) and disease-causing Nnt mutations in humans. The present review focuses on recent advances based on the mouse NntC57BL/6J mutation. Critical Issues: Most studies associating NNT function with disease phenotypes have been based on comparisons between different strains of inbred mice (with or without the NntC57BL/6J mutation), which creates uncertainties over the actual contribution of NNT in the context of other potential genetic modifiers. Future Directions: Future research might contribute to understanding the role of NNT in pathological conditions and elucidate how NNT regulates physiological signaling through its forward and reverse reactions. The importance of NNT in redox balance and tumor cell proliferation makes it a potential target of new therapeutic strategies for oxidative-stress-mediated diseases and cancer. Antioxid. Redox Signal. 36, 864-884.
Collapse
Affiliation(s)
- Annelise Francisco
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Tiago Rezende Figueira
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Roger Frigério Castilho
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
19
|
Antiorio AT, Alemán-Laporte J, Zanatto DA, Pereira MAA, Gomes MS, Wadt D, Yamamoto PK, Bernardi MM, Mori CM. Mouse Behavior in the Open-field Test after Meloxicam Administration. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2022; 61:270-274. [PMID: 35101160 PMCID: PMC9137284 DOI: 10.30802/aalas-jaalas-21-000046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/03/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Several analgesics are suggested for pain management in mice. Nonsteroidal antiinflammatories (NSAIDs), such as meloxicam can be administered for the treatment of inflammation and acute pain; however, several side effects can occur which include gastrointestinal ulceration and renal and hepatic toxicity. We previously performed a pilot study to test the antinociceptive activity of meloxicam in mice, but we observed behavioral changes in unoperated control mice. These observations spurred further investigation. One hypothesis for the result was potential differences in formulation between commercial brands of meloxicam. Thus, this current study aimed to evaluate the effects of 3 different commercial brands of meloxicam (20 mg/kg) in the general activity of mice using the open field test. Our results showed that meloxicam had several effects on mouse behavior and caused the formation of skin lesions at the injection site, depending on the brand of the drug. The most significant adverse effect observed was decreased exploratory activity. Grooming frequency was reduced in all groups. These adverse effects might be related to the quality of the drugs because meloxicam formulations can contain crystal polymorphisms that affect drug quality and efficacy. This study points out the importance of drug quality variation that can affect the outcome of behavioral studies in mice.
Collapse
Affiliation(s)
- Ana Tfb Antiorio
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil;,
| | - Jilma Alemán-Laporte
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil; Laboratory of Teaching in Surgery and Cancer, University of Costa Rica, San Jose, Costa Rica
| | - Dennis A Zanatto
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Marco A A Pereira
- Department of Surgery. School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Mariana Sag Gomes
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Danilo Wadt
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Pedro K Yamamoto
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Maria M Bernardi
- Graduate Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Claudia Mc Mori
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Genetic Predisposition of Postoperative Adhesions Varies in Substrains of BALB/c Mice. Reprod Sci 2022; 29:1959-1962. [PMID: 35260996 DOI: 10.1007/s43032-022-00900-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/20/2022] [Indexed: 10/18/2022]
Abstract
Postoperative adhesions are a major clinical problem because of the associated infertility, chronic pain, bowel obstruction, and the associated costs. Variability in adhesion formation was suggested by clinical observations that apparently similar interventions can cause little to severe adhesions. This is supported by the presence of polymorphisms and genetic predisposition to develop adhesions in animal models and humans. We previously demonstrated differences in postoperative adhesions between different mouse strains. In this study, we aimed to investigate the variability in adhesion formation in inbred substrains of BALB/c mice. Since genetic differences in inbred substrains are minimal, they might be an opportunity to tackle the genetics of adhesion formation.
Collapse
|
21
|
Chen HL, Chen CFF, Huang HB. Distinct Age-Specific Effects on Olfactory Associative Learning in C57BL/6 Substrains. Front Behav Neurosci 2022; 16:808978. [PMID: 35185490 PMCID: PMC8847720 DOI: 10.3389/fnbeh.2022.808978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
C57BL/6 is the most widely used mouse strain in the laboratories. Two substrains of C57BL/6, C57BL/6J (B6J), and C57BL/6N (B6N) are well-known backgrounds for genetic modification and have been shown difference in quite a few tests, including open field test, rotarod test, and Morris water maze. However, difference between these two substrains in olfaction-dependent behaviors remains unknown. Here, we used olfactory two-alternative choice task, which is modified to have two training stages, to evaluate animals’ ability in instrumental learning and olfactory association. In the first (rule learning) stage, the mice were trained to use the operant chamber to collect water rewards. An odor cue was provided in the procedure, with no indication about reward locations. In the following (discrimination learning) stage, two odor cues were provided, with each indicating a specific water port. The animals were rewarded upon correct port choices following cue deliveries. We found that during young adulthood (7–10 weeks old), proportionally more B6J than B6N mice were able to pass rule learning (58.3% vs. 29.2%) and ultimately acquire this task (54.2% vs. 25%), with the two substrains showing similar pass rates in discrimination learning (92.9% vs. 85.7%). Surprisingly, at a more mature age (17 weeks old), this substrain difference disappeared. Mature B6N mice had a significant improvement in pass percentages of rule learning and overall task, whereas similar improvement was not observed in the B6J counterparts. Instead, mature B6J mice had an improved speed in rule learning and overall task. We further examined behavioral patterns of 8-week-old B6J and B6N mice in the olfactory habituation or dishabituation test. We observed normal olfactory habituation from subjects of both substrains, with the B6J mice exhibiting stronger investigative responses to newly presented odorants. These results reveal for the first time that B6J and B6N mice are different in acquisition processes of a behavioral task that requires instrumental learning and olfactory association, and that maturation appears to employ different effects on these two substrains during these processes. Furthermore, young adult B6J and B6N mice might be similar in olfactory habituation but different in the olfactory aspects of novelty seeking.
Collapse
Affiliation(s)
- Hung-Lun Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Fu F. Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- *Correspondence: Chien-Fu F. Chen,
| | - Han-Bin Huang
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
22
|
Brayton CF. Laboratory Codes in Nomenclature and Scientific Communication (Advancing Organism Nomenclature in Scientific Communication to Improve Research Reporting and Reproducibility). ILAR J 2021; 62:295-309. [PMID: 36528817 DOI: 10.1093/ilar/ilac016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/23/2022] [Indexed: 12/23/2022] Open
Abstract
Laboratory registration codes, also known as laboratory codes or lab codes, are a key element in standardized laboratory animal and genetic nomenclature. As such they are critical to accurate scientific communication and to research reproducibility and integrity. The original committee on Mouse Genetic Nomenclature published nomenclature conventions for mice genetics in 1940, and then conventions for inbred strains in 1952. Unique designations were needed, and have been in use since the 1950s, for the sources of animals and substrains, for the laboratories that identified new alleles or mutations, and then for developers of transgenes and induced mutations. Current laboratory codes are typically a 2- to 4-letter acronym for an institution or an investigator. Unique codes are assigned from the International Laboratory Code Registry, which was developed and is maintained by ILAR in the National Academies (National Academies of Sciences Engineering and Medicine and previously National Academy of Sciences). As a resource for the global research community, the registry has been online since 1997. Since 2003 mouse and rat genetic and strain nomenclature rules have been reviewed and updated annually as a joint effort of the International Committee on Standardized Genetic Nomenclature for Mice and the Rat Genome and Nomenclature Committee. The current nomenclature conventions (particularly conventions for non-inbred animals) are applicable beyond rodents, although not widely adopted. Ongoing recognition, since at least the 1930s, of the research relevance of genetic backgrounds and origins of animals, and of spontaneous and induced genetic variants speaks to the need for broader application of standardized nomenclature for animals in research, particularly given the increasing numbers and complexities of genetically modified swine, nonhuman primates, fish, and other species.
Collapse
Affiliation(s)
- Cory F Brayton
- Johns Hopkins Medicine, Molecular and Comparative Pathobiology, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Sanchez-Arias JC, Carrier M, Frederiksen SD, Shevtsova O, McKee C, van der Slagt E, Gonçalves de Andrade E, Nguyen HL, Young PA, Tremblay MÈ, Swayne LA. A Systematic, Open-Science Framework for Quantification of Cell-Types in Mouse Brain Sections Using Fluorescence Microscopy. Front Neuroanat 2021; 15:722443. [PMID: 34949993 PMCID: PMC8691181 DOI: 10.3389/fnana.2021.722443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/28/2021] [Indexed: 02/03/2023] Open
Abstract
The ever-expanding availability and evolution of microscopy tools has enabled ground-breaking discoveries in neurobiology, particularly with respect to the analysis of cell-type density and distribution. Widespread implementation of many of the elegant image processing tools available continues to be impeded by the lack of complete workflows that span from experimental design, labeling techniques, and analysis workflows, to statistical methods and data presentation. Additionally, it is important to consider open science principles (e.g., open-source software and tools, user-friendliness, simplicity, and accessibility). In the present methodological article, we provide a compendium of resources and a FIJI-ImageJ-based workflow aimed at improving the quantification of cell density in mouse brain samples using semi-automated open-science-based methods. Our proposed framework spans from principles and best practices of experimental design, histological and immunofluorescence staining, and microscopy imaging to recommendations for statistical analysis and data presentation. To validate our approach, we quantified neuronal density in the mouse barrel cortex using antibodies against pan-neuronal and interneuron markers. This framework is intended to be simple and yet flexible, such that it can be adapted to suit distinct project needs. The guidelines, tips, and proposed methodology outlined here, will support researchers of wide-ranging experience levels and areas of focus in neuroscience research.
Collapse
Affiliation(s)
| | - Micaël Carrier
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Axe Neurosciences, Centre de Recherche du CHU de Québec, Université de Laval, Québec City, QC, Canada
| | | | - Olga Shevtsova
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Chloe McKee
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Emma van der Slagt
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Hai Lam Nguyen
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Penelope A Young
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Axe Neurosciences, Centre de Recherche du CHU de Québec, Université de Laval, Québec City, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada.,Department of Molecular Medicine, Université de Laval, Québec City, QC, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada.,Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| |
Collapse
|
24
|
Keshavarz M, Savriama Y, Refki P, Reeves RG, Tautz D. Natural copy number variation of tandemly repeated regulatory SNORD RNAs leads to individual phenotypic differences in mice. Mol Ecol 2021; 30:4708-4722. [PMID: 34252239 DOI: 10.1111/mec.16076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/05/2021] [Indexed: 12/01/2022]
Abstract
Genic copy number differences can have phenotypic consequences, but so far this has not been studied in detail in natural populations. Here, we analysed the natural variation of two families of tandemly repeated regulatory small nucleolar RNAs (SNORD115 and SNORD116) in the house mouse (Mus musculus). They are encoded within the Prader-Willi Syndrome gene region, known to be involved in behavioural, metabolic, and osteogenic functions in mammals. We determined that the copy numbers of these SNORD RNAs show substantial natural variation, both in wild-derived mice as well as in an inbred mouse strain (C57BL/6J). We show that copy number differences are subject to change across generations, making them highly variable and resulting in individual differences. In transcriptome data from brain samples, we found SNORD copy-number correlated regulation of possible target genes, including Htr2c, a predicted target gene of SNORD115, as well as Ankrd11, a predicted target gene of SNORD116. Ankrd11 is a chromatin regulator, which has previously been implicated in regulating the development of the skull. Based on morphometric shape analysis of the skulls of individual mice of the inbred strain, we show that shape measures correlate with SNORD116 copy numbers in the respective individuals. Our results suggest that the variable dosage of regulatory RNAs can lead to phenotypic variation between individuals that would typically have been ascribed to environmentally induced variation, while it is actually encoded in individual differences of copy numbers of regulatory molecules.
Collapse
Affiliation(s)
| | - Yoland Savriama
- Max-Planck Institute for Evolutionary Biology, Plön, Germany
| | - Peter Refki
- Max-Planck Institute for Evolutionary Biology, Plön, Germany
| | - R Guy Reeves
- Max-Planck Institute for Evolutionary Biology, Plön, Germany
| | - Diethard Tautz
- Max-Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
25
|
Birling MC, Fray MD, Kasparek P, Kopkanova J, Massimi M, Matteoni R, Montoliu L, Nutter LMJ, Raspa M, Rozman J, Ryder EJ, Scavizzi F, Voikar V, Wells S, Pavlovic G, Teboul L. Importing genetically altered animals: ensuring quality. Mamm Genome 2021; 33:100-107. [PMID: 34536110 PMCID: PMC8913481 DOI: 10.1007/s00335-021-09908-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/26/2021] [Indexed: 11/30/2022]
Abstract
The reproducibility of research using laboratory animals requires reliable management of their quality, in particular of their genetics, health and environment, all of which contribute to their phenotypes. The point at which these biological materials are transferred between researchers is particularly sensitive, as it may result in a loss of integrity of the animals and/or their documentation. Here, we describe the various aspects of laboratory animal quality that should be confirmed when sharing rodent research models. We also discuss how repositories of biological materials support the scientific community to ensure the continuity of the quality of laboratory animals. Both the concept of quality and the role of repositories themselves extend to all exchanges of biological materials and all networks that support the sharing of these reagents.
Collapse
Affiliation(s)
- M-C Birling
- PHENOMIN-Institut Clinique de la Souris, CELPHEDIA, CNRS, INSERM, Université de Strasbourg, Illkirch-Graffenstaden, 67404, Strasbourg, France.
| | - M D Fray
- The Mary Lyon Centre, Medical Research Council Harwell, Harwell Campus, Didcot, OX11 0RD, Oxon, UK
| | - P Kasparek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - J Kopkanova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - M Massimi
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo Scalo, Rome, Italy
| | - R Matteoni
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo Scalo, Rome, Italy
| | - L Montoliu
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC) Madrid and CIBERER-ISCIII, Madrid, Spain
| | - L M J Nutter
- The Centre for Phenogenomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - M Raspa
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo Scalo, Rome, Italy
| | - J Rozman
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - E J Ryder
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.,LGC, Sport and Specialised Analytical Services, Fordham, UK
| | - F Scavizzi
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo Scalo, Rome, Italy
| | - V Voikar
- Neuroscience Center and Laboratory Animal Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - S Wells
- The Mary Lyon Centre, Medical Research Council Harwell, Harwell Campus, Didcot, OX11 0RD, Oxon, UK
| | - G Pavlovic
- PHENOMIN-Institut Clinique de la Souris, CELPHEDIA, CNRS, INSERM, Université de Strasbourg, Illkirch-Graffenstaden, 67404, Strasbourg, France.
| | - L Teboul
- The Mary Lyon Centre, Medical Research Council Harwell, Harwell Campus, Didcot, OX11 0RD, Oxon, UK.
| |
Collapse
|
26
|
Watson Y, Nelson B, Kluesner JH, Tanzy C, Ramesh S, Patel Z, Kluesner KH, Singh A, Murthy V, Mitchell CS. Aggregate Trends of Apolipoprotein E on Cognition in Transgenic Alzheimer's Disease Mice. J Alzheimers Dis 2021; 83:435-450. [PMID: 34334405 PMCID: PMC8461675 DOI: 10.3233/jad-210492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Apolipoprotein E (APOE) genotypes typically increase risk of amyloid-β deposition and onset of clinical Alzheimer’s disease (AD). However, cognitive assessments in APOE transgenic AD mice have resulted in discord. Objective: Analysis of 31 peer-reviewed AD APOE mouse publications (n = 3,045 mice) uncovered aggregate trends between age, APOE genotype, gender, modulatory treatments, and cognition. Methods: T-tests with Bonferroni correction (significance = p < 0.002) compared age-normalized Morris water maze (MWM) escape latencies in wild type (WT), APOE2 knock-in (KI2), APOE3 knock-in (KI3), APOE4 knock-in (KI4), and APOE knock-out (KO) mice. Positive treatments (t+) to favorably modulate APOE to improve cognition, negative treatments (t–) to perturb etiology and diminish cognition, and untreated (t0) mice were compared. Machine learning with random forest modeling predicted MWM escape latency performance based on 12 features: mouse genotype (WT, KI2, KI3, KI4, KO), modulatory treatment (t+, t–, t0), mouse age, and mouse gender (male = g_m; female = g_f, mixed gender = g_mi). Results: KI3 mice performed significantly better in MWM, but KI4 and KO performed significantly worse than WT. KI2 performed similarly to WT. KI4 performed significantly worse compared to every other genotype. Positive treatments significantly improved cognition in WT, KI4, and KO compared to untreated. Interestingly, negative treatments in KI4 also significantly improved mean MWM escape latency. Random forest modeling resulted in the following feature importance for predicting superior MWM performance: [KI3, age, g_m, KI4, t0, t+, KO, WT, g_mi, t–, g_f, KI2] = [0.270, 0.094, 0.092, 0.088, 0.077, 0.074, 0.069, 0.061, 0.058, 0.054, 0.038, 0.023]. Conclusion: APOE3, age, and male gender was most important for predicting superior mouse cognitive performance.
Collapse
Affiliation(s)
- Yassin Watson
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Brenae Nelson
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Jamie Hernandez Kluesner
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Caroline Tanzy
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Shreya Ramesh
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Zoey Patel
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Kaci Hernandez Kluesner
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Anita Singh
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Vibha Murthy
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Cassie S Mitchell
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA.,Institute for Machine Learning, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
27
|
Figueira TR, Francisco A, Ronchi JA, Dos Santos GRRM, Santos WD, Treberg JR, Castilho RF. NADPH supply and the contribution of NAD(P) + transhydrogenase (NNT) to H 2O 2 balance in skeletal muscle mitochondria. Arch Biochem Biophys 2021; 707:108934. [PMID: 34043997 DOI: 10.1016/j.abb.2021.108934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/27/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
H2O2 is endogenously generated and its removal in the matrix of skeletal muscle mitochondria (SMM) is dependent on NADPH likely provided by NAD(P)+ transhydrogenase (NNT) and isocitrate dehydrogenase (IDH2). Importantly, NNT activity is linked to mitochondrial protonmotive force. Here, we demonstrate the presence of NNT function in detergent-solubilized and intact functional SMM isolated from rats and wild type (Nnt+/+) mice, but not in SMM from congenic mice carrying a mutated NNT gene (Nnt-/-). Further comparisons between SMM from both Nnt mouse genotypes revealed that the NADPH supplied by NNT supports up to 600 pmol/mg/min of H2O2 removal under selected conditions. Surprisingly, SMM from Nnt-/- mice removed exogenous H2O2 at wild-type levels and exhibited a maintained or even decreased net emission of endogenous H2O2 when substrates that support Krebs cycle reactions were present (e.g., pyruvate plus malate or palmitoylcarnitine plus malate). These results may be explained by a compensation for the lack of NNT, since the total activities of concurrent NADP+-reducing enzymes (IDH2, malic enzymes and glutamate dehydrogenase) were ~70% elevated in Nnt-/- mice. Importantly, respiratory rates were similar between SMM from both Nnt genotypes despite differing NNT contributions to H2O2 removal and their implications for an evolving concept in the literature are discussed. We concluded that NNT is capable of meaningfully sustaining NADPH-dependent H2O2 removal in intact SMM. Nonetheless, if the available substrates favor non-NNT sources of NADPH, the H2O2 removal by SMM is maintained in Nnt-/- mice SMM.
Collapse
Affiliation(s)
- Tiago R Figueira
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, 13083-887, Campinas, SP, Brazil.
| | - Annelise Francisco
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, 13083-887, Campinas, SP, Brazil
| | - Juliana A Ronchi
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, 13083-887, Campinas, SP, Brazil
| | - Guilherme R R M Dos Santos
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, 13083-887, Campinas, SP, Brazil
| | - William Dos Santos
- Department of Biological Sciences, University of Manitoba, General Office 212B Bio-Sci Bldg., R3T 2N2, Winnipeg, MB, Canada
| | - Jason R Treberg
- Department of Biological Sciences, University of Manitoba, General Office 212B Bio-Sci Bldg., R3T 2N2, Winnipeg, MB, Canada; Centre on Aging, University of Manitoba, Winnipeg, MB, Canada
| | - Roger F Castilho
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, 13083-887, Campinas, SP, Brazil
| |
Collapse
|
28
|
Grunewald M, Kumar S, Sharife H, Volinsky E, Gileles-Hillel A, Licht T, Permyakova A, Hinden L, Azar S, Friedmann Y, Kupetz P, Tzuberi R, Anisimov A, Alitalo K, Horwitz M, Leebhoff S, Khoma OZ, Hlushchuk R, Djonov V, Abramovitch R, Tam J, Keshet E. Counteracting age-related VEGF signaling insufficiency promotes healthy aging and extends life span. Science 2021; 373:373/6554/eabc8479. [PMID: 34326210 DOI: 10.1126/science.abc8479] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 01/19/2021] [Accepted: 06/06/2021] [Indexed: 12/16/2022]
Abstract
Aging is an established risk factor for vascular diseases, but vascular aging itself may contribute to the progressive deterioration of organ function. Here, we show in aged mice that vascular endothelial growth factor (VEGF) signaling insufficiency, which is caused by increased production of decoy receptors, may drive physiological aging across multiple organ systems. Increasing VEGF signaling prevented age-associated capillary loss, improved organ perfusion and function, and extended life span. Healthier aging was evidenced by favorable metabolism and body composition and amelioration of aging-associated pathologies including hepatic steatosis, sarcopenia, osteoporosis, "inflammaging" (age-related multiorgan chronic inflammation), and increased tumor burden. These results indicate that VEGF signaling insufficiency affects organ aging in mice and suggest that modulating this pathway may result in increased mammalian life span and improved overall health.
Collapse
Affiliation(s)
- M Grunewald
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - S Kumar
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - H Sharife
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - E Volinsky
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - A Gileles-Hillel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.,Wohl Institute for Translational Medicine and the Goldyne Savad Institute for Gene Therapy, Hadassah Hospital, Jerusalem, Israel.,Pediatric Pulmonology and Sleep Unit, Department of Pediatrics, Hadassah Medical Center, Jerusalem, Israel
| | - T Licht
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - A Permyakova
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - L Hinden
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - S Azar
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Y Friedmann
- Bio-Imaging Unit, The Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - P Kupetz
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - R Tzuberi
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - A Anisimov
- Translational Cancer Biology Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - K Alitalo
- Translational Cancer Biology Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - M Horwitz
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - S Leebhoff
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - O Z Khoma
- Topographic and Clinical Anatomy, Institute of Anatomy, University of Bern, Bern, Switzerland
| | - R Hlushchuk
- Topographic and Clinical Anatomy, Institute of Anatomy, University of Bern, Bern, Switzerland
| | - V Djonov
- Topographic and Clinical Anatomy, Institute of Anatomy, University of Bern, Bern, Switzerland
| | - R Abramovitch
- Wohl Institute for Translational Medicine and the Goldyne Savad Institute for Gene Therapy, Hadassah Hospital, Jerusalem, Israel
| | - J Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - E Keshet
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
29
|
Ferrini E, Stellari FF, Franceschi V, Macchi F, Russo L, Murgia A, Grisendi G, Villetti G, Dominici M, Donofrio G. Persistency of Mesenchymal Stromal/Stem Cells in Lungs. Front Cell Dev Biol 2021; 9:709225. [PMID: 34336863 PMCID: PMC8322774 DOI: 10.3389/fcell.2021.709225] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/17/2021] [Indexed: 01/03/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are a fibroblast-like cell population with high regenerative potential that can be isolated from many different tissues. Several data suggest MSCs as a therapeutic tool capable of migrating to a site of injury and guide tissue regeneration mainly through their secretome. Pulmonary first-pass effect occurs during intravenous administration of MSCs, where 50 to 80% of the cells tend to localize in the lungs. This phenomenon has been exploited to study MSC potential therapeutic effects in several preclinical models of lung diseases. Data demonstrated that, regardless of the lung disease severity and the delivery route, MSCs were not able to survive longer than 24 h in the respiratory tract but still surprisingly determined a therapeutic effect. In this work, two different mouse bone marrow-derived mesenchymal stromal/stem cell (mBM-MSC) lines, stably transduced with a third-generation lentiviral vector expressing luciferase and green fluorescent protein reporter genes tracking MSCs in vivo biodistribution and persistency, have been generated. Cells within the engrafted lung were in vivo traced using the high-throughput bioluminescence imaging (BLI) technique, with no invasiveness on animal, minimizing biological variations and costs. In vivo BLI analysis allowed the detection and monitoring of the mBM-MSC clones up to 28 days after implantation independently from the delivery route. This longer persistency than previously observed (24 h) could have a strong impact in terms of pharmacokinetics and pharmacodynamics of MSCs as a therapeutic tool.
Collapse
Affiliation(s)
- Erica Ferrini
- Chiesi Farmaceutici S.p.A., Corporate Pre-Clinical R&D, Parma, Italy.,Department of Veterinary Science, University of Parma, Parma, Italy
| | | | | | - Francesca Macchi
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Luca Russo
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Alba Murgia
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Hospital of Modena, Modena, Italy.,Scientific and Technological Park of Medicine "Mario Veronesi," Mirandola, Italy
| | - Giulia Grisendi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Hospital of Modena, Modena, Italy
| | - Gino Villetti
- Chiesi Farmaceutici S.p.A., Corporate Pre-Clinical R&D, Parma, Italy
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Hospital of Modena, Modena, Italy.,Scientific and Technological Park of Medicine "Mario Veronesi," Mirandola, Italy
| | - Gaetano Donofrio
- Department of Veterinary Science, University of Parma, Parma, Italy
| |
Collapse
|
30
|
Supplier-origin mouse microbiomes significantly influence locomotor and anxiety-related behavior, body morphology, and metabolism. Commun Biol 2021; 4:716. [PMID: 34112927 PMCID: PMC8192786 DOI: 10.1038/s42003-021-02249-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/20/2021] [Indexed: 12/26/2022] Open
Abstract
The mouse is the most commonly used model species in biomedical research. Just as human physical and mental health are influenced by the commensal gut bacteria, mouse models of disease are influenced by the fecal microbiome (FM). The source of mice represents one of the strongest influences on the FM and can influence the phenotype of disease models. The FM influences behavior in mice leading to the hypothesis that mice of the same genetic background from different vendors, will have different behavioral phenotypes. To test this hypothesis, colonies of CD-1 mice, rederived via embryo transfer into surrogate dams from four different suppliers, were subjected to phenotyping assays assessing behavior and physiological parameters. Significant differences in behavior, growth rate, metabolism, and hematological parameters were observed. Collectively, these findings show the profound influence of supplier-origin FMs on host behavior and physiology in healthy, genetically similar, wild-type mice maintained in identical environments.
Collapse
|
31
|
Armario A. The forced swim test: Historical, conceptual and methodological considerations and its relationship with individual behavioral traits. Neurosci Biobehav Rev 2021; 128:74-86. [PMID: 34118295 DOI: 10.1016/j.neubiorev.2021.06.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/13/2021] [Accepted: 06/06/2021] [Indexed: 01/14/2023]
Abstract
The forced swim test (FST), developed by Porsolt and collaborators in 1977 to evaluate antidepressant (AD) treatments in rodents, has become extensively used for this purpose and to evaluate depression-like states. Despite its popularity, studies have raised important concerns regarding its theoretical and predictive validity. In my view and that of others, the FST mainly evaluates coping strategies in an inescapable situation. Although it is reasonable to assume that ADs act favoring active coping whereas negative affective states would favor passive coping, this does not mean that only ADs should enhance active coping or that a depression state has developed, respectively. Given its simplicity, proper interpretation of the FST behavior is critically dependent on how FST behavior relates to other behavioral traits. Unfortunately, this issue has been poorly discussed previously. Then, the present review, using a historical perspective, offers information needed to better understand the meaning and limitations of the FST, discusses critical methodological aspects and analyzes the relationship of FST behavior with classical behavioral traits in rodents.
Collapse
Affiliation(s)
- Antonio Armario
- Institut de Neurociències, Animal Physiology Unit (Department of Cellular Biology, Physiology and Immunology), Faculty of Biosciences, Universitat Autònoma de Barcelona, CIBERSAM, Campus Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.
| |
Collapse
|
32
|
Ma Y, He L, Xiang L, Zhang J, Wang J, Zhu W, Cao W, Zhu Y, Gao M, Zhou F, Liu Z. Efficiency comparison of B6(Cg)-Tyr c-2j /J and C57BL/6NTac embryos as hosts for the generation of knockout mice. Transgenic Res 2021; 30:275-281. [PMID: 33844149 PMCID: PMC8169498 DOI: 10.1007/s11248-021-00248-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/26/2021] [Indexed: 10/26/2022]
Abstract
Careful selection of the host embryo is critical to the efficient production of knockout (KO) mice when injecting mouse embryonic stem (mES) cells into blastocysts. B6(Cg)-Tyrc-2j/J (B6 albino) and C57BL/6NTac (B6NTac) strains of mice are widely used to produce host blastocysts for such procedures. Here, we tested these two strains to identify an appropriate match for modified agouti C57BL/6N (JM8A3.N1) mES cells. When comparing blastocyst yield, super-ovulated B6NTac mice produced more injectable blastocysts per female than B6 albino mice (8.2 vs. 5.4). There was no significant difference in birth rate when injected embryos were transferred to the same pseudopregnant recipient strain. However, the live birth rate was significantly higher for B6NTac blastocysts than B6 albino blastocysts (62.7% vs. 50.2%). In addition, the proportion of pups exhibiting high-level and complete chimerism, as identified by coat color, was also significantly higher in the B6NTac strain. There was no obvious difference in the efficiency of germline transmission (GLT) when compared between B6NTac and B6 albino host embryos (61.5% vs. 63.3% for mES clones; 64.5% vs. 67.9% for genes, respectively), thus suggesting that an equivalent GLT rate could be obtained with only a few blastocyst injections for B6NTac embryos. In conclusion, our data indicate that B6NTac blastocysts are a better choice for the microinjection of JM8A3.N1 mES cells than B6 albino blastocysts.
Collapse
Affiliation(s)
- Yu'e Ma
- CAM-SU Genomic Resource Center, Soochow University, Suzhou, 215123, Jiang Su, China
| | - Lei He
- CAM-SU Genomic Resource Center, Soochow University, Suzhou, 215123, Jiang Su, China
| | - Lijie Xiang
- CAM-SU Genomic Resource Center, Soochow University, Suzhou, 215123, Jiang Su, China
| | - Jie Zhang
- CAM-SU Genomic Resource Center, Soochow University, Suzhou, 215123, Jiang Su, China
| | - Jing Wang
- CAM-SU Genomic Resource Center, Soochow University, Suzhou, 215123, Jiang Su, China
| | - Wenjing Zhu
- CAM-SU Genomic Resource Center, Soochow University, Suzhou, 215123, Jiang Su, China
| | - Wenni Cao
- CAM-SU Genomic Resource Center, Soochow University, Suzhou, 215123, Jiang Su, China
| | - Yichen Zhu
- CAM-SU Genomic Resource Center, Soochow University, Suzhou, 215123, Jiang Su, China
| | - Man Gao
- CAM-SU Genomic Resource Center, Soochow University, Suzhou, 215123, Jiang Su, China
| | - Fei Zhou
- CAM-SU Genomic Resource Center, Soochow University, Suzhou, 215123, Jiang Su, China
| | - Zhiwei Liu
- CAM-SU Genomic Resource Center, Soochow University, Suzhou, 215123, Jiang Su, China.
| |
Collapse
|
33
|
Weisheit I, Kroeger JA, Malik R, Wefers B, Lichtner P, Wurst W, Dichgans M, Paquet D. Simple and reliable detection of CRISPR-induced on-target effects by qgPCR and SNP genotyping. Nat Protoc 2021; 16:1714-1739. [PMID: 33597771 DOI: 10.1038/s41596-020-00481-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/09/2020] [Indexed: 01/31/2023]
Abstract
The recent CRISPR revolution has provided researchers with powerful tools to perform genome editing in a variety of organisms. However, recent reports indicate widespread occurrence of unintended CRISPR-induced on-target effects (OnTEs) at the edited site in mice and human induced pluripotent stem cells (iPSCs) that escape standard quality controls. By altering gene expression of targeted or neighbouring genes, OnTEs can severely affect phenotypes of CRISPR-edited cells and organisms and thus lead to data misinterpretation, which can undermine the reliability of CRISPR-based studies. Here we describe a broadly applicable framework for detecting OnTEs in genome-edited cells and organisms after non-homologous end joining-mediated and homology-directed repair-mediated editing. Our protocol enables identification of OnTEs such as large deletions, large insertions, rearrangements or loss of heterozygosity (LOH). This is achieved by subjecting genomic DNA first to quantitative genotyping PCR (qgPCR), which determines the number of intact alleles at the target site using the same PCR amplicon that has been optimized for genotyping. This combination of genotyping and quantitation makes it possible to exclude clones with monoallelic OnTEs and hemizygous editing, which are often mischaracterized as correctly edited in standard Sanger sequencing. Second, occurrence of LOH around the edited locus is detected by genotyping neighbouring single-nucleotide polymorphisms (SNPs), using either a Sanger sequencing-based method or SNP microarrays. All steps are optimized to maximize simplicity and minimize cost to promote wide dissemination and applicability across the field. The entire protocol from genomic DNA extraction to OnTE exclusion can be performed in 6-9 d.
Collapse
Affiliation(s)
- Isabel Weisheit
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, LMU Munich, Planegg-Martinsried, Germany
| | - Joseph A Kroeger
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, LMU Munich, Planegg-Martinsried, Germany
| | - Rainer Malik
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Benedikt Wefers
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Institute of Developmental Genetics (IDG), HelmholtzZentrum München, Neuherberg, Germany
| | - Peter Lichtner
- Core Facility NGS, HelmholtzZentrum München, Neuherberg, Germany
| | - Wolfgang Wurst
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Institute of Developmental Genetics (IDG), HelmholtzZentrum München, Neuherberg, Germany
- Technische Universität München-Weihenstephan, Neuherberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Dominik Paquet
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
- Graduate School of Systemic Neurosciences, LMU Munich, Planegg-Martinsried, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
34
|
Dickson PE, Mittleman G. Environmental enrichment influences novelty reactivity, novelty preference, and anxiety via distinct genetic mechanisms in C57BL/6J and DBA/2J mice. Sci Rep 2021; 11:3928. [PMID: 33594184 PMCID: PMC7887236 DOI: 10.1038/s41598-021-83574-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/04/2021] [Indexed: 11/18/2022] Open
Abstract
Environmental factors such as stress drive the development of drug addiction in genetically vulnerable individuals; the genes underlying this vulnerability are unknown. One strategy for uncovering these genes is to study the impact of environmental manipulation on high-throughput phenotypes that predict drug use and addiction-like behaviors. In the present study, we assessed the viability of this approach by evaluating the relative effects of environmental enrichment and isolation housing on three high-throughput phenotypes known to predict variation on distinct aspects of intravenous drug self-administration. Prior to behavioral testing, male and female C57BL/6J and DBA/2J mice (BXD founders) were housed in enrichment or isolation for ten weeks beginning at weaning. Enrichment significantly reduced novelty reactivity; this effect was significantly more robust in C57BL/6J mice relative to DBA/2J mice. Enrichment significantly reduced novelty preference; this effect was significantly dependent on novel environment characteristics and was significantly more robust in DBA/2J mice relative to C57BL/6J mice. Enrichment significantly increased anxiety; this effect was not strain-dependent. Collectively, these data indicate that (1) environmental enrichment influences novelty reactivity, novelty preference, and anxiety via distinct genetic mechanisms in mice, and (2) the BXD panel can be used to discover the genetic and epigenetic mechanisms underlying this phenomenon.
Collapse
Affiliation(s)
- Price E Dickson
- Department of Psychology, University of Memphis, 400 Innovation Drive, Memphis, TN, 38111, USA.
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Ave., Huntington, WV, 25703, USA.
| | - Guy Mittleman
- Department of Psychology, University of Memphis, 400 Innovation Drive, Memphis, TN, 38111, USA
- Department of Psychological Science, Ball State University, North Quad (NQ), room 104, Muncie, IN, 47306, USA
| |
Collapse
|
35
|
Abstract
The inbred mouse strain C57BL/6 has been widely used as a background strain for spontaneous and induced mutations. Developed in the 1930s, the C57BL/6 strain
diverged into two major groups in the 1950s, namely, C57BL/6J and C57BL/6N, and more than 20 substrains have been established from them worldwide. We previously
reported genetic differences among C57BL/6 substrains in 2009 and 2015. Since then, dozens of reports have been published on phenotypic differences in
behavioral, neurological, cardiovascular, and metabolic traits. Substrains need to be chosen according to the purpose of the study because phenotypic
differences might affect the experimental results. In this paper, we review recent reports of phenotypic and genetic differences among C57BL/6 substrains, focus
our attention on the proper use of C57BL/6 and other inbred strains in the era of genome editing, and provide the life science research community wider
knowledge about this subject.
Collapse
Affiliation(s)
- Kazuyuki Mekada
- Department of Zoology, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan.,Experimental Animal Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Atsushi Yoshiki
- Experimental Animal Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| |
Collapse
|
36
|
Davis CM, Allen AR, Bowles DE. Consequences of space radiation on the brain and cardiovascular system. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:180-218. [PMID: 33902387 DOI: 10.1080/26896583.2021.1891825] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Staying longer in outer space will inevitably increase the health risks of astronauts due to the exposures to galactic cosmic rays and solar particle events. Exposure may pose a significant hazard to space flight crews not only during the mission but also later, when slow-developing adverse effects could finally become apparent. The body of literature examining ground-based outcomes in response to high-energy charged-particle radiation suggests differential effects in response to different particles and energies. Numerous animal and cellular models have repeatedly demonstrated the negative effects of high-energy charged-particle on the brain and cognitive function. However, research on the role of space radiation in potentiating cardiovascular dysfunction is still in its early stages. This review summarizes the available data from studies using ground-based animal models to evaluate the response of the brain and heart to the high-energy charged particles of GCR and SPE, addresses potential sex differences in these effects, and aims to highlight gaps in the current literature for future study.
Collapse
Affiliation(s)
- Catherine M Davis
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Antiño R Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Dawn E Bowles
- Division of Surgical Sciences, Department of Surgery, Duke University, Durham, NC, USA
| |
Collapse
|
37
|
Kunath A, Heiker JT, Kern M, Kosacka J, Flehmig G, Stumvoll M, Kovacs P, Blüher M, Klöting N. Nicotinamide Nucleotide Transhydrogenase (Nnt) is Related to Obesity in Mice. Horm Metab Res 2020; 52:877-881. [PMID: 32629517 DOI: 10.1055/a-1199-2257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The C57BL/6J (B6J) mouse strain has been widely used as a control strain for the study of metabolic diseases and diet induced obesity (DIO). B6J mice carry a spontaneous deletion mutation in the nicotinamide nucleotide transhydrogenase (Nnt) gene eliminating exons 7-11, resulting in expression of a truncated form of Nnt, an enzyme that pumps protons across the inner mitochondrial membrane. It has been proposed that this mutation in B6J mice is associated with epigonadal fat mass and altered sensitivity to diet induced obesity. To define the role of Nnt in the development of diet induced obesity, we generated first backcross (BC1) hybrids of wild type Nnt C57BL/6NTac and mutated Nnt C57BL/6JRj [(C57BL/6NTac×C57BL/6JRj)F1×C57BL/6NTac]. Body weight gain and specific fat-pad depot mass were measured in BC1 hybrids under high fat diet conditions. Both sexes of BC1 hybrids indicate that mice with Nnt wild type allele are highly sensitive to DIO and exhibit higher relative fat mass. In summary, our data indicate that the Nnt mutation in mice is associated with sensitivity to DIO and fat mass.
Collapse
Affiliation(s)
- Anne Kunath
- IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Department of Medicine, Endocrinology and Diabetes, University of Leipzig, Leipzig, Germany
| | - John T Heiker
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| | - Matthias Kern
- Department of Medicine, Endocrinology and Diabetes, University of Leipzig, Leipzig, Germany
| | - Joanna Kosacka
- Department of Medicine, Endocrinology and Diabetes, University of Leipzig, Leipzig, Germany
| | - Gesine Flehmig
- Department of Medicine, Endocrinology and Diabetes, University of Leipzig, Leipzig, Germany
| | - Michael Stumvoll
- Department of Medicine, Endocrinology and Diabetes, University of Leipzig, Leipzig, Germany
| | - Peter Kovacs
- Interdisciplinary Center for Clinical Research, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Department of Medicine, Endocrinology and Diabetes, University of Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| | - Nora Klöting
- IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Department of Medicine, Endocrinology and Diabetes, University of Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| |
Collapse
|
38
|
Pann P, de Angelis MH, Prehn C, Adamski J. Mouse Age Matters: How Age Affects the Murine Plasma Metabolome. Metabolites 2020; 10:metabo10110472. [PMID: 33228074 PMCID: PMC7699431 DOI: 10.3390/metabo10110472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022] Open
Abstract
A large part of metabolomics research relies on experiments involving mouse models, which are usually 6 to 20 weeks of age. However, in this age range mice undergo dramatic developmental changes. Even small age differences may lead to different metabolomes, which in turn could increase inter-sample variability and impair the reproducibility and comparability of metabolomics results. In order to learn more about the variability of the murine plasma metabolome, we analyzed male and female C57BL/6J, C57BL/6NTac, 129S1/SvImJ, and C3HeB/FeJ mice at 6, 10, 14, and 20 weeks of age, using targeted metabolomics (BIOCRATES AbsoluteIDQ™ p150 Kit). Our analysis revealed high variability of the murine plasma metabolome during adolescence and early adulthood. A general age range with minimal variability, and thus a stable metabolome, could not be identified. Age-related metabolomic changes as well as the metabolite profiles at specific ages differed markedly between mouse strains. This observation illustrates the fact that the developmental timing in mice is strain specific. We therefore stress the importance of deliberate strain choice, as well as consistency and precise documentation of animal age, in metabolomics studies.
Collapse
Affiliation(s)
- Patrick Pann
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; (P.P.); (C.P.)
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany;
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Chair of Experimental Genetics, School of Life Science, Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Cornelia Prehn
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; (P.P.); (C.P.)
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; (P.P.); (C.P.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Chair of Experimental Genetics, School of Life Science, Weihenstephan, Technische Universität München, 85354 Freising, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Correspondence:
| |
Collapse
|
39
|
Ronda OAHO, van de Heijning BJM, de Bruin A, Thomas RE, Martini I, Koehorst M, Gerding A, Koster MH, Bloks VW, Jurdzinski A, Mulder NL, Havinga R, van der Beek EM, Reijngoud DJ, Kuipers F, Verkade HJ. Spontaneous liver disease in wild-type C57BL/6JOlaHsd mice fed semisynthetic diet. PLoS One 2020; 15:e0232069. [PMID: 32956351 PMCID: PMC7505464 DOI: 10.1371/journal.pone.0232069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/16/2020] [Indexed: 11/19/2022] Open
Abstract
Mouse models are frequently used to study mechanisms of human diseases. Recently, we observed a spontaneous bimodal variation in liver weight in C57BL/6JOlaHsd mice fed a semisynthetic diet. We now characterized the spontaneous variation in liver weight and its relationship with parameters of hepatic lipid and bile acid (BA) metabolism. In male C57BL/6JOlaHsd mice fed AIN-93G from birth to postnatal day (PN)70, we measured plasma BA, lipids, Very low-density lipoprotein (VLDL)-triglyceride (TG) secretion, and hepatic mRNA expression patterns. Mice were sacrificed at PN21, PN42, PN63 and PN70. Liver weight distribution was bimodal at PN70. Mice could be subdivided into two nonoverlapping groups based on liver weight: 0.6 SD 0.1 g (approximately one-third of mice, small liver; SL), and 1.0 SD 0.1 g (normal liver; NL; p<0.05). Liver histology showed a higher steatosis grade, inflammation score, more mitotic figures and more fibrosis in the SL versus the NL group. Plasma BA concentration was 14-fold higher in SL (p<0.001). VLDL-TG secretion rate was lower in SL mice, both absolutely (-66%, p<0.001) and upon correction for liver weight (-44%, p<0.001). Mice that would later have the SL-phenotype showed lower food efficiency ratios during PN21-28, suggesting the cause of the SL phenotype is present at weaning (PN21). Our data show that approximately one-third of C57BL/6JOlaHsd mice fed semisynthetic diet develop spontaneous liver disease with aberrant histology and parameters of hepatic lipid, bile acid and lipoprotein metabolism. Study designs involving this mouse strain on semisynthetic diets need to take the SL phenotype into account. Plasma lipids may serve as markers for the identification of the SL phenotype.
Collapse
Affiliation(s)
- Onne A. H. O. Ronda
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Alain de Bruin
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Dutch Molecular Pathology Center, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Rachel E. Thomas
- Dutch Molecular Pathology Center, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ingrid Martini
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martijn Koehorst
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Albert Gerding
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mirjam H. Koster
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vincent W. Bloks
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Angelika Jurdzinski
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Niels L. Mulder
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rick Havinga
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Eline M. van der Beek
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Danone Nutricia Research, Uppsalalaan, Utrecht, The Netherlands
| | - Dirk-Jan Reijngoud
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Henkjan J. Verkade
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
40
|
C57BL/6J substrain differences in response to high-fat diet intervention. Sci Rep 2020; 10:14052. [PMID: 32820201 PMCID: PMC7441320 DOI: 10.1038/s41598-020-70765-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
C57BL/6J-related mouse strains are widely used animal models for diet-induced obesity (DIO). Multiple vendors breed C57BL/6J-related substrains which may introduce genetic drift and environmental confounders such as microbiome differences. To address potential vendor/substrain specific effects, we compared DIO of C57BL/6J-related substrains from three different vendors: C57BL/6J (Charles Rivers), C57BL/6JBomTac (Taconic Bioscience) and C57BL/6JRj (Janvier). After local acclimatization, DIO was induced by either a high-fat diet (HFD, 60% energy from fat) or western diet (WD, 42% energy from fat supplemented with fructose in the drinking water). All three groups on HFD gained a similar amount of total body weight, yet the relative amount of fat percentage and mass of inguinal- and epididymal white adipose tissue (iWAT and eWAT) was lower in C57BL/6JBomTac compared to the two other C57BL/6J-releated substrains. In contrast to HFD, the three groups on WD responded differently in terms of body weight gain, where C57BL/6J was particularly prone to WD. This was associated with a relative higher amount of eWAT, iWAT, and liver triglycerides. Although the HFD and WD had significant impact on the microbiota, we did not observe any major differences between the three groups of mice. Together, these data demonstrate significant differences in HFD- and WD-induced adiposity in C57BL/6J-related substrains, which should be considered in the design of animal DIO studies.
Collapse
|
41
|
Tam WY, Cheung KK. Phenotypic characteristics of commonly used inbred mouse strains. J Mol Med (Berl) 2020; 98:1215-1234. [PMID: 32712726 DOI: 10.1007/s00109-020-01953-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/16/2022]
Abstract
The laboratory mouse is the most commonly used mammalian model for biomedical research. An enormous number of mouse models, such as gene knockout, knockin, and overexpression transgenic mice, have been created over the years. A common practice to maintain a genetically modified mouse line is backcrossing with standard inbred mice over several generations. However, the choice of inbred mouse for backcrossing is critical to phenotypic characterization because phenotypic variabilities are often observed between mice with different genetic backgrounds. In this review, the major features of commonly used inbred mouse lines are discussed. The aim is to provide information for appropriate selection of inbred mouse lines for genetic and behavioral studies.
Collapse
Affiliation(s)
- Wing Yip Tam
- University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Kwok-Kuen Cheung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China.
| |
Collapse
|
42
|
Garancher A, Suzuki H, Haricharan S, Chau LQ, Masihi MB, Rusert JM, Norris PS, Carrette F, Romero MM, Morrissy SA, Skowron P, Cavalli FMG, Farooq H, Ramaswamy V, Jones SJM, Moore RA, Mungall AJ, Ma Y, Thiessen N, Li Y, Morcavallo A, Qi L, Kogiso M, Du Y, Baxter P, Henderson JJ, Crawford JR, Levy ML, Olson JM, Cho YJ, Deshpande AJ, Li XN, Chesler L, Marra MA, Wajant H, Becher OJ, Bradley LM, Ware CF, Taylor MD, Wechsler-Reya RJ. Tumor necrosis factor overcomes immune evasion in p53-mutant medulloblastoma. Nat Neurosci 2020; 23:842-853. [PMID: 32424282 PMCID: PMC7456619 DOI: 10.1038/s41593-020-0628-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/20/2020] [Indexed: 12/18/2022]
Abstract
Many immunotherapies act by enhancing the ability of cytotoxic T cells to kill tumor cells. Killing depends on T cell recognition of antigens presented by class I major histocompatibility complex (MHC-I) proteins on tumor cells. In this study, we showed that medulloblastomas lacking the p53 tumor suppressor do not express surface MHC-I and are therefore resistant to immune rejection. Mechanistically, this is because p53 regulates expression of the peptide transporter Tap1 and the aminopeptidase Erap1, which are required for MHC-I trafficking to the cell surface. In vitro, tumor necrosis factor (TNF) or lymphotoxin-β receptor agonist can rescue expression of Erap1, Tap1 and MHC-I on p53-mutant tumor cells. In vivo, low doses of TNF prolong survival and synergize with immune checkpoint inhibitors to promote tumor rejection. These studies identified p53 as a key regulator of immune evasion and suggest that TNF could be used to enhance sensitivity of tumors to immunotherapy.
Collapse
Affiliation(s)
- Alexandra Garancher
- Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Hiromichi Suzuki
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Svasti Haricharan
- Tumor Microenvironment and Cancer Immunology Program, NCI-Designated Cancer Center and the Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Lianne Q Chau
- Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Meher Beigi Masihi
- Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jessica M Rusert
- Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Paula S Norris
- Tumor Microenvironment and Cancer Immunology Program, NCI-Designated Cancer Center and the Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Florent Carrette
- Tumor Microenvironment and Cancer Immunology Program, NCI-Designated Cancer Center and the Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Megan M Romero
- Department of Pediatrics, Northwestern University, Chicago, IL, USA
| | - Sorana A Morrissy
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
- Dept. of Biochemistry and Molecular Biology, Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Patryk Skowron
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Florence M G Cavalli
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Hamza Farooq
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Vijay Ramaswamy
- Division of Haematology/Oncology and Department of Paediatrics, Hospital for Sick Children, Toronto, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Yussanne Ma
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Nina Thiessen
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Yisu Li
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Alaide Morcavallo
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Lin Qi
- Brain Tumor Program, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University, Chicago, IL, USA
| | - Mari Kogiso
- Brain Tumor Program, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yuchen Du
- Brain Tumor Program, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University, Chicago, IL, USA
| | - Patricia Baxter
- Brain Tumor Program, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jacob J Henderson
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - John R Crawford
- Departments of Pediatrics and Neurosciences, University of California, San Diego - Rady Children's Hospital, San Diego, CA, USA
| | - Michael L Levy
- Department of Neurosurgery, University of California San Diego - Rady Children's Hospital, San Diego, CA, USA
| | - James M Olson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Yoon-Jae Cho
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Aniruddha J Deshpande
- Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Xiao-Nan Li
- Brain Tumor Program, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University, Chicago, IL, USA
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Oren J Becher
- Department of Pediatrics, Northwestern University, Chicago, IL, USA
| | - Linda M Bradley
- Tumor Microenvironment and Cancer Immunology Program, NCI-Designated Cancer Center and the Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Carl F Ware
- Tumor Microenvironment and Cancer Immunology Program, NCI-Designated Cancer Center and the Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Robert J Wechsler-Reya
- Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
43
|
A combination of genetics and microbiota influences the severity of the obesity phenotype in diet-induced obesity. Sci Rep 2020; 10:6118. [PMID: 32273571 PMCID: PMC7145845 DOI: 10.1038/s41598-020-63340-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/30/2020] [Indexed: 12/03/2022] Open
Abstract
Obesity has emerged as a major global health problem and is associated with various diseases, such as metabolic syndrome, type 2 diabetes mellitus, and cardiovascular diseases. The inbred C57BL/6 mouse strain is often used for various experimental investigations, such as metabolic research. However, over time, genetically distinguishable C57BL/6 substrains have evolved. The manifestation of genetic alterations has resulted in behavioral and metabolic differences. In this study, a comparison of diet-induced obesity in C57BL/6JHanZtm, C57BL/6NCrl and C57BL/6 J mice revealed several metabolic and immunological differences such as blood glucose level and cytokine expression, respectively, among these C57BL/6 substrains. For example, C57BL/6NCrl mice developed the most pronounced adiposity, whereas C57BL/6 J mice showed the highest impairment in glucose tolerance. Moreover, our results indicated that the immunological phenotype depends on the intestinal microbiota, as the cell subset composition of the colon was similar in obese ex-GF B6NRjB6JHanZtm and obese B6JHanZtm mice. Phenotypic differences between C57BL/6 substrains are caused by a complex combination of genetic and microbial alterations. Therefore, in performing metabolic research, considering substrain-specific characteristics, which can influence the course of study, is important. Moreover, for unbiased comparison of data, the entire strain name should be shared with the scientific community.
Collapse
|
44
|
Bruna J, Alberti P, Calls-Cobos A, Caillaud M, Damaj MI, Navarro X. Methods for in vivo studies in rodents of chemotherapy induced peripheral neuropathy. Exp Neurol 2020; 325:113154. [PMID: 31837318 PMCID: PMC7105293 DOI: 10.1016/j.expneurol.2019.113154] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022]
Abstract
Peripheral neuropathy is one of the most common, dose limiting, and long-lasting disabling adverse events of chemotherapy treatment. Unfortunately, no treatment has proven efficacy to prevent this adverse effect in patients or improve the nerve regeneration, once it is established. Experimental models, particularly using rats and mice, are useful to investigate the mechanisms related to axonal or neuronal degeneration and target loss of function induced by neurotoxic drugs, as well as to test new strategies to prevent the development of neuropathy and to improve functional restitution. Therefore, objective and reliable methods should be applied for the assessment of function and innervation in adequately designed in vivo studies of CIPN, taking into account the impact of age, sex and species/strains features. This review gives an overview of the most useful methods to assess sensory, motor and autonomic functions, electrophysiological and morphological tests in rodent models of peripheral neuropathy, focused on CIPN. We include as well a proposal of protocols that may improve the quality and comparability of studies undertaken in different laboratories. It is recommended to apply more than one functional method for each type of function, and to perform parallel morphological studies in the same targets and models.
Collapse
Affiliation(s)
- Jordi Bruna
- Unit of Neuro-Oncology, Hospital Universitari de Bellvitge, Institut Català d'Oncologia L'Hospitalet, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, University Milano Bicocca, Monza, Italy; NeuroMI (Milan Center for Neuroscience), Milan, Italy
| | - Aina Calls-Cobos
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Martial Caillaud
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.
| |
Collapse
|
45
|
Yang M, Zhang C, Hansen SA, Mitchell WJ, Zhang MZ, Zhang S. Antimicrobial efficacy and toxicity of novel CAMPs against P. aeruginosa infection in a murine skin wound infection model. BMC Microbiol 2019; 19:293. [PMID: 31842727 PMCID: PMC6915932 DOI: 10.1186/s12866-019-1657-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 11/20/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Treatment of P. aeruginosa wound infection is challenging due to its inherent and acquired resistance to many conventional antibiotics. Cationic antimicrobial peptides (CAMPs) with distinct modes of antimicrobial action have been considered as the next-generation therapeutic agents. In the present study, a murine skin surgical wound infection model was used to evaluate the in vivo toxicity and efficacy of two newly designed antimicrobial peptides (CAMP-A and CAMP-B), as chemotherapeutic agents to combat P. aeruginosa infection. RESULTS In the first trial, topical application of CAMPs on the wounds at a dose equivalent to 4 × MIC for 7 consecutive days did not cause any significant changes in the physical activities, hematologic and plasma biochemical parameters, or histology of systemic organs of the treated mice. Daily treatment of infected wounds with CAMP-A and CAMP-B for 5 days at a dose equivalent to 2× MIC resulted in a significant reduction in wound bacterial burden (CAMP-A: 4.3 log10CFU/g of tissue and CAMP-B: 5.8 log10CFU/g of tissue), compared to that of the mock-treated group (8.1 log10CFU/g of tissue). Treatment with CAMPs significantly promoted wound closure and induced epidermal cell proliferation. Topical application of CAMP-A on wounds completely prevented systemic dissemination of P. aeruginosa while CAMP-B blocked systemic infection in 67% of mice and delayed the onset of systemic infection by at least 2 days in the rest of the mice (33%). In a second trial, daily application of CAMP-A at higher doses (5× MIC and 50× MIC) didn't show any significant toxic effect on mice and the treatments with CAMP-A further reduced wound bacterial burden (5× MIC: 4.5 log10CFU/g of tissue and 50× MIC: 3.8 log10CFU/g of tissue). CONCLUSIONS The data collectively indicated that CAMPs significantly reduced wound bacterial load, promoted wound healing, and prevented hepatic dissemination. CAMP-A is a promising alternative to commonly used antibiotics to treat P. aeruginosa skin infection.
Collapse
Affiliation(s)
- Ming Yang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211 USA
| | - Chunye Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211 USA
| | - Sarah A. Hansen
- Office of Animal Resources, University of Missouri, Columbia, MO 65211 USA
| | - William J. Mitchell
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211 USA
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211 USA
| | - Michael Z. Zhang
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211 USA
- Department of Biomedical Science, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211 USA
| | - Shuping Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211 USA
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211 USA
| |
Collapse
|
46
|
Radaelli E, Santagostino SF, Sellers RS, Brayton CF. Immune Relevant and Immune Deficient Mice: Options and Opportunities in Translational Research. ILAR J 2019; 59:211-246. [PMID: 31197363 PMCID: PMC7114723 DOI: 10.1093/ilar/ily026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/03/2018] [Indexed: 12/29/2022] Open
Abstract
In 1989 ILAR published a list and description of immunodeficient rodents used in research. Since then, advances in understanding of molecular mechanisms; recognition of genetic, epigenetic microbial, and other influences on immunity; and capabilities in manipulating genomes and microbiomes have increased options and opportunities for selecting mice and designing studies to answer important mechanistic and therapeutic questions. Despite numerous scientific breakthroughs that have benefitted from research in mice, there is debate about the relevance and predictive or translational value of research in mice. Reproducibility of results obtained from mice and other research models also is a well-publicized concern. This review summarizes resources to inform the selection and use of immune relevant mouse strains and stocks, aiming to improve the utility, validity, and reproducibility of research in mice. Immune sufficient genetic variations, immune relevant spontaneous mutations, immunodeficient and autoimmune phenotypes, and selected induced conditions are emphasized.
Collapse
Affiliation(s)
- Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sara F Santagostino
- Department of Safety Assessment, Genentech, Inc., South San Francisco, California
| | | | - Cory F Brayton
- Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
47
|
Fetal Weight Outcomes in C57BL/6J and C57BL/6NCrl Mice after Oral Colonization with Porphyromonas gingivalis. Infect Immun 2019; 87:IAI.00280-19. [PMID: 31331955 DOI: 10.1128/iai.00280-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/13/2019] [Indexed: 12/15/2022] Open
Abstract
Porphyromonas gingivalis is considered a keystone pathogen that contributes to the initiation and progression of periodontitis in humans. P. gingivalis has also been detected in human placentas associated with adverse pregnancy outcomes. The spread of P. gingivalis from the oral cavity to the reproductive tract thus represents a potential mechanism whereby periodontitis can lead to adverse pregnancy outcomes. In a murine model of pregnancy and oral infection with P. gingivalis, C57BL/6J mice developed low fetal weight, whereas C57BL/6NCrl mice did not. Although C57BL/6NCrl mice harbor segmented filamentous bacteria that drive a Th17 response, fetal weight was independent of frequency of Th17 or Th1 in either substrain. Low fetal weight was instead correlated with increasing amounts of P. gingivalis DNA in the placentas of the C57BL/6J dams. In contrast, fetal weight in C57BL/6NCrl mice was independent of P. gingivalis in the placenta. Differences in genetics or microbiome that influence the ability of P. gingivalis to colonize the placenta may drive differential fetal weight outcomes between C57BL/6J and C57BL/6NCrl mice and, potentially, between diverse human populations.
Collapse
|
48
|
Shoji H, Miyakawa T. Increased depression-related behavior during the postpartum period in inbred BALB/c and C57BL/6 strains. Mol Brain 2019; 12:70. [PMID: 31399102 PMCID: PMC6688268 DOI: 10.1186/s13041-019-0490-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 07/30/2019] [Indexed: 11/17/2022] Open
Abstract
Pregnancy and lactation are characterized by dramatic changes in the endocrine system and brain in mammalian females. These changes, with stress before pregnancy, are potential risk factors for the development of postpartum depression (PPD). A valid animal model of PPD is needed to understand the neurobiological basis of the depressive state of females. To explore a mouse model of PPD, we first assessed anxiety-like and depression-related behaviors in nulliparous (virgin), nonlactating primiparous, and lactating primiparous females in four inbred strains of mice (C57BL/6J, C57BL/6JJcl, BALB/cAnNCrlCrlj, and BALB/cAJcl). Pups from the nonlactating female group were removed one day after parturition to examine the effects of physical interaction with pups on the postpartum behaviors. Second, we investigated the additional effects of prepregnancy stress (restraint stress for 6 h/day for 21 days) on postpartum behaviors in the BALB/cAJcl strain. We found that females of the two BALB/c substrains showed decreased locomotor activity and increased anxiety-like and depression-related behaviors compared with females of the two C57BL/6 substrains. Behavioral differences were also observed between the two substrains of each strain. Additionally, pregnancy- and lactation-dependent behavioral differences were found in some strains: lactating BALB/cAJcl females traveled shorter distance than the females of the other reproductive state groups, while nonlactating and lactating BALB/cAJcl and C57BL/6J females showed increased depression-related behavior compared with nulliparous females. Lactating BALB/cAJcl and C57BL/6JJcl females exhibited decreased sucrose preference or anhedonia-like behavior compared with nulliparous and nonlactating females, although these results did not reach statistical significance after correction for multiple testing. An additional independent experiment replicated the marked behavioral changes in lactating BALB/cAJcl females. Moreover, increased anxiety-like behavior was observed in lactating BALB/cAJcl females that experienced prepregnancy stress. These results suggest genetic contributions to the regulation of anxiety-like and depression-related behaviors in female mice. Furthermore, this study suggests that pregnancy and lactation cause decreased locomotor activity and increased depression-related behaviors, which was consistently found in our results, and that prepregnancy stress enhances anxiety-like behavior in the BALB/cAJcl strain. The inbred strain of female mice may be used as a potential model of PPD to further study the genetic and neurobiological mechanisms underlying the development of this disorder.
Collapse
Affiliation(s)
- Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| |
Collapse
|
49
|
Hövel FFV, Leiter I, Rumpel R, Langenhagen A, Wedekind D, Häger C, Bleich A, Palme R, Grothe C. FGF-2 isoforms influence the development of dopaminergic neurons in the murine substantia nigra, but not anxiety-like behavior, stress susceptibility, or locomotor behavior. Behav Brain Res 2019; 374:112113. [PMID: 31381976 DOI: 10.1016/j.bbr.2019.112113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Loss of fibroblast growth factor 2 (FGF-2) is responsible for the development of an increased number of dopaminergic (DA) neurons in the murine substantia nigra pars compacta (SNpc). Furthermore, dysregulation of its expression patterns within the central nervous system (CNS) is associated with behavioral abnormalities in mice. Until now, the contributions of the individual FGF-2 isoforms (one low (LMW) and two high molecular weight (HMW) isoforms) in the CNS are elusive. METHODS To unravel the specific effects of FGF-2 isoforms, we compared three knockout mouse lines, one only deficient for LMW, one deficient for HMW and another lacking both isoforms, regarding DA neuronal development. With this regard, three time points of ontogenic development of the SNpc were stereologically investigated. Furthermore, behavioral aspects were analyzed in young adult mice, supplemented by corticosterone measurements. RESULTS Juvenile mice lacking either LMW or HMW develop equal supernumerary DA neuron numbers in the SNpc. Compensatory increased LMW expression is observed in animals lacking HMW. Meanwhile, no knockout mouse line demonstrated changes in anxiety-like behavior, stress susceptibility, or locomotor behavior. CONCLUSIONS Both FGF-2 isoforms crucially influence DA neuronal development in the murine SNpc. However, absence of LMW or HMW alone alters neither anxiety-like nor locomotor behavior, or stress susceptibility. Therefore, FGF-2 is not a determinant and causative factor for behavioral alterations alone, but probably in combination with appropriate conditions, like environmental or genetic factors.
Collapse
Affiliation(s)
- Friederike Freiin von Hövel
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hanover, Germany; Center for Systems Neuroscience (ZSN), Hanover, Germany
| | - Ina Leiter
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hanover, Germany; Center for Systems Neuroscience (ZSN), Hanover, Germany
| | - Regina Rumpel
- Institute for Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hanover, Germany
| | - Alina Langenhagen
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hanover, Germany; Center for Systems Neuroscience (ZSN), Hanover, Germany
| | - Dirk Wedekind
- Institute for Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hanover, Germany
| | - Christine Häger
- Institute for Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hanover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hanover, Germany
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Claudia Grothe
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hanover, Germany; Center for Systems Neuroscience (ZSN), Hanover, Germany.
| |
Collapse
|
50
|
Kuony A, Ikkala K, Kalha S, Magalhães AC, Pirttiniemi A, Michon F. Ectodysplasin-A signaling is a key integrator in the lacrimal gland-cornea feedback loop. Development 2019; 146:dev.176693. [PMID: 31221639 DOI: 10.1242/dev.176693] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 06/17/2019] [Indexed: 01/26/2023]
Abstract
A lack of ectodysplasin-A (Eda) signaling leads to dry eye symptoms, which have so far only been associated with altered Meibomian glands. Here, we used loss-of-function (Eda -/-) mutant mice to unravel the impact of Eda signaling on lacrimal gland formation, maturation and subsequent physiological function. Our study demonstrates that Eda activity is dispensable during lacrimal gland embryonic development. However, using a transcriptomic approach, we show that the Eda pathway is necessary for proper cell terminal differentiation in lacrimal gland epithelium and correlated with modified expression of secreted factors commonly found in the tear film. Finally, we discovered that lacrimal glands present a bilateral reduction of Eda signaling activity in response to unilateral corneal injury. This observation hints towards a role for the Eda pathway in controlling the switch from basal to reflex tears, to support corneal wound healing. Collectively, our data suggest a crucial implication of Eda signaling in the cornea-lacrimal gland feedback loop, both in physiological and pathophysiological conditions. Our findings demonstrate that Eda downstream targets could help alleviate dry eye symptoms.
Collapse
Affiliation(s)
- Alison Kuony
- Institute of Biotechnology, Helsinki Institute of Life Science, Developmental Biology Program, University of Helsinki, 00790 Helsinki, Finland.,Institut Jacques Monod, Université Denis Diderot - Paris 7, CNRS UMR 7592, Buffon building, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | - Kaisa Ikkala
- Institute of Biotechnology, Helsinki Institute of Life Science, Developmental Biology Program, University of Helsinki, 00790 Helsinki, Finland
| | - Solja Kalha
- Institute of Biotechnology, Helsinki Institute of Life Science, Developmental Biology Program, University of Helsinki, 00790 Helsinki, Finland
| | - Ana Cathia Magalhães
- Institute of Biotechnology, Helsinki Institute of Life Science, Developmental Biology Program, University of Helsinki, 00790 Helsinki, Finland.,Institute for Neurosciences of Montpellier, INSERM UMR1051, University of Montpellier, 34295 Montpellier, France
| | - Anniina Pirttiniemi
- Institute of Biotechnology, Helsinki Institute of Life Science, Developmental Biology Program, University of Helsinki, 00790 Helsinki, Finland
| | - Frederic Michon
- Institute of Biotechnology, Helsinki Institute of Life Science, Developmental Biology Program, University of Helsinki, 00790 Helsinki, Finland .,Institute for Neurosciences of Montpellier, INSERM UMR1051, University of Montpellier, 34295 Montpellier, France
| |
Collapse
|