1
|
Žaltauskaitė J, Miškelytė D, Sujetovienė G, Dikšaitytė A, Kacienė G, Januškaitienė I, Dagiliūtė R. Comprehensive tetracycline, ciprofloxacin and sulfamethoxazole toxicity evaluation to earthworm Dendrobaena veneta through life-cycle, behavioral and biochemical parameters. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 113:104609. [PMID: 39667546 DOI: 10.1016/j.etap.2024.104609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Veterinary antibiotics are widely spread in the environment, however, the knowledge about their impact on soil key species is still limited. This study evaluated the short-term and long-term effects of tetracycline (TC), ciprofloxacin (CIP) and sulfamethoxazole (SMX) (1-500 mg kg) on earthworm Dendrobaena veneta by measuring multiple parameters (survival, growth, reproduction, behavior and biochemical responses). Neither antibiotic induced acute toxicity and low mortality was observed after chronic exposure. TC and CIP had a negligible effect on the earthworm's weight from the 6th week of exposure, SMX inhibited the earthworm growth when was present in the range of 50-500 mg kg-1. In parallel, SMX reduced earthworm reproduction at environmentally relevant concentrations. Antibiotics altered superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and gluthathione-S-transferase (GST) activities and induced lipid peroxidation. Overall, earthworms showed no apparent acute response at environmentally relevant concentrations except for avoidance behavior; after long-term exposure earthworms experienced biochemical, physiological, and reproductive impairments and reduced survival at high soil contamination.
Collapse
Affiliation(s)
- Jūratė Žaltauskaitė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto 10-307, Kaunas district, Akademija LT-53361, Lithuania.
| | - Diana Miškelytė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto 10-307, Kaunas district, Akademija LT-53361, Lithuania
| | - Gintarė Sujetovienė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto 10-307, Kaunas district, Akademija LT-53361, Lithuania
| | - Austra Dikšaitytė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto 10-307, Kaunas district, Akademija LT-53361, Lithuania
| | - Giedrė Kacienė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto 10-307, Kaunas district, Akademija LT-53361, Lithuania
| | - Irena Januškaitienė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto 10-307, Kaunas district, Akademija LT-53361, Lithuania
| | - Renata Dagiliūtė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto 10-307, Kaunas district, Akademija LT-53361, Lithuania
| |
Collapse
|
2
|
Chiappero MF, Rossetti MR, Moreno ML, Pérez-Harguindeguy N. A global meta-analysis reveals a consistent reduction of soil fauna abundance and richness as a consequence of land use conversion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173822. [PMID: 38906293 DOI: 10.1016/j.scitotenv.2024.173822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/23/2024]
Abstract
Land use conversion of natural to production systems is one of the most important threats to belowground communities and to the key ecosystem processes in which they are involved. Available literature shows positive, negative, and neutral effects of land use changes on soil fauna communities; and these varying effects may be due to different characteristics of natural and production systems and soil organisms. We hypothesize that land conversion from high to low plant biomass, diversity, and structural complexity systems may have the most negative impacts on soil fauna. Here, we performed the first meta-analysis evaluating the overall effects of land use conversion on soil invertebrate communities and the influence of factors related to characteristics of natural and production systems, of soil fauna communities and methods. We compiled a dataset of 260 publications that yielded 1732 observations for soil fauna abundance and 459 for richness. Both abundance and richness showed a global decline as a consequence of natural land conversion to production systems. These negative effects were stronger, in general, when the conversion occurred in tropical and subtropical sites, and when natural systems were replaced by croplands, pastures and grazing systems. The effects of land use conversion also depended on soil property changes. In addition, the abundance of most taxa and richness of Acari and Collembola were strongly reduced by land use changes while Annelida were not affected. The highest reduction in abundance was recorded in omnivores and predators, whereas detritivores showed a reduction in richness. Our meta-analysis shows consistent evidence of soil biodiversity decline due to different land use changes and the partial dependence of those effects on the magnitude of changes in vegetation. These findings stress the need to continue developing production modes that effectively preserve soil biodiversity and ecosystem processes, without hampering food production.
Collapse
Affiliation(s)
- María Fernanda Chiappero
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET-Universidad Nacional de Córdoba, Argentina
| | - María Rosa Rossetti
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET-Universidad Nacional de Córdoba, Argentina.
| | - María Laura Moreno
- Instituto de Ecorregiones Andinas (INECOA), CONICET - Universidad Nacional de Jujuy, Argentina
| | - Natalia Pérez-Harguindeguy
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET-Universidad Nacional de Córdoba, Argentina; Departamento de Diversidad Biológica y Ecología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Argentina
| |
Collapse
|
3
|
Wang T, Zhang L, Yao Z, Jin L, Zhang W, Feng X, Ma W, Lin M. Response of earthworm enzyme activity and gut microbial functional diversity to carbendazim in the manured soil. Front Microbiol 2024; 15:1461880. [PMID: 39411442 PMCID: PMC11473445 DOI: 10.3389/fmicb.2024.1461880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
The effect of pesticide pollution on environmental microorganisms in soil has become the focus of widespread concern in society today. The response of earthworm gut and surrounding soil microbial functional diversity and enzyme activity to carbendazim (CBD) was studied in a soil-earthworm ecosystem amended with manure. In the experiment, CBD was added to the manured soil (MS). Meanwhile, the pesticide treatment without manure and the control treatment without pesticides were also set up. The activities of catalase (CAT) and acetylcholinesterase (AChE) were measured to evaluate the toxicity of CBD. The Biolog method was used to assess the functional diversity of the microbial community. In the 2 mg/kg CBD treatment, earthworm AChE activity decreased significantly in the MS after 14 d, which occurred earlier than in the un-manured soil (NS). The changes of earthworm CAT activity in the pesticide treatments showed a trend of initially increasing and then maintaining at a high activity level. However, the CAT activities at 28 d in the manured soils were clearly lower than that at 7 d for both the CBD treatments, while they remained stable in the control treatments. The carbon source utilization, Simpson index, Shannon index, and McIntosh index of soil microorganisms in the MS treatments were significantly higher than those in the NS treatments. The overall activity of earthworm gut microorganisms in the MS treated with 2 mg/kg CBD was higher than that in the control. Also, CBD treatment (2 mg/kg) increased significantly the Simpson index and McIntosh index of earthworm gut microorganisms. The results indicated that the enzyme activities in the manured soils increased before 7 d for the pesticide treatments. Furthermore, exposure to CBD at a high concentration in the MS not only led to the earlier inhibition of earthworm enzyme activity but also significantly improved the overall activity of earthworm gut microorganisms and microbial functional diversity. This study revealed the ecotoxicological effects of earthworms in response to pesticide stress following the use of organic fertilizers under facility environmental conditions, which can provide a theoretical basis for the remediation of pesticide pollution in soil in the future.
Collapse
Affiliation(s)
- Tianyu Wang
- Key Laboratory of Fruit and Vegetable Function and Health Research of Taizhou, Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| | - Liping Zhang
- Key Laboratory of Fruit and Vegetable Function and Health Research of Taizhou, Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| | - Zhoulin Yao
- Key Laboratory of Fruit and Vegetable Function and Health Research of Taizhou, Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| | - Longfei Jin
- Key Laboratory of Fruit and Vegetable Function and Health Research of Taizhou, Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| | - Weiqing Zhang
- Key Laboratory of Fruit and Vegetable Function and Health Research of Taizhou, Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| | - Xianju Feng
- Key Laboratory of Fruit and Vegetable Function and Health Research of Taizhou, Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| | - Weibin Ma
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Mei Lin
- Key Laboratory of Fruit and Vegetable Function and Health Research of Taizhou, Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| |
Collapse
|
4
|
Ladumor R, Pandya H, Thakkar M, Mehta D, Paithankar P, Alfarraj S, Ansari MJ, Pandya P, Yadav VK, Sahoo DK, Patel A. Environmentally relevant concentrations of nickel and imidacloprid induce reproductive toxicity in earthworm (Eisenia fetida fetida). Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109964. [PMID: 38885748 DOI: 10.1016/j.cbpc.2024.109964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/02/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
The current research investigates individual and combined toxicity effects of nickel (Ni) and imidacloprid (IMI) on earthworm species Eisenia fetida fetida. Employing standardized toxicity parameters, we assessed the impact of environmentally relevant concentrations (ERC) of Ni, IMI, and their mixtures on key biomarkers and reproductive fitness of earthworms. Our findings reveal concentration-dependent responses with discernible adverse effects on physiological parameters. The ERC obtained for Ni was 0.095 ppm, and for imidacloprid was 0.01 ppm. Two concentrations (ERC and 1/5th) of both toxicants (individually and in combinations) were further given for 14 days, and parameters like avoidance behaviour, antioxidants, histology, and metabolomic profile were observed. The behaviour of earthworms was noted, where at 24-48 h, it was found to be in control soil, while later, at 72-96 h, they migrated to toxicants-treated soil. Levels of antioxidants (superoxide dismutase, catalase, reduced glutathione, ascorbic acid), lipid peroxidation, and lactate dehydrogenase were elevated in the testis, spermatheca, ovary, and prostate gland in a high concentration of Ni + IMI. Histological studies showed more vacuolization and disruption of epithelium that was increased in the prostate gland of the Ni + IMI high group, decreased number of spermatids, and damaged cell architecture was noted in testis and spermatheca of the Ni + IMI high group. The highest number of metabolites was found in Ni exposed group (181), followed by IMI (131) and Control (125). Thus, this study sheds light on the ecotoxicological effects of combinational exposure of these contaminants on an essential soil-dwelling organism, where IMI was more toxic than Ni, and both toxicants decreased earthworm reproductive fecundity.
Collapse
Affiliation(s)
- Rahul Ladumor
- TREE lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat 391410, India
| | - Helly Pandya
- TREE lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat 391410, India
| | - Mansi Thakkar
- TREE lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat 391410, India
| | - Drashti Mehta
- TREE lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat 391410, India
| | - Priya Paithankar
- TREE lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat 391410, India
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), 244001, India
| | - Parth Pandya
- TREE lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat 391410, India.
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India.
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India.
| |
Collapse
|
5
|
Li S, Wang Z, Gao N, Niu X, Zhu B, Xu L, Xue W. Assessment of toxic effects of thallium on the earthworm Eisenia fetida using the biomarker response index. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1405-1416. [PMID: 38979770 DOI: 10.1039/d4em00253a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Thallium (Tl), though not essential for biological systems, is widely used in industrial activities, resulting in soil pollution and adverse effects on soil biota. Systematic toxicological studies on Tl, especially concerning soil organisms, are relatively rare. This research evaluates the toxic effects of Tl on earthworms by measuring oxidative stress biomarkers, such as superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), malondialdehyde (MDA), and 8-hydroxydeoxyguanosine (8-OHdG), and by assessing the expression of functional genes, such as heat shock protein 70 (Hsp70), metallothionein (MT), and annetocin (ANN). Additionally, this study employs the Biomarker Response Index (BRI) and two-way ANOVA to comprehensively assess the cumulative toxicity of Tl in earthworms. The findings indicate that Tl exposure significantly exacerbates oxidative stress and cellular damage in earthworms, particularly under conditions of high concentration and prolonged exposure. BRI results demonstrate a continuous decline in the physiological state of earthworms with increasing Tl concentration and exposure duration. Two-way ANOVA reveals significant dose-responsive increases in SOD and CAT activities, as well as in ANN gene expression. Apart from GST activity, other biomarkers significantly increased over time, and the changes in biomarkers such as SOD, CAT, MDA, and 8-OHdG were significantly influenced by dose and time. LSD post hoc tests show significant effects of dose, time, and their interactions on all biomarkers except for GST. These findings are valuable for gaining a deeper understanding of the ecological risks of Tl in soil environments and its potential threats to soil biota, aiding in the management of ecological risks associated with Tl-contaminated soils.
Collapse
Affiliation(s)
- Shuai Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, No. 1000 Fengming Road, Jinan 250101, China.
| | - Zhifeng Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, No. 1000 Fengming Road, Jinan 250101, China.
| | - Nan Gao
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, No. 1000 Fengming Road, Jinan 250101, China.
| | - Xiaoyu Niu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, No. 1000 Fengming Road, Jinan 250101, China.
| | - Benteng Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, No. 1000 Fengming Road, Jinan 250101, China.
| | - Lusheng Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, No. 1000 Fengming Road, Jinan 250101, China.
| | - Weina Xue
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, No. 1000 Fengming Road, Jinan 250101, China.
| |
Collapse
|
6
|
Chen H, Yang L, Zhao S, Xu H, Zhang Z. Long-term toxic effects of iron-based metal-organic framework nanopesticides on earthworm-soil microorganism interactions in the soil environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170146. [PMID: 38278247 DOI: 10.1016/j.scitotenv.2024.170146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
With the widespread use of controlled-release nanopesticides in field conditions, the interactions between these nanopesticides and biological systems are complex and highly uncertain. The toxicity of iron-based metal organic frameworks (CF@MIL-101-SL) loaded with chlorfenapyr (CF) to terrestrial invertebrate earthworms in filter paper and soil environments and the potential mechanisms of interactions in the nanopesticide-earthworm-cornfield soil microorganism system were investigated for the first time. The results showed that CF@MIL-101-SL was more poisonous to earthworms in the contact filter paper test than suspension concentrate of CF (CF-SC), and conversely, CF@MIL-101-SL was less poisonous to earthworms in the soil test. In the soil environment, the CF@MIL-101-SL treatment reduced oxidative stress and the inhibition of detoxifying enzymes, and reduced tissue and cellular substructural damage in earthworms compared to the CF-SC treatment. Long-term treatment with CF@MIL-101-SL altered the composition and abundance of microbial communities with degradative functions in the earthworm intestine and soil and affected the soil nitrogen cycle by modulating the composition and abundance of nitrifying and denitrifying bacterial communities in the earthworm intestine and soil, confirming that soil microorganisms play an important role in reducing the toxicity of CF@MIL-101-SL to earthworms. In conclusion, this study provides new insights into the ecological risks of nanopesticides to soil organisms.
Collapse
Affiliation(s)
- Huiya Chen
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Liupeng Yang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Shiji Zhao
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China.
| | - Zhixiang Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Yin T, Zhang J, Liu C, Xue Y, Liu Z, Liu S, Guo L, Wang J, Xia X. Environmental-related doses of afidopyropen induced toxicity effects in earthworms (Eisenia fetida). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116223. [PMID: 38493704 DOI: 10.1016/j.ecoenv.2024.116223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/23/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Afidopyropen has high activity against pests. However, it poses potential risks to the soil ecology after entering the environment. The toxicity of afidopyropen to earthworms (Eisenia fetida) was studied for the first time in this study. The results showed that afidopyropen had low level of acute toxicity to E. fetida. Under the stimulation of chronic toxicity, the increase of reactive oxygen species (ROS) level activated the antioxidant and detoxification system, which led to the increase of superoxide dismutase (SOD) and glutathione S-transferase (GST) activities. Lipid peroxidation and DNA damage were characterized by the increase of malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) contents. Meanwhile, the functional genes SOD, CAT, GST, heat shock protein 70 (HSP70), transcriptionally controlled tumor protein (TCTP), and annetocin (ANN) played a synergistic role in antioxidant defense. However, the comprehensive toxicity of high concentration still increased on the 28th day. In addition, strong histopathological damage in the body wall and intestine was observed, accompanied by weight loss, which indicated that afidopyropen inhibited the growth of E. fetida. The molecular docking revealed that afidopyrene combined with the surface structure of SOD and GST proteins, which made SOD and GST become sensitive biomarkers reflecting the toxicity of afidopyropen to E. fetida. Summing up, afidopyropen destroys the homeostasis of E. fetida through chronic toxic. These results provide theoretical data for evaluating the environmental risk of afidopyropen to soil ecosystem.
Collapse
Affiliation(s)
- Tao Yin
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Jingru Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Chang Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Yannan Xue
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Zhenlong Liu
- Weifang Vocational College, Weifang 262737, PR China.
| | - Shuang Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Longzhi Guo
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Xiaoming Xia
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China; Shandong Province Higher Education Provincial Key Pesticide Toxicology and Application Technology Laboratory, Tai'an 271018, PR China.
| |
Collapse
|
8
|
Dekamin M, Sadeghimofrad T, Ahmadloo A. Energy, economic, and environmental (3E) assessment of the major greenhouse crops: MFCA-LCA approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21894-21912. [PMID: 38400977 DOI: 10.1007/s11356-024-32576-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/17/2024] [Indexed: 02/26/2024]
Abstract
In order to develop sustainable production of greenhouse crops, the economic, energy, and environmental aspects of production should be considered. The purpose of this study was to evaluate the economic, energy, and environmental (3E) sustainability of cucumber, tomato, and bell pepper production in greenhouses by performing material flow cost accounting (MFCA) and life cycle assessment (LCA) material and methods. Calculating the economic and energy value of losses in agricultural sustainability assessment studies is not common. Using the LCA method alone does not allow us to calculate the monetary and energy value of waste. If this method is used simultaneously with MFCA, this gap will be filled. The system boundary for LCA was from cradle to farm, and for MFCA, foreground processes were considered. The production of each crop was compared at the level of 1000 m2 during 1 year. Data were collected through questionnaire-based interviews. The gross value of production for cucumber, tomato, and bell pepper were 8982, 16387, and 17610 $/1000 m2, respectively. The negative production of cucumber, tomato, and bell pepper were 702, 718, and 449 $/1000 m2, respectively. The benefit-to-cost ratio in the production of cucumber, tomato, and bell pepper was calculated as 2.8, 5.17, and 5.8, respectively. The economic productivity in the production of cucumber, tomato, and bell pepper was calculated at 10.25, 7, and 4.4 kg/$. Labor cost was the main cost in the production of all three crops. The total input energy for the production of cucumber, tomato, and bell pepper was estimated to be 99.4, 123.1, and 164.6 GJ/1000 m2, respectively. Negative products in the production of cucumber, tomato, and bell pepper were obtained at - 24.2, - 23.9, and - 13.5 GJ/1000 m2, respectively. The energy productivity of cucumber, tomato, and bell pepper was calculated as 0.23, 0.26, and 0.08 kg/MJ, respectively. The specific energy indices were 4.32, 3.79, and 12.20 MJ/kg for cucumber, tomato, and bell pepper, respectively. The energy ratio in the production of tomato (0.02) was higher than bell pepper (- 0.02) and cucumber (- 0.06). From the perspective of energy, electricity was recognized as the hotspot for the production of three crops. Global warming (GWP100a), ozone layer depletion (ODP), acidification (AC), and eutrophication (EP) indices were calculated for all three crops. Tomato production was ranked first in all impact categories. On-farm emissions and electricity consumption were identified as environmental hotspots. The subsidized price of electricity, natural gas, and chemical fertilizers has led to their excessive use in the production of greenhouse plants. It can be concluded that bell pepper has the best performance from an economic point of view. However, its production is not justified in terms of energy. Tomato was ranked first in terms of energy, and cucumber was ranked first in terms of low environmental impacts. The production of these plants with energy and chemical fertilizer subsidies is currently cost-effective. If the prices are corrected, the production of these plants will face serious challenges. Producing electricity from sunlight and mechanizing production processes can be a solution to these challenges.
Collapse
Affiliation(s)
- Majid Dekamin
- Department of Plant Production and Genetics, Faculty of Agriculture, Malayer University, Malayer, Hamadan, Iran.
| | | | - Amir Ahmadloo
- Department of Plant Production and Genetics, Faculty of Agriculture, Malayer University, Malayer, Hamadan, Iran
| |
Collapse
|
9
|
Singh R, Shukla A, Kaur G, Girdhar M, Malik T, Mohan A. Systemic Analysis of Glyphosate Impact on Environment and Human Health. ACS OMEGA 2024; 9:6165-6183. [PMID: 38371781 PMCID: PMC10870391 DOI: 10.1021/acsomega.3c08080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/15/2023] [Accepted: 12/29/2023] [Indexed: 02/20/2024]
Abstract
With a growing global population, agricultural scientists are focusing on crop production management and the creation of new strategies for a higher agricultural output. However, the growth of undesirable plants besides the primary crop poses a significant challenge in agriculture, necessitating the massive application of herbicides to eradicate this problem. Several synthetic herbicides are widely utilized, with glyphosate emerging as a potential molecule for solving this emerging issue; however, it has several environmental and health consequences. Several weed species have evolved resistance to this herbicide, therefore lowering agricultural yield. The persistence of glyphosate residue in the environment, such as in water and soil systems, is due to the misuse of glyphosate in agricultural regions, which causes its percolation into groundwater via the vertical soil profile. As a result, it endangers many nontarget organisms existing in the natural environment, which comprises both soil and water. The current Review aims to provide a systemic analysis of glyphosate, its various effects on the environment, its subsequent impact on human health and animals, which will lead us toward a better understanding of the issues about herbicide usage and aid in managing it wisely, as in the near the future glyphosate market is aiming for a positive forecast until 2035.
Collapse
Affiliation(s)
- Reenu Singh
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara, Punjab 144411, India
| | - Akanksha Shukla
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara, Punjab 144411, India
| | - Gurdeep Kaur
- School
of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Madhuri Girdhar
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara, Punjab 144411, India
| | - Tabarak Malik
- Department
of Biomedical Sciences, Institute of Health, Jimma University, Jimma 00000, Ethiopia
| | - Anand Mohan
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara, Punjab 144411, India
| |
Collapse
|
10
|
Yuan Y, Teng H, Zhang T, Wang D, Gu H, Lv W. Toxicological effects induced by two carbamates on earthworms (Eisenia fetida): Acute toxicity, arrested regeneration and underlying mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115824. [PMID: 38096595 DOI: 10.1016/j.ecoenv.2023.115824] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/03/2023] [Accepted: 12/10/2023] [Indexed: 01/12/2024]
Abstract
Eisenia fetida is recognised as advantageous model species in ecotoxicological and regeneration investigations. The intensive utilization of carbamate pesticides (CARs) imposes heavy residue burdens and grave hazards on edaphic environments as well as soil fauna therein. However, precise mechanisms whereby the specific CAR exerted toxic effects on earthworms remain largely elusive, notably from regenerative perspective. Herein, acute responses and regenerative toxicity of two carbamates (metolcarb, MEB and fenoxycarb, FEB) against E. fetida were dissected using biochemical, histological as well as molecular approaches following OECD guidelines at the cellular, tissue and organismal level. The acute toxicity data implied that MEB/FEB were very toxic/medium to extremely toxic, respectively in filter paper contact test and low to medium toxic/low toxic, respectively in artificial soil test. Chronic exposure to MEB and FEB at sublethal concentrations significantly mitigated the soluble protein content, protein abundance while enhanced the protein carbonylation level. Moreover, severely retarded posterior renewal of amputated earthworms was noticed in MEB and FEB treatments relative to the control group, with pronouncedly compromised morphology, dwindling segments and elevated cell apoptosis of blastema tissues, which were mediated by the rising Sox2 and decreasing TCTP levels. Taken together, these findings not only presented baseline toxicity cues for MEB and FEB exposure against earthworms, but also yielded mechanistic insights into regenerative toxicity upon CAR exposure, further contributing to the environmental risk assessment and benchmark formulation of agrochemical pollution in terrestrial ecosystem.
Collapse
Affiliation(s)
- Yongda Yuan
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Haiyuan Teng
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Tianshu Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Dongsheng Wang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Haotian Gu
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Weiguang Lv
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai 201403, China.
| |
Collapse
|
11
|
Chowdhary AB, Dutta R, Singh J, Tikoria R, Quadar J, Angmo D, Singh A, Singh S, Vig AP. Physiological and behavioral assessment of Metaphire posthuma in response to clothianidin insecticide: Insights from molecular and biochemical analysis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105639. [PMID: 37945220 DOI: 10.1016/j.pestbp.2023.105639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 11/12/2023]
Abstract
In the present study, Clothianidin [(E) - 1-(2 - chloro-1,3 - thiazol - 5-ylmethyl) - 3-methyl - 2- nitroguanidine] (CLO) was selected as a soil pollutant and earthworm was employed as a test organism. The various responses like biochemical and detoxification process of earthworm Metaphire posthuma towards Clothianidin at lethal and sublethal doses were studied using OECD-standardized toxicological guidelines. The present study examined the toxicity of CLO to earthworms after 28 days of exposure at conc. 0, 1.5, 3, 6, 12 and 24 mg kg-1 in a soil mixture. Biochemical markers including Guaiacol peroxidase (POD), Superoxide dismutase (SOD), Catalase (CAT), Glutathione S-transferase (GST) and content of Malondialdehyde (MDA) in earthworms were measured. Acute toxicity tests revealed that CLO caused a concentration-dependent increase in mortality with LC50 (Lethal concentration) values of 10.960 and 8.201 mg kg-1 for 7th and 14th day respectively. The earthworms were exposed to CLO contaminated soil for 56 days and reflecting the significant decrease in earthworm growth, cocoon and hatchling production. Moreover, enzyme activities such as CAT, SOD, POD and MDA content were significantly enhanced with the increased concentration and exposure period of CLO. Molecular docking studies indicated that CLO primarily interacts to the junction site of SOD and in active centres of CAT, POD and GST. As a result, the current findings imply that the sub chronic CLO exposure can induce variations in physiology and avoidance behaviour of earthworms, oxidative stress as well as alterations in enzyme activities.
Collapse
Affiliation(s)
- Anu Bala Chowdhary
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, Punjab 143005, India.
| | - Rahil Dutta
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, Punjab 143005, India
| | - Jaswinder Singh
- Department of Zoology, Khalsa College Amritsar, Punjab 143002, India.
| | - Raman Tikoria
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab 143005, India; Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| | - Jahangeer Quadar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, Punjab 143005, India
| | - Deachen Angmo
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, Punjab 143005, India
| | - Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Sharanpreet Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, Punjab 143005, India
| | - Adarsh Pal Vig
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, Punjab 143005, India.
| |
Collapse
|
12
|
Yang Z, An Y, He Y, Lian X, Wang Y. A Programmable Actuator as Synthetic Earthworm. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303805. [PMID: 37226690 DOI: 10.1002/adma.202303805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/20/2023] [Indexed: 05/26/2023]
Abstract
Natural earthworm with the ability to loosen soils that favors sustainable agriculture has inspired worldwide interest in the design of intelligent actuators. Given the inability to carry heavy loads and uncontrolled deformation, the vast majority of actuators can only perform simple tasks by bending, contraction, or elongation. Herein, a degradable actuator with the ability to deform in desired ways is presented, which successfully mimics the burrowing activities of earthworms to loosen soils with increased soil porosity by digging, grabbing, and lifting the soil when it receives rains. Such a scarifying actuator is made of degradable cellulose acetate and uncrosslinked polyacrylamide via the swelling-photopolymerizing method. The water absorption of polyacrylamide in moisture conditions causes rapid and remarkable bending. Such mechanical bending can be controlled in specific areas of the cellulose acetate film if polyacrylamide is polymerized in a patterned way, so as to generate complicated deformations of the whole cellulose acetate. Patterning polyacrylamide within cellulose acetate is achieved based on reversible surface protection by means of pen writing, rather than the traditional masking techniques. The water-induced deformation of programmable cellulose-based actuators is well preserved in soil, which is appropriate for promoting rain diffusion as well as root breath.
Collapse
Affiliation(s)
- Zhaoxiang Yang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yao An
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yonglin He
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Xiaodong Lian
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yapei Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| |
Collapse
|
13
|
Jiang X, Lu C, Hu R, Shi W, Zhou L, Wen P, Jiang Y, Lo YM. Nutritional and microbiological effects of vermicompost tea in hydroponic cultivation of maple peas ( Pisum sativum var. arvense L.). Food Sci Nutr 2023; 11:3184-3202. [PMID: 37324884 PMCID: PMC10261758 DOI: 10.1002/fsn3.3299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 09/20/2024] Open
Abstract
Hydroponics receives considerable attentions due to population expansion, soil pollution, and farmland scarcity. However, one significant problem is that its residual effluents are detrimental to the surrounding ecosystem. There is a dire need to find an organic, alternative, biodegradable substrate. Vermicompost tea (VCT) was investigated on its suitability as a hydroponic substrate to provide both nutritional and microbiological benefits. It was found VCT increased the biomass of maple peas (Pisum sativum var. arvense L.), increased stem length, raised the potassium ion content, and promoted the uptake of nitrogen by the roots. Meanwhile, the microorganisms associated with earthworm guts were detected in the maple peas root system, namely the inter-rhizosphere of maple peas, including Enterobacteriaceae, Pseudomonadaceae, and Flavobacteriaceae. The presence of these microorganisms in large number indicated the ability for VCT to retain earthworm intestinal microbes via intestinal tract movement, excreting, and other vital activities. In addition, Rhizobia spp., such as Burkholderiaceae and Rhizobiaceae were also identified in VCT. They are critical for legumes as they can form root or stem nodule symbioses to produce growth hormone, vitamins, nitrogen fixation, and protection against plant stress. These findings are consistent with our chemical analysis that VCT-treated maple peas had increased nitrate and ammonium nitrogen content relative to the control in roots, stems, and leaves, hence increasing maple peas' biomass. The abundance and species of the inter-root bacterial population were found to change during the experimental period, indicating the importance of microbial balance to the growth and nutrient uptake of maple peas.
Collapse
Affiliation(s)
- Xinyi Jiang
- Institute for Advanced StudyShenzhen UniversityShenzhenChina
| | - Ci Lu
- Institute for Advanced StudyShenzhen UniversityShenzhenChina
| | - Runmeng Hu
- Institute for Advanced StudyShenzhen UniversityShenzhenChina
| | - Wenyang Shi
- Institute for Advanced StudyShenzhen UniversityShenzhenChina
| | - Libang Zhou
- Institute for Advanced StudyShenzhen UniversityShenzhenChina
| | - Puzhao Wen
- Institute for Advanced StudyShenzhen UniversityShenzhenChina
| | - Yizhou Jiang
- Institute for Advanced StudyShenzhen UniversityShenzhenChina
| | | |
Collapse
|
14
|
Romero F, Hilfiker S, Edlinger A, Held A, Hartman K, Labouyrie M, van der Heijden MGA. Soil microbial biodiversity promotes crop productivity and agro-ecosystem functioning in experimental microcosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163683. [PMID: 37142020 DOI: 10.1016/j.scitotenv.2023.163683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023]
Abstract
Soil biota contribute substantially to multiple ecosystem functions that are key for geochemical cycles and plant performance. However, soil biodiversity is currently threatened by land-use intensification, and a mechanistic understanding of how soil biodiversity loss interacts with the myriad of intensification elements (e.g., the application of chemical fertilizers) is still unresolved. Here we experimentally simplified soil biological communities in microcosms to test whether changes in the soil microbiome influenced soil multifunctionality including crop productivity (leek, Allium porrum). Additionally, half of microcosms were fertilized to further explore how different levels of soil biodiversity interact with nutrient additions. Our experimental manipulation achieved a significant reduction of soil alpha-diversity (45.9 % reduction in bacterial richness, 82.9 % reduction in eukaryote richness) and resulted in the complete removal of key taxa (i.e., arbuscular mycorrhizal fungi). Soil community simplification led to an overall decrease in ecosystem multifunctionality; particularly, plant productivity and soil nutrient retention capacity were reduced with reduced levels of soil biodiversity. Ecosystem multifunctionality was positively correlated with soil biodiversity (R = 0.79). Mineral fertilizer application had little effect on multifunctionality compared to soil biodiversity reduction, but it reduced leek nitrogen uptake from decomposing litter by 38.8 %. This suggests that natural processes and organic nitrogen acquisition are impaired by fertilization. Random forest analyses revealed a few members of protists (i.e., Paraflabellula), Actinobacteria (i.e., Micolunatus), and Firmicutes (i.e., Bacillus) as indicators of ecosystem multifunctionality. Our results suggest that preserving the diversity of soil bacterial and eukaryotic communities within agroecosystems is crucial to ensure the provisioning of multiple ecosystem functions, particularly those directly related to essential ecosystem services such as food provision.
Collapse
Affiliation(s)
- Ferran Romero
- Plant-Soil Interactions, Research Division Agroecology and Environment, Agroscope, 8046 Zurich, Switzerland.
| | - Sarah Hilfiker
- Plant-Soil Interactions, Research Division Agroecology and Environment, Agroscope, 8046 Zurich, Switzerland
| | - Anna Edlinger
- Plant-Soil Interactions, Research Division Agroecology and Environment, Agroscope, 8046 Zurich, Switzerland
| | - Alain Held
- Plant-Soil Interactions, Research Division Agroecology and Environment, Agroscope, 8046 Zurich, Switzerland
| | - Kyle Hartman
- Plant-Soil Interactions, Research Division Agroecology and Environment, Agroscope, 8046 Zurich, Switzerland
| | - Maëva Labouyrie
- Plant-Soil Interactions, Research Division Agroecology and Environment, Agroscope, 8046 Zurich, Switzerland; Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland; European Commission, Joint Research Centre Ispra (JRC Ispra), Via Enrico Fermi 2749, 21027 Ispra, Italy
| | - Marcel G A van der Heijden
- Plant-Soil Interactions, Research Division Agroecology and Environment, Agroscope, 8046 Zurich, Switzerland; Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland.
| |
Collapse
|
15
|
Bhende RS, Dafale NA. Insights into the ubiquity, persistence and microbial intervention of imidacloprid. Arch Microbiol 2023; 205:215. [PMID: 37129684 DOI: 10.1007/s00203-023-03516-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Imidacloprid, a neonicotinoid pesticide, is employed to increase crop productivity. Meanwhile, its indiscriminate application severely affects the non-target organisms and the environment. As an eco-friendly and economically workable option, the microbial intervention has garnered much attention. This review concisely outlines the toxicity, long-term environmental repercussions, degradation kinetics, biochemical pathways, and interplay of genes implicated in imidacloprid remediation. The studies have highlighted imidacloprid residue persistence in the environment for up to 3000 days. In view of high persistence, effective intervention is highly required. Bacteria-mediated degradation has been established as a viable approach with Bacillus spp. being among the most efficient at 30 ℃ and pH 7. Further, a comparative metagenomic investigation reveals dominant neonicotinoid degradation genes in agriculture compared to forest soils with distinctive microbial communities. Functional metabolism of carbohydrates, amino acids, fatty acids, and lipids demonstrated a significantly superior relative abundance in forest soil, implying its quality and fertility. The CPM, CYP4C71v2, CYP4C72, and CYP6AY3v2 genes that synthesize cyt p450 monooxygenase enzyme play a leading role in imidacloprid degradation. In the future, a systems biology approach incorporating integrated kinetics should be utilized to come up with innovative strategies for moderating the adverse effects of imidacloprid on the environment.
Collapse
Affiliation(s)
- Rahul S Bhende
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India
| | - Nishant A Dafale
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India.
| |
Collapse
|
16
|
Zhu J, Fu L, Guo M, Wang M, Zhao Y. China bans electric capture of earthworms. Science 2023; 380:252. [PMID: 37079664 DOI: 10.1126/science.adh3383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Affiliation(s)
- Jiangwei Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Meixia Guo
- Henan Joint International Research Laboratory of Environmental Pollution ControlMaterials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Min Wang
- Institute of Process Equipment and Environmental Engineering, Northeastern University, Shenyang 110189, China
| | - Yan Zhao
- Shanghai Institute of Quality Inspection and Technical Research, Shanghai 200233, China
| |
Collapse
|
17
|
Raza ST, Zhu B, Yao Z, Wu J, Chen Z, Ali Z, Tang JL. Impacts of vermicompost application on crop yield, ammonia volatilization and greenhouse gases emission on upland in Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160479. [PMID: 36435259 DOI: 10.1016/j.scitotenv.2022.160479] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Ammonia (NH3) volatilization and greenhouse gas (GHG) emission are important environment pollution sources in upland agro-ecosystems. Vermicompost was used for amending purple soil and comparing NH3 and GHG emissions. A field experiment was conducted with a comparison of organic and inorganic fertilizers in a wheat-maize rotation system in the Sichuan Basin, China. The five treatments were conventional inorganic fertilizers, NPK as control; vermicompost prepared with cow dung (VCM); and pig manure (VPM); cow dung and pig manure vermicompost, respectively (VCMNPK, VPMNPK). Total nitrogen rates of all treatments were the same. Soil NH3 volatilization and GHG emissions were monitored with the static chamber method. The results showed that NH3 volatilization occurred in the first two weeks following nitrogen (N) fertilization. The cumulative fluxes of NH3 recorded in the NPK, VCM, VPM, VCMNPK, and VPMNPK treatments were 15.4, 5.7, 6.3, 10.32, and 10.29 kg N ha-1 yr-1, respectively, in the winter and 4.8, 5.5, 19.83, 12.8, and 11.9 kg N ha-1 yr-1 respectively, in the summer. The global warming potential (GWP) 773.6 and 803.9 g CO2-eq m-2 in VCM and VPM, respectively, during the wheat season 540.6 and 576.2 g CO2-eq m-2, respectively, during the maize season. The GWPs in NPK treatment were 1032.4 and 570.7 g CO2-eq m-2 during the wheat and maize seasons, respectively. The increasing effects of nutrient loops, particularly 18 % soil total nitrogen (TN) and 31 % soil organic carbon (SOC) in VCM, and crop productivity of vermicompost treatments during the wheat-maize rotation had been evaluated. This study recommends that VCM can be considered as a better organic amendment, promoting plant growth while decreasing the environmental costs of gas emissions.
Collapse
Affiliation(s)
- Syed Turab Raza
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China; University of Chinese Academy of Sciences, Beijing 100049, China; Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming 650500, China; Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China.
| | - Bo Zhu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China.
| | - Zhiyuan Yao
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China.
| | - Jianping Wu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming 650500, China; Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China
| | - Zhe Chen
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming 650500, China; Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China
| | - Zulfiqar Ali
- Laboratory of Environmental Health & Wildlife, Department of Zoology, University of the Punjab, Lahore 54590, Pakistan
| | - Jia Liang Tang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
| |
Collapse
|
18
|
Bao X, Xu W, Cui J, Yan Z, Wang J, Chen X, Meng Z. NMR-based metabolomics approach to assess the ecotoxicity of prothioconazole on the earthworm (Eisenia fetida) in soil. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 190:105320. [PMID: 36740340 DOI: 10.1016/j.pestbp.2022.105320] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
Prothioconazole (PTC) is a widely used agricultural fungicide. In recent years, studies have confirmed that it exerts adverse effects on various species, including aquatic organisms, mammals, and reptiles. However, the toxicological effects of PTC on soil organisms are poorly understood. Here, we investigated the toxic effects, via oxidative stress and metabolic responses, of PTC on earthworms (Eisenia fetida). PTC exposure can induce significant changes in oxidative stress indicators, including the activities of superoxide dismutase (SOD) and catalase (CAT) and the content of glutathione (GSH), which in turn affect the oxidative defense system of earthworms. In addition, metabolomics revealed that PTC exposure caused significant changes in the metabolic profiles of earthworms. The relative abundances of 16 and 21 metabolites involved in amino acids, intermediates of the tricarboxylic acid (TCA) cycle and energy metabolism were significantly altered after 7 and 14 days of PTC exposure, respectively. Particularly, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that multiple different metabolic pathways could be disturbed after 7 and 14 days of PTC exposure. Importantly, these alterations in oxidative stress and metabolic responses in earthworms reveal that the effects of PTC on earthworms were time dependent, and vary with exposure time. In conclusion, this study highlights that the effects of PTC on soil organisms are of serious concern.
Collapse
Affiliation(s)
- Xin Bao
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Wangjin Xu
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jiajia Cui
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zixin Yan
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jianjun Wang
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaojun Chen
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhiyuan Meng
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China; College of Guangling, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
19
|
Zhang H, Zhao C, Zheng H, Chen X, Chen B, Wu Z. Design, Synthesis and Bioassay of 2-Phenylglycine Derivatives as Potential Pesticide Candidates. Chem Biodivers 2023; 20:e202200957. [PMID: 36515624 DOI: 10.1002/cbdv.202200957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/15/2022]
Abstract
Plant diseases can seriously affect the growth of food crops and economic crops. To date, pesticides are still among the most effective methods to prevent and control plant diseases worldwide. Consequently, to develop potential pesticide molecules, a series of novel 2-phenylglycine derivatives containing 1,3,4-oxadiazole-2-thioethers were designed and synthesized. The bioassay results revealed that G19 exhibited great in vitro antifungal activity against Thanatephorus cucumeris with an EC50 value of 32.4 μg/mL, and in vivo antifungal activity against T. cucumeris on rice leaves at a concentration of 200.0 μg/mL (66.9 %) which was close that of azoxystrobin (73.2 %). Compounds G24 (80.2 %), G25 (89.4 %), and G27 (83.3 %) exhibited impressive in vivo inactivation activity against tobacco mosaic virus (TMV) at a concentration of 500.0 μg/mL, which was comparable to that of ningnanmycin (96.3 %) and markedly higher than that of ribavirin (55.6 %). The antibacterial activity of G16 (63.1 %), G26 (89.9 %), G27 (78.0 %), and G28 (68.0 %) against Xoo at a concentration of 50.0 μg/mL was higher than that of thiadiazole copper (18.0 %) and bismerthiazol (38.9 %). Preliminary mechanism studies on the antifungal activity against T. cucumeris demonstrated that G19 can affect the growth of mycelia by disrupting the integrity of the cell membrane and altering the permeability of the cell. These studies revealed that the amino acid derivatives containing a 1,3,4-oxadiazole moiety exhibited certain antifungal, antibacterial, and anti-TMV activities, and these derivatives can be further modified and developed as potential pesticide molecules.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Cailong Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Huanlin Zheng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Xiaocui Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Biao Chen
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550025, China
| | - Zhibing Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R & D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| |
Collapse
|
20
|
Aikawa E, Saito MU. Effects of intensive agricultural landscapes on farmland use by medium and large mammals in Japan. ECOSCIENCE 2022. [DOI: 10.1080/11956860.2022.2151554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Eiki Aikawa
- Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, 9978555 Tsuruoka Japan
| | - Masayuki U. Saito
- Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, 9978555 Tsuruoka Japan
| |
Collapse
|
21
|
Qiao Z, Li P, Tan J, Peng C, Zhang F, Zhang W, Jiang X. Oxidative stress and detoxification mechanisms of earthworms (Eisenia fetida) after exposure to flupyradifurone in a soil-earthworm system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:115989. [PMID: 36055090 DOI: 10.1016/j.jenvman.2022.115989] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/26/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Flupyradifurone (FLU) has great application potential in agricultural production as a new generation of neonicotinoid insecticide after imidacloprid. Nevertheless, the toxic effects of FLU on non-target soil organisms remain unclear, resulting in considerable environmental risks. We evaluated the acute and subchronic toxicities of FLU to earthworms. The results of acute toxicity show that the median lethal concentration (LC50) values (14 d) of FLU were 186.9773 mg kg-1 for adult earthworms and 157.6502 mg kg-1 for juveniles, respectively. The subchronic toxicity of FLU that focused on the activities of antioxidant and detoxication enzymes showed the superoxide dismutase (SOD), catalase (CAT), and glutathione-S transferase (GST) activities in earthworms increased while the peroxidase (POD) and acetylcholinesterase (AChE) activities decreased after exposure to FLU. Oxidative damage analyses revealed that the reactive oxygen species (ROS) level and malonaldehyde (MDA) content in earthworms were increased by FLU, resulting in DNA damage. Transcriptomics and RT-qPCR confirmed that FLU influenced the expression of genes related to antioxidant response and detoxification of earthworms. Ultimately detoxification metabolism, environmental information processing, cell processes, and immune system pathways are significantly enriched to respond jointly to FLU. Our study fills the gaps in the toxicity of FLU to earthworms, providing a basis for its risk assessment of soil ecosystems and non-target biological toxicity.
Collapse
Affiliation(s)
- Zhihua Qiao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Peiyao Li
- College of Agriculture, Qingdao Agricultural University, Qingdao, Shandong, 266109, PR China
| | - Jiaqi Tan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Fengwen Zhang
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, 271018, PR China; Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao, Shandong, 266101, PR China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Xingyin Jiang
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, 271018, PR China.
| |
Collapse
|
22
|
Chowdhary AB, Singh J, Quadar J, Singh S, Singh A, Dutta R, Angmo D, Vig AP. Metsulfuron-methyl induced physiological, behavioural and biochemical changes in exotic (Eisenia fetida) and indigenous (Metaphire posthuma) earthworm species: Toxicity and molecular docking studies. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105276. [PMID: 36464335 DOI: 10.1016/j.pestbp.2022.105276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
In modern agricultural practices, Metsulfuron-methyl (sulfonylurea herbicide) is widely employed to inhibit the weeds and grasses. The current study revealed that Metaphire posthuma was more sensitive than Eisenia fetida against Metsulfuron-methyl (MSM). The LC50 values for Eisenia fetida were 2884.08 mgkg-1 and 1871.18 mgkg-1after 7 and 14 days, respectively. Similarly, the LC50 values for Metaphire posthuma were 2449.34 mgkg-1 and 1673.10 mgkg-1for 7 and 14 days, respectively. Reproduction parameters were significantly decreased at 400 (T3), 800 (T4) and 1600 (T5) mgkg-1 MSM in E. fetida whereas at 200 (T2), 400 (T3), 800 (T4), 1600 (T5) mgkg-1 MSM in M. posthuma. EC50 of avoidance response for 20% MSM by E. fetida and M. posthuma was recorded 901.76 mgkg-1and 544.21 mgkg-1 respectively. Malondialdehyde (MDA) content along with guaiacol peroxidase (POD), catalase (CAT) and superoxide dismutase (SOD) activities were initially increased up to 21st day by MSM, inducing a slight oxidative stress in earthworms and recovered to control level on 28th day. The GST activities were continuously stimulated throughout the exposure period and enhance the detoxification effect thereby preventing the earthworms from toxins. Molecular docking studies indicated that hydrogen bonding and hydrophobic interactions are key forces in binding between MSM and SOD/CAT/POD/GST. As a result, this is the first study to be reported on physiological, behavioural and biochemical changes in two different earthworm species under the exposure of sulfonyl urea herbicide.
Collapse
Affiliation(s)
- Anu Bala Chowdhary
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, Punjab 143005, India.
| | - Jaswinder Singh
- Post Graduate Department of Zoology, Khalsa College Amritsar, Punjab 143002, India.
| | - Jahangir Quadar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, Punjab 143005, India
| | - Sharanpreet Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, Punjab 143005, India
| | - Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Rahil Dutta
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, Punjab 143005, India
| | - Deachen Angmo
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, Punjab 143005, India
| | - Adarsh Pal Vig
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar, Punjab 143005, India.
| |
Collapse
|
23
|
Yin Y, Wang D, Chen M, Mu X, Yang Y, Li B, Wang K. Distribution patterns of the earthworm community in relation to soil properties and metals in agro-ecosystems in Hebei Province, North China. COMMUNITY ECOL 2022. [DOI: 10.1007/s42974-022-00116-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Zhu X, Li W, Shao H, Tang S. Selected aspects of invasive Solidago canadensis with an emphasis on its allelopathic abilities: a review. Chem Biodivers 2022; 19:e202200728. [PMID: 36056470 DOI: 10.1002/cbdv.202200728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/02/2022] [Indexed: 11/05/2022]
Abstract
Solidago canadensis L., native to North America, is now an invasive plant worldwide. Its abundant seeds, rapid vegetative reproduction ability, and allelopathy to other plants are the main reasons for its successful invasion. It has negative impacts on the ecological environment of the invaded area and causes a reduction in local biodiversity and economic losses of agriculture and stock farming. Each part of the plant contains a variety of allelochemicals (terpenoids, phenolics, and flavonoids), including a large number of essential oil components. These allelochemicals can be released in various ways to inhibit the growth of adjacent plants and promote their invasion; they can also affect soil properties and soil microorganisms. This paper summarizes the allelopathic effects of S. canadensis on other plant species and the interaction mechanism between it and the ecosystem.
Collapse
Affiliation(s)
- Xunzhi Zhu
- Institute of Botany Jiangsu Province and Chinese Academy of Sciences, Ecology, No.1 Qianhu Houcun, Zhongshanmen Wai, Nanjing, CHINA
| | - Weijie Li
- Institute of Botany Jiangsu Province and Chinese Academy of Sciences, Ecology, No.1 Qianhu Houcun, Zhongshanmen Wai, Nanjing, CHINA
| | - Hua Shao
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, 818 south beijing road, 830011, Urumqi, CHINA
| | - Shijie Tang
- Institute of Botany Jiangsu Province and Chinese Academy of Sciences, Ecology, No.1 Qianhu Houcun, Zhongshanmen Wai, Nanjing, CHINA
| |
Collapse
|
25
|
Fernandes G, Roques O, Lassabatère L, Sarles L, Venisseau A, Marchand P, Bedell JP. Influence of edaphic conditions and persistent organic pollutants on earthworms in an infiltration basin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119192. [PMID: 35318068 DOI: 10.1016/j.envpol.2022.119192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
In recent decades, stormwater management has developed to allow stormwater to infiltrate directly into the soils instead of being collected and routed to sewer systems. However, during infiltration, stormwater creates a sediment deposit at the soil surface as the result of high loads of suspended particles (including pollutants), leading to the settlement of sedimentary layers prone to colonization by plants and earthworms. This study aims to investigate the earthworm communities of a peculiar infiltration basin and investigate the influence of edaphic conditions (water content, organic matter content, pH, height of sediment) and of persistent organic pollutants (POPs: PCBs, PCDDs and PCDFs) on these earthworms. Attention was paid to their age (juveniles or adults) and their functional group (epigeic, endogeic, anecic). We found that the earthworm abundance was mostly driven by edaphic conditions, with only a slight impact of POPs, with a significant negative impact of PCBDLno for juveniles and endogeic, and PCDDs for epigeic. On the contrary, the height of the sediment and the water content are beneficial for their presence and reproduction. Furthermore, POPs contents are also linked to physicochemical parameters of the sediment. Bioaccumulation was clearly revealed in the studied site but does not differ between juveniles and adults, except for PCDDs. Conversely, BAF values seemed to vary between functional groups, except for PCBDL non-ortho. It strongly varies with the family types (PCBs versus PCCD/Fs) and between congeners within the same family, with specific strong bioaccumulation for a few congeners.
Collapse
Affiliation(s)
- G Fernandes
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69518, Vaulx-en-Velin, France
| | - O Roques
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69518, Vaulx-en-Velin, France
| | - L Lassabatère
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69518, Vaulx-en-Velin, France
| | - L Sarles
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69518, Vaulx-en-Velin, France
| | - A Venisseau
- Oniris, INRAE, LABERCA, 44300, Nantes, France
| | - P Marchand
- Oniris, INRAE, LABERCA, 44300, Nantes, France
| | - J-P Bedell
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69518, Vaulx-en-Velin, France.
| |
Collapse
|
26
|
Sarkar A, Wang H, Rahman A, Memon WH, Qian L. A bibliometric analysis of sustainable agriculture: based on the Web of Science (WOS) platform. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:38928-38949. [PMID: 35301629 DOI: 10.1007/s11356-022-19632-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
The global trends of sustainable agriculture (SA) have expanded dramatically through many scholarly studies in this area. Many literary works have focused on several aspects of sustainable agriculture (SA), such as the effectiveness of pesticide management, impacts on cultivation and enhancement, quantifying with soil, water, and air, agro-ecological activities, ecological aspects, and other areas of focus. The review offers a structured bibliometric and network evaluation that will profoundly observe the recent trends of SA, which other studies in this field have not comprehensively analyzed before. The study's prime objectives are to investigate the progress, trends and themes, and provide a comprehensive mapping of the field of sustainable agriculture. The study utilizes the Web of Science core collection database to search, filter, and extract the published article from 1992-2020. The review commences by exploring over 3000 journal articles, those then filtered into some well-recognized matrix of impacts and published by impactful journals, institutions, and authors. The results indicate a stable growth in publications since 2006, with a sharp improvement from 2010. Thematic assessment of key concepts by exploring the abstract discovered a robust emphasis on quantitative resource associations within a strong subjective focus with farm capacities and inner-sectorial dominations. We reveal how the outcome may assist the sectors to facilitate better understandings and comprehend the challenging transitions based on brainstorming to action formulation.
Collapse
Affiliation(s)
- Apurbo Sarkar
- College of Economics and Management, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongyu Wang
- College of Economics and Management, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Airin Rahman
- School of Finance and Economics, Jiangsu University, Zhejiang, 212013, China
- Department of Agribusiness and Marketing, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh, 1207
| | - Waqar Hussain Memon
- School of Mechanical Engineering, Nanjing University of Science and Technology, Xiaoling Wei, 210014, Nanjing, China
| | - Lu Qian
- College of Economics and Management, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
27
|
Mishra CSK, Samal S, Sishu NK, Subhadarshini A, Naik P. Exploring the missing link between soil total antioxidant capacity and herbicide-induced stress on the earthworm Eudrilus eugeniae (Kinberg). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43179-43190. [PMID: 35091931 DOI: 10.1007/s11356-021-18258-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Herbicide application and residue accumulation in farm soils have deleterious effects on non-target fauna such as earthworms. Although previous studies have documented both positive and deleterious effects of herbicides on soil biota, reports are rare on possible toxicity reduction by raising soil total antioxidant capacity (TAC). Here we review the impact of pretilachlor, a herbicide on the morpho-histology and physiology of the earthworm Eudrilus eugeniae in soil amended with farmyard manure (FYM), poultry manure (PM) and vermimanure (VM), sources of antioxidants over a period of 168 h. The results indicated a significant spike in the TAC of amended soils relative to control. Dermal undulation, setal aberrations, muscular anomaly, protein and lipid peroxidation variations in the activities of lactate dehydrogenase (LDH) and catalase (CAT) were significantly less in animals from amended soils. The maximum percent increase in protein (314%) and reductions in LPX (87%), LDH (87.9%) and CAT (87.3%) were observed in the earthworm from VM-amended soil. The increase in TAC was also maximum (109.9%) in soil amended with VM. A significant negative correlation between soil TAC with the biochemical parameters was observed and confirmed through receiver operator characteristics (ROC) and principal component analysis (PCA). The novelty of the present study includes exploring the missing link between the antioxidant level of organically amended soil and the herbicide-induced oxidative stress in the earthworm E. eugeniae. We concluded that soils with high levels of antioxidants could reduce oxidative damage in E eugeniae due to herbicide toxicity.
Collapse
Affiliation(s)
- C S K Mishra
- Department of Zoology, Odisha University of Agriculture and Technology, College of Basic Science and Humanities, Bhubaneswar, 751003, India
| | - Suryasikha Samal
- Department of Zoology, Odisha University of Agriculture and Technology, College of Basic Science and Humanities, Bhubaneswar, 751003, India.
| | - Nayan Kumar Sishu
- Department of Zoology, Odisha University of Agriculture and Technology, College of Basic Science and Humanities, Bhubaneswar, 751003, India
| | - Asima Subhadarshini
- Department of Zoology, Odisha University of Agriculture and Technology, College of Basic Science and Humanities, Bhubaneswar, 751003, India
| | - Priyadarshani Naik
- Department of Zoology, Odisha University of Agriculture and Technology, College of Basic Science and Humanities, Bhubaneswar, 751003, India
| |
Collapse
|
28
|
Astaykina A, Streletskii R, Maslov M, Krasnov G, Gorbatov V. Effects of Three Pesticides on the Earthworm Lumbricus terrestris Gut Microbiota. Front Microbiol 2022; 13:853535. [PMID: 35422770 PMCID: PMC9004718 DOI: 10.3389/fmicb.2022.853535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/03/2022] [Indexed: 12/26/2022] Open
Abstract
Earthworms play a vital role in the terrestrial ecosystem functioning and maintenance of soil fertility. However, many pesticides, for example, imidacloprid, benomyl, and metribuzin that are world-widely used in agriculture, may be potentially dangerous to earthworms. At the same time, standard tests for pesticides acute and chronic toxicity do not reflect all aspects of their negative impact and might not be enough sensitive for effective assessment. In this paper, we studied the effects of non-lethal concentrations of imidacloprid, benomyl, and metribuzin on the gut bacterial community of Lumbricus terrestris using high-throughput sequencing approach. We found that pesticides reduced the total bacterial diversity in the earthworm's gut even at the recommended application rate. Under the applied pesticides, the structure of the gut prokaryotic community underwent changes in the relative abundance of the phyla Proteobacteria, Actinobacteria, Acidobacteria, Planctomyces, Verrucomicrobia, and Cyanobacteria, as well as the genera Haliangium, Gaiella, Paenisporosarcina, Oryzihumus, Candidatus Udaeobacter, and Aquisphaera. Moreover, the pesticides affected the abundance of Verminephrobacter-the earthworms' nephridia specific symbionts. In general, the negative impact of pesticides on bacterial biodiversity was significant even under pesticides content, which was much lower than their acute and chronic toxicity values for the earthworms. These results highlighted the fact that the earthworm's gut microbial community is highly sensitive to soil contamination with pesticides. Therefore, such examination should be considered in the pesticide risk assessment protocols.
Collapse
Affiliation(s)
| | | | - Mikhail Maslov
- Soil Science Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - George Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
29
|
Kang MS, Park JH, Lee HS. Acaricidal potential of active components derived from Alpinia galanga rhizome oils and their derivatives against Haemaphysalis longicornis (Acari: Ixodidae). EXPERIMENTAL & APPLIED ACAROLOGY 2022; 86:313-326. [PMID: 35024988 DOI: 10.1007/s10493-022-00685-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Acaricidal activities and acetylcholinesterase (AChE) inhibitory activities were evaluated of active constituents of the essential oil extracted from Alpinia galanga rhizomes cultivated from India and their derivatives against Haemaphysalis longicornis nymphs. In addition, the effect was investigated of active components of A. galanga oil on egg laying of adult females of H. longicornis and egg hatchability. Of the volatile components identified in A. galanga oil, ethyl cinnamate, ethyl methoxycinnamate, and methyl cinnamate at 0.32 mg/cm2 resulted in 100% mortality, respectively, indicating that the acaricidal activity of the A. galanga oil against H. longicornis nymphs could be attributed to these compounds. To evaluate the structure-activity relationship between cinnamate derivatives and their acaricidal activities, allyl cinnamate, benzyl cinnamate, isopropyl cinnamate, isobutyl cinnamate, and isoamyl cinnamate were selected. Among cinnamate derivatives tested, allyl cinnamate exhibited the most potent toxicity (LC50 = 0.055 mg/cm2) against H. longicornis nymphs. The allyl cinnamate was also tested for AChE activity in vivo in H. longicornis nymphs and was found to affect the AChE activity. Allyl cinnamate at 10-50 mg/mL inhibited egg laying of adult females of H. longicornis by 10-43%. Egg hatching was suppressed completely by treatment with allyl cinnamate at 50 mg/mL, whereas allyl cinnamate was minimally toxic against non-target earthworms, Eisenia fetida. These results suggest that allyl cinnamate can be used as an active ingredient for the development of eco-friendly tick acaricides against H. longicornis, a vector for Sever fever with thrombocytopenia syndrome (SFTS) virus.
Collapse
Affiliation(s)
- Min-Seung Kang
- Department of Bioenvironmental Chemistry, College of Agriculture and Life Sciences, Jeonbuk National University, Chonju, 54896, South Korea
| | - Jun-Hwan Park
- Department of Bioenvironmental Chemistry, College of Agriculture and Life Sciences, Jeonbuk National University, Chonju, 54896, South Korea.
| | - Hoi-Seon Lee
- Biomedical Research Team, HS Biotech and Holdings (HSBH) for Medical Research, Basel, Switzerland.
| |
Collapse
|
30
|
Kamar Zaman AM, Yaacob JS. Exploring the potential of vermicompost as a sustainable strategy in circular economy: improving plants' bioactive properties and boosting agricultural yield and quality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:12948-12964. [PMID: 35034296 DOI: 10.1007/s11356-021-18006-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Consumption of natural resources and waste generation continues to rise as the human population increases. Ever since the industrial revolution, consumers have been adopting a linear economy model based on the 'take-make-dispose' approach. Raw materials are extracted to be converted into products and finally discarded as wastes. Consequently, this practice is unsustainable because it causes a massive increase in waste production. The root problems of the linear system can be addressed by transitioning to a circular economy. Circular economy is an economic model in which wastes from one product are recycled and used as resources for other processes. This literature review discovers the potential of vermicompost as a sustainable strategy in circular economy and highlights the benefits of vermicompost in ensuring food security, particularly in improving agricultural yield and quality, as well as boosting crop's nutritional quality. Vermicompost has the potential to be used in a variety of ways in the circular economy, including for agricultural sustainability, managing waste, pollutant remediation, biogas production and animal feed production. The recycling of organic wastes to produce vermicompost can benefit both the consumers and environment, thus paving the way towards a more sustainable agriculture for the future.
Collapse
Affiliation(s)
| | - Jamilah Syafawati Yaacob
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Centre for Research in Biotechnology for Agriculture (CEBAR), Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
31
|
Gu H, Yuan Y, Cai M, Wang D, Lv W. Toxicity of isoprocarb to earthworms (Eisenia fetida): Oxidative stress, neurotoxicity, biochemical responses and detoxification mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118038. [PMID: 34523524 DOI: 10.1016/j.envpol.2021.118038] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/05/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Isoprocarb (IPC) is a conventional carbamate with high insecticidal activity, however, generalized use of it may cause soil contamination and adversely implicate non-target biota. Following OECD standardized toxicological protocols, the toxic effects of IPC on Eisenia fetida at lethal and sublethal concentrations were examined to elucidate its toxic modes of action as well as biochemical and detoxification responses of E. fetida. Acute toxicity tests showed that IPC induced a concentration-dependent rise of mortality, with LC50 of 8.20 μg/cm2 (48 h) in FPCT and 3.37 mg/kg (14 d) in AST, respectively. The ecotoxicological effects of IPC chronic exposure were measured by physiochemical, qRT-PCR and western blot analysis. Specifically, ROS, MDA and 8-OHdG contents were enhanced and T-AOC, SOD, CAT and POD activities diminished with increasing concentrations. While activities of CYP3A4 and CarE as well as expressions of Hsp70, GPx and GST were elevated upon IPC treatments, responsible for detoxifying mechanisms as implied by principal component analysis (PCA). Meanwhile, IPC diminished NRRT and inhibited AChE activities along with expressions of AChE-related genes. All these striking alterations between IPC-exposed earthworms and controls were illustrated in PCA model. More importantly, growth, reproductive and regenerative toxicity of IPC were observed with reduced cast production and soluble protein content, suppressed ANN protein and gene expressions, reversely modulated TCTP and Sox2 gene and protein, respectively. Taken together, deleterious perturbations could be induced by IPC in biophysiological homeostasis of E. fetida primarily through oxidative stress and neural dysfunction. This study not only highlighted potential hazard of IPC to earthworms in the terrestrial ecosystem, but also expounded upon mechanisms underlying toxic modes of action for IPC and detoxification of earthworms.
Collapse
Affiliation(s)
- Haotian Gu
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Yongda Yuan
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Min Cai
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Dongsheng Wang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| | - Weiguang Lv
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai, 201403, China
| |
Collapse
|
32
|
Boughattas I, Hattab S, Zitouni N, Mkhinini M, Missawi O, Bousserrhine N, Banni M. Assessing the presence of microplastic particles in Tunisian agriculture soils and their potential toxicity effects using Eisenia andrei as bioindicator. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148959. [PMID: 34265609 DOI: 10.1016/j.scitotenv.2021.148959] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/20/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
In the present study, we investigated microplastics (MPs) in agricultural soils with different agronomic practices (organic farming, soil under greenhouses, soil under mulching and soil irrigated with treated wastewater (TWW)). Plastic particles from each site were collected and characterized by FTIR and Raman microspectroscopy. Plastic particles were then ground and added (size rage under 100 μm) at a concentration of 100 μg kg-1 to soils from organic farming containing Eisenia andrei for 7 and 14 days. MPs accumulation in earthworms was quantified and characterized. Oxidative stress was assessed by evaluating the activities of catalase, glutathione-S-transferase, and acetylcholinesterase as well as malondialdehyde accumulation. Our results revealed higher quantity of MPs in soils ranging from 13.21 ± 0.89 to 852.24 ± 124.2 items kg-1 with the dominance of small sizes (0.22-1.22 μm). Polyethylene (PE) and polybutyrate adipate terephtalate (PBAT) were the dominant MPs. Moreover, our results revealed a significant ingestion of MPs in earthworms with values ranging from 1.13 to 35.6, characterized mostly by PE, PBAT and polypropylene (PP). Biochemical data revealed an important alteration in worms exposed to MPs from soils with mulching and irrigated with TWW. Our study provides new insights into the effects of microplastic in earthworms and thus the vulnerability of terrestrial ecosystem to this emergent contaminant.
Collapse
Affiliation(s)
- Iteb Boughattas
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy Chott-Meriem, Sousse University, Tunisia; Regional Field Crops Research Center of Beja, Tunisia.
| | - Sabrine Hattab
- Regional Research Centre in Horticulture and Organic Agriculture, Chott-Mariem, 4042 Sousse, Tunisia
| | - Nesrine Zitouni
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy Chott-Meriem, Sousse University, Tunisia
| | - Marouane Mkhinini
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy Chott-Meriem, Sousse University, Tunisia
| | - Omayma Missawi
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy Chott-Meriem, Sousse University, Tunisia
| | - Noureddine Bousserrhine
- Laboratory of Water Environment and Urban systems, University Paris-Est Créteil, Créteil cedex 94010, France
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy Chott-Meriem, Sousse University, Tunisia; Higher Institute of Biotechnology, Monastir University, Tunisia
| |
Collapse
|
33
|
Pelosi C, Thiel P, Bart S, Amossé J, Jean-Jacques J, Thoisy JC, Crouzet O. The contributions of enchytraeids and earthworms to the soil mineralization process in soils with fungicide. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1910-1921. [PMID: 34379246 DOI: 10.1007/s10646-021-02452-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Pesticides may harm soil organisms such as earthworms and enchytraeids, but knowledge is lacking on their relative sensitivity to these chemicals and the consequences on soil functions. The aim of this study was to assess the impact of exposure to a commercial fungicide formulation (Swing® Gold, containing dimoxystrobin and epoxiconazole) on the function of earthworms (Aporrectodea caliginosa) and enchytraeids (Enchytraeus buchholzi) in soil organic matter (SOM) mineralization. The soil organisms were incubated alone and together in a 26-day laboratory experiment. At the recommended field rate, the fungicide induced a decrease in the SOM mineralization and a delay in the maximum daily CO2 emissions compared to the control soil without fungicide. Soil fauna also influenced SOM mineralization with a higher cumulated CO2 release after 26 days in the control soil with earthworms (by 21%) than without fauna. When both earthworms and enchytraeids were present, SOM mineralization did not increase, and there was a negative effect on earthworm weight gain. Finally, an alteration of fauna influence with treatment was observed from day 19, meaning that the effect of fauna on SOM mineralization changed with fungicide treatment. Earthworms no longer promoted SOM mineralization when fungicide was present at three-fold the recommended field rate. The effects of enchytraeids on SOM mineralization were similar with and without fungicide exposure. This study underlines the importance of considering the relative sensitivity of soil organisms to environmental factors and interactions between them when assessing soil functioning.
Collapse
Affiliation(s)
- C Pelosi
- INRAE, Avignon Université, UMR EMMAH, F-84000, Avignon, France.
| | - P Thiel
- INRAE, AgroParisTech, Université Paris-Saclay, UMR ECOSYS, F-78026, Versailles, France
| | - S Bart
- INRAE, AgroParisTech, Université Paris-Saclay, UMR ECOSYS, F-78026, Versailles, France
- Department of Environment and Geography, University of York, YO10 5NG, York, UK
| | - J Amossé
- INRAE, AgroParisTech, Université Paris-Saclay, UMR ECOSYS, F-78026, Versailles, France
| | - J Jean-Jacques
- INRAE, AgroParisTech, Université Paris-Saclay, UMR ECOSYS, F-78850, Thiverval-Grignon, France
| | - J-C Thoisy
- INRAE, AgroParisTech, Université Paris-Saclay, UMR ECOSYS, F-78026, Versailles, France
| | - O Crouzet
- INRAE, AgroParisTech, Université Paris-Saclay, UMR ECOSYS, F-78026, Versailles, France
| |
Collapse
|
34
|
Datta S, Singh J, Singh J, Singh S, Singh S. Avoidance behavior of Eisenia fetida and Metaphire posthuma towards two different pesticides, acephate and atrazine. CHEMOSPHERE 2021; 278:130476. [PMID: 33839384 DOI: 10.1016/j.chemosphere.2021.130476] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/22/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
The avoidance behavior is regarded as the method that provides first hand information about the behavior of an organism in the presence of contaminants in the soil. Very little data is found in literature regarding the effect of pesticides on tropical earthworms. Two pesticides, acephate and atrazine which are widely used in Indian tropical area were investigated for their avoidance behavior on standard species, E. fetida (ISO 2007) and on a tropical species, M. posthuma. The avoidance tests are rarely replicated on tropical species, M. posthuma in comparison to standard species, E. fetida or E. andrei. The standard avoidance test (ISO 2007) was taken into consideration for two different species of earthworm. Significant difference in the distribution of earthworms in the control and test soils was found depicting that soil composition plays a vital role in affecting the distribution of worms. The results also show higher sensitivity of E. fetida in comparison to M. posthuma in terms of avoidance response for both the pesticides. For risk assessment, the soil types and indigenous soil species of earthworms must be taken into consideration for evaluation of soil contamination. Avoidance tests forms the basis to study the molecular mechanisms underlying the receptor proteins responsible for the process of chemesthesis in annelids.
Collapse
Affiliation(s)
- Shivika Datta
- Department of Zoology, Doaba College, Jalandhar, Punjab, 144001, India; School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144402, India.
| | - Jaswinder Singh
- Department of Zoology, Khalsa College Amritsar, Punjab, 143002, India.
| | - Joginder Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144402, India
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICwaR), Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Sharanpreet Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| |
Collapse
|
35
|
Differential Effects of Organic Amendments on Maize Biomass and Nutrient Availability in Upland Calcareous Soil. ATMOSPHERE 2021. [DOI: 10.3390/atmos12081034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The current study is focuses on a sustainable agricultural ecosystem for soil fertility and human health improvement. To estimate the effects of applying organic amendments (compost, vermicompost, biochar, organic manure and rapeseed cake) on crop growth of maize and nutrient uptake in calcareous soil, eleven treatments were studied, which included compost (CM), cow manure vermicompost (CMV), pig manure vermicompost (PMV), biochar vermicompost (BCV), biochar (BC), conventional synthetic fertilizers (NPK), CMV in addition to NPK (CMV + NPK), and PMV in addition to NPK (PMV + NPK), organic manure (OM), rapeseed cake (RC) and control without any fertilization (CK). Maize above and belowground biomass were analyzed in glass greenhouse experiments. The results showed that nitrogen and carbon contents showed significant differences among treatments. Vermicompost significantly showed higher biomass as compared to inorganic fertilizers except for RC. All vermicompost treatments also showed better nutrient availability as compared to NPK and CK. In conclusion, vermicompost with all substrates are recommended for application as organic fertilizers. Our study will help promote the application of organic fertilizers alone or in combination with inorganic fertilizers rather than only inorganic fertilizers for environmental health and sustainability.
Collapse
|
36
|
Demirtas M. Evaluation of energy use and carbon dioxide emissions from the consumption of fossil fuels and agricultural chemicals for paste tomato cultivation in the Bursa region of Turkey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27132-27146. [PMID: 33502709 DOI: 10.1007/s11356-021-12593-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
This study was aimed to determine the fossil fuel consumption, energy use, and carbon dioxide (CO2) emissions in per unit production area (ha) considering the petroleum products (PP) directly used and the chemical fertilizers and pesticides for the cultivation of paste tomatoes in open-field conditions in Bursa region of Turkey. The primary data of the study consisted of data collected by making face-to-face surveys with the producers of paste tomatoes in the Bursa region. The direct energy inputs and CO2 emissions related to diesel fuel and lubricant oil consumptions of engines of agricultural tractors for cultivation operations and the indirect energy inputs and CO2 emissions related to the manufacturing of chemical fertilizers and plant growth regulators used for plant nutrition and pesticides used for plant protection were determined for paste tomato cultivation. A total of 288.6 L diesel fuel and 0.067 L lubrication oil are consumed per hectare when using tools and machinery in paste tomato production. A total of 408 kg of chemical fertilizers and 15.5 kg of pesticides are used per hectare in paste tomato production in the Bursa region of Turkey. A total of 2343.45 MJ/ha and 2700.5 MJ/ha indirect energy is used in the application of chemical fertilizers and pesticides, respectively. A total of 792.43 kg and 0.189 kg CO2 is released as a result of diesel fuel and lubricant oil consumptions. For the production of one kilogram of paste tomato, 2.68 grams (g) diesel fuel and lubricating oil, 175.02 kilojoules (kJ) of energy is consumed, and 15.88 g CO2 is released in the Bursa region of Turkey.
Collapse
Affiliation(s)
- Muhammet Demirtas
- General Directorate of Agricultural Research and Policies, Universities district, Dumlupınar avenue, Eskisehir road 10. km, Cankaya, 06800, Ankara, Turkey.
| |
Collapse
|
37
|
Peng Y, Li M, Huang Y, Cheng B, Cao Z, Liao X, Xiong G, Liu F, Hu C, Lu H. Bifenazate induces developmental and immunotoxicity in zebrafish. CHEMOSPHERE 2021; 271:129457. [PMID: 33445023 DOI: 10.1016/j.chemosphere.2020.129457] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Bifenazate is a widely used acaricide, but its biological safety remains unknown. In the present study, the immunotoxic effects of exposure to bifenazate on zebrafish larvae were evaluated for the first time. Firstly, after exposure to bifenazate, the body length of the zebrafish larvae became shorter and the yolk sac swelled. Secondly, the number of innate immune cells and adaptive immune cells was greatly reduced. Following exposure to bifenazate, oxidative stress levels in the zebrafish increased significantly, antioxidant activity was inhibited, and the expression of genes related to antioxidants, such as those of the glutathione metabolism pathway, changed, including gclm, prdx1, serpine1, and gss. In addition, inflammatory factors such as CXCL-c1c, IFN-γ, iL-8, iL-6, and MYD88 were abnormally expressed. The use of astaxanthin was effective in rescuing the developmental toxicity caused by bifenazate exposure. In summary, bifenazate exposure is immunotoxic and can cause oxidative stress in zebrafish larvae.
Collapse
Affiliation(s)
- Yuyang Peng
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, Ji'an, 343009, China
| | - Min Li
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, Ji'an, 343009, China
| | - Yong Huang
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Bo Cheng
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, Ji'an, 343009, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, Ji'an, 343009, China
| | - Guanghua Xiong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, Ji'an, 343009, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, Ji'an, 343009, China
| | - Chengyu Hu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, Ji'an, 343009, China; Center for Drug Screening and Research, School of Geography and Environmental Engineering, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
38
|
ÖZTÜRKCİ Y, AKKÖPRÜ A. Effects of Solid and Liquid Vermicompost Application on Bean Growth and Common Bacterial Blight Disease in Different Growth Medium. ULUSLARARASI TARIM VE YABAN HAYATI BILIMLERI DERGISI 2021. [DOI: 10.24180/ijaws.789522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
39
|
Krishnaswamy VG, Jaffar MF, Sridharan R, Ganesh S, Kalidas S, Palanisamy V, Mani K. Effect of chlorpyrifos on the earthworm Eudrilus euginae and their gut microbiome by toxicological and metagenomic analysis. World J Microbiol Biotechnol 2021; 37:76. [PMID: 33786661 DOI: 10.1007/s11274-021-03040-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
The earthworms are important soil invertebrates and play a crucial role in pedogenesis. The application of pesticides and prolonged exposure to pesticides causes mortality of earthworms apart from profoundly affecting the resident gut microbiome. The microbiome plays a significant effect on the metabolic processes associated with earthworms. The pesticide Chlorpyrifos (CPF) was studied for its toxicity on Eudrilus euginae by toxicity studies. The LC50 value of filter paper contact test and acute toxicity test was 3.8 mg/mL and 180 mg/kg. The prolonged exposure of earthworms to pesticide on reproductive toxicity resulted in the mortality of earthworms and absence of cocoon formation. Further, the effects of CPF on the whole gut microbiome of E. euginae was analyzed using a long amplicon Nanopore sequencing. Results indicated no fluctuations with Firmicutes and Bacteroidetes, that were found to be dominant at bacterial phyla level while at the genus level, remarkable differences were noticed. Clostridium dominated the earthworm gut prior to CPF exposure while Bacillus dominated after exposure. Similarly, the fungal members such as Ascomycota and Basidiomycota were observed to dominate the gut of earthworm at the phyla level before and after exposure to CPF. In contrast, Clavispora (65%) was the dominant genus before CPF exposure and Taloromyces (42%) dominated after the CPF exposure. Our study demonstrates the effect of CPF on the mortality of E. euginae while the amplicon sequencing established the unique microbiome of the gut in response to the CPF exposure.
Collapse
Affiliation(s)
- Veena Gayathri Krishnaswamy
- Department of Biotechnology, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, India.
| | - Mariyam Fathima Jaffar
- Department of Biotechnology, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, India
| | - Rajalakshmi Sridharan
- Department of Biotechnology, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, India
| | - Shruthi Ganesh
- Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, India
| | - Suryasri Kalidas
- Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, India
| | - Vignesh Palanisamy
- Department of Biotechnology, PSG College of Technology, Coimbatore, India
| | - Kabilan Mani
- Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, India.
| |
Collapse
|
40
|
Gudeta K, Julka J, Kumar A, Bhagat A, Kumari A. Vermiwash: An agent of disease and pest control in soil, a review. Heliyon 2021; 7:e06434. [PMID: 33732941 PMCID: PMC7944038 DOI: 10.1016/j.heliyon.2021.e06434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/11/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
Vermiwash is a liquid extract produced from vermicompost in a medium where earthworms are richly populated. It comprises a massive decomposer bacteria count, mucus, vitamins, different bioavailable minerals, hormones, enzymes, different antimicrobial peptides, etc. This paper aimed to assess how these natural products in vermiwash suppressed the pathogen and pests. Thus, we have reviewed the importance of vermiwash/vermicompost in disease control, the mechanism of disease suppression, the components of vermiwash applied in disease suppression, and pest control to use the scientific facts in agriculture to enhance the productivity of the crops. The bioactive macromolecules from the skin secretion of earthworm, coelomic fluid, and mucus directly able to defend pathogenic soil microbes against the worm and thereby freed the environment from the disease. Earthworms establish symbiotic relations with microbes, produce an essential product that supports the growth of plants, and suppress plant's root disease. It is recomended that earthworm should be inoculated in an agricultural field, or prepare and apply its vermiwash/vermicompost as a spray or as additive bio-fertilizer in the soil to enhance the productivities of the crops.
Collapse
Affiliation(s)
- Kasahun Gudeta
- Adama Science and Technology University, Department of Biology, P.O. Box 1888, Adama, Ethiopia
- Shoolini University Biotechnology and Management Sciences, School of Biological and Environmental Sciences, Solan 173212, Himachal Pradesh, India
| | - J.M. Julka
- Shoolini University Biotechnology and Management Sciences, School of Biological and Environmental Sciences, Solan 173212, Himachal Pradesh, India
| | - Arun Kumar
- Shoolini University Biotechnology and Management Sciences, School of Biotechnology, Solan 173212, Himachal Pradesh, India
| | - Ankeet Bhagat
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Amita Kumari
- Shoolini University Biotechnology and Management Sciences, School of Biological and Environmental Sciences, Solan 173212, Himachal Pradesh, India
| |
Collapse
|
41
|
Yao X, Qiao Z, Zhang F, Liu X, Du Q, Zhang J, Li X, Jiang X. Effects of a novel fungicide benzovindiflupyr in Eisenia fetida: Evaluation through different levels of biological organization. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116336. [PMID: 33370611 DOI: 10.1016/j.envpol.2020.116336] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Although benzovindiflupyr (BZF), which is a novel succinate dehydrogenase inhibitor fungicide, has considerable application potential worldwide, its extensive use is toxic to non-targeted soil organisms. Therefore, this study aimed to evaluate the acute and subchronic toxicity of BZF to earthworms (Eisenia fetida). The acute toxicity of BZF to adult and larval earthworms was measured, as indicated by the following LC50 values obtained after 14 days of exposure: 416 mg/kg for adult earthworms and 341 mg/kg for juveniles. Subchronic toxicity tests were conducted using only adult earthworms. The earthworms' weight gain was slower on days 14 and 28 after commencing the BZF T100 treatment (50 mg/kg of soil). Following 14 days of BZF exposure, enzymes and gene expressions associated with the mitochondrial respiratory chain and energy metabolism were activated to some extent, and the reactive oxygen species level and malondialdehyde content also increased. Antioxidant and detoxifying enzymes and metallothionein gene, Heat shock protein 70 gene associated with resistance to oxidative damage were also activated to varying degrees. Increased BZF concentrations corresponded to increased genotoxicity. Integrated biological response (IBR) values were calculated at the biochemical and molecular levels to show increased toxicity with increased BZF concentration. Although a series of biomarkers changes occurred after initiating BZF treatment, these changes were all likely to have been resisted by the earthworms' own antioxidant defense system and only showed phenotypic (weight-related) changes with treatments of 50 mg/kg. In conclusion, reasonable levels of BZF application may have little impact on earthworms. Our findings provide insights on the toxic effects of BZF on earthworms and may prove useful for risk assessments relating to BZF's impacts on soil ecosystems.
Collapse
Affiliation(s)
- Xiangfeng Yao
- College of Plant Protection Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Key Laboratory of Pesticide Toxicology & Application Technique, Tai'an, Shandong, 271018, PR China
| | - Zhihua Qiao
- College of Plant Protection Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Key Laboratory of Pesticide Toxicology & Application Technique, Tai'an, Shandong, 271018, PR China
| | - Fengwen Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao, 266101, PR China
| | - Xiang Liu
- College of Plant Protection Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Key Laboratory of Pesticide Toxicology & Application Technique, Tai'an, Shandong, 271018, PR China
| | - Qingzhi Du
- College of Plant Protection Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Key Laboratory of Pesticide Toxicology & Application Technique, Tai'an, Shandong, 271018, PR China
| | - Jianye Zhang
- College of Plant Protection Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Key Laboratory of Pesticide Toxicology & Application Technique, Tai'an, Shandong, 271018, PR China
| | - Xiangdong Li
- College of Plant Protection Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xingyin Jiang
- College of Plant Protection Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Key Laboratory of Pesticide Toxicology & Application Technique, Tai'an, Shandong, 271018, PR China.
| |
Collapse
|
42
|
Yan X, Wang J, Zhu L, Wang J, Li S, Kim YM. Oxidative stress, growth inhibition, and DNA damage in earthworms induced by the combined pollution of typical neonicotinoid insecticides and heavy metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:141873. [PMID: 32911142 DOI: 10.1016/j.scitotenv.2020.141873] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Heavy metals pollution of soil and widespread application of neonicotinoid insecticides have caused environmental problems worldwide. To evaluate ecological toxicity resulting from the combined pollution of neonicotinoids and heavy metals, typical representatives of neonicotinoid insecticides (imidacloprid, thiamethoxam, dinotefuran) and heavy metals (cadmium, copper, zinc) were selected as soil pollutants; earthworms were used as test organisms. Analysis of the main and interaction effects of a combined pollution process were performed using a uniform design method. Results showed that the reactive oxygen species (ROS) content of earthworms in most treatment groups was higher during exposure than that of the control group. The malondialdehyde (MDA) and ROS content of earthworms demonstrated relatively low values on the 21st day and increased by the 28th day. The interaction between dinotefuran and Cd had significant antagonistic effects on ROS and MDA. The combined pollution adversely affected both the growth and genes of earthworms and also caused damage to the epidermis, midgut, and DNA. The interaction between imidacloprid and Cd was synergistic to ROS, weight inhibition rate, and Olive tail moment (OTM), but was antagonistic to MDA. Of all the single and combined exposures, Zn as a single chemical affected ROS and DNA damage the most, and MDA was significantly enhanced by imidacloprid. Composite pollutants may create different primary effects and interactions causing potential harm to soil organisms.
Collapse
Affiliation(s)
- Xiaojing Yan
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Jinhua Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Lusheng Zhu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Jun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Shuyan Li
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
43
|
Zhang LJ, Qian L, Ding LY, Wang L, Wong MH, Tao HC. Ecological and toxicological assessments of anthropogenic contaminants based on environmental metabolomics. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2021; 5:100081. [PMID: 36158612 PMCID: PMC9488080 DOI: 10.1016/j.ese.2021.100081] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/06/2021] [Accepted: 01/23/2021] [Indexed: 05/02/2023]
Abstract
There has long been a great concern with growing anthropogenic contaminants and their ecological and toxicological effects on living organisms and the surrounding environment for decades. Metabolomics, a functional readout of cellular activity, can capture organismal responses to various contaminant-related stressors, acquiring direct signatures to illustrate the environmental behaviours of anthropogenic contaminants better. This review entails the application of metabolomics to profile metabolic responses of environmental organisms, e.g. animals (rodents, fish, crustacean and earthworms) and microorganisms (bacteria, yeast and microalgae) to different anthropogenic contaminants, including heavy metals, nanomaterials, pesticides, pharmaceutical and personal products, persistent organic pollutants, and assesses their ecotoxicological impacts with regard to literature published in the recent five years. Contaminant-induced metabolism alteration and up/down-regulation of metabolic pathways are revealed in typical organisms. The obtained insights of variations in global metabolism provide a distinct understanding of how anthropogenic contaminants exert influences on specific metabolic pathways on living organisms. Thus with a novel ecotechnique of environmental metabolomics, risk assessments of anthropogenic contaminants are profoundly demonstrated.
Collapse
Affiliation(s)
- Li-Juan Zhang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Lu Qian
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Ling-Yun Ding
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Lei Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Hu-Chun Tao
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
- Corresponding author.
| |
Collapse
|
44
|
Application of Siderophore in Crop Productivity and Remediation of Heavy Metal-Contaminated Soil. Fungal Biol 2021. [DOI: 10.1007/978-3-030-53077-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Teng H, Yuan Y, Zhang T, Chang X, Wang D. Evaluation of the sublethal effect of tetrachlorantraniliprole on Spodoptera exigua and its potential toxicity to two non-target organisms. PLoS One 2020; 15:e0242052. [PMID: 33166345 PMCID: PMC7652279 DOI: 10.1371/journal.pone.0242052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 10/27/2020] [Indexed: 11/18/2022] Open
Abstract
Tetrachlorantraniliprole (TCAP) is a novel anthranilic diamide insecticide that specifically targets the ryanodine receptors of lepidopteran insect species with excellent insecticidal activity. Previous studies have reported the sublethal effects of multiple diamides on several lepidopteran species, whereas the sublethal and non-target effects of TCAP remain largely unknown. We assessed the sublethal effects of TCAP on Spodoptera exigua. We also investigated the effects of TCAP on non-target Harmonia axyridis and Eisenia fetida, S. exigua was more sensitive to TCAP than to chlorantraniliprole, as the LC50 (10.371 μg L-1 at 72 h) of TCAP was relatively lower. Compared with those of the control, sublethal concentrations of TCAP (LC10 and LC30) not only prolonged the duration of the larval and pupal stages as well as the mean generation time but also reduced certain population parameters. On the other hand, TCAP exposure, even at the highest concentration, did not induce toxic effects in H. axyridis ladybugs (1st instar larvae and adults) or E. fetida earthworms. Taken together, our results suggest that TCAP can be used as a novel and promising component of the integrated pest management (IPM) program against S. exigua due to its robust target effects and negligible non-target risks.
Collapse
Affiliation(s)
- Haiyuan Teng
- Institute of Eco-Environmental and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yongda Yuan
- Institute of Eco-Environmental and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Tianshu Zhang
- Institute of Eco-Environmental and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xiaoli Chang
- Institute of Eco-Environmental and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Dongsheng Wang
- Institute of Eco-Environmental and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
46
|
Salehpour T, Khanali M, Rajabipour A. Environmental impact assessment for ornamental plant greenhouse: Life cycle assessment approach for primrose production. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115258. [PMID: 32771865 DOI: 10.1016/j.envpol.2020.115258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Improving the environmental impact is a critical factor in achieving sustainable development in agricultural systems. To achieve this goal, the environmental assessment of agricultural products to identify environmental hot-spots and provide strategies for reducing them is essential. In line with that, the current study is performed to assess the environmental impacts of Primrose greenhouse production in Savojbolagh County, Iran. More specifically, the environmental impacts of Primrose greenhouse production based on the cradle to gate analysis using the life cycle assessment approach are evaluated. According to results, production and combustion of diesel fuel are introduced as the environmental hotspot in non-carcinogens, respiratory inorganics, respiratory organics, terrestrial acid/nutri, aquatic acidification, global warming, and non-renewable energy impact categories. The application of pesticides and fertilizers in the greenhouse has the highest contribution in aquatic ecotoxicity as well as terrestrial ecotoxicity impact categories. Moreover, electricity consumption has the highest impact on carcinogens, and ozone layer depletion impact categories. Based on the outcomes of the life cycle assessment approach, the production of a piece of Primrose leads to damages of 1.48 × 10-7 DALY (disability-adjusted life year) and 3.41 × 10-1 PDF.m-2.yr-1 (potentially disappeared fraction in square-meters per year) to human health and ecosystem quality, respectively. In addition, the production of each Primrose plant results in primary damages of 2.06 × 10-1 kg CO2eq. (equivalent carbon dioxide) and 2.94 MJ (Megajoule) to climate change and resources, respectively. Finally, the weighing of environmental impacts based on IMPACT 2002+ methods shows that the ecosystem quality damage category has a share of 30% in total environmental impacts of one piece of Primrose production. Damages to ecosystem quality are mostly caused by pesticide and fertilizer applications in Primrose greenhouse. Accordingly, it could be concluded that correct management of pesticides and fertilizers can potentially mitigate environmental impacts of Primrose production in a greenhouse.
Collapse
Affiliation(s)
- Tahereh Salehpour
- Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran
| | - Majid Khanali
- Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran.
| | - Ali Rajabipour
- Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran
| |
Collapse
|
47
|
Zeb A, Li S, Wu J, Lian J, Liu W, Sun Y. Insights into the mechanisms underlying the remediation potential of earthworms in contaminated soil: A critical review of research progress and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140145. [PMID: 32927577 DOI: 10.1016/j.scitotenv.2020.140145] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
In recent years, soil pollution is a major global concern drawing worldwide attention. Earthworms can resist high concentrations of soil pollutants and play a vital role in removing them effectively. Vermiremediation, using earthworms to remove contaminants from soil or help to degrade non-recyclable chemicals, is proved to be an alternative, low-cost technology for treating contaminated soil. However, knowledge about the mechanisms and framework of the vermiremediation various organic and inorganic contaminants is still limited. Therefore, we reviewed the research progress of effects of soil contaminants on earthworms and potential of earthworm used for remediation soil contaminated with heavy metals, polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), pesticides, as well as crude oil. Especially, the possible processes, mechanisms, advantages and limitations, and how to boost the efficiency of vermiremediation are well addressed in this review. Finally, future prospects of vermiremediation soil contamination are listed to promote further studies and application of vermiremediation in contaminated soils.
Collapse
Affiliation(s)
- Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Song Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiani Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiapan Lian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yuebing Sun
- Key Laboratory of Original Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
48
|
World of earthworms with pesticides and insecticides. Interdiscip Toxicol 2020; 12:71-82. [PMID: 32206027 PMCID: PMC7071835 DOI: 10.2478/intox-2019-0008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/06/2019] [Indexed: 11/21/2022] Open
Abstract
Earthworms are important organisms in soil communities and are known for sustaining the life of the soil. They are used as a model organism in environmental risk assessment of chemicals and soil toxicology. Soil provides physical and nutritive support to agriculture system by regulating biogeochemical cycles, nutrient cycle, waste degradation, organic matter degradation etc. The biggest threat to soil health are pesticides and synthetic chemicals including fertilizers. Earthworms are most severely hit by these xenobiotic compounds leading to a sizeable reduction of their population and adversely affecting soil fertility. Earthworms are incredible soil organisms playing a crucial role in maintaining soil health. Pesticides used in crop management are known to be most over-purchased and irrationally used soil toxicants, simultaneously, used insecticides contribute to a quantum of damage to earthworms and other non-target organisms. LC50 and LD50 studies revealed that earthworms are highly susceptible to insecticides causing immobility, rigidity and also show a significant effect on biomass reduction, growth and reproduction by disrupting various physiological activities leading to loss of earthworm population and soil biodiversity.
Collapse
|
49
|
Liu M, Cao J, Wang C. Bioremediation by earthworms on soil microbial diversity and partial nitrification processes in oxytetracycline-contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109996. [PMID: 31785943 DOI: 10.1016/j.ecoenv.2019.109996] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 11/16/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
A large proportion (60-90%) of ingested tetracyclines are released to slurry, soils, surface waters and ground water, which has raised extensive concerns and may pose a risk to the soil ecosystem. A 56-day experiment was conducted to study the bioremediation by earthworms on soil microbial diversity and partial nitrification processes in oxytetracycline (OTC)-contaminated soil. The results showed that high OTC concentration significantly decreased the activity of soil bacteria, ammonia-oxidizing bacteria (AOB) and archaea (AOA). Earthworms were found to accelerate the degradation efficiency and rate of OTC, and its main metabolites were 4-epi-oxytetracycline (EOTC) and 2-acetyl-2-decarboxamido-oxytetracycline (ADOTC). Earthworms had an important role in the bioremediation of soil microbial diversity by degrading OTC and its metabolite (EOTC), especially in the high OTC condition. Additionally, the results indicated that the effects of earthworms on the degradation of OTC could remediate the abundances of 16S rRNA and AOB amoA genes and the NO3- content in both low and high OTC-contaminated soils. The structural equation model suggested that earthworms could remediate the microbial diversity, the abundances of 16s rRNA and AOB amoA genes by accelerating the degradation of OTC, which contributed to the bioremediation by earthworms on soil microbial diversity and partial nitrification processes in oxytetracycline-contaminated soil.
Collapse
Affiliation(s)
- Mengli Liu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China; Key Laboratory of Plant-Soil Interactions, MOE, Beijing, 100193, China
| | - Jia Cao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China; Key Laboratory of Plant-Soil Interactions, MOE, Beijing, 100193, China
| | - Chong Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China; Key Laboratory of Plant-Soil Interactions, MOE, Beijing, 100193, China.
| |
Collapse
|
50
|
Qiao Z, Zhang F, Yao X, Yu H, Sun S, Li X, Zhang J, Jiang X. Growth, DNA damage and biochemical toxicity of cyantraniliprole in earthworms (Eisenia fetida). CHEMOSPHERE 2019; 236:124328. [PMID: 31310971 DOI: 10.1016/j.chemosphere.2019.07.059] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Cyantraniliprole is a second-generation diamide insecticide that exhibited excellent biological efficacy against a variety of pests. To assess the toxic impact of cyantraniliprole on earthworms, the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), activities of superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST), as well as DNA damage were measured after exposed to five cyantraniliprole concentrations ranging from 0 to 10.00 mg/kg for 7, 14, 21 and 28 days. In most treatment groups, the ROS levels increased significantly before exposure time of 14 days and then returned to normal levels. However, the SOD and CAT activities showed different response with activities were first significantly decreased and subsequently increased. The peroxidase (POD) activity showed no significant differences between treatment and control groups at first and then significantly increased. However, the opposite pattern characterized the GST activity. Also, maybe being dose-dependent before 14 days. The MDA concentration was used as a measure of lipid peroxidation (LPO). During experiment period, the MDA concentrations significantly increased when treated by this pesticide. The olive tail moment (OTM) was used as a measure of DNA damage. At higher concentrations of cyantraniliprole and longer exposure times, the OTM gradually increased, and DNA damage in the earthworms gradually increased. The weight of the high-dose (i.e., 5 mg/kg, 10 mg/kg) earthworms showed a significant trend of decrease phenomenon. Overall, the results suggest that sub-chronic exposure to cyantraniliprole causes DNA damage and LPO, weight loss and growth inhibition, leading to antioxidant defence responses in earthworms.
Collapse
Affiliation(s)
- Zhihua Qiao
- College of Plant Protection Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Key Laboratory of Pesticide Toxicology & Application Technique, Tai'an, Shandong, 271018, PR China
| | - Fengwen Zhang
- College of Plant Protection Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Key Laboratory of Pesticide Toxicology & Application Technique, Tai'an, Shandong, 271018, PR China
| | - Xiangfeng Yao
- College of Plant Protection Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Key Laboratory of Pesticide Toxicology & Application Technique, Tai'an, Shandong, 271018, PR China
| | - Haoyong Yu
- College of Plant Protection Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Key Laboratory of Pesticide Toxicology & Application Technique, Tai'an, Shandong, 271018, PR China
| | - Shiang Sun
- College of Plant Protection Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Key Laboratory of Pesticide Toxicology & Application Technique, Tai'an, Shandong, 271018, PR China
| | - Xiangdong Li
- College of Plant Protection Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Jiwang Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xingyin Jiang
- College of Plant Protection Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Key Laboratory of Pesticide Toxicology & Application Technique, Tai'an, Shandong, 271018, PR China.
| |
Collapse
|