1
|
Vetter J, Palagi I, Waisman A, Blaeser A. Recent advances in blood-brain barrier-on-a-chip models. Acta Biomater 2025; 197:1-28. [PMID: 40127880 DOI: 10.1016/j.actbio.2025.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 03/26/2025]
Abstract
The blood-brain barrier is a physiological barrier between the vascular system and the nervous system. Under healthy conditions, it restricts the passage of most biomolecules into the brain, making drug development exceedingly challenging. Conventional cell-based in vitro models provide valuable insights into certain features of the BBB. Nevertheless, these models often lack the three-dimensional structure and dynamic interactions of the surrounding microenvironment, which greatly influence cell functionality. Consequently, considerable efforts have been made to enhance in vitro models for drug development and disease research. Recently, microfluidic organ-on-a-chip systems have emerged as promising candidates to better mimic the dynamic nature of the BBB. This review provides a comprehensive overview of recent BBB-on-chip devices. The typical building blocks, chip designs, the perfusion infrastructure, and readouts used to characterize and evaluate BBB formation are presented, analyzed, and discussed in detail. STATEMENT OF SIGNIFICANCE: The blood-brain barrier (BBB) is a highly selective barrier that controls what can enter the brain. While it protects the brain from harmful substances, it also hinders the delivery of treatments for neurological diseases such as Alzheimer's and Parkinson's. Due to its complexity, studying the BBB in living organisms remains difficult. However, recent advances in "organ-on-a-chip" technology have allowed scientists to create small, engineered models that replicate the BBB. These models provide a powerful platform to study diseases and test potential drugs with greater accuracy than traditional methods. Organ-on-a-chip devices are designed to mimic the behavior of organs or tissues in the human body, offering a more realistic and controlled environment for research. This review highlights recent breakthroughs in BBB-on-a-chip technology, showing how these models enhance current research and have the potential to transform the way we study brain diseases and develop new drugs. By integrating biology and engineering, BBB-on-a-chip technology has the potential to transform neuroscience research, improve drug development, and enhance our understanding of brain disorders.
Collapse
Affiliation(s)
- Johanna Vetter
- Institute for BioMedical Printing Technology, Technical University of Darmstadt, Darmstadt, Germany
| | - Ilaria Palagi
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andreas Blaeser
- Institute for BioMedical Printing Technology, Technical University of Darmstadt, Darmstadt, Germany; Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany.
| |
Collapse
|
2
|
Miranda-Azpiazu P, Saha S. A Novel Dynamic Human In Vitro Model for Studying the Blood-Brain Barrier. Methods Mol Biol 2022; 2492:157-173. [PMID: 35733044 DOI: 10.1007/978-1-0716-2289-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Constructing a reliable in vitro blood-brain barrier (BBB) model using human primary cells has been considered a major challenge during the past decades. These systems could provide valuable information regarding the effect of therapeutic compounds on different BBB cell types (endothelial cells, astrocytes, pericytes) and their ability to cross the barrier in order to reach the brain. Several attempts have been made to develop in vitro BBB models, but these studies mainly used rat, bovine, and porcine cells rather than human primary cells. Genetically modified cell lines have also been used, but they do not appear to maintain physiological properties of the BBB. Here, we describe a detailed protocol for co-culturing and maintaining human brain primary endothelial cells, pericytes, and astrocytes under flow to create an in vitro human BBB model, which can be used for toxicity testing and for studying cross-interaction among different cell types involved in the BBB formation.
Collapse
Affiliation(s)
- Patricia Miranda-Azpiazu
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Sikha Saha
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK.
| |
Collapse
|
3
|
Chou CH, Modo M. Characterization of gene expression changes in human neural stem cells and endothelial cells modeling a neurovascular microenvironment. Brain Res Bull 2020; 158:9-19. [PMID: 32092433 PMCID: PMC7103513 DOI: 10.1016/j.brainresbull.2020.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 12/23/2022]
Abstract
Angiogenesis-mediated neovascularization correlates with recovery after intracerebral implantation of neural stem cells (NSCs) in stroke. To elucidate NSCs' mechanism of action, it is essential to understand how these interact with the brain's vasculature after implantation. Using an all-human endothelial cell (EC, D3 cell line) and NSC (STROC05 and CTXOE03) co-culture model, fluorescently activated cell sorting (FACS) was used to isolate each cell type for a comparison of gene expression between monocultures of undifferentiated proliferating and differentiated non-proliferating cells. Gene expression for angiogenic factors (vascular endothelial growth factor, platelet derived growth factor, angiopoietin), as well as cell survival (brain derived neurotrophic factor, fibroblast growth factor) and migration (stromal cell-derived factor-1a) were measured and contrasted with the corresponding receptors on each cell type. The cellular source of extracellular matrix defining the basement membrane (vitronectin, fibronectin, laminin, collagen I and IV) and neuropil (hyaluronic acid, aggrecan, neurocan, thrombospondin, nidogen and brain associated link protein-1) was evaluated for NSCs and ECs. Co-culturing dramatically changed the expression profiles of each cell type in comparison to undifferentiated, but also differentiated cells. These results indicate that monocultures provide a poor model to investigate the cellular signaling involved in a tissue repair response. Co-cultures of NSCs and ECs forming vasculature-like structures (VLS) provide a more complex model to investigate NSC-induced neovascularization. These in vitro studies are essential to tease out individual cell signaling in NSCs and ECs to develop a mechanistic understanding of the efficacy of NSCs as a therapeutic for stroke.
Collapse
Affiliation(s)
- Chung-Hsing Chou
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Michel Modo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA; Department of Radiology, University of Pittsburgh, Pittsburgh, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, USA.
| |
Collapse
|
4
|
The role of endothelial HIF-1 αin the response to sublethal hypoxia in C57BL/6 mouse pups. J Transl Med 2017; 97:356-369. [PMID: 28092362 DOI: 10.1038/labinvest.2016.154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/04/2016] [Accepted: 12/07/2016] [Indexed: 12/24/2022] Open
Abstract
Chronic sublethal hypoxia, a complication of premature birth, is associated with cognitive and motor handicaps. Responsiveness to and recovery from this hypoxic environment is dependent on induction of HIF-1 α in the cells affected. Microvascular endothelial-glial and microvascular endothelial-neuronal precursor interactions have been found to be dynamic and reciprocal, involving autocrine and paracrine signaling, with response and recovery correlated with baseline levels and levels of induction of HIF-1 α.To ascertain the roles of endothelial HIF-1 α in the responses of brain microvascular endothelial cells (EC) and neuronal precursors to hypoxia, we examined the effects of the presence and absence of endothelial HIF-1 α expression in culture and in cells comprising the subventricular zone (SVZ) and dentate gyrus under normoxic and hypoxic conditions. We used C57BL/6 WT and EC HIF-1 α -deficient mice and brain microvascular ECs isolated from these mice in western blots, immunofluorescence, and behavioral studies to examine the roles of EC HIF-1 α behaviors of endothelial and neuronal precursor cells (NPCs) in SVZ and hippocampal tissues under normoxic and hypoxic conditions and behaviors of these mice in open field activity tests. Analyses of ECs and SVZ and dentate gyrus tissues revealed effects of the absence of endothelial HIF-1 α on proliferation and apoptosis as well as open field activity, with both ECs and neuronal cells exhibiting decreased proliferation, increased apoptosis, and pups exhibiting gender-specific differences in open field activities. Our studies demonstrate the autocrine and paracrine effects of EC HIF-1 α-modulating proliferative and apoptotic behaviors of EC and NPC in neurogenic regions of the brain and gender-specific behaviors in normoxic and hypoxic settings.
Collapse
|
5
|
Sarelius IH, Glading AJ. Control of vascular permeability by adhesion molecules. Tissue Barriers 2015; 3:e985954. [PMID: 25838987 DOI: 10.4161/21688370.2014.985954] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/05/2014] [Indexed: 12/13/2022] Open
Abstract
Vascular permeability is a vital function of the circulatory system that is regulated in large part by the limited flux of solutes, water, and cells through the endothelial cell layer. One major pathway through this barrier is via the inter-endothelial junction, which is driven by the regulation of cadherin-based adhesions. The endothelium also forms attachments with surrounding proteins and cells via 2 classes of adhesion molecules, the integrins and IgCAMs. Integrins and IgCAMs propagate activation of multiple downstream signals that potentially impact cadherin adhesion. Here we discuss the known contributions of integrin and IgCAM signaling to the regulation of cadherin adhesion stability, endothelial barrier function, and vascular permeability. Emphasis is placed on known and prospective crosstalk signaling mechanisms between integrins, the IgCAMs- ICAM-1 and PECAM-1, and inter-endothelial cadherin adhesions, as potential strategic signaling nodes for multipartite regulation of cadherin adhesion.
Collapse
Key Words
- ICAM-1
- ICAM-1, intercellular adhesion molecule 1
- IgCAM, immunoglobulin superfamily cell adhesion molecule
- JAM, junctional adhesion molecule
- LPS, lipopolysaccharide
- PECAM-1
- PECAM-1, platelet endothelial cell adhesion molecule 1
- PKC, protein kinase C
- RDG, arginine-aspartic acid- glutamine
- S1P, sphingosine 1 phosphate
- SHP-2, Src homology region 2 domain-containing phosphatase
- TGF-β, transforming growth factor-β
- TNF-α, tumor necrosis factor α
- VCAM-1, vascular cell adhesion molecule 1
- VE-PTP, Receptor-type tyrosine-protein phosphatase β
- VE-cadherin
- VEGF, vascular endothelial growth factor
- adhesion
- eNOS, endothelial nitric oxide synthase
- endothelial barrier function
- fMLP, f-Met-Leu-Phe
- iNOS, inducible nitric oxide synthase
- integrins
- permeability
- transendothelial migration
Collapse
Affiliation(s)
- Ingrid H Sarelius
- University of Rochester; Department of Pharmacology and Physiology ; Rochester, NY USA
| | - Angela J Glading
- University of Rochester; Department of Pharmacology and Physiology ; Rochester, NY USA
| |
Collapse
|
6
|
Lien CF, Mohanta SK, Frontczak-Baniewicz M, Swinny JD, Zablocka B, Górecki DC. Absence of glial α-dystrobrevin causes abnormalities of the blood-brain barrier and progressive brain edema. J Biol Chem 2012; 287:41374-85. [PMID: 23043099 DOI: 10.1074/jbc.m112.400044] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The blood-brain barrier (BBB) plays a key role in maintaining brain functionality. Although mammalian BBB is formed by endothelial cells, its function requires interactions between endotheliocytes and glia. To understand the molecular mechanisms involved in these interactions is currently a major challenge. We show here that α-dystrobrevin (α-DB), a protein contributing to dystrophin-associated protein scaffolds in astrocytic endfeet, is essential for the formation and functioning of BBB. The absence of α-DB in null brains resulted in abnormal brain capillary permeability, progressively escalating brain edema, and damage of the neurovascular unit. Analyses in situ and in two-dimensional and three-dimensional in vitro models of BBB containing α-DB-null astrocytes demonstrated these abnormalities to be associated with loss of aquaporin-4 water and Kir4.1 potassium channels from glial endfeet, formation of intracellular vacuoles in α-DB-null astrocytes, and defects of the astrocyte-endothelial interactions. These caused deregulation of tight junction proteins in the endothelia. Importantly, α-DB but not dystrophins showed continuous expression throughout development in BBB models. Thus, α-DB emerges as a central organizer of dystrophin-associated protein in glial endfeet and a rare example of a glial protein with a role in maintaining BBB function. Its abnormalities might therefore lead to BBB dysfunction.
Collapse
Affiliation(s)
- Chun Fu Lien
- Molecular Medicine, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | | | | | | | | | | |
Collapse
|
7
|
Astrocytes and pericytes differentially modulate blood-brain barrier characteristics during development and hypoxic insult. J Cereb Blood Flow Metab 2011; 31:693-705. [PMID: 20827262 PMCID: PMC3049523 DOI: 10.1038/jcbfm.2010.148] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Understanding regulation of blood-brain barrier (BBB) is crucial to reduce/prevent its disruption during injury. As high brain complexity makes interpretation of in vivo data challenging, BBB studies are frequently performed using simplified in vitro models. However, many models fail to address the three-dimensional (3D) cellular interactions that occur in vivo, an important feature that may explain discrepancies in translation of in vitro data to the in vivo situation. We have designed and characterized an innovative 3D model that reproduces morphological and functional characteristics of the BBB in vivo and used it to investigate cellular interactions and contribution of astrocytes and pericytes to BBB development. Our model shows that both astrocytes and pericytes significantly suppress endothelial proliferation. In contrast, differential effects on tubulogenesis were observed with astrocytes reducing the number of tubes formed but increasing diameters and length, whereas pericytes had the opposite effect. Pericytes also induce proper localization of barrier proteins, lumen polarization, and functional activity of ATP-binding cassette (ABC) transporters similar to astrocytes, but the presence of both cells is required to maintain optimal barrier characteristics during hypoxic exposure. This model is simple, dynamic, and convenient to study many aspects of BBB function and represents an exciting new tool to address open questions of BBB regulation.
Collapse
|
8
|
Biophysical Properties of Scaffolds Modulate Human Blood Vessel Formation from Circulating Endothelial Colony-Forming Cells. BIOPHYSICAL REGULATION OF VASCULAR DIFFERENTIATION AND ASSEMBLY 2011. [DOI: 10.1007/978-1-4419-7835-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Milner R. A novel three-dimensional system to study interactions between endothelial cells and neural cells of the developing central nervous system. BMC Neurosci 2007; 8:3. [PMID: 17199896 PMCID: PMC1769506 DOI: 10.1186/1471-2202-8-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 01/02/2007] [Indexed: 11/10/2022] Open
Abstract
Background During angiogenesis in the developing central nervous system (CNS), endothelial cells (EC) detach from blood vessels growing on the brain surface, and migrate into the expanding brain parenchyma. Brain angiogenesis is regulated by growth factors and extracellular matrix (ECM) proteins secreted by cells of the developing CNS. In addition, recent evidence suggests that EC play an important role in establishing the neural stem cell (NSC) niche. Therefore, two-way communication between EC and neural cells is of fundamental importance in the developing CNS. To study the interactions between brain EC and neural cells of the developing CNS, a novel three-dimensional (3-D) murine co-culture system was developed. Fluorescent-labelled brain EC were seeded onto neurospheres; floating cellular aggregates that contain NSC/neural precursor cells (NPC) and smaller numbers of differentiated cells. Using this system, brain EC attachment, survival and migration into neurospheres was evaluated and the role of integrins in mediating the early adhesive events addressed. Results Brain EC attached, survived and migrated deep into neurospheres over a 5-day period. Neurospheres express the ECM proteins fibronectin and laminin, and brain EC adhesion to neurospheres was inhibited by RGD peptides and antibodies specific for the β1, but not the α6 integrin subunit. Conclusion A novel 3-D co-culture system for analysing the interactions between EC and neural cells of the developing CNS is presented. This system could be used to investigate the reciprocal influence of EC and NSC/NPC; to examine how NSC/NPC influence cerebral angiogenesis, and conversely, to examine how EC regulate the maintenance and differentiation of NSC/NPC. Using this system it is demonstrated that EC attachment to neurospheres is mediated by the fibronectin receptor, α5β1 integrin.
Collapse
Affiliation(s)
- Richard Milner
- The Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.
| |
Collapse
|
10
|
Li Q, Ford MC, Lavik EB, Madri JA. Modeling the neurovascular niche: VEGF- and BDNF-mediated cross-talk between neural stem cells and endothelial cells: An in vitro study. J Neurosci Res 2006; 84:1656-68. [PMID: 17061253 DOI: 10.1002/jnr.21087] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neural stem cells (NSCs) exist in vascularized niches. Although there has been ample evidence supporting a role for endothelial cell-derived soluble factors as modulators of neural stem cell self-renewal and neuronal differentiation there is a paucity of data reported on neural stem cell modulation of endothelial cell behavior. We show that co-culture of NSCs with brain-derived endothelial cells (BECs) either in direct contact or separated by a porous membrane elicited robust vascular tube formation and maintenance, mediated by induction of vascular vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF) and activation of vascular VEGFR2 and TrkB by NSC NO. Nitric oxide (NO) scavengers and sequestration of VEGF and BDNF blunted this induction of tube formation, whereas addition of exogenous NO donor, rBDNF and rVEGF rescued the induction of tube formation. Further, rBDNF enhanced NSC eNOS activation and NO generation, suggesting an inducible positive feed-back signaling loop between NSCs and BECs, providing for homeostasis and responsiveness of the resident NSCs and BECs comprising the neurovascular niche. These findings show the importance of reciprocal modulation of NSCs and BECs in induction and maintenance of the neurovascular niche and underscores their dynamic interactions.
Collapse
Affiliation(s)
- Qi Li
- Department of Pathology, Yale University, School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
11
|
Sieminski AL, Hebbel RP, Gooch KJ. Improved microvascular network in vitro by human blood outgrowth endothelial cells relative to vessel-derived endothelial cells. ACTA ACUST UNITED AC 2005; 11:1332-45. [PMID: 16259589 DOI: 10.1089/ten.2005.11.1332] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Evidence suggests that bone marrow-derived cells circulating in adult blood, sometimes called endothelial progenitor cells, contribute to neovascularization in vivo and give rise to cells expressing endothelial markers in culture. To explore the utility of blood-derived cells expressing an endothelial phenotype for creating tissue-engineered microvascular networks, we employed a three-dimensional in vitro angiogenesis model to compare microvascular network formation by human blood outgrowth endothelial cells (HBOECs) with three human vessel-derived endothelial cell (EC) types: human umbilical vein ECs (HUVECs), and adult and neonatal human microvascular ECs. Under every condition investigated, HBOECs within collagen gels elongated significantly more than any other cell type. Under all conditions investigated, gel contraction and cell elongation were correlated, with HBOECs demonstrating the largest generation of force. HBOECs did not exhibit a survival advantage, nor did they enhance elongation of HUVECs when the two cell types were cocultured. Network formation of both HBOECs and HUVECs was inhibited by blocking antibodies to alpha2beta1, but not alpha(v)beta3, integrins. Taken together, these data suggest that superior network exhibited by HBOECs relative to vessel-derived endothelial cells is not due to a survival advantage, use of different integrins, or secretion of an autocrine/paracrine factor, but may be related to increased force generation.
Collapse
Affiliation(s)
- A L Sieminski
- Department of Bioengineering and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6392, USA
| | | | | |
Collapse
|
12
|
Kim H, Li Q, Hempstead BL, Madri JA. Paracrine and autocrine functions of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in brain-derived endothelial cells. J Biol Chem 2004; 279:33538-46. [PMID: 15169782 DOI: 10.1074/jbc.m404115200] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is expressed by endothelial cells. We investigated the characteristics of BDNF expression by brain-derived endothelial cells and tested the hypothesis that BDNF serves paracrine and autocrine functions affecting the vasculature of the central nervous system. In addition to expressing TrkB and p75NTR and BDNF under normoxic conditions, these cells increased their expression of BDNF under hypoxia. While the expression of TrkB is unaffected by hypoxia, TrkB exhibits a base-line phosphorylation under normoxic conditions and an increased phosphorylation when BDNF is added. TrkB phosphorylation is decreased when endogenous BDNF is sequestered by soluble TrkB. Exogenous BDNF elicits robust angiogenesis and survival in three-dimensional cultures of these endothelial cells, while sequestration of endogenous BDNF caused significant apoptosis. The effects of BDNF engagement of TrkB appears to be mediated via the phosphatidylinositol (PI) 3-kinase-Akt pathway. Modulation of BDNF levels directly correlate with Akt phosphorylation and inhibitors of PI 3-kinase abrogate the BDNF responses. BDNF-mediated effects on endothelial cell survival/apoptosis correlated directly with activation of caspase 3. These endothelial cells also express p75NTR and respond to its preferred ligand, pro-nerve growth factor (pro-NGF), by undergoing apoptosis. These data support a role for neurotrophins signaling in the dynamic maintenance/differentiation of central nervous system endothelia.
Collapse
Affiliation(s)
- Hyun Kim
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520-8023, USA.
| | | | | | | |
Collapse
|
13
|
Timmins NE, Dietmair S, Nielsen LK. Hanging-drop multicellular spheroids as a model of tumour angiogenesis. Angiogenesis 2004; 7:97-103. [PMID: 15516830 DOI: 10.1007/s10456-004-8911-7] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The establishment of a vascular network within tumours is a key step in the progression towards an aggressive, metastatic state, with poor prognosis. We have developed a novel in vitro model to specifically capture the interaction between endothelial cells and solid tumours. Micro-vascularised in vitro tumour constructs were produced by introducing endothelial cells to multicellular spheroids formed in hanging drops. Upon introduction, the endothelial cells migrated into the tumour spheroid, establishing tubular networks and luminal structures. This system relies on the natural pro-angiogenic capacity of multicellular spheroids, and does not require the addition of exogenous angiogenic factors, or use of extracellular-matrix substitutes.
Collapse
Affiliation(s)
- Nicholas E Timmins
- Laboratory for Biological Engineering, Department of Chemical Engineering, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | | | | |
Collapse
|
14
|
Abstract
During the last decades a lot of attention has been focussed on mechanisms of glioma vascularization, particularly in terms of investigating vascular growth factors and receptors. Recently, these efforts resulted in various approaches for antiangiogenic treatment strategies using in vitro cell culture systems as well as experimental orthotopic and non-orthotopic brain tumors. These basic science and preclinical trials need an assortment of models, which should allow investigating a variety of questions. Several objectives concerning basic endothelial cell (EC) characteristics can adequately be studied in vitro using EC monolayer assays. Three-dimensional spheroid techniques respect the more complex cell-cell and cell-environment interplay within a 3-dimensional culture. Recent advances in molecular genetic techniques offer a wide access to the genome of EC. Using these micro array or chip methods differences between micro- and macromolecular EC as well as variations within the gene pool of different organ specific EC can be assessed. To optimize the imitation of the crucial interaction of human gliomas with host endothelial cells, immunological cells and extracellular matrix, animal models are mandatory. An essential rule is to utilize an orthotopic model, since tumor-host-interaction is organ specific. To avoid alloimmunogenic responses, it is desirable to use weak or non-immunogenic glioma grafts, which is best accomplished in a syngeneic model. However, since rat gliomas poorly resemble human glioma growth patterns, human glioma xenografting into immunocompromized animals should be considered. In vivo-monitoring techniques like videoscopy via a cranial window or magnetic resonance imaging (MRI) allow for functional studies and improve the validity of the model employed. Finally, it is essentially to recognize the limitations of each model considered and to select that model which seems to be most appropriate for the objectives to be investigated.
Collapse
Affiliation(s)
- Roland H Goldbrunner
- Department of Neurosurgery, Grosshadern Hospital, Ludwig-Maximilians, University of Munich, 81377 Munich, Germany
| | | | | |
Collapse
|
15
|
Tolcos M, Harding R, Loeliger M, Breen S, Cock M, Duncan J, Rees S. The fetal brainstem is relatively spared from injury following intrauterine hypoxemia. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 143:73-81. [PMID: 12763582 DOI: 10.1016/s0165-3806(03)00103-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Our aim was to test the hypothesis that the fetal brainstem is relatively spared, compared to other brain regions, from hypoxia-induced damage. We have used established experimental models of acute and chronic intrauterine compromise in sheep to mimic conditions that can arise in human pregnancy. The acute insult was 12 h of placental insufficiency induced by restricted utero-placental blood flow at 90 days of gestation (term approximately 147 days). Five weeks after this insult (n=7 fetuses) there was no overt damage to the brainstem nor were there alterations to the blood vessel morphology, volume of the medulla or of medullary nuclei compared to controls (n=8). This regimen is known to have significant effects on the forebrain and cerebellum. The chronic insult was induced in five fetuses via embolisation of the umbilico-placental circulation from 120 to 140 days of gestation. An additional three fetuses were found to be spontaneously hypoxemic (SH) immediately after surgery. At 140 days, in brainstems of all chronically hypoxemic fetuses compared to controls (n=8), there was an increase (P<0.05) in the percentage of neuropil occupied by blood vessels and abnormal myelin in the most severely SH fetus but no other morphological or neurochemical alterations. This regimen is known to cause marked damage to the cerebral hemispheres and to a lesser extent to the cerebellum. We suggest that the absence of marked structural or neurochemical alterations in the brainstem is most likely due to the maintenance of oxygen delivery to the brainstem during fetal hypoxemia.
Collapse
Affiliation(s)
- Mary Tolcos
- Department of Anatomy and Cell Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
16
|
Fan W, Zheng JJ, McLaughlin BJ. An in vitro model of the back of the eye for studying retinal pigment epithelial-choroidal endothelial interactions. In Vitro Cell Dev Biol Anim 2002; 38:228-34. [PMID: 12197775 DOI: 10.1290/1071-2690(2002)038<0228:aivmot>2.0.co;2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
At the back of the eye, the outermost cell layer of the retina, the pigmented epithelium, lies against a basement membrane that is adjacent to the choroidal vessels that supply the outer sensory retina. During pathogenesis, these interfaces become damaged, and the homeostatic balance between the retinal pigment epithelium (RPE) and the choroidal vessels becomes disrupted, leading to choroidal neovascularization and blindness. To study the cell interactions at the back of the eye, we have used a coculture system in which a stable RPE monolayer has been cultured on a transwell insert and placed over a collagen gel sandwich into which choroidal endothelial cells (CECs) have been seeded. RPE cells have been stimulated by an inflammatory cytokine, interleukin-1 (IL-1beta), and the ability of the underlying choroidal endothelium to form vascular tubes has been tested. IL-1beta stimulation of the RPE insert increased the number of tubes formed by CECs in the gel as early as 3 d. By 7 d, tubes began to regress. Both IL-8 and monocyte chemotactic protein-1 (MCP-1) were found to be secreted in greater amounts in stimulated RPE. Because MCP-1 is also a chemokine for monocytes, which in turn secrete angiogenic factors, monocytes were added to the upper surface of the choroidal gel sandwich and then incubated with the stimulated RPE insert as above. By day 7, more tubes formed and there was no regression over the experimental time period. The versatility of this model has been illustrated in that both RPE and CECs can be cultured in a more natural construct and their molecular interactions tested by physiologically altering one cell type and not the other.
Collapse
Affiliation(s)
- Wei Fan
- Department of Ophthalmology & Visual Sciences, Kentucky Lions Eye Center, University of Louisville School of Medicine, 40202, USA
| | | | | |
Collapse
|
17
|
Abstract
The purpose of this study is to identify the separation techniques that result in pure cultures of rat microvascular endothelial cells (MECs). A multistep process is used to optimize the separation of the cells from rat epididymal fat pads, obtaining as pure a culture as possible within a relatively short processing time. The process initially employs the digestion, filtration, and density gradient separation steps. We further describe the use of an attachment phase that allows the differential adherence of contaminating cell types. Immunomagnetic purification is the final step in the process and is performed using anti-PECAM-1 (CD31) monoclonal antibody-labeled DynaBeads.
Collapse
Affiliation(s)
- Cynthia A Frye
- The Laboratory of Reparative Biology and Bioengineering, Department of Plastic Surgery, University of Texas MD Anderson Cancer Center, Houston, USA
| | | |
Collapse
|
18
|
Chow J, Ogunshola O, Fan SY, Li Y, Ment LR, Madri JA. Astrocyte-derived VEGF mediates survival and tube stabilization of hypoxic brain microvascular endothelial cells in vitro. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 130:123-32. [PMID: 11557101 DOI: 10.1016/s0165-3806(01)00220-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chronic sublethal hypoxia has been associated with changes in neurovascular behavior, mediated, in part, by induction of vascular endothelial growth factor-A (VEGF-A(165)). In this report we demonstrate that RBE4 cells (derived from rodent cerebral microvasculature), when cultured in three-dimensional collagen gels: (1) Are induced to undergo increased tube formation in response to VEGF-A(165) in a dose-dependent manner; (2) undergo apoptosis under mild hypoxic conditions; (3) are rescued from the effects of hypoxia by the addition of exogenous VEGF-A(165) in a dose-dependent and inhibitable manner or by co-culture with primary newborn rat astrocytes, which are induced to express increased amounts of VEGF-A in hypoxic conditions. Further, we demonstrate that: (4) The observed astrocyte-produced, VEGF-mediated protection from apoptosis (survival) is inhibitable with soluble recombinant VEGF receptor-1 (sFlt), and is associated with a robust induction of MAPK tyrosine phosphorylation. These findings illustrate the importance of VEGF in the process of neurovascular survival in response to injury in developing brain and provide insight into the signaling pathways involved.
Collapse
Affiliation(s)
- J Chow
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | |
Collapse
|
19
|
Kozien D, Gerol M, Hendey B, RayChaudhury A. A novel in vitro model of tumor angiogenesis. In Vitro Cell Dev Biol Anim 2000; 36:555-8. [PMID: 11212138 DOI: 10.1007/bf02577521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Abstract
In the last two decades, much attention has been focussed on mechanisms of glioma vascularization including the investigation of growth factors and receptors involved. Recently, these efforts resulted in various approaches for antiangiogenic treatment of experimental brain tumors. These basic science and preclinical trials need an assortment of models, which should allow investigating a variety of questions. Several objectives concerning basic endothelial cell (EC) characteristics can adequately be studied in vitro using EC monolayer assays. Three-dimensional spheroid techniques respect the more complex cell-cell and cell-environment interplay within a three-dimensional culture. To optimize the imitation of the crucial interaction of human gliomas with host endothelial cells, immunological cells and extracellular matrix, animal models are mandatory. An essential rule is to utilize an orthotopic model, since tumor-host interaction is organ specific. To avoid alloimmunogenic responses, it is desirable to use weakly or not immunogenic glioma grafts, what is best accomplished in a syngeneic model. However, since rat gliomas poorly resemble human glioma growth patterns, human glioma xenografting into immunocompromized animals should be considered. In vivo monitoring techniques like videoscopy via a cranial window or magnetic resonance imaging (MRI) allow for functional studies and improve the validity of the model employed. Finally, it is essentially to recognize the limitations of each model considered and to select that model, which seems to be most appropriate for the objectives to be investigated.
Collapse
Affiliation(s)
- R H Goldbrunner
- Department of Neurosurgery, University of Wuerzburg, Germany
| | | | | | | |
Collapse
|
21
|
Schechner JS, Nath AK, Zheng L, Kluger MS, Hughes CC, Sierra-Honigmann MR, Lorber MI, Tellides G, Kashgarian M, Bothwell AL, Pober JS. In vivo formation of complex microvessels lined by human endothelial cells in an immunodeficient mouse. Proc Natl Acad Sci U S A 2000; 97:9191-6. [PMID: 10890921 PMCID: PMC16844 DOI: 10.1073/pnas.150242297] [Citation(s) in RCA: 254] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have identified conditions for forming cultured human umbilical vein endothelial cells (HUVEC) into tubes within a three-dimensional gel that on implantation into immunoincompetent mice undergo remodeling into complex microvessels lined by human endothelium. HUVEC suspended in mixed collagen/fibronectin gels organize into cords with early lumena by 24 h and then apoptose. Twenty-hour constructs, s.c. implanted in immunodeficient mice, display HUVEC-lined thin-walled microvessels within the gel 31 days after implantation. Retroviral-mediated overexpression of a caspase-resistant Bcl-2 protein delays HUVEC apoptosis in vitro for over 7 days. Bcl-2-transduced HUVEC produce an increased density of HUVEC-lined perfused microvessels in vivo compared with untransduced or control-transduced HUVEC. Remarkably, Bcl-2- but not control-transduced HUVEC recruit an ingrowth of perivascular smooth-muscle alpha-actin-expressing mouse cells at 31 days, which organize by 60 days into HUVEC-lined multilayered structures resembling true microvessels. This system provides an in vivo model for dissecting mechanisms of microvascular remodeling by using genetically modified endothelium. Incorporation of such human endothelial-lined microvessels into engineered synthetic skin may improve graft viability, especially in recipients with impaired angiogenesis.
Collapse
Affiliation(s)
- J S Schechner
- Interdepartmental Program in Vascular Biology and Transplantation, Department of Dermatology, Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06536, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
KOZIEN DIANNA, GEROL MARINA, HENDEY BILL, RAYCHAUDHURY AMLAN. A NOVEL IN VITRO MODEL OF TUMOR ANGIOGENESIS. ACTA ACUST UNITED AC 2000. [DOI: 10.1290/1071-2690(2000)036<0555:anivmo>2.0.co;2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Korff T, Augustin HG. Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. J Cell Sci 1999; 112 ( Pt 19):3249-58. [PMID: 10504330 DOI: 10.1242/jcs.112.19.3249] [Citation(s) in RCA: 303] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During angiogenesis, anastomosing capillary sprouts align to form complex three-dimensional networks of new blood vessels. Using an endothelial cell spheroid model that was developed to study endothelial cell differentiation processes, we have devised a novel collagen gel-based three-dimensional in vitro angiogenesis assay. In this assay, cell number-defined, gel-embedded endothelial cell spheroids act as a cellular delivery device, which serves as a focal starting point for the sprouting of lumenized capillary-like structures that can be induced to form complex anastomosing networks. Formation of capillary anastomoses is associated with tensional remodeling of the collagen matrix and directional sprouting of outgrowing capillaries towards each other. To analyze whether directional sprouting is dependent on cytokine gradients or on endothelial cell-derived tractional forces transduced through the extracellular matrix, we designed a matrix tension generator that enables the application of defined tensional forces on the extracellular matrix. Using this matrix tension generator, causal evidence is presented that tensional forces on a fibrillar extracellular matrix such as type I collagen, but not fibrin, are sufficient to guide directional outgrowth of endothelial cells. RGD peptides but not control RAD peptides disrupted the integrity of sprouting capillary-like structures and induced detachment of outgrowing endothelial cells cultured on top of collagen gels, but did not inhibit primary outgrowth of endothelial cells. The data establish the endothelial cell spheroid-based three-dimensional angiogenesis technique as a standardized, highly reproducible quantitative assay for in vitro angiogenesis studies and demonstrate that integrin-dependent matrix tensional forces control directional capillary sprouting and network formation.
Collapse
Affiliation(s)
- T Korff
- Cell Biology Laboratory, Department of Gynecology and Obstetrics, University of Göttingen Medical School, Germany
| | | |
Collapse
|
24
|
Ment LR, Stewart WB, Fronc R, Seashore C, Mahooti S, Scaramuzzino D, Madri JA. Vascular endothelial growth factor mediates reactive angiogenesis in the postnatal developing brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 100:52-61. [PMID: 9174246 DOI: 10.1016/s0165-3806(97)00012-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although chronic sublethal hypoxia has been shown to promote angiogenesis in the developing brain, the pathogenesis of this response is unknown. We hypothesized that this response may be mediated in part by vascular endothelial growth factor (VEGF). We reared newborn rats (P3) in a chamber with FIO2 of 9.5 +/- 1% (exposed, E). At P33, the animals were removed from the chamber and the brains prepared for immunohistochemistry, mRNA extraction, or horseradish peroxidase (HRP) permeability studies. We also isolated beagle brain germinal matrix endothelial cells from PND 1 beagle pups and placed them in three-dimensional (3-D) coculture with PND 1 rat forebrain astrocytes. Cultures were grown for 6 days in 11% O2 and compared to control 3-D cocultures. When compared to age-matched controls, the experimental rats had significantly increased cortical vascular density (vessels/mm2: 518 +/- 18 vs. 400 +/- 15, P = 0.025). HRP studies demonstrated significantly increased permeability in all cortical vessels examined in experimental rats compared to controls. Compared to controls, VEGF mRNA from hypoxic pups was increased 2.4 times, and immunohistochemical studies of VEGF protein confirmed this finding. Similarly, when compared to controls, hypoxic cocultures of brain microvascular endothelial cells and astrocytes demonstrated significant increase in tubelike structures representing in vitro angiogenesis. Additionally, astrocyte VEGF protein levels increased 4.4-fold in hypoxic compared to control astrocyte cultures and VEGF protein levels increased 1.7-fold in hypoxic compared to control cocultures. Finally, addition of VEGF (10 ng/ml culture medium) to BBMEC alone in 3-D culture elicited not only significant proliferation (P = 0.001) but also increased tube formation. These data demonstrate that the developing brain responds to chronic sublethal hypoxia with increases in permeability and angiogenesis and suggest that VEGF mediates this response.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Astrocytes/cytology
- Astrocytes/physiology
- Cell Division/drug effects
- Cell Hypoxia
- Cells, Cultured
- Cerebral Cortex/blood supply
- Coculture Techniques
- Endothelial Growth Factors/biosynthesis
- Endothelial Growth Factors/pharmacology
- Endothelial Growth Factors/physiology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Hypoxia, Brain/pathology
- Hypoxia, Brain/physiopathology
- Lymphokines/biosynthesis
- Lymphokines/pharmacology
- Lymphokines/physiology
- Microcirculation
- Neovascularization, Pathologic/prevention & control
- Neovascularization, Physiologic/drug effects
- RNA, Messenger/biosynthesis
- Rats
- Rats, Sprague-Dawley
- Transcription, Genetic
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
Collapse
Affiliation(s)
- L R Ment
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | |
Collapse
|