1
|
Zhang L, Du Y, Li Y, Wang T, Pan Y, Xue X, Mu X, Qiu J, Qian Y. Mitochondrial mechanism of florfenicol-induced nonalcoholic fatty liver disease in zebrafish using multi-omics technology. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136958. [PMID: 39724715 DOI: 10.1016/j.jhazmat.2024.136958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Florfenicol (FF), a third-generation chloramphenicol antibiotic widely used in food-producing animals, has become a "pseudopersistent" environmental contaminant, raising concerns about its potential ecological and human health impacts. However, its bioaccumulation behavior and hepatotoxic mechanisms remain poorly understood. This study aims to address these gaps with a 28-day exposure experiment in adult zebrafish at 0.05 and 0.5 mg/L FF. Multiomic analyses (metabolomics, lipidomics, and transcriptomics), combined with histological and mitochondrial function assessments, were employed. Higher bioaccumulation was observed at 0.05 mg/L, potentially due to metabolic saturation at higher concentrations. Histological analysis revealed significant hepatic steatosis (>5 % steatosis area), indicative of moderate nonalcoholic fatty liver disease (NAFLD). Multiomic data demonstrated global dysregulation in energy metabolism, including marked alterations in lipids (accumulation of toxic sphingolipids, excessive fatty acids, and acylglycerol), amino acids, tricarboxylic acid cycle intermediates, and nucleotides. Crucially, mitochondrial dysfunction was identified as a central mechanism, with impaired respiratory chain activities, adenosine triphosphate depletion, elevated reactive oxygen species, and oxidative stress promoting NAFLD progression. These findings highlight mitochondrial impairment and oxidative stress as key drivers of FF-induced hepatotoxicity, providing novel insights into its toxicological mechanisms and emphasizing the ecological risks posed by antibiotic pollution in aquatic systems.
Collapse
Affiliation(s)
- Lin Zhang
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yang Du
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yameng Li
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tiancai Wang
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yecan Pan
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xiyan Mu
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Qiu
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yongzhong Qian
- Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Sun L, Huang Z, Wang J, Yu D, Wang L. Effect of deodorization conditions on fatty acid profile, oxidation products, and lipid-derived free radicals of soybean oil. Food Chem 2024; 453:139656. [PMID: 38788646 DOI: 10.1016/j.foodchem.2024.139656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
Oxidative stability is a key quality characteristic of edible oils, and the oil's antioxidant capacity decreases during the deodorization stage. This study explores the changes in radical formation, molecular structure, oxidative characteristics, fatty acids, and main bioactive compounds in soybean oil during deodorization. The lag phase decreased, whereas the total amount of spins of free radicals increased as the deodorization time increased from 90 to 150 min. The total amount of spins and percentage of alkyl radicals varied dramatically under different times and temperatures (220 ∼ 260 ℃). Results showed that identifying and quantifying the formed radicals can provide useful information for monitoring and controlling oil oxidation in vegetable oil refining systems. Therefore, to control early oxidation events, maximize refined oil product yield, and reduce energy consumption in the refining plant, the priority should be to minimize temperature during the oil refining process and then shorten the deodorization time.
Collapse
Affiliation(s)
- Libin Sun
- School of Food Science, Northeast Agricultural University, Harbin 150030, China; School of Grain Science and Technology, Jilin Business And Technology College, Changchun 130507, China
| | - Zhe Huang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Junguo Wang
- School of Grain Science and Technology, Jilin Business And Technology College, Changchun 130507, China
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Liqi Wang
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150028, China
| |
Collapse
|
3
|
Wu J, Xiong W, Liu W, Wu J, Ruan R, Fu P, Wang Y, Liu Y, Leng X, Li P, Zhong J, Zhang C, Du H. The Effects of Dietary n-3 Highly Unsaturated Fatty Acids on Growth, Antioxidant Capacity, Immunity, and Oxylipin Profiles in Acipenser dabryanus. Antioxidants (Basel) 2024; 13:421. [PMID: 38671869 PMCID: PMC11047622 DOI: 10.3390/antiox13040421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Currently, the effects of dietary levels of n-3 highly unsaturated fatty acids (HUFAs) on the growth performance, antioxidant capacity, immunity, and serum oxylipin profiles of female F2-generation Yangtze sturgeon remain unknown. A total of 75 Yangtze sturgeons, an endangered freshwater fish species, with an average body weight of 3.60 ± 0.83 kg, were randomly allocated to 15 concrete pools, with each dietary group represented by 5 fish per pool. The fish were fed five different experimental diets containing various levels of n-3 HUFAs (0.5%, 1.0%, 1.5%, 2.0%, and 2.4%). After a feeding period of 5 months, no significant differences in the growth performances of the fish were observed among the five dietary groups (p > 0.05). However, we did note that the serum levels of low-density lipoprotein cholesterol (LDL-C), triglycerides (TGs), and total cholesterol (TCHO) exhibited a marked increase in the fish that consumed higher dietary n-3 HUFA levels (p < 0.05). Conversely, alkaline phosphatase (ALP) activities showed a notable decrease as dietary n-3 HUFA levels increased (p < 0.05). Serum antioxidant indices, such as the activity levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), were significantly higher in the 2.4% HUFA group compared to the 0.5% HUFA group. Additionally, muscle antioxidant indices, including total antioxidant capacity (T-AOC), catalase (CAT), and SOD activity, exhibited notable increases as dietary n-3 HUFA levels increased (p < 0.05). Furthermore, there was a decrease in malondialdehyde (MDA) levels as dietary n-3 HUFA levels increased (p < 0.05). In relation to immune indices, only serum immunoglobulin M (IgM) and muscle complement 3 (C3) were found to be influenced by dietary n-3 HUFA levels (p < 0.05). A total of 80 oxylipins were quantified, and our subsequent K-means cluster analysis resulted in the classification of 62 oxylipins into 10 subclasses. Among the different n-3 HUFA diets, a total of 14 differential oxylipins were identified in the sera. These findings demonstrate that dietary supplementation with n-3 HUFAs exceeding a 1.0% level can enhance antioxidant capacity and regulate serum lipid metabolism, potentially through modulation of oxylipins derived from ARA, DHA, and EPA. These insights provide novel perspectives on the mechanisms underlying these observations.
Collapse
Affiliation(s)
- Jinping Wu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.W.); (W.X.); (W.L.); (J.W.); (R.R.); (Y.W.); (Y.L.); (X.L.); (P.L.); (J.Z.)
| | - Wei Xiong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.W.); (W.X.); (W.L.); (J.W.); (R.R.); (Y.W.); (Y.L.); (X.L.); (P.L.); (J.Z.)
| | - Wei Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.W.); (W.X.); (W.L.); (J.W.); (R.R.); (Y.W.); (Y.L.); (X.L.); (P.L.); (J.Z.)
| | - Jinming Wu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.W.); (W.X.); (W.L.); (J.W.); (R.R.); (Y.W.); (Y.L.); (X.L.); (P.L.); (J.Z.)
| | - Rui Ruan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.W.); (W.X.); (W.L.); (J.W.); (R.R.); (Y.W.); (Y.L.); (X.L.); (P.L.); (J.Z.)
| | - Peng Fu
- Chongqing Fishery Sciences Research Institute, Chongqing 400020, China;
| | - Yuqi Wang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.W.); (W.X.); (W.L.); (J.W.); (R.R.); (Y.W.); (Y.L.); (X.L.); (P.L.); (J.Z.)
| | - Yuan Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.W.); (W.X.); (W.L.); (J.W.); (R.R.); (Y.W.); (Y.L.); (X.L.); (P.L.); (J.Z.)
| | - Xiaoqian Leng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.W.); (W.X.); (W.L.); (J.W.); (R.R.); (Y.W.); (Y.L.); (X.L.); (P.L.); (J.Z.)
| | - Pengcheng Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.W.); (W.X.); (W.L.); (J.W.); (R.R.); (Y.W.); (Y.L.); (X.L.); (P.L.); (J.Z.)
| | - Jia Zhong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.W.); (W.X.); (W.L.); (J.W.); (R.R.); (Y.W.); (Y.L.); (X.L.); (P.L.); (J.Z.)
| | - Chuang Zhang
- Chongqing Fishery Sciences Research Institute, Chongqing 400020, China;
| | - Hao Du
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.W.); (W.X.); (W.L.); (J.W.); (R.R.); (Y.W.); (Y.L.); (X.L.); (P.L.); (J.Z.)
| |
Collapse
|
4
|
Yu H, Zou ZX, Wei W, Li Y. Conjugated Linoleic Acid Reduces Lipid Accumulation via Down-regulation Expression of Lipogenic Genes and Up-regulation of Apoptotic Genes in Grass Carp (Ctenopharyngodon idella) Adipocyte In Vitro. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:169-180. [PMID: 38224425 DOI: 10.1007/s10126-024-10286-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
The relationship between conjugated linoleic acid (CLA) and lipogenesis has been extensively studied in mammals and some cell lines, but it is relatively rare in fish, and the potential mechanism of action of CLA reducing fat mass remains unclear. The established primary culture model for studying lipogenesis in grass carp (Ctenopharyngodon idella) preadipocytes was used in the present study, and the objective was to explore the effects of CLA on intracellular lipid and TG content, fatty acid composition, and mRNA levels of adipogenesis transcription factors, lipase, and apoptosis genes in grass carp adipocytes in vitro. The results showed that CLA reduced the size of adipocyte and lipid droplet and decreased the content of intracellular lipid and TG, which was accompanied by a significant down-regulation of mRNA abundance in transcriptional regulators including peroxisome proliferator-activated receptor (PPAR) γ, CCAAT/enhancer-binding protein (C/EBP) α, sterol regulatory element-binding protein (SREBP) 1c, lipase genes including fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), lipoprotein lipase (LPL). Meanwhile, it decreased the content of saturated fatty acids (SFAs) and n - 6 polyunsaturated fatty acid (n-6 PUFA) and increased the content of monounsaturated fatty acid (MUFA) and n - 3 polyunsaturated fatty acid (n-3 PUFA) in primary grass carp adipocyte. In addition, CLA induced adipocyte apoptosis through downregulated anti-apoptotic gene B-cell CLL/lymphoma 2 (Bcl-2) mRNA level and up-regulated pro-apoptotic genes tumor necrosis factor-α (TNF-α), Bcl-2-associated X protein (Bax), Caspase-3, and Caspase-9 mRNA level in a dose-dependent manner. These findings suggest that CLA can act on grass carp adipocytes through various pathways, including decreasing adipocyte size, altering fatty acid composition, inhibiting adipocyte differentiation, promoting adipocyte apoptosis, and ultimately decreasing lipid accumulation.
Collapse
Affiliation(s)
- Hua Yu
- College of Life Science, Chongqing Normal University, Chongqing, 400047, People's Republic of China
| | - Zhao-Xia Zou
- College of Life Science, Chongqing Normal University, Chongqing, 400047, People's Republic of China
| | - Wei Wei
- College of Life Science, Chongqing Normal University, Chongqing, 400047, People's Republic of China
| | - Ying Li
- College of Life Science, Chongqing Normal University, Chongqing, 400047, People's Republic of China.
| |
Collapse
|
5
|
Datsomor AK, Gillard G, Jin Y, Olsen RE, Sandve SR. Molecular Regulation of Biosynthesis of Long Chain Polyunsaturated Fatty Acids in Atlantic Salmon. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:661-670. [PMID: 35907166 PMCID: PMC9385821 DOI: 10.1007/s10126-022-10144-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Salmon is a rich source of health-promoting omega-3 long chain polyunsaturated fatty acids (n-3 LC-PUFA), such as eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3). The LC-PUFA biosynthetic pathway in Atlantic salmon is one of the most studied compared to other teleosts. This has largely been due to the massive replacement of LC-PUFA-rich ingredients in aquafeeds with terrestrial plant oils devoid of these essential fatty acids (EFA) which ultimately pushed dietary content towards the minimal requirement of EFA. The practice would also reduce tissue content of n-3 LC-PUFA compromising the nutritional value of salmon to the human consumer. These necessitated detailed studies of endogenous biosynthetic capability as a contributor to these EFA. This review seeks to provide a comprehensive and concise overview of the current knowledge about the molecular genetics of PUFA biosynthesis in Atlantic salmon, highlighting the enzymology and nutritional regulation as well as transcriptional control networks. Furthermore, we discuss the impact of genome duplication on the complexity of salmon LC-PUFA pathway and highlight probable implications on endogenous biosynthetic capabilities. Finally, we have also compiled and made available a large RNAseq dataset from 316 salmon liver samples together with an R-script visualization resource to aid in explorative and hypothesis-driven research into salmon lipid metabolism.
Collapse
Affiliation(s)
- Alex K. Datsomor
- Center for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Gareth Gillard
- Center for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Yang Jin
- Center for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Rolf E. Olsen
- Institute of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Simen R. Sandve
- Center for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
6
|
Hundal BK, Lutfi E, Sigholt T, Rosenlund G, Liland NS, Glencross B, Sissener NH. A Piece of the Puzzle-Possible Mechanisms for Why Low Dietary EPA and DHA Cause Hepatic Lipid Accumulation in Atlantic Salmon ( Salmo salar). Metabolites 2022; 12:159. [PMID: 35208233 PMCID: PMC8877222 DOI: 10.3390/metabo12020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 11/23/2022] Open
Abstract
The present study aimed at elucidating the effects of graded levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on the hepatic metabolic health of Atlantic salmon reared in sea cages. Diets containing 10, 13, 16 and 35 g/kg EPA + DHA (designated diets 1.0, 1.3, 1.6 and 3.5, respectively) were fed in triplicate through a full production cycle from an average starting weight of 275 g to slaughter size (~5 kg). Feeding low dietary EPA + DHA altered the hepatic energy metabolism, evidenced by reductions in tricarboxylic acid cycle intermediates originating from β-oxidation, which was compensated by elevated activity in alternative energy pathways (pentose phosphate pathway, branched chain amino acid catabolism and creatine metabolism). Increases in various acylcarnitines in the liver supported this and indicates issues with lipid metabolism (mitochondrial β-oxidation). Problems using lipids for energy in the lower EPA + DHA groups line up well with observed increases in liver lipids in these fish. It also aligns with the growth data, where fish fed the highest EPA + DHA grew better than the other groups. The study showed that diets 1.0 and 1.3 were insufficient for maintaining good liver metabolic health. However, diet 3.5 was significantly better than diet 1.6, indicating that diet 1.6 might also be suboptimal.
Collapse
Affiliation(s)
- Bjørg Kristine Hundal
- Department of Feed and Nutrition, Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway; (N.S.L.); (N.H.S.)
| | - Esmail Lutfi
- Department of Nutrition and Feed Technology, Norwegian Institute of Food, Fisheries and Aquaculture Research (Nofima), P.O. Box 210, 1431 Ås, Norway;
| | | | - Grethe Rosenlund
- Skretting Aquaculture Research Centre, P.O. Box 48, 4001 Stavanger, Norway;
| | - Nina Sylvia Liland
- Department of Feed and Nutrition, Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway; (N.S.L.); (N.H.S.)
| | - Brett Glencross
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK;
| | - Nini Hedberg Sissener
- Department of Feed and Nutrition, Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway; (N.S.L.); (N.H.S.)
| |
Collapse
|
7
|
High DHA Algae Meal as Cost-effective Alternative to High DHA Fish Oil in Finisher Feed for Sobaity Sea Bream (Sparidentex hasta). Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Dietary Nano-ZnO Is Absorbed via Endocytosis and ZIP Pathways, Upregulates Lipogenesis, and Induces Lipotoxicity in the Intestine of Yellow Catfish. Int J Mol Sci 2021; 22:ijms222112047. [PMID: 34769475 PMCID: PMC8584588 DOI: 10.3390/ijms222112047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/25/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
Nano-sized zinc oxide (nano-ZnO) affects lipid deposition, but its absorption patterns and mechanisms affecting lipid metabolism are still unclear. This study was undertaken to investigate the molecular mechanism of nano-ZnO absorption and its effects on lipid metabolism in the intestinal tissues of a widely distributed freshwater teleost yellow catfish Pelteobagrus fulvidraco. We found that 100 mg/kg dietary nano-ZnO (H-Zn group) significantly increased intestinal Zn contents. The zip6 and zip10 mRNA expression levels were higher in the H-Zn group than those in the control (0 mg/kg nano-ZnO), and zip4 mRNA abundances were higher in the control than those in the L-Zn (50 mg/kg nano-ZnO) and H-Zn groups. Eps15, dynamin1, dynamin2, caveolin1, and caveolin2 mRNA expression levels tended to reduce with dietary nano-ZnO addition. Dietary nano-ZnO increased triglyceride (TG) content and the activities of the lipogenic enzymes glucose 6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), and isocitrate dehydrogenase (ICDH), upregulated the mRNA abundances of lipogenic genes 6pgd, fatty acid synthase (fas), and sterol regulatory element binding protein 1 (srebp1), and reduced the mRNA expression of farnesoid X receptor (fxr) and small heterodimer partner (shp). The SHP protein level in the H-Zn group was lower than that in the control and the L-Zn group markedly. Our in vitro study indicated that the intestinal epithelial cells (IECs) absorbed nano-ZnO via endocytosis, and nano-Zn-induced TG deposition and lipogenesis were partially attributable to the endocytosis of nano-ZnO in IECs. Mechanistically, nano-ZnO-induced TG deposition was closely related to the metal responsive transcription factor 1 (MTF-1)-SHP pathway. Thus, for the first time, we found that the lipogenesis effects of nano-ZnO probably depended on the key gene shp, which is potentially regulated by MTF1 and/or FXR. This novel signaling pathway of MTF-1 through SHP may be relevant to explain the toxic effects and lipotoxicity ascribed to dietary nano-ZnO addition.
Collapse
|
9
|
Selvam C, Powell MD, Liland NS, Rosenlund G, Sissener NH. Impact of dietary level and ratio of n-6 and n-3 fatty acids on disease progression and mRNA expression of immune and inflammatory markers in Atlantic salmon ( Salmo salar) challenged with Paramoeba perurans. PeerJ 2021; 9:e12028. [PMID: 34540364 PMCID: PMC8415286 DOI: 10.7717/peerj.12028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/30/2021] [Indexed: 01/22/2023] Open
Abstract
The aim of the study was to investigate the influence of dietary level and ratio of n-6/n-3 fatty acids (FA) on growth, disease progression and expression of immune and inflammatory markers in Atlantic salmon (Salmo salar) following challenge with Paramoeba perurans. Fish (80 g) were fed four different diets with different ratios of n-6/n-3 FA; at 1.3, 2.4 and 6.0 and one diet with ratio of 1.3 combined with a higher level of n-3 FA and n-6 FA. The diet with the n-6/n-3 FA ratio of 6.0 was included to ensure potential n-6 FA effects were revealed, while the three other diets were more commercially relevant n-6/n-3 FA ratios and levels. After a pre-feeding period of 3 months, fish from each diet regime were challenged with a standardized laboratory challenge using a clonal culture of P. perurans at the concentration of 1,000 cells L−1. The subsequent development of the disease was monitored (by gross gill score), and sampling conducted before challenge and at weekly sampling points for 5 weeks post-challenge. Challenge with P. perurans did not have a significant impact on the growth of the fish during the challenge period, but fish given the feed with the highest n-6/n-3 FA ratio had reduced growth compared to the other groups. Total gill score for all surfaces showed a significant increase with time, reaching a maximum at 21 days post-challenge and declined thereafter, irrespective of diet groups. Challenge with P. perurans influenced the mRNA expression of examined genes involved in immune and inflammatory response (TNF-α, iNOS, IL4-13b, GATA-3, IL-1β, p53, COX2 and PGE2-EP4), but diet did not influence the gene expression. In conclusion, an increase in dietary n-6/n-3 FA ratio influenced the growth of Atlantic salmon challenged with P. perurans; however, it did not alter the mRNA expression of immune genes or progression of the disease.
Collapse
Affiliation(s)
- Chandrasekar Selvam
- Institute of Marine Research, Bergen, Norway.,Central Marine Fisheries Research Institute, Kochi, India
| | - Mark D Powell
- Marineholmen RAS Lab AS & University of Bergen, Bergen, Norway
| | | | | | | |
Collapse
|
10
|
Xu YH, Hogstrand C, Xu YC, Zhao T, Zheng H, Luo Z. Environmentally relevant concentrations of oxytetracycline and copper increased liver lipid deposition through inducing oxidative stress and mitochondria dysfunction in grass carp Ctenopharyngodon idella. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117079. [PMID: 33845287 DOI: 10.1016/j.envpol.2021.117079] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/05/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Oxytetracycline (OTC) and Cu are prevalent in aquatic ecosystems and their pollution are issues of serious concern. The present working hypothesis is that the toxicity of Cu and OTC mixture on physiological activity of fish was different from single OTC and Cu alone. The present study indicated that, compared to single OTC or Cu alone, Cu+OTC mixture reduced growth performance and feed utilization of grass carp, escalated the contents of Cu, OTC and TG, increased lipogenesis, induced oxidative stress, damaged the mitochondrial structure and functions and inhibited the lipolysis in the liver tissues and hepatocytes of grass carp. Cu+OTC co-treatment significantly increased the mRNA abundances and protein expression of Nrf2. Moreover, we found that Cu+OTC mixture-induced oxidative stress promoted Nrf2 recruitment to the SREBP-1 promoter and increased SREBP-1-mediated lipogenesis; Nrf2 sited at the crossroads of oxidative stress and lipid metabolism, and mediated the regulation of oxidative stress and lipid metabolism. Our findings clearly indicated that OTC and Cu mixture differed in environmental risks from single antibiotic or metal element itself, and thus posed different toxicological responses to aquatic animals. Moreover, our findings suggested that Nrf2 functioned as an important antioxidant regulator linking oxidative stress to lipogenic metabolism, and thus elucidated a novel regulatory mechanism for lipid metabolism.
Collapse
Affiliation(s)
- Yi-Huan Xu
- Laboratory of Molecular Nutrition and Environmental Toxicology for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Christer Hogstrand
- Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, United Kingdom
| | - Yi-Chuang Xu
- Laboratory of Molecular Nutrition and Environmental Toxicology for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tao Zhao
- Laboratory of Molecular Nutrition and Environmental Toxicology for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hua Zheng
- Laboratory of Molecular Nutrition and Environmental Toxicology for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi Luo
- Laboratory of Molecular Nutrition and Environmental Toxicology for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
11
|
Wei X, Hogstrand C, Chen G, Lv W, Song Y, Xu Y, Luo Z. Zn Induces Lipophagy via the Deacetylation of Beclin1 and Alleviates Cu-Induced Lipotoxicity at Their Environmentally Relevant Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4943-4953. [PMID: 33739816 DOI: 10.1021/acs.est.0c08609] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, the mechanisms of environmentally relevant doses of Cu and Zn mixtures influencing lipid deposition and metabolism were investigated in freshwater teleost yellow catfish Pelteobagrus fulvidraco (2 months old, 4.95 (t0.01 g, mean ± SEM). Our study indicated that waterborne Cu exposure increased lipid content, while Zn activated lipophagic flux and alleviated Cu-induced lipid accumulation. Yellow catfish hepatocytes treated with Zn or Zn + Cu activated autophagy-specific lipophagy, decreased lipid storage, and increased nonesterified fatty acid (NEFA) release, suggesting a causal relationship between lipophagy and lipid droplet (LD) breakdown under Zn and Zn + Cu conditions. Our further investigation found that Beclin1 deacetylation by sirtuin 1 (SIRT1) was required for Zn- and Zn + Cu-induced lipophagy and lipolysis, and lysine residues 427 and 434 were key sites for Beclin1 deacetylation. Taken together, these findings show that the Zn-induced deacetylation of Beclin1 promotes lipophagy as an important pathway to alleviate Cu-induced lipid accumulation in fish, which reveals a previously unidentified mechanism for understanding the antagonistic effects of Cu and Zn on metabolism at their environmentally relevant concentrations. Our results highlight the importance of combined exposure when the biological effects of heavy metals are evaluated during environmental risk assessments.
Collapse
Affiliation(s)
- Xiaolei Wei
- Laboratory of Molecular Nutrition and Environmental Health for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Christer Hogstrand
- Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, London SE5 9RJ, U.K
| | - Guanghui Chen
- Laboratory of Molecular Nutrition and Environmental Health for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Wuhong Lv
- Laboratory of Molecular Nutrition and Environmental Health for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yufeng Song
- Laboratory of Molecular Nutrition and Environmental Health for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yichuang Xu
- Laboratory of Molecular Nutrition and Environmental Health for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Laboratory of Molecular Nutrition and Environmental Health for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
12
|
Osmond ATY, Arts MT, Hall JR, Rise ML, Bazinet RP, Armenta RE, Colombo SM. Schizochytrium sp. (T18) Oil as a Fish Oil Replacement in Diets for Juvenile Rainbow Trout ( Oncorhynchus mykiss): Effects on Growth Performance, Tissue Fatty Acid Content, and Lipid-Related Transcript Expression. Animals (Basel) 2021; 11:1185. [PMID: 33924273 PMCID: PMC8074903 DOI: 10.3390/ani11041185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
In this study, we evaluated whether oil extracted from the marine microbe, Schizochytrium sp. (strain T18), with high levels of docosahexaenoic acid (DHA), could replace fish oil (FO) in diets for rainbow trout (Oncorhynchus mykiss). Three experimental diets were tested: (1) a control diet with fish oil (FO diet), (2) a microbial oil (MO) diet with a blend of camelina oil (CO) referred to as MO/CO diet, and (3) a MO diet (at a higher inclusion level). Rainbow trout (18.8 ± 2.9 g fish-1 initial weight ± SD) were fed for 8 weeks and evaluated for growth performance, fatty acid content and transcript expression of lipid-related genes in liver and muscle. There were no differences in growth performance measurements among treatments. In liver and muscle, eicosapentaenoic acid (EPA) was highest in trout fed the FO diet compared to the MO/CO and MO diets. Liver DHA was highest in trout fed the MO/CO diet compared to the FO and MO diets. Muscle DHA was highest in trout fed the MO and MO/CO diets compared to the FO diet. In trout fed the MO/CO diet, compared to the MO diet, fadsd6b was higher in both liver and muscle. In trout fed the FO or MO/CO diets, compared to the MO diet, cox1a was higher in both liver and muscle, cpt1b1a was higher in liver and cpt1a1a, cpt1a1b and cpt1a2a were higher in muscle. Schizochytrium sp. (T18) oil was an effective source of DHA for rainbow trout.
Collapse
Affiliation(s)
- Angelisa T. Y. Osmond
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
| | - Michael T. Arts
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada;
| | - Jennifer R. Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada;
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada;
| | - Richard P. Bazinet
- Department of Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Roberto E. Armenta
- Mara Renewables Corporation, Dartmouth, NS B2Y 4T6, Canada;
- Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Stefanie M. Colombo
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
| |
Collapse
|
13
|
Mohammad Ali Jalali S, Parrish CC, Caballero-Solares A, Rise ML, Taylor RG. Effects of Varying Dietary Docosahexaenoic, Eicosapentaenoic, Linoleic, and α-Linolenic Acid Levels on Fatty Acid Composition of Phospholipids and Neutral Lipids in the Liver of Atlantic Salmon, Salmo salar. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2697-2710. [PMID: 33476167 DOI: 10.1021/acs.jafc.0c05182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fish oil, the most abundant natural source of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), is a limited resource; however, terrestrial oils are used as an alternative in fish nutrition. The liver of Atlantic salmon is able to synthesize these two long-chain n-3 polyunsaturated fatty acids (n-3LC-PUFAs) from α-linolenic acid (ALA), but the dietary levels of EPA + DHA and the ratios of linoleic acid (LNA) to ALA may affect its abilities. Feeding Atlantic salmon four experimental diets containing EPA + DHA at 0.3 and 1.0% of dietary levels accompanied with high and low LNA/ALA ratios showed that low LNA/ALA ratios increased the proportions of EPA + DHA in phospholipids (PLs) and neutral lipids (NLs). The pattern of PL-to-NL ratios of n-3 LC-PUFA proportions matched the saw tooth pattern of LNA/ALA ratios in diets. Overall, when fish oil is removed from salmon diets, the dietary LNA/ALA ratio must be reduced to stimulate biosynthesis of n-3 LC-PUFAs in the liver.
Collapse
Affiliation(s)
- Sayed Mohammad Ali Jalali
- Department of Animal Sciences, Faculty of Agriculture and Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord 8813733395, Iran
| | - Christopher C Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's A1C 5S7, Newfoundland and Labrador, Canada
| | - Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's A1C 5S7, Newfoundland and Labrador, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's A1C 5S7, Newfoundland and Labrador, Canada
| | - Richard G Taylor
- Cargill Animal Nutrition, Elk River 55330, Minnesota, United States
| |
Collapse
|
14
|
Sun J, Chen C, You C, Liu Y, Ma H, Monroig Ó, Tocher DR, Wang S, Li Y. The miR-15/16 Cluster Is Involved in the Regulation of Vertebrate LC-PUFA Biosynthesis by Targeting pparγ as Demonostrated in Rabbitfish Siganus canaliculatus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:475-487. [PMID: 32418070 DOI: 10.1007/s10126-020-09969-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Post-transcriptional regulatory mechanisms play important roles in the regulation of long-chain (≥ C20) polyunsaturated fatty acid (LC-PUFA) biosynthesis. Here, we address a potentially important role of the miR-15/16 cluster in the regulation of LC-PUFA biosynthesis in rabbitfish Siganus canaliculatus. In rabbitfish, miR-15 and miR-16 were both highly responsive to fatty acids affecting LC-PUFA biosynthesis and displayed a similar expression pattern in a range of rabbitfish tissues. A common potential binding site for miR-15 and miR-16 was predicted in the 3'UTR of peroxisome proliferator-activated receptor gamma (pparγ), an inhibitor of LC-PUFA biosynthesis in rabbitfish, and luciferase reporter assays revealed that pparγ was a potential target of miR-15/16 cluster. In vitro individual or co-overexpression of miR-15 and miR-16 in rabbitfish hepatocyte line (SCHL) inhibited both mRNA and protein levels of Pparγ, and increased the mRNA levels of Δ6Δ5 fads2, Δ4 fads2, and elovl5, key enzymes of LC-PUFA biosynthesis. Inhibition of pparγ was more pronounced with co-overexpression of miR-15 and miR-16 than with individual overexpression in SCHL. Knockdown of miR-15/16 cluster gave opposite results, and increased mRNA levels of LC-PUFA biosynthesis enzymes were observed after knockdown of pparγ. Furthermore, miR-15/16 cluster overexpression significantly increased the contents of 22:6n-3, 20:4n-6 and total LC-PUFA in SCHL with higher 18:4n-3/18:3n-3 and 22:6n-3/22:5n-3 ratio. These suggested that miR-15 and miR-16 as a miRNA cluster together enhanced LC-PUFA biosynthesis by targeting pparγ in rabbitfish. This is the first report of the participation of miR-15/16 cluster in LC-PUFA biosynthesis in vertebrates.
Collapse
Affiliation(s)
- Junjun Sun
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Cuiying Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Cuihong You
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Douglas R Tocher
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, FK9 4LA, UK
| | - Shuqi Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| | - Yuanyou Li
- School of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
15
|
Sun P, Zhou Q, Monroig Ó, Navarro JC, Jin M, Yuan Y, Wang X, Jiao L. Cloning and functional characterization of an elovl4-like gene involved in the biosynthesis of long-chain polyunsaturated fatty acids in the swimming crab Portunus trituberculatus. Comp Biochem Physiol B Biochem Mol Biol 2020; 242:110408. [PMID: 31958500 DOI: 10.1016/j.cbpb.2020.110408] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/27/2019] [Accepted: 01/15/2020] [Indexed: 11/25/2022]
Abstract
Elongation of very long-chain fatty acid 4 (Elovl4) proteins participate in the biosynthesis of long-chain and very long-chain polyunsaturated fatty acids (LC-PUFA and VLC-PUFA). In the present study, an elovl4 cDNA was cloned from the swimming crab Portunus trituberculatus by PCR techniques and functionally characterized using recombinant expression in yeast Saccharomyces cerevisiae. The elovl4 cDNA sequence contained an open reading frame of 1038 base pairs, encoding a protein of 346 amino acids. The elovl4 has typical Elovl structures, with transmembrane domains (6) and a histidine box. The elovl4 was expressed in various tissues analyzed, with the highest expression found in intestine and hepatopancreas, followed by stomach and eyestalk. The functional characterization of Elovl4 yeast showed that the P. trituberculatus Elovl4 can elongate C18-22 polyunsaturated fatty acids (PUFA), reaching in some cases products of C24 and C26. Along its ability to elongate PUFA, the P. trituberculatus Elovl4 was also efficient in the elongation of saturated fatty acids, with 28:0 and 30:0 being prominent elongation products. These results provide insight into the LC-PUFA biosynthetic capability of commercially important species of crustaceans.
Collapse
Affiliation(s)
- Peng Sun
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China.
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain.
| | - Juan Carlos Navarro
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ye Yuan
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xuexi Wang
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Lefei Jiao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
16
|
CRISPR/Cas9-mediated editing of Δ5 and Δ6 desaturases impairs Δ8-desaturation and docosahexaenoic acid synthesis in Atlantic salmon (Salmo salar L.). Sci Rep 2019; 9:16888. [PMID: 31729437 PMCID: PMC6858459 DOI: 10.1038/s41598-019-53316-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 10/26/2019] [Indexed: 01/11/2023] Open
Abstract
The in vivo functions of Atlantic salmon fatty acyl desaturases (fads2), Δ6fads2-a, Δ6fads2-b, Δ6fads2-c and Δ5fads2 in long chain polyunsaturated fatty acid (LC-PUFA) synthesis in salmon and fish in general remains to be elucidated. Here, we investigate in vivo functions and in vivo functional redundancy of salmon fads2 using two CRISPR-mediated partial knockout salmon, Δ6abc/5Mt with mutations in Δ6fads2-a, Δ6fads2-b, Δ6fads2-c and Δ5fads2, and Δ6bcMt with mutations in Δ6fads2-b and Δ6fads2-c. F0 fish displaying high degree of gene editing (50–100%) were fed low LC-PUFA and high LC-PUFA diets, the former containing reduced levels of eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) acids but higher content of linoleic (18:2n-6) and alpha-linolenic (18:3n-3) acids, and the latter containing high levels of 20:5n-3 and 22:6n-3 but reduced compositions of 18:2n-6 and 18:3n-3. The Δ6abc/5Mt showed reduced 22:6n-3 levels and accumulated Δ6-desaturation substrates (18:2n-6, 18:3n-3) and Δ5-desaturation substrate (20:4n-3), demonstrating impaired 22:6n-3 synthesis compared to wildtypes (WT). Δ6bcMt showed no effect on Δ6-desaturation compared to WT, suggesting Δ6 Fads2-a as having the predominant Δ6-desaturation activity in salmon, at least in the tissues analyzed. Both Δ6abc/5Mt and Δ6bcMt demonstrated significant accumulation of Δ8-desaturation substrates (20:2n-6, 20:3n-3) when fed low LC-PUFA diet. Additionally, Δ6abc/5Mt demonstrated significant upregulation of the lipogenic transcription regulator, sterol regulatory element binding protein-1 (srebp-1) in liver and pyloric caeca under reduced dietary LC-PUFA. Our data suggest a combined effect of endogenous LC-PUFA synthesis and dietary LC-PUFA levels on srebp-1 expression which ultimately affects LC-PUFA synthesis in salmon. Our data also suggest Δ8-desaturation activities for salmon Δ6 Fads2 enzymes.
Collapse
|
17
|
Harwood JL. Algae: Critical Sources of Very Long-Chain Polyunsaturated Fatty Acids. Biomolecules 2019; 9:biom9110708. [PMID: 31698772 PMCID: PMC6920940 DOI: 10.3390/biom9110708] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 01/01/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs), which are divided into n-3 and n-6 classes, are essential for good health in humans and many animals. They are metabolised to lipid mediators, such as eicosanoids, resolvins and protectins. Increasing interest has been paid to the 20 or 22 carbon very long chain PUFAs, since these compounds can be used to form lipid mediators and, thus, avoid inefficient formation of dietary plant PUFAs. The ultimate sources of very long chain PUFAs are algae, which are consumed by fish and then by humans. In this review, I describe the biosynthesis of very long chain PUFAs by algae and how this synthesis can be manipulated for commercial purposes. Ultimately, the production of algal oils is critical for ecosystems worldwide, as well as for human dietary lipids.
Collapse
Affiliation(s)
- John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| |
Collapse
|
18
|
Sun JJ, Zheng LG, Chen CY, Zhang JY, You CH, Zhang QH, Ma HY, Monroig Ó, Tocher DR, Wang SQ, Li YY. MicroRNAs Involved in the Regulation of LC-PUFA Biosynthesis in Teleosts: miR-33 Enhances LC-PUFA Biosynthesis in Siganus canaliculatus by Targeting insig1 which in Turn Upregulates srebp1. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:475-487. [PMID: 31020472 DOI: 10.1007/s10126-019-09895-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
Post-transcriptional regulatory mechanisms play important roles in the regulation of LC-PUFA biosynthesis. Our previous study revealed that miR-33 could increase the expression of fatty acyl desaturases (fads2) in the rabbitfish Siganus canaliculatus, but the specific mechanism is unknown. Here, we confirmed that miR-33 could target the 3'UTR of insulin-induced gene 1 (insig1), resulting in downregulation of its protein level in the rabbitfish hepatocyte line (SCHL). In vitro overexpression of miR-33 inhibited the mRNA level of insig1 and increased the mRNA levels of Δ6Δ5 fads2 and elovl5, as well as srebp1. In SCHL cells, proteolytic activation of sterol-regulatory-element-binding protein-1 (Srebp1) was blocked by Insig1, with overexpression of insig1 decreasing mature Srebp1 level, while inhibition of insig1 led to the opposite effect. Srebp1 could enhance the promoter activity of Δ6Δ5 fads2 and elovl5, whose expression levels decreased with knockdown of srebp1 in SCHL. Overexpression of miR-33 also resulted in a higher conversion of 18:3n-3 to 18:4n-3 and 20:5n-3 to 22:5n-3, linked to desaturation and elongation via Δ6Δ5 Fads2 and Elovl5, respectively. The results suggested that the mechanism by which miR-33 regulates LC-PUFA biosynthesis in rabbitfish is through enhancing the expression of srebp1 by targeting insig1. The findings here provide more insight to the mechanism of miRNAs involvement in the regulation of LC-PUFA biosynthesis in teleosts.
Collapse
Affiliation(s)
- Jun Jun Sun
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Li Guo Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Cui Ying Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Jin Ying Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Cui Hong You
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Qing Hao Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Hong Yu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Douglas R Tocher
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, FK9 4LA, UK
| | - Shu Qi Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China.
| | - Yuan You Li
- School of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
19
|
CRISPR/Cas9-mediated ablation of elovl2 in Atlantic salmon (Salmo salar L.) inhibits elongation of polyunsaturated fatty acids and induces Srebp-1 and target genes. Sci Rep 2019; 9:7533. [PMID: 31101849 PMCID: PMC6525179 DOI: 10.1038/s41598-019-43862-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 05/02/2019] [Indexed: 01/01/2023] Open
Abstract
Atlantic salmon can synthesize polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (20:5n-3), arachidonic acid (20:4n-6) and docosahexaenoic acid (22:6n-3) via activities of very long chain fatty acyl elongases (Elovls) and fatty acyl desaturases (Fads), albeit to a limited degree. Understanding molecular mechanisms of PUFA biosynthesis and regulation is a pre-requisite for sustainable use of vegetable oils in aquafeeds as current sources of fish oils are unable to meet increasing demands for omega-3 PUFAs. By generating CRISPR-mediated elovl2 partial knockout (KO), we have shown that elovl2 is crucial for multi-tissue synthesis of 22:6n-3 in vivo and that endogenously synthesized PUFAs are important for transcriptional regulation of lipogenic genes in Atlantic salmon. The elovl2-KOs showed reduced levels of 22:6n-3 and accumulation of 20:5n-3 and docosapentaenoic acid (22:5n-3) in the liver, brain and white muscle, suggesting inhibition of elongation. Additionally, elovl2-KO salmon showed accumulation of 20:4n-6 in brain and white muscle. The impaired synthesis of 22:6n-3 induced hepatic expression of sterol regulatory element binding protein-1 (srebp-1), fatty acid synthase-b, Δ6fad-a, Δ5fad and elovl5. Our study demonstrates key roles of elovl2 at two penultimate steps of PUFA synthesis in vivo and suggests Srebp-1 as a main regulator of endogenous PUFA synthesis in Atlantic salmon.
Collapse
|
20
|
Hou L, Chen S, Liu J, Guo J, Chen Z, Zhu Q, Zhang W, Xu G, Liang Y, Wu R, Fang X, Zhang C, Xing K. Transcriptomic and physiological changes in western mosquitofish (Gambusia affinis) after exposure to norgestrel. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:579-586. [PMID: 30654292 DOI: 10.1016/j.ecoenv.2018.12.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/08/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Norgestrel (NGT) is a synthetic progestin used in human and veterinary medicine. Adult female mosquitofish were exposed to NGT for 42 d at 377 ng L-1. The fin morphology and the liver transcriptome were assessed. NGT exposure increased ray 4:6 length ratio. As compared to the control, NGT treatment affected the expression of 11,772 annotated transcripts in female mosquitofish. Specifically, we found 5780 were repressed while 5992 were significantly induced. Gene ontology (GO) analysis showed that 53 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways and 158 GO terms were significantly over expressed. Genes showing the largest magnitude of expression changes were related to fin development, androgen biosynthesis, and lipid and fatty acid metabolisms, suggesting the involvement of these biological processes in response to NGT exposure in G. affinis. This first comprehensive study on the transcriptomic alterations by NGT in G. affinis not only provides valuable information on the development of molecular markers but also opens new avenues for studies on the molecular mechanisms of effects of NGT in particular and possibly other progestins in G. affinis.
Collapse
Affiliation(s)
- Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Shanduo Chen
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China.
| | - Jingwen Guo
- College of Environmental Science and Engineering, Guangzhou University, Guangzhou 510655, China
| | - Zhong Chen
- NanWu Middle School, Guangzhou 510655, China
| | | | - Wei Zhang
- Guangzhou Tieyi Middle School, Guangzhou 510655, China
| | - GuoLiang Xu
- Rural Non-point Source Pollution Comprehensive Management Technology Center of Guangdong Province, Guangzhou 510655, China
| | - Ye Liang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Rongrong Wu
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Xuwen Fang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Cuiping Zhang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Ke Xing
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China.
| |
Collapse
|
21
|
Li-Beisson Y, Thelen JJ, Fedosejevs E, Harwood JL. The lipid biochemistry of eukaryotic algae. Prog Lipid Res 2019; 74:31-68. [PMID: 30703388 DOI: 10.1016/j.plipres.2019.01.003] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
Algal lipid metabolism fascinates both scientists and entrepreneurs due to the large diversity of fatty acyl structures that algae produce. Algae have therefore long been studied as sources of genes for novel fatty acids; and, due to their superior biomass productivity, algae are also considered a potential feedstock for biofuels. However, a major issue in a commercially viable "algal oil-to-biofuel" industry is the high production cost, because most algal species only produce large amounts of oils after being exposed to stress conditions. Recent studies have therefore focused on the identification of factors involved in TAG metabolism, on the subcellular organization of lipid pathways, and on interactions between organelles. This has been accompanied by the development of genetic/genomic and synthetic biological tools not only for the reference green alga Chlamydomonas reinhardtii but also for Nannochloropsis spp. and Phaeodactylum tricornutum. Advances in our understanding of enzymes and regulatory proteins of acyl lipid biosynthesis and turnover are described herein with a focus on carbon and energetic aspects. We also summarize how changes in environmental factors can impact lipid metabolism and describe present and potential industrial uses of algal lipids.
Collapse
Affiliation(s)
- Yonghua Li-Beisson
- Aix-Marseille Univ, CEA, CNRS, BIAM, UMR7265, CEA Cadarache, Saint-Paul-lez Durance F-13108, France.
| | - Jay J Thelen
- Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, United States.
| | - Eric Fedosejevs
- Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, United States.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
22
|
Liland NS, Pittman K, Whatmore P, Torstensen BE, Sissener NH. Fucosterol Causes Small Changes in Lipid Storage and Brassicasterol Affects some Markers of Lipid Metabolism in Atlantic Salmon Hepatocytes. Lipids 2018; 53:737-747. [DOI: 10.1002/lipd.12083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Nina S. Liland
- Research group Requirement and Welfare, Institute of Marine Research, Nordnes gaten 50; 5005 Bergen Norway
| | - Karin Pittman
- Department of Biology; University of Bergen, Thormøhlensgate 53B; 5020 Bergen Norway
| | - Paul Whatmore
- Research group Requirement and Welfare, Institute of Marine Research, Nordnes gaten 50; 5005 Bergen Norway
| | - Bente E. Torstensen
- Research group Requirement and Welfare, Institute of Marine Research, Nordnes gaten 50; 5005 Bergen Norway
| | - Nini H. Sissener
- Research group Requirement and Welfare, Institute of Marine Research, Nordnes gaten 50; 5005 Bergen Norway
| |
Collapse
|
23
|
Sissener NH. Are we what we eat? Changes to the feed fatty acid composition of farmed salmon and its effects through the food chain. ACTA ACUST UNITED AC 2018. [PMID: 29514891 DOI: 10.1242/jeb.161521] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
'Are we what we eat?' Yes and no. Although dietary fat affects body fat, there are many modifying mechanisms. In Atlantic salmon, there is a high level of retention of the n-3 fatty acid (FA) docosahexaenoic acid (DHA, 22:6n-3) relative to the dietary content, whereas saturated FAs never seem to increase above a specified level, which is probably an adaptation to low and fluctuating body temperature. Net production of eicosapentaenoic acid (EPA, 20:5n-3) and especially DHA occurs in salmon when dietary levels are low; however, this synthesis is not sufficient to maintain EPA and DHA at similar tissue levels to those of a traditional fish oil-fed farmed salmon. The commercial diets of farmed salmon have changed over the past 15 years towards a more plant-based diet owing to the limited availability of the marine ingredients fish meal and fish oil, resulting in decreased EPA and DHA and increased n-6 FAs. Salmon is part of the human diet, leading to the question 'Are we what the salmon eats?' Dietary intervention studies using salmon have shown positive effects on FA profiles and health biomarkers in humans; however, most of these studies used salmon that were fed high levels of marine ingredients. Only a few human intervention studies and mouse trials have explored the effects of the changing feed composition of farmed salmon. In conclusion, when evaluating feed ingredients for farmed fish, effects throughout the food chain on fish health, fillet composition and human health need to be considered.
Collapse
Affiliation(s)
- Nini H Sissener
- Fish Nutrition, Requirements and Welfare, Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817 Bergen, Norway
| |
Collapse
|
24
|
Ganguly S, Mahanty A, Mitra T, Mohanty S, Das BK, Mohanty BP. Nutrigenomic studies on hilsa to evaluate flesh quality attributes and genes associated with fatty acid metabolism from the rivers Hooghly and Padma. Food Res Int 2018; 103:21-29. [DOI: 10.1016/j.foodres.2017.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/21/2017] [Accepted: 10/10/2017] [Indexed: 12/12/2022]
|
25
|
Cloning, tissue distribution and nutritional regulation of a fatty acyl Elovl4-like elongase in mud crab, Scylla paramamosain (Estampador, 1949). Comp Biochem Physiol B Biochem Mol Biol 2017; 217:70-78. [PMID: 29277642 DOI: 10.1016/j.cbpb.2017.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/01/2017] [Accepted: 12/07/2017] [Indexed: 12/25/2022]
Abstract
In this report, the full-length cDNA of fatty acyl Elovl4-like elongase was cloned from the hepatopancreas of Scylla paramamosain by rapid-amplification of cDNA ends (RACE). To the best of our knowledge, this is the first report of Elovl4-like elongase in crustaceans. The full-length cDNA of Elovl4-like was 1119bp, which included a 5'-terminal untranslated region (UTR) of 58bp, a 3'-terminal UTR of 44bp and an open reading frame (ORF) of 1017bp encoding a polypeptide of 338 amino acids. Tissue distribution analysis revealed that Elovl4-like transcripts are widely distributed in various organs, with high mRNA levels in the hepatopancreas and cranial ganglia. Further, Elovl4-like transcriptional levels in hepatopancreas were up-regulated in proportion to the replacement of dietary fish oil (FO) with soybean oil (SO). The result showed that Elovl4-like transcripts increased about 0.83 and 1.12-fold respectively when SO constituted 80% and 100% of total oil (P<0.05). These results may contribute to better understanding of the long-chain polyunsaturated fatty acids (LC-PUFA) biosynthetic pathway and regulation mechanism in this species.
Collapse
|
26
|
Lin Z, Hao M, Zhu D, Li S, Wen X. Molecular cloning, mRNA expression and nutritional regulation of a Δ6 fatty acyl desaturase-like gene of mud crab, Scylla paramamosain. Comp Biochem Physiol B Biochem Mol Biol 2017; 208-209:29-37. [PMID: 28373120 DOI: 10.1016/j.cbpb.2017.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 03/18/2017] [Accepted: 03/28/2017] [Indexed: 11/17/2022]
Abstract
Fatty acyl desaturases (Fads) are critical enzymes in the pathways for the biosynthesis of the highly unsaturated fatty acids (HUFA). Here we report on the molecular cloning, tissue expression and nutritional regulation of a Δ6 fatty acyl desaturase-like (Δ6 Fad-like) gene from mud crab, Scylla paramamosain. The full-length cDNA was 1973bp, with a 201bp of 5'-UTR, a 443bp of 3'-UTR, and an ORF of 1329bp that encoded a protein of 442 amino acids. Bioinformatics analysis showed that the deduced peptide sequence possessed the typical features of the microsomal Fads, including N-terminal cytochrome b5 domain containing the heme-binding motif (H-P-G-G), three histidine-rich boxes and three membrane-spanning regions. Sequence comparison revealed that the predicted protein had a high percentage identity (>53%) with Δ6 Fads from other crustacean species. The tissue distribution of mud crab Δ6 Fad-like mRNA was found predominantly in hepatopancreas, with lower expression levels in all other tissues. Quantitative real-time PCR showed that the Δ6 Fad-like transcriptional levels in hepatopancreas gradually increased with the increased replacement of dietary fish oil (FO) by soybean oil (SO). The replacement ratio of FO by SO up to 60%, 80%, and 100% were significantly up-regulated by about 2.40-fold, 2.99-fold and 3.02-fold compared with that in the control group (100% FO) respectively (P<0.05). These results may contribute to better understanding the HUFA biosynthetic pathway and regulation mechanism in this species.
Collapse
Affiliation(s)
- Zhideng Lin
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, PR China
| | - Meilin Hao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Dashi Zhu
- College of Animal Science, Yangtze University, Jingzhou 434023, PR China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, PR China
| | - Xiaobo Wen
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, PR China.
| |
Collapse
|
27
|
Bou M, Østbye TK, Berge GM, Ruyter B. EPA, DHA, and Lipoic Acid Differentially Modulate the n-3 Fatty Acid Biosynthetic Pathway in Atlantic Salmon Hepatocytes. Lipids 2017; 52:265-283. [PMID: 28132119 DOI: 10.1007/s11745-017-4234-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 01/16/2017] [Indexed: 12/17/2022]
Abstract
The aim of the present study was to investigate how EPA, DHA, and lipoic acid (LA) influence the different metabolic steps in the n-3 fatty acid (FA) biosynthetic pathway in hepatocytes from Atlantic salmon fed four dietary levels (0, 0.5, 1.0 and 2.0%) of EPA, DHA or a 1:1 mixture of these FA. The hepatocytes were incubated with [1-14C] 18:3n-3 in the presence or absence of LA (0.2 mM). Increased endogenous levels of EPA and/or DHA and LA exposure both led to similar responses in cells with reduced desaturation and elongation of [1-14C] 18:3n-3 to 18:4n-3, 20:4n-3, and EPA, in agreement with reduced expression of the Δ6 desaturase gene involved in the first step of conversion. DHA production, on the other hand, was maintained even in groups with high endogenous levels of DHA, possibly due to a more complex regulation of this last step in the n-3 metabolic pathway. Inhibition of the Δ6 desaturase pathway led to increased direct elongation to 20:3n-3 by both DHA and LA. Possibly the route by 20:3n-3 and then Δ8 desaturation to 20:4n-3, bypassing the first Δ6 desaturase step, can partly explain the maintained or even increased levels of DHA production. LA increased DHA production in the phospholipid fraction of hepatocytes isolated from fish fed 0 and 0.5% EPA and/or DHA, indicating that LA has the potential to further increase the production of this health-beneficial FA in fish fed diets with low levels of EPA and/or DHA.
Collapse
Affiliation(s)
- Marta Bou
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), P.O. Box 210, 1431, Ås, Norway. .,Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway.
| | - Tone-Kari Østbye
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), P.O. Box 210, 1431, Ås, Norway
| | | | - Bente Ruyter
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), P.O. Box 210, 1431, Ås, Norway.,Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
28
|
Kjær MA, Ruyter B, Berge GM, Sun Y, Østbye TKK. Regulation of the Omega-3 Fatty Acid Biosynthetic Pathway in Atlantic Salmon Hepatocytes. PLoS One 2016; 11:e0168230. [PMID: 27973547 PMCID: PMC5156434 DOI: 10.1371/journal.pone.0168230] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 11/28/2016] [Indexed: 12/30/2022] Open
Abstract
Limited availability of the n-3 fatty acids EPA and DHA have led to an interest in better understanding of the n-3 biosynthetic pathway and its regulation. The biosynthesis of alpha-linolenic acid to EPA and DHA involves several complex reaction steps including desaturation-, elongation- and peroxisomal beta-oxidation enzymes. The aims of the present experiments were to gain more knowledge on how this biosynthesis is regulated over time by different doses and fatty acid combinations. Hepatocytes isolated from salmon were incubated with various levels and combinations of oleic acid, EPA and DHA. Oleic acid led to a higher expression of the Δ6 fatty acid desaturase (fad) genes Δ6fad_a, Δ6fad_b, Δ6fad_c and the elongase genes elovl2 compared with cells cultured in medium enriched with DHA. Further, the study showed rhythmic variations in expression over time. Levels were reached where a further increase in specific fatty acids given to the cells not stimulated the conversion further. The gene expression of Δ6fad_a_and Δ6fad_b responded similar to fatty acid treatment, suggesting a co-regulation of these genes, whereas Δ5fad and Δ6fad_c showed a different regulation pattern. EPA and DHA induced different gene expression patterns, especially of Δ6fad_a. Addition of radiolabelled alpha-linolenic acid to the hepatocytes confirmed a higher degree of elongation and desaturation in cells treated with oleic acid compared to cells treated with DHA. This study suggests a complex regulation of the conversion process of n-3 fatty acids. Several factors, such as that the various gene copies are differently regulated, the gene expression show rhythmic variations and gene expression only affected to a certain level, determines when you get the maximum conversion of the beneficial n-3 fatty acids.
Collapse
|
29
|
Nuez-Ortín WG, Carter CG, Wilson R, Cooke I, Nichols PD. Preliminary Validation of a High Docosahexaenoic Acid (DHA) and α-Linolenic Acid (ALA) Dietary Oil Blend: Tissue Fatty Acid Composition and Liver Proteome Response in Atlantic Salmon (Salmo salar) Smolts. PLoS One 2016; 11:e0161513. [PMID: 27556399 PMCID: PMC4996530 DOI: 10.1371/journal.pone.0161513] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/05/2016] [Indexed: 11/24/2022] Open
Abstract
Marine oils are important to human nutrition as the major source of docosahexaenoic acid (DHA), a key omega-3 long-chain (≥C20) polyunsaturated fatty acid (n-3 LC-PUFA) that is low or lacking in terrestrial plant or animal oils. The inclusion of fish oil as main source of n-3 LC-PUFA in aquafeeds is mostly limited by the increasing price and decreasing availability. Fish oil replacement with cheaper terrestrial plant and animal oils has considerably reduced the content of n-3 LC-PUFA in flesh of farmed Atlantic salmon. Novel DHA-enriched oils with high alpha-linolenic acid (ALA) content will be available from transgenic oilseeds plants in the near future as an alternative for dietary fish oil replacement in aquafeeds. As a preliminary validation, we formulated an oil blend (TOFX) with high DHA and ALA content using tuna oil (TO) high in DHA and the flaxseed oil (FX) high in ALA, and assessed its ability to achieve fish oil-like n-3 LC-PUFA tissue composition in Atlantic salmon smolts. We applied proteomics as an exploratory approach to understand the effects of nutritional changes on the fish liver. Comparisons were made between fish fed a fish oil-based diet (FO) and a commercial-like oil blend diet (fish oil + poultry oil, FOPO) over 89 days. Growth and feed efficiency ratio were lower on the TOFX diet. Fish muscle concentration of n-3 LC-PUFA was significantly higher for TOFX than for FOPO fish, but not higher than for FO fish, while retention efficiency of n-3 LC-PUFA was promoted by TOFX relative to FO. Proteomics analysis revealed an oxidative stress response indicative of the main adaptive physiological mechanism in TOFX fish. While specific dietary fatty acid concentrations and balances and antioxidant supplementation may need further attention, the use of an oil with a high content of DHA and ALA can enhance tissue deposition of n-3 LC-PUFA in relation to a commercially used oil blend.
Collapse
Affiliation(s)
- Waldo G. Nuez-Ortín
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia
- CSIRO Food Nutrition and Bio-based Products, Oceans & Atmosphere, GPO Box 1538, Hobart, TAS 7001, Australia
- * E-mail:
| | - Chris G. Carter
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Bag 74, Hobart, TAS 7001, Australia
| | - Ira Cooke
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Peter D. Nichols
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia
- CSIRO Food Nutrition and Bio-based Products, Oceans & Atmosphere, GPO Box 1538, Hobart, TAS 7001, Australia
| |
Collapse
|
30
|
Xie D, Chen F, Lin S, You C, Wang S, Zhang Q, Monroig Ó, Tocher DR, Li Y. Long-chain polyunsaturated fatty acid biosynthesis in the euryhaline herbivorous teleost Scatophagus argus: Functional characterization, tissue expression and nutritional regulation of two fatty acyl elongases. Comp Biochem Physiol B Biochem Mol Biol 2016; 198:37-45. [DOI: 10.1016/j.cbpb.2016.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 01/01/2023]
|
31
|
Borvinskaya EV, Sukhovskaya IV, Kochneva AA, Vasilyeva OB, Nazarova MA, Smirnov LP, Nemova NN. Seasonal variability of some biochemical parameters in the whitefish (Coregonus muksun and Coregonus lavaretus). CONTEMP PROBL ECOL+ 2016. [DOI: 10.1134/s1995425516020013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Betancor MB, Olsen RE, Solstorm D, Skulstad OF, Tocher DR. Assessment of a land-locked Atlantic salmon (Salmo salar L.) population as a potential genetic resource with a focus on long-chain polyunsaturated fatty acid biosynthesis. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:227-38. [PMID: 26732752 DOI: 10.1016/j.bbalip.2015.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 12/14/2022]
Abstract
The natural food for Atlantic salmon (Salmo salar) in freshwater has relatively lower levels of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA) than found in prey for post-smolt salmon in seawater. Land-locked salmon such as the Gullspång population feed exclusively on freshwater type lipids during its entire life cycle, a successful adaptation derived from divergent evolution. Studying land-locked populations may provide insights into the molecular and genetic control mechanisms that determine and regulate n-3 LC-PUFA biosynthesis and retention in Atlantic salmon. A two factorial study was performed comparing land-locked and farmed salmon parr fed diets formulated with fish or rapeseed oil for 8 weeks. The land-locked parr had higher capacity to synthesise n-3 LC-PUFA as indicated by higher expression and activity of desaturase and elongase enzymes. The data suggested that the land-locked salmon had reduced sensitivity to dietary fatty acid composition and that dietary docosahexaenoic acid (DHA) did not appear to suppress expression of LC-PUFA biosynthetic genes or activity of the biosynthesis pathway, probably an evolutionary adaptation to a natural diet lower in DHA. Increased biosynthetic activity did not translate to enhanced n-3 LC-PUFA contents in the flesh and diet was the only factor affecting this parameter. Additionally, high lipogenic and glycolytic potentials were found in land-locked salmon, together with decreased lipolysis which in turn could indicate increased use of carbohydrates as an energy source and a sparing of lipid.
Collapse
Affiliation(s)
- M B Betancor
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK.
| | - R E Olsen
- Institute of Marine Research, Matre 5984, Matredal, Norway; Norwegian University of Science and Technology, Department of Biology, 7491 Trondheim, Norway
| | - D Solstorm
- Institute of Marine Research, Matre 5984, Matredal, Norway
| | - O F Skulstad
- Institute of Marine Research, Matre 5984, Matredal, Norway
| | - D R Tocher
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
33
|
Song YF, Luo Z, Pan YX, Zhang LH, Chen QL, Zheng JL. Three unsaturated fatty acid biosynthesis-related genes in yellow catfish Pelteobagrus fulvidraco: Molecular characterization, tissue expression and transcriptional regulation by leptin. Gene 2015; 563:1-9. [DOI: 10.1016/j.gene.2014.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 12/30/2022]
|
34
|
Xie D, Chen F, Lin S, Wang S, You C, Monroig Ó, Tocher DR, Li Y. Cloning, functional characterization and nutritional regulation of Δ6 fatty acyl desaturase in the herbivorous euryhaline teleost Scatophagus argus. PLoS One 2014; 9:e90200. [PMID: 24594899 PMCID: PMC3940778 DOI: 10.1371/journal.pone.0090200] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 01/27/2014] [Indexed: 12/18/2022] Open
Abstract
Marine fish are generally unable or have low ability for the biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFA) from C18 PUFA precursors, with some notable exceptions including the herbivorous marine teleost Siganus canaliculatus in which such a capability was recently demonstrated. To determine whether this is a unique feature of S. canaliculatus or whether it is common to the herbivorous marine teleosts, LC-PUFA biosynthetic pathways were investigated in the herbivorous euryhaline Scatophagus argus. A putative desaturase gene was cloned and functionally characterized, and tissue expression and nutritional regulation were investigated. The full-length cDNA was 1972 bp, containing a 1338 bp open-reading frame encoding a polypeptide of 445 amino acids, which possessed all the characteristic features of fatty acyl desaturase (Fad). Functional characterization by heterologous expression in yeast showed the protein product of the cDNA efficiently converted 18:3n-3 and 18:2n-6 to 18:4n-3 and 18:3n-6, respectively, indicating Δ6 desaturation activity. Quantitative real-time PCR showed that highest Δ6 fad mRNA expression was detected in liver followed by brain, with lower expression in other tissues including intestine, eye, muscle, adipose, heart kidney and gill, and lowest expression in stomach and spleen. The expression of Δ6 fad was significantly affected by dietary lipid and, especially, fatty acid composition, with highest expression of mRNA in liver of fish fed a diet with a ratio of 18:3n-3/18:2n-6 of 1.72:1. The results indicated that S. argus may have a different LC-PUFA biosynthetic system from S. canaliculatus despite possessing similar habitats and feeding habits suggesting that LC-PUFA biosynthesis may not be common to all marine herbivorous teleosts.
Collapse
Affiliation(s)
- Dizhi Xie
- Marine Biology Institute of Shantou University & Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou, Guangdong, China
| | - Fang Chen
- Marine Biology Institute of Shantou University & Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou, Guangdong, China
| | - Siyuan Lin
- Marine Biology Institute of Shantou University & Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou, Guangdong, China
| | - Shuqi Wang
- Marine Biology Institute of Shantou University & Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou, Guangdong, China
| | - Cuihong You
- Marine Biology Institute of Shantou University & Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou, Guangdong, China
| | - Óscar Monroig
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Douglas R. Tocher
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Yuanyou Li
- Marine Biology Institute of Shantou University & Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou, Guangdong, China
- * E-mail:
| |
Collapse
|
35
|
Xu H, Dong X, Ai Q, Mai K, Xu W, Zhang Y, Zuo R. Regulation of tissue LC-PUFA contents, Δ6 fatty acyl desaturase (FADS2) gene expression and the methylation of the putative FADS2 gene promoter by different dietary fatty acid profiles in Japanese seabass (Lateolabrax japonicus). PLoS One 2014; 9:e87726. [PMID: 24498178 PMCID: PMC3909213 DOI: 10.1371/journal.pone.0087726] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/01/2014] [Indexed: 12/01/2022] Open
Abstract
The present study was conducted to evaluate the influences of different dietary fatty acid profiles on the tissue content and biosynthesis of LC-PUFA in a euryhaline species Japanese seabass reared in seawater. Six diets were prepared, each with a characteristic fatty acid: Diet PA: Palmitic acid (C16:0); Diet SA: Stearic acid (C18:0); Diet OA: Oleic acid (C18:1n-9); Diet LNA: α-linolenic acid (C18:3n-3); Diet N-3 LC-PUFA: n-3 LC-PUFA (DHA+EPA); Diet FO: the fish oil control. A 10-week feeding trial was conducted using juvenile fish (29.53 ± 0.86 g). The results showed that Japanese seabass had limited capacity to synthesize LC-PUFA and fish fed PA, SA, OA and LNA showed significantly lower tissue n-3 LC-PUFA contents compared to fish fed N-3 LC-PUFA and FO. The putative gene promoter and full-length cDNA of FADS2 was cloned and characterized. The protein sequence was confirmed to be homologous to FADS2s of marine teleosts and possessed all the characteristic features of microsomal fatty acid desaturases. The FADS2 transcript levels in liver of fish fed N-3 LC-PUFA and FO were significantly lower than those in fish fed other diets except LNA while Diet PA significantly up-regulated the FADS2 gene expression compared to Diet LNA, N-3 LC-PUFA and FO. Inversely, fish fed N-3 LC-PUFA and FO showed significantly higher promoter methylation rates of FADS2 gene compared to fish fed the LC-PUFA deficient diets. These results suggested that Japanese seabass had low LC-PUFA synthesis capacity and LC-PUFA deficient diets caused significantly reduced tissue n-3 LC-PUFA contents. The liver gene expression of FADS2 was up-regulated in groups enriched in C16:0, C18:0 and C18:1n-9 respectively but not in the group enriched in C18:3n-3 compared to groups with high n-3 LC-PUFA contents. The FADS2 gene expression regulated by dietary fatty acids was significantly negatively correlated with the methylation rate of putative FADS2 gene promoter.
Collapse
Affiliation(s)
- Houguo Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
- Key Laboratory of Chinese Ministry of Agriculture for Sustainable Utilization of Marine Fisheries Resources, Yellow Sea Fisheries Research Institute, Qingdao, China
| | - Xiaojing Dong
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Wei Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Yanjiao Zhang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Rantao Zuo
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Ministry of Agriculture), Dalian Ocean University, Dalian, China
| |
Collapse
|
36
|
Teoh CY, Ng WK. Evaluation of the impact of dietary petroselinic acid on the growth performance, fatty acid composition, and efficacy of long chain-polyunsaturated fatty acid biosynthesis of farmed Nile tilapia. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:6056-6068. [PMID: 23718861 DOI: 10.1021/jf400904j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The present study aimed to investigate the potential role of dietary petroselinic acid (PSA) in enhancing the n-3 long-chain polyunsaturated fatty acid (LC-PUFA) content in fish tissues. Three isolipidic casein-based diets were formulated to comprise graded levels of PSA (0, 10, or 20% of total fatty acid) with the incremented inclusion of coriander seed oil. Fish growth and nutrient digestibility were not significantly (P > 0.05) influenced by dietary PSA level. In general, dietary PSA affected the fatty acid composition of tilapia tissues and whole-body, which reflected dietary fatty acid ratios. Dietary PSA significantly (P < 0.05) increased β-oxidation, particularly on α-linolenic acid (18:3n-3) and linoleic acid (18:2n-6). This study provided evidence that PSA, a pseudoproduct mimicking the structure of 18:3n-6, did reduce Δ-6 desaturation on 18:2n-6 but, contrary to popular speculation, did not stimulate more Δ-6 desaturase activity on 18:3n-3. The overall Δ-6 desaturase enzyme activity may be suppressed at high dietary levels of PSA. Nevertheless, the n-3 and n-6 LC-PUFA biosynthesis was not significantly inhibited by dietary PSA, indicating that the bioconversion efficiency is not modulated only by Δ-6 desaturase. The deposition of n-3 LC-PUFA in liver and fillet lipids was higher in fish fed PSA-supplemented diets.
Collapse
Affiliation(s)
- Chaiw-Yee Teoh
- Fish Nutrition Laboratory, School of Biological Sciences, Universiti Sains Malaysia , Penang 11800, Malaysia
| | | |
Collapse
|
37
|
Keppeler FW, Lanés LEK, Rolon AS, Stenert C, Maltchik L. The diet ofCynopoecilus fulgensCosta, 2002 (Cyprinodontiformes: Rivulidae) in Southern Brazil wetlands. ACTA ACUST UNITED AC 2013. [DOI: 10.1080/11250003.2012.744107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Gylfason GA, Knútsdóttir E, Ásgeirsson B. Nervonic Acid (24:1n-9) is a Dominant Unsaturated Fatty Acid in the Intestinal Brush Border of Atlantic Cod. Lipid Insights 2012. [DOI: 10.4137/lpi.s10291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Atlantic cod is a coldwater teleost of commercial importance. The intestinal epithelium is a large organ in vertebrates serving an important role in nutrient selection and uptake as well as an immunological barrier. Here, we perform lipid and fatty acid analysis of the plasma membrane from the cod intestinal enterocytes after separation of the brush border membrane and the basolateral membrane fractions. Our results show that both membrane fractions contain an unusually high amount of cholesterol and glycolipids but low levels of glycerophospholipids compared with other reported studies on fish. Sphingomyelin was the dominant lipid in the brush border fraction and was also prominent in the basolateral fraction where phosphatidylcholine was the dominant glycerophospholipid. Furthermore, our results show a distinct difference in fatty acids content, where monounsaturated fatty acids (MUFA) were more abundant than polyunsaturated fatty acid (PUFA). Nervonic acid (24:1n-9) was a prominent fatty acid in the BBM at ~50% of the total MUFA. We hypothesize that the high cholesterol content and the presence of this rare fatty acid may serve to maintain membrane fluidity in the cold environment.
Collapse
Affiliation(s)
- Gudjón Andri Gylfason
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavik, Iceland
| | - Erna Knútsdóttir
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavik, Iceland
| | - Bjarni Ásgeirsson
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
39
|
Malnutrition may affect common sole (Solea solea L.) growth, pigmentation and stress response: Molecular, biochemical and histological implications. Comp Biochem Physiol A Mol Integr Physiol 2012; 161:361-71. [DOI: 10.1016/j.cbpa.2011.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/13/2011] [Accepted: 12/13/2011] [Indexed: 01/24/2023]
|
40
|
Olsvik PA, Amlund H, Torstensen BE. Dietary lipids modulate methylmercury toxicity in Atlantic salmon. Food Chem Toxicol 2011; 49:3258-71. [DOI: 10.1016/j.fct.2011.09.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/01/2011] [Accepted: 09/20/2011] [Indexed: 11/29/2022]
|
41
|
Development of a co-culture model for in vitro toxicological studies in Atlantic salmon. Toxicol In Vitro 2011; 25:1143-52. [DOI: 10.1016/j.tiv.2011.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 01/14/2011] [Accepted: 03/25/2011] [Indexed: 01/26/2023]
|
42
|
Olivotto I, Di Stefano M, Rosetti S, Cossignani L, Pugnaloni A, Giantomassi F, Carnevali O. Live prey enrichment, with particular emphasis on HUFAs, as limiting factor in false percula clownfish (Amphiprion ocellaris, Pomacentridae) larval development and metamorphosis: molecular and biochemical implications. Comp Biochem Physiol A Mol Integr Physiol 2011; 159:207-18. [PMID: 21320627 DOI: 10.1016/j.cbpa.2011.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 02/01/2011] [Accepted: 02/05/2011] [Indexed: 12/21/2022]
Abstract
In fast growing organisms, like fish larvae, fatty acids provided through live prey are essential to satisfy high energy demand and are required to promote growth. Therefore, in recent decades, a great amount of research has been directed towards the development of lipid enrichment in order to improve larval fish survival and growth. However, in fish, the biochemical and molecular processes related to highly unsaturated fatty acid (HUFA) administration are still poorly understood. In the current study, the false percula clownfish, a short larval phase marine species, was used as an experimental model and the effects of a standard and a HUFAs-enriched diet were tested through a molecular, biochemical, ultrastructural and morphometric approach. Our results support the hypothesis that HUFA administration may improve larval development through the presence of better structured mitochondria, a higher synthesis of energy compounds and coenzymes with a central position in the metabolism, with respect to controls. This higher energy status was confirmed by better growth performance and a shorter larval phase in larvae fed with an enriched diet with respect to the control. This strategy of rapid growth and early energy storage may be considered positively adaptive and beneficial to the survival of this species.
Collapse
Affiliation(s)
- Ike Olivotto
- Dipartimento di Scienze del Mare, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| | | | | | | | | | | | | |
Collapse
|
43
|
Influence of the dietary protein:lipid ratio and fish oil substitution on fatty acid composition and metabolism of Atlantic salmon (Salmo salar) reared at high water temperatures. Br J Nutr 2010; 105:1012-25. [DOI: 10.1017/s0007114510004605] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A factorial, two-way, experimental design was used for this 10-week nutritional trial, aiming to elucidate the interactive effects of decreasing dietary protein:lipid level and substitution of fish oil (FO) with rapeseed oil (RO) on tissue fatty acid (FA) composition and metabolism of large Atlantic salmon (Salmo salar L.) reared at high water temperatures (sub-optimal, summer temperatures: 11·6°C). The six experimental diets were isoenergetic and formulated to include either FO or RO (60 % of the added oil) at three dietary protein:lipid levels, specifically (1) 350 g/kg protein and 350 g/kg lipid, (2) 330 g/kg protein and 360 g/kg lipid, (3) 290 g/kg protein and 380 g/kg lipid. Final weight, specific growth rate and thermal growth coefficient were positively affected by the dietary RO inclusion at the expense of FO, while no significant effects were seen on growth due to the decreasing protein level. The oil source had a significant effect on muscle and liver FA composition. However, the changes in muscle and liver FA indicate selective utilisation or retention of individual FA and moderate reductions in tissue EPA and DHA. Pyloric caeca phospholipid FA composition was significantly affected by the two factors and, in some cases, significant interactions were also revealed. Liver and red muscle β-oxidation capacities were significantly increased due to RO inclusion, while an interactive effect of protein level and oil source was shown for white muscle β-oxidation capacity. The results could explain, at least partially, the better performance that was shown for the RO groups and the enhanced protein-sparing effect.
Collapse
|
44
|
Geay F, Santigosa I Culi E, Corporeau C, Boudry P, Dreano Y, Corcos L, Bodin N, Vandeputte M, Zambonino-Infante JL, Mazurais D, Cahu CL. Regulation of FADS2 expression and activity in European sea bass (Dicentrarchus labrax, L.) fed a vegetable diet. Comp Biochem Physiol B Biochem Mol Biol 2010; 156:237-43. [PMID: 20363355 DOI: 10.1016/j.cbpb.2010.03.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 03/18/2010] [Accepted: 03/22/2010] [Indexed: 11/19/2022]
Abstract
Supplies of marine fish oils are limited, and continued growth in aquaculture production dictates that lipid substitutes in fish diets must be used without compromising fish health and product quality. In this study, the total substitution of a fish meal and fish oil by a blend of vegetable meals (corn, soybean, wheat and lupin) and linseed oil in the diet of European sea bass (Dicentrachus labrax) was investigated. Two groups of European sea bass were fed with fish diet (FD) or vegetable diet (VD) for 9months. VD, totally deprived of eicosapentaenoate (EPA; 20:5n-3) and docosahexaenoate (DHA; 22:6n-3), revealed a nutritional deficiency and affected growth performance. Whilst VD induced a significant increase in fatty acid desaturase 2 (FADS2) and sterol binding regulatory element-binding protein 1 (SREBP-1) mRNA levels, the desaturation rate of [1-(14)C]18:3n-3 into [1-(14)C]18:4n-3, analysed in microsomal preparations using HPLC method, did not show an upregulation of FADS2 activities in liver and intestine of fish fed VD. Moreover Western-blot analysis did not revealed any significant difference of FADS2 protein amount between the two dietary groups. These data demonstrate that sea bass exhibits a desaturase (FADS2) activity whatever their diet, but a post-transcriptional regulation of fads2 RNA prevents an increase of enzyme in fish fed a HUFA-free diet. This led to a lower fish growth and poor muscle HUFA content.
Collapse
Affiliation(s)
- F Geay
- UMR, Ifremer, Technopole Brest-Iroise, Plouzané, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Trans-Membrane Uptake and Intracellular Metabolism of Fatty Acids in Atlantic Salmon (Salmo salar L.) Hepatocytes. Lipids 2010; 45:301-11. [DOI: 10.1007/s11745-010-3396-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 02/03/2010] [Indexed: 10/19/2022]
|
46
|
Zheng X, Leaver MJ, Tocher DR. Long-chain polyunsaturated fatty acid synthesis in fish: Comparative analysis of Atlantic salmon (Salmo salar L.) and Atlantic cod (Gadus morhua L.) Delta6 fatty acyl desaturase gene promoters. Comp Biochem Physiol B Biochem Mol Biol 2009; 154:255-63. [PMID: 19563904 DOI: 10.1016/j.cbpb.2009.06.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 06/16/2009] [Accepted: 06/17/2009] [Indexed: 10/20/2022]
Abstract
Fish vary in the ability to biosynthesise n-3 long-chain polyunsaturated fatty acids (LC-PUFA), with marine fish such as cod being inefficient in comparison to freshwater and salmonid fish. We investigated differences in the gene promoters of Delta6 fatty acyl desaturase (Delta6 FAD), a critical enzyme in LC-PUFA biosynthesis, in cod and salmon. Progressive deletions and targeted mutations of the promoters were tested for activity in a transfected Atlantic salmon (AS) cell line under low or high LC-PUFA treatment, and regions sufficient to direct transcription were identified. Comparison of these regions with sequences of corresponding regions of Delta6 FAD genes from mammals, amphibians and fish indicated a remarkable conservation of binding sites for SREBPs and NF-Y. In addition to these sites, a site was identified in salmon with similarity to that recognised by Sp1 transcription factor, and which was required for full expression of the salmon Delta6 FAD gene. The cod promoter was less active and lacked the Sp1 site. Eicosapentaenoic acid suppressed LC-PUFA synthesis in AS cells and also suppressed activity of the salmon Delta6 FAD promoter although this activity was likely mediated through sites other than Sp1, possibly similar to those recognised by NF-Y and SREBP transcription factors.
Collapse
Affiliation(s)
- Xiaozhong Zheng
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | | | | |
Collapse
|
47
|
Xu Y, Ding Z, Zhang H, Liu L, Wang S, Gorge J. Different ratios of docosahexaenoic and eicosapentaenoic acids do not alter growth, nucleic acid and fatty acids of juvenile cobia (Rachycentron canadum). Lipids 2009; 44:1091-104. [PMID: 19760445 DOI: 10.1007/s11745-009-3340-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 08/26/2009] [Indexed: 11/28/2022]
Abstract
An experiment was performed to study the effect of different ratios of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on the growth, nucleic acid and fatty acids of cobia (Rachycentron canadum) juveniles. The juveniles were fed for 8 weeks using seven treatment diets (D-1-D-7) with the same amount of DHA and EPA (1.50 +/- 0.1% of dried diet), but varying ratios of DHA to EPA (0.90, 1.10, 1.30, 1.50, 1.70, 1.90, 2.10, respectively) and a control diet (D-0, DHA + EPA = 0.8% of dried diet, DHA/EPA = 1.30). At the end of the experiment, the mean body weight (BW) of juveniles fed D-0-D-7 increased significantly (from 6.86 +/- 1.64 in the week 0 to 58.52 +/- 16.45 g at the end of week 8, P < 0.05). The mean RNA amount and RNA/DNA ratio in the muscle (from 39.62 +/- 1.30 microg mg(-1) and 2.29 +/- 0.11 in the week 0 to 272.55 +/- 10.70 microg mg(-1) and 14.54 +/- 1.75 at the end of week 8, respectively) and the mean weight in the liver (from 117.70 +/- 11.15 microg mg(-1) and 3.14 +/- 0.25 in the week 0 to 793.07 +/- 13.38 microg mg(-1) and 13.16 +/- 0.76 at the end of week 8, respectively) of cobia juveniles fed D-0-D-7 were significantly higher at the end of 8-week experiment than initially (P < 0.05). The RNA/DNA ratio in the muscle and liver of cobia juveniles increased with their growth and appeared an obvious positive relationship, especially in the muscle, based on regression analysis. The mean lipid content increased significantly in the liver (from 29.82 +/- 0.99 to 37.47 +/- 3.25% totally) and muscle (from 6.74 +/- 0.25 to 10.63 +/- 0.23% totally) of cobia juveniles (P < 0.05). However, no significant difference was found on the lipid contents of juveniles fed different diets for 8 weeks (P > 0.05). In the muscle and liver of juveniles, EPA decreased with its reduction in the diet; DHA, DHA/EPA ratio and poly unsaturated fatty acids (PUFAs) generally increased with their increment in the diet. The conclusion was drawn that the growth, nucleic acid and fatty acids of cobia juveniles were not significantly affected by different DHA/EPA ratios in our experiments.
Collapse
Affiliation(s)
- Youqing Xu
- Institute for Fisheries Sciences, Guangxi University, 100 University Road, 530004 Nanning, Guangxi, China
| | | | | | | | | | | |
Collapse
|
48
|
n-3 Oil sources for use in aquaculture--alternatives to the unsustainable harvest of wild fish. Nutr Res Rev 2009; 21:85-96. [PMID: 19087364 DOI: 10.1017/s0954422408102414] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The present review examines renewable sources of oils with n-3 long-chain (> or = C20) PUFA (n-3 LC-PUFA) as alternatives to oil from wild-caught fish in aquafeeds. Due to the increased demand for and price of wild-caught marine sources of n-3 LC-PUFA-rich oil, their effective and sustainable replacement in aquafeeds is an industry priority, especially because dietary n-3 LC-PUFA from eating fish are known to have health benefits in human beings. The benefits and challenges involved in changing dietary oil in aquaculture are highlighted and four major potential sources of n-3 LC-PUFA for aquafeeds, other than fish oil, are compared. These sources of oil, which contain n-3 LC-PUFA, specifically EPA (20:5n-3) and DHA (22:6n-3) or precursors to these key essential fatty acids, are: (1) other marine sources of oil; (2) vegetable oils that contain biosynthetic precursors, such as stearidonic acid, which may be used by fish to produce n-3 LC-PUFA; (3) single-cell oil sources of n-3 LC-PUFA; (4) vegetable oils derived from oil-seed crops that have undergone genetic modification to contain n-3 LC-PUFA. The review focuses on Atlantic salmon (Salmo salar L.), because it is the main intensively cultured finfish species and it both uses and stores large amounts of oil, in particular n-3 LC-PUFA, in the flesh.
Collapse
|
49
|
Fatty acid metabolism (desaturation, elongation and beta-oxidation) in rainbow trout fed fish oil- or linseed oil-based diets. Br J Nutr 2009; 102:69-81. [PMID: 19123959 DOI: 10.1017/s0007114508137874] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In consideration of economical and environmental concerns, fish oil (FO) substitution in aquaculture is the focus of many fish nutritionists. The most stringent drawback of FO replacement in aquafeeds is the consequential modification to the final fatty acid (FA) make-up of the fish fillet. However, it is envisaged that a solution may be achieved through a better understanding of fish FA metabolism. Therefore, the present study investigated the fate of individual dietary FA in rainbow trout (Oncorhynchus mykiss) fed a FO-based diet (rich in 20 : 5n-3) or a linseed oil-based diet (LO; rich in 18 : 3n-3). The study demonstrated that much of the 18 : 3n-3 content from the LO diet was oxidised and, despite the significantly increased accretion of Delta-6 and Delta-5 desaturated FA, a 2- and 3-fold reduction in the fish body content of 20 : 5n-3 and 22 : 6n-3, respectively, compared with the FO-fed fish, was recorded. The accretion of longer-chain FA was unaffected by the dietary treatments, while there was a greater net disappearance of FA provided in dietary surplus. SFA and MUFA recorded a net accretion of FA produced ex novo. In the fish fed the FO diet, the majority of dietary 20 : 5n-3 was accumulated (53.8 %), some was oxidised (14.7 %) and a large proportion (31.6 %) was elongated and desaturated up to 22 : 6n-3. In the fish fed the LO diet, the majority of dietary 18 : 3n-3 was accumulated (58.1 %), a large proportion was oxidised (29.5 %) and a limited amount (12.4 %) was bio-converted to longer and more unsaturated homologues.
Collapse
|
50
|
Miller MR, Bridle AR, Nichols PD, Carter CG. Increased Elongase and Desaturase Gene Expression with Stearidonic Acid Enriched Diet Does Not Enhance Long-Chain (n-3) Content of Seawater Atlantic Salmon (Salmo salar L.). J Nutr 2008; 138:2179-85. [DOI: 10.3945/jn.108.091702] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|