1
|
Zhang L, Guo Z, Zhang H, van der Plas E, Koscik TR, Nopoulos PC, Sonka M. Assisted annotation in Deep LOGISMOS: Simultaneous multi-compartment 3D MRI segmentation of calf muscles. Med Phys 2023; 50:4916-4929. [PMID: 36750977 PMCID: PMC10515733 DOI: 10.1002/mp.16284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/03/2023] [Accepted: 01/15/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Automated segmentation of individual calf muscle compartments in 3D MR images is gaining importance in diagnosing muscle disease, monitoring its progression, and prediction of the disease course. Although deep convolutional neural networks have ushered in a revolution in medical image segmentation, achieving clinically acceptable results is a challenging task and the availability of sufficiently large annotated datasets still limits their applicability. PURPOSE In this paper, we present a novel approach combing deep learning and graph optimization in the paradigm of assisted annotation for solving general segmentation problems in 3D, 4D, and generally n-D with limited annotation cost. METHODS Deep LOGISMOS combines deep-learning-based pre-segmentation of objects of interest provided by our convolutional neural network, FilterNet+, and our 3D multi-objects LOGISMOS framework (layered optimal graph image segmentation of multiple objects and surfaces) that uses newly designed trainable machine-learned cost functions. In the paradigm of assisted annotation, multi-object JEI for efficient editing of automated Deep LOGISMOS segmentation was employed to form a new larger training set with significant decrease of manual tracing effort. RESULTS We have evaluated our method on 350 lower leg (left/right) T1-weighted MR images from 93 subjects (47 healthy, 46 patients with muscular morbidity) by fourfold cross-validation. Compared with the fully manual annotation approach, the annotation cost with assisted annotation is reduced by 95%, from 8 h to 25 min in this study. The experimental results showed average Dice similarity coefficient (DSC) of96.56 ± 0.26 % $96.56\pm 0.26 \%$ and average absolute surface positioning error of 0.63 pixels (0.44 mm) for the five 3D muscle compartments for each leg. These results significantly improve our previously reported method and outperform the state-of-the-art nnUNet method. CONCLUSIONS Our proposed approach can not only dramatically reduce the expert's annotation efforts but also significantly improve the segmentation performance compared to the state-of-the-art nnUNet method. The notable performance improvements suggest the clinical-use potential of our new fully automated simultaneous segmentation of calf muscle compartments.
Collapse
Affiliation(s)
- Lichun Zhang
- Iowa Institute for Biomedical Imaging, The University of Iowa, Iowa City, IA 52242, USA
| | - Zhihui Guo
- Iowa Institute for Biomedical Imaging, The University of Iowa, Iowa City, IA 52242, USA
| | - Honghai Zhang
- Iowa Institute for Biomedical Imaging, The University of Iowa, Iowa City, IA 52242, USA
| | - Ellen van der Plas
- The Dept. of Psychiatry, The University of Iowa, Iowa City, IA 52242, USA
| | - Timothy R. Koscik
- The Dept. of Psychiatry, The University of Iowa, Iowa City, IA 52242, USA
| | - Peggy C. Nopoulos
- The Dept. of Psychiatry, The University of Iowa, Iowa City, IA 52242, USA
| | - Milan Sonka
- Iowa Institute for Biomedical Imaging, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
2
|
Deng S, Yi P, Xu M, Yi Q, Feng J. Dysfunctional gene splicing in glucose metabolism may contribute to Alzheimer's disease. Chin Med J (Engl) 2023; 136:666-675. [PMID: 35830275 PMCID: PMC10129079 DOI: 10.1097/cm9.0000000000002214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 11/26/2022] Open
Abstract
The glucose metabolism is crucial for sustained brain activity as it provides energy and is a carbon source for multiple biomacromolecules; glucose metabolism decreases dramatically in Alzheimer's disease (AD) and may be a fundamental cause for its development. Recent studies reveal that the alternative splicing events of certain genes effectively regulate several processes in glucose metabolism including insulin receptor, insulin-degrading enzyme, pyruvate kinase M, receptor for advanced glycation endproducts, and others, thereby, influencing glucose uptake, glycolysis, and advanced glycation end-products-mediated signaling pathways. Indeed, the discovery of aberrant alternative splicing that changes the proteomic diversity and protein activity in glucose metabolism has been pivotal in our understanding of AD development. In this review, we summarize the alternative splicing events of the glucose metabolism-related genes in AD pathology and highlight the crucial regulatory roles of splicing factors in the alternative splicing process. We also discuss the emerging therapeutic approaches for targeting splicing factors for AD treatment.
Collapse
Affiliation(s)
- Shengfeng Deng
- Laboratory of Anesthesiology, Department of Anesthesiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Peng Yi
- Laboratory of Anesthesiology, Department of Anesthesiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Mingliang Xu
- Laboratory of Anesthesiology, Department of Anesthesiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qian Yi
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jianguo Feng
- Laboratory of Anesthesiology, Department of Anesthesiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Affiliated Xinhui Hospital, Southern Medical University (People's Hospital of Xinhui District), Jiangmen, Guangdong 529100, China
| |
Collapse
|
3
|
Characteristics of myotonic dystrophy patients in the national registry of Japan. J Neurol Sci 2022; 432:120080. [PMID: 34923335 DOI: 10.1016/j.jns.2021.120080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 11/02/2021] [Accepted: 11/18/2021] [Indexed: 11/23/2022]
Abstract
Myotonic dystrophies (DM) are inherited autosomal dominant disorders affecting multiple organs. Currently available therapeutics for DM are limited; therefore, a patient registry is essential for therapeutic development and success of clinical trials targeting the diseases. We have developed a nationwide DM registry in Japan under the Registry of Muscular Dystrophy (Remudy). The registration process was patient-initiated; however, physicians certified the clinical information. The dataset includes all Naarden and TREAT-NMD core datasets and additional items covering major DM clinical features. As of March 2020, we enrolled 976 patients with genetically confirmed DM. The majority (99.9%) of these patients had DM1, with 11.4% having the congenital form. However, 1 patient had DM2. Upon classifying 969 symptomatic DM1 patients based on their age at onset, an earlier onset was associated with a longer CTG repeat length. Myotonia was the most frequent symptom, followed by hand disability, fatigue, and daytime sleepiness. The frequency of hand disabilities, constipation, and visual disturbances was higher for patients with congenital DM. According to a multiple regression analysis of objective clinical measurements related to prognosis and activities of daily living, CTG repeat length strongly influenced the grip strength, forced vital capacity, and QRS time in an electrocardiogram. However, the grip strength was only modestly related to disease duration. This report will shed light on the Japanese national DM registry, which has recruited a significant number of patients. The registry will provide invaluable data for planning clinical trials and improving the standard of care for patients.
Collapse
|
4
|
Malik I, Kelley CP, Wang ET, Todd PK. Molecular mechanisms underlying nucleotide repeat expansion disorders. Nat Rev Mol Cell Biol 2021; 22:589-607. [PMID: 34140671 PMCID: PMC9612635 DOI: 10.1038/s41580-021-00382-6] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 02/05/2023]
Abstract
The human genome contains over one million short tandem repeats. Expansion of a subset of these repeat tracts underlies over fifty human disorders, including common genetic causes of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (C9orf72), polyglutamine-associated ataxias and Huntington disease, myotonic dystrophy, and intellectual disability disorders such as Fragile X syndrome. In this Review, we discuss the four major mechanisms by which expansion of short tandem repeats causes disease: loss of function through transcription repression, RNA-mediated gain of function through gelation and sequestration of RNA-binding proteins, gain of function of canonically translated repeat-harbouring proteins, and repeat-associated non-AUG translation of toxic repeat peptides. Somatic repeat instability amplifies these mechanisms and influences both disease age of onset and tissue specificity of pathogenic features. We focus on the crosstalk between these disease mechanisms, and argue that they often synergize to drive pathogenesis. We also discuss the emerging native functions of repeat elements and how their dynamics might contribute to disease at a larger scale than currently appreciated. Lastly, we propose that lynchpins tying these disease mechanisms and native functions together offer promising therapeutic targets with potential shared applications across this class of human disorders.
Collapse
Affiliation(s)
- Indranil Malik
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Chase P Kelley
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
- Genetics and Genomics Graduate Program, University of Florida, Gainesville, FL, USA
| | - Eric T Wang
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, Gainesville, FL, USA.
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Meola G. Myotonic dystrophy type 2: the 2020 update. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2020; 39:222-234. [PMID: 33458578 PMCID: PMC7783423 DOI: 10.36185/2532-1900-026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022]
Abstract
The myotonic dystrophies are the commonest cause of adult-onset muscular dystrophy. Phenotypes of DM1 and DM2 are similar, but there are some important differences, including the presence or absence of congenital form, muscles primarily affected (distal vs proximal), involved muscle fiber types (type 1 vs type 2 fibers), and some associated multisystemic phenotypes. There is currently no cure for the myotonic dystrophies but effective management significantly reduces the morbidity and mortality of patients. For the enormous understanding of the molecular pathogenesis of myotonic dystrophy type 1 and myotonic dystrophy type 2, these diseases are now called "spliceopathies" and are mediated by a primary disorder of RNA rather than proteins. Despite clinical and genetic similarities, myotonic dystrophy type 1 and type 2 are distinct disorders requiring different diagnostic and management strategies. Gene therapy for myotonic dystrophy type 1 and myotonic dystrophy type 2 appears to be very close and the near future is an exciting time for clinicians and patients.
Collapse
Affiliation(s)
- Giovanni Meola
- Department of Biomedical Sciences for Health, University of Milan, Italy.,Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, Milan, Italy
| |
Collapse
|
6
|
Dang Z, Huang L, Jia Y, Lockhart PJ, Fong Y, Tian Y. Identification of Genic SSRs Provide a Perspective for Studying Environmental Adaptation in the Endemic Shrub Tetraena mongolica. Genes (Basel) 2020; 11:E322. [PMID: 32197402 PMCID: PMC7140860 DOI: 10.3390/genes11030322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 02/03/2023] Open
Abstract
Tetraena mongolica is a xerophytic shrub endemic to desert regions in Inner Mongolia. This species has evolved distinct survival strategies that allow it to adapt to hyper-drought and heterogeneous habitats. Simple sequence repeats (SSRs) may provide a molecular basis in plants for fast adaptation to environmental change. Thus, identifying SSRs and their possible effects on gene behavior has the potential to provide valuable information for studies of adaptation. In this study, we sequenced six individual transcriptomes of T. mongolica from heterogeneous habitats, focused on SSRs located in genes, and identified 811 polymorphic SSRs. Of the identified SSRs, 172, 470, and 76 were located in 5' UTRs, CDSs, and 3' UTRs in 591 transcripts; and AG/CT, AAC/GTT, and AT/AT were the most abundant repeats in each gene region. Functional annotation showed that many of the identified polymorphic SSRs were in genes that were enriched in several GO terms and KEGG pathways, suggesting the functional significance of these genes in the environmental adaptation process. The identification of polymorphic genic SSRs in our study lays a foundation for future studies investigating the contribution of SSRs to regulation of genes in natural populations of T. mongolica and their importance for adaptive evolution of this species.
Collapse
Affiliation(s)
- Zhenhua Dang
- Inner Mongolia Key Laboratory of Grassland Ecology & Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Z.D.); (L.H.); (Y.J.)
| | - Lei Huang
- Inner Mongolia Key Laboratory of Grassland Ecology & Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Z.D.); (L.H.); (Y.J.)
| | - Yuanyuan Jia
- Inner Mongolia Key Laboratory of Grassland Ecology & Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Z.D.); (L.H.); (Y.J.)
| | - Peter J. Lockhart
- School of Fundamental Sciences, College of Sciences, Massey University, Palmerston North 4442, New Zealand; (P.J.L.); (Y.F.)
| | - Yang Fong
- School of Fundamental Sciences, College of Sciences, Massey University, Palmerston North 4442, New Zealand; (P.J.L.); (Y.F.)
| | - Yunyun Tian
- Ministry of Education Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
7
|
Alsaggaf R, St George DMM, Zhan M, Pfeiffer RM, Wang Y, Anderson LA, Liu Z, Koshiol J, Bauer AJ, Wagner KR, Greene MH, Amr S, Gadalla SM. Benign tumors in myotonic dystrophy type I target disease-related cancer sites. Ann Clin Transl Neurol 2019; 6:1510-1518. [PMID: 31402615 PMCID: PMC6689687 DOI: 10.1002/acn3.50856] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/03/2019] [Indexed: 01/07/2023] Open
Abstract
Objectives Recent evidence showed that myotonic dystrophy type I (DM1) patients are at increased risk of certain cancers, but the risk of benign tumors is unknown. We compared the risk of benign tumors in DM1 patients with matched DM1‐free individuals and assessed the association between benign tumors and subsequent cancers. Methods We identified 927 DM1 patients and 13,085 DM1‐free individuals matched on gender, birth‐year, clinic, and clinic‐registration year from the UK Clinical Practice Research Datalink, a primary care records database. We used Cox regression models for statistical analyses. Results DM1 patients had elevated risks of thyroid nodules (Hazard Ratio [HR] = 10.4; 95% Confidence Interval [CI] = 3.91–27.52; P < 0.001), benign tumors of the brain or nervous system (HR = 8.4; 95% CI = 2.48–28.47; P < 0.001), colorectal polyps (HR = 4.3; 95% CI = 1.76–10.41; P = 0.001), and possibly uterine fibroids (HR = 2.7; 95% CI = 1.22–5.88; P = 0.01). Pilomatricomas and salivary gland adenomas occurred almost exclusively in DM1 patients (Fisher's exact P < 0.001). The HR for colorectal polyps was elevated in DM1 males but not in females (HR = 8.2 vs. 1.3, respectively; P‐heterogeneity < 0.001), whereas endocrine and brain tumors occurred exclusively in females. The data suggested an association between benign tumors and subsequent cancer in classic DM1 patients (HR = 2.7; 95% CI = 0.93–7.59; P = 0.07). Interpretation Our study showed a similar site‐specific benign tumor profile to that previously reported for DM1‐associated cancers. The possible association between benign tumors and subsequent cancer in classic DM1 patients warrants further investigation as it may guide identifying patients at elevated risk of cancer. Our findings underscore the importance of following population‐based screening recommendations in DM1 patients, for example, for colorectal cancer.
Collapse
Affiliation(s)
- Rotana Alsaggaf
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland.,Department of Epidemiology and Public Health, University of Maryland, Baltimore, Maryland
| | | | - Min Zhan
- Department of Epidemiology and Public Health, University of Maryland, Baltimore, Maryland
| | - Ruth M Pfeiffer
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Youjin Wang
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Lesley A Anderson
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Zhiwei Liu
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Jill Koshiol
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Andrew J Bauer
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, The Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kathryn R Wagner
- Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, Maryland, USA.,Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark H Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Sania Amr
- Department of Epidemiology and Public Health, University of Maryland, Baltimore, Maryland.,Marlene and Stuart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Shahinaz M Gadalla
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
8
|
Emparanza JI, López de Munain A, Greene MH, Matheu A, Fernández-Torrón R, Gadalla SM. Cancer phenotype in myotonic dystrophy patients: Results from a meta-analysis. Muscle Nerve 2019; 58:517-522. [PMID: 30028904 DOI: 10.1002/mus.26194] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Recent studies have provided evidence that patients with myotonic dystrophy (DM) are at excess risk of cancer. However, inconsistencies regarding affected anatomic sites persist. METHODS We performed a meta-analysis of cancer risk in DM, searching among studies published between January 1, 1990 and December 31, 2016. Eligible studies were full reports of DM cohorts with site-specific risks. RESULTS The analysis included 5 studies, comprising 2,779 patients. Risk estimates for cancers of the endometrium and cutaneous melanoma were reported in all studies. The pooled standardized incidence ratio (pSIRs) for endometrial cancer was 7.48 (95% confidence interval [CI] 4.72-11.8) and for cutaneous melanoma was 2.45 (95% CI 1.31-4.58). Among cancers reported in 4 of 5 studies, elevated risks were observed for thyroid (pSIR = 8.52, 95% CI 3.62-20.1), ovarian (pSIR = 5.56, 95% CI 2.99-10.3), testicular (pSIR = 5.95, 95% CI 2.34-15.1), and colorectal (pSIR = 2.2, 95% CI 1.39-3.49) cancers. DISCUSSION Our data refine the DM cancer phenotype, which may guide patient clinical management and inform plans for molecular investigations to understand DM-related carcinogenesis. Muscle Nerve 58: 517-522, 2018.
Collapse
Affiliation(s)
- Jose I Emparanza
- Clinical Epidemiology Unit, Donostia University Hospital, San Sebastian, Spain
| | | | - Mark H Greene
- Clinical Genetics Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Ander Matheu
- Oncology Area, Institute Biodonostia, San Sebastián, Spain
| | | | - Shahinaz M Gadalla
- Clinical Genetics Branch, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Alsaggaf R, St George DMM, Zhan M, Pfeiffer RM, Wang Y, Wagner KR, Greene MH, Amr S, Gadalla SM. Cancer Risk in Myotonic Dystrophy Type I: Evidence of a Role for Disease Severity. JNCI Cancer Spectr 2018; 2:pky052. [PMID: 30556050 DOI: 10.1093/jncics/pky052] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/20/2018] [Accepted: 08/28/2018] [Indexed: 12/31/2022] Open
Abstract
Background Myotonic dystrophy type 1 (DM1) is an inherited trinucleotide repeat disorder in which specific cancers have been implicated as part of the disease phenotype. This study aimed to assess whether cancer risk in DM1 patients is modified by disease severity. Methods Using the United Kingdom Clinical Practice Research Datalink (primary care electronic medical records), we identified a cohort of 927 DM1 and a matched cohort of 13 085 DM1-free individuals between January 1, 1988 and February 29, 2016. We used Cox regression models to calculate the hazard ratios (HRs) and 95% confidence intervals (CIs) of organ-specific cancer risks. Analyses were stratified by age at DM1 diagnosis as a surrogate for disease severity. Statistical tests were two-sided. Results Patients with classic DM1 (age at diagnosis: 11-40 years) were at elevated risk of cancer overall (HR = 1.81; 95% CI = 1.12 to 2.93); cancers of the thyroid (HR = 15.93; 95% CI = 2.45 to 103.64), uterus (HR = 26.76; 95% CI = 2.32 to 309.26), and cutaneous melanoma (HR = 5.98; 95% CI = 1.24 to 28.79) accounted for the excess. In late-onset DM1 patients (age at diagnosis >40 years), a reduced overall cancer risk was observed (HR = 0.53; 95% CI = 0.32 to 0.85), possibly driven by the deficit in hematological malignancies (DM1 = 0 cases, DM1-free = 54 cases; P = .02). The difference between the observed HR for classic and late-onset DM1 was statistically significant (P < .001). Conclusions The observed difference in relative cancer risk between classic and late-onset DM1 patients compared with their DM1-free counterparts provides the first evidence that disease severity modifies DM1-related cancer susceptibility. This novel finding may guide clinical management and scientific investigations for the underlying molecular mechanisms in DM-related carcinogenesis.
Collapse
Affiliation(s)
- Rotana Alsaggaf
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD.,Department of Epidemiology and Public Health, University of Maryland, Baltimore, MD
| | | | - Min Zhan
- Department of Epidemiology and Public Health, University of Maryland, Baltimore, MD
| | - Ruth M Pfeiffer
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Youjin Wang
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kathryn R Wagner
- Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, MD.,Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mark H Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Sania Amr
- Department of Epidemiology and Public Health, University of Maryland, Baltimore, MD.,Marlene and Stuart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD
| | - Shahinaz M Gadalla
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
10
|
Identification of Insulin Receptor Splice Variant B in Neurons by in situ Detection in Human Brain Samples. Sci Rep 2018; 8:4070. [PMID: 29511314 PMCID: PMC5840297 DOI: 10.1038/s41598-018-22434-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/22/2018] [Indexed: 12/28/2022] Open
Abstract
Insulin and its receptor are widely expressed in a variety of tissues throughout the body including liver, adipose tissue, liver and brain. The insulin receptor is expressed as two functionally distinct isoforms, differentiated by a single 12 amino acid exon. The two receptor isoforms, designated IR/A and IR/B, are expressed in a highly tissue and cell specific manner and relative proportions of the different isoforms vary during development, aging and disease states. The high degree of similarity between the two isoforms has prevented detailed studies as differentiation of the two isoforms by traditional immunological methods cannot be achieved. We describe here a new in situ RT-PCR/ FISH assay that allows for the visualization of IR/A and IR/B in tissue along with tissue specific markers. We used this new method to show for the first time that IR/A and IR/B are both expressed in neurons in the adult human brain. Thus, we present a method that enables the investigation of IR/A and IR/B insulin receptor isoform expression in situ in various tissues.
Collapse
|
11
|
Darling AL, Uversky VN. Intrinsic Disorder in Proteins with Pathogenic Repeat Expansions. Molecules 2017; 22:2027. [PMID: 29186753 PMCID: PMC6149999 DOI: 10.3390/molecules22122027] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/18/2017] [Accepted: 11/21/2017] [Indexed: 11/18/2022] Open
Abstract
Intrinsically disordered proteins and proteins with intrinsically disordered regions have been shown to be highly prevalent in disease. Furthermore, disease-causing expansions of the regions containing tandem amino acid repeats often push repetitive proteins towards formation of irreversible aggregates. In fact, in disease-relevant proteins, the increased repeat length often positively correlates with the increased aggregation efficiency and the increased disease severity and penetrance, being negatively correlated with the age of disease onset. The major categories of repeat extensions involved in disease include poly-glutamine and poly-alanine homorepeats, which are often times located in the intrinsically disordered regions, as well as repeats in non-coding regions of genes typically encoding proteins with ordered structures. Repeats in such non-coding regions of genes can be expressed at the mRNA level. Although they can affect the expression levels of encoded proteins, they are not translated as parts of an affected protein and have no effect on its structure. However, in some cases, the repetitive mRNAs can be translated in a non-canonical manner, generating highly repetitive peptides of different length and amino acid composition. The repeat extension-caused aggregation of a repetitive protein may represent a pivotal step for its transformation into a proteotoxic entity that can lead to pathology. The goals of this article are to systematically analyze molecular mechanisms of the proteinopathies caused by the poly-glutamine and poly-alanine homorepeat expansion, as well as by the polypeptides generated as a result of the microsatellite expansions in non-coding gene regions and to examine the related proteins. We also present results of the analysis of the prevalence and functional roles of intrinsic disorder in proteins associated with pathological repeat expansions.
Collapse
Affiliation(s)
- April L. Darling
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veteran’s Hospital, Tampa, FL 33612, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33612, USA
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| |
Collapse
|
12
|
Autistic Phenotype of Permutation and Intermediate Alleles of FMR1 Gene. IRANIAN JOURNAL OF PEDIATRICS 2017. [DOI: 10.5812/ijp.9445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Alsaggaf R, Wang Y, Marini-Bettolo C, Wood L, Nikolenko N, Lochmüller H, Greene MH, Gadalla SM. Benign and malignant tumors in the UK myotonic dystrophy patient registry. Muscle Nerve 2017; 57:316-320. [PMID: 28662292 DOI: 10.1002/mus.25736] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2017] [Indexed: 11/08/2022]
Abstract
INTRODUCTION In light of recent evidence indicating that cancer is part of the myotonic dystrophy (DM) phenotype, we assessed the prevalence of benign and malignant tumors among 220 patients enrolled in the UK Myotonic Dystrophy Patient Registry and evaluated factors associated with their development. METHODS A survey was distributed to collect tumor history and lifestyle information. We used multinomial logistic regression for the analysis. RESULTS Thirty-nine benign (30 patients), and 16 malignant (15 patients) tumors were reported. Increasing age (odds ratio [OR] = 1.13, 95% confidence interval [CI] = 1.05-1.21, P = 0.001) and earlier age at DM diagnosis (OR = 1.06, 95% CI = 1.00-1.13, P = 0.04) were associated with benign and malignant tumors (OR = 1.20, 95% CI = 1.10-1.30, P < 0.001 and OR = 1.08, 95% CI = 1.01-1.15, P = 0.02, respectively). Female gender was associated with benign tumors only (OR = 6.43, 95% CI = 1.79-23.04, P = 0.004). No associations were observed between tumors and smoking (P = 0.24), alcohol consumption (P = 0.50), or body mass index (P = 0.21). DISCUSSION Our results confirm previous findings suggesting a limited role for common lifestyle factors and a potential genetic contribution in DM tumor predisposition. Muscle Nerve 57: 316-320, 2018.
Collapse
Affiliation(s)
- Rotana Alsaggaf
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA.,Department of Epidemiology and Public Health, University of Maryland, Baltimore, Maryland, USA
| | - Youjin Wang
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Chiara Marini-Bettolo
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Libby Wood
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nikoletta Nikolenko
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Hanns Lochmüller
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mark H Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Shahinaz M Gadalla
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Shao D, Zhu X, Sun W, Huo L, Chen W, Wang H, Liu B, Pan P. Investigation of the molecular mechanisms underlying myotonic dystrophy types 1 and 2 cataracts using microRNA‑target gene networks. Mol Med Rep 2017; 16:3737-3744. [PMID: 28731161 PMCID: PMC5646950 DOI: 10.3892/mmr.2017.7059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 02/23/2017] [Indexed: 01/03/2023] Open
Abstract
The purpose of the present study was to investigate the molecular mechanisms of myotonic dystrophy (DM) 1 and 2 cataracts using bioinformatics methods. A microarray dataset (E‑MEXP‑3365) downloaded from the Array Express database included lens epithelial samples of DM1 and DM2 cataract patients (n=3/group) and non‑DM lens epithelial samples as a control (n=4). Differentially expressed genes (DEGs) were identified between DM1 and control samples, and between DM2 and control samples. Pathway enrichment analyses were performed for the DEGs. Potential micro (mi)RNAs regulating these DEGs were predicted. An miRNA‑target gene network was constructed for DM1 and DM2. The study identified 223 DEGs in DM1, and 303 DEGs in DM2. DM1 and DM2 shared 172 DEGs. The DEGs in DM1 were enriched with calcium, Wnt and axon guidance signaling pathways. The DEGs in DM2 were linked by adherens junction signaling pathways. miRNA (miR)‑197, miR‑29b and miR‑29c were included in the network modules of DM1. miR‑197, miR‑29c and miR‑29a were involved in the network modules of DM2. It is therefore hypothesized that these signaling pathways and miRNAs underlie DM1 and DM2 cataracts, and may represent potential therapeutic targets for the treatment of this disorder.
Collapse
Affiliation(s)
- Dewang Shao
- Department of Ophthalmology, Air Force Aviation Medicine Research Institute Affiliated Hospital, Beijing 100089, P.R. China
| | - Xiaoquan Zhu
- Department of Ophthalmology, Air Force Aviation Medicine Research Institute Affiliated Hospital, Beijing 100089, P.R. China
| | - Wei Sun
- Department of Ophthalmology, Air Force Aviation Medicine Research Institute Affiliated Hospital, Beijing 100089, P.R. China
| | - Lu Huo
- Department of Ophthalmology, Air Force Aviation Medicine Research Institute Affiliated Hospital, Beijing 100089, P.R. China
| | - Wei Chen
- Department of Ophthalmology, Air Force General Hospital, Beijing 100089, P.R. China
| | - Hua Wang
- Department of Ophthalmology, Air Force General Hospital, Beijing 100089, P.R. China
| | - Bing Liu
- Department of Ophthalmology, Air Force General Hospital, Beijing 100089, P.R. China
| | - Peng Pan
- Department of Ophthalmology, Air Force Aviation Medicine Research Institute Affiliated Hospital, Beijing 100089, P.R. China
| |
Collapse
|
15
|
Finsterer J, Safoschnik G, Witsch-Baumgartner M. Marathoning with myotonic dystrophy type 2 (proximal myotonic myopathy) and leukopenia. SAGE Open Med Case Rep 2017; 5:2050313X17703021. [PMID: 28491317 PMCID: PMC5406121 DOI: 10.1177/2050313x17703021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/14/2017] [Indexed: 11/29/2022] Open
Abstract
Objectives: A mild, slowly progressive course of proximal myotonic myopathy, also known as myotonic dystrophy type 2, over years allowing the patient to continue with extreme sport activity, has been only rarely reported. Methods: Case report. Results: The patient is a 54-year-old female sport teacher who developed myotonia of the distal upper limbs at the age of 32 years. Over the following 22 years, myotonia spreaded to the entire musculature. Myotonia did not prevent her from doing her job and from marathoning and improved with continuous exercise. Additionally, she had developed hypothyroidism, ovarial cysts, incipient cataract, motor neuropathy, hepatopathy, leukopenia, and mild hyper-CK-emia. A heterozygous CCTG-repeat expansion of 500–9500 was found in the CNBP/ZNF9 gene. At the age of 54 years, she was still performing sport, without presenting with myotonia on clinical examination or having developed other typical manifestations of proximal myotonic myopathy. Conclusions: This case shows that proximal myotonic myopathy may take a mild course over at least 22 years, that proximal myotonic myopathy with mild myotonia may allow a patient to continue strenuous sport activity, and that continuous physical activity may contribute to the mild course of the disease.
Collapse
Affiliation(s)
| | - Georg Safoschnik
- First Neurological Department, Hospital Hietzing, Vienna, Austria
| | | |
Collapse
|
16
|
Nistal M, Paniagua R, González-Peramato P, Reyes-Múgica M. Perspectives in Pediatric Pathology, Chapter 17. Other Hypergonadotropic Hypogonadisms. Pediatr Dev Pathol 2016; 19:278-90. [PMID: 26809023 DOI: 10.2350/16-01-1755-pb.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Manuel Nistal
- 1 Department of Pathology, Hospital La Paz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ricardo Paniagua
- 2 Department of Cell Biology, Universidad de Alcala, Madrid, Spain
| | | | - Miguel Reyes-Múgica
- 3 Department of Pathology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| |
Collapse
|
17
|
Lu H, Li Y, Sadowsky M, Da Y. Clinical characteristics of 37 Chinese patients with myotonic dystrophy Type 1. Brain Circ 2016; 2:95-98. [PMID: 30276279 PMCID: PMC6126255 DOI: 10.4103/2394-8108.186282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/01/2016] [Accepted: 06/09/2016] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE: This study aims to investigate clinical characteristics of 37 Chinese patients with Myotonic dystrophy Type 1 (DM1). METHODS: Main clinical features of these cases were analyzed, with a focus on multi-system involvements. RESULTS: The median age of onset was 21.5 years, with a range from 3 to 45 years. Fourteen patients had a family history positive for DM1, whereas the other 23 were sporadic cases. Twenty-seven of the patients were male. The primary symptoms were myotonia and weakness with varying multi-system involvement including cardiac defects, cataracts, sleep disturbances, cholecystopathy, and peripheral neuropathy. CONCLUSIONS: This is the first report in China with the diagnosis of DM1 decisively confirmed by CTG expansion testing. Data from our study suggest that Chinese DM1 cases have different clinical characteristics compared with those of Caucasian cases, especially the prevalence of cardiac defects, cataracts, and sleep disturbances.
Collapse
Affiliation(s)
- Hui Lu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Yun Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Mordechai Sadowsky
- Department of Neurosurgery, Wayne State University School of Medicine, MI, USA
| | - Yuwei Da
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| |
Collapse
|
18
|
Abstract
Ophthalmic findings are common features of neurodegenerative disorders and, in addition to being clinically important, have emerged as potentially useful biomarkers of disease progression in several conditions. Clinically, these visual system abnormalities can be a clue to diagnosis, as well as being a prominent cause of disability in affected patients. In this Review, we describe the various afferent visual system and other ophthalmic features of inherited neurodegenerative disorders, including the muscular dystrophies, Friedreich ataxia, the spinocerebellar ataxias, hereditary spastic paraplegia, Charcot-Marie-Tooth disease, and other conditions. We focus on the expanding role of optical coherence tomography in diagnostic imaging of the retina and optic nerve head, and the possible use of ophthalmic findings as biomarkers of disease severity in hereditary neurodegenerative disorders. In addition, we discuss the ophthalmic manifestations and treatment implications of mitochondrial dysfunction, which is a feature of many inherited neurodegenerative diseases.
Collapse
|
19
|
Ulane CM, Teed S, Sampson J. Recent Advances in Myotonic Dystrophy Type 2. Curr Neurol Neurosci Rep 2014; 14:429. [DOI: 10.1007/s11910-013-0429-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Gadalla SM, Pfeiffer RM, Kristinsson SY, Björkholm M, Hilbert JE, Moxley RT, Landgren O, Greene MH. Quantifying cancer absolute risk and cancer mortality in the presence of competing events after a myotonic dystrophy diagnosis. PLoS One 2013; 8:e79851. [PMID: 24236163 PMCID: PMC3827449 DOI: 10.1371/journal.pone.0079851] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/25/2013] [Indexed: 12/02/2022] Open
Abstract
Recent studies show that patients with myotonic dystrophy (DM) have an increased risk of specific malignancies, but estimates of absolute cancer risk accounting for competing events are lacking. Using the Swedish Patient Registry, we identified 1,081 patients with an inpatient and/or outpatient diagnosis of DM between 1987 and 2007. Date and cause of death and date of cancer diagnosis were extracted from the Swedish Cause of Death and Cancer Registries. We calculated non-parametric estimates of absolute cancer risk and cancer mortality accounting for the high non-cancer competing mortality associated with DM. Absolute cancer risk after DM diagnosis was 1.6% (95% CI=0.4-4%), 5% (95% CI=3-9%) and 9% (95% CI=6-13%) at ages 40, 50 and 60 years, respectively. Females had a higher absolute risk of all cancers combined than males: 9% (95% CI=4-14), and 13% (95% CI=9-20) vs. 2% (95%CI= 0.7-6) and 4% (95%CI=2-8) by ages 50 and 60 years, respectively) and developed cancer at younger ages (median age =51 years, range=22-74 vs. 57, range=43-84, respectively, p=0.02). Cancer deaths accounted for 10% of all deaths, with an absolute cancer mortality risk of 2% (95%CI=1-4.5%), 4% (95%CI=2-6%), and 6% (95%CI=4-9%) by ages 50, 60, and 70 years, respectively. No gender difference in cancer-specific mortality was observed (p=0.6). In conclusion, cancer significantly contributes to morbidity and mortality in DM patients, even after accounting for high competing DM mortality from non-neoplastic causes. It is important to apply population-appropriate, validated cancer screening strategies in DM patients.
Collapse
Affiliation(s)
- Shahinaz M. Gadalla
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ruth M. Pfeiffer
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sigurdur Y. Kristinsson
- Department of Medicine, Division of Hematology, Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden
- Faculty of Medicine, University of Iceland and Department of Hematology, Landspitali National University Hospital, Reykjavik, Iceland
| | - Magnus Björkholm
- Department of Medicine, Division of Hematology, Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden
| | - James E. Hilbert
- Department of Neurology, Neuromuscular Disease Center, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Richard T. Moxley
- Department of Neurology, Neuromuscular Disease Center, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Ola Landgren
- Metabolism Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mark H. Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
21
|
Sansone V, Brigonzi E, Schoser B, Villani S, Gaeta M, De Ambroggi G, Bandera F, De Ambroggi L, Meola G. The frequency and severity of cardiac involvement in myotonic dystrophy type 2 (DM2): Long-term outcomes. Int J Cardiol 2013; 168:1147-53. [DOI: 10.1016/j.ijcard.2012.11.076] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 11/11/2012] [Indexed: 11/29/2022]
|
22
|
Zhang L, Wang S, Lin J. Clinical and molecular research of neuroacanthocytosis. Neural Regen Res 2013; 8:833-42. [PMID: 25206731 PMCID: PMC4146083 DOI: 10.3969/j.issn.1673-5374.2013.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 12/23/2012] [Indexed: 11/18/2022] Open
Abstract
Neuroacanthocytosis is an autosomal recessive or dominant inherited disease characterized by widespread, non-specific nervous system symptoms, or spiculated "acanthocytic" red blood cells. The clinical manifestations typically involve chorea and dystonia, or a range of other movement disorders. Psychiatric and cognitive symptoms may also be present. The two core neuroacanthocytosis syndromes, in which acanthocytosis is atypical, are autosomal recessive chorea-acanthocytosis and X-linked McLeod syndrome. Acanthocytes are found in a smaller proportion of patients with Huntington's disease-like 2 and pantothenate kinase-associated neurodegeneration. Because the clinical manifestations are diverse and complicated, in this review we present features of inheritance, age of onset, neuroimaging and laboratory findings, as well as the spectrum of central and peripheral neurological abnormalities and extraneuronal involvement to help distinguish the four specific syndromes.
Collapse
Affiliation(s)
- Lihong Zhang
- Department of Neurology, Dalian Municipal Central Hospital, Affiliated Hospital of Dalian Medical University, Dalian 116033, Liaoning Province, China
| | - Suping Wang
- Department of Neurology, Dalian Municipal Central Hospital, Affiliated Hospital of Dalian Medical University, Dalian 116033, Liaoning Province, China
| | - Jianwen Lin
- Department of Neurology, Dalian Municipal Central Hospital, Affiliated Hospital of Dalian Medical University, Dalian 116033, Liaoning Province, China
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW The myotonic dystrophies (DM1 and DM2) are the paradigm for RNA toxicity in disease pathogenesis. The emphasis of this review will be on recent developments and issues in understanding the pathogenesis of DM1 and how this is driving the accelerated pace of translational and therapeutic developments. RECENT FINDINGS RNA toxicity in myotonic dystrophy is now associated with bi-directional antisense transcription, dysregulation of microRNAs and potentially non-ATG-mediated translation of homopolymeric toxic proteins. The role of other RNA-binding proteins beyond MBNL1 and CUGBP1, such as Staufen 1 and DDX5, are being identified and studied with respect to their role in myotonic dystrophy. New functions for MBNL1 in miR-1 biogenesis might have a clinically relevant role in myotonic dystrophy cardiac conduction defects and pathology. Advances are being made in identifying and characterizing small molecules with the potential to disrupt CUG-MBNL1 interactions. SUMMARY Mechanisms of RNA toxicity are moving beyond a simplistic 'foci-centric' view of DM1 pathogenesis as a spliceopathy due to MBNL1 sequestration. Therapeutic development for myotonic dystrophy is moving rapidly with the development of antisense and small molecule therapies. Clinically, significant emphasis is being placed on biomarker discovery and outcome measures as an essential prelude to clinical trials.
Collapse
|
24
|
Huguet A, Medja F, Nicole A, Vignaud A, Guiraud-Dogan C, Ferry A, Decostre V, Hogrel JY, Metzger F, Hoeflich A, Baraibar M, Gomes-Pereira M, Puymirat J, Bassez G, Furling D, Munnich A, Gourdon G. Molecular, physiological, and motor performance defects in DMSXL mice carrying >1,000 CTG repeats from the human DM1 locus. PLoS Genet 2012; 8:e1003043. [PMID: 23209425 PMCID: PMC3510028 DOI: 10.1371/journal.pgen.1003043] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 09/05/2012] [Indexed: 11/22/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by an unstable CTG repeat expansion in the 3′UTR of the DM protein kinase (DMPK) gene. DMPK transcripts carrying CUG expansions form nuclear foci and affect splicing regulation of various RNA transcripts. Furthermore, bidirectional transcription over the DMPK gene and non-conventional RNA translation of repeated transcripts have been described in DM1. It is clear now that this disease may involve multiple pathogenic pathways including changes in gene expression, RNA stability and splicing regulation, protein translation, and micro–RNA metabolism. We previously generated transgenic mice with 45-kb of the DM1 locus and >300 CTG repeats (DM300 mice). After successive breeding and a high level of CTG repeat instability, we obtained transgenic mice carrying >1,000 CTG (DMSXL mice). Here we described for the first time the expression pattern of the DMPK sense transcripts in DMSXL and human tissues. Interestingly, we also demonstrate that DMPK antisense transcripts are expressed in various DMSXL and human tissues, and that both sense and antisense transcripts accumulate in independent nuclear foci that do not co-localize together. Molecular features of DM1-associated RNA toxicity in DMSXL mice (such as foci accumulation and mild missplicing), were associated with high mortality, growth retardation, and muscle defects (abnormal histopathology, reduced muscle strength, and lower motor performances). We have found that lower levels of IGFBP-3 may contribute to DMSXL growth retardation, while increased proteasome activity may affect muscle function. These data demonstrate that the human DM1 locus carrying very large expansions induced a variety of molecular and physiological defects in transgenic mice, reflecting DM1 to a certain extent. As a result, DMSXL mice provide an animal tool to decipher various aspects of the disease mechanisms. In addition, these mice can be used to test the preclinical impact of systemic therapeutic strategies on molecular and physiological phenotypes. Myotonic dystrophy type 1 (DM1) is caused by the abnormal expansion of a CTG repeat located in the DM protein kinase (DMPK) gene. DMPK transcripts carrying CUG expansions form toxic nuclear foci that affect other RNAs. DM1 involve multiple pathogenic pathways including changes in gene expression, RNA stability and splicing regulation, protein translation, and micro–RNA metabolism. We previously generated transgenic mice carrying the human DM1 locus and very large expansions >1,000 CTG (DMSXL mice). Here we described for the first time, the expression pattern of the DMPK sense transcripts in DMSXL and human tissues. We also demonstrate that DMPK antisense transcripts are expressed in various tissues from DMSXL mice and human. Both sense and antisense transcripts form nuclear foci. DMSXL mice showed molecular DM1 features such as foci and mild splicing defects as well as muscles defects, reduced muscle strength, and lower motor performances. These mice recapitulate some molecular features of DM1 leading to physiological abnormalities. DMSXL are not only a tool to decipher various mechanisms involved in DM1 but also to test the preclinical impact of systemic therapeutic strategies.
Collapse
Affiliation(s)
- Aline Huguet
- Inserm U781, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker-Enfants Malades, Paris, France
| | - Fadia Medja
- Institut de Myologie, Université Paris 6 UMR S974, Inserm U974, CNRS UMR 7215, GH Pitié-Salpêtrière, Paris, France
| | - Annie Nicole
- Inserm U781, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker-Enfants Malades, Paris, France
| | - Alban Vignaud
- Institut de Myologie, Université Paris 6 UMR S974, Inserm U974, CNRS UMR 7215, GH Pitié-Salpêtrière, Paris, France
- Généthon, Evry, France
| | - Céline Guiraud-Dogan
- Inserm U955, Département de Neurosciences, Faculté de Médecine, Université Paris XII, Créteil, France
| | - Arnaud Ferry
- Institut de Myologie, Université Paris 6 UMR S974, Inserm U974, CNRS UMR 7215, GH Pitié-Salpêtrière, Paris, France
- Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Valérie Decostre
- Institut de Myologie, Université Paris 6 UMR S974, Inserm U974, CNRS UMR 7215, GH Pitié-Salpêtrière, Paris, France
| | - Jean-Yves Hogrel
- Institut de Myologie, Université Paris 6 UMR S974, Inserm U974, CNRS UMR 7215, GH Pitié-Salpêtrière, Paris, France
| | - Friedrich Metzger
- F. Hoffmann-La Roche, CNS Pharma Research and Development, Basel, Switzerland
| | - Andreas Hoeflich
- Leibniz-Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Martin Baraibar
- UPMC Univ Paris 06, UM 76, Institut de Myologie and Inserm, U974 and CNRS, UMR7215, Paris, France
| | - Mário Gomes-Pereira
- Inserm U781, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker-Enfants Malades, Paris, France
| | - Jack Puymirat
- Human Genetics Research Unit, Laval University, Québec City, Québec, Canada
| | - Guillaume Bassez
- Inserm U955, Département de Neurosciences, Faculté de Médecine, Université Paris XII, Créteil, France
| | - Denis Furling
- Institut de Myologie, Université Paris 6 UMR S974, Inserm U974, CNRS UMR 7215, GH Pitié-Salpêtrière, Paris, France
| | - Arnold Munnich
- Inserm U781, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker-Enfants Malades, Paris, France
| | - Geneviève Gourdon
- Inserm U781, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker-Enfants Malades, Paris, France
- * E-mail:
| |
Collapse
|
25
|
Das M, Moxley RT, Hilbert JE, Martens WB, Letren L, Greene MH, Gadalla SM. Correlates of tumor development in patients with myotonic dystrophy. J Neurol 2012; 259:2161-6. [PMID: 22619053 PMCID: PMC3469723 DOI: 10.1007/s00415-012-6476-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/02/2012] [Accepted: 03/05/2012] [Indexed: 01/23/2023]
Abstract
Patients with myotonic dystrophy (DM) have recently been reported to be at increased risk of tumor development, but clinical associations related to this observation are unknown. We calculated the odds ratios (ORs) and 95 % confidence intervals (CI) of self-reported tumor development by patients' demographic and clinical characteristics to evaluate factors associated with tumor development in DM patients, using data from the National Registry of Myotonic Dystrophy and Facioscapulohumeral Dystrophy Patients and Family Members. Of the 911 participants, 47.5 % were male and 85.7 % had DM type 1 (DM1). Compared to DM1, patients with DM type 2 (DM2) were older at registry enrollment (median age 55 vs. 44 years, p < 0.0001) and at DM diagnosis (median age 48 vs. 30 years, p < 0.0001); and more likely to be females (p = 0.001). At enrollment, 95 (10.4 %) DM patients reported a history of benign or malignant tumor. Tumors were associated with female gender (OR 1.9, 95 % CI 1.2-3.1, p = 0.007) and DM1 (OR 2.1, 95 % CI 1.1-4.1, p = 0.03). In a subgroup analysis of patients with blood-based DNA testing results (397 DM1, 54 DM2), repeat expansion size was not associated with tumor risk in DM1 (p = 0.26) or DM2 (p = 0.34). In conclusion, female gender and DM1 subtype, but not DNA repeat expansion size, were associated with increased risk of tumors in DM. Follow-up studies are warranted to determine if oncogenes associated with dystrophia myotonica-protein kinase are altered in DM, and to determine if repeat expansion size, as in our study, is not associated with tumor development.
Collapse
Affiliation(s)
- Maya Das
- Department of Epidemiology and Public Health, University of Maryland, Baltimore, USA
| | - Richard T. Moxley
- Department of Neurology, Neuromuscular Disease Center, University of Rochester Medical Center, Rochester, NY, USA
| | - James E. Hilbert
- Department of Neurology, Neuromuscular Disease Center, University of Rochester Medical Center, Rochester, NY, USA
| | - William B. Martens
- Department of Neurology, Neuromuscular Disease Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Lisa Letren
- Department of Epidemiology and Public Health, University of Maryland, Baltimore, USA
| | - Mark H. Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Shahinaz M. Gadalla
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
26
|
Best practice guidelines and recommendations on the molecular diagnosis of myotonic dystrophy types 1 and 2. Eur J Hum Genet 2012; 20:1203-8. [PMID: 22643181 PMCID: PMC3499739 DOI: 10.1038/ejhg.2012.108] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Myotonic dystrophy is an autosomal dominant, multisystem disorder that is characterized by myotonic myopathy. The symptoms and severity of myotonic dystrophy type l (DM1) ranges from severe and congenital forms, which frequently result in death because of respiratory deficiency, through to late-onset baldness and cataract. In adult patients, cardiac conduction abnormalities may occur and cause a shorter life span. In subsequent generations, the symptoms in DM1 may present at an earlier age and have a more severe course (anticipation). In myotonic dystrophy type 2 (DM2), no anticipation is described, but cardiac conduction abnormalities as in DM1 are observed and patients with DM2 additionally have muscle pain and stiffness. Both DM1 and DM2 are caused by unstable DNA repeats in untranslated regions of different genes: A (CTG)n repeat in the 3'-UTR of the DMPK gene and a (CCTG)n repeat in intron 1 of the CNBP (formerly ZNF9) gene, respectively. The length of the (CTG)n repeat expansion in DM1 correlates with disease severity and age of onset. Nevertheless, these repeat sizes have limited predictive values on individual bases. Because of the disease characteristics in DM1 and DM2, appropriate molecular testing and reporting is very important for the optimal counseling in myotonic dystrophy. Here, we describe best practice guidelines for clinical molecular genetic analysis and reporting in DM1 and DM2, including presymptomatic and prenatal testing.
Collapse
|
27
|
HA ANDREWH, TARNOPOLSKY MARKA, BERGSTRA TGRAHAM, NAIR GIRISHM, AL-QUBBANY ATIF, HEALEY JEFFS. Predictors of Atrio-Ventricular Conduction Disease, Long-Term Outcomes in Patients with Myotonic Dystrophy Types I and II. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2012; 35:1262-9. [DOI: 10.1111/j.1540-8159.2012.03351.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Hilbert JE, Kissel JT, Luebbe EA, Martens WB, McDermott MP, Sanders DB, Tawil R, Thornton CA, Moxley RT. If you build a rare disease registry, will they enroll and will they use it? Methods and data from the National Registry of Myotonic Dystrophy (DM) and Facioscapulohumeral Muscular Dystrophy (FSHD). Contemp Clin Trials 2012; 33:302-11. [PMID: 22155025 PMCID: PMC3357007 DOI: 10.1016/j.cct.2011.11.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/28/2011] [Accepted: 11/22/2011] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Registries are becoming increasingly important for rare diseases as experimental therapies develop. This report describes the methodology behind the National Registry of Myotonic Dystrophy (DM) and Facioscapulohumeral Muscular Dystrophy (FSHD) Patients and Family Members to facilitate the development of other rare disease registries. We also highlight data about the pathophysiology and select burdens of DM and FSHD reported at baseline and longitudinally. METHODS The Registry consists of de-identified, patient reported information collected at baseline and annually and information from review of medical records. Investigators can use the Registry to analyze de-identified data and to facilitate recruitment into clinical studies. RESULTS To date, the Registry has enrolled 1611 members, facilitated 24 studies, and collected data annually for up to 8 years. Genetic test results were obtained in 56.2% of enrollees. Approximately one-third of members used assistive devices and another one-third reported psychological problems at baseline. Wheelchair use was reported for both short and long distances by 7.0% of DM and 18.1% of FSHD members. Approximately 60% of members reported their employment was affected by their disease. CONCLUSIONS Strengths of the Registry include large sample sizes, stringent review of clinical and molecular data, annually updated information, and regular interactions between patients and investigators. Registry data provide new insights into the burdens of DM and FSHD, such as, psychological problems and reduced employment. Opportunities abound for investigators to utilize Registry resources to assess the impact of these and other burdens on health care costs, progression of symptoms, and quality of life.
Collapse
Affiliation(s)
- James E Hilbert
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Gadalla SM, Lund M, Pfeiffer RM, Gørtz S, Mueller CM, Moxley RT, Kristinsson SY, Björkholm M, Shebl FM, Hilbert JE, Landgren O, Wohlfahrt J, Melbye M, Greene MH. Cancer risk among patients with myotonic muscular dystrophy. JAMA 2011; 306:2480-6. [PMID: 22166607 PMCID: PMC3286183 DOI: 10.1001/jama.2011.1796] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
CONTEXT Myotonic muscular dystrophy (MMD) is an autosomal-dominant multisystem neuromuscular disorder characterized by unstable nucleotide repeat expansions. Case reports have suggested that MMD patients may be at increased risk of malignancy, putative risks that have never been quantified. OBJECTIVE To quantitatively evaluate cancer risk in patients with MMD, overall and by sex and age. DESIGN, SETTING, AND PARTICIPANTS We identified 1658 patients with an MMD discharge diagnosis in the Swedish Hospital Discharge Register or Danish National Patient Registry between 1977 and 2008. We linked these patients to their corresponding cancer registry. Patients were followed up from date of first MMD-related inpatient or outpatient contact to first cancer diagnosis, death, emigration, or completion of cancer registration. MAIN OUTCOME MEASURES Risks of all cancers combined and by anatomic site, stratified by sex and age. RESULTS One hundred four patients with an inpatient or outpatient discharge diagnosis of MMD developed cancer during postdischarge follow-up. This corresponds to an observed cancer rate of 73.4 per 10,000 person-years in MMD vs an expected rate of 36.9 per 10,000 person-years in the general Swedish and Danish populations combined (standardized incidence ratio [SIR], 2.0; 95% CI, 1.6-2.4). Specifically, we observed significant excess risks of cancers of the endometrium (n = 11; observed rate, 16.1/10,000 person-years; SIR, 7.6; 95% CI, 4.0-13.2), brain (n = 7; observed rate, 4.9/10,000 person-years; SIR, 5.3; 95% CI, 2.3-10.4), ovary (n = 7; observed rate, 10.3/10,000 person-years; SIR, 5.2; 95% CI, 2.3-10.2), and colon (n = 10; observed rate, 7.1/10,000 person-years; SIR, 2.9; 95% CI, 1.5-5.1). Cancer risks were similar in women and men after excluding genital organ tumors (SIR, 1.9; 95% CI, 1.4-2.5, vs SIR, 1.8; 95% CI, 1.3-2.5, respectively; P = .81 for heterogeneity; observed rates, 64.5 and 47.7 per 10,000 person-years in women and men, respectively). The same pattern of cancer excess was observed first in the Swedish and then in the Danish cohorts, which were studied sequentially and initially analyzed independently. CONCLUSION Patients with MMD identified from the Swedish and Danish patient registries were at increased risk of cancer both overall and for selected anatomic sites.
Collapse
Affiliation(s)
- Shahinaz M Gadalla
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 6120 Executive Blvd, Rockville, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Myotonic dystrophy (DM1), the most common adult muscular dystrophy, is a multisystem, autosomal dominant genetic disorder caused by an expanded CTG repeat that leads to nuclear retention of a mutant RNA and subsequent RNA toxicity. Significant insights into the molecular mechanisms of RNA toxicity have led to the previously unforeseen possibility that treating DM1 is a viable prospect. In this review, we briefly present the clinical picture in DM1, and describe how the research in understanding the pathogenesis of RNA toxicity in DM1 has led to targeted approaches to therapeutic development at various steps in the pathogenesis of the disease. We discuss the promise and current limitations of each with an emphasis on RNA-based therapeutics and small molecules. We conclude with a discussion of the unmet need for clinical tools and outcome measures that are essential prerequisites to proceed in evaluating these potential therapies in clinical trials.
Collapse
Affiliation(s)
- Erin Pennock Foff
- Department of Neurology, University of Virginia, Charlottesville, Virginia, USA
| | | |
Collapse
|
31
|
Garcia Planells J, Molano J, Borrego S. [Recommendations of good practices for the genetic diagnosis of myotonic dystrophy. Grupo AEGH/CIBERER]. Med Clin (Barc) 2011; 136:303-8. [PMID: 20863536 DOI: 10.1016/j.medcli.2010.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 04/16/2010] [Accepted: 04/20/2010] [Indexed: 10/19/2022]
|
32
|
Nazarian S, Bluemke DA, Wagner KR, Zviman MM, Turkbey E, Caffo BS, Shehata M, Edwards D, Butcher B, Calkins H, Berger RD, Halperin HR, Tomaselli GF. QRS prolongation in myotonic muscular dystrophy and diffuse fibrosis on cardiac magnetic resonance. Magn Reson Med 2010; 64:107-14. [PMID: 20572151 PMCID: PMC3034129 DOI: 10.1002/mrm.22417] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 01/27/2010] [Indexed: 11/10/2022]
Abstract
Current noninvasive surrogates of cardiac involvement in myotonic muscular dystrophy have low positive predictive value for sudden death. We hypothesized that the cardiac MR signal-to-noise ratio variance (SNRV) is a surrogate of the spatial heterogeneity of myocardial fibrosis and correlates with electrocardiography changes in myotonic muscular dystrophy. The SNRV for contrast enhanced cardiac MR images was calculated over the entire left ventricle in 43 patients with myotonic muscular dystrophy. All patients underwent standard electrocardiography, and a subset of 23 patients underwent signal averaged electrocardiography. After correcting for body mass index, age, and ejection fraction, SNRV was predictive of QRS duration on standard electrocardiography (1.35-msec increased QRS duration/unit increase in SNRV, P < 0.001). SNRV was also predictive of the low-amplitude late-potential duration (1.49-msec increased low-amplitude late-potential duration/unit increase in SNRV, P < 0.001). Ten-fold cross-validation yielded an area under the receiver operating characteristic curve of 0.87 for the predictive value of SNRV for QRS duration greater than 120 msec. The SNRV of the left ventricle is associated with QRS prolongation, likely due to late depolarization of tissue within islands of patchy fibrosis. The association of SNRV with future clinical events warrants further study.
Collapse
Affiliation(s)
- Saman Nazarian
- Department of Medicine/Cardiology, Johns Hopkins University, Baltimore, Maryland 21287, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
ZNF9 activation of IRES-mediated translation of the human ODC mRNA is decreased in myotonic dystrophy type 2. PLoS One 2010; 5:e9301. [PMID: 20174632 PMCID: PMC2823779 DOI: 10.1371/journal.pone.0009301] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 01/28/2010] [Indexed: 01/23/2023] Open
Abstract
Myotonic dystrophy types 1 and 2 (DM1 and DM2) are forms of muscular dystrophy that share similar clinical and molecular manifestations, such as myotonia, muscle weakness, cardiac anomalies, cataracts, and the presence of defined RNA-containing foci in muscle nuclei. DM2 is caused by an expansion of the tetranucleotide CCTG repeat within the first intron of ZNF9, although the mechanism by which the expanded nucleotide repeat causes the debilitating symptoms of DM2 is unclear. Conflicting studies have led to two models for the mechanisms leading to the problems associated with DM2. First, a gain-of-function disease model hypothesizes that the repeat expansions in the transcribed RNA do not directly affect ZNF9 function. Instead repeat-containing RNAs are thought to sequester proteins in the nucleus, causing misregulation of normal cellular processes. In the alternative model, the repeat expansions impair ZNF9 function and lead to a decrease in the level of translation. Here we examine the normal in vivo function of ZNF9. We report that ZNF9 associates with actively translating ribosomes and functions as an activator of cap-independent translation of the human ODC mRNA. This activity is mediated by direct binding of ZNF9 to the internal ribosome entry site sequence (IRES) within the 5′UTR of ODC mRNA. ZNF9 can activate IRES-mediated translation of ODC within primary human myoblasts, and this activity is reduced in myoblasts derived from a DM2 patient. These data identify ZNF9 as a regulator of cap-independent translation and indicate that ZNF9 activity may contribute mechanistically to the myotonic dystrophy type 2 phenotype.
Collapse
|
34
|
Belfiore A, Frasca F, Pandini G, Sciacca L, Vigneri R. Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev 2009; 30:586-623. [PMID: 19752219 DOI: 10.1210/er.2008-0047] [Citation(s) in RCA: 751] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In mammals, the insulin receptor (IR) gene has acquired an additional exon, exon 11. This exon may be skipped in a developmental and tissue-specific manner. The IR, therefore, occurs in two isoforms (exon 11 minus IR-A and exon 11 plus IR-B). The most relevant functional difference between these two isoforms is the high affinity of IR-A for IGF-II. IR-A is predominantly expressed during prenatal life. It enhances the effects of IGF-II during embryogenesis and fetal development. It is also significantly expressed in adult tissues, especially in the brain. Conversely, IR-B is predominantly expressed in adult, well-differentiated tissues, including the liver, where it enhances the metabolic effects of insulin. Dysregulation of IR splicing in insulin target tissues may occur in patients with insulin resistance; however, its role in type 2 diabetes is unclear. IR-A is often aberrantly expressed in cancer cells, thus increasing their responsiveness to IGF-II and to insulin and explaining the cancer-promoting effect of hyperinsulinemia observed in obese and type 2 diabetic patients. Aberrant IR-A expression may favor cancer resistance to both conventional and targeted therapies by a variety of mechanisms. Finally, IR isoforms form heterodimers, IR-A/IR-B, and hybrid IR/IGF-IR receptors (HR-A and HR-B). The functional characteristics of such hybrid receptors and their role in physiology, in diabetes, and in malignant cells are not yet fully understood. These receptors seem to enhance cell responsiveness to IGFs.
Collapse
Affiliation(s)
- Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Ospedale Garibaldi-Nesima, 95122 Catania, Italy.
| | | | | | | | | |
Collapse
|
35
|
Chen IC, Lin HY, Lee GC, Kao SH, Chen CM, Wu YR, Hsieh-Li HM, Su MT, Lee-Chen GJ. Spinocerebellar ataxia type 8 larger triplet expansion alters histone modification and induces RNA foci. BMC Mol Biol 2009; 10:9. [PMID: 19203395 PMCID: PMC2647542 DOI: 10.1186/1471-2199-10-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 02/10/2009] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Spinocerebellar ataxia type 8 (SCA8) involves the expression of an expanded CTG/CAG combined repeats (CR) from opposite strands producing CUG expansion transcripts (ataxin 8 opposite strand, ATXN8OS) and a polyglutamine expansion protein (ataxin 8, ATXN8). The pathogenesis of SCA8 is complex and the spectrum of clinical presentations is broad. RESULTS Using stably induced cell models expressing 0, 23, 88 and 157 CR, we study the role of ATXN8OS transcripts in SCA8 pathogenesis. In the absence of doxycycline, the stable ATXN8OS CR cell lines exhibit low levels of ATXN8OS expression and a repeat length-related increase in staurosporine sensitivity and in the number of annexin positive cells. A repeat length-dependent repression of ATXN8OS expression was also notable. Addition of doxycycline leads to 25 approximately 50 times more ATXN8OS RNA expression with a repeat length-dependent increase in fold of ATXN8OS RNA induction. ChIP-PCR assay using anti-dimethyl-histone H3-K9 and anti-acetyl-histone H3-K14 antibodies revealed increased H3-K9 dimethylation and reduced H3-K14 acetylation around the ATXN8OS cDNA gene in 157 CR line. The repeat length-dependent increase in induction fold is probably due to the increased RNA stability as demonstrated by monitoring ATXN8OS RNA decay in cells treated with the transcriptional inhibitor, actinomycin D. In cells stably expressing ATXN8OS, RNA FISH experiments further revealed ribonuclear foci formation in cells carrying expanded 88 and 157 CR. CONCLUSION The present study demonstrates that the expanded CUG-repeat tracts are toxic to human cells and may affect ATXN8OS RNA expression and stability through epigenetic and post-transcriptional mechanisms.
Collapse
Affiliation(s)
- I-Cheng Chen
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan
| | - Hsuan-Yuan Lin
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan
| | - Ghin-Chueh Lee
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan
| | - Shih-Huan Kao
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang-Gung University College of Medicine, Taipei 105, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Chang-Gung University College of Medicine, Taipei 105, Taiwan
| | - Hsiu-Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan
| | - Ming-Tsan Su
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan
| |
Collapse
|
36
|
Ajroud-Driss S, Sufit R, Siddique T, Hain TC. Oculomotor involvement in myotonic dystrophy type 2. Muscle Nerve 2008; 38:1326-9. [DOI: 10.1002/mus.21113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
McNally EM, Pytel P. Muscle diseases: the muscular dystrophies. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2008; 2:87-109. [PMID: 18039094 DOI: 10.1146/annurev.pathol.2.010506.091936] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dystrophic muscle disease can occur at any age. Early- or childhood-onset muscular dystrophies may be associated with profound loss of muscle function, affecting ambulation, posture, and cardiac and respiratory function. Late-onset muscular dystrophies or myopathies may be mild and associated with slight weakness and an inability to increase muscle mass. The phenotype of muscular dystrophy is an endpoint that arises from a diverse set of genetic pathways. Genes associated with muscular dystrophies encode proteins of the plasma membrane and extracellular matrix, and the sarcomere and Z band, as well as nuclear membrane components. Because muscle has such distinctive structural and regenerative properties, many of the genes implicated in these disorders target pathways unique to muscle or more highly expressed in muscle. This chapter reviews the basic structural properties of muscle and genetic mechanisms that lead to myopathy and muscular dystrophies that affect all age groups.
Collapse
Affiliation(s)
- Elizabeth M McNally
- Department of Medicine, Section of Cardiology, University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
38
|
|
39
|
Rudnicki DD, Holmes SE, Lin MW, Thornton CA, Ross CA, Margolis RL. Huntington's disease--like 2 is associated with CUG repeat-containing RNA foci. Ann Neurol 2007; 61:272-82. [PMID: 17387722 DOI: 10.1002/ana.21081] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Huntington's disease-like 2 (HDL2) is caused by a CAG/CTG expansion mutation on chromosome 16q24.3. The repeat falls, in the CTG orientation, within a variably spliced exon of junctophilin-3 (JPH3). The existence of a JPH3 splice variant with the CTG repeat in 3' untranslated region suggested that transcripts containing an expanded CUG repeat could play a role in the pathogenesis of HDL2, similar to the proposed pathogenic role of expanded CUG repeats in myotonic dystrophy type 1 (DM1). The goal of this study, therefore, was to test the plausibility of an RNA gain-of-function component in the pathogenesis of HDL2. METHODS The presence and composition of RNA foci in frontal cortex from HDL2, Huntington's disease, DM1, and control brains were investigated by in situ hybridization and immunohistochemistry. An untranslatable JPH3 transcript containing either a normal or an expanded CUG repeat was engineered and expressed in human embryonic kidney 293 and HT22 cells to further test the toxic RNA hypothesis. The formation of RNA foci and the extent of cell death were quantified. RESULTS RNA foci resembling DM1 foci were detected in neurons in HDL2 cortex and other brain regions. Similar to DM1, the foci colocalize with muscleblind-like protein 1, and nuclear muscleblind-like protein 1 in HDL2 cortical neurons is decreased relative to controls. In cell experiments, expression of a JPH3 transcript with an expanded CUG repeat resulted in the formation of RNA foci that colocalized with muscleblind-like protein 1 and in cell toxicity. INTERPRETATION These results imply that RNA toxicity may contribute to the pathogenesis of HDL2.
Collapse
Affiliation(s)
- Dobrila D Rudnicki
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
40
|
Chen W, Wang Y, Abe Y, Cheney L, Udd B, Li YP. Haploinsuffciency for Znf9 in Znf9+/− Mice Is Associated with Multiorgan Abnormalities Resembling Myotonic Dystrophy. J Mol Biol 2007; 368:8-17. [PMID: 17335846 DOI: 10.1016/j.jmb.2007.01.088] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 01/30/2007] [Accepted: 01/31/2007] [Indexed: 01/06/2023]
Abstract
Myotonic dystrophy type 2 is caused by a (CCTG)/(CCUG)n repeat expansion in the first intron of the ZNF9 gene. The pathomechanism for the myotonic dystrophies is not well understood and the role of ZNF9 in myotonic dystrophy type 2 pathogenesis has not been fully clarified. We characterized Znf9+/- mice, in which the expression of Znf9 was significantly decreased, and found that their phenotype reflects many of the features of myotonic dystrophy, including muscle histological morphology, and myotonic discharges and heart conduction abnormalities, shown by electromyography and electrocardiogram analysis, respectively. Znf9 is normally highly expressed in heart and skeletal muscle, where skeletal muscle chloride channel 1 (Clc1) plays an important role. Clc1 expression was dramatically decreased in Znf9+/- mice. Znf9 transgenic mice raised Znf9 and Clc1 expression and rescued the myotonic dystrophy phenotype in Znf9+/- mice. Our results suggest that the Znf9 haploinsufficiency contributes to the myotonic dystrophy phenotype in Znf9+/- mice.
Collapse
Affiliation(s)
- Wei Chen
- Department of Cytokine Biology, The Forsyth Institute, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
41
|
Marian AJ, Willerson JT. Cardiac Involvement in Skeletal Myopathies and Neuromuscular Disorders. CARDIOVASCULAR MEDICINE 2007. [DOI: 10.1007/978-1-84628-715-2_115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
42
|
Helmke SM, Lu SM, Harmon M, Glasford JW, Larsen TD, Kwok SC, Hodges RS, Perryman MB. Myotonic dystrophy protein kinase monoclonal antibody generation from a coiled-coil template. J Mol Recognit 2006; 19:215-26. [PMID: 16680721 DOI: 10.1002/jmr.769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Myotonic dystrophy protein kinase (DMPK) was the initial representative of a ubiquitous protein kinase family that regulates cell size and shape. DMPK is highly expressed in heart and skeletal muscle and transgenic over-expression induces cardiac hypertrophy. The characterization of DMPK has been limited by the paucity of immunological reagents with high affinity and well-defined specificity. Amino acid sequence data was used to predict the surface exposure of the coil-coiled domain of DMPK. These exposed amino acids were substituted into an extremely stable coiled-coil template to produce a peptide antigen. Sera from mice immunized with the peptide conjugated to keyhole limpet hemocyanin were screened against recombinant DMPK using Western blots. Murine spleens expressing DMPK antibodies were used to produce hybridoma cell lines. Hybridoma supernatants were further screened against recombinant DMPK and four clonal hybridoma cell lines expressing DMPK antibodies were generated. These four monoclonal antibodies recognized recombinant DMPK in Western blots of COS-1 cell lysates expressing high levels of recombinant DMPK and immunoprecipitated recombinant DMPK from COS-1 cell lysates. The identity of the immunoprecipitated DMPK was confirmed by MALDI-TOF mass spectrometry and peptide mass fingerprinting. DMPK was the only protein detected in the immunoprecipitates, indicating the high specificity of the antibodies. Western blots immunostained with two of the monoclonal antibodies specifically recognized the two isoforms of endogenous DMPK, DMPK-1 and DMPK-2, that are expressed at low levels in the human heart. The recognition of low amounts of DMPK-1 and DMPK-2 indicates the high affinity of these antibodies. A human heart lysate was subjected to ammonium sulfate precipitation and column chromatography to produce a fraction that was enriched in DMPK. One of the monoclonal antibodies immunoprecipitated endogenous DMPK from this fraction. This antibody was used for immuno-localization studies of an adenoviral DMPK construct, expressed in adult mouse cardiac myocytes. This construct was localized to the intercalated disc, the site of endogenous DMPK, indicating that this antibody is applicable to immuno-localization studies. This study demonstrates the utility of the described procedure for generation of specific monoclonal antibodies with high affinity for epitopes in coiled-coiled domains of mammalian proteins expressed at low levels.
Collapse
Affiliation(s)
- Steve M Helmke
- Deparment of Pediatrics, University of Colorado at Denver and Health Sciences Center at Fitzsimons, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
McNally EM, MacLeod H. Therapy insight: cardiovascular complications associated with muscular dystrophies. ACTA ACUST UNITED AC 2006; 2:301-8. [PMID: 16265534 DOI: 10.1038/ncpcardio0213] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2004] [Accepted: 04/01/2005] [Indexed: 01/16/2023]
Abstract
The muscular dystrophies are commonly associated with cardiovascular complications, including cardiomyopathy and cardiac arrhythmias. These complications are caused by intrinsic defects in cardiomyocyte and cardiac conduction system function, and by the presence of severe skeletal muscle disease, which also contributes to cardiac dysfunction. Unlike the skeletal muscle degenerative process, for which treatment options are currently limited, therapy is available for the cardiovascular complications that accompany muscular dystrophy. New therapies for skeletal muscle degeneration are moving into clinical trials and, ultimately, into clinical practice. These therapies are expected to also improve the cardiac function, longevity and wellbeing of muscular dystrophy patients.
Collapse
|
44
|
Kuyumcu-Martinez NM, Cooper TA. Misregulation of alternative splicing causes pathogenesis in myotonic dystrophy. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2006; 44:133-59. [PMID: 17076268 PMCID: PMC4127983 DOI: 10.1007/978-3-540-34449-0_7] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myotonic dystrophy (DM), the most common form of adult onset muscular dystrophy, affects skeletal muscle, heart, and the central nervous system (CNS). Mortality results primarily from muscle wasting and cardiac arrhythmias. There are two forms of the disease: DM1 and DM2. DM1, which constitutes 98% of cases, is caused by a CTG expansion in the 3' untranslated region (UTR) of the DMPK gene. DM2 is caused by a CCTG expansion in the first intron of the ZNF9 gene. RNA containing CUG- or CCUG-expanded repeats are transcribed but are retained in the nucleus in foci. Disease pathogenesis results primarily from a gain of function of the expanded RNAs, which alter developmentally regulated alternative splicing as well as pathways of muscle differentiation. The toxic RNA has been implicated in sequestration of splicing regulators and transcription factors thereby causing specific symptoms of the disease. Here we review the proposed mechanisms for the toxic effects of the expanded repeats and discuss the molecular mechanisms of splicing misregulation and disease pathogenesis.
Collapse
|
45
|
Weiler CR, Bankers-Fulbright JL. Common variable immunodeficiency: test indications and interpretations. Mayo Clin Proc 2005; 80:1187-200. [PMID: 16178499 DOI: 10.4065/80.9.1187] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Common variable immunodeficiency (CVID) is a primary immunodeficiency disorder that can present with multiple phenotypes, all of which are characterized by hypogammaglobulinemia, in a person at any age. A specific genetic defect that accounts for all CVID phenotypes has not been identified, and it is likely that several distinct genetic disorders with similar clinical presentations are responsible for the observed variation. In this review, we summarize the known genetic mutations that give rise to hypogammaglobulinemia and how these gene products affect normal or abnormal B-cell development and function, with particular emphasis on CVID. Additionally, we describe specific phenotypic and genetic laboratory tests that can be used to diagnose CVID and provide guidelines for test interpretation and subsequent therapeutic intervention.
Collapse
Affiliation(s)
- Catherine R Weiler
- Department of Internal Medicine and Division of Allergic Diseases, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
46
|
Ho TH, Bundman D, Armstrong DL, Cooper TA. Transgenic mice expressing CUG-BP1 reproduce splicing mis-regulation observed in myotonic dystrophy. Hum Mol Genet 2005; 14:1539-47. [PMID: 15843400 DOI: 10.1093/hmg/ddi162] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Myotonic dystrophy type I (DM1) is an RNA-mediated disease caused by a non-coding CTG repeat expansion. A key feature of the RNA-mediated pathogenesis model for DM is the disrupted splicing of specific pre-mRNA targets. A link has been established between splicing regulation by CUG-BP1, a member of the CELF family of proteins, and DM1 pathogenesis. To determine whether increased CUG-BP1 function was sufficient to model DM, transgenic mice overexpressing CUG-BP1 (MCKCUG-BP1) in heart and skeletal muscle, two tissues affected in DM1, were generated. Histological and electron microscopic analyses of skeletal muscle reveal common pathological features with DM tissues: chains of central nuclei, degenerating fibers and centralized NADH reactivity. MCKCUG-BP1 mice have disrupted splicing of three CELF target pre-mRNAs, cardiac troponin T (Tnnt2), myotubularin-related 1 gene (Mtmr1) and the muscle-specific chloride channel (Clcn1), consistent with that observed in DM heart and skeletal muscle. The results are consistent with a mechanism for DM pathogenesis in which expanded repeats result in increased CUG-BP1 activity and/or other CELF family members and have trans-dominant effects on specific pre-mRNA targets.
Collapse
Affiliation(s)
- Thai H Ho
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
47
|
Vallo L, Bonifazi E, Borgiani P, Novelli G, Botta A. Characterization of a single nucleotide polymorphism in the ZNF9 gene and analysis of association with myotonic dystrophy type II (DM2) in the Italian population. Mol Cell Probes 2005; 19:71-4. [PMID: 15652222 DOI: 10.1016/j.mcp.2004.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Revised: 08/23/2004] [Accepted: 09/14/2004] [Indexed: 11/25/2022]
Abstract
Myotonic dystrophy type 2 (DM2) is a dominant inherited disorder clinically similar to myotonic dystrophy type 1 (DM1) with a peculiar pattern of multisystemic phenotypic features. The mutation responsible for DM1 is a CTG repeat in the 3' UTR of the dystrophia myotonica protein kinase gene (DMPK) on chromosome 19q13.3, while DM2 is caused by an unstable CCTG expansion in intron 1 of the zinc finger protein 9 gene (ZNF9) on chromosome 3q21.3. Southern blotting analysis is the conventional test used to determinate the size of the repeats in the molecular diagnosis of DM2. However, the large number of CCTG repeats and their somatic instability complicates this diagnostic protocol. In order to improve the DM2 test, we have recently characterised a single nucleotide polymorphism located in the first intron of the ZNF9 gene. This SNP consists in a C to A nucleotide change, which creates or disrupts and ApaI enzyme restriction site, easily detectable by PCR amplification followed by restriction analysis. We genotyped this SNP in 30 unrelated DM2 patients and 70 unrelated Italians healthy individuals. Our results show that this polymorphism is in linkage disequilibrium with the DM2 mutation.
Collapse
Affiliation(s)
- L Vallo
- Cattedra di Genetica Umana, Dipartimento di Biopatologia e Diagnostica per Immagini, Facoltà di Medicina e Chirurgia, Università di Roma Tor Vergata, 00133 Rome, Italy
| | | | | | | | | |
Collapse
|
48
|
Meola G, Moxley RT. Myotonic dystrophy type 2 and related myotonic disorders. J Neurol 2004; 251:1173-82. [PMID: 15503094 DOI: 10.1007/s00415-004-0590-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Accepted: 06/22/2004] [Indexed: 01/18/2023]
Abstract
The myotonic dystrophies are a group of dominantly inherited disorders characterized by muscle wasting, myotonia, cataracts, hypogonadism and other system manifestations. Myotonic dystrophy type 1 (DM1) results from an unstable expansion of a CTG repeat in 3' UTR of the DM protein kinase (DMPK) gene on chromosome 19q 13.3. Myotonic dystrophy type 2 (DM2) is caused by an unstable expansion of a CCTG tetraplet repeat in intron 1 of the zinc finger 9 (ZFN9 gene) on chromosome 3q 21.3. However, the clinical diagnosis of DM2 is more complex than that of DM1, and conventional molecular genetic methods used for diagnosis of DM1 are not helpful for DM2. We here describe the detailed clinical, laboratory and biomolecular tests to identify DM2 and related myotonic disorders. At present, foci of accumulated noncoding CCTG repeat RNA (ribonuclear inclusions) in the cell nuclei are thought to interfere with the regulation and expression of several genes at the basis of multisystemic aspects of myotonic dystrophy type 2.
Collapse
Affiliation(s)
- Giovanni Meola
- Department of Neurology, University of Milan, Istituto Policlinico San Donato, Via Morandi 30, 20097 San Donato Milanese, Milan, Italy.
| | | |
Collapse
|
49
|
McNally EM, Towbin JA. Cardiomyopathy in Muscular Dystrophy Workshop 28–30 September 2003, Tucson, Arizona. Neuromuscul Disord 2004; 14:442-8. [PMID: 15266661 DOI: 10.1016/j.nmd.2004.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Savkur RS, Philips AV, Cooper TA, Dalton JC, Moseley ML, Ranum LPW, Day JW. Insulin receptor splicing alteration in myotonic dystrophy type 2. Am J Hum Genet 2004; 74:1309-13. [PMID: 15114529 PMCID: PMC1182097 DOI: 10.1086/421528] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Accepted: 04/02/2004] [Indexed: 11/03/2022] Open
Abstract
Myotonic dystrophy (DM) is caused by either an untranslated CTG expansion in the 3' untranslated region of the DMPK gene on chromosome 19 (dystrophia myotonica type 1 [DM1]), or an untranslated CCTG tetranucleotide repeat expansion in intron 1 of the ZNF9 gene on chromosome 3 (dystrophia myotonica type 2 [DM2]). RNA-binding proteins adhere to transcripts of the repeat expansions that accumulate in the nucleus, and a trans-dominant dysregulation of pre-mRNA alternative splicing has been demonstrated for several genes. In muscle from patients with DM1, altered insulin-receptor splicing to the nonmuscle isoform corresponds to the insulin insensitivity and diabetes that are part of the DM phenotype; because of insulin-receptor species differences, this effect is not seen in mouse models of the disease. We now demonstrate that comparable splicing abnormalities occur in DM2 muscle prior to the development of muscle histopathology, thus demonstrating an early pathogenic effect of RNA expansions.
Collapse
Affiliation(s)
- R S Savkur
- Department of Pathology, Baylor University, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|