1
|
Song M, Sun J, Lv K, Li J, Shi J, Xu Y. A comprehensive review of pathology and treatment of staphylococcus aureus osteomyelitis. Clin Exp Med 2025; 25:131. [PMID: 40299136 PMCID: PMC12040984 DOI: 10.1007/s10238-025-01595-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/10/2025] [Indexed: 04/30/2025]
Abstract
Osteomyelitis (OM) is an inflammation of the bone and bone marrow triggered by infectious pathogens which may induce progressive bone destruction. The majority of OM cases, especially the chronic OM cases, are induced by the most prevalent and devastating pathogen Staphylococcus aureus (S. aureus), partially due to its resistance mechanisms against the immune system and antibiotic therapies. Regarding the high rate of morbidity and recurrence in patients, it is pivotal to elucidate underlying mechanisms that how S. aureus enter and survive in hosts. The accumulated discoveries have identified multiple distinct strategies associated with chronicity and recurrence include biofilm development, small colony variants (SCVs), staphylococcus abscess communities (SACs), the osteocyte lacuno-canalicular network invasion (OLCN) of cortical bones, and S. aureus protein A (SpA). Unfortunately, little clinical progress has been achieved for the diagnosis and therapeutic treatment for OM patients, indicating that numerous questions remain to be solved. Therefore, we still have a long way to obtain the clear elucidation of the host-pathogen interactions which could be applied for clinical treatment of OM. In this review, we provide insights of current knowledge about how S. aureus evades immune eradication and remains persistent in hosts with recent discoveries. The common and novel treatment strategies for OM are also described. The purpose of this review is to have in-dept understanding of S. aureus OM and bring new perspectives to therapeutic fields which may be translated to the clinic.
Collapse
Affiliation(s)
- Muguo Song
- Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China
- Kunming Medical University Graduate School, Kunming, 650500, China
| | - Jian Sun
- Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China
- Kunming Medical University Graduate School, Kunming, 650500, China
| | - Kehan Lv
- Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China
- Kunming Medical University Graduate School, Kunming, 650500, China
| | - Junyi Li
- Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China
- Kunming Medical University Graduate School, Kunming, 650500, China
| | - Jian Shi
- Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China.
| | - Yongqing Xu
- Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China.
| |
Collapse
|
2
|
Klose AM, Katz JD, Boni R, Nelson D, Miller BL. Lambda Theta Reflectometry: a new technique to measure optical film thickness applied to planar protein arrays. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645463. [PMID: 40196501 PMCID: PMC11974789 DOI: 10.1101/2025.03.26.645463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Quantitative protein measurements provide valuable information about biological pathways, immune system functionality, and mechanisms of disease. The most accurate methods for detecting proteins are label-free and preserve native protein binding interactions. Label-free biomolecular interaction analysis includes reflectometry, a group of techniques that detect proteins by measuring the reflectance properties of a thin film on a substrate. Most of these techniques are limited in some way by instrument complexity, sensitivity, or consumable manufacturing requirements. To address these issues, we introduce Lambda Theta Reflectometry (LTR), a new reflectometric technique that measures changes in film thickness by determining the location of null reflectivity as a function of wavelength (lambda) and angle of incidence (theta). The substrate is simultaneously illuminated with a range of angles and wavelengths and reflected light is angularly and spectrally resolved. Our prototype LTR reflectometer can measure SiO2 layer thickness with milli-Ångstrom precision. LTR measurements of Si/SiO2 oxide films are in excellent agreement with spectroscopic ellipsometry for film thicknesses ranging from 1390-1465 A. This technique enables sensitive measurements across a range of biological analyte concentrations without requiring stringent control over probe deposition thickness or substrate manufacturing.
Collapse
Affiliation(s)
- Alanna M. Klose
- Department of Dermatology, University of Rochester, Rochester, New York 14627, USA
- Materials Science Program, University of Rochester, Rochester, New York 14627, USA
| | - Joseph D. Katz
- Laboratory of Laser Energetics, University of Rochester, Rochester, New York 14627, USA
| | - Robert Boni
- Laboratory of Laser Energetics, University of Rochester, Rochester, New York 14627, USA
| | - David Nelson
- Laboratory of Laser Energetics, University of Rochester, Rochester, New York 14627, USA
| | - Benjamin L. Miller
- Department of Dermatology, University of Rochester, Rochester, New York 14627, USA
- Materials Science Program, University of Rochester, Rochester, New York 14627, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, USA
- Institute of Optics, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
3
|
Kates SL, Owen JR, Beck CA, Muthukrishnan G, Daiss JL, Golladay GJ. Dilution of humoral immunity: Results from a natural history study of healthy total knee arthroplasty patients. J Orthop Res 2024; 42:2835-2843. [PMID: 39054760 DOI: 10.1002/jor.25942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 07/27/2024]
Abstract
The incidence of prosthetic joint infection (PJI) following elective primary total knee arthroplasty (TKA) is very low but serious risk remains. To identify unknown risk factors, we completed a natural history study of IgG specific for Staphylococcus aureus antigens previously phenotyped as protective (anti-Atl) and pathogenic (anti-Isd). Twenty-five male and 25 female optimized patients 50-85 years of age and BMI 24-39 undergoing primary TKA were prospectively enrolled. Blood sampling was performed preoperatively, postoperative Day 1, and at 2, 6, and 12 weeks, to assess serum cytokine, anti-staphylococcal IgG levels and anti-tetanus toxoid IgG measured via custom Luminex assay. Clinical, demographic, and PROMIS-10 data were collected with outcomes to 2 years postop. All participants completed the study and 2-year follow-up. No patients were readmitted or noted to develop a surgical site infection or serious adverse event, and patient-reported outcomes were improved. Serology revealed a highly significant decrease in six out of eight antibody titers against specific S. aureus antigens on Day 1 (p < 0.0001), five of which normalized to preoperative levels within 2 weeks. These changes were commensurate with a decrease and recovery of anti-tetanus toxoid titers, and a 20% drop in hemoglobin 13.8 ± 1.7 at preop to 11.1 ± 1.8 mg/dL on Day 1 (p < 0.0001). After TKA, a significant decrease in humoral immunity commensurate with blood loss and hemodilution was recorded. This decrease in circulating anti-staphylococcal antibodies in the early postop period may represent a periprosthetic joint infection risk factor for patients.
Collapse
Affiliation(s)
- Stephen L Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, Virginia, USA
| | - John R Owen
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Christopher A Beck
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | | | - John L Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Gregory J Golladay
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
4
|
Kates SL, Owen JR, Xie C, Ren Y, Muthukrishnan G, Schwarz EM. Vaccines: Do they have a role in orthopedic trauma? Injury 2024; 55 Suppl 6:111631. [PMID: 39482036 DOI: 10.1016/j.injury.2024.111631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 11/03/2024]
Abstract
Although vaccines have been hailed as one of the greatest advances in medicine based on their unparalleled cost-effectiveness in eradicating life-threatening infectious diseases, their role in orthopedic trauma-related infections is unclear. This is largely because vaccines are primarily made against pathogens that cause communicable diseases rather than opportunistic infections secondary to trauma, and most successful vaccines are against viruses rather than biofilm forming bacteria. Nonetheless, the tremendous costs to patients and healthcare systems warrant orthopedic trauma vaccine research, which has been a focal topic in recent international consensus meetings on musculoskeletal infection. This subject was also covered at the 2023 Osteosynthesis and Trauma Care Foundation (OTCF) meeting in Rome, Italy, and the purpose of this supplement article is to (1) highlight the osteoimmunology, animal models, translational research and clinical pilots that were discussed, (2) the proposed future directions that could lead to diagnostics and prognostics that are critically needed for evidence-based decision making, and (3) vaccines and passive-immunization strategies that could potentially be utilized to treat patients with orthopedic infections.
Collapse
Affiliation(s)
- Stephen L Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - John R Owen
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Youliang Ren
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
5
|
Siverino C, Metsemakers WJ, Sutter R, Della Bella E, Morgenstern M, Barcik J, Ernst M, D'Este M, Joeris A, Chittò M, Schwarzenberg P, Stoddart M, Vanvelk N, Richards G, Wehrle E, Weisemann F, Zeiter S, Zalavras C, Varga P, Moriarty TF. Clinical management and innovation in fracture non-union. Expert Opin Biol Ther 2024; 24:973-991. [PMID: 39126182 DOI: 10.1080/14712598.2024.2391491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION With the introduction and continuous improvement in operative fracture fixation, even the most severe bone fractures can be treated with a high rate of successful healing. However, healing complications can occur and when healing fails over prolonged time, the outcome is termed a fracture non-union. Non-union is generally believed to develop due to inadequate fixation, underlying host-related factors, or infection. Despite the advancements in fracture fixation and infection management, there is still a clear need for earlier diagnosis, improved prediction of healing outcomes and innovation in the treatment of non-union. AREAS COVERED This review provides a detailed description of non-union from a clinical perspective, including the state of the art in diagnosis, treatment, and currently available biomaterials and orthobiologics.Subsequently, recent translational development from the biological, mechanical, and infection research fields are presented, including the latest in smart implants, osteoinductive materials, and in silico modeling. EXPERT OPINION The first challenge for future innovations is to refine and to identify new clinical factors for the proper definition, diagnosis, and treatment of non-union. However, integration of in vitro, in vivo, and in silico research will enable a comprehensive understanding of non-union causes and correlations, leading to the development of more effective treatments.
Collapse
Affiliation(s)
- C Siverino
- AO Research Institute Davos, Davos Platz, Switzerland
| | - W-J Metsemakers
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven - University of Leuven, Leuven, Belgium
| | - R Sutter
- Radiology Department, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
| | - E Della Bella
- AO Research Institute Davos, Davos Platz, Switzerland
| | - M Morgenstern
- Center for Musculoskeletal Infections, Department of Orthopaedic and Trauma Surgery, University Hospital Basel, Basel, Switzerland
| | - J Barcik
- AO Research Institute Davos, Davos Platz, Switzerland
| | - M Ernst
- AO Research Institute Davos, Davos Platz, Switzerland
| | - M D'Este
- AO Research Institute Davos, Davos Platz, Switzerland
| | - A Joeris
- AO Innovation Translation Center, Davos Platz, Switzerland
| | - M Chittò
- AO Research Institute Davos, Davos Platz, Switzerland
| | | | - M Stoddart
- AO Research Institute Davos, Davos Platz, Switzerland
| | - N Vanvelk
- Trauma Research Unit, Department of Surgery, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - G Richards
- AO Research Institute Davos, Davos Platz, Switzerland
| | - E Wehrle
- AO Research Institute Davos, Davos Platz, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - F Weisemann
- Department of Trauma Surgery, BG Unfallklinik Murnau, Murnau am Staffelsee, Germany
| | - S Zeiter
- AO Research Institute Davos, Davos Platz, Switzerland
| | - C Zalavras
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - P Varga
- AO Research Institute Davos, Davos Platz, Switzerland
| | - T F Moriarty
- AO Research Institute Davos, Davos Platz, Switzerland
- Center for Musculoskeletal Infections, Department of Orthopaedic and Trauma Surgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
6
|
Glassman I, Nguyen KH, Booth M, Minasyan M, Cappadona A, Venketaraman V. Atypical Staphylococcal Septic Arthritis in a Native Hip: A Case Report and Review. Pathogens 2023; 12:pathogens12030408. [PMID: 36986330 PMCID: PMC10051740 DOI: 10.3390/pathogens12030408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Septic arthritis is a synovial fluid and joint tissue infection with significant morbidity and mortality risk if not diagnosed and treated promptly. The most common pathogen to cause septic arthritis is Staphylococcus aureus, a Gram-positive bacterium. Although diagnostic criteria are in place to guide the diagnosis of staphylococcal septic arthritis, there is a lack of adequate sensitivity and specificity. Some patients present with atypical findings which make it difficult to diagnose and treat in time. In this paper, we present the case of a patient with an atypical presentation of recalcitrant staphylococcal septic arthritis in a native hip complicated by uncontrolled diabetes mellitus and tobacco usage. We review current literature on diagnosing S. aureus septic arthritis, novel diagnostic technique performance to guide future research and assist clinical suspicion, and current S. aureus vaccine development for at-risk patients.
Collapse
Affiliation(s)
- Ira Glassman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Kevin H. Nguyen
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Michelle Booth
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Marine Minasyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Abby Cappadona
- WesternU Health Patient Care Center, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
- Correspondence:
| |
Collapse
|
7
|
Torres G, Sánchez-Jiménez M, Reyes-Vélez J, Bach H, Olivera-Angel M. Evaluation of three Staphylococcus aureus proteins involved in the adhesion process as antigens for the detection of bovine intramammary infections. J Med Microbiol 2022; 71. [PMID: 36748695 DOI: 10.1099/jmm.0.001613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Introduction. Fast and accurate diagnosis is one of the key strategies in the successful control of intramammary infections caused by Staphylococcus aureus. Immunoassays are one of the diagnostic tools that have been proposed for the detection of S. aureus infection because they offer an advantage in terms of cost and are fast and easy to use compared to other diagnostic tests.Gap statement. The main challenge of the immunoassays is to identify antigens or serological markers that allow accurate discrimination between infected and uninfected cows with S. aureus, since this bacterium can naturally colonize different areas of the animal body.Aim. To evaluate three S. aureus proteins (IsdA, ClfA, SdrD) involved in the adhesion process as antigens to detect indicator antibodies of bovine intramammary infections.Methodology. Ninety-six cows in lactation and not vaccinated against S. aureus were included. Forty-eight of these cows were infected with S. aureus, while the rest (n=48 cows) were uninfected. Blood and milk samples were collected from each animal to recover serum and whey. IgG titres against the three proteins individually and combined (Mix) were measured in each sample using an enzyme-linked immunosorbent assay (ELISA) test.Results. Significant differences in the IgG response against the proteins evaluated were observed, highlighting the antigenic potential of IsdA and demonstrating that some antigens can detect specific antibodies of infection better than others. According to receiver operating characteristic (ROC) curve analysis, the combined proteins showed the most remarkable capacity (sensitivity of 79 % and specificity of 77 %) to differentiate between infected and uninfected cows when blood samples were used. In addition, the combined proteins also showed the highest specificity (94 %) when using milk samples.Conclusion. Our findings provide information on the usefulness of three adhesion-associated S. aureus proteins in detecting serological markers of intramammary infections in bovines.
Collapse
Affiliation(s)
- Giovanny Torres
- Instituto Colombiano de Medicina Tropical, Universidad CES, Cra. 43A No. 52 sur-99 Sabaneta, Antioquia, Colombia.,Biogenesis Research Group, Faculty of Agricultural sciences, University of Antioquia, Cra. 75 No. 65-87, Medellín, Antioquia, Colombia
| | - Miryan Sánchez-Jiménez
- Instituto Colombiano de Medicina Tropical, Universidad CES, Cra. 43A No. 52 sur-99 Sabaneta, Antioquia, Colombia
| | - Julián Reyes-Vélez
- Instituto Colombiano de Medicina Tropical, Universidad CES, Cra. 43A No. 52 sur-99 Sabaneta, Antioquia, Colombia.,Biogenesis Research Group, Faculty of Agricultural sciences, University of Antioquia, Cra. 75 No. 65-87, Medellín, Antioquia, Colombia
| | - Horacio Bach
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, 410-2660 Oak Street, Vancouver, BC, Canada
| | - Martha Olivera-Angel
- Biogenesis Research Group, Faculty of Agricultural sciences, University of Antioquia, Cra. 75 No. 65-87, Medellín, Antioquia, Colombia
| |
Collapse
|
8
|
Campbell MP, Mott MD, Owen JR, Reznicek JE, Beck CA, Muthukrishnan G, Golladay GJ, Kates SL. Low albumin level is more strongly associated with adverse outcomes and Staphylococcus aureus infection than hemoglobin A1C or smoking tobacco. J Orthop Res 2022; 40:2670-2677. [PMID: 35119125 PMCID: PMC9349467 DOI: 10.1002/jor.25282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/07/2022] [Accepted: 01/16/2022] [Indexed: 02/04/2023]
Abstract
Postsurgical deep musculoskeletal infections are a major clinical problem in Orthopaedic Surgery. A serum-based nomogram, which can objectively risk-stratify patients, and aid surgeons in delineating infection risk associated with orthopedic surgical interventions, would be immensely helpful. Here, we constructed a multi-parametric nomogram based on serum anti-Staphylococcus aureus antibody responses, patient characteristics including demographics and standard clinical tests. This nomogram was formally tested in a prospective cohort study comparing 303 hospitalized patients with culture-confirmed S. aureus infection compared with a cohort of 223 healthy screened preoperative patients. Serum anti-S. aureus antibody responses, standard of care clinical tests, and patient demographic data were utilized to perform multivariate logistic regression analysis to quantify the presence of infection and adverse outcome using odds ratios (OR) and to assess predictive ability via area under the ROC curve (AUC). At enrollment, high anti-S. aureus IgG titers were predictive of infection. Remarkably, low serum albumin was found to be significantly associated with infection (OR = 479.963, 95% CI 61.59 - 3740.33, p < 0.0001) and this finding was surprisingly higher than BMI or HbA1c-associations. Combining all risk factors in the nomogram yielded a diagnostic AUC of 0.949 for predicting S. aureus infection. Our results indicate that a serum-based multi-parametric nomogram can be useful in diagnosing S. aureus infections, and importantly, malnourishment is significantly associated with these infections.
Collapse
Affiliation(s)
- Michael P. Campbell
- Department of Orthopaedic SurgeryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Makinzie D. Mott
- Department of PathologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - John R. Owen
- Department of Orthopaedic SurgeryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Julie E. Reznicek
- Department of Infectious DiseaseVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Christopher A. Beck
- Center for Musculoskeletal ResearchUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Department of Biostatistics and Computational BiologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | | | - Gregory J. Golladay
- Department of Orthopaedic SurgeryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Stephen L. Kates
- Department of Orthopaedic SurgeryVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
9
|
Sherchand SP, Adhikari RP, Muthukrishnan G, Kanipakala T, Owen JR, Xie C, Aman MJ, Proctor RA, Schwarz EM, Kates SL. Evidence of Neutralizing and Non-Neutralizing Anti-Glucosaminidase Antibodies in Patients With S. Aureus Osteomyelitis and Their Association With Clinical Outcome Following Surgery in a Clinical Pilot. Front Cell Infect Microbiol 2022; 12:876898. [PMID: 35923804 PMCID: PMC9339635 DOI: 10.3389/fcimb.2022.876898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/20/2022] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus osteomyelitis remains a very challenging condition; recent clinical studies have shown infection control rates following surgery/antibiotics to be ~60%. Additionally, prior efforts to produce an effective S. aureus vaccine have failed, in part due to lack of knowledge of protective immunity. Previously, we demonstrated that anti-glucosaminidase (Gmd) antibodies are protective in animal models but found that only 6.7% of culture-confirmed S. aureus osteomyelitis patients in the AO Clinical Priority Program (AO-CPP) Registry had basal serum levels (>10 ng/ml) of anti-Gmd at the time of surgery (baseline). We identified a small subset of patients with high levels of anti-Gmd antibodies and adverse outcomes following surgery, not explained by Ig class switching to non-functional isotypes. Here, we aimed to test the hypothesis that clinical cure following surgery is associated with anti-Gmd neutralizing antibodies in serum. Therefore, we first optimized an in vitro assay that quantifies recombinant Gmd lysis of the M. luteus cell wall and used it to demonstrate the 50% neutralizing concentration (NC50) of a humanized anti-Gmd mAb (TPH-101) to be ~15.6 μg/ml. We also demonstrated that human serum deficient in anti-Gmd antibodies can be complemented by TPH-101 to achieve the same dose-dependent Gmd neutralizing activity as purified TPH-101. Finally, we assessed the anti-Gmd physical titer and neutralizing activity in sera from 11 patients in the AO-CPP Registry, who were characterized into four groups post-hoc. Group 1 patients (n=3) had high anti-Gmd physical and neutralizing titers at baseline that decreased with clinical cure of the infection over time. Group 2 patients (n=3) had undetectable anti-Gmd antibodies throughout the study and adverse outcomes. Group 3 (n=3) had high titers +/- neutralizing anti-Gmd at baseline with adverse outcomes. Group 4 (n=2) had low titers of non-neutralizing anti-Gmd at baseline with delayed high titers and adverse outcomes. Collectively, these findings demonstrate that both neutralizing and non-neutralizing anti-Gmd antibodies exist in S. aureus osteomyelitis patients and that screening for these antibodies could have a value for identifying patients in need of passive immunization prior to surgery. Future prospective studies to test the prognostic value of anti-Gmd antibodies to assess the potential of passive immunization with TPH-101 are warranted.
Collapse
Affiliation(s)
| | | | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| | | | - John R. Owen
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, United States
| | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| | - M. Javad Aman
- Integrated BioTherapeutics, Inc., Rockville, MD, United States
| | - Richard A. Proctor
- Departments of Medical Microbiology/Immunology and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Stephen L. Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
10
|
Masters EA, Ricciardi BF, Bentley KLDM, Moriarty TF, Schwarz EM, Muthukrishnan G. Skeletal infections: microbial pathogenesis, immunity and clinical management. Nat Rev Microbiol 2022; 20:385-400. [PMID: 35169289 PMCID: PMC8852989 DOI: 10.1038/s41579-022-00686-0] [Citation(s) in RCA: 282] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2022] [Indexed: 12/13/2022]
Abstract
Osteomyelitis remains one of the greatest risks in orthopaedic surgery. Although many organisms are linked to skeletal infections, Staphylococcus aureus remains the most prevalent and devastating causative pathogen. Important discoveries have uncovered novel mechanisms of S. aureus pathogenesis and persistence within bone tissue, including implant-associated biofilms, abscesses and invasion of the osteocyte lacuno-canalicular network. However, little clinical progress has been made in the prevention and eradication of skeletal infection as treatment algorithms and outcomes have only incrementally changed over the past half century. In this Review, we discuss the mechanisms of persistence and immune evasion in S. aureus infection of the skeletal system as well as features of other osteomyelitis-causing pathogens in implant-associated and native bone infections. We also describe how the host fails to eradicate bacterial bone infections, and how this new information may lead to the development of novel interventions. Finally, we discuss the clinical management of skeletal infection, including osteomyelitis classification and strategies to treat skeletal infections with emerging technologies that could translate to the clinic in the future.
Collapse
Affiliation(s)
- Elysia A Masters
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA
| | - Benjamin F Ricciardi
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Karen L de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA.
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
11
|
Gautreaux MA, Tucker LJ, Person XJ, Zetterholm HK, Priddy LB. Review of immunological plasma markers for longitudinal analysis of inflammation and infection in rat models. J Orthop Res 2022; 40:1251-1262. [PMID: 35315119 PMCID: PMC9106877 DOI: 10.1002/jor.25330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/24/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023]
Abstract
Disease or trauma of orthopedic tissues, including osteomyelitis, osteoporosis, arthritis, and fracture, results in a complex immune response, leading to a change in the concentration and milieu of immunological cells and proteins in the blood. While C-reactive protein levels and white blood cell counts are used to track inflammation and infection clinically, controlled longitudinal studies of disease/injury progression are limited. Thus, the use of clinically-relevant animal models can enable a more in-depth understanding of disease/injury progression and treatment efficacy. Though longitudinal tracking of immunological markers has been performed in rat models of various inflammatory and infectious diseases, currently there is no consensus on which markers are sensitive and reliable for tracking levels of inflammation and/or infection. Here, we discuss the blood markers that are most consistent with other outcome measures of the immune response in the rat, by reviewing their utility for longitudinal tracking of infection and/or inflammation in the following types of models: localized inflammation/arthritis, injury, infection, and injury + infection. While cytokines and acute phase proteins such as haptoglobin, fibrinogen, and α2 -macroglobulin demonstrate utility for tracking immunological response in many inflammation and infection models, there is likely not a singular superior marker for all rat models. Instead, longitudinal characterization of these models may benefit from evaluation of a collection of cytokines and/or acute phase proteins. Identification of immunological plasma markers indicative of the progression of a pathology will allow for the refinement of animal models for understanding, diagnosing, and treating inflammatory and infectious diseases of orthopedic tissues.
Collapse
Affiliation(s)
- Malley A. Gautreaux
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS USA
| | - Luke J. Tucker
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS USA
| | - Xavier J. Person
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS USA
| | - Haley K. Zetterholm
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS USA
| | - Lauren B. Priddy
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS USA.,corresponding author, Contact: , (662) 325-5988, Department of Agricultural and Biological Engineering, Mississippi State University, 130 Creelman Street, Mississippi State, MS, USA 39762
| |
Collapse
|
12
|
Abstract
One of the most prevalent complications of diabetes mellitus are diabetic foot ulcers (DFU). Diabetic foot ulcers represent a complex condition placing individuals at-risk for major lower extremity amputations and are an independent predictor of patient mortality. DFU heal poorly when standard of care therapy is applied. In fact, wound healing occurs only approximately 30% within 12 weeks and only 45% regardless of time when standard of care is utilized. Similarly, diabetic foot infections occur in half of all DFU and conventional microbiologic cultures can take several days to process before a result is known. DFU represent a significant challenge in this regard because DFU often demonstrate polymicrobial growth, become resistant to preferred antibiotic therapy, and do not inform providers about long-term prognosis. In addition, conventional culture yields may be affected by the timing of antibiotic administration and collection of tissue for analysis. This may lead to suboptimal antibiotic administration or debilitating amputations. The microbiome of DFU is a new frontier to better understand the interactions between host organisms and pathogenic ones. Newer molecular techniques are readily available to assist in analyzing the constituency of the microbiome of DFU. These emerging techniques have already been used to study the microbiome of DFU and have clinical implications that may alter standard of care practice in the near future. Here emerging molecular techniques that can provide clinicians with rapid DFU-related-information and help prognosticate outcomes in this vulnerable patient population are presented.
Collapse
Affiliation(s)
- Brian M. Schmidt
- Michigan Medicine, Department of
Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, Ann Arbor,
MI, USA
- Brian M. Schmidt, DPM, Assistant Professor,
Department of Internal Medicine, Division of Metabolism, Endocrinology, and
Diabetes, University of Michigan Medical School, 24 Frank Lloyd Wright Drive,
Lobby C, Ann Arbor, MI 48106, USA.
| |
Collapse
|
13
|
Lipof JS, Jones CMC, Daiss J, Oh I. Comparative study of culture, next-generation sequencing, and immunoassay for identification of pathogen in diabetic foot ulcer. J Orthop Res 2021; 39:2638-2645. [PMID: 33543785 PMCID: PMC8339135 DOI: 10.1002/jor.25001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/04/2023]
Abstract
Treatment of deep musculoskeletal infection (MSKI) begins with accurate identification of the offending pathogen, surgical excision/debridement, and a course of culture-directed antibiotics. Despite this, the incidence of recurrent infection continues to rise. A major contributor to this is inaccurate or negative initial cultures. Accurate identification of the main pathogen is paramount to treatment success. This is especially important in treating diabetic foot infections (DFIs) with limb salvage efforts. This study seeks to utilize standard culture, next-generation sequencing (NGS), and immunoassay for newly synthesized antibodies (NSA) to Staphylococcus aureus and Streptococcus agalactiae for diagnosis. This is a level II prospective observational study approved by our IRB. Thirty patients > 18 years of age who presented with a DFI and underwent surgical debridement or amputation by a single academic orthopedic surgeon from October 2018 to September 2019 were enrolled. Intraoperative samples were obtained from the base of the wound and sent for culture, NGS, and a peripheral blood sample was obtained at the time of diagnosis. NGS and culture were highly correlated for S. aureus (κ = 0.86) and S. agalactiae (κ = 1.0), NSA immunoassay and culture demonstrated a fair correlation for S. aureus (κ = 0.18) and S. agalactiae (κ = 0.67), and NGS and NSA immunoassay demonstrated fair correlation for S. aureus (κ = 0.1667) and S. agalactiae (κ = 0.67). Our study demonstrates a high concordance between culture and NGS in identifying the dominant pathogen in DFU. NGS may be a useful adjunct in DFI diagnosis.
Collapse
Affiliation(s)
- Jason Scott Lipof
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA,Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Courtney Marie Cora Jones
- Departments of Emergency Medicine, Orthopaedics, and Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - John Daiss
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA,Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Irvin Oh
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA,Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
14
|
Klose AM, Daiss JL, Ho L, Beck CA, Striemer CC, Muthukrishnan G, Miller BL. StaphAIR: A Label-Free Antigen Microarray Approach to Detecting Anti- Staphylococcus aureus Antibody Responses in Orthopedic Infections. Anal Chem 2021; 93:13580-13588. [PMID: 34596381 DOI: 10.1021/acs.analchem.1c02658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arrayed imaging reflectometry (AIR) is an optical biosensor platform for simple, multiplex measurement of antigen-specific antibody responses in patient blood samples. Here, we report the development of StaphAIR, an 8-plex Staphylococcus aureus antigen array on the AIR platform for profiling antigen-specific anti-S. aureus humoral immune responses. Initial validation experiments with mouse and humanized monoclonal antibodies against the S. aureus autolysin glucosaminidase (Gmd) domain, and subsequent testing with dilution series of pooled positive human serum confirmed analytically robust behavior of the array, with all antigens displaying Langmuir-type dose-response curves. Testing a cohort of 82 patients with S. aureus musculoskeletal infections (MSKI) and 30 healthy individuals enabled discrimination of individual patient responses to different S. aureus antigens, with statistical significance between osteomyelitis patients and controls obtained overall for four individual antigens (IsdA, IsdB, Gmd, and SCIN). Multivariate analyses of the antibody titers obtained from StaphAIR revealed its utility as a potential diagnostic tool for detecting S. aureus MSKI (area under the receiver operating characteristic curve (AUC) > 0.85). We conclude that StaphAIR has utility as a high-throughput immunoassay for studying and diagnosing osteomyelitis in patients.
Collapse
Affiliation(s)
- Alanna M Klose
- Department of Dermatology, University of Rochester, Rochester, New York 14627, United States
| | - John L Daiss
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester, Rochester, New York 14627, United States
| | - Lananh Ho
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Christopher A Beck
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester, Rochester, New York 14627, United States.,Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York 14627, United States
| | | | - Gowrishankar Muthukrishnan
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester, Rochester, New York 14627, United States
| | - Benjamin L Miller
- Department of Dermatology, University of Rochester, Rochester, New York 14627, United States.,Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
15
|
Muthukrishnan G, Beck CA, Owen JR, Xie C, Kates SL, Daiss JL. Serum antibodies against Staphylococcus aureus can prognose treatment success in patients with bone infections. J Orthop Res 2021; 39:2169-2176. [PMID: 33325051 PMCID: PMC8286088 DOI: 10.1002/jor.24955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/18/2020] [Accepted: 12/14/2020] [Indexed: 02/04/2023]
Abstract
Prognosing life-threatening orthopedic infections caused by Staphylococcus aureus remains a major clinical challenge. To address this, we developed a multiplex assay to assess the humoral immune proteome against S. aureus in patients with musculoskeletal infections. We found initial evidence that antibodies against some antigens (autolysins: Amd, Gmd; secreted immunotoxins: CHIPS, SCIN, Hla) were associated with protection, whereas antibodies against the iron-regulated surface determinant (Isd) proteins (IsdA, IsdB, IsdH) were aligned with adverse outcomes. To formally test this, we analyzed antibody levels and 1-year clinical outcomes of 194 patients with confirmed S. aureus bone infections (AO Trauma Clinical Priority Program [CPP] Bone Infection Registry). A staggering 20.6% of the enrolled patients experienced adverse clinical outcomes (arthrodesis, reinfection, amputation, and septic death) after 1-year. At enrollment, anti-S. aureus immunoglobulin G (IgG) levels in patients with adverse outcomes were 1.35-fold lower than those in patients whose infections were successfully controlled (p < 0.0001). Overall, there was a 51%-69% reduction in adverse outcome risk for every 10-fold increase in initial IgG concentration against Gmd, Amd, IsdH, CHIPS, SCIN, and Hla (p < 0.05). Notably, anti-IsdB antibodies remained elevated in patients with adverse outcomes; for every 10-fold change in the ratio of circulating anti-Isd to anti-Atl IgG at enrollment, there was a trending 2.6-fold increased risk (odds ratio = 2.555) of an adverse event (p = 0.105). Moreover, antibody increases over time correlated with adverse outcomes and decreases with positive outcomes. These studies demonstrate the potential of the humoral immune response against S. aureus as a prognostic indicator for assessing treatment success and identifying patients requiring additional interventions.
Collapse
Affiliation(s)
- Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Christopher A. Beck
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA,Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - John R. Owen
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Stephen L. Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - John L. Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA,Corresponding Author: John L. Daiss, Ph.D., Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, 601 Elmwood Avenue, Box 651, Rochester, NY, 14642,
| |
Collapse
|
16
|
Sulovari A, Ninomiya MJ, Beck CA, Ricciardi BF, Ketonis C, Mesfin A, Kaplan NB, Soin SP, McDowell SM, Mahmood B, Daiss JL, Schwarz EM, Oh I. Clinical utilization of species-specific immunoassays for identification of Staphylococcus aureus and Streptococcus agalactiae in orthopedic infections. J Orthop Res 2021; 39:2141-2150. [PMID: 33274775 PMCID: PMC8175449 DOI: 10.1002/jor.24935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/09/2020] [Accepted: 12/01/2020] [Indexed: 02/04/2023]
Abstract
Staphylococcus aureus and Streptococcus agalactiae (Group B streptococcus, GBS) are common causes of deep musculoskeletal infections (MSKI) and result in significant patient morbidity and cost to the healthcare system. One of the major challenges with MSKI is the lack of faithful diagnostics to correctly identify the primary pathogen, as standard culture-based assays are prone to false positives in the case of polymicrobial infections, and false negatives due to limitations in sample acquisition and antibiotic use before presentation. To improve upon our current diagnostic methods for MSKI, we developed a multiplex immunoassay for antigen-specific IgGs in serum (Luminex), and medium enriched for newly synthesized antibodies (MENSA) for anti-S. aureus and GBS generated from cultured peripheral blood mononuclear cells (PBMCs) of orthopedic infection patients undergoing surgical treatment. Samples were obtained from 110 MSKI patients: 80 diabetic foot ulcer, 21 periprosthetic joint infection, 5 septic arthritis, 2 spine, 1 hand, and 1 fracture-related infection (FRI). Anti-S. aureus and anti-GBS antibody titers were compared to culture results to assess their concordance in identifying the pathogens. Immunoassay, particularly MENSA, showed high diagnostic potential for monomicrobial S. aureus and GBS orthopedic infections (AUC > 0.95). MENSA also demonstrated diagnostic potential for GBS polymicrobial orthopedic infection and for GBS DFU (AUC > 0.83 for both). Serum showed high diagnostic potential for S. aureus PJI (AUC > 0.95). Taken together, these findings support the development of species-specific immunoassays for the identification of causal pathogens in active MSKI, especially in conjunction with standard culture.
Collapse
Affiliation(s)
- Aron Sulovari
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Mark J. Ninomiya
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Christopher A. Beck
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Benjamin F. Ricciardi
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Constantinos Ketonis
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Addisu Mesfin
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Nathan B. Kaplan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Sandeep P. Soin
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Susan M. McDowell
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Bilal Mahmood
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - John L. Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Irvin Oh
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Staphylococcus aureus is the most common invasive bacterial pathogen infecting children in the U.S. and many parts of the world. This major human pathogen continues to evolve, and recognition of recent trends in epidemiology, therapeutics and future horizons is of high importance. RECENT FINDINGS Over the past decade, a relative rise of methicillin-susceptible S. aureus (MSSA) has occurred, such that methicillin-resistant S. aureus (MRSA) no longer dominates the landscape of invasive disease. Antimicrobial resistance continues to develop, however, and novel therapeutics or preventive modalities are urgently needed. Unfortunately, several recent vaccine attempts proved unsuccessful in humans. SUMMARY Recent scientific breakthroughs highlight the opportunity for novel interventions against S. aureus by interfering with virulence rather than by traditional antimicrobial mechanisms. A S. aureus vaccine remains elusive; the reasons for this are multifactorial, and lessons learned from prior unsuccessful attempts may create a path toward an effective preventive. Finally, new diagnostic modalities have the potential to greatly enhance clinical care for invasive S. aureus disease in children.
Collapse
Affiliation(s)
- James E. Cassat
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation (VI4), Nashville, Tennessee, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Isaac Thomsen
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation (VI4), Nashville, Tennessee, USA
| |
Collapse
|
18
|
Owen J, Campbell M, Mott M, Beck C, Xie C, Muthukrishnan G, Daiss J, Schwarz E, Kates S. IgG4-specific responses in patients with Staphylococcus aureus bone infections are not predictive of postoperative complications. Eur Cell Mater 2021; 42:156-165. [PMID: 34549414 PMCID: PMC8886799 DOI: 10.22203/ecm.v042a12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The most prevalent pathogen in bone infections is Staphylococcus aureus; its incidence and severity are partially determined by host factors. Prior studies showed that anti-glucosaminidase (Gmd) antibodies are protective in animals, and 93.3 % of patients with culture-confirmed S. aureus osteomyelitis do not have anti-Gmd levels > 10 ng/mL in serum. Infection in patients with high anti-Gmd remains unexplained. Are anti-Gmd antibodies in osteomyelitis patients of the non-opsonising, non-complement-fixing IgG4 isotype? The relative amounts of IgG4 and total IgG against Gmd and 7 other S. aureus antigens: iron-surface determinants (Isd) IsdA, IsdB, and IsdH, amidase (Amd), α-haemolysin (Hla), chemotaxis inhibitory protein from S. aureus (CHIPS), and staphylococcal-complement inhibitor (SCIN) were determined in sera from healthy controls (Ctrl, n = 92), osteomyelitis patients whose surgical treatment resulted in infection control (IC, n = 95) or an adverse outcome (AD, n = 40), and post-mortem (PM, n = 7) blood samples from S. aureus septic-death patients. Anti-Gmd IgG4 levels were generally lower in infected patients compared to controls; however, levels among the infected were higher in AD than IC patients. Anti-IsdA, IsdB and IsdH IgG4 levels were increased in infected patients versus controls, and Jonckheere-Terpstra tests of levels revealed an increasing order of infection (Ctrl < IC < AD < PM) for anti-Isd IgG4 antibodies and a decreasing order of infection (Ctrl > IC > AD > PM) for anti-autolysin (Atl) IgG4 antibodies. Collectively, this does not support an immunosuppressive role of IgG4 in S. aureus osteomyelitis but is consistent with a paradigm of high anti-Isd and low anti-Atl responses in these patients.
Collapse
Affiliation(s)
- J.R. Owen
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - M.P. Campbell
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - M.D. Mott
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - C.A. Beck
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA,Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - C. Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - G. Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - J.L. Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - E.M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - S.L. Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA,Address for correspondence: Stephen L. Kates, MD, Professor and Chairman, Department of Orthopaedic Surgery, Virginia Commonwealth University, 1200 E. Broad St., Richmond, VA 23298, USA. Telephone number: +1 8048281311
| |
Collapse
|
19
|
Masters EA, Muthukrishnan G, Ho L, Gill AL, de Mesy Bentley KL, Galloway CA, McGrath JL, Awad HA, Gill SR, Schwarz EM. Staphylococcus aureus Cell Wall Biosynthesis Modulates Bone Invasion and Osteomyelitis Pathogenesis. Front Microbiol 2021; 12:723498. [PMID: 34484165 PMCID: PMC8415456 DOI: 10.3389/fmicb.2021.723498] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus invasion of the osteocyte lacuno-canalicular network (OLCN) is a novel mechanism of bacterial persistence and immune evasion in chronic osteomyelitis. Previous work highlighted S. aureus cell wall transpeptidase, penicillin binding protein 4 (PBP4), and surface adhesin, S. aureus surface protein C (SasC), as critical factors for bacterial deformation and propagation through nanopores in vitro, representative of the confined canaliculi in vivo. Given these findings, we hypothesized that cell wall synthesis machinery and surface adhesins enable durotaxis- and haptotaxis-guided invasion of the OLCN, respectively. Here, we investigated select S. aureus cell wall synthesis mutants (Δpbp3, Δatl, and ΔmreC) and surface adhesin mutants (ΔclfA and ΔsasC) for nanopore propagation in vitro and osteomyelitis pathogenesis in vivo. In vitro evaluation in the microfluidic silicon membrane-canalicular array (μSiM-CA) showed pbp3, atl, clfA, and sasC deletion reduced nanopore propagation. Using a murine model for implant-associated osteomyelitis, S. aureus cell wall synthesis proteins were found to be key modulators of S. aureus osteomyelitis pathogenesis, while surface adhesins had minimal effects. Specifically, deletion of pbp3 and atl decreased septic implant loosening and S. aureus abscess formation in the medullary cavity, while deletion of surface adhesins showed no significant differences. Further, peri-implant osteolysis, osteoclast activity, and receptor activator of nuclear factor kappa-B ligand (RANKL) production were decreased following pbp3 deletion. Most notably, transmission electron microscopy (TEM) imaging of infected bone showed that pbp3 was the only gene herein associated with decreased submicron invasion of canaliculi in vivo. Together, these results demonstrate that S. aureus cell wall synthesis enzymes are critical for OLCN invasion and osteomyelitis pathogenesis in vivo.
Collapse
Affiliation(s)
- Elysia A Masters
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States.,Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, United States
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States.,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, United States
| | - Lananh Ho
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States.,Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, United States
| | - Ann Lindley Gill
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Karen L de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States.,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, United States.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Chad A Galloway
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - James L McGrath
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, United States
| | - Hani A Awad
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States.,Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, United States
| | - Steven R Gill
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States.,Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, United States.,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, United States.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
20
|
Clegg J, Soldaini E, McLoughlin RM, Rittenhouse S, Bagnoli F, Phogat S. Staphylococcus aureus Vaccine Research and Development: The Past, Present and Future, Including Novel Therapeutic Strategies. Front Immunol 2021; 12:705360. [PMID: 34305945 PMCID: PMC8294057 DOI: 10.3389/fimmu.2021.705360] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is one of the most important human pathogens worldwide. Its high antibiotic resistance profile reinforces the need for new interventions like vaccines in addition to new antibiotics. Vaccine development efforts against S. aureus have failed so far however, the findings from these human clinical and non-clinical studies provide potential insight for such failures. Currently, research is focusing on identifying novel vaccine formulations able to elicit potent humoral and cellular immune responses. Translational science studies are attempting to discover correlates of protection using animal models as well as in vitro and ex vivo models assessing efficacy of vaccine candidates. Several new vaccine candidates are being tested in human clinical trials in a variety of target populations. In addition to vaccines, bacteriophages, monoclonal antibodies, centyrins and new classes of antibiotics are being developed. Some of these have been tested in humans with encouraging results. The complexity of the diseases and the range of the target populations affected by this pathogen will require a multipronged approach using different interventions, which will be discussed in this review.
Collapse
Affiliation(s)
- Jonah Clegg
- GSK, Siena, Italy
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Rachel M. McLoughlin
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | | |
Collapse
|
21
|
Veis DJ, Cassat JE. Infectious Osteomyelitis: Marrying Bone Biology and Microbiology to Shed New Light on a Persistent Clinical Challenge. J Bone Miner Res 2021; 36:636-643. [PMID: 33740314 DOI: 10.1002/jbmr.4279] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/01/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022]
Abstract
Infections of bone occur in a variety of clinical settings, ranging from spontaneous isolated infections arising from presumed hematogenous spread to those associated with skin and soft tissue wounds or medical implants. The majority are caused by the ubiquitous bacterium Staphyloccocus (S.) aureus, which can exist as a commensal organism on human skin as well as an invasive pathogen, but a multitude of other microbes are also capable of establishing bone infections. While studies of clinical isolates and small animal models have advanced our understanding of the role of various pathogen and host factors in infectious osteomyelitis (iOM), many questions remain unaddressed. Thus, there are many opportunities to elucidate host-pathogen interactions that may be leveraged toward treatment or prevention of this troublesome problem. Herein, we combine perspectives from bone biology and microbiology and suggest that interdisciplinary approaches will bring new insights to the field. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Deborah J Veis
- Division of Bone and Mineral Diseases, Departments of Medicine and Pathology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.,Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Shriners Hospitals for Children, St. Louis, MO, USA
| | - James E Cassat
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville,, TN, USA.,Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Institute for Infection, Immunology and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
22
|
Muthukrishnan G, Wallimann A, Rangel-Moreno J, Bentley KLDM, Hildebrand M, Mys K, Kenney HM, Sumrall ET, Daiss JL, Zeiter S, Richards RG, Schwarz EM, Moriarty TF. Humanized Mice Exhibit Exacerbated Abscess Formation and Osteolysis During the Establishment of Implant-Associated Staphylococcus aureus Osteomyelitis. Front Immunol 2021; 12:651515. [PMID: 33815412 PMCID: PMC8012494 DOI: 10.3389/fimmu.2021.651515] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus is the predominant pathogen causing osteomyelitis. Unfortunately, no immunotherapy exists to treat these very challenging and costly infections despite decades of research, and numerous vaccine failures in clinical trials. This lack of success can partially be attributed to an overreliance on murine models where the immune correlates of protection often diverge from that of humans. Moreover, S. aureus secretes numerous immunotoxins with unique tropism to human leukocytes, which compromises the targeting of immune cells in murine models. To study the response of human immune cells during chronic S. aureus bone infections, we engrafted non-obese diabetic (NOD)-scid IL2Rγnull (NSG) mice with human hematopoietic stem cells (huNSG) and analyzed protection in an established model of implant-associated osteomyelitis. The results showed that huNSG mice have increases in weight loss, osteolysis, bacterial dissemination to internal organs, and numbers of Staphylococcal abscess communities (SACs), during the establishment of implant-associated MRSA osteomyelitis compared to NSG controls (p < 0.05). Flow cytometry and immunohistochemistry demonstrated greater human T cell numbers in infected versus uninfected huNSG mice (p < 0.05), and that T-bet+ human T cells clustered around the SACs, suggesting S. aureus-mediated activation and proliferation of human T cells in the infected bone. Collectively, these proof-of-concept studies underscore the utility of huNSG mice for studying an aggressive form of S. aureus osteomyelitis, which is more akin to that seen in humans. We have also established an experimental system to investigate the contribution of specific human T cells in controlling S. aureus infection and dissemination.
Collapse
Affiliation(s)
- Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
| | - Alexandra Wallimann
- AO Research Institute Davos, Davos, Switzerland.,Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Karen L de Mesy Bentley
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | | | - Karen Mys
- AO Research Institute Davos, Davos, Switzerland
| | - H Mark Kenney
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
| | | | - John L Daiss
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
| | | | | | - Edward M Schwarz
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States.,Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | | |
Collapse
|
23
|
Hao SP, Masters EA, Ninomiya MJ, Beck CA, Schwarz EM, Daiss JL, Oh I. Species-Specific Immunoassay Aids Identification of Pathogen and Tracks Infectivity in Foot Infection. Foot Ankle Int 2021; 42:363-372. [PMID: 33161780 PMCID: PMC7946706 DOI: 10.1177/1071100720965136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Conventional bacterial cultures frequently fail to identify the dominant pathogen in polymicrobial foot infections, in which Staphylococcus aureus is the most common infecting pathogen. Previous work has shown that species-specific immunoassays may be able to identify the main pathogen in musculoskeletal infections. We sought to investigate the clinical applicability of a S. aureus immunoassay to accurately identify the infecting pathogen and monitor its infectivity longitudinally in foot infection. We hypothesized that this species-specific immunoassay could aid in the diagnosis of S. aureus and track the therapeutic response in foot infections. METHODS From July 2015 to July 2019, 83 infected foot ulcer patients undergoing surgical intervention (debridement or amputation) were recruited and blood was drawn at 0, 4, 8, and 12 weeks. Whole blood was analyzed for S. aureus-specific serum antibodies (mix of historic and new antibodies) and plasmablasts were isolated and cultured to quantify titers of newly synthesized antibodies (NSAs). Anti-S. aureus antibody titers were compared with culture results to assess their concordance in identifying S. aureus as the pathogen. The NSA titer changes at follow-ups were compared with wound healing status to evaluate concordance between evolving host immune response and clinically resolving or relapsing infection. RESULTS Analysis of serum for anti-S. aureus antibodies showed significantly increased titers of 3 different anti-S. aureus antibodies, IsdH (P = .037), ClfB (P = .025), and SCIN (P = .005), in S. aureus culture-positive patients compared with culture-negative patients. Comparative analysis of combining antigens for S. aureus infection diagnosis increased the concordance further. During follow-up, changes of NSA titers against a single or combination of S. aureus antigens significantly correlated with clinically resolving or recurring infection represented by wound healing status. CONCLUSION In the management of foot infection, the use of S. aureus-specific immunoassay may aid in diagnosis of the dominant pathogen and monitoring of the host immune response against a specific pathogen in response to treatment. Importantly, this immunoassay could detect recurrent foot infection, which may guide a surgeon's decision to intervene. LEVEL OF EVIDENCE Level II, prospective comparative study.
Collapse
Affiliation(s)
- Stephanie P. Hao
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Elysia A. Masters
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA
| | - Mark J. Ninomiya
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Christopher A. Beck
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, USA
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - John L. Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Irvin Oh
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
24
|
Saeed K, Sendi P, Arnold WV, Bauer TW, Coraça-Huber DC, Chen AF, Choe H, Daiss JL, Ghert M, Hickok NJ, Nishitani K, Springer BD, Stoodley P, Sculco TP, Brause BD, Parvizi J, McLaren AC, Schwarz EM. Bacterial toxins in musculoskeletal infections. J Orthop Res 2021; 39:240-250. [PMID: 32255540 PMCID: PMC7541548 DOI: 10.1002/jor.24683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/27/2020] [Accepted: 04/01/2020] [Indexed: 02/04/2023]
Abstract
Musculoskeletal infections (MSKIs) remain a major health burden in orthopaedics. Bacterial toxins are foundational to pathogenesis in MSKI, but poorly understood by the community of providers that care for patients with MSKI, inducing an international group of microbiologists, infectious diseases specialists, orthopaedic surgeons and biofilm scientists to review the literature in this field to identify key topics and compile the current knowledge on the role of toxins in MSKI, with the goal of illuminating potential impact on biofilm formation and dispersal as well as therapeutic strategies. The group concluded that further research is needed to maximize our understanding of the effect of toxins on MSKIs, including: (i) further research to identify the roles of bacterial toxins in MSKIs, (ii) establish the understanding of the importance of environmental and host factors and in vivo expression of toxins throughout the course of an infection, (iii) establish the principles of drug-ability of antitoxins as antimicrobial agents in MSKIs, (iv) have well-defined metrics of success for antitoxins as antiinfective drugs, (v) design a cocktail of antitoxins against specific pathogens to (a) inhibit biofilm formation and (b) inhibit toxin release. The applicability of antitoxins as potential antimicrobials in the era of rising antibiotic resistance could meet the needs of day-to-day clinicians.
Collapse
Affiliation(s)
- Kordo Saeed
- University Hospital Southampton NHS Foundation Trust, Department of Microbiology, Microbiology Innovation and Research Unit (MIRU), Southampton, UK; and University of Southampton, School of Medicine, Southampton UK
| | - Parham Sendi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology/ Department of Orthopaedics and Traumatology, University Hospital Basel, University Basel, Basel, Switzerland
| | - William V. Arnold
- Department of Orthopaedic Surgery, Rothman Institute at Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Thomas W. Bauer
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Hospital for Special Surgery, New York, NY, USA
| | - Débora C. Coraça-Huber
- Research Laboratory for Implant Associated Infections (Biofilm Lab), Experimental Orthopaedics, Department of Orthopaedic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Antonia F. Chen
- Department of Orthopaedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Hyonmin Choe
- Department of Orthopaedic Surgery, Yokohama City University, Yokohama, Kanagawa, Japan
| | - John L. Daiss
- Center for Musculoskeletal Research, School of Medicine and Dentistry University of Rochester, Rochester, NY, USA
| | - Michelle Ghert
- Department of Surgery, Division of Orthopaedic Surgery, McMaster University, Hamilton, ON, Canada
| | - Noreen J. Hickok
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA
| | - Kohei Nishitani
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Bryan D. Springer
- OrthoCarolina Hip and Knee Center, Atrium Musculoskeletal Institute, Charlotte, NC, USA
| | - Paul Stoodley
- Departments of Microbial Infection and Immunity and OrthopedicsInfectious Diseases Institute, The Ohio State University, 716 Biomedical Research Tower, 460 West 12th Avenue, Columbus OH, Canada
- National Centre for Microbial Tribology at Southampton (nCATS), National Biofilm Innovation Centre (NBIC), Mechanical Engineering, University of Southampton, Southampton, UK.
| | - Thomas P. Sculco
- Department of Orthopaedic Surgery, Weill Cornell Medicine, Hospital for Special Surgery, New York, NY, USA
| | - Barry D. Brause
- Department of Infectious Diseases, Weill Cornell Medicine, Hospital for Special Surgery, New York, NY, USA
| | - Javad Parvizi
- Department of Orthopaedics, Rothman Institute at Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Alex C. McLaren
- Department of Orthopaedic Surgery, University of Arizona, College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester, Rochester, NY, USA
| |
Collapse
|
25
|
Fu W, He W, Ren Y, Li Z, Liu J, Liu Y, Xie Z, Xu J, Bi Q, Kong M, Lee CC, Daiss JL, Muthukrishnan G, Owen JR, Kates SL, Peng J, Xie C. Distinct expression trend of signature antigens of Staphylococcus aureus osteomyelitis correlated with clinical outcomes. J Orthop Res 2021; 39:265-273. [PMID: 33336817 PMCID: PMC7946439 DOI: 10.1002/jor.24961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 02/04/2023]
Abstract
The major limitations of clinical outcome predictions of osteomyelitis mediated by Staphylococcus aureus (S. aureus) are not specific and definitive. To this end, current studies aim to investigate host immune responses of trend changes of the iron-regulated surface determinant (Isd) of IsdA, IsdB, IsdH, cell wall-modifying proteins of amidase (Amd) and glucosaminidase (Gmd), and secreted virulence factor of chemotaxis inhibitory protein S. aureus (CHIPS) and staphylococcal complement inhibitor (SCIN) longitudinally to discover their correlationship with clinical outcomes. A total of 55 patients with confirmed S. aureus infection of the long bone by clinical and laboratory methods were recruited for the study. Whole blood was collected at 0, 6, 12 months for the serum that was used to test IsdA, IsdB, IsdH, Gmd, Amd, CHIPS, and SCIN using a customized Luminex assay after clinical standard care parameters were collected. The patients were then divided into two groups: (1) infection controlled versus (2) adverse outcome based on clinical criteria for statistical analysis. We found that standard clinical parameters were unable to distinguish therapeutic outcomes. Significant overexpression of all antigens was confirmed in infection patients at 0-, 6-, and 12-month time points. A distinct expression trend and dynamic changes of IsdB, Amd, Gmd, and CHIPS were observed between infection controlled and adverse outcome patients, while the IsdA, IsdH, SCIN remained demonstrated no statistical significance. We conclude that dynamic changes of specific antigens could predict clinical outcomes of S. aureus osteomyelitis. Clinical Relevance: The trend changes of host immune responses to S. aureus specific antigens of IsdB, Gmd, Amd, and CHIPS could predict clinical outcomes of S. aureus osteomyelitis.
Collapse
Affiliation(s)
- Wei Fu
- Department of Orthopaedics, Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center (JORC – ZMU&URMC), First Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 China,Joint Orthopaedic, Research Center of Zunyi Medical University & University of Rochester Medical Center (JORC – ZMU&URMC), First Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 China,The authors contributed equally
| | - Wenbin He
- Department of Orthopaedics, Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center (JORC – ZMU&URMC), First Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 China,Joint Orthopaedic, Research Center of Zunyi Medical University & University of Rochester Medical Center (JORC – ZMU&URMC), First Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 China,The authors contributed equally
| | - Youliang Ren
- Department of Orthopaedics, Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center (JORC – ZMU&URMC), First Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 China,Joint Orthopaedic, Research Center of Zunyi Medical University & University of Rochester Medical Center (JORC – ZMU&URMC), First Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 China
| | - Zhengdao Li
- Department of Orthopaedics, Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center (JORC – ZMU&URMC), First Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 China,Joint Orthopaedic, Research Center of Zunyi Medical University & University of Rochester Medical Center (JORC – ZMU&URMC), First Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 China
| | - Jinyue Liu
- Department of Orthopaedics, Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center (JORC – ZMU&URMC), First Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 China,Joint Orthopaedic, Research Center of Zunyi Medical University & University of Rochester Medical Center (JORC – ZMU&URMC), First Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 China
| | - Yi Liu
- Department of Orthopaedics, Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center (JORC – ZMU&URMC), First Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 China,Joint Orthopaedic, Research Center of Zunyi Medical University & University of Rochester Medical Center (JORC – ZMU&URMC), First Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 China
| | - Zhao Xie
- Department of Orthopaedic, Joint Orthopaedic Research Center of Southwest Hospital of Third Military Medical University & University of Rochester Medical Center (JORC – SHTMMU &URMC), Southwest Hospital of Third Military Medical University, Chongqing, 400038 China,Joint Orthopaedic, Research Center of Southwest Hospital of Third Military Medical University & University of Rochester Medical Center (JORC – SHTMMU &URMC), Southwest Hospital of Third Military Medical University, Chongqing, 400038 China
| | - Jianzhong Xu
- Department of Orthopaedic, Joint Orthopaedic Research Center of Southwest Hospital of Third Military Medical University & University of Rochester Medical Center (JORC – SHTMMU &URMC), Southwest Hospital of Third Military Medical University, Chongqing, 400038 China,Joint Orthopaedic, Research Center of Southwest Hospital of Third Military Medical University & University of Rochester Medical Center (JORC – SHTMMU &URMC), Southwest Hospital of Third Military Medical University, Chongqing, 400038 China
| | - Qing Bi
- Department of Orthopaedic, Joint Orthopaedic Research Center of Zhejiang Provincial People’s Hospital & University of Rochester Medical Center (JORC – ZPPH &URMC), Zhejiang Provincial Hospital, Hangzhou, 310024 China,Joint Orthopaedic, Research Center of Zhejiang Provincial People’s Hospital & University of Rochester Medical Center (JORC – ZPPH &URMC), Zhejiang Provincial Hospital, Hangzhou, 310024 China
| | - Mingxiang Kong
- Department of Orthopaedic, Joint Orthopaedic Research Center of Zhejiang Provincial People’s Hospital & University of Rochester Medical Center (JORC – ZPPH &URMC), Zhejiang Provincial Hospital, Hangzhou, 310024 China,Joint Orthopaedic, Research Center of Zhejiang Provincial People’s Hospital & University of Rochester Medical Center (JORC – ZPPH &URMC), Zhejiang Provincial Hospital, Hangzhou, 310024 China
| | - Charles C. Lee
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642
| | - John L. Daiss
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642
| | - John R. Owen
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA 23298
| | - Stephen L. Kates
- Joint Orthopaedic, Research Center of Zunyi Medical University & University of Rochester Medical Center (JORC – ZMU&URMC), First Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 China,Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA 23298
| | - Jiachen Peng
- Department of Orthopaedics, Joint Orthopaedic Research Center of Zunyi Medical University & University of Rochester Medical Center (JORC – ZMU&URMC), First Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 China,Joint Orthopaedic, Research Center of Zunyi Medical University & University of Rochester Medical Center (JORC – ZMU&URMC), First Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 China,To whom correspondence should be addressed: Dr. Chao Xie, The Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, Phone 585-275-0818, FAX 585-276-2177, or Dr. Jiachen Peng, Department of Orthopaedics First Affiliated Hospital of Zunyi Medical University Zunyi, 563003 China,
| | - Chao Xie
- Joint Orthopaedic, Research Center of Zunyi Medical University & University of Rochester Medical Center (JORC – ZMU&URMC), First Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 China,Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642,To whom correspondence should be addressed: Dr. Chao Xie, The Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, Phone 585-275-0818, FAX 585-276-2177, or Dr. Jiachen Peng, Department of Orthopaedics First Affiliated Hospital of Zunyi Medical University Zunyi, 563003 China,
| |
Collapse
|
26
|
Klimka A, Mertins S, Nicolai AK, Rummler LM, Higgins PG, Günther SD, Tosetti B, Krut O, Krönke M. Epitope-specific immunity against Staphylococcus aureus coproporphyrinogen III oxidase. NPJ Vaccines 2021; 6:11. [PMID: 33462229 PMCID: PMC7813823 DOI: 10.1038/s41541-020-00268-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus represents a serious infectious threat to global public health and a vaccine against S. aureus represents an unmet medical need. We here characterise two S. aureus vaccine candidates, coproporphyrinogen III oxidase (CgoX) and triose phosphate isomerase (TPI), which fulfil essential housekeeping functions in heme synthesis and glycolysis, respectively. Immunisation with rCgoX and rTPI elicited protective immunity against S. aureus bacteremia. Two monoclonal antibodies (mAb), CgoX-D3 and TPI-H8, raised against CgoX and TPI, efficiently provided protection against S. aureus infection. MAb-CgoX-D3 recognised a linear epitope spanning 12 amino acids (aa), whereas TPI-H8 recognised a larger discontinuous epitope. The CgoX-D3 epitope conjugated to BSA elicited a strong, protective immune response against S. aureus infection. The CgoX-D3 epitope is highly conserved in clinical S. aureus isolates, indicating its potential wide usability against S. aureus infection. These data suggest that immunofocusing through epitope-based immunisation constitutes a strategy for the development of a S. aureus vaccine with greater efficacy and better safety profile.
Collapse
Affiliation(s)
- Alexander Klimka
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner site Bonn-Cologne, Cologne, Germany
| | - Sonja Mertins
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner site Bonn-Cologne, Cologne, Germany
| | - Anne Kristin Nicolai
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner site Bonn-Cologne, Cologne, Germany
| | - Liza Marie Rummler
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner site Bonn-Cologne, Cologne, Germany
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner site Bonn-Cologne, Cologne, Germany
| | - Saskia Diana Günther
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner site Bonn-Cologne, Cologne, Germany.,Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Bettina Tosetti
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner site Bonn-Cologne, Cologne, Germany.,Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Oleg Krut
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany.,Paul-Ehrlich Institute, Langen, Germany
| | - Martin Krönke
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany. .,German Center for Infection Research (DZIF), Partner site Bonn-Cologne, Cologne, Germany. .,Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), Cologne, Germany.
| |
Collapse
|
27
|
Kates SL, Owen JR, Beck CA, Xie C, Muthukrishnan G, Daiss JL, Schwarz EM. Lack of Humoral Immunity Against Glucosaminidase Is Associated with Postoperative Complications in Staphylococcus aureus Osteomyelitis. J Bone Joint Surg Am 2020; 102:1842-1848. [PMID: 32858560 PMCID: PMC9018051 DOI: 10.2106/jbjs.20.00029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Glucosaminidase (Gmd) is known to be a protective antigen in animal models of Staphylococcus aureus osteomyelitis. We compared the endogenous anti-Gmd antibody levels in sera of patients with culture-confirmed S. aureus bone infections to their sera at 1 year after operative treatment of the infection. METHODS A novel global biospecimen registry of 297 patients with deep-wound culture-confirmed S. aureus osteomyelitis was analyzed to assess relationships between baseline anti-Gmd serum titers (via custom Luminex assay), known host risk factors for infection, and 1-year postoperative clinical outcomes (e.g., infection control, inconclusive, refracture, persistent infection, septic nonunion, amputation, and septic death). RESULTS All patients had measurable humoral immunity against some S. aureus antigens, but only 20 patients (6.7%; p < 0.0001) had high levels of anti-Gmd antibodies (>10 ng/mL) in serum at baseline. A subset of 194 patients (65.3%) who completed 1 year of follow-up was divided into groups based on anti-Gmd level: low (<1 ng/mL, 54 patients; 27.8%), intermediate (<10 ng/mL, 122 patients; 62.9%), and high (>10 ng/mL, 18 patients; 9.3%), and infection control rates were 40.7%, 50.0%, and 66.7%, respectively. The incidence of adverse outcomes in these groups was 33.3%, 16.4%, and 11.1%, respectively. Assessing anti-Gmd level as a continuous variable showed a 60% reduction in adverse-event odds (p = 0.04) for every tenfold increase in concentration. No differences in patient demographics, body mass index of >40 kg/m, diabetes status, age of ≥70 years, male sex, Charlson Comorbidity Index of >1, or Cierny-Mader host type were observed between groups, and these risk factors were not associated with adverse events. Patients with low anti-Gmd titer demonstrated a significant 2.68-fold increased odds of adverse outcomes (p = 0.008). CONCLUSIONS Deficiency in circulating anti-Gmd antibodies was associated serious adverse outcomes following operative treatment of S. aureus osteomyelitis. At 1 year, high levels of anti-Gmd antibodies were associated with a nearly 3-fold increase in infection-control odds. Additional prospective studies clarifying Gmd immunization for osteomyelitis are needed. LEVEL OF EVIDENCE Prognostic Level IV. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Stephen L. Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - John R. Owen
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - Christopher A. Beck
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York
| | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York
| | | | - John L. Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
28
|
Chen CH, Chang IL, Wang SH, Yen HC, Lin JS, Lo SC, Huang CC. Potential novel proteomic biomarkers for diagnosis of vertebral osteomyelitis identified using an immunomics protein array technique: Two cases reports. Medicine (Baltimore) 2020; 99:e22852. [PMID: 33120821 PMCID: PMC7581026 DOI: 10.1097/md.0000000000022852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Although vertebral osteomyelitis (VO) is commonly associated with high morbidity and high recurrence rate, effective diagnostic and prognostic biomarkers of VO are still lacking. PATIENTS CONCERNS Case 1: a 60-year-old male had had upper back pain for 3 days. Case 2: a 71-year-old female presented upper back pain for 2 days. DIAGNOSES Based on physical examination and findings of magnetic resonance imaging and findings by matrix-assisted laser desorption ionization-time of flight mass spectrometry, they were diagnosed with Staphylococcus aureus VO. INTERVENTIONS Using Sengenics Immunome Protein Array by analyzing autoantibodies in both VO patients, potential biomarkers of VO were explored. OUTCOMES Four subjects with more than 1600 antigens screened while the results showed that 14-3-3 protein gamma, pterin-4-alpha-carbinolamine dehydratase, fructose-bisphosphate aldolase A, and keratin type II cytoskeletal 8 were highly differentially expressed among VO and controls. Relevant auto-antibody profiles were discovered after intra-group and inter-group comparison, and based on functional rationality, an adapter protein 14-3-3 protein gamma, and pterin-4-alpha-carbinolamine dehydratase that involved in tetrahydrobiopterin biosynthesis, might serve as valuable diagnostic biomarkers. LESSONS This pilot study on 4 subjects with more than 1600 antigens screened on the Sengenics Immunome protein array provided a general outlook on autoantibody biomarker profiles of VO subjects. Future large-scale trials with longer follow-up times are warranted.
Collapse
Affiliation(s)
- Chang-Hua Chen
- Division of Infectious Disease, Department of Internal Medicine
- Center for Infection Prevention and Control, Changhua Christian Hospital, Changhua
- Ph.D. Program in Translational Medicine, National Chung Hsing University
- Rong Hsing Research Center For Translational Medicine, National Chung Hsing University, Taichung City
| | | | | | | | - Jen-Shiou Lin
- Department of Laboratory Medicine, Changhua Christian Hospital, Changhua
| | | | - Chieh-Chen Huang
- Ph.D. Program in Translational Medicine, National Chung Hsing University
- Department of Life Sciences
- PhD Program in Medical Biotechnology, National Chung Hsing University, Taichung City, Taiwan
| |
Collapse
|
29
|
Nishitani K, Ishikawa M, Morita Y, Yokogawa N, Xie C, de Mesy Bentley KL, Ito H, Kates SL, Daiss JL, Schwarz EM. IsdB antibody-mediated sepsis following S. aureus surgical site infection. JCI Insight 2020; 5:141164. [PMID: 33004694 PMCID: PMC7566716 DOI: 10.1172/jci.insight.141164] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022] Open
Abstract
Staphylococcus aureus is prevalent in surgical site infections (SSI) and leads to death in approximately 1% of patients. Phase IIB/III clinical trial results have demonstrated that vaccination against the iron-regulated surface determinant protein B (IsdB) is associated with an increased mortality rate in patients with SSI. Thus, we hypothesized that S. aureus induces nonneutralizing anti-IsdB antibodies, which facilitate bacterial entry into leukocytes to generate "Trojan horse" leukocytes that disseminate the pathogen. Since hemoglobin (Hb) is the primary target of IsdB, and abundant Hb-haptoglobin (Hb-Hp) complexes in bleeding surgical wounds are normally cleared via CD163-mediated endocytosis by macrophages, we investigated this mechanism in vitro and in vivo. Our results demonstrate that active and passive IsdB immunization of mice renders them susceptible to sepsis following SSI. We also found that a multimolecular complex containing S. aureus protein A-anti-IsdB-IsdB-Hb-Hp mediates CD163-dependent bacterial internalization of macrophages in vitro. Moreover, IsdB-immunized CD163-/- mice are resistant to sepsis following S. aureus SSI, as are normal healthy mice given anti-CD163-neutralizing antibodies. These genetic and biologic CD163 deficiencies did not exacerbate local infection. Thus, anti-IsdB antibodies are a risk factor for S. aureus sepsis following SSI, and disruption of the multimolecular complex and/or CD163 blockade may intervene.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/adverse effects
- Antibodies, Monoclonal/adverse effects
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/immunology
- Antigens, Differentiation, Myelomonocytic/metabolism
- Cation Transport Proteins/immunology
- Female
- Haptoglobins/immunology
- Haptoglobins/metabolism
- Hemoglobins/immunology
- Hemoglobins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- Sepsis/etiology
- Sepsis/metabolism
- Sepsis/pathology
- Staphylococcal Infections/complications
- Staphylococcal Infections/immunology
- Staphylococcal Infections/microbiology
- Staphylococcus aureus/immunology
- Surgical Wound Infection/complications
- Surgical Wound Infection/immunology
- Surgical Wound Infection/microbiology
Collapse
Affiliation(s)
- Kohei Nishitani
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Masahiro Ishikawa
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Yugo Morita
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Noriaki Yokogawa
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics and
| | - Karen L. de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics and
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Hiromu Ito
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Stephen L. Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - John L. Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics and
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics and
| |
Collapse
|
30
|
Low-Avidity Autoantibodies against Bactericidal/Permeability-Increasing Protein Occur in Gram-Negative and Gram-Positive Bacteremia. Infect Immun 2020; 88:IAI.00444-20. [PMID: 32747603 PMCID: PMC7504969 DOI: 10.1128/iai.00444-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
Antibody autoreactivity against bactericidal/permeability-increasing protein (BPI) is strongly associated with Pseudomonas aeruginosa infection in cystic fibrosis (CF), non-CF bronchiectasis (BE), and chronic obstructive pulmonary disease (COPD). We examined the pathogen-specific nature of this autoreactivity by examining antibodies to BPI in bacteremia patients. Antibodies to BPI and bacterial antigens were measured in sera by ELISA from five patient cohorts (n = 214). Antibody autoreactivity against bactericidal/permeability-increasing protein (BPI) is strongly associated with Pseudomonas aeruginosa infection in cystic fibrosis (CF), non-CF bronchiectasis (BE), and chronic obstructive pulmonary disease (COPD). We examined the pathogen-specific nature of this autoreactivity by examining antibodies to BPI in bacteremia patients. Antibodies to BPI and bacterial antigens were measured in sera by ELISA from five patient cohorts (n = 214). Antibody avidity was investigated. Bacteremic patient sera (n = 32) exhibited IgG antibody autoreactivity against BPI in 64.7% and 46.7% of patients with positive blood cultures for P. aeruginosa and Escherichia coli, respectively. Autoantibody titers correlated with IgG responses to bacterial extracts and lipopolysaccharide (LPS). A prospective cohort of bacteremic patient sera exhibited anti-BPI IgG responses in 23/154 (14.9%) patients with autoreactivity present at the time of positive blood cultures in patients with Gram-negative and Gram-positive bacteria, including 8/60 (13.3%) patients with Staphylococcus aureus. Chronic tissue infection with S. aureus was associated with BPI antibody autoreactivity in 2/15 patients (13.3%). Previously, we demonstrated that BPI autoreactivity in CF patient sera exhibits high avidity. Here, a similar pattern was seen in BE patient sera. In contrast, sera from patients with bacteremia exhibited low avidity. These data indicate that low-avidity IgG responses to BPI can arise acutely in response to bacteremia and that this association is not limited to P. aeruginosa. This is to be contrasted with chronic respiratory infection with P. aeruginosa, suggesting that either the chronicity or the site of infection selects for the generation of high-avidity responses, with biologic consequences for airway immunity.
Collapse
|
31
|
Miller LS, Fowler VG, Shukla SK, Rose WE, Proctor RA. Development of a vaccine against Staphylococcus aureus invasive infections: Evidence based on human immunity, genetics and bacterial evasion mechanisms. FEMS Microbiol Rev 2020; 44:123-153. [PMID: 31841134 PMCID: PMC7053580 DOI: 10.1093/femsre/fuz030] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022] Open
Abstract
Invasive Staphylococcus aureus infections are a leading cause of morbidity and mortality in both hospital and community settings, especially with the widespread emergence of virulent and multi-drug resistant methicillin-resistant S. aureus strains. There is an urgent and unmet clinical need for non-antibiotic immune-based approaches to treat these infections as the increasing antibiotic resistance is creating a serious threat to public health. However, all vaccination attempts aimed at preventing S. aureus invasive infections have failed in human trials, especially all vaccines aimed at generating high titers of opsonic antibodies against S. aureus surface antigens to facilitate antibody-mediated bacterial clearance. In this review, we summarize the data from humans regarding the immune responses that protect against invasive S. aureus infections as well as host genetic factors and bacterial evasion mechanisms, which are important to consider for the future development of effective and successful vaccines and immunotherapies against invasive S. aureus infections in humans. The evidence presented form the basis for a hypothesis that staphylococcal toxins (including superantigens and pore-forming toxins) are important virulence factors, and targeting the neutralization of these toxins are more likely to provide a therapeutic benefit in contrast to prior vaccine attempts to generate antibodies to facilitate opsonophagocytosis.
Collapse
Affiliation(s)
- Lloyd S Miller
- Immunology, Janssen Research and Development, 1400 McKean Road, Spring House, PA, 19477, USA.,Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Cancer Research Building 2, Suite 209, Baltimore, MD, 21231, USA.,Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, 1830 East Monument Street, Baltimore, MD, 21287, USA.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, 601 North Caroline Street, Baltimore, MD, 21287, USA.,Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Vance G Fowler
- Department of Medicine, Division of Infectious Diseases, Duke University Medical Center, 315 Trent Drive, Hanes House, Durham, NC, 27710, USA.,Duke Clinical Research Institute, Duke University Medical Center, 40 Duke Medicine Circle, Durham, NC, 27710, USA
| | - Sanjay K Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, 1000 North Oak Avenue, Marshfield, WI, 54449, USA.,Computation and Informatics in Biology and Medicine, University of Wisconsin, 425 Henry Mall, Room 3445, Madison, WI, 53706, USA
| | - Warren E Rose
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI, 53705, USA.,Pharmacy Practice Division, University of Wisconsin-Madison, 777 Highland Avenue, 4123 Rennebohm Hall, Madison, WI, 53705 USA
| | - Richard A Proctor
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI, 53705, USA.,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, 1550 Linden Drive, Microbial Sciences Building, Room 1334, Madison, WI, 53705, USA
| |
Collapse
|
32
|
Ricciardi BF, Muthukrishnan G, Masters EA, Kaplan N, Daiss JL, Schwarz EM. New developments and future challenges in prevention, diagnosis, and treatment of prosthetic joint infection. J Orthop Res 2020; 38:1423-1435. [PMID: 31965585 PMCID: PMC7304545 DOI: 10.1002/jor.24595] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/03/2020] [Indexed: 02/04/2023]
Abstract
Prosthetic joint infection (PJI) is a devastating complication that results in substantial costs to society and patient morbidity. Advancements in our knowledge of this condition have focused on prevention, diagnosis, and treatment, in order to reduce rates of PJI and improve patient outcomes. Preventive measures such as optimization of patient comorbidities, and perioperative antibiotic usage are intensive areas of current clinical research to reduce the rate of PJI. Improved diagnostic tests such as synovial fluid (SF) α-defensin enzyme-linked immunosorbent assay, and nucleic acid-based tests for serum, SF, and tissue cultures, have improved diagnostic accuracy and organism identification. Increasing the diversity of available antibiotic therapy, immunotherapy, and alternative implant coatings remain promising treatments to improve infection eradication in the setting of PJI.
Collapse
Affiliation(s)
- Benjamin F Ricciardi
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester School of Medicine
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester School of Medicine
| | - Elysia A Masters
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester School of Medicine
| | - Nathan Kaplan
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester School of Medicine
| | - John L Daiss
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester School of Medicine
| | - Edward M Schwarz
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester School of Medicine
| |
Collapse
|
33
|
Muthukrishnan G, Soin S, Beck CA, Grier A, Brodell JD, Lee CC, Ackert-Bicknell CL, Lee FEH, Schwarz EM, Daiss JL. A Bioinformatic Approach to Utilize a Patient's Antibody-Secreting Cells against Staphylococcus aureus to Detect Challenging Musculoskeletal Infections. Immunohorizons 2020; 4:339-351. [PMID: 32571786 DOI: 10.4049/immunohorizons.2000024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/04/2020] [Indexed: 01/22/2023] Open
Abstract
Noninvasive diagnostics for Staphylococcus aureus musculoskeletal infections (MSKI) remain challenging. Abs from newly activated, pathogen-specific plasmablasts in human blood, which emerge during an ongoing infection, can be used for diagnosing and tracking treatment response in diabetic foot infections. Using multianalyte immunoassays on medium enriched for newly synthesized Abs (MENSA) from Ab-secreting cells, we assessed anti-S. aureus IgG responses in 101 MSKI patients (63 culture-confirmed S. aureus, 38 S. aureus-negative) and 52 healthy controls. MENSA IgG levels were assessed for their ability to identify the presence and type of S. aureus MSKI using machine learning and multivariate receiver operating characteristic curves. Eleven S. aureus-infected patients were presented with prosthetic joint infections, 15 with fracture-related infections, 5 with native joint septic arthritis, 15 with diabetic foot infections, and 17 with suspected orthopedic infections in the soft tissue. Anti-S. aureus MENSA IgG levels in patients with non-S. aureus infections and healthy controls were 4-fold (***p = 0.0002) and 8-fold (****p < 0.0001) lower, respectively, compared with those with culture-confirmed S. aureus infections. Comparison of MENSA IgG responses among S. aureus culture-positive patients revealed Ags predictive of active MSKI (IsdB, SCIN, Gmd) and Ags predictive of MSKI type (IsdB, IsdH, Amd, Hla). When combined, IsdB, IsdH, Gmd, Amd, SCIN, and Hla were highly discriminatory of S. aureus MSKI (area under the ROC curve = 0.89 [95% confidence interval 0.82-0.93, p < 0.01]). Collectively, these results demonstrate the feasibility of a bioinformatic approach to use a patient's active immune proteome against S. aureus to diagnose challenging MSKI.
Collapse
Affiliation(s)
- Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642.,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642
| | - Sandeep Soin
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642.,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642
| | - Christopher A Beck
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642.,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642.,Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642
| | - Alex Grier
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642
| | - James D Brodell
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642.,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642
| | - Charles C Lee
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642.,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642
| | - Cheryl L Ackert-Bicknell
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642.,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642.,Department of Orthopedics, University of Colorado Denver, Denver, CO 80045; and
| | - Frances Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642.,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642.,Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642
| | - John L Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642; .,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
34
|
CORR Insights®: Does the Alpha Defensin ELISA Test Perform Better Than the Alpha Defensin Lateral Flow Test for PJI Diagnosis? A Systematic Review and Meta-analysis of Prospective Studies. Clin Orthop Relat Res 2020; 478:1345-1347. [PMID: 32251088 PMCID: PMC7319385 DOI: 10.1097/corr.0000000000001238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
35
|
Hofstee MI, Muthukrishnan G, Atkins GJ, Riool M, Thompson K, Morgenstern M, Stoddart MJ, Richards RG, Zaat SAJ, Moriarty TF. Current Concepts of Osteomyelitis: From Pathologic Mechanisms to Advanced Research Methods. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1151-1163. [PMID: 32194053 DOI: 10.1016/j.ajpath.2020.02.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 01/18/2023]
Abstract
Osteomyelitis is an inflammation of the bone and bone marrow that is most commonly caused by a Staphylococcus aureus infection. Much of our understanding of the underlying pathophysiology of osteomyelitis, from the perspective of both host and pathogen, has been revised in recent years, with notable discoveries including the role played by osteocytes in the recruitment of immune cells, the invasion and persistence of S. aureus in submicron channels of cortical bone, and the diagnostic role of polymorphonuclear cells in implant-associated osteomyelitis. Advanced in vitro cell culture models, such as ex vivo culture models or organoids, have also been developed over the past decade, and have become widespread in many fields, including infectious diseases. These models better mimic the in vivo environment, allow the use of human cells, and can reduce our reliance on animals in osteomyelitis research. In this review, we provide an overview of the main pathologic concepts in osteomyelitis, with a focus on the new discoveries in recent years. Furthermore, we outline the value of modern in vitro cell culture techniques, with a focus on their current application to infectious diseases and osteomyelitis in particular.
Collapse
Affiliation(s)
- Marloes I Hofstee
- AO Research Institute Davos, Davos, Switzerland; Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research and Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York
| | - Gerald J Atkins
- Centre for Orthopaedic and Trauma Research, University of Adelaide, Adelaide, South Australia, Australia
| | - Martijn Riool
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | | | - Mario Morgenstern
- Department of Orthopedic Surgery and Traumatology, University Hospital Basel, Basel, Switzerland
| | | | | | - Sebastian A J Zaat
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | | |
Collapse
|
36
|
Lee CC, Southgate R, Jiao C, Gersz E, Owen JR, Kates SL, Beck CA, Xie C, Daiss JL, Post V, Moriarty TF, Zeiter S, Schwarz EM, Muthukrishnan G. Deriving a dose and regimen for anti-glucosaminidase antibody passive-immunisation for patients with Staphylococcus aureus osteomyelitis. Eur Cell Mater 2020; 39:96-107. [PMID: 32003439 PMCID: PMC7236896 DOI: 10.22203/ecm.v039a06] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Staphylococcus aureus (S. aureus) osteomyelitis remains a major clinical problem. Anti-glucosaminidase (Gmd) antibodies (1C11) are efficacious in prophylactic and therapeutic murine models. Feasibility, safety and pharmacokinetics of 1C11 passive immunisation in sheep and endogenous anti-Gmd levels were quantified in osteomyelitis patients. 3 sheep received a 500 mg intravenous (i.v.) bolus of 1C11 and its levels in sera were determined by enzyme-linked immunosorbent assay (ELISA) over 52 d. A humanised anti-Gmd monoclonal antibody, made by grafting the antigen-binding fragment (Fab) portion of 1C11 onto the fragment crystallisable region (Fc) of human IgG1, was used to make a standard curve of mean fluorescent intensity versus concentration of anti-Gmd. Anti-Gmd serum levels were determined in 297 patients with culture-confirmed S. aureus osteomyelitis and 40 healthy controls. No complications or adverse events were associated with the sheep 1C11 i.v. infusion and the estimated circulating half-life of 1C11 was 23.7 d. Endogenous anti-Gmd antibody levels in sera of osteomyelitis patients ranged from < 1 ng/mL to 300 µg/mL, with a mean concentration of 21.7 µg/mL. The estimated circulating half-life of endogenous anti-Gmd antibodies in sera of 12 patients with cured osteomyelitis was 120.4 d. A clinically relevant administration of anti-Gmd (500 mg i.v. = 7 mg/kg/70 kg human) was safe in sheep. This dose was 8 times more than the endogenous anti-Gmd levels observed in osteomyelitis patients and was predicted to have a half-life of > 3 weeks. Anti-Gmd passive immunisation has potential to prevent and treat S. aureus osteomyelitis. Further clinical development is warranted.
Collapse
Affiliation(s)
- Charles C. Lee
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Richard Southgate
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Cindy Jiao
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Elaine Gersz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - John R. Owen
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Stephen L. Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Christopher A. Beck
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - John L. Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA,Corresponding Author: Edward M. Schwarz, Ph.D., Burton Professor of Orthopaedics, Director of Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, Phone: (585) 275-3063, FAX: (585) 276-2177,
| | | |
Collapse
|
37
|
Potential osteomyelitis biomarkers identified by plasma metabolome analysis in mice. Sci Rep 2020; 10:839. [PMID: 31964942 PMCID: PMC6972943 DOI: 10.1038/s41598-020-57619-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 01/02/2020] [Indexed: 01/18/2023] Open
Abstract
Osteomyelitis, which often arises from a surgical-site infection, is a serious problem in orthopaedic surgery. However, there are no specific biomarkers for osteomyelitis. Here, to identify specific plasma biomarkers for osteomyelitis, we conducted metabolome analyses using a mouse osteomyelitis model and bioluminescence imaging. We divided adult male pathogen-free BALB/C mice into control, sham-control, and infected groups. In the infected group, a bioluminescent Staphylococcus aureus strain was inoculated into the femur, and osteomyelitis was detected by bioluminescence imaging. We next analysed the metabolome, by comprehensively measuring all of the small molecules. This analysis identified 279 metabolites, 12 of which were significantly higher and 45 were significantly lower in the infected group than in the sham-control and control groups. Principal component analysis identified sphingosine as the highest loading factor. Several acyl carnitines and fatty acids, particularly ω-3 and ω-6 polyunsaturated fatty acids, were significantly lower in the infected group. Several metabolites in the tricarboxylic acid cycle were lower in the infected group than in the other groups. Thus, we identified two sphingolipids, sphinganine and sphingosine, as positive biomarkers for mouse osteomyelitis, and two components in the tricarboxylic acid cycle, two-oxoglutarate and succinic acid, as negative biomarkers.
Collapse
|
38
|
Muthukrishnan G, Masters EA, Daiss JL, Schwarz EM. Mechanisms of Immune Evasion and Bone Tissue Colonization That Make Staphylococcus aureus the Primary Pathogen in Osteomyelitis. Curr Osteoporos Rep 2019; 17:395-404. [PMID: 31721069 PMCID: PMC7344867 DOI: 10.1007/s11914-019-00548-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Staphylococcus aureus is the primary pathogen responsible for osteomyelitis, which remains a major healthcare burden. To understand its dominance, here we review the unique pathogenic mechanisms utilized by S. aureus that enable it to cause incurable osteomyelitis. RECENT FINDINGS Using an arsenal of toxins and virulence proteins, S. aureus kills and usurps immune cells during infection, to produce non-neutralizing pathogenic antibodies that thwart adaptive immunity. S. aureus also has specific mechanisms for distinct biofilm formation on implants, necrotic bone tissue, bone marrow, and within the osteocyte lacuno-canicular networks (OLCN) of live bone. In vitro studies have also demonstrated potential for intracellular colonization of osteocytes, osteoblasts, and osteoclasts. S. aureus has evolved a multitude of virulence mechanisms to achieve life-long infection of the bone, most notably colonization of OLCN. Targeting S. aureus proteins involved in these pathways could provide new targets for antibiotics and immunotherapies.
Collapse
Affiliation(s)
- Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, USA
| | - Elysia A Masters
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA
| | - John L Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, USA
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA.
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
39
|
Masters EA, Trombetta RP, de Mesy Bentley KL, Boyce BF, Gill AL, Gill SR, Nishitani K, Ishikawa M, Morita Y, Ito H, Bello-Irizarry SN, Ninomiya M, Brodell JD, Lee CC, Hao SP, Oh I, Xie C, Awad HA, Daiss JL, Owen JR, Kates SL, Schwarz EM, Muthukrishnan G. Evolving concepts in bone infection: redefining "biofilm", "acute vs. chronic osteomyelitis", "the immune proteome" and "local antibiotic therapy". Bone Res 2019; 7:20. [PMID: 31646012 PMCID: PMC6804538 DOI: 10.1038/s41413-019-0061-z] [Citation(s) in RCA: 320] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 02/08/2023] Open
Abstract
Osteomyelitis is a devastating disease caused by microbial infection of bone. While the frequency of infection following elective orthopedic surgery is low, rates of reinfection are disturbingly high. Staphylococcus aureus is responsible for the majority of chronic osteomyelitis cases and is often considered to be incurable due to bacterial persistence deep within bone. Unfortunately, there is no consensus on clinical classifications of osteomyelitis and the ensuing treatment algorithm. Given the high patient morbidity, mortality, and economic burden caused by osteomyelitis, it is important to elucidate mechanisms of bone infection to inform novel strategies for prevention and curative treatment. Recent discoveries in this field have identified three distinct reservoirs of bacterial biofilm including: Staphylococcal abscess communities in the local soft tissue and bone marrow, glycocalyx formation on implant hardware and necrotic tissue, and colonization of the osteocyte-lacuno canalicular network (OLCN) of cortical bone. In contrast, S. aureus intracellular persistence in bone cells has not been substantiated in vivo, which challenges this mode of chronic osteomyelitis. There have also been major advances in our understanding of the immune proteome against S. aureus, from clinical studies of serum antibodies and media enriched for newly synthesized antibodies (MENSA), which may provide new opportunities for osteomyelitis diagnosis, prognosis, and vaccine development. Finally, novel therapies such as antimicrobial implant coatings and antibiotic impregnated 3D-printed scaffolds represent promising strategies for preventing and managing this devastating disease. Here, we review these recent advances and highlight translational opportunities towards a cure.
Collapse
Affiliation(s)
- Elysia A. Masters
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY USA
| | - Ryan P. Trombetta
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY USA
| | - Karen L. de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - Brendan F Boyce
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Ann Lindley Gill
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY USA
| | - Steven R. Gill
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY USA
| | - Kohei Nishitani
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Masahiro Ishikawa
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Yugo Morita
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Hiromu Ito
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | | | - Mark Ninomiya
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - James D. Brodell
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - Charles C. Lee
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - Stephanie P. Hao
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
| | - Irvin Oh
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - Hani A. Awad
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - John L. Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| | - John R. Owen
- Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, VA USA
| | - Stephen L. Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University Medical Center, Richmond, VA USA
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY USA
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY USA
| |
Collapse
|
40
|
Raafat D, Otto M, Reppschläger K, Iqbal J, Holtfreter S. Fighting Staphylococcus aureus Biofilms with Monoclonal Antibodies. Trends Microbiol 2019; 27:303-322. [PMID: 30665698 DOI: 10.1016/j.tim.2018.12.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023]
Abstract
Staphylococcus aureus (S. aureus) is a notorious pathogen and one of the most frequent causes of biofilm-related infections. The treatment of S. aureus biofilms is hampered by the ability of the biofilm structure to shield bacteria from antibiotics as well as the host's immune system. Therefore, new preventive and/or therapeutic interventions, including the use of antibody-based approaches, are urgently required. In this review, we describe the mechanisms by which anti-S. aureus antibodies can help in combating biofilms, including an up-to-date overview of monoclonal antibodies currently in clinical trials. Moreover, we highlight ongoing efforts in passive vaccination against S. aureus biofilm infections, with special emphasis on promising targets, and finally indicate the direction into which future research could be heading.
Collapse
Affiliation(s)
- Dina Raafat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Egypt; Current affiliation: Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD, USA
| | - Kevin Reppschläger
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Jawad Iqbal
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Silva Holtfreter
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
41
|
Chen G, Liu B, Liu H, Zhang H, Yang K, Wang Q, Ding J, Chang F. Calcium Phosphate Cement loaded with 10% vancomycin delivering high early and late local antibiotic concentration in vitro. Orthop Traumatol Surg Res 2018; 104:1271-1275. [PMID: 30107276 DOI: 10.1016/j.otsr.2018.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 07/03/2018] [Accepted: 07/18/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND Antibiotics impregnated calcium phosphate cement (CPC) has emerged as a local treatment of osteomyelitis. However, there is no study investigating the optimal concentrations of vancomycin (VCM) included in CPC to obtain prolonged drug release (≥8 weeks) and also with enough compressive strength (>the normal cancellous bone, 11MPa) for osteomyelitis therapy. Therefore, we bring forward two questions: 1) Was antibiotic activity of the eluates correlated to the load of antibiotics within the cement? 2) Were the mechanical properties of CPC affected by VCM-loading? HYPOTHESIZED There was an optimal concentrations of vancomycin (VCM) loaded in CPC which could provide sufficient effective antibacterial time (≥8 weeks) and enough compressive strength (>11MPa). MATERIALS AND METHODS CPC specimens were obtained by incorporating different doses (weigh ratios of 0%, 5%, 10%, 15%, 20%, 25 and 30%) of injectable VCM into CPC. The antibacterial effect of released VCM solution against Staphylococcus aureus was assessed by inhibition ring assays. The physicochemical properties such as compressive strengths were characterized and compared among these specimens. RESULTS Drug release profiles showed only 5 and 10% VCM-loaded CPC displayed a long enough drug release time (at least 8 weeks) and maintained the eluate concentrations (>4μg/mL) with effective antibacterial ability. The concentration of VCM in 10% group at 8th week was twice higher than 5% group. Compressive strength test showed that the proportional increase of VCM/CPC ratios resulted in a significant decrease of compressive strength (r=-0.906, p<0.001). CONCLUSION 10% VCM-loaded CPC offered the optimal physicochemical properties and drug releasing profile and appears as the most suitable concentration for clinical use. LEVEL OF EVIDENCE III.
Collapse
Affiliation(s)
- Gaoyang Chen
- Department of orthopaedic surgery, 2nd Hospital of Jilin University, No. 218, Ziqiang street, Nanguan District, Changchun 130041, China
| | - Bo Liu
- Department of orthopaedic surgery, the First Hospital of Jilin University, Changchun, China
| | - He Liu
- Department of orthopaedic surgery, 2nd Hospital of Jilin University, No. 218, Ziqiang street, Nanguan District, Changchun 130041, China
| | - Hanyang Zhang
- Department of orthopaedic surgery, 2nd Hospital of Jilin University, No. 218, Ziqiang street, Nanguan District, Changchun 130041, China
| | - Kerong Yang
- Department of orthopaedic surgery, 2nd Hospital of Jilin University, No. 218, Ziqiang street, Nanguan District, Changchun 130041, China
| | - Qingyu Wang
- Department of orthopaedic surgery, 2nd Hospital of Jilin University, No. 218, Ziqiang street, Nanguan District, Changchun 130041, China
| | - Jianxun Ding
- Key laboratory of polymer ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Fei Chang
- Department of orthopaedic surgery, 2nd Hospital of Jilin University, No. 218, Ziqiang street, Nanguan District, Changchun 130041, China.
| |
Collapse
|
42
|
Tracking Anti- Staphylococcus aureus Antibodies Produced In Vivo and Ex Vivo during Foot Salvage Therapy for Diabetic Foot Infections Reveals Prognostic Insights and Evidence of Diversified Humoral Immunity. Infect Immun 2018; 86:IAI.00629-18. [PMID: 30275008 DOI: 10.1128/iai.00629-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 09/20/2018] [Indexed: 12/18/2022] Open
Abstract
Management of foot salvage therapy (FST) for diabetic foot infections (DFI) is challenging due to the absence of reliable diagnostics to identify the etiologic agent and prognostics to justify aggressive treatments. As Staphylococcus aureus is the most common pathogen associated with DFI, we aimed to develop a multiplex immunoassay of IgG in serum and medium enriched for newly synthesized anti-S. aureus antibodies (MENSA) generated from cultured peripheral blood mononuclear cells of DFI patients undergoing FST. Wound samples were collected from 26 DFI patients to identify the infecting bacterial species via 16S rRNA sequencing. Blood was obtained over 12 weeks of FST to assess anti-S. aureus IgG levels in sera and MENSA. The results showed that 17 out of 26 infections were polymicrobial and 12 were positive for S. aureus While antibody titers in serum and MENSA displayed similar diagnostic potentials to detect S. aureus infection, MENSA showed a 2-fold-greater signal-to-background ratio. Multivariate analyses revealed increases in predictive power of diagnosing S. aureus infections (area under the receiver operating characteristic curve [AUC] > 0.85) only when combining titers against different classes of antigens, suggesting cross-functional antigenic diversity. Anti-S. aureus IgG levels in MENSA decreased with successful FST and rose with reinfection. In contrast, IgG levels in serum remained unchanged throughout the 12-week FST. Collectively, these results demonstrate the applicability of serum and MENSA for diagnosis of S. aureus DFI with increased power by combining functionally distinct titers. We also found that tracking MENSA has prognostic potential to guide clinical decisions during FST.
Collapse
|
43
|
Ricciardi BF, Muthukrishnan G, Masters E, Ninomiya M, Lee CC, Schwarz EM. Staphylococcus aureus Evasion of Host Immunity in the Setting of Prosthetic Joint Infection: Biofilm and Beyond. Curr Rev Musculoskelet Med 2018; 11:389-400. [PMID: 29987645 DOI: 10.1007/s12178-018-9501-4] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE OF REVIEW The incidence of complications from prosthetic joint infection (PJI) is increasing, and treatment failure remains high. We review the current literature with a focus on Staphylococcus aureus pathogenesis and biofilm, as well as treatment challenges, and novel therapeutic strategies. RECENT FINDINGS S. aureus biofilm creates a favorable environment that increases antibiotic resistance, impairs host immunity, and increases tolerance to nutritional deprivation. Secreted proteins from bacterial cells within the biofilm and the quorum-sensing agr system contribute to immune evasion. Additional immunoevasive properties of S. aureus include the formation of staphylococcal abscess communities (SACs) and canalicular invasion. Novel approaches to target biofilm and increase resistance to implant colonization include novel antibiotic therapy, immunotherapy, and local implant treatments. Challenges remain given the diverse mechanisms developed by S. aureus to alter the host immune responses. Further understanding of these processes should provide novel therapeutic mechanisms to enhance eradication after PJI.
Collapse
Affiliation(s)
- Benjamin F Ricciardi
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester School of Medicine, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester School of Medicine, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA
| | - Elysia Masters
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester School of Medicine, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA
| | - Mark Ninomiya
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester School of Medicine, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA
| | - Charles C Lee
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester School of Medicine, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA
| | - Edward M Schwarz
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester School of Medicine, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA.
| |
Collapse
|
44
|
Morgenstern M, Kühl R, Eckardt H, Acklin Y, Stanic B, Garcia M, Baumhoer D, Metsemakers WJ. Diagnostic challenges and future perspectives in fracture-related infection. Injury 2018; 49 Suppl 1:S83-S90. [PMID: 29929701 DOI: 10.1016/s0020-1383(18)30310-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Fracture-related infection (FRI) is one of the most challenging complications in orthopaedic trauma surgery. It has severe consequences for patients and an important socio-economic impact. FRI has distinct properties and needs to be addressed interdisciplinary. Since criteria for the diagnosis of FRI are not standardized, an expert panel recently proposed a definition for FRI. In this review the current diagnostic modalities and an interdisciplinary diagnostic algorithm based on this recently published definition, are presented and future diagnostic techniques discussed. Since to date, there is no single universal diagnostic test available that gives the clinician the definitive diagnosis of FRI, it is mandatory to follow a standardized diagnostic algorithm to correctly diagnose FRI.
Collapse
Affiliation(s)
- Mario Morgenstern
- Department of Orthopedic Surgery and Traumatology, University Hospital Basel, Switzerland.
| | - Richard Kühl
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Switzerland
| | - Henrik Eckardt
- Department of Orthopedic Surgery and Traumatology, University Hospital Basel, Switzerland
| | - Yves Acklin
- Department of Orthopedic Surgery and Traumatology, University Hospital Basel, Switzerland
| | - Barbara Stanic
- Musculoskeletal Infection Group, AO Research Institute Davos, Switzerland
| | | | - Daniel Baumhoer
- Bone Tumour Reference Centre at the Institute of Pathology, University Hospital and University of Basel, Switzerland
| | | |
Collapse
|
45
|
Wood JB, Jones LS, Soper NR, Xu M, Torres VJ, Buddy Creech C, Thomsen IP. Serologic Detection of Antibodies Targeting the Leukocidin LukAB Strongly Predicts Staphylococcus aureus in Children With Invasive Infection. J Pediatric Infect Dis Soc 2018. [PMID: 29538707 PMCID: PMC6510946 DOI: 10.1093/jpids/piy017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Staphylococcus aureus is among the most commonly identified causes of invasive bacterial infection in children; however, reliable results from cultures of sterile-site samples often cannot be obtained, which necessitates prescription of a broad empiric antimicrobial agent(s). Children with invasive S aureus infection rapidly generate high antibody titers to the cytotoxin LukAB; therefore, the aim of this study was to assess the diagnostic utility of an anti-LukAB antibody assay for children with musculoskeletal infection (MSKI). METHODS We conducted a 2-year prospective study of all eligible children admitted to Vanderbilt Children's Hospital with an MSKI. Acute and convalescent sera were obtained, and antibodies that target LukAB were measured by an enzyme-linked immunosorbent assay. RESULTS Forty-two children were enrolled. The median concentrations of LukAB antibodies for children with S aureus infection were 130.3 U/mL in the acute phase and 455 U/mL in the convalescent phase (P < .001). The median concentrations of LukAB antibodies in children with a non-S aureus MSKI were 8.6 U/mL in the acute phase and 9.7 U/mL in the convalescent phase. The assay discriminated between S aureus and non-S aureus infection with areas under the receiver operating characteristic curve of 0.81 (95% confidence interval, 0.67-0.95; P < .001) and 0.95 (95% confidence interval, 0.86-1; P < .001) for samples tested in the acute and follow-up periods, respectively. With no false-negative results, the assay accurately ruled out S aureus in samples obtained during the convalescent phase. CONCLUSION Culture-independent diagnostics have the potential to improve care by narrowing antimicrobial therapy on the basis of the likelihood of S aureus infection. The results of this proof-of-concept study suggest that a LukAB serologic assay might be useful in the diagnosis of invasive bacterial infections, and larger-scale validation studies are warranted.
Collapse
Affiliation(s)
- James B Wood
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Nashville, Tennessee,Correspondence: J. B. Wood, Vanderbilt University Medical Center, Division of Pediatric Infectious Diseases, 1161 21st Ave South, D-7235 MCN, Nashville, TN 37232 ()
| | - Lauren S Jones
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Nashville, Tennessee
| | - Nicole R Soper
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Nashville, Tennessee
| | - Meng Xu
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York
| | - C Buddy Creech
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Nashville, Tennessee
| | - Isaac P Thomsen
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Nashville, Tennessee
| |
Collapse
|
46
|
Kim SM, Eo MY, Cho YJ, Kim YS, Lee SK. Immunoprecipitation high performance liquid chromatographic analysis of healing process in chronic suppurative osteomyelitis of the jaw. J Craniomaxillofac Surg 2017; 46:119-127. [PMID: 29191501 DOI: 10.1016/j.jcms.2017.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 09/16/2017] [Accepted: 10/19/2017] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Chronic suppurative osteomyelitis (CSO) of the jaw is one of the most difficult infectious diseases to manage, because it causes progressive bony destruction and is associated with bacterial inhabitation of the sequestra. A combination of antibiotic therapy and surgical debridement is often used to treat CSO. Nevertheless, various systemic conditions can lead to life-threatening complications. METHODS The present study aimed to explore the wound healing progress in 16 cases of CSO through protein expression analysis of postoperative exudates (POE) that were collected 6 h, 1 day, and 2 days after saucerization and/or decortication. A bony lesion was removed during surgery and then examined pathologically, and the CSO POE was examined by immunoprecipitation thus high performance chromatography (IP-HPLC). The POE at 6 h was used as a comparative control. RESULTS Histologically the CSO lesion showed a necrotic granulomatous lesion heavily infiltrated with polymorphonuclear leukocytes, macrophages, and plasma cells, admixed with multiple sequestra inhabited by bacterial colonies. The IP-HPLC analysis displayed a slight increase in innate immunity-related proteins, i.e., NFkB, TNFα, IL-1, IL-6, IL-28, and LL-37, but a gradual decrease of bacteria-related inflammatory proteins, i.e., IL-8, IL-12, CD31, CD68, and lysozyme. The angiogenesis-related proteins, i.e., VEGF-A and VEGF-C, were slightly decreased but TGF-β1 and bFGF were markedly increased on day 2. The osteogenesis-related proteins, i.e., OPG and ALP, were slightly increased, while the osteoclastogenesis-related protein, RANKL was slightly decreased compared to the control. CONCLUSION These findings indicate that the infected CSO undergoes a rapid wound healing process with active osteogenesis and a gradual decrease in bacteria-related inflammation, predicting a favorable prognosis after surgery. Moreover, IP-HPLC can be useful in monitoring the POE and wound healing processes during the postoperative period.
Collapse
Affiliation(s)
- Soung Min Kim
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea.
| | - Mi Young Eo
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea.
| | - Yun Ju Cho
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea.
| | - Yeon Sook Kim
- Department of Dental Hygiene, Cheongju University, Cheongju, South Korea.
| | - Suk Keun Lee
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung, South Korea.
| |
Collapse
|
47
|
Germline-encoded neutralization of a Staphylococcus aureus virulence factor by the human antibody repertoire. Nat Commun 2016; 7:13376. [PMID: 27857134 PMCID: PMC5120205 DOI: 10.1038/ncomms13376] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 09/28/2016] [Indexed: 11/08/2022] Open
Abstract
Staphylococcus aureus is both an important pathogen and a human commensal. To explore this ambivalent relationship between host and microbe, we analysed the memory humoral response against IsdB, a protein involved in iron acquisition, in four healthy donors. Here we show that in all donors a heavily biased use of two immunoglobulin heavy chain germlines generated high affinity (pM) antibodies that neutralize the two IsdB NEAT domains, IGHV4-39 for NEAT1 and IGHV1-69 for NEAT2. In contrast to the typical antibody/antigen interactions, the binding is primarily driven by the germline-encoded hydrophobic CDRH-2 motifs of IGHV1-69 and IGHV4-39, with a binding mechanism nearly identical for each antibody derived from different donors. Our results suggest that IGHV1-69 and IGHV4-39, while part of the adaptive immune system, may have evolved under selection pressure to encode a binding motif innately capable of recognizing and neutralizing a structurally conserved protein domain involved in pathogen iron acquisition.
Collapse
|
48
|
Moriarty TF, Kuehl R, Coenye T, Metsemakers WJ, Morgenstern M, Schwarz EM, Riool M, Zaat SA, Khana N, Kates SL, Richards RG. Orthopaedic device-related infection: current and future interventions for improved prevention and treatment. EFORT Open Rev 2016; 1:89-99. [PMID: 28461934 PMCID: PMC5367564 DOI: 10.1302/2058-5241.1.000037] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Orthopaedic and trauma device-related infection (ODRI) remains one of the major complications in modern trauma and orthopaedic surgery.Despite best practice in medical and surgical management, neither prophylaxis nor treatment of ODRI is effective in all cases, leading to infections that negatively impact clinical outcome and significantly increase healthcare expenditure.The following review summarises the microbiological profile of modern ODRI, the impact antibiotic resistance has on treatment outcomes, and some of the principles and weaknesses of the current systemic and local antibiotic delivery strategies.The emerging novel strategies aimed at preventing or treating ODRI will be reviewed. Particular attention will be paid to the potential for clinical impact in the coming decades, when such interventions are likely to be critically important.The review focuses on this problem from an interdisciplinary perspective, including basic science innovations and best practice in infectious disease. Cite this article: Moriarty TF, Kuehl R, Coenye T, et al. Orthopaedic device related infection: current and future interventions for improved prevention and treatment. EFORT Open Rev 2016;1:89-99. DOI: 10.1302/2058-5241.1.000037.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Nina Khana
- University Hospital of Basel, Switzerland
| | | | | |
Collapse
|