1
|
Gonzalez-Villalva A, Marcela RL, Nelly LV, Patricia BN, Guadalupe MR, Brenda CT, Maria Eugenia CV, Martha UC, Isabel GP, Fortoul TI. Lead systemic toxicity: A persistent problem for health. Toxicology 2025; 515:154163. [PMID: 40286900 DOI: 10.1016/j.tox.2025.154163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Lead (Pb) has been used by humans since prehistoric times to make tools due to its malleability and durability. The Roman Empire, the Industrial Revolution, and the introduction of Pb in gasoline during the 1920s contributed to increased environmental concentrations. Pb toxicity led to its removal from gasoline after several decades. However, Pb continues to be emitted from various anthropogenic sources, including but not limited to batteries, mining, foundries, smelting, e-waste recycling, and painting. Pb remains an environmental concern, as no established safe concentration for human health has been identified. Children are more susceptible to the absorption and poisoning of Pb. Occupational exposure to Pb poses a significant risk to workers and individuals living near lead industries. The primary routes of exposure are inhalation and ingestion, and bioaccumulation and biomagnification through the food chain are major sources of human exposure. This review aims to provide an overview of Pb and its systemic toxicity of Pb, including its effects on the lungs, blood, liver, kidneys, and nervous, cardiovascular, and reproductive systems. Since Pb is classified as a probable carcinogen for humans, the article also addresses genotoxicity and cancer risk. Furthermore, it reviews the most researched mechanisms of toxicity, including calcium mimicry, oxidative stress, and inflammation, along with other less-studied mechanisms. Nevertheless, the authors emphasize the importance of exploring less examined cells, tissues, and mechanisms to deepen the understanding of Pb toxicity at various concentrations, particularly in cases of chronic low-level Pb exposure, to develop better prevention and treatment strategies for lead poisoning.
Collapse
Affiliation(s)
- Adriana Gonzalez-Villalva
- Universidad Nacional Autonoma de Mexico (UNAM). Facultad de Medicina, Departamento de Biología Celular y Tisular, Mexico.
| | - Rojas-Lemus Marcela
- Universidad Nacional Autonoma de Mexico (UNAM). Facultad de Medicina, Departamento de Biología Celular y Tisular, Mexico.
| | - López-Valdez Nelly
- Universidad Nacional Autonoma de Mexico (UNAM). Facultad de Medicina, Departamento de Biología Celular y Tisular, Mexico.
| | - Bizarro-Nevares Patricia
- Universidad Nacional Autonoma de Mexico (UNAM). Facultad de Medicina, Departamento de Biología Celular y Tisular, Mexico.
| | - Morales-Ricardes Guadalupe
- Universidad Nacional Autonoma de Mexico (UNAM). Facultad de Medicina, Departamento de Biología Celular y Tisular, Mexico; Posgrado en Ciencias Biológicas. Universidad Nacional Autónoma de México, Mexico.
| | - Casarrubias-Tabarez Brenda
- Universidad Nacional Autonoma de Mexico (UNAM). Facultad de Medicina, Departamento de Biología Celular y Tisular, Mexico.
| | | | - Ustarroz-Cano Martha
- Universidad Nacional Autonoma de Mexico (UNAM). Facultad de Medicina, Departamento de Biología Celular y Tisular, Mexico.
| | - García-Peláez Isabel
- Universidad Nacional Autonoma de Mexico (UNAM). Facultad de Medicina, Departamento de Biología Celular y Tisular, Mexico.
| | - T I Fortoul
- Universidad Nacional Autonoma de Mexico (UNAM). Facultad de Medicina, Departamento de Biología Celular y Tisular, Mexico.
| |
Collapse
|
2
|
Saleh SR, Agwah RG, Elblehi SS, Ghareeb AZ, Ghareeb DA, Maher AM. Combination of 10-hydroxy-decanoic acid and ZnO nanoparticles abrogates lead acetate-induced nephrotoxicity in rats: targeting oxidative stress and inflammatory signalling. BMC Pharmacol Toxicol 2025; 26:69. [PMID: 40134036 PMCID: PMC11934796 DOI: 10.1186/s40360-025-00888-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
Lead is a heavy metal contaminant that can cause significant alterations in renal structure and function, resulting in nephrotoxicity. The fatty acids of royal jelly exhibit immunoregulatory, anticancer, anti-inflammatory, and antioxidant properties, which have garnered significant interest. The most prevalent among them is 10-hydroxydecanoic acid (10-HDA). Zinc oxide nanoparticles (ZnONPs) demonstrate a renoprotective effect, likely due to their antioxidant, anti-inflammatory, and antiapoptotic properties. This study evaluated the therapeutic efficacy of 10-HDA and ZnONPs, administered either as monotherapy or in combination, against lead-induced nephrotoxicity. Male rats were orally administered lead acetate (PbAc) for three months, followed by the administration of 10-HDA and/or ZnONPs for one month. Exposure to PbAc resulted in elevated renal lead concentration, as well as increased serum levels of urea, creatinine, and cystatin C. The condition resulted in damage to the renal parenchyma, characterised by degenerative glomeruli and tubules, and exhibited the highest lesion score. Nrf2 and HO-1 exhibited reduced expression and diminished antioxidant enzyme levels subsequent to PbAc poisoning. Additionally, there was an increase in the inflammatory and apoptotic signalling through the p-IKK/NF-κB axis. The administration of 10-HDA and ZnONPs significantly decreased renal lead levels and improved antioxidant capacity. Moreover, renal inflammatory markers (TNF-α, p-IKK, IL-1β, IL-6, and IL-8) and proapoptotic indicators (Bax and Caspase-3) were significantly suppressed. The combined therapy demonstrated a synergistic effect (combination index < 1). In conclusion, the results indicated that 10-HDA and ZnONPs have the potential to be a supplement or even an effective treatment to alleviate the adverse effects of lead poisoning. This is potentially attributed to their potent ameliorative actions against oxidation, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Samar R Saleh
- Bio-Screening and Preclinical Trial Lab, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Raheel G Agwah
- Bio-Screening and Preclinical Trial Lab, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Samar S Elblehi
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22758, Egypt
| | - Ahmed Z Ghareeb
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications (SRTA-City), New Borg El Arab, Alexandria, Egypt
| | - Doaa A Ghareeb
- Bio-Screening and Preclinical Trial Lab, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications (SRTA-City), New Borg El Arab, Alexandria, Egypt.
- Research Projects Unit, Pharos University in Alexandria, Canal El Mahmoudia Street, Beside Green Plaza Complex, Alexandria, 21648, Egypt.
| | - Adham M Maher
- Bio-Screening and Preclinical Trial Lab, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| |
Collapse
|
3
|
Yao S, Xu D. Relationships between blood concentrations of cadmium, lead, mercury, selenium, and manganese and the risk of chronic kidney disease: a cross-sectional study based on NHANES 2011-2018. Arch Med Sci 2024; 20:1822-1830. [PMID: 39967945 PMCID: PMC11831350 DOI: 10.5114/aoms/181508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2025] Open
Abstract
Introduction Currently, knowledge on relationships between blood concentrations of cadmium, lead, mercury, selenium, and manganese and the risk of chronic kidney disease (CKD) is lacking. The aim of the study was to ex-plore the relationships between blood concentrations of heavy metals and the occurrence of CKD. Material and methods Data from the National Health and Nutrition Examination Survey (NHANES) 2011-2018 were used to investigate the relationships between blood concentrations of mercury, lead, cadmium, selenium, and manganese and the occurrence of CKD using a weighted logistic recession analysis. Restrictive cubic spline analysis was applied to assess the dose-response relationship. The sample population was divided into four groups based on the quartiles of heavy metal concentrations (Q1: < 25th percentile, Q2: 25th-50th percentile, Q3: 50th-75th percentile, Q4: ≥ 75th percentile). Results A total of 15,450 participants were included. With regard to blood lead concentrations, the odds ratio (OR) for CKD in Q4 relative to Q1 was 1.36 (95% confidence interval [CI]: 1.20-1.61), indicating an increased oc-currence of CKD in Q4. With regard to blood cadmium concentrations, the ORs for CKD in Q2, Q3, and Q4 were 1.06 (95% CI: 0.92-1.22), 1.21 (95% CI: 1.05-1.39), and 1.52 (95% CI: 1.31-1.76), respectively. Non-linear dose-response relationships were identified between blood cadmium and lead concentrations and the occurrence of CKD. Further, blood lead and cadmium concentrations showed statistically significant interaction effects with age, hypertension, and obesity on CKD. Conclusions Higher cadmium and lead concentrations in blood are asso-ciated with increased occurrence of CKD, especially in older adults, people with hypertension, and people with obesity.
Collapse
Affiliation(s)
- Shenghua Yao
- Department of Nephrology, Yuyao People’s Hospital, Ningbo, China
| | - Dan Xu
- Department of Geriatrics, Yuyao People’s Hospital, Ningbo, China
| |
Collapse
|
4
|
Pálešová N, Řiháčková K, Kuta J, Pindur A, Šebejová L, Čupr P. Internal Flames: Metal(loid) Exposure Linked to Alteration of the Lipid Profile in Czech Male Firefighters (CELSPAC-FIREexpo Study). ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:679-686. [PMID: 39006815 PMCID: PMC11238583 DOI: 10.1021/acs.estlett.4c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 07/16/2024]
Abstract
Increased wildfire activity increases the demands on fire rescue services and firefighters' contact with harmful chemicals. This study aimed to determine firefighters' exposure to toxic metal(loid)s and its association with the lipid profile. CELSPAC-FIREexpo study participants (including 110 firefighters) provided urine and blood samples to quantify urinary levels of metal(loid)s (arsenic, cadmium (Cd), mercury, and lead (Pb)), and serum lipid biomarkers (cholesterol (CHOL), low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), and triglycerides (TG)). The associations were investigated by using multiple linear regression and Bayesian weighted quantile sum (BWQS) regression. Higher levels of Pb were observed in firefighters. Pb was positively associated with CHOL and TG. Cd was negatively associated with HDL. In the BWQS model, the mixture of metal(loid)s was associated positively with CHOL (β = 14.75, 95% CrI = 2.45-29.08), LDL (β = 15.14, 95% CrI = 3.39-29.35), and TG (β = 14.79, 95% CrI = 0.73-30.42), while negatively with HDL (β = -14.96, 95% CrI = -25.78 to -1.8). Pb emerged as a key component in a metal(loid) mixture. The results suggest that higher exposure to lead and the mixture of metal(loid)s is associated with the alteration of the lipid profile, which can result in an unfavorable cardiometabolic profile, especially in occupationally exposed firefighters.
Collapse
Affiliation(s)
- Nina Pálešová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Katarína Řiháčková
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Jan Kuta
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Aleš Pindur
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
- Faculty of Sports Studies, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
- Training Centre of Fire Rescue Service, Fire Rescue Service of the Czech Republic, Ministry of the Interior, Trnkova 85, 628 00 Brno, Czech Republic
| | - Ludmila Šebejová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Pavel Čupr
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| |
Collapse
|
5
|
Pathak A, Singh SP, Tiwari A. Elucidating hepatoprotective potential of Cichorium intybus through multimodal assessment and molecular docking analysis with hepatic protective enzymes. Food Chem Toxicol 2024; 187:114595. [PMID: 38554841 DOI: 10.1016/j.fct.2024.114595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
This study employed a comprehensive approach to validate the hepatoprotective potential of phytoconstituents from Cichorium intybus leaves. In vitro, in vivo and in silico techniques were used to confirm the protective effects on liver enzymes. In vitro antioxidant assessment revealed the highest potential in the hydroethanolic leaf extract compared to aqueous and methanolic extracts. The study further investigated the ameliorative efficacy of the hydro-ethanolic extract (HECL) in male Wistar rats exposed to lead (50 mg/kg b wt.) and nickel (4.0 mg/kg b wt.) individually and in combination for 90 days. HECL at 250 mg/kg b wt. mitigated hepatic injury, oxidative stress, DNA fragmentation, ultrastructural and histopathological alterations induced by lead and nickel. Molecular docking explored the interaction of 28 phytoconstituents from C. intybus with hepatoprotective protein targets. Cyanidin and rutin exhibited the highest affinity for liver corrective enzymes among the screened phytoconstituents. These findings underscore the liver corrective potential of C. intybus leaf phytoconstituents, shedding light on their molecular interactions with hepatoprotective targets. This research contributes valuable insights into the therapeutic applications of C. intybus in liver protection.
Collapse
Affiliation(s)
- Abhishek Pathak
- College of Veterinary & Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar, 263145, US Nagar, Uttarakhand, India.
| | - Satya Pal Singh
- College of Veterinary & Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar, 263145, US Nagar, Uttarakhand, India
| | - Apoorv Tiwari
- College of Basic Science and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, 263145, US Nagar, Uttarakhand, India
| |
Collapse
|
6
|
Ceramella J, De Maio AC, Basile G, Facente A, Scali E, Andreu I, Sinicropi MS, Iacopetta D, Catalano A. Phytochemicals Involved in Mitigating Silent Toxicity Induced by Heavy Metals. Foods 2024; 13:978. [PMID: 38611284 PMCID: PMC11012104 DOI: 10.3390/foods13070978] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/30/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Heavy metals (HMs) are natural elements present in the Earth's crust, characterised by a high atomic mass and a density more than five times higher than water. Despite their origin from natural sources, extensive usage and processing of raw materials and their presence as silent poisons in our daily products and diets have drastically altered their biochemical balance, making them a threat to the environment and human health. Particularly, the food chain polluted with toxic metals represents a crucial route of human exposure. Therefore, the impact of HMs on human health has become a matter of concern because of the severe chronic effects induced by their excessive levels in the human body. Chelation therapy is an approved valid treatment for HM poisoning; however, despite the efficacy demonstrated by chelating agents, various dramatic side effects may occur. Numerous data demonstrate that dietary components and phytoantioxidants play a significant role in preventing or reducing the damage induced by HMs. This review summarises the role of various phytochemicals, plant and herbal extracts or probiotics in promoting human health by mitigating the toxic effects of different HMs.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (A.C.D.M.); (G.B.); (A.F.); (D.I.)
| | - Azzurra Chiara De Maio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (A.C.D.M.); (G.B.); (A.F.); (D.I.)
| | - Giovanna Basile
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (A.C.D.M.); (G.B.); (A.F.); (D.I.)
| | - Anastasia Facente
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (A.C.D.M.); (G.B.); (A.F.); (D.I.)
| | - Elisabetta Scali
- Unit of Dermatology, Spoke Hospital, Locri, 89044 Reggio Calabria, Italy;
| | - Inmaculada Andreu
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Unidad Mixta de Investigación UPV-IIS La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando, Abril Martorell 106, 46026 Valencia, Spain
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (A.C.D.M.); (G.B.); (A.F.); (D.I.)
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (A.C.D.M.); (G.B.); (A.F.); (D.I.)
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy;
| |
Collapse
|
7
|
Lin HW, Lee HL, Shen TJ, Ho MT, Lee YJ, Wang I, Lin CP, Chang YY. Pb(NO 3 ) 2 induces cell apoptosis through triggering of reactive oxygen species accumulation and disruption of mitochondrial function via SIRT3/SOD2 pathways. ENVIRONMENTAL TOXICOLOGY 2024; 39:1294-1302. [PMID: 37948429 DOI: 10.1002/tox.24019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 11/12/2023]
Abstract
Lead (Pb) is nonbiodegradable and toxic to the lungs. To investigate the potential mechanisms of Pb-induced reactive oxygen species (ROS) accumulation and cell death in the lungs, human non-small lung carcinoma H460 cells were stimulated with Pb(NO3 )2 in this study. The results showed that Pb(NO3 )2 stimulation increased cell death by inducing cell apoptosis which showed a reduced Bcl-2 expression and an enhanced caspase 3 activation. Pb(NO3 )2 also caused the production of H2 O2 in H460 cells that triggering the buildup of ROS and mitochondrial membrane potential loss. We found that Pb(NO3 )2 modulates oxidoreductive activity through reduced the glutathione-disulfide reductase and glutathione levels in Pb(NO3 )2 -exposed H460 cells. Furthermore, the superoxide dismutase (SOD) upstream molecule sirtuin 3 (SIRT3) was increased with Pb(NO3 )2 dose. Collectively, these results demonstrate that Pb(NO3 )2 promotes lung cell death through SIRT3/SOD-mediated ROS accumulation and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Hui-Wen Lin
- Department of Optometry, Asia University, Taichung, Taiwan
| | - Hsiang-Lin Lee
- Department of Surgery, School of Medicine, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan
| | - Ting-Jing Shen
- Department of Microbiology and Immunology, School of Medicine, Chung Shan Medical University, and Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Meng-Ting Ho
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Ju Lee
- Department of Pathology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pathology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Inga Wang
- Rehabilitation Sciences & Technology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Ching-Pin Lin
- Division of Hematology and Gastroenterology, Department of internal Medicine, School of Medicine, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan
| | - Yuan-Yen Chang
- Department of Surgery, School of Medicine, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan
- Department of Microbiology and Immunology, School of Medicine, Chung Shan Medical University, and Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
8
|
Asiwe JN, Kolawole TA, Buduburisi BR, Adebayo OG, Onuoha OG, Inegbenehi S, Ademilusi EO, Dapper DV. Cabbage juice supplementation abrogates Lead acetate-induced haematological and haemorheological imbalances in male Wistar rat. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:1331-1340. [PMID: 35687076 DOI: 10.1080/09603123.2022.2086973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Lead is a hazardous naturally found heavy metal that has been reported to induce haematological alterations. Whether cabbage, a commonly consumed vegetable rich in antioxidants and anticancer compounds, can mitigate these alterations remains unknown. This study investigated the protective effect of cabbage juice against Lead-induced haematological changes. Twenty (20) male Wistar rats were randomly selected into four groups (n = 5) and given distilled water (1 ml/100 g b.wt), Lead acetate (25 mg/kg b.wt), Cabbage juice (1 ml/100 g b.wt), and Lead acetate with Cabbage juice. All treatments were given orally for 28 days. Lead exposure induces normocytic normochromic anemia with substantial leukocytosis, lymphocytopenia, and hyperfibrinogenemia. Lead-intoxicated animals had significantly higher haemolysis and prolonged clotting times. However, cabbage juice reverses these adverse haematological and haemorheological changes induced by Lead acetate. Conclusively, cabbage juice demonstrated antioxidant, anti-inflammatory, anti-thrombotic, and immunomodulatory properties, as well as the ability to protect the red blood cell membrane from damage caused by Lead-induced osmotic stress.
Collapse
Affiliation(s)
- Jerome Ndudi Asiwe
- Department of Physiology, PAMO University of Medical Sciences, Port Harcourt, Nigeria
- Department of Physiology, University of Ibadan, Ibadan, Nigeria
| | | | | | | | | | - Saviour Inegbenehi
- Department of Biochemistry, PAMO University of Medical Sciences, Port Harcourt, Nigeria
| | | | | |
Collapse
|
9
|
Caetano ELA, Frattes CDC, Segato TCM, Leite FG, Pickler TB, de Oliveira Junior JM, Jozala AF, Grotto D. Protective effect of Agaricus bisporus mushroom against maternal and fetal damage induced by lead administration during pregnancy in rats. Birth Defects Res 2023; 115:1424-1437. [PMID: 37421350 DOI: 10.1002/bdr2.2218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/26/2023] [Accepted: 06/16/2023] [Indexed: 07/10/2023]
Abstract
INTRODUCTION Lead (Pb) is a toxic pollutant, which can affect different tissues of the human body. The use of natural elements, as medicinal mushroom can reduce the toxic effects of Pb. OBJECTIVE We evaluated, through preclinical tests, the oral co exposures to mushroom Agaricus bisporus (Ab) by gavage and Pb in drinking water, and the capability of Ab be a protective agent for both pregnant rats and their fetuses. METHODS Female Wistar rats were divided into four groups (n = 5/group): Group I-Control; Group II-Ab 100 mg/kg; Group III-Pb 100 mg/L; Group IV-Ab +Pb -100 mg/kg +100 mg/L. Exposure was performed until the 19th day of gestation. On the 20th day, pregnant rats were euthanized, and the outcomes evaluated were weight gain; hematological profile; biochemical markers; oxidative stress markers; reproductive capacity; and embryo fetal development. RESULTS The characterization of mushrooms reveals them to be a valuable source of nutrients. However, Pb ingestion resulted in reduced weight gain and negative impacts on hematological and biochemical parameters. Fortunately, co administration of mushrooms helped to mitigate these negative effects and promote recovery. The mushroom also showed antioxidant activity, improving parameters of oxidative stress. In addition, Ab partially recovered the damage in fetal morphology and bone parameters. CONCLUSION Our findings indicated that the co administration of Ab improved the toxicity caused by Pb, and the mushroom could be used as a natural alternative as a protective/chelator agent.
Collapse
Affiliation(s)
| | | | | | - Fernanda Gomes Leite
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Programa de Pós-Graduação em Toxicologia, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
10
|
Mansour LAH, Elshopakey GE, Abdelhamid FM, Albukhari TA, Almehmadi SJ, Refaat B, El-Boshy M, Risha EF. Hepatoprotective and Neuroprotective Effects of Naringenin against Lead-Induced Oxidative Stress, Inflammation, and Apoptosis in Rats. Biomedicines 2023; 11:biomedicines11041080. [PMID: 37189698 DOI: 10.3390/biomedicines11041080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Naringenin (NRG) is one of the most important naturally occurring flavonoids, predominantly found in some edible fruits, such as citrus species and tomatoes. It has several biological activities, such as antioxidant, antitumor, antiviral, antibacterial, anti-inflammatory, antiadipogenic, and cardioprotective effects. The heavy metal lead is toxic and triggers oxidative stress, which causes toxicity in many organs, including the liver and brain. This study explored the potential protective role of NRG in hepato- and neurotoxicity caused by lead acetate in rats. Four groups of ten male albino rats were included: group 1 was a control, group 2 was orally treated with lead acetate (LA) at a dose of 500 mg/kg BW, group 3 was treated with naringenin (NRG) at a dose of 50 mg/kg BW, and group 4 was treated with 500 mg/kg LA and 50 mg/kg NRG for 4 weeks. Then, blood was taken, the rats were euthanized, and liver and brain tissues were collected. The findings revealed that LA exposure induced hepatotoxicity with a significant increase in liver function markers (p < 0.05). In addition, albumin and total protein (TP) and the albumin/globulin ratio (A/G ratio) (p < 0.05) were markedly lowered, whereas the serum globulin level (p > 0.05) was unaltered. LA also induced oxidative damage, demonstrated by a significant increase in malonaldehyde (MDA) (p < 0.05), together with a pronounced antioxidant system reduction (SOD, CAT, and GSH) (p < 0.05) in both liver and brain tissues. Inflammation of the liver and brain caused by LA was indicated by increased levels of nuclear factor kappa beta (NF-κβ) and caspase-3, (p < 0.05), and the levels of B-cell lymphocyte-2 (BCL-2) and interleukin-10 (IL-10) (p < 0.05) were decreased. Brain tissue damage induced by LA toxicity was demonstrated by the downregulation of the neurotransmitters norepinephrine (NE), dopamine (DA), serotonin (5-HT), and creatine kinase (CK-BB) (p < 0.05). Additionally, the liver and brain of LA-treated rats displayed notable histopathological damage. In conclusion, NRG has potential hepato- and neuroprotective effects against lead acetate toxicity. However, additional research is needed in order to propose naringenin as a potential protective agent against renal and cardiac toxicity mediated by lead acetate.
Collapse
Affiliation(s)
- Lubna A. H. Mansour
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Gehad E. Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Fatma M. Abdelhamid
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Talat A. Albukhari
- Department of Immunology and Hematology, Faculty of Medicine, Umm Al-Qura University, Makkah P.O. Box 6165, Saudi Arabia
| | - Samah J. Almehmadi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Mohamed El-Boshy
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Engy F. Risha
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
11
|
Fehaid A, Al-Ghamdi MS, Alzahrani KJ, Theyab A, Al-Amer OM, Al-Shehri SS, Algahtani M, A Oyouni AA, Alnfiai MM, Aly MH, Alsharif KF, Albrakati A, Kassab RB, Althagafi HA, Alharthi F, Abdel Moneim AE, Lokman MS. Apigenin protects from hepatorenal damage caused by lead acetate in rats. J Biochem Mol Toxicol 2023; 37:e23275. [PMID: 36550699 DOI: 10.1002/jbt.23275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/25/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
Exposure to lead (Pb) is associated with serious health problems including hepatorenal toxicity. Apigenin is a natural-sourced flavonoid with promising antioxidant and anti-inflammatory effects. In this research, we investigated the potential protective role of apigenin against lead acetate (PbAc)-induced hepatorenal damage. Thus, this experiment studied the exposure of male Wistar Albino rats to apigenin and/or PbAc and their effects in comparison to the control rats. Apigenin administration decreased the levels of Pb and prevented the histopathological deformations in liver and kidney tissues following PbAc exposure. This was confirmed by the normalized levels of liver and kidney function markers. Additionally, apigenin inhibited significantly oxidative reactions through upregulating Nrf2 and HO-1, and activating their downstreamed antioxidants accompanied by a marked depletion of pro-oxidants. Moreover, apigenin decreased the elevated pro-inflammatory cytokines and inhibited cell loss in liver and kidney tissues in response to PbAc intoxication in both tissues. The obtained results demonstrated that apigenin could be used to attenuate the molecular, biochemical, and histological alterations associated with Pb exposure due to its potent antioxidant, anti-inflammatory, and antiapoptotic effects.
Collapse
Affiliation(s)
- Alaa Fehaid
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University, Dakahlia, Egypt
| | - Mohammad S Al-Ghamdi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Abdulrahman Theyab
- Department of Laboratory Medicine, Security Forces Hospital, Mecca, Saudi Arabia
| | - Osama M Al-Amer
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia.,Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Saad S Al-Shehri
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Mohammad Algahtani
- Department of Laboratory Medicine, Security Forces Hospital, Mecca, Saudi Arabia
| | - Atif Abdulwahab A Oyouni
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia.,Department of Biology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mrim M Alnfiai
- Department of Information Technology, College of Computers and Information Technology, Taif University, Taif, Saudi Arabia
| | - Mohamed H Aly
- Internal Medicine Department, Security Forces Hospital, Mekkah, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.,Department of Biology, Faculty of Science and Arts, Al-Baha University, Al-Baha, Saudi Arabia
| | - Hussam A Althagafi
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Al-Baha, Saudi Arabia
| | - Fahad Alharthi
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Maha S Lokman
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdul Aziz University, Alkharj, Saudi Arabia
| |
Collapse
|
12
|
Hu W, Li G, He J, Zhao H, Zhang H, Lu H, Liu J, Huang F. Association of exposure to multiple serum metals with the risk of chronic kidney disease in the elderly: a population-based case-control study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17245-17256. [PMID: 36194333 DOI: 10.1007/s11356-022-23303-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
In the world, chronic kidney disease (CKD) has been recognized as one of the critical public health problems, and the prevalence is higher in the elderly people. However, there are few studies on the association between exposure to multiple serum metal levels and CKD. A case-control study, we established, for elderly people in Anhui Province, China, to explore the effects of different metals and analyze the effect of mixed exposure on CKD. In this study, 287 cases of CKD and 287 controls were selected in the elderly health physical examination project in Tongling City, Anhui Province. Questionnaire survey, physical examination, and blood collection were conducted. Graphite furnace atomic absorption spectrometry (GFAAS) and inductively coupled plasma optical emission spectrometry (ICP-OES) were used to measure the concentration of serum metals. After selecting by least absolute shrinkage and selection operator (LASSO), 5 metals were brought into the multi-metal model. After adjusting all potential covariates additionally, the concentrations of lead (Pb), cadmium (Cd), cobalt (Co), and manganese (Mn) were significantly associated with CKD risk, whereas Pb, Se, and Cd had significant non-linearity with CKD. Besides, patients with highest quartiles of cobalt (Co), lead (Pb), and manganese (Mn) were 1.64, 1.39, and 0.64 times more possible to have CKD, respectively, as compared with the lowest levels. In the Bayesian kernel machine regression (BKMR) model, cadmium (Cd) had a combined effect with lead (Pb) possibly. This study suggested that the CKD risk was associated with exposure of multiple metals in elderly people. The underlying mechanisms of serum metals and CKD need more experimental and prospective studies to elucidate.
Collapse
Affiliation(s)
- Wenlei Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Guoao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Jialiu He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Huanhuan Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Hanshuang Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Huanhuan Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Jianjun Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Fen Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China.
| |
Collapse
|
13
|
Lin CY, Hsu SHJ, Chen CW, Wang C, Sung FC, Su TC. Association of Urinary Lead and Cadmium Levels, and Serum Lipids with Subclinical Arteriosclerosis: Evidence from Taiwan. Nutrients 2023; 15:nu15030571. [PMID: 36771277 PMCID: PMC9919350 DOI: 10.3390/nu15030571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Exposure to lead and cadmium has been linked to changes in lipid metabolism and the development of arteriosclerosis, but the role of lipoprotein profiles in this relationship is not well understood, including the potential role of novel lipid biomarkers. METHODS In this study, we enrolled 736 young Taiwanese subjects aged 12 to 30 years to assess the correlation between urine levels of lead and cadmium, lipoprotein profiles, and carotid intima-media thickness (CIMT). RESULTS Higher levels of lead and cadmium were significantly associated with higher levels of low-density lipoprotein cholesterol (LDL-C), small dense LDL-C (sdLDL-C), LDL-triglyceride (LDL-TG), and CIMT. Participants with higher levels of lead and cadmium had the highest mean values of CIMT, LDL-C, sdLDL-C, and LDL-TG. In a structural equation model, lead had a direct and indirect association with CIMT through LDL-C and sdLDL-C, whereas cadmium had a direct association with CIMT and an indirect association through LDL-C. CONCLUSION Our results suggest higher levels of lead and cadmium are associated with abnormal lipid profiles and increased CIMT. These heavy metals could have additive effects on lipids and CIMT, and the relationship between them may be mediated by lipoprotein levels. Further research is needed to determine the causal relationship.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Sandy Huey-Jen Hsu
- Department of Laboratory Medicine, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei 100, Taiwan
| | - Ching-Way Chen
- Department of Cardiology, National Taiwan University Hospital, Yunlin Branch, Yunlin 640, Taiwan
| | - Chikang Wang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Fung-Chang Sung
- Department of Health Services Administration, College of Public Health, China Medical University, Taichung 404, Taiwan
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 413, Taiwan
| | - Ta-Chen Su
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
- Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei 100, Taiwan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100, Taiwan
- The Experimental Forest, National Taiwan University, Nantou 558, Taiwan
- Correspondence: ; Tel.: +886-2-23123456 (ext. 67183); Fax: +886-2-23712361
| |
Collapse
|
14
|
Zhao M, Yin G, Xu J, Ge X, Li A, Mei Y, Wu J, Liu X, Wei L, Xu Q. Independent, combine and interactive effects of heavy metal exposure on dyslipidemia biomarkers: A cross-sectional study in northeastern China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114494. [PMID: 36608569 DOI: 10.1016/j.ecoenv.2022.114494] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Dyslipidemia is a common disease in the older population and represents a considerable disease burden worldwide. Epidemiological and experimental studies have indicated associations between heavy metal exposure and dyslipidemia; few studies have investigated the effects of heavy metal mixture and interactions between metals on dyslipidemia. We recruited 1121 participants living in heavy metal-contaminated and control areas in northeast China from a cross-sectional survey (2017-2019). Urinary metals including chromium (Cr), cadmium (Cd), lead (Pb), and manganese (Mn) and dyslipidemia biomarkers, namely triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) levels, were measured. The generalized linear model (GLM) was used to explore the association of a single metal with dyslipidemia biomarkers. Bayesian kernel machine regression (BKMR) and multivariable linear regression were performed to explore the overall effect of metal mixture and the interaction between metals on dyslipidemia. Heavy metal mixture was positively associated with LDL-C, TC, and TG and negatively with HDL-C. In multivariable linear regression, Pb and Cd exhibited a synergistic association with LDL-C in the participants without hyperlipemia. Mn-Cd and Pb-Cr also showed a synergistic association with increasing the level of LDL-C in subjects without hyperlipemia. Cd-Cr showed an antagonistic association with HDL-C, respectively. Cr-Mn exhibited an antagonistic association with decreased HDL-C and TG levels. No significant interaction was noted among the three metals. Our study indicated that exposure to heavy metals is associated with dyslipidemia biomarkers and the presence of potential synergistic or antagonistic interactions between the heavy metals.
Collapse
Affiliation(s)
- Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Guohuan Yin
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Xiaoyu Ge
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Jingtao Wu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Xiaolin Liu
- Department of Epidemiology and Biostatistics, Jinzhou Medical University, Jinzhou 121001, Liaoning, China
| | - Lanping Wei
- Jinzhou Central Hospital, Jinzhou 121001, Liaoning, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
15
|
Asiwe JN, Daubry TME, Okon IA, Akpotu AE, Adagbada EO, Eruotor H, Agbugba LC, Buduburisi BR. Ginkgo biloba Supplement Reverses Lead (II) Acetate-Induced Haematological Imbalances, Hepatic and Renal Dysfunctions in Male Wistar Rat. Biol Trace Elem Res 2022; 200:5134-5144. [PMID: 35037154 DOI: 10.1007/s12011-022-03098-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/02/2022] [Indexed: 11/28/2022]
Abstract
Lead is a heavy metal abundant in nature that causes haematological imbalances, and hepatic and renal dysfunction, and this imbalance has been linked to oxidative stress. Several reports have shown that natural products are implicated in ameliorating metal poisonings. Ginkgo biloba is a flavonoid-rich natural herbal supplement with several pharmacological properties. The present study investigated effect of Ginkgo biloba supplement (GBS) on lead-induced toxicity. Animals were given a lead dose of 25 mg/kg for 14 days orally and then given Ginkgo biloba supplements of 50 mg/kg and 100 mg/kg orally for 14 days. Animals given GBS had significantly improved haematological and rheological parameters. GBS showed a protective impact in terms of improved kidney and liver histology, anti-oxidant enzyme activity (CAT, SOD, GSH, and MDA), organ function indices, and a lower rate of erythrocyte osmotic fragility. Conclusively, Ginkgo biloba supplementation attenuated lead toxicity by normalization of haematological imbalances, and hepatic and renal dysfunction as well as maintaining erythrocyte membrane integrity.
Collapse
Affiliation(s)
- Jerome Ndudi Asiwe
- Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, Nigeria.
- Department of Physiology, University of Ibadan, Ibadan, Nigeria.
| | | | - Idara Asuquo Okon
- Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | | | | | - Harrison Eruotor
- Department of Physiology, University of Port-Harcourt, Port-Harcourt, Nigeria
| | - Linda Chinyere Agbugba
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | |
Collapse
|
16
|
Anđelković M, Djordjevic AB, Javorac D, Baralić K, Đukić-Ćosić D, Repić A, Zeljković A, Vekić J, Čolaković N, Bulat Z. Possible role of lead in breast cancer - a case-control study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:65211-65221. [PMID: 35488155 DOI: 10.1007/s11356-022-20439-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Numerous risk factors have been associated with breast cancer (BC), exposure to metalloestrogen, like lead, being such. Since lead involvement in BC is still equivocal, we focused on lead levels in three compartments of BC patients, blood, healthy, and malignant tissues. Also, as the cholesterol role in cancer development was recognized at the beginning of the twentieth century and led to involvement in lipid profile impairment, we further extend our research on lipid profile and enzymes responsible for maintaining lipid balance in BC patients. Fifty-five women diagnosed with BC were enrolled in the study. Forty-one healthy women represented the control group. Lead levels in blood, healthy surrounding and malignant tissue, and lipid profile parameters in serum, were determined. Higher lead levels were obtained in surrounding healthy tissue samples compared to cancerous tissue samples, while blood lead levels of BC women did not differ significantly from the control group. The altered lipid profile scheme in women diagnosed with breast cancer contained significantly higher triglycerides levels (P < 0.001). Moreover, logistic regression analysis revealed triglycerides as a significant predictor of BC (OR = 2.6; P < 0.01). Although statistical significance was missing for lower paraoxonase-1 (PON-1) activities observed in BC women, multivariate logistic regression singled out PON-1 activities as significant BC predictors. The result of the present study further indicated oxidative status imbalance and tissue levels bioelements perturbation. Obtained results in the present study propose possible lead involvement in BC onset accompanied with bioelements redistribution and oxidative stress occurrence.
Collapse
Affiliation(s)
- Milena Anđelković
- University Hospital Medical Center Kosovska Mitrovica, Kosovska Mitrovica, 38220, Serbia
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, Belgrade, 11221, Serbia
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, Belgrade, 11221, Serbia
| | - Dragana Javorac
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, Belgrade, 11221, Serbia.
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, Belgrade, 11221, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, Belgrade, 11221, Serbia
| | - Aleksandra Repić
- Serbian Institute for Occupational Health "Dr Dragomir Karajović", Belgrade, Serbia
| | - Aleksandra Zeljković
- Department of Medical Biochemistry, University of Belgrade - Faculty of Pharmacy, Belgrade, 11221, Serbia
| | - Jelena Vekić
- Department of Medical Biochemistry, University of Belgrade - Faculty of Pharmacy, Belgrade, 11221, Serbia
| | - Nataša Čolaković
- University Hospital Medical Center Bezanijska kosa, Belgrade, 11080, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, 11211, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, Belgrade, 11221, Serbia
| |
Collapse
|
17
|
Ilesanmi OB, Adeogun EF, Odewale TT, Chikere B. Lead exposure-induced changes in hematology and biomarkers of hepatic injury: protective role of TrévoTM supplement. Environ Anal Health Toxicol 2022; 37:e2022007-0. [PMID: 35878915 PMCID: PMC9314204 DOI: 10.5620/eaht.2022007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 03/28/2022] [Indexed: 11/11/2022] Open
Abstract
Lead exposure has been linked to health challenges involving multiple organ failure. More than fifty percent of lead present in the human body is accumulated in the liver causing hepatic injury. A major mechanism of lead toxicity is oxidative stress. TrévoTM is a nutritional supplement with numerous bioactive natural products with detoxifying and antioxidant properties. This study was designed to investigate the hepatoprotective effects of TrévoTM dietary supplements against lead-hepatotoxicity in male Wistar rats. Thirty-five healthy animals were divided into five groups of seven each as follows: Group I=control; II=15 mg/kg of lead acetate (PbA); III= 2 mL/kg of TrévoTM + PbA; IV= 5 mL/kg of TrévoTM + PbA;V=5 mL/kg of TrévoTM . Animals were orally treated with TrévoTM for two days before co-administration with PbA intraperitoneally for 12 consecutive days. Animals were sacrificed 24 h after the last administration and blood were collected via cardiac puncture and processed for hematological parameters and assessment of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and albumin (ALB). The liver was excised and processed for markers of oxidative stress and histopathological examination. Intraperitoneal administration of 15 mg/kg of PbA caused a significant increase in serum concentration of AST, ALT, while the concentration of ALB was significantly decreased (P<0.001). PbA caused a significant reduction in packed cell volume, hemoglobin while the total white blood cell count, neutrophils, lymphocytes, monocytes, eosinophils, and basophils were increased. Oxidative stress was significantly pronounced in the liver of rats exposed to PbA as observed in the high concentration of malonedialdehyde, decreased concentration of glutathione, the activity of catalase, superoxide dismutase, and glutathione-S-transferase. Pretreatment with TrévoTM was able to significantly prevent the anemic, oxidative damage, and hepatic injury initiated by PbA. Histological examination also corroborated the biochemical results. In conclusion, the study reveals that TrévoTM is effective in attenuating PbA-induced hepatotoxicity in male Wistar rats.
Collapse
Affiliation(s)
- Omotayo B. Ilesanmi
- Department of Biochemistry, Faculty of Science, Federal University Otuoke, Bayelsa State,
Nigeria
- Correspondence:
| | - Esther F. Adeogun
- Department of Biochemistry, Faculty of Science, Federal University Otuoke, Bayelsa State,
Nigeria
| | - Temitope T. Odewale
- Department of Biochemistry, Faculty of Life Science, University of Benin, Benin, Edo State,
Nigeria
| | - Bruno Chikere
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota Ogun State, Nigeria. Covenant Applied Informatics and Communication-African Center of Excellence (Capic Ace), Covenant University
| |
Collapse
|
18
|
Asiwe JN, Kolawole TA, Anachuna KK, Ebuwa EI, Nwogueze BC, Eruotor H, Igbokwe V. Cabbage juice protect against lead-induced liver and kidney damage in male Wistar rat. Biomarkers 2022; 27:151-158. [PMID: 34974788 DOI: 10.1080/1354750x.2021.2022210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AIM Liver and kidney has been implicated in Lead toxicity and this has been linked to oxidative damage. On the other hand, cabbage is one of the widely consumed vegetables with a plethora of health benefits. This present study investigated the protective effect of cabbage juice on lead-induced toxicity in male Wistar rats. METHODS Twenty male Wistar rats were randomly divided into four groups (n = 5) and were treated with distilled water (1 ml/100 g b.wt), Lead acetate (25 mg/kg b.wt), cabbage juice (1 ml/100 g b.wt) and Lead acetate plus cabbage juice respectively. All treatments were administered orally for 28 days. Following euthanasia, blood was collected and serum decanted for biochemical assay and liver and kidney tissues were harvested, prepared for antioxidant activity and histological study. RESULT Cabbage juice significantly attenuated Lead-induced liver and kidney dysfunction by lowering serum concentrations of urea, creatinine, ALP, AST and ALT. Antioxidants (SOD, CAT, GSH) were also upregulated in liver and kidney tissues. Cabbage juice restored the histoarchitectural changes caused by lead intoxication. CONCLUSION Cabbage juice consumption protected the liver and kidney against lead-induced toxicity by enhancing in vivo anti-oxidant defense system.
Collapse
Affiliation(s)
- Jerome Ndudi Asiwe
- Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, Nigeria.,Department of Physiology, University of Ibadan, Ibadan, Nigeria
| | | | | | | | | | - Harrison Eruotor
- Department of Biochemistry, University of Port-Harcourt, Port-Harcourt, Nigeria
| | - Vincent Igbokwe
- Department of Physiology, PAMO University of Medical Sciences, Port-Harcourt, Nigeria.,Department of Physiology, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
19
|
Sharma R, Jindal R, Faggio C. Impact of cypermethrin in nephrocytes of freshwater fish Catla catla. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 88:103739. [PMID: 34506907 DOI: 10.1016/j.etap.2021.103739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/31/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
The kidney of Catla catla, chronically exposed to sub-lethal concentrations (0.24 μg/L and 0.41 μg/L) of cypermethrin revealed a significant elevation in the activity of antioxidants superoxide dismutase (SOD), catalase (CAT), glutathione-s-transferase (GST) and reduced glutathione (GSH) after 15 days, followed by a decline of up to 45 days. Lipid peroxidation (LPO) remained elevated throughout the exposure duration. Histology presented proliferated haematopoietic tissue, tubular and glomerular degeneration. The maximum increase in the mean degree of tissue change (DTC) was observed on the 45th day of treatment. Ultra-structure study depicted cytoplasmic vacuolation, fragmented RER, the proliferation of lysosomes, mitochondrial degeneration, and degenerative changes in the epithelial lining of renal tubules. Principal component analysis (PCA) of various biomarkers generated two components PCI (SOD, GST, GSH, LPO and DTC) and PCII (CAT). These findings suggest that long term exposure to cypermethrin can lead to various pathological alterations in the fish kidney which in turn might interfere with normal renal excretory mechanism.
Collapse
Affiliation(s)
- Ritu Sharma
- Aquatic Biology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Rajinder Jindal
- Aquatic Biology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina Viale Ferdinando Stagno d'Alcontres, S. Agata, Messina, Italy.
| |
Collapse
|
20
|
Hsueh YM, Huang YL, Lin YF, Shiue HS, Lin YC, Chen HH. Plasma Vitamin B 12 and Folate Alter the Association of Blood Lead and Cadmium and Total Urinary Arsenic Levels with Chronic Kidney Disease in a Taiwanese Population. Nutrients 2021; 13:nu13113841. [PMID: 34836097 PMCID: PMC8625054 DOI: 10.3390/nu13113841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/24/2022] Open
Abstract
Heavy metals causing chronic nephrotoxicity may play a key role in the pathogenesis of chronic kidney disease (CKD). This study hypothesized that plasma folate and vitamin B12 would modify the association of CKD with total urinary arsenic and blood lead and cadmium levels. We recruited 220 patients with CKD who had an estimated glomerular filtration rate of <60 mL/min/1.73 m2 for ≥3 consecutive months and 438 sex- and age-matched controls. We performed inductively coupled plasma mass spectrometry to measure blood cadmium and lead levels. The urinary arsenic level was determined using a high-performance liquid chromatography–hydride generator–atomic absorption spectrometry. Plasma vitamin B12 and folate levels were measured through the SimulTRAC-SNB radioassay. Compared with patients with plasma vitamin B12 ≤ 6.27 pg/mL, the odds ratio (OR) and 95% confidence interval of CKD for patients with plasma vitamin B12 > 9.54 pg/mL was 2.02 (1.15–3.55). However, no association was observed between plasma folate concentration and CKD. A high level of plasma vitamin B12 combined with high levels of blood lead and cadmium level and total urinary arsenic tended to increase the OR of CKD in a dose-response manner, but the interactions were nonsignificant. This is the first study to demonstrate that patients with high plasma vitamin B12 level exhibit increased OR of CKD related to high levels of blood cadmium and lead and total urinary arsenic.
Collapse
Affiliation(s)
- Yu-Mei Hsueh
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan; (Y.-M.H.); (Y.-C.L.)
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Ya-Li Huang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Yuh-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Horng-Sheng Shiue
- Department of Chinese Medicine, Chang Gung University College of Medicine, Taoyuan 333, Taiwan;
| | - Ying-Chin Lin
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan; (Y.-M.H.); (Y.-C.L.)
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Geriatric Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Hsi-Hsien Chen
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
- Correspondence:
| |
Collapse
|
21
|
Makena W, Otong ES, Dibal NI, Ishaku B, Bazabang SA. Aqueous fruit pulp extract of Adansonia digitata (L) protects against lead-acetate-induced hepato-renal damage in rat model. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1186/s43088-021-00151-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Adansonia digitata (L) fruit has a multi-purpose function one among many, is the antioxidant activities of the fruit by preventing oxidative stress. The effect of Adansonia digitata (L) fruit on lead-induced liver and kidney damage is not clear. Hence, the study was aimed to assessed the protective role of Adansonia digitata (L) fruits against lead acetate induced changes in the liver and kidney function test parameters and the histology of both organ in experimental rats. The rats were divided into five groups with five rats each. All the rats were administered with respective assigned treatment once daily for 6 weeks. Rats in groups I were administered with just distil water (2 ml/kg). Rats in groups II were administered with lead acetate (30 mg/kg) while rats in groups III–V were administered Adansonia digitatata (L) fruit extract (250 mg/kg and 500 mg/kg) and Succimer (5 mg/kg) respectively, then additionally challenged with lead acetate (30 mg/kg) immediately after. At the end of the administration, the blood serum from the experimental rats were used for biochemical analysis. Then, the the organs such as the liver and kidney collected for histological study.
Results
Rats administered with Lead acetate showed an increase in AST, ALP and ALT as well as increase in urea and creatinine level (p < 0.001), when compared with the control group (group I), where as Adansonia digitatata (L) fruit prevented the effect (upsurge of serum, Urea, Creatinine, AST, ALP and ALT) of lead acetate. Rats administer with only Lead acetate revealed marked liver steatosis and the degeneration of the kidney glomerulus. The Adansonia digitatata (L) fruit extract and Succimer prevented the histological liver steatosis, as well as the degeneration of the glomerulus of the kidney cytoarchitecture.
Conclusion
The findings in this study suggest that Adansonia digitata fruits extract has a protective potentials against lead acetate induced liver and kidney toxicity by preventing the upsurge of liver function enzymes and kidney function parameters. Hence, Adansonia digitata fruits can serve as a natural plant agent that can prevent hepato-renal toxicity. Therefore, Adansonia digitata holds future prospects in preclinical framework to ameliorate organs toxicity for oral therapeutic applications.
Collapse
|
22
|
Xie W, Huang YY, Chen HG, Zhou X. Study on the Efficacy and Mechanism of Lycium barbarum Polysaccharide against Lead-Induced Renal Injury in Mice. Nutrients 2021; 13:nu13092945. [PMID: 34578823 PMCID: PMC8470764 DOI: 10.3390/nu13092945] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/28/2022] Open
Abstract
Lead is one of the most common heavy metal pollutants in the environment. Prolonged exposure to lead will induce oxidative stress, inflammation, and apoptosis in the kidneys, which in turn causes kidney injury. Lycium barbarum polysaccharide (LBP) is well known for its numerous pharmacological properties. This study aims to explore the efficacy and mechanism of LBP against lead-induced kidney damage in mice. Symptoms of renal injury were induced in mice by using 25 mg/kg lead acetate (PbAc2), and different doses of LBP (200, 400, and 600 mg/kg BW) were orally administrated to PbAc2-treated mice for five weeks. The results of the pharmacodynamics experiment showed that the renal pathological damages, serum creatinine (Cre), blood urea nitrogen (BUN), and kidney index of PbAc2-treated mice could be significantly alleviated by treatment with LBP. Further, LBP treatment significantly increased the weight and feed intake of PbAc2-treated mice. The dose effect results indicated that a medium dose of LBP was superior to high and low doses. The results of mechanistic experiments showed that LBP could attenuate oxidative stress, inflammation, and apoptosis in the kidneys of mice with lead toxicity by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway.
Collapse
Affiliation(s)
- Wen Xie
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (W.X.); (Y.-Y.H.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Yuan-Yuan Huang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (W.X.); (Y.-Y.H.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Hua-Guo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (W.X.); (Y.-Y.H.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- Correspondence: (H.-G.C.); (X.Z.)
| | - Xin Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (W.X.); (Y.-Y.H.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- Correspondence: (H.-G.C.); (X.Z.)
| |
Collapse
|
23
|
Aglan HS, Safar MM, Ain-Shoka AAM, Kandil AM, Gebremedhn S, Salilew-Wondim D, Schellander K, Tesfaye D. Developmental toxicity of lead in rats after gestational exposure and the protective role of taurine. J Biochem Mol Toxicol 2021; 35:e22816. [PMID: 34043862 DOI: 10.1002/jbt.22816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 01/08/2021] [Accepted: 05/18/2021] [Indexed: 01/24/2023]
Abstract
The present study was conducted to investigate the potential adverse effect of Pb on pregnant Sprague-Dawley rats and their fetuses after maternal exposure, on gestational days (GD) 7-16. The possible protective role of taurine (TA), administered throughout the gestation period (GD 1-20) against Pb toxicity, was also evaluated. Pregnant rats were divided into four groups: Group 1 (control) was given distilled water; Group 2 was exposed to Pb (250 ppm) in drinking water (GD 7-16), whereas Group 3 received TA (50 mg/kg/day) by oral gavage (GD 1-20); Group 4 was exposed to Pb (GD 7-16), whereas pretreated with TA from GD 1 till the end of the gestation period. After termination on GD 20, maternal and embryo-fetal outcomes were evaluated. Blood samples were collected for hematological and biochemical parameters assessment. The results showed that, Pb induced a significant reduction in the maternal body weight, weight gain, uterine and placental weight, in addition to a high incidence of abortion and fetal resorption. Meanwhile, fetuses demonstrated decreased body weight and length, with a high rate of mortality as well as external and skeletal abnormalities. Additionally, Pb induced severe hematological and biochemical alterations in both dams and fetuses. The toxicity of Pb was further emphasized by placental histopathological examination and hepatic DNA fragmentation. Pretreatment with TA greatly attenuated the impact of Pb on both maternal and fetal parameters. Moreover, TA alleviated the incidence of placental damage and hepatic DNA fragmentation. The results highlight the potential prophylaxis role of TA against maternal and developmental Pb toxicity.
Collapse
Affiliation(s)
- Hoda Samir Aglan
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Bonn, Germany.,Pharmacology Department, National Organization for Drug Control and Research, Giza, Egypt
| | - Marwa M Safar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Asmaa Munir Kandil
- Pharmacology Department, National Organization for Drug Control and Research, Giza, Egypt
| | - Samuel Gebremedhn
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - Dessie Salilew-Wondim
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Bonn, Germany
| | - Karl Schellander
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Bonn, Germany.,Center of Integrated Dairy Research, University of Bonn, Bonn, Germany
| | - Dawit Tesfaye
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Bonn, Germany.,Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA.,Center of Integrated Dairy Research, University of Bonn, Bonn, Germany
| |
Collapse
|
24
|
Kucukler S, Benzer F, Yildirim S, Gur C, Kandemir FM, Bengu AS, Ayna A, Caglayan C, Dortbudak MB. Protective Effects of Chrysin Against Oxidative Stress and Inflammation Induced by Lead Acetate in Rat Kidneys: a Biochemical and Histopathological Approach. Biol Trace Elem Res 2021; 199:1501-1514. [PMID: 32613487 DOI: 10.1007/s12011-020-02268-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/23/2020] [Indexed: 01/26/2023]
Abstract
In this study, the protective effects of chrysin (CR) on lead acetate (PbAc)-induced renal toxicity in Sprague-Dawley rats were investigated with biochemical, histopathological, and immunohistochemical methods. In the study, rats were given orally at 30 mg/kg/body weight (BW) PbAc after CR of 25 and 50 mg/kg/BW was administered to them orally (a total of 7 administrations for 7 days). The results showed that CR reduced urea and creatinine levels by alleviating PbAc-induced kidney damage. It was determined that CR decreases PbAc-induced lipid peroxidation due to its antioxidant properties and increases catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) activities, and glutathione (GSH) levels. It was also detected that CR protects DNA from the toxic effects of PbAc and reduces 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels. Biochemical and immunohistochemical findings demonstrated that CR had anti-inflammatory and antiapoptotic effects and reduced nuclear factor kappa-B (NF-κB), interleukin-33 (IL-33), prostaglandin-E2 (PGE-2), tumor necrosis factor-α (TNF-α), p53 levels, and the activities of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), which were increased with PbAc administration. Moreover, CR was found to increase the levels of aquaporin-1 (AQP-1) and nephrine in PbAc-induced kidney tissue. CR decreased the contents of lead (Pb), zinc (Zn), iron (Fe), sodium (Na), and copper (Cu) and increased those of potassium (K) calcium (Ca) in renal tissue. These results indicated that CR considerably alleviates kidney toxicity caused by PbAc.
Collapse
Affiliation(s)
- Sefa Kucukler
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Fulya Benzer
- Department of Midwifery, Faculty of Health Science, Munzur University, 62000, Tunceli, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Cihan Gur
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, 25240, Erzurum, Turkey.
| | - Aydin Sukru Bengu
- Department of Medical Services and Tecniques, Program of Medical Laboratory Tecniques, Bingol University, 12000, Bingöl, Turkey
| | - Adnan Ayna
- Department of Chemistry, Faculty of Sciences and Arts, Bingol University, 12000, Bingöl, Turkey
| | - Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, 12000, Bingöl, Turkey
| | | |
Collapse
|
25
|
Evaluation of the ameliorative effect of Spirulina (Arthrospira platensis) supplementation on parameters relating to lead poisoning and obesity in C57BL/6J mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
26
|
Xu H, Mao Y, Xu B, Hu Y. Low-level environmental lead and cadmium exposures and dyslipidemia in adults: Findings from the NHANES 2005-2016. J Trace Elem Med Biol 2021; 63:126651. [PMID: 33035812 DOI: 10.1016/j.jtemb.2020.126651] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/13/2020] [Accepted: 09/16/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND Previous experimental and occupational health studies have shown the toxic effects of relatively high-level cadmium and lead on lipid metabolism. However, limited studies investigated the relationships between serum lipid levels and exposure to low-level lead and cadmium in adults. OBJECTIVE To investigate the associations between lead and cadmium levels in blood and dyslipidemia in adults. METHODS A retrospective cross-sectional study of 7,457 adults aged 20-79 years who were recruited in the National Health and Nutrition Examination Survey (NHANES, 2005-2016) was conducted. Multivariate linear and logistic regressions were used to examine the associations of blood lead and cadmium levels with serum lipid profiles and risk of dyslipidemia, respectively. RESULTS The weighted geometric means [95% confidence intervals (CIs)] of lead and cadmium in blood were 1.23 (1.21, 1.25) μg/dL and 0.36 (0.35, 0.37) μg/L, respectively. Blood lead was significantly associated with serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), non-high-density lipoprotein cholesterol (non-HDL-C), and apolipoprotein B (Apo B) levels after adjusting for covariates. Compared with the adults in the lowest blood lead quartile (≤0.76 μg/dL), those in the highest lead quartile (>1.90 μg/dL) had higher risks of elevated TC (OR = 1.88, 95% CI: 1.59-2.22), non-HDL-C (OR = 1.59, 95% CI: 1.33-1.91), LDL-C (OR = 1.68, 95% CI: 1.41-1.99) and Apo B (OR = 2.00, 95% CI: 1.46-2.73). However, the single effect of cadmium exposure and the joint effect of lead and cadmium exposures on dyslipidemia were not observed. CONCLUSION Blood lead well below the current recommended level was positively associated with the risk of dyslipidemia in adults, while the low-level cadmium exposure currently observed in adults did not show any significant associations with lipid levels.
Collapse
Affiliation(s)
- Huadong Xu
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| | - Yu Mao
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Bucai Xu
- The Longgang People's Hospital, Wenzhou Medical University, No. 238 Longxiang Road, Longgang City, Zhejiang, 325800, China
| | - Yanan Hu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China.
| |
Collapse
|
27
|
Zhao YH, Shen CF, Kang Y, Qi A, Xu WJ, Shi WH, Liu JW. Curcumin prevents renal cell apoptosis in acute kidney injury in a rat model of dry-heat environment heatstroke via inhibition of the mitochondrial apoptotic pathway. Exp Ther Med 2020; 21:126. [PMID: 33376508 PMCID: PMC7751465 DOI: 10.3892/etm.2020.9558] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
Heatstroke is a life-threatening illness that is characterised by a core body temperature >40°C and central nervous system dysfunction. Acute kidney injury (AKI) is a common complication of heatstroke, and the mitochondrial apoptotic pathway has been demonstrated to be one of the leading causes of tissue damage and cell death in AKI. Curcumin is a phenol that is extracted from turmeric and demonstrates anti-apoptotic properties. To test if curcumin can protect the kidney from injury caused by heat stress, the effect of curcumin administration on renal injury and apoptosis of renal tissue was examined in a rat model of dry-heat environment. A total of 50 Sprague-Dawley rats were randomly divided into five groups (n=10): Standard temperature control, dry-heat control and curcumin treatment groups (50, 100 and 200 mg/kg groups). After exposure to a dry-heat environment for 150 min, the rats were anesthetized and euthanized. Blood, urine and renal tissue were collected to quantify the expression of specific mitochondrial apoptosis-related molecules. Curcumin pre-treatment decreased blood urea nitrogen and serum creatinine, urinary kidney injury molecule-1, and neutrophil gelatinase-associated lipocalin levels compared with the dry-heat control group. Curcumin was also revealed to downregulate c-Jun N-terminal kinases (JNK), cytochrome c, caspase-3 and caspase-9 expression upon treatment with 100 and 200 mg/kg curcumin, which may result in inhibition of the mitochondrial apoptotic pathway in renal cells. The current study revealed that Curcumin may to have potential for preventing heatstroke-induced AKI.
Collapse
Affiliation(s)
- Yin-Hui Zhao
- Key Laboratory of The Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Region of The PLA, Urumqi, Xinjiang 830000, P.R. China.,Emergency Critical Department, Shanghai General Hospital, Shanghai 200080, P.R. China
| | - Cai-Fu Shen
- Key Laboratory of The Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Region of The PLA, Urumqi, Xinjiang 830000, P.R. China
| | - Yan Kang
- Department of Imaging Medicine The 69240 Army Hospital of PLA, Urumqi, Xinjiang 830000, P.R. China
| | - Ao Qi
- Key Laboratory of The Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Region of The PLA, Urumqi, Xinjiang 830000, P.R. China
| | - Wen-Juan Xu
- Key Laboratory of The Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Region of The PLA, Urumqi, Xinjiang 830000, P.R. China
| | - Wen-Hui Shi
- Key Laboratory of The Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Region of The PLA, Urumqi, Xinjiang 830000, P.R. China
| | - Jiang-Wei Liu
- Key Laboratory of The Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Region of The PLA, Urumqi, Xinjiang 830000, P.R. China
| |
Collapse
|
28
|
Li F, Liu ZH, Tian X, Liu T, Wang HL, Xiao G. Black soybean seed coat extract protects Drosophila melanogaster against Pb toxicity by promoting iron absorption. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
29
|
Wei W, Ma N, Fan X, Yu Q, Ci X. The role of Nrf2 in acute kidney injury: Novel molecular mechanisms and therapeutic approaches. Free Radic Biol Med 2020; 158:1-12. [PMID: 32663513 DOI: 10.1016/j.freeradbiomed.2020.06.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/24/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
Acute kidney injury (AKI) is a common clinical syndrome that is related to high morbidity and mortality. Oxidative stress, including the production of reactive oxygen species (ROS), appears to be the main element in the occurrence of AKI and the cause of the progression of chronic kidney disease (CKD) into end-stage renal disease (ESRD). Nuclear factor erythroid 2 related factor 2 (Nrf2) is a significant regulator of redox balance that has been shown to improve kidney disease by eliminating ROS. To date, researchers have found that the use of Nrf2-activated compounds can effectively reduce ROS, thereby preventing or retarding the progression of various types of AKI. In this review, we summarized the molecular mechanisms of Nrf2 and ROS in AKI and described the latest findings on the therapeutic potential of Nrf2 activators in various types of AKI.
Collapse
Affiliation(s)
- Wei Wei
- Department of Urology, The First Hospital, Jilin University, Changchun, China
| | - Ning Ma
- Department of Urology, The First Hospital, Jilin University, Changchun, China
| | - Xiaoye Fan
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Qinlei Yu
- Jilin Provincial Animal Disease Control Center, 4510 Xi'an Road, Changchun, 130062, China
| | - Xinxin Ci
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
30
|
Zhao YH, Shen CF, Wang GJ, Kang Y, Song YH, Liu JW. Curcumin alleviates acute kidney injury in a dry-heat environment by reducing oxidative stress and inflammation in a rat model. J Biochem Mol Toxicol 2020; 35:e22630. [PMID: 32918794 PMCID: PMC7816518 DOI: 10.1002/jbt.22630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 07/09/2020] [Accepted: 09/02/2020] [Indexed: 02/04/2023]
Abstract
Curcumin exhibits anti-inflammatory and antioxidant activities. We investigated the protective effects of curcumin in a renal injury rat model under dry-heat conditions. We divided Sprague-Dawley rats into four groups: dry-heat 0- (normal temperature control group), 50-, 100-, and 150-minute groups. Each group was divided into five subgroups (n = 10): normal saline (NS), sodium carboxymethylcellulose (CMCNa), and curcumin pretreated low, medium, and high-dose (50, 100, and 200 mg/kg, respectively) groups. Compared to the normal temperature group, serum creatinine, blood urea nitrogen, urinary kidney injury molecule-1, and neutrophil gelatinase-associated load changes in lipoprotein (NGAL) levels were significantly increased in the dry-heat environment group (P < .05); inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression and malondialdehyde (MDA) and related inflammatory factor levels were increased in the kidney tissue. Superoxide dismutase (SOD) and catalase (CAT) levels were decreased. However, following all curcumin pretreatment, the serum levels of kidney injury indicators and NGAL were decreased in the urine compared to those in the NS and CMCNa groups (P < .05), whereas renal SOD and CAT activities were increased and MDA was decreased (P < .05). Renal tissues of the 150-minute group showed obvious pathological changes. Compared to the NS group, pathological changes in the renal tissues of the 100- and 200-mg/kg curcumin groups were significantly reduced. Furthermore, iNOS and COX-2 expression and inflammatory factor levels were decreased after curcumin treatment. Curcumin exerted renoprotective effects that were likely mediated by its antioxidant and anti-inflammatory effects in a dry-heat environment rat model.
Collapse
Affiliation(s)
- Yin-Hui Zhao
- Key Laboratory of the Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military of the PLA, Urumuqi, China.,Emergency Critical Department, Shanghai General Hospital, Shanghai, China
| | - Cai-Fu Shen
- Key Laboratory of the Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military of the PLA, Urumuqi, China
| | - Guang-Jun Wang
- Key Laboratory of the Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military of the PLA, Urumuqi, China
| | - Yan Kang
- Department of Ultrasound, 69240 Army Hospital of PLA, Urumqi, Xinjiang, China
| | - Yun-Hong Song
- Key Laboratory of the Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military of the PLA, Urumuqi, China
| | - Jiang-Wei Liu
- Key Laboratory of the Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military of the PLA, Urumuqi, China
| |
Collapse
|
31
|
Amin I, Hussain I, Rehman MU, Mir BA, Ganaie SA, Ahmad SB, Mir MUR, Shanaz S, Muzamil S, Arafah A, Ahmad P. Zingerone prevents lead-induced toxicity in liver and kidney tissues by regulating the oxidative damage in Wistar rats. J Food Biochem 2020; 45:e13241. [PMID: 32515504 DOI: 10.1111/jfbc.13241] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/11/2022]
Abstract
Among the heavy metal poisonings, lead is considered as a major toxic metal causing hematological, neurological, immunological, hepatic, and renal dysfunctions. Lead causes inhibition of ALAD leading to the ALA accumulation inside the cells. Lead also leads to disruption of the anti-oxidative enzyme system, organ function, and lipid membranes of the cell causing oxidative stress. Zingerone, a phenolic alkanone, is an active edible ingredient present in the ginger that possess varied pharmacological properties. The aim of our study was to evaluate the protective effect of zingerone in lead-induced toxicity in wistar rats. ALAD concentration was improved in kidney and liver tissues treated with zingerone. Protective effect of zingerone was observed in terms of significant improvement in kidney and liver histology, anti-oxidant enzyme activity (CAT, SOD, GPx, and GR), organ function parameters, lipid profile, and decreased level of LPO. Therefore, zingerone pretreatment can be a promising agent for alleviation of lead-induced oxidative damage in cells. PRACTICAL APPLICATIONS: Published reports have revealed that consumption of certain bioactive nutrients for example, flavonoids, mineral elements, and vitamins can offer defense from the environmental lead contamination. Zingerone is a strong anti-oxidant, with very less side effects and has exceptional property of scavenging free radicals, hence reducing the oxidative stresses. This fundamental property of zingerone can alone help in countering the heavy metal toxicity. Different groups have published reported numerous properties of zingerone but as per our understanding till date no study about alleviation of lead toxicity by zingerone in animal model has been undertaken. Hence, we conducted this research to explore the preventive effect of zingerone in lead induced kidney and liver toxicity. The outcome of our study shows potent anti-oxidant effect and ALAD modulatory property of zingerone which makes it suitable edible candidate for use in countering lead toxicity.
Collapse
Affiliation(s)
- Insha Amin
- Molecular Biology Laboratory, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K, Srinagar, India
| | - Ishraq Hussain
- Molecular Biology Laboratory, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K, Srinagar, India
| | - Muneeb U Rehman
- Molecular Biology Laboratory, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K, Srinagar, India.,Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bilal Ahmad Mir
- Molecular Biology Laboratory, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K, Srinagar, India
| | | | - Sheikh Bilal Ahmad
- Molecular Biology Laboratory, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K, Srinagar, India
| | - Manzoor Ur Rahman Mir
- Molecular Biology Laboratory, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K, Srinagar, India
| | - Syed Shanaz
- Division of Animal Genetics and Breeding, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K, Srinagar, India
| | - Showkeen Muzamil
- Molecular Biology Laboratory, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K, Srinagar, India
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Microbiology and Botany, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
32
|
Mailafiya MM, Abubakar K, Chiroma SM, Danmaigoro A, Rahim EBA, Mohd Moklas MA, Zakaria ZAB. Curcumin-loaded cockle shell-derived calcium carbonate nanoparticles: A novel strategy for the treatment of lead-induced hepato-renal toxicity in rats. Saudi J Biol Sci 2020; 27:1538-1552. [PMID: 32489292 PMCID: PMC7253904 DOI: 10.1016/j.sjbs.2020.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023] Open
Abstract
Lead (Pb) toxicity affects the hepatic and renal systems resulting to homeostasis imbalance. Curcumin is a strong antioxidant but has restrained clinical applications due to its poor bioavailability. Nanomedicine showed promising potentials in drug delivery and has brought forth the use of cockle shell-derived aragonite calcium carbonate nanoparticles (CSCaCO3NP) to enhance the effectiveness and targeted delivery of curcumin (Cur). Thus, this study aimed at evaluating the therapeutic effect of curcumin-loaded CSCaCO3NP (Cur- CSCaCO3NP) on lead-induced hepato-renal toxicity in rats. Thirty-six male adults Sprague-Dawley rats were randomly assigned into five groups. All groups contained six rats each except for group A, which contained 12 rats. All rats apart from the rats in group A (control) were orally administered a flat dose of 50 mg/kg of lead for four weeks. Six rats from group A and B were euthanized after four weeks of lead induction. Oral administration of curcumin (100 mg/kg) for group C and Cur-CSCaCO3NP (50 and 100 mg/kg) for groups D and E respectively, commenced immediately after 4 weeks of lead induction which lasted for 4 weeks. All rats were euthanized at the 8th week of the experiment. Further, biochemical, histological and hematological analysis were performed. The findings revealed a biochemical, hematological and histological changes in lead-induced rats. However, treatments with the Cur-CSCaCO3NP and free curcumin reversed the aforementioned changes. Although, Cur-CSCaCO3NP presented better therapeutic effects on lead-induced toxicity in rats when compared to free curcumin as there was significant improvements in hematological, biochemical and histological changes which is parallel with attenuation of oxidative stress. The findings of the current study hold great prospects for Cur-CSCaCO3NP as a novel approach for effective oral treatment of lead-induced hepato-renal impairments.
Collapse
Affiliation(s)
- Maryam Muhammad Mailafiya
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia,Department of Human Anatomy, College of Medical Sciences, Federal University Lafia, 950101, Akunza, Lafia, Nasarawa State, Nigeria
| | - Kabeer Abubakar
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia,Department of Human Anatomy, College of Medical Sciences, Federal University Lafia, 950101, Akunza, Lafia, Nasarawa State, Nigeria
| | - Samaila Musa Chiroma
- Department of Human Anatomy, Faculty of Basic Medical Sciences, University of Maiduguri, 600230 Maiduguri, Borno State, Nigeria
| | - Abubakar Danmaigoro
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Usman Danfodiyo University, 840213, Sultan Abubakar, Sokoto State, Nigeria
| | - Ezamin Bin Abdul Rahim
- Department of Radiology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43400, Selangor Darul Ehsan, Malaysia
| | - Mohamad Aris Mohd Moklas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia,Corresponding author at: Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia.
| | - Zuki Abu Bakar Zakaria
- Department of Preclinical Sciences Faculty of Veterinary Medicine, University Putra Malaysia, Serdang 43400, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
33
|
Yin K, Cui Y, Sun T, Qi X, Zhang Y, Lin H. Antagonistic effect of selenium on lead-induced neutrophil apoptosis in chickens via miR-16-5p targeting of PiK3R1 and IGF1R. CHEMOSPHERE 2020; 246:125794. [PMID: 31918102 DOI: 10.1016/j.chemosphere.2019.125794] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/20/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Environmental contamination by heavy metals, such as lead (Pb), can lead to severe immune dysfunction. MicroRNAs (miRNAs) are involved in regulating immunity. Whether Pb can regulate neutrophil apoptosis through miRNA, and whether selenium (Se) can antagonize this response are still unknown. We treated neutrophils with 12.5 μM (CH3OO)2Pb and 1 μM Na2SeO3 for 3 h, after which apoptosis was evaluated using acrideine orange/ethidium bromide (AO/EB) dual fluorescent staining and flow cytometry. The results showed that neutrophil apoptosis was significantly increased following Pb exposure, and that this response was prevented upon Se addition. Pb up-regulates miR-16-5p and leads to the subsequent down-regulation of the target genes phosphoinositide-3-kinase regulatory subunit 1 (PiK3R1), insulin-like growth factor 1 receptor (IGF1R), and phosphatidylinositol 3 kinase (Pi3K)-protein kinase B (AKT), followed by activation of the tumor protein P53 (P53)-B-cell lymphoma-2 (Bcl-2)/Bcl-2-Associated X protein (Bax)-cytochrome c (Cytc)-Caspase 9 (mitochondrial apoptotic pathway) and the tumor necrosis factor receptor superfamily member 6 (Fas)-Fas-associated death domain protein (Fadd)-Caspase 8 (death receptor pathway). Pb also triggered oxidative stress and indirectly activated the mitochondrial apoptotic pathway. We conclude that miR-16-5p plays a key role in the apoptosis of neutrophils exposed to Pb by down-regulating the expression of PiK3R1 and IGFR1, thereby activating the mitochondrial apoptotic pathway and death receptor pathway. Se can prevent Pb-induced apoptosis.
Collapse
Affiliation(s)
- Kai Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yuan Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tong Sun
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163002, PR China
| | - Xue Qi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
34
|
Abdelhamid FM, Mahgoub HA, Ateya AI. Ameliorative effect of curcumin against lead acetate-induced hemato-biochemical alterations, hepatotoxicity, and testicular oxidative damage in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10950-10965. [PMID: 31953765 DOI: 10.1007/s11356-020-07718-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Lead, toxic heavy metal of global concern, induces toxicity in various organs via oxidative stress. Thereby, in this study, the protective role of curcumin against lead acetate-induced toxicity was evaluated. Thirty-two male albino rats were allocated equally into four groups and orally administered with corn oil as a vehicle (Cont.), curcumin (CUR) (400 mg/kg bw), lead acetate (LA) (100 mg/kg bw), and lead acetate plus curcumin (LA + CUR). All rats had received their treatments daily for 4 weeks. The results revealed that LA toxicity induced normocytic normochromic anemia with significant leukocytosis and lymphocytosis. Moreover, LA-intoxicated rats showed a marked elevation in the liver enzyme activities, serum cholesterol, and triglyceride levels. In contrast, sero-immunological parameters, total protein, albumin, globulin, and testosterone levels were significantly reduced compared to the control rats. Additionally, LA-induced hepatic and testicular oxidative damage revealed by marked increased in MDA level with prominent reduction in the antioxidant system. The gene expression of the hepatic pro-inflammatory markers and testicular steroidogenic biomarkers including LHR and aromatase were significantly upregulated; meanwhile, the expressions of testicular StAR, CYP17a, 3B-HDS, SR-B1, and P450SCC were significantly downregulated in the LA-intoxicated group. Curcumin treatment could partially improve the hematological, biochemical, and histopathological alterations induced by LA. Also, it was observed that curcumin significantly restored hepatic pro-inflammatory markers and testicular steroidogenic enzymes. In conclusion, curcumin has antioxidant, anti-inflammatory, and immunomodulatory effects and is able to minimize the LA-induced oxidative damage in rats.
Collapse
Affiliation(s)
- Fatma M Abdelhamid
- Clinical Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Hebatallah A Mahgoub
- Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed I Ateya
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
35
|
Albarakati AJA, Baty RS, Aljoudi AM, Habotta OA, Elmahallawy EK, Kassab RB, Abdel Moneim AE. Luteolin protects against lead acetate-induced nephrotoxicity through antioxidant, anti-inflammatory, anti-apoptotic, and Nrf2/HO-1 signaling pathways. Mol Biol Rep 2020; 47:2591-2603. [PMID: 32144527 DOI: 10.1007/s11033-020-05346-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/22/2020] [Indexed: 12/12/2022]
Abstract
Lead (Pb) is one of the most common heavy metal pollutants affecting living organisms. It induces nephrotoxicity with significant alterations in renal structure and function. Luteolin (LUT) a flavonoid present in various plant products is well known for exhibiting numerous pharmacological properties. We evaluated the protective efficacy of LUT against Pb-induced renal injury in male Wistar rats. Four experimental groups: control, LUT (50 mg/kg, orally), PbAc (20 mg/kg, i.p.), LUT + PbAc (at the aforementioned doses) were maintained for 7 days. PbAc administration significantly increased renal Pb accumulation, urea, and creatinine levels in serum, and induced renal histological alterations. Additionally, compared to the control rats, PbAc-treated rats exhibited significantly low levels of antioxidant enzyme activity and expression (SOD, CAT, GPx and GR), as well as high MDA levels. Moreover, PbAc exposure downregulated Nfe212 and Homx1 mRNA expression and significantly increased inflammatory marker (TNF-α, IL-1β and NO) levels in renal tissue. PbAc significantly upregulated the synthesis of apoptotic related proteins and downregulated antiapoptotic protein expression. Notably, LUT pretreatment of PbAc-treated rats provided significant nephroprotection and reversed the alterations in the abovementioned parameters. In conclusion, LUT provided significant protection against PbAc intoxication via antioxidant, anti-inflammatory, and anti-apoptotic activities by activating the Nrf2/ARE signaling pathway.
Collapse
Affiliation(s)
- Alaa Jameel A Albarakati
- Surgery Department, College of Medicine, Al-Qunfudah Branch, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Roua S Baty
- Biotechnology Department, College of Science, Taif University, Taif, Saudi Arabia
| | | | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ehab K Elmahallawy
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Rami B Kassab
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
36
|
AL-Megrin WA, Alkhuriji AF, Yousef AOS, Metwally DM, Habotta OA, Kassab RB, Abdel Moneim AE, El-Khadragy MF. Antagonistic Efficacy of Luteolin against Lead Acetate Exposure-Associated with Hepatotoxicity is Mediated via Antioxidant, Anti-Inflammatory, and Anti-Apoptotic Activities. Antioxidants (Basel) 2019; 9:10. [PMID: 31877779 PMCID: PMC7022878 DOI: 10.3390/antiox9010010] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 01/24/2023] Open
Abstract
The abundant use of lead (Pb; toxic heavy metal) worldwide has increased occupational and ecosystem exposure, with subsequent negative health effects. The flavonoid luteolin (LUT) found in many natural foodstuffs possesses antioxidant and anti-inflammatory properties. Herein, we hypothesized that LUT could mitigate liver damage induced by exposure to lead acetate (PbAc). Male Wistar rats were allocated to four groups: control group received normal saline, LUT-treated group (50 mg/kg, oral, daily), PbAc-treated group (20 mg/kg, i.p., daily), and LUT+PbAc-treated group (received the aforementioned doses via the respective routes of administration); the rats were treated for 7 days. The results revealed that PbAc exposure significantly increased hepatic Pb residue and serum activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and total bilirubin value. Oxidative reactions were observed in the liver tissue following PbAc intoxication, characterized by the depletion and downregulation of antioxidant proteins (glutathione, glutathione reductase, glutathione peroxidase, superoxide dismutase, catalase, nuclear factor erythroid 2-related factor 2, and heme oxygenase-1), and an increase in oxidants (malondialdehyde and nitric oxide). Additionally, PbAc increased the release and expression of the pro-inflammatory cytokines (tumor necrosis factor alpha and interleukin-1 beta), inducible nitric oxide synthase, and nuclear factor kappa B. Moreover, PbAc enhanced hepatocyte loss by increasing the expression of pro-apoptotic proteins (Bax and caspase-3) and downregulating the anti-apoptotic protein (Bcl-2). The changes in the aforementioned parameters were further confirmed by noticeable histopathological lesions. LUT supplementation significantly reversed all of the tested parameters in comparison with the PbAc-exposed group. In conclusion, our findings describe the potential mechanisms involved in the alleviation of PbAc-induced liver injury by luteolin via its potent anti-inflammatory, antioxidant, and anti-apoptotic properties.
Collapse
Affiliation(s)
- Wafa A. AL-Megrin
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Afrah F. Alkhuriji
- Department of Zoology, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.F.A.); (A.O.S.Y.); (D.M.M.)
| | - Al Omar S. Yousef
- Department of Zoology, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.F.A.); (A.O.S.Y.); (D.M.M.)
| | - Dina M. Metwally
- Department of Zoology, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.F.A.); (A.O.S.Y.); (D.M.M.)
- Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ola A. Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Rami B. Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo 11795, Egypt; (R.B.K.); (A.E.A.M.)
| | - Ahmed E. Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo 11795, Egypt; (R.B.K.); (A.E.A.M.)
| | - Manal F. El-Khadragy
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo 11795, Egypt; (R.B.K.); (A.E.A.M.)
| |
Collapse
|
37
|
Bozdağ M, Eraslan G. The effect of diosmin against lead exposure in rats ‡. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:639-649. [PMID: 31792554 DOI: 10.1007/s00210-019-01758-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022]
Abstract
In this study, the effect of diosmin against the adverse effects of lead exposure in rats was investigated. Wistar Albino race 40 male rats weighing 150-200 g 2-3 months were used. A total of 4 groups were assigned, one of which was control and the other 3 were trial groups. The rats in the control group were treated with dimethyl sulfoxide, which was used only as a vehicle in diosmin administration. Groups 2, 3, and 4 from the experimental group were given diosmin at a dose of 50 mg/kg.bw, lead acetate at the dose of 1000 ppm, lead acetate at the dose of 1000 ppm, and diosmin at a dose of 50 mg/kg.bw for 6 weeks, respectively. Application of lead acetate with drinking water and also diosmin was performed by oral catheter. At the end of the experimental period, blood was taken to dry and with heparin by puncture to the heart under light ether anesthesia. Following the blood samples, some organs of the rats (the liver, kidney, brain, heart, and testis) were removed. Some biochemical parameters (glucose, triglyceride, cholesterol, BUN, creatinine, uric acid, LDH, AST, ALT, ALP, total protein, albumin) were measured in serum. Some oxidative stress parameters in tissue samples and blood (MDA, NO, SOD, CAT, GSH-Px, GSH) were evaluated. Body and organ (the liver, kidney, brain, heart, and testis) weights were also evaluated at the end of the study. No significant change was observed in the parameters examined in the diosmin alone-treated group by comparison to control group. On the other hand, significant changes were found in the values of lead acetate-treated group comparing control group. It was observed that the values approached the values of the control group in the combination of lead and diosmin. Exposure to lead acetate at a dose of 1000 ppm for 6 weeks causes organ damage; however the diosmin application at a dose of 50 mg/kg.bw had a positive effect on the regression of tissue damage.
Collapse
Affiliation(s)
- Mehmet Bozdağ
- Department of Veterinary Pharmacology and Toxicology, Institute of Health Sciences, Erciyes University, Kayseri, Turkey
| | - Gökhan Eraslan
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
38
|
Wu CY, Wong CS, Chung CJ, Wu MY, Huang YL, Ao PL, Lin YF, Lin YC, Shiue HS, Su CT, Chen HH, Hsueh YM. The association between plasma selenium and chronic kidney disease related to lead, cadmium and arsenic exposure in a Taiwanese population. JOURNAL OF HAZARDOUS MATERIALS 2019; 375:224-232. [PMID: 31075550 DOI: 10.1016/j.jhazmat.2019.04.082] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
This study aimed to determine the interaction of red blood cell cadmium and lead, total urinary arsenic, and plasma selenium in chronic kidney disease (CKD). We recruited 220 CKD patients as well as 438 gender- and age-matched controls, and we defined CKD as <60 mL/min/1.73 m2 estimated glomerular filtration rate (eGFR) for three or more consecutive months. Plasma selenium and red blood cell cadmium and lead concentrations were measured by ICP-MS. Urinary arsenic species were determined via HPLC-HG-AAS and were summed to determine the total urinary arsenic concentration. Plasma selenium was positively correlated to eGFR, and subjects with high plasma selenium levels (>243.90 μg/L) had a significantly lower odds ratio (OR) and 95% confidence interval (CI) (0.23, 0.13-0.42) for CKD compared to those with low plasma selenium levels (≤ 196.70 μg/L). High plasma selenium and low red blood cell cadmium or lead concentrations interacted to decrease the OR and 95% CI for CKD (0.12, 0.06-0.26; 0.09, 0.04-0.19). High plasma selenium and low red blood cell lead levels also interacted to increase the eGFR (20.70, 15.56-26.01 mL/min/1.73 m2). This study is the first to suggest that selenium modifies the eGFR and OR in CKD induced by environmental toxicants.
Collapse
Affiliation(s)
- Chih-Yin Wu
- Department of Family Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Shun Wong
- Department of Emergency Medicine, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Emergency Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Jung Chung
- Department of Health Risk Management, College of Public Health, China Medical University, Taichung, Taiwan; Department of Medical Research, China Medical University and Hospital, Taichung, Taiwan
| | - Mei-Yi Wu
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ya-Li Huang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pui-Lam Ao
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yuh-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ying-Chin Lin
- Department of Family Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Health Examination, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Horng-Sheng Shiue
- Department of Chinese Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chien-Tien Su
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Hsi-Hsien Chen
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan.
| | - Yu-Mei Hsueh
- Department of Family Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
39
|
El-Boshy ME, Refaat B, Qasem AH, Khan A, Ghaith M, Almasmoum H, Mahbub A, Almaimani RA. The remedial effect of Thymus vulgaris extract against lead toxicity-induced oxidative stress, hepatorenal damage, immunosuppression, and hematological disorders in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:22736-22746. [PMID: 31172438 DOI: 10.1007/s11356-019-05562-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 05/23/2019] [Indexed: 05/23/2023]
Abstract
The Thymus vulgaris (T. vulgaris) has been used in foods for the flavor, aroma, and preservation and in folk medicines. The objective of the present work was to determine the antioxidant and protective effects of T. vulgaris extract against lead (Pb)-intoxicated rats. A thirty-two male Sprague-Dawley were randomly assigned into 4 equal groups and treated for six weeks as follows: group I (GP-I), served as negative control; GP-II, -III, and -IV received either Pb acetate in drinking water (500 mg/L), T. vulgaris extract (500 mg/kg/day) by oral gavage or Pb acetate with T. vulgaris extract, respectively. Blood samples were collected at the end of the study week 6 to measure the hepatic and renal biochemical markers, complete blood count alongside the serum levels of interleukin (IL)-1β, IL-6, IL-10, tumor necrosis (TNF)-α, and interferon (IFN)-γ. Additionally, liver and kidney tissue specimens were collected for histopathology as well as to measure the antioxidant-reduced glutathione (GSH), glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD) alongside the lipid peroxidation marker, malonaldehyde (MDA). The results indicated that Pb toxicity increased the serum levels of IL-1β, IL-6, and TNF-α, whereas IL-10 and IFN-γ were reduced. The results showed disturbed liver and renal functions; increased serum levels of ALT, AST, ALP, total bilirubin, creatinine, and urea; and decreased total protein, albumin, and calcium. The GSH, Gpx, and CAT levels were significantly decreased in the Pb-administrated group, while MDA was increased. However, regarding the hepatorenal markers, those animals treated with T. vulgaris alone did not induce any significant changes. Moreover, the combined treatment with T. vulgaris extract together with Pb showed significant improvement in Pb-induced toxicity in all the tested parameters compared to the negative control group. We investigated the potential protective effects of the medicinal plant T. vulgaris in vivo, since there are no publications that address the potential protective effect of this leaf extract against Pb-induced hepatorenal toxicity. Our studies concluded that the T. vulgaris extract reduces Pb overload in hepatorenal tissues, and that this has a potential immunomodulatory role, antioxidant activity, and a protective effect against Pb toxicity.
Collapse
Affiliation(s)
- Mohamed E El-Boshy
- Laboratory Medicine Department, Faculty of Applied Medical Science, Umm al Qura University, Al Abdeyah, Makkah, 7607, Saudi Arabia.
- Clinical Pathology Department, Fac. Vet. Med, Mansoura University Mansoura, Mansoura, Egypt.
| | - Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Science, Umm al Qura University, Al Abdeyah, Makkah, 7607, Saudi Arabia
| | - Ahmed H Qasem
- Laboratory Medicine Department, Faculty of Applied Medical Science, Umm al Qura University, Al Abdeyah, Makkah, 7607, Saudi Arabia
| | - Anmar Khan
- Laboratory Medicine Department, Faculty of Applied Medical Science, Umm al Qura University, Al Abdeyah, Makkah, 7607, Saudi Arabia
| | - Mazen Ghaith
- Laboratory Medicine Department, Faculty of Applied Medical Science, Umm al Qura University, Al Abdeyah, Makkah, 7607, Saudi Arabia
| | - Hussain Almasmoum
- Laboratory Medicine Department, Faculty of Applied Medical Science, Umm al Qura University, Al Abdeyah, Makkah, 7607, Saudi Arabia
| | - Amani Mahbub
- Laboratory Medicine Department, Faculty of Applied Medical Science, Umm al Qura University, Al Abdeyah, Makkah, 7607, Saudi Arabia
| | - Riyad A Almaimani
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah, 7607, Saudi Arabia
| |
Collapse
|
40
|
Park H, Kim K. Comparisons among Machine Learning Models for the Prediction of Hypercholestrolemia Associated with Exposure to Lead, Mercury, and Cadmium. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16152666. [PMID: 31349672 PMCID: PMC6696126 DOI: 10.3390/ijerph16152666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/12/2019] [Accepted: 07/22/2019] [Indexed: 01/07/2023]
Abstract
Lead, mercury, and cadmium are common environmental pollutants in industrialized countries, but their combined impact on hypercholesterolemia (HC) is poorly understood. The aim of this study was to compare the performance of various machine learning (ML) models to predict the prevalence of HC associated with exposure to lead, mercury, and cadmium. A total of 10,089 participants of the Korea National Health and Nutrition Examination Surveys 2008–2013 were selected and their demographic characteristics, blood concentration of metals, and total cholesterol levels were collected for analysis. For prediction, five ML models, including logistic regression (LR), k-nearest neighbors, decision trees, random forests, and support vector machines (SVM) were constructed and their predictive performances were compared. Of the five ML models, the SVM model was the most accurate and the LR model had the highest area under receiver operating characteristic (ROC) curve of 0.718 (95% CI: 0.688–0.748). This study shows the potential of various ML methods to predict HC associated with exposure to metals using population-based survey data.
Collapse
Affiliation(s)
- Hyejin Park
- Department of International Healthcare Administration, Daegu Catholic University, Gyeongsan 38430, Korea
| | - Kisok Kim
- College of Pharmacy, Keimyung University, Daegu 42601, Korea.
| |
Collapse
|
41
|
Role of Autophagy on Heavy Metal-Induced Renal Damage and the Protective Effects of Curcumin in Autophagy and Kidney Preservation. ACTA ACUST UNITED AC 2019; 55:medicina55070360. [PMID: 31295875 PMCID: PMC6681384 DOI: 10.3390/medicina55070360] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/28/2019] [Accepted: 07/08/2019] [Indexed: 12/16/2022]
Abstract
Curcumin is a hydrophobic polyphenol compound extracted from the rhizome of turmeric. The protective effect of curcumin on kidney damage in multiple experimental models has been widely described. Its protective effect is mainly associated with its antioxidant and anti-inflammatory properties, as well as with mitochondrial function maintenance. On the other hand, occupational or environmental exposure to heavy metals is a serious public health problem. For a long time, heavy metals-induced nephrotoxicity was mainly associated with reactive oxygen species overproduction and loss of endogenous antioxidant activity. However, recent studies have shown that in addition to oxidative stress, heavy metals also suppress the autophagy flux, enhancing cell damage. Thus, natural compounds with the ability to modulate and restore autophagy flux represent a promising new therapeutic strategy. Furthermore, it has been reported in other renal damage models that curcumin’s nephroprotective effects are related to its ability to regulate autophagic flow. The data indicate that curcumin modulates autophagy by classic signaling pathways (suppression of protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and/or by stimulation of adenosine monophosphate-activated protein kinase (AMPK) and extracellular signal-dependent kinase (ERK) pathways). Moreover, it allows lysosomal function preservation, which is crucial for the later stage of autophagy. However, future studies of autophagy modulation by curcumin in heavy metals-induced autophagy flux impairment are still needed.
Collapse
|
42
|
Farkhondeh T, Samarghandian S, Azimi-Nezhad M, Shahri AMP. Protective Effects of Curcumin Against Nephrotoxic Agents. Cardiovasc Hematol Disord Drug Targets 2019; 19:176-182. [PMID: 30205807 DOI: 10.2174/1871529x18666180905160830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 08/08/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Curcumin is the one of the main phenolic ingredients in curcuma species rhizome. Curcuma species have traditionally been used for the treatment of diabetes, cardiovascular, and renal diseases. METHODS The present study was designed to review the scientific literature on the protective effects of curcumin against nephrotoxic agents. RESULTS Studies have shown the protective effects of curcumin against nephrotoxic agents such as gallic acid, glucose, tartrazine, streptozotocin, lead, cadmium, fluoride, maleate, malathion, nicotine, cisplatin, gentamicin, and methotrexate. However, further investigations are needed to determine the efficacy of curcumin as an antidote agent due to the lack of clinical trial studies. Therefore, it is recommended to conduct clinical trials in humans to confirm these effects. CONCLUSION The current review indicated that curcumin may be effective against nephrotoxicity by modulating oxidative stress and inflammatory responses.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mohsen Azimi-Nezhad
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali M P Shahri
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
43
|
Mabrouk A. Thymoquinone attenuates lead-induced nephropathy in rats. J Biochem Mol Toxicol 2018; 33:e22238. [PMID: 30290066 DOI: 10.1002/jbt.22238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 08/04/2018] [Accepted: 08/09/2018] [Indexed: 12/17/2022]
Abstract
Kidney hazards from lead (Pb) exposure are one of the fastest growing areas of concern in toxicology today. The thymoquinone (TQ) renoprotective effect against Pb-induced nephropathy has not previously been studied. Therefore, adult male Wistar rats were treated with Pb (2000 ppm of Pb acetate in drinking water) and/or TQ (5 mg/kg/day, per os). All treatments were applied for 5 weeks. The results indicated that Pb exposure produced metal deposition, histopathological changes, functional impairment (significant elevation in plasma urea, uric acid, and creatinine levels), total antioxidant status decrease, and lipid peroxidation stimulation in the kidneys. Interestingly, TQ supplementation remarkably improved the Pb-induced renal adverse effects without significantly reducing the tissue metal accumulation. In conclusion, our data indicate for the first time a protective effect of TQ against Pb-induced nephropathy, most likely through an antioxidant mechanism. On this basis, TQ deserves more consideration and further examination as a potential therapeutic option.
Collapse
Affiliation(s)
- Aymen Mabrouk
- Laboratory of Histology and Cytogenetic, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| |
Collapse
|
44
|
Gargouri M, Soussi A, Akrouti A, Magné C, El Feki A. Potential protective effects of the edible alga Arthrospira platensis against lead-induced oxidative stress, anemia, kidney injury, and histopathological changes in adult rats. Appl Physiol Nutr Metab 2018; 44:271-281. [PMID: 30138569 DOI: 10.1139/apnm-2018-0428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Oxidative damage has been proposed as a possible mechanism involved in lead toxicity. This study investigated the possible protective effect of dietary Arthrospira platensis supplementation against lead acetate-induced kidney injury in adult male rats. Rats were divided into 4 groups: normal rats (control rats), rats treated with spirulina, rats treated with lead (Pb) (0.344 g/kg body weight), and rats treated with Pb and spirulina. The exposure of rats to Pb for 30 days provoked renal damage with significant increases in hematological parameters, oxidative stress-related parameters (i.e., thiobarbituric acid reactive substances, protein carbonyl content, advanced oxidation protein products, and hydrogen peroxide), creatinine and urea levels in plasma, and uric acid level in urine. Conversely, antioxidant enzyme activities (i.e., catalase, glutathione peroxidase, and superoxide dismutase) and levels of nonprotein thiols, plasma uric acid, and urinary creatinine and urea decreased. The administration of spirulina to Pb-treated rats significantly improved weight, peripheral blood parameters, oxidative stress-related parameters, renal biomarker levels, and antioxidant enzyme activities. Also, rats treated with Pb and spirulina had normal kidney histology. These healing effects are likely the result of the high phenol content and significant antioxidant capacity of A. platensis. Our data strongly suggest that spirulina supplementation improves kidney function and plays an important role in the prevention of complications of Pb intoxication.
Collapse
Affiliation(s)
- Manel Gargouri
- a Laboratory of Animal Ecophysiology, Faculty of Sciences, University of Sfax, 3038 Sfax, Tunisia.,b EA 7462 Géoarchitecture, Faculty of Sciences, University of Western Brittany, 6 Avenue V. Le Gorgeu, CS 93837, 29238 Brest Cedex 3, France
| | - Ahlem Soussi
- a Laboratory of Animal Ecophysiology, Faculty of Sciences, University of Sfax, 3038 Sfax, Tunisia
| | - Amel Akrouti
- a Laboratory of Animal Ecophysiology, Faculty of Sciences, University of Sfax, 3038 Sfax, Tunisia
| | - Christian Magné
- b EA 7462 Géoarchitecture, Faculty of Sciences, University of Western Brittany, 6 Avenue V. Le Gorgeu, CS 93837, 29238 Brest Cedex 3, France
| | - Abdelfattah El Feki
- a Laboratory of Animal Ecophysiology, Faculty of Sciences, University of Sfax, 3038 Sfax, Tunisia
| |
Collapse
|
45
|
Tabeshpour J, Hashemzaei M, Sahebkar A. The regulatory role of curcumin on platelet functions. J Cell Biochem 2018; 119:8713-8722. [PMID: 30098070 DOI: 10.1002/jcb.27192] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/24/2018] [Indexed: 12/12/2022]
Abstract
Curcumin, the main ingredient of Curcuma longa L., has been used as a spice and as a herbal medicine with different therapeutic characteristics for centuries in Asian countries. This phytochemical has been shown to possess beneficial antiplatelet activity that has introduced it as a promising candidate for the treatment of thromboembolism, atherothrombosis, and inflammatory diseases. Platelet dysfunction under different circumstances may lead to cardiovascular disease, and curcumin has been shown to have beneficial effects on platelet dysfunction in several studies. Therefore, this narrative review is aimed to summarize available evidence on the antiplatelet activity of curcumin and related molecular mechanisms for this activity.
Collapse
Affiliation(s)
- Jamshid Tabeshpour
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
46
|
Zeng Z, Huo X, Zhang Y, Xiao Z, Zhang Y, Xu X. Lead exposure is associated with risk of impaired coagulation in preschool children from an e-waste recycling area. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:20670-20679. [PMID: 29752673 DOI: 10.1007/s11356-018-2206-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 05/01/2018] [Indexed: 02/05/2023]
Abstract
Environmental lead exposure leads to various deleterious effects on multiple organs and systems, including the hematopoietic system. To explore the effects of lead exposure on platelet indices in preschool children from an informal, lead-contaminated electronic waste (e-waste) recycling area, we collected venous blood samples from 466 preschool children (331 from an e-waste area (Guiyu) and 135 from a non-e-waste area (Haojiang)). Child blood lead levels (BLLs) were determined by graphite furnace atomic absorption spectrophotometry, while platelet indices were quantified using a Sysmex XT-1800i hematology analyzer. Higher blood lead levels are observed in e-waste lead-exposed preschool children. Significant relationships between high blood lead levels (exceeding current health limits) and elevated platelet count (PLT), plateletcrit (PCT), mean platelet volume (MPV), and platelet large cell ratio (P-LCR) were also uncovered. Furthermore, the median PLT and PCT levels of children from the exposed group both exceeded the respective recommended maximum reference range value, whereas the reference group did not. Location of child residence in Guiyu and BLLs were both risk factors related to platelet indices. These results suggest that high blood lead exposure from e-waste recycling may increase the risk of an amplified coagulation process through the activation of platelets in preschool children.
Collapse
Affiliation(s)
- Zhijun Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, China
| | - Xia Huo
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Yu Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, China
| | - Zhehong Xiao
- Laboratory of Environmental Medicine and Developmental Toxicology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, China
| | - Yuling Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, China.
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
47
|
Rana MN, Tangpong J, Rahman MM. Toxicodynamics of Lead, Cadmium, Mercury and Arsenic- induced kidney toxicity and treatment strategy: A mini review. Toxicol Rep 2018; 5:704-713. [PMID: 29992094 PMCID: PMC6035907 DOI: 10.1016/j.toxrep.2018.05.012] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 04/13/2018] [Accepted: 05/21/2018] [Indexed: 12/18/2022] Open
Abstract
Environmental pollution has become a concerning matter to human beings. Flint water crisis in the USA pointed out that pollution by heavy metal is getting worse day by day, predominantly by Lead, Cadmium, Mercury and Arsenic. Despite of not having any biological role in flora and fauna, they exhibit detrimental effect following exposure (acute or chronic). Even at low dose, they affect brain, kidney and heart. Oxidative stress has been termed as cause and effect in heavy metal-induced kidney toxicity. In treatment strategy, different chelating agent, vitamins and minerals are included, though chelating agents has been showed different fatal drawbacks. Interestingly, plants and plants derived compounds had shown possible effectiveness against heavy metals induced kidney toxicity. This review will provide detail information on toxicodynamics of Pb, Cd, Hg and As, treatment strategy along with the possible beneficiary role of plant derived compound to protect kidney.
Collapse
Affiliation(s)
- Mohammad Nasiruddin Rana
- Biomedical Sciences, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Kumira, Chittagong-4318, Bangladesh
| | - Jitbanjong Tangpong
- Biomedical Sciences, School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Md. Masudur Rahman
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Kumira, Chittagong-4318, Bangladesh
| |
Collapse
|
48
|
Gargouri M, Soussi A, Akrouti A, Magné C, El Feki A. Ameliorative effects of Spirulina platensis against lead-induced nephrotoxicity in newborn rats: Modulation of oxidative stress and histopathological changes. EXCLI JOURNAL 2018; 17:215-232. [PMID: 29743860 PMCID: PMC5938537 DOI: 10.17179/excli2017-1016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/26/2018] [Indexed: 12/20/2022]
Abstract
Our experimental work was aimed at evaluating the safety and protective effects of dietary spirulina supplementation on the kidney of newborn rats, the offspring of lead contaminated lactating mothers. Female rats were randomly divided into four groups: group I (control) was given a normal diet, group II (positive control, S) received a diet enriched with spirulina, group III received only lead through drinking water (Pb), and group IV received both a diet enriched with spirulina and lead contaminated water (S Pb). The treatment of pregnant rats with lead administrated in drinking water, from the 5th day of pregnancy until day 14 after delivery, induced an increased level of renal lipid peroxidation, protein carbonyl, hydrogen peroxide and advanced oxidation protein product, a decreased renal content of glutathione and antioxidant enzyme activities such as superoxide dismutase, catalase and glutathione peroxidase in newborns. A statistically significant increase of renal DNA, mRNA, hematological parameters as well as in plasma urea and creatinine serum levels and lactate dehydrogenase was seen in pups, while those of uric acid declined. Interestingly, these biochemical modifications were accompanied by a significant decrease of lactate dehydrogenase in kidney, plasma alkaline phosphatase and gamma glutamyl-transpeptidase levels, urinary levels of creatinine and urea. Conversely, supplementation of lead-treated mother's with spirulina alleviated hematotoxicity induced by lead as evidenced, by restoring the biochemical markers cited above to near normal levels. Nevertheless, the distorted histoarchitecture in rat kidney attenuated following spirulina supplementation. It can be then concluded that spirulina is an important protective source against kidney impairments.
Collapse
Affiliation(s)
- Manel Gargouri
- Laboratory of Animal Ecophysiology, Faculty of Sciences, Sfax University, Tunisia.,EA2219 Geoarchitecture, University of Brest Cedex 3, France
| | - Ahlem Soussi
- Laboratory of Animal Ecophysiology, Faculty of Sciences, Sfax University, Tunisia
| | - Amel Akrouti
- Laboratory of Animal Ecophysiology, Faculty of Sciences, Sfax University, Tunisia
| | | | - Abdelfattah El Feki
- Laboratory of Animal Ecophysiology, Faculty of Sciences, Sfax University, Tunisia
| |
Collapse
|
49
|
Associations between lead concentrations and cardiovascular risk factors in U.S. adolescents. Sci Rep 2017; 7:9121. [PMID: 28831128 PMCID: PMC5567237 DOI: 10.1038/s41598-017-09701-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/27/2017] [Indexed: 11/30/2022] Open
Abstract
Little is known regarding the effects of environmental lead exposure on cardiovascular risk factors in the adolescent population. We studied 11,662 subjects included in the National Health and Nutrition Examination Survey (NHANES) 1999–2012. Blood lead levels were analysed for their association with cardiovascular risk factors (CVRF). Regression coefficients (Beta) and 95% confidence intervals (CIs) of blood lead in association with CVRF (e.g., total cholesterol, HDL-cholesterol, LDL-cholesterol, triglyceride, fasting glucose, glycohemoglobin, fasting insulin, and blood pressure) were estimated using multivariate and generalized linear regression after adjusting for age, gender, ethnicity, serum cotinine, body mass index (BMI), physical activity, and household income. We identified a strong positive association between blood lead (coefficient = 0.022, 95% CI 0.003, 0.041; P = 0.022) and LDL-cholesterol in adolescents (age 12–19 years). However, no associations with other CVRFs were found in the overall population. In the generalized linear models, participants with the highest lead levels demonstrated a 1.87% (95% CI 0.73%, 3.02%) greater increase in serum LDL-cholesterol (p for trend = 0.031) when compared to participants with the lowest lead levels. These results provide epidemiological evidence that low levels of blood lead are positively associated with LDL-cholesterol in the adolescent population.
Collapse
|
50
|
Jin X, Xu Z, Zhao X, Chen M, Xu S. The antagonistic effect of selenium on lead-induced apoptosis via mitochondrial dynamics pathway in the chicken kidney. CHEMOSPHERE 2017; 180:259-266. [PMID: 28411542 DOI: 10.1016/j.chemosphere.2017.03.130] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/23/2017] [Accepted: 03/29/2017] [Indexed: 06/07/2023]
Abstract
Selenium (Se) is known to have antagonistic effects against lead (Pb) toxicity in animal. The aim of this study was to evaluate the roles of mitochondrial dynamics on Pb-induced apoptosis in the chicken kidney and investigate the antagonistic effect of Se. In the present study, brown layer chickens were randomly allocated to four groups, and each group were exposed to a basic diet (0.2 mg kg-1 Se and 0.5 mg kg-1 Pb), a Se-adequate diet (1 mg kg-1 Se and 0.5 mg kg-1 Pb), a Se and Pb compound diet (1 mg kg-1 Se and 350 mg kg-1 Pb) or a Pb supplemented diet (0.2 mg kg-1 Se and 350 mg kg-1 Pb). On the 90th day, the kidney was removed to determine the activities of mitochondrial respiratory chain complexes, ATPases and oxidative indexes. The expression levels of mitochondrial dynamics and apoptosis-related genes were also determined. The results showed that Pb treatment significantly decreased the activities of mitochondrial complexes and ATPases, and increased oxidative stress, and mitochondrial dynamics and anti-apoptosis-related genes had a lower expression, whereas mitochondrial pro-apoptosis related genes presented higher expressions in the Pb group compared with control group (P < 0.05). However, the co-treatment of Se and Pb significantly alleviated those changes compared with the Pb group (P < 0.05). In conclusion, we speculated that Pb could increase the oxidative stress and promote the apoptosis via regulating mitochondrial dynamics and apoptosis-related genes, and Se exhibited antagonistic roles against the Pb-induced apoptosis in the kidney of chickens.
Collapse
Affiliation(s)
- Xi Jin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhe Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xia Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Menghao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|