1
|
KURAHARA N, YUTSUDO A, YAMATO O, MIYOSHI N, HIFUMI T, YABUKI A. Apoptosis in kidney tissue of senior and geriatric cats with chronic kidney disease. J Vet Med Sci 2025; 87:248-256. [PMID: 39842786 PMCID: PMC11903350 DOI: 10.1292/jvms.24-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/05/2025] [Indexed: 01/24/2025] Open
Abstract
Apoptosis, an important pathological event associated with kidney disease progression, is expected to be a therapeutic target in chronic kidney disease (CKD). However, its role in naturally occurring CKD in aged cats remains unclear. Therefore, here, we investigated kidney tissues from aged cats (≥10 years) with or without azotemic CKD to evaluate apoptotic events using a terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) assay. The positive TUNEL signals of the renal cells were quantified and statistically analyzed for correlation with the severity of plasma creatinine (pCre) concentration, renal lesions (glomerulosclerosis, interstitial cell infiltration, peritubular capillaries, and interstitial fibrosis), and oxidative damage of the kidney tissue. Oxidative damage was evaluated using immunohistochemistry for 8-hydroxy-2'-deoxyguanosine (OHdG) and 4-hydroxynonenal (HNE). In the TUNEL assay, regardless of azotemia, positive nuclear signals were observed in the tubular epithelial and intraluminal cells, interstitial infiltrating cells, and glomerular cells. Quantitative TUNEL scores showed no significant differences between the azotemic and non-azotemic groups in any compartment of the kidney tissues. In the azotemic group, TUNEL scores did not correlate with pCre or renal lesion severity. However, the scores showed a significant positive correlation with the scores of 8-OHdG and 4-HNE. These findings suggest that apoptosis associated with oxidative damage in renal tissue is an initial pathological event that leads to CKD, rather than a change following CKD progression, in aged cats. Inhibiting apoptosis by antioxidant treatment may be a key strategy to prevent the development of CKD.
Collapse
Affiliation(s)
- Natsume KURAHARA
- Laboratory of Veterinary Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Ayami YUTSUDO
- Laboratory of Veterinary Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Osamu YAMATO
- Laboratory of Veterinary Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Noriaki MIYOSHI
- Laboratory of Veterinary Histopathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Tatsuro HIFUMI
- Laboratory of Veterinary Histopathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Akira YABUKI
- Laboratory of Veterinary Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
- Kagoshima University Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
2
|
Uysal S, Yoruk MA. Boric Acid in Milk Replacer as a Health Enhancer and Growth Promoter for Lambs in the Suckling Period. Biol Trace Elem Res 2025; 203:850-860. [PMID: 38758480 PMCID: PMC11750917 DOI: 10.1007/s12011-024-04214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/27/2024] [Indexed: 05/18/2024]
Abstract
This study was performed to investigate the effects of boric acid supplementation in milk replacer of lambs in the suckling period on performance, biochemical parameters, the antioxidant system, fecal culture, and expression of some genes. During the suckling period, 60 lambs (4 days old) were randomly given four levels of boric acid (0, 30, 60, and 90 mg/kg body weight) via milk replacer for 57 days. The lambs supplemented with boric acid had a higher weight gain and better feed conversion ratio. Boric acid supplementation quadratically increased serum triglyceride, total protein, alkaline phosphatase, serum antioxidant activity and oxidative stress biomarkers, and fecal flora and decreased IL1β, IL10, iNOS, NF-kB, and TNF-α gene expressions. The effect of boric acid on rumen papilla development could not be determined since the animals were not slaughtered. In conclusion, the use of boric acid to lambs in the suckling period improved the average weekly body weight gain and feed conversion efficiency, positively affected some biochemical parameters, antioxidant system, and intestinal flora, and also affected gene expressions related to the immune system. Boric acid supplementation had a beneficial effect on the health and growth of suckling lambs.
Collapse
Affiliation(s)
- Soner Uysal
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ataturk University, Erzurum, 25240, Turkey.
| | - Mehmet Akif Yoruk
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Samsun, 55139, Turkey
| |
Collapse
|
3
|
Khaliq H. Exploring the role of boron-containing compounds in biological systems: Potential applications and key challenges. J Trace Elem Med Biol 2025; 87:127594. [PMID: 39826267 DOI: 10.1016/j.jtemb.2025.127594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Boron, a naturally abundant trace element, plays a crucial role in various biological processes and influences important physiological functions such as bone health, immune response, and cellular metabolism. Its applications span diverse scientific fields including anatomy, pharmacology, reproduction, medicine, and agriculture. OBJECTIVES This review examines the diverse functions of boron-compounds in biological systems and highlights their therapeutic potential, challenges associated with toxicity, and mechanisms underlying their biological interactions. METHODS In this paper, the literature on boron action was reviewed, paying special attention to studies that examined the effects of boron on health and its therapeutic applications in multiple areas. RESULTS Boron exhibits broad therapeutic potential by affecting several pathways. However, excessive consumption can cause toxicity and negatively impact health. Current research only partially elucidates the mechanisms of boron's biological effects, so further studies are needed. CONCLUSION Understanding boron's interactions in biological systems is critical to optimizing its application in healthcare and ensuring safety. Future research will improve our knowledge of boron's biological effects and promote innovative therapeutic applications.
Collapse
Affiliation(s)
- Haseeb Khaliq
- Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences Bahawalpur, 63100, Pakistan.
| |
Collapse
|
4
|
Tekin A, Güner A, Akkan T. Protective Effect of Boric Acid Against Ochratoxin A-Induced Toxic Effects in Human Embryonal Kidney Cells (HEK293): A Study on Cytotoxic, Genotoxic, Oxidative, and Apoptotic Effects. Biol Trace Elem Res 2025; 203:810-821. [PMID: 38713435 PMCID: PMC11750931 DOI: 10.1007/s12011-024-04194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
The present study evaluates the protective properties of boric acid (BA) against the toxic effects induced by ochratoxin A (OTA) in human embryonic kidney cells (HEK293). The focus is on various parameters such as cytotoxicity, genotoxicity, oxidative stress, and apoptosis. OTA is a known mycotoxin that has harmful effects on the liver, kidneys, brain, and nervous system. BA, on the other hand, a boron-based compound, is known for its potential as a vital micronutrient with important cellular functions. The results show that BA administration not only increases cell viability but also mitigates the cytotoxic effects of OTA. This is evidenced by a reduction in the release of lactate dehydrogenase (LDH), indicating less damage to cell membranes. In addition, BA shows efficacy in reducing genotoxic effects, as the frequency of micronucleus (MN) and chromosomal aberrations (CA) decreases significantly, suggesting a protective role against DNA damage. In addition, the study shows that treatment with BA leads to a decrease in oxidative stress markers, highlighting its potential as a therapeutic intervention against the deleterious effects of OTA. These results emphasize the need for further research into the protective mechanisms of boron, particularly BA, in combating cell damage caused by OTA.
Collapse
Affiliation(s)
- Aşkın Tekin
- Faculty of Health Sciences, Department of Occupational Health and Safety,, Sinop University, Sinop, Türkiye.
| | - Adem Güner
- Şebinkarahisar Vocational School of Health Services, Giresun,, Giresun University, Giresun, Türkiye
| | - Tamer Akkan
- Faculty of Arts and Science, Biology Department of Biology, Giresun University, Giresun, Türkiye
| |
Collapse
|
5
|
Demyashkin G, Koryakin S, Parshenkov M, Skovorodko P, Vadyukhin M, Uruskhanova Z, Stepanova Y, Shchekin V, Mirontsev A, Rostovskaya V, Ivanov S, Shegay P, Kaprin A. Morphofunctional Features of Glomeruli and Nephrons After Exposure to Electrons at Different Doses: Oxidative Stress, Inflammation, Apoptosis. Curr Issues Mol Biol 2024; 46:12608-12632. [PMID: 39590342 PMCID: PMC11593091 DOI: 10.3390/cimb46110748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Kidney disease has emerged as a significant global health issue, projected to become the fifth-leading cause of years of life lost by 2040. The kidneys, being highly radiosensitive, are vulnerable to damage from various forms of radiation, including gamma (γ) and X-rays. However, the effects of electron radiation on renal tissues remain poorly understood. Given the localized energy deposition of electron beams, this study seeks to investigate the dose-dependent morphological and molecular changes in the kidneys following electron irradiation, aiming to address the gap in knowledge regarding its impact on renal structures. The primary aim of this study is to conduct a detailed morphological and molecular analysis of the kidneys following localized electron irradiation at different doses, to better understand the dose-dependent effects on renal tissue structure and function in an experimental model. Male Wistar rats (n = 75) were divided into five groups, including a control group and four experimental groups receiving 2, 4, 6, or 8 Gray (Gy) of localized electron irradiation to the kidneys. Biochemical markers of inflammation (interleukin-1 beta [IL-1β], interleukin-6 [IL-6], interleukin-10 [IL-10], tumor necrosis factor-alpha [TNF-α]) and oxidative stress (malondialdehyde [MDA], superoxide dismutase [SOD], glutathione [GSH]) were measured, and morphological changes were assessed using histological and immunohistochemical techniques (TUNEL assay, caspase-3). The study revealed a significant dose-dependent increase in oxidative stress, inflammation, and renal tissue damage. Higher doses of irradiation resulted in increased apoptosis, early stages of fibrosis (at high doses), and morphological changes in renal tissue. This study highlights the dose-dependent effects of electrons on renal structures, emphasizing the need for careful consideration of the dosage in clinical use to minimize adverse effects on renal function.
Collapse
Affiliation(s)
- Grigory Demyashkin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St., 8/2, 119048 Moscow, Russia; (M.P.)
| | - Sergey Koryakin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
| | - Mikhail Parshenkov
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St., 8/2, 119048 Moscow, Russia; (M.P.)
| | - Polina Skovorodko
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
| | - Matvey Vadyukhin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
| | - Zhanna Uruskhanova
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St., 8/2, 119048 Moscow, Russia; (M.P.)
| | - Yulia Stepanova
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
| | - Vladimir Shchekin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, 117198 Moscow, Russia
| | - Artem Mirontsev
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St., 8/2, 119048 Moscow, Russia; (M.P.)
| | - Vera Rostovskaya
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St., 8/2, 119048 Moscow, Russia; (M.P.)
| | - Sergey Ivanov
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
| | - Petr Shegay
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
| | - Andrei Kaprin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
- Department of Urology and Operative Nephrology, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, 117198 Moscow, Russia
| |
Collapse
|
6
|
Sedighi-Pirsaraei N, Tamimi A, Sadeghi Khamaneh F, Dadras-Jeddi S, Javaheri N. Boron in wound healing: a comprehensive investigation of its diverse mechanisms. Front Bioeng Biotechnol 2024; 12:1475584. [PMID: 39539690 PMCID: PMC11557333 DOI: 10.3389/fbioe.2024.1475584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Chronic wounds present a significant clinical challenge due to their prolonged healing time and susceptibility to infection. Boron, a trace element with diverse biological functions, has emerged as a promising therapeutic agent in wound healing. This review article comprehensively investigates the mechanisms underlying the beneficial effects of boron compounds in wound healing. Boron exerts its healing properties through multiple pathways, including anti-inflammatory, antimicrobial, antioxidant, and pro-proliferative effects. Inflammation is a crucial component of the wound-healing process, and boron has been shown to modulate inflammatory responses by inhibiting pro-inflammatory cytokines and promoting the resolution of inflammation. Furthermore, boron exhibits antimicrobial activity against a wide range of pathogens commonly associated with chronic wounds, thereby reducing the risk of infection and promoting wound closure. The antioxidant properties of boron help protect cells from oxidative stress, a common feature of chronic wounds that can impair healing. Additionally, boron stimulates cell proliferation and migration, as well as essential tissue regeneration and wound closure processes. Overall, this review highlights the potential of boron as a novel therapeutic approach for treating chronic wounds, offering insights into its diverse mechanisms of action and clinical implications.
Collapse
|
7
|
Xu C, Deng Y, Man J, Wang H, Che T, Ding L, Yang L. Unveiling the Renoprotective Mechanisms of Schisandrin B in Ischemia-Reperfusion Injury Through Transcriptomic and Pharmacological Analysis. Drug Des Devel Ther 2024; 18:4241-4256. [PMID: 39323973 PMCID: PMC11423835 DOI: 10.2147/dddt.s489458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024] Open
Abstract
Objective This study investigates the targets, pathways, and mechanisms of Schisandrin B (Sch B) in alleviating renal ischemia-reperfusion injury (RIRI) using RNA sequencing and network pharmacology. Methods The effects of Sch B on RIRI were assessed using hematoxylin-eosin (HE) and periodic acid-Schiff (PAS) staining, along with measurements of blood creatinine and urea nitrogen (BUN). Differential gene expression in mouse models treated with RIRI and Sch B+RIRI was analyzed through RNA-Seq. Key processes, targets, and pathways were examined using network pharmacology techniques. The antioxidant capacity of Sch B was evaluated using assays for reactive oxygen species (ROS), mitochondrial superoxide, and JC-1 membrane potential. Molecular docking was employed to verify the interactions between key targets and Sch B, and the expression of these targets and pathway was confirmed using qRT-PCR, Western blot, and immunofluorescence. Results Sch B pre-treatment significantly reduced renal pathological damage, inflammatory response, and apoptosis in a mouse RIRI model. Pathological damage scores dropped from 4.33 ± 0.33 in the I/R group to 2.17 ± 0.17 and 1.5 ± 0.22 in Sch B-treated groups (p < 0.01). Creatinine and BUN levels were also reduced (from 144.6 ± 21.05 µmol/L and 53.51 ± 2.34 mg/dL to 50.44 ± 5.61 µmol/L and 17.18 ± 0.96 mg/dL, p < 0.05). Transcriptomic analysis identified four key targets (AKT1, ALB, ACE, CCL5) and the PI3K/AKT pathway. Experimental validation confirmed Sch B modulated these targets, reducing apoptosis and oxidative stress, and enhancing renal recovery. Conclusion Sch B reduces oxidative stress, inflammation, and apoptosis by modulating key targets such as AKT1, ALB, ACE, and CCL5, while activating the PI3K/AKT pathway, leading to improved renal recovery in RIRI.
Collapse
Affiliation(s)
- Changhong Xu
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, People’s Republic of China
| | - Yun Deng
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, People’s Republic of China
| | - Jiangwei Man
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, People’s Republic of China
| | - Huabin Wang
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, People’s Republic of China
| | - Tuanjie Che
- Innovation Center of Functional Genomics and Molecular Diagnostics Technology of Gansu Province, Lanzhou, People’s Republic of China
| | - Liyun Ding
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, People’s Republic of China
| | - Li Yang
- Department of Urology, Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, People’s Republic of China
| |
Collapse
|
8
|
Kar E, Kar F, Can B, Çakır Gündoğdu A, Özbayer C, Koçak FE, Şentürk H. Prophylactic and Therapeutic Efficacy of Boric Acid on Lipopolysaccharide-Induced Liver and Kidney Inflammation in Rats. Biol Trace Elem Res 2024; 202:3701-3713. [PMID: 37910263 DOI: 10.1007/s12011-023-03941-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
In our study, we aimed to examine possible prophylactic (P) or therapeutic (T) effects of boric acid (BA) on lipopolysaccharide (LPS) induced liver and kidney damages. Thirty-two rats were divided into four groups as control, LPS, BAP+LPS, and LPS+BAT. BA was given orally to the rats one hour before the intraperitoneal LPS administration in the BAP+LPS group and one hour after the LPS administration in the LPS+BAT group. Malondialdehyde (MDA), myeloperoxidase (MPO), interleukin-6 (IL-6), IL-10, reduced glutathione (GSH), total oxidant and antioxidant status (TOS and TAS), semaphorin-3A (SEMA3A), cytochrome c (CYCS), and caspase-3 (CASP3) parameters were determined by ELISA method to monitor inflammation, oxidative stress, and apoptosis in the liver and kidney tissues of rats. In addition, alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), urea, creatinine (CREA), C-reactive protein (CRP), gamma glutamyl transferase (GGT), glucose (GLU), sodium (Na), potassium (K), and chlorine (Cl) biochemical parameters were measured in rat serums to monitor liver and kidney functions. Liver and kidney tissues were also examined histopathologically and immunohistochemically. All data were statistically analyzed. Our histological, biochemical, inflammatory, oxidative stress, and apoptotic findings showed that LPS causes serious damage to liver and kidney tissues. Boric acid application brought about significant improvements on the parameters. However, this improvement was seen in the BAP+LPS group, and the results of the LPS+BAT group were insufficient to improve. Our results showed that boric acid administration is effective on severe liver and kidney damage caused by LPS. It has been concluded that prophylactic application is more effective, while therapeutic application is insufficient.
Collapse
Affiliation(s)
- Ezgi Kar
- Training and Research Center, Kutahya Health Sciences University, Kutahya, Turkey.
| | - Fatih Kar
- Department of Medical Biochemistry, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Betül Can
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Ayşe Çakır Gündoğdu
- Department of Histology and Embryology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Cansu Özbayer
- Department of Medical Biology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Fatma Emel Koçak
- Department of Medical Biochemistry, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Hakan Şentürk
- Department of Biology, Faculty of Art and Sciences, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
9
|
Qi M, Su X, Li Z, Huang H, Wang J, Lin N, Kong X. Bibliometric analysis of research progress on tetramethylpyrazine and its effects on ischemia-reperfusion injury. Pharmacol Ther 2024; 259:108656. [PMID: 38735486 DOI: 10.1016/j.pharmthera.2024.108656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
In recent decades, natural products have attracted worldwide attention and become one of the most important resources for pharmacological industries and medical sciences to identify novel drug candidates for disease treatment. Tetramethylpyrazine (TMP) is an alkaloid extracted from Ligusticum chuanxiong Hort., which has shown great therapeutic potential in cardiovascular and cerebrovascular diseases, liver and renal injury, as well as cancer. In this review, we analyzed 1270 papers published on the Web of Science Core Collection from 2002 to 2022 and found that TMP exerted significant protective effects on ischemia-reperfusion (I/R) injury that is the cause of pathological damages in a variety of conditions, such as ischemic stroke, myocardial infarction, acute kidney injury, and liver transplantation. TMP is limited in clinical applications to some extent due to its rapid metabolism, a short biological half-life and poor bioavailability. Obviously, the structural modification, administration methods and dosage forms of TMP need to be further investigated in order to improve its bioavailability. This review summarizes the clinical applications of TMP, elucidates its potential mechanisms in protecting I/R injury, provides strategies to improve bioavailability, which presents a comprehensive understanding of the important compound. Hopefully, the information and knowledge from this review can help researchers and physicians to better improve the applications of TMP in the clinic.
Collapse
Affiliation(s)
- Mingzhu Qi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaohui Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhuohang Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Helan Huang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingbo Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiangying Kong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
10
|
Karaman E, Onder GO, Goktepe O, Karakas E, Mat OC, Bolat D, Koseoglu E, Tur K, Baran M, Ermis M, Balcioglu E, Yay A. Protective Effects of Boric Acid Taken in Different Ways on Experimental Ovarian İschemia and Reperfusion. Biol Trace Elem Res 2024; 202:2730-2743. [PMID: 37743417 DOI: 10.1007/s12011-023-03871-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
Ovarian ischemia is a gynecological emergency that occurs as a result of ovarian torsion, affects women of reproductive age, and reduces ovarian reserve. The current study was designed to investigate the effect of boric acid taken in different ways on histopathological changes, autophagy, oxidative stress, and DNA damage caused by ischemia and reperfusion in the ovary of adult female rats. We established seven groups of 70 adult female rats: untreated control, intraperitoneal boric acid group (IpBA), oral boric acid group (OBA), ischemia/reperfusion group (ischemia/2 h reperfusion; OIR), ischemia/reperfusion and local boric acid group (OIR + LBA), ischemia/reperfusion and intraperitoneal boric acid group (OIR + IpBA), and ischemia/reperfusion and oral boric acid group (OIR + OBA). On the 31st day of the experimental procedure, both ovaries were harvested for histologic (hematoxylen and eosin and Masson trichrom), biochemical (ELISA and AMH, MDA, SOD, and CAT analyses), and comet evaluation. In the OIR group, hemorrhage, edema, inflammation, and diminished follicle reserve were seen in the ovary. Boric acid treatment reduced the ovarian ischemia/reperfusion damage, and the follicles exhibited similar morphological features to the control group. Moreover, boric acid treatment decreased the levels of Hsp70, NF-KB, COX-2, and CD31, which increased as a result of OIR. On the other hand, SCF and AMH levels, which decreased as a result of OIR, increased with boric acid treatment. The levels of autophagy markers (Beclin-1, LC3, and p62) reached values close to those of the control group. According to the biochemical findings, it was concluded that boric acid is also effective on oxidative stress, and the AMH level was particularly high in the OIR + OBA group, consistent with the immunohistochemical staining result. In addition, it was observed that the DNA damage caused by OIR reached values close to those of the control group, especially in the OBA after OIR. This study showed the therapeutic effects of boric acid on OIR injuries; thus, boric acid may be a potential therapeutic agent for ovarian protection and fertility preservation in cases that may cause ovarian torsion.
Collapse
Affiliation(s)
- Enes Karaman
- Department of Gynecology and Obstetrics, Savur Prof Dr Aziz Sancar District State Hospital, Mardin, Turkey
| | - Gozde Ozge Onder
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, 38039, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Ozge Goktepe
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, 38039, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Erol Karakas
- Department of Gynecology and Obstetrics, Kayseri State Hospital, Kayseri, Turkey
| | - Ozge Cengiz Mat
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, 38039, Kayseri, Turkey
| | - Demet Bolat
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, 38039, Kayseri, Turkey
| | - Eda Koseoglu
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, 38039, Kayseri, Turkey
| | - Kardelen Tur
- Department of Biophysics, Faculty of Medicine, Erciyes University, 38039, Kayseri, Turkey
| | - Munevver Baran
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Mustafa Ermis
- Experimental Researches and Application Center, Erciyes University, Kayseri, Turkey
| | - Esra Balcioglu
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, 38039, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Arzu Yay
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, 38039, Kayseri, Turkey.
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey.
| |
Collapse
|
11
|
Qiuxiao-Zhu, Huiyao-Hao, Li N, Zibo-Liu, Qian-Wang, Linyi-Shu, Lihui-Zhang. Protective effects and mechanisms of dapagliflozin on renal ischemia/reperfusion injury. Transpl Immunol 2024; 84:102010. [PMID: 38325526 DOI: 10.1016/j.trim.2024.102010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Renal diseases have a significant negative impact on human health and the quality of life. Renal ischemia/reperfusion (I/R) injury is considered as one of the leading causes of renal dysfunction and tissue damage. Oxidative stress and inflammation are responsible for cellular apoptosis playing critical roles in renal I/R injury. Recent studies suggested that dapagliflozin-a medication used to treat Type 2 Diabetes-may exert protective effects on I/R injury in kidneys by alleviating oxidative stress and inflammation. Our study evaluated the protective effects of dapagliflozinon in renal I/R injury. METHODS A group of 32 male Sprague-Dawley rats were divided into four groups: 1) control group without any manipulation; 2) sham-operated control group with surgery but without I/R injury; 3) experimental group with 30-min I/R injury; and 4) therapeutic group with 30-min IR injury and dapagliflozin therapy. The fourth therapeutic group received 1 mg/kg dapagliflozin delivered once daily by oral gavage. All rats were evaluated by measurements of neutrophil gelatinase-associated lipocalin (NGAL), creatinine kinase (CR), blood urea nitrogen (BUN), kidney injury molecule-1 (KIM-1), myoglobin (MYO), creatinine kinase (CK), lactate dehydrogenase (LDH) LD, GSH, superoxide dismutase (SOD), MDA, interleukin-6 (IL-6), and tumor necrosis factor-a (TNF-a and glutathione peroxidase (GSH-Px) levels. TUNEL and flow cytometry assays evaluated apoptosis. RESULTS Overall, the 30-min exposure to I/R injury significantly elevated levels of NGAL, CR, BUN, CK, LDH, KIM-1, and MYO (all p < 0.05). Inflammatory cytokine levels (IL-6 and TNF-a) were also increased after I/R injury (p > 0.05). At the same time, I/R injury decreased levels of SOD and GSH-Px (p > 0.05). In contrast, administration of dapagliflozin following I/R injury reduced renal damage, enhanced antioxidant capacity, and suppressed inflammatory responses (all p > 0.05), thus improving renal function, while reducing oxidative stress status and inflammatory responses. Further investigations revealed that dapagliflozin exerted its protective effects on renal tissues by activating the phosphatidylinositol 3-kinase-protein kinase B (PI3K-AKT) signaling pathway, inhibiting cellular apoptosis, and promoting proliferation and autophagy through bone morphogenetic protein 4 (BMP4). CONCLUSION These findings documented that dapagliflozin protected kidneys from I/R injury suggesting its therapeutic potential.
Collapse
Affiliation(s)
- Qiuxiao-Zhu
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Huiyao-Hao
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Na Li
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Zibo-Liu
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Qian-Wang
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Linyi-Shu
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Lihui-Zhang
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
12
|
Jabbar AAJ, Alamri ZZ, Abdulla MA, Salehen NA, Ibrahim IAA, Hassan RR, Almaimani G, Bamagous GA, Almaimani RA, Almasmoum HA, Ghaith MM, Farrash WF, Almutawif YA. Boric Acid (Boron) Attenuates AOM-Induced Colorectal Cancer in Rats by Augmentation of Apoptotic and Antioxidant Mechanisms. Biol Trace Elem Res 2024; 202:2702-2719. [PMID: 37770673 DOI: 10.1007/s12011-023-03864-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023]
Abstract
Boric acid (BA) is a naturally occurring weak Lewis acid containing boron, oxygen, and hydrogen elements that can be found in water, soil, and plants. Because of its numerous biological potentials including anti-proliferation actions, the present investigates the chemopreventive possessions of BA on azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) in rats. Thirty laboratory rats were divided into 5 groups: negative control (A) received two subcutaneous inoculations of normal saline and nourished on 10% Tween 20; groups B-E had two injections of 15 mg/kg azoxymethane followed by ingestion of 10% Tween 20 (B, cancer control), inoculation with intraperitoneal 35 mg/kg 5-fluorouracil injection (C, reference group), or ingested with boric acid 30 mg/kg (D) and 60 mg/kg (E). The gross morphology results showed significantly increased total colonic ACF in cancer controls, while BA treatment caused a significant reduction of ACF values. Histopathological evaluation of colons from cancer controls showed bizarrely elongated nuclei, stratified cells, and higher depletion of the submucosal glands than that of BA-treated groups. Boric acid treatment up-surged the pro-apoptotic (Bax) expression and reduced anti-apoptotic (Bcl-2) protein expressions. Moreover, BA ingestion caused upregulation of antioxidant enzymes (GPx, SOD, CAT), and lowered MDA contents in colon tissue homogenates. Boric acid-treated rats had significantly lower pro-inflammatory cytokines (TNF-α and IL-6) and higher anti-inflammatory cytokines (IL-10) based on serum analysis. The colorectal cancer attenuation by BA is shown by the reduced ACF numbers, anticipated by its regulatory potentials on the apoptotic proteins, antioxidants, and inflammatory cytokines originating from AOM-induced oxidative damage.
Collapse
Affiliation(s)
- Ahmed A J Jabbar
- Department of Medical Laboratory Technology, Erbil Technical Health and Medical College, Erbil Polytechnic University, Erbil, 44001, Iraq.
| | - Zaenah Zuhair Alamri
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mahmood Ameen Abdulla
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Nur Ain Salehen
- Department of Biomedical Sciences, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rawaz Rizgar Hassan
- Department of Medical Laboratory Science, College of Science, Knowledge University, Kirkuk Road, Erbil, 44001, Iraq
| | - Ghassan Almaimani
- Department of surgery, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Ghazi A Bamagous
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Riyad A Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hussain A Almasmoum
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Mazen M Ghaith
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Wesam F Farrash
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Yahya A Almutawif
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah, 42353, Saudi Arabia
| |
Collapse
|
13
|
Gündoğdu AÇ, Özbayer C, Kar F. Boric Acid Alleviates Gastric Ulcer by Regulating Oxidative Stress and Inflammation-Related Multiple Signaling Pathways. Biol Trace Elem Res 2024; 202:2124-2132. [PMID: 37606879 DOI: 10.1007/s12011-023-03817-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
Oxidative stress and inflammation have pivotal roles in gastric ulcer development caused by alcohol consumption. Trace element boric acid taken into the human and animal body from dietary sources displays strong antioxidant and anti-inflammatory functions. However, the mechanisms underlying these actions of boric acid remain unclear, and its effectiveness in preventing gastric lesions is unknown. Therefore, the present study was undertaken to evaluate the protective effects of boric acid in alcohol-induced gastric ulcer and elucidate its potential mechanisms. Gastric ulcer was induced by 75% oral ethanol administration in rats, and the effectiveness of prophylactic boric acid treatment at 100 mg/kg concentration was assessed by histopathological examination, ELISA assay and qRT-PCR. Gross macroscopic and histopathological evaluations revealed that boric acid alleviated gastric mucosal lesions. Boric acid decreased reactive oxygen species (ROS) and malondialdehyde (MDA) concentration and the overall oxidation state of the body while improving antioxidant status. It reduced the concentration of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). The mRNA expression of JAK2 and STAT3 was decreased while the expression of AMPK was increased with boric acid pretreatment. Moreover, Sema3A and PlexinA1 levels were elevated upon boric acid pretreatment, and homocysteine levels were reduced. Our results demonstrated that boric acid protects gastric mucosa from ethanol-induced damage by regulating oxidative and inflammatory responses. In addition, our findings suggested that the gastroprotective activity of boric acid could be attributed to its regulatory function in the IL-6/JAK2/STAT3 signaling modulated by AMPK and that Sema3A/PlxnA1 axis and homocysteine are potentially involved in this process.
Collapse
Affiliation(s)
- Ayşe Çakır Gündoğdu
- Department of Histology and Embryology, Faculty of Medicine, Kütahya Health Sciences University, Kütahya, Türkiye
| | - Cansu Özbayer
- Department of Medical Biology, Faculty of Medicine, Kütahya Health Sciences University, Kütahya, Türkiye
| | - Fatih Kar
- Department of Medical Biochemistry, Faculty of Medicine, Kütahya Health Sciences University, Evliya Çelebi Campus, 10th km of the Tavşanlı Road, 43100, Kütahya, Türkiye.
| |
Collapse
|
14
|
Simsek UG, Karabulut B, Kaya SO, Erişir M, Baykalir Y, Aslan S, Cevik A, Kahramanogullari M. The stimulatory effects of boron on Japanese quail spermatological activity, histopathology, and oxidative stress. ACTA VET BRNO 2024; 93:209-218. [DOI: 10.2754/avb202493020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
This study looked at how spermatogenesis, lipid peroxidation, antioxidant defense mechanisms, and histological changes in testicular, hepatic, and renal tissues were affected by boric acid (H3BO3) added to mixed feed and drinking water at different concentrations for 14 weeks. For this purpose, 60 male Japanese quails (Coturnix japonica f. domestica) were used. From the age of 35 days, the birds were given boric acid added to regular soybean meal maize mixed feed as well as drinking water. Experimental groups: Control (no additive), F100: 100 mg/kg boric acid into feed, F300: 300 mg/kg boric acid into feed, W100: 100 mg/l boric acid into drinking water, and W300: 300 mg/l boric acid into drinking water. Both primordial (P < 0.001) and mature (P < 0.05) sperm counts increased in F300 and W300 groups. Supplemented boric acid in drinking water (300 mg/l) increased the tubule diameters of the testicle (P < 0.05). Because of the rising levels of boric acid in the feed and water groups, lipid peroxidation levels increased in testicular (P < 0.001), hepatic, and renal tissues (P < 0.01). Glutathione (GSH) levels rose in high boric acid groups in testicular and hepatic tissues (P < 0.001). Different tissues responded differentially to high amounts of boric acid in terms of antioxidant enzyme activity (P < 0.001). As a result, boric acid at high doses showed beneficial effects on spermatological activity; however, continued use caused lipid peroxidation in tissues and some pathological problems in liver tissue.
Collapse
|
15
|
Hassan FE, Aboulhoda BE, Ali IH, Elwi HM, Matter LM, Abdallah HA, Khalifa MM, Selmy A, Alghamdi MA, Morsy SA, Al Dreny BA. Evaluating the protective role of trimetazidine versus nano-trimetazidine in amelioration of bilateral renal ischemia/reperfusion induced neuro-degeneration: Implications of ERK1/2, JNK and Galectin-3 /NF-κB/TNF-α/HMGB-1 signaling. Tissue Cell 2023; 85:102241. [PMID: 37865040 DOI: 10.1016/j.tice.2023.102241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/24/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Renal ischemia/reperfusion (I/R) is a primary culprit of acute kidney injury. Neurodegeneration can result from I/R, but the mechanisms are still challenging. We studied the implications of bilateral renal I/R on brain and potential involvement of the oxidative stress (OS) driven extracellular signal-regulated kinase1/2, c-Jun N-terminal kinase (ERK1/2, JNK) and Galectin-3 (Gal-3)/nuclear factor Kappa B (NF-қB)/tumor necrosis factor-alpha (TNF-α), high mobility group box-1 (HMGB-1), and caspase-3 paths upregulation. We tested the impact of Nano-trimetazidine (Nano-TMZ) on these pathways being a target of its neuroprotective effects. METHODS Study groups; Sham, I/R, TMZ+I/R, and Nano-TMZ+I/R. Kidney functions, cognition, hippocampal OS markers, Gal-3, NF-қB, p65 and HMGB-1 gene expression, TNF-α level, t-JNK/p-JNK and t-ERK/p-ERK proteins, caspase-3, glial fibrillary acidic protein (GFAP) and ionized calcium binding protein-1 (Iba-1) were assessed. RESULTS Nano-TMZ averted renal I/R-induced hippocampal impairment by virtue of its anti: oxidative, inflammatory, and apoptotic properties. CONCLUSION Nano-TMZ is more than anti-ischemic.
Collapse
Affiliation(s)
- Fatma E Hassan
- Medical Physiology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Giza 11562, Egypt; General Medicine Practice Program, Department of Physiology, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Basma Emad Aboulhoda
- Anatomy and Embryology Department, Faculty of Medicine, Cairo University, Egypt.
| | - Isra H Ali
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Sadat City, Egypt; Nanomedicine Laboratory, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Sadat City, Egypt
| | - Heba M Elwi
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Egypt
| | - Lamiaa M Matter
- Medical pharmacology, Kasr Alainy, Faculty of Medicine, Cairo University, Egypt
| | - Hend Ahmed Abdallah
- Anatomy and Embryology Department, Faculty of Medicine, Cairo University, Egypt
| | - Mohamed Mansour Khalifa
- Medical Physiology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Giza 11562, Egypt; Department of Human Physiology, College of Medicine, King Saud University, Saudi Arabia
| | - Asmaa Selmy
- Medical Physiology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Giza 11562, Egypt
| | - Mansour A Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia; Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia
| | - Suzan Awad Morsy
- Fakeeh College For Medical Sciences, Jeddah, Saudi Arabia; Faculty of Medicine, Alexandria University, Egypt
| | - Basant A Al Dreny
- Medical Physiology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Giza 11562, Egypt
| |
Collapse
|
16
|
Jin X, He R, Lin Y, Liu J, Wang Y, Li Z, Liao Y, Yang S. Shenshuaifu Granule Attenuates Acute Kidney Injury by Inhibiting Ferroptosis Mediated by p53/SLC7A11/GPX4 Pathway. Drug Des Devel Ther 2023; 17:3363-3383. [PMID: 38024532 PMCID: PMC10656853 DOI: 10.2147/dddt.s433994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Background Acute kidney injury (AKI) is a common clinical condition resulting in a rapid decline in renal function, and requires improvement in effective preventive measures. Ferroptosis, a novel form of cell death, is closely related to AKI. Shenshuaifu granule (SSF) has been demonstrated to prevent AKI through suppressing inflammation and apoptosis. Objective This study aimed to explore whether SSF can inhibit ferroptosis in AKI. Methods Active ingredients in SSF were detected through HPLC-MS/MS, and their binding abilities with ferroptosis were evaluated by molecular docking. Then, male C57/BL/6J mice were randomly divided into control, cisplatin, and cisplatin+SSF groups. In the latter two groups, mice were intraperitoneally injected with 20 mg/kg of cisplatin. For five consecutive days prior to cisplatin injection, mice in the cisplatin+SSF group were gavaged with 5.2 g/kg of SSF per day.72 h after cisplatin injection, the mice were sacrificed. Serum creatinine (SCr) and blood urea nitrogen (BUN) were measured to evaluate renal function. H&E and PAS staining were used to observe pathological damage of kidney. Cell death was observed by TUNEL staining, and iron accumulation in kidneys of mice was detected by Prussian blue staining. Western blotting, immunohistochemistry, and immunofluorescence were used to investigate the presence of inflammation, oxidative stress, mitochondrial dysfunction, iron deposition, and lipid peroxidation in mouse kidneys. Results Active ingredients in SSF had strong affinities with ferroptosis. SSF reduced SCr (p<0.01) and BUN (p<0.0001) levels, pathological damage (p<0.0001), dead cells in the tubular epithelium (p<0.0001) and iron deposition (p<0.01) in mice with cisplatin induced AKI. And SSF downregulated macrophage infiltration (p<0.01), the expressions of high mobility group box 1 (HMGB1, p<0.05) and interleukin (IL)-17 (p<0.05), upregulated superoxide dismutase (SOD) 1 and 2 (p<0.01), and catalase (CAT, p<0.05), and alleviated mitochondrial dysfunction (p<0.05). More importantly, SSF regulated iron transport and intracellular iron overload and reduced the expression of ferritin (p<0.05). Moreover, it downregulated the expressions of cyclo-oxygenase-2 (Cox-2, p<0.001), acid CoA ligase 4 (ACSL4, p<0.05), and solute carrier family 7, member 11 (SLC7A11, p<001), upregulated glutathione peroxidase 4 (GPX4, p<0.01) and p53 (p<0.01), and decreased 4-hydroxynonenal (4-HNE) level (p<0.001). Conclusion SSF attenuates AKI by inhibiting ferroptosis mediated by p53/SLC7A11/GPX4 pathway.
Collapse
Affiliation(s)
- Xiaoming Jin
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Riming He
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Yunxin Lin
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Jiahui Liu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Yuzhi Wang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Zhongtang Li
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Yijiao Liao
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Shudong Yang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, People’s Republic of China
| |
Collapse
|
17
|
İlhan AO, Can B, Kar F, Gündoğdu AÇ, Söğüt İ, Kanbak G. An Investigation into the Protective Effects of Various Doses of Boric Acid on Liver, Kidney, and Brain Tissue Damage Caused by High Levels of Acute Alcohol Consumption. Biol Trace Elem Res 2023; 201:5346-5357. [PMID: 37219712 DOI: 10.1007/s12011-023-03699-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
Acute high-dose alcohol consumption can lead to oxidative stress, which can cause harm to organs. In this study we aim to determine whether administering boric acid (BA) can protect certain organs (liver, kidney, and brain) from the damaging effects of alcohol by reducing oxidative stress. We used 50 and 100 mg/kg of BA. Thirty-two Sprague Dawley (12-14-week-old) male rats in our study were separated into four groups (n=8); control, ethanol, ethanol+50 mg/kg BA, and ethanol+100 mg/kg BA groups. Acute ethanol was given to rats by gavage at 8 g/kg. BA doses were given by gavage 30 min before ethanol administration. Alanine transaminase (ALT) and aspartate transaminase (AST) measurements were made in blood samples. The total antioxidant status (TAS), total oxidant status (TOS), OSI (oxidative stress index) (TOS/TAS), malondialdehyde (MDA) levels and superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities were measured to determine the oxidative stress induced by high-dose acute ethanol in the liver, kidney, and brain tissue, and the antioxidant effects of BA doses. According to our biochemical results, acute high-dose ethanol increases oxidative stress in liver, kidney, and brain tissues, while BA reduces the damage in tissues with its antioxidant effect. For the histopathological examinations, hematoxylin-eosin staining was performed. As a result, we found that the effect of alcohol-induced oxidative stress on liver, kidney, and brain tissues was different, and that giving boric acid reduces the increased oxidative stress in tissues due to its antioxidant effect. It was found that 100mg/kg BA administration had a higher antioxidant effect than in the 50mg/kg group.
Collapse
Affiliation(s)
- Ayşegül Oğlakçı İlhan
- Eldivan Vocational School of Health Services, Çankırı Karatekin University, Çankırı, Turkey.
| | - Betül Can
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Fatih Kar
- Department of Medical Biochemistry, Faculty of Medicine, Kütahya Health Sciences University, Kütahya, Turkey
| | - Ayşe Çakır Gündoğdu
- Department of Histology and Embryology, Faculty of Medicine, Kütahya Health Sciences University, Kütahya, Turkey
| | - İbrahim Söğüt
- Department of Biochemistry, Faculty of Medicine, Demiroğlu Bilim University, Istanbul, Turkey
| | - Güngör Kanbak
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
18
|
Liu A, Zhang Y, Xun S, Zhou G, Hu J, Liu Y. Targeting of cold-inducible RNA-binding protein alleviates sepsis via alleviating inflammation, apoptosis and oxidative stress in heart. Int Immunopharmacol 2023; 122:110499. [PMID: 37392569 DOI: 10.1016/j.intimp.2023.110499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/05/2023] [Accepted: 06/11/2023] [Indexed: 07/03/2023]
Abstract
A systemic inflammatory response is observed in patients undergoing shock and sepsis. This study aimed to explore the effects of cold-inducible RNA-binding protein (CIRP) on sepsis-associated cardiac dysfunction and the underlying mechanism. In vivo and in vitro lipopolysaccharide (LPS)-induced sepsis models were established in mice and neonatal rat cardiomyocytes (NRCMs), respectively. CRIP expressions were increased in the mouse heart and NRCMs treated with LPS. CIRP knockdown alleviated LPS-induced decreases of left ventricular ejection fraction and fractional shortening. CIRP downregulation attenuated the increases of inflammatory factors in the LPS-induced septic mouse heart, and NRCMs. The enhanced oxidative stress in the LPS-induced septic mouse heart and NRCMs was suppressed after CIRP knockdown. By contrast, CIRP overexpression yielded the opposite results. Our current study indicates that the knockdown of CIRP protects against sepsis-induced cardiac dysfunction through alleviating inflammation, apoptosis and oxidative stress of cardiomyocytes.
Collapse
Affiliation(s)
- Aijun Liu
- Department of Cardiology, Binhai People's Hospital, Yancheng 224500, China.
| | - Yonglin Zhang
- Department of Cardiology, Binhai People's Hospital, Yancheng 224500, China
| | - Shucan Xun
- Department of Cardiology, Binhai People's Hospital, Yancheng 224500, China
| | - Guangzhi Zhou
- Department of Cardiology, Binhai People's Hospital, Yancheng 224500, China
| | - Jing Hu
- Department of Pharmacy, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yun Liu
- Department of Intensive Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
19
|
Jian J, Wang D, Xiong Y, Wang J, Zheng Q, Jiang Z, Zhong J, Yang S, Wang L. Puerarin alleviated oxidative stress and ferroptosis during renal fibrosis induced by ischemia/reperfusion injury via TLR4/Nox4 pathway in rats. Acta Cir Bras 2023; 38:e382523. [PMID: 37556718 PMCID: PMC10403246 DOI: 10.1590/acb382523] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/18/2023] [Indexed: 08/11/2023] Open
Abstract
PURPOSE To investigate the role of puerarin on renal fibrosis and the underlying mechanism in renal ischemia and reperfusion (I/R) model. METHODS Rats were intraperitoneally injected with puerarin (50 or 100 mg/kg) per day for one week before renal I/R. The level of renal collagen deposition and interstitial fibrosis were observed by hematoxylin and eosin and Sirius Red staining, and the expression of α-smooth muscle actin (α-SMA) was examined by immunohistochemical staining. The ferroptosis related factors and TLR4/Nox4-pathway-associated proteins were detected by Western blotting. RESULTS Puerarin was observed to alleviate renal collagen deposition, interstitial fibrosis and the α-SMA expression induced by I/R. Superoxide dismutase (SOD) activities and glutathione (GSH) level were decreased in I/R and hypoxia/reoxygenation (H/R), whereas malondialdehyde (MDA) and Fe2+ level increased. However, puerarin reversed SOD, MDA, GSH and Fe2+ level changes induced by I/R and H/R. Besides, Western blot indicated that puerarin inhibited the expression of ferroptosis related factors in a dose-dependent manner, which further demonstrated that puerarin had the effect to attenuate ferroptosis. Moreover, the increased expression of TLR/Nox4-pathway-associated proteins were observed in I/R and H/R group, but puerarin alleviated the elevated TLR/Nox4 expression. CONCLUSIONS Our results suggested that puerarin inhibited oxidative stress and ferroptosis induced by I/R and, thus, delayed the progression of renal fibrosis, providing a new target for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Jun Jian
- Renmin Hospital of Wuhan University – Department of Urology – Wuhan, Hubei, China
| | - Dan Wang
- Renmin Hospital of Wuhan University – Department of Urology – Wuhan, Hubei, China
| | - Yufeng Xiong
- Renmin Hospital of Wuhan University – Department of Urology – Wuhan, Hubei, China
| | - Jingsong Wang
- Renmin Hospital of Wuhan University – Department of Urology – Wuhan, Hubei, China
| | - Qingyuan Zheng
- Renmin Hospital of Wuhan University – Department of Urology – Wuhan, Hubei, China
| | - Zhengyu Jiang
- Renmin Hospital of Wuhan University – Department of Urology – Wuhan, Hubei, China
| | - Jiacheng Zhong
- Renmin Hospital of Wuhan University – Department of Urology – Wuhan, Hubei, China
| | - Song Yang
- Renmin Hospital of Wuhan University – Department of Urology – Wuhan, Hubei, China
| | - Lei Wang
- Renmin Hospital of Wuhan University – Department of Urology – Wuhan, Hubei, China
| |
Collapse
|
20
|
Paties Montagner G, Dominici S, Piaggi S, Pompella A, Corti A. Redox Mechanisms Underlying the Cytostatic Effects of Boric Acid on Cancer Cells-An Issue Still Open. Antioxidants (Basel) 2023; 12:1302. [PMID: 37372032 DOI: 10.3390/antiox12061302] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Boric acid (BA) is the dominant form of boron in plasma, playing a role in different physiological mechanisms such as cell replication. Toxic effects have been reported, both for high doses of boron and its deficiency. Contrasting results were, however, reported about the cytotoxicity of pharmacological BA concentrations on cancer cells. The aim of this review is to briefly summarize the main findings in the field ranging from the proposed mechanisms of BA uptake and actions to its effects on cancer cells.
Collapse
Affiliation(s)
- Giulia Paties Montagner
- Department of Translational Research NTMS, University of Pisa Medical School, 56126 Pisa, Italy
| | - Silvia Dominici
- Department of Translational Research NTMS, University of Pisa Medical School, 56126 Pisa, Italy
| | - Simona Piaggi
- Department of Translational Research NTMS, University of Pisa Medical School, 56126 Pisa, Italy
| | - Alfonso Pompella
- Department of Translational Research NTMS, University of Pisa Medical School, 56126 Pisa, Italy
| | - Alessandro Corti
- Department of Translational Research NTMS, University of Pisa Medical School, 56126 Pisa, Italy
| |
Collapse
|
21
|
Kar F, Yıldız F, Hacioglu C, Kar E, Donmez DB, Senturk H, Kanbak G. LoxBlock-1 or Curcumin attenuates liver, pancreas and cardiac ferroptosis, oxidative stress and injury in Ischemia/reperfusion-damaged rats by facilitating ACSL/GPx4 signaling. Tissue Cell 2023; 82:102114. [PMID: 37210761 DOI: 10.1016/j.tice.2023.102114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
In this study, the effects of the pretreatment of Curcumin and LoxBlock-1 on liver, pancreas, and cardiac dysfunction following Ischemia-Reperfusion-induced (IR) Acute Kidney Injury (AKI) were investigated through the mechanisms of oxidative stress and ferroptosis. Total antioxidant status (TAS), total oxidant status (TOS) and oxidative stress index (OSI) parameters in the tissue were analyzed to investigate the oxidative stress occurring in the liver, pancreas, and heart, and Acyl-Coa synthetase long-chain family member (ACSL4). Glutathione peroxidase 4 (GPx4) enzyme levels were also analyzed by ELISA to investigate the effect on ferroptosis. In addition, hematoxylin-eosin staining was performed for histopathological examination of the tissues. As a result of biochemical analyzes, it was observed that oxidative stress parameters increased significantly in the IR group. In addition, while the ACSL4 enzyme level increased in the IR group in all tissues, the GPx4 enzyme level decreased. In the histopathological examination, it was observed that IR caused serious damage to the heart, liver, and pancreas tissues. The present study shows that Curcumin and LoxBlock-1 have a protective effect on the liver, pancreas, and cardiac ferroptosis following the effect on AKI. In addition, Curcumin was found to be more effective than LoxBlock-1 in I/R injury with its antioxidant property.
Collapse
Affiliation(s)
- Fatih Kar
- Department of Medical Biochemistry, Faculty of Medicine, Kütahya Health Sciences University, Kütahya, Turkey
| | - Fatma Yıldız
- Department of Medical Laboratory Techniques, Health Services Vocational School, Alanya Alaaddin Keykubat University, Alanya, Turkey.
| | - Ceyhan Hacioglu
- Department of Biochemistry, Faculty of Pharmacy, Duzce University, Duzce, Turkey
| | - Ezgi Kar
- Training and Research Center, Kütahya Health Science University, Kütahya, Turkey
| | - Dilek Burukoglu Donmez
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Hakan Senturk
- Department of Biology, Faculty of Sciences, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Gungor Kanbak
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
22
|
Zhang Y, Qin X, Yang Y, Li J, Li X, Zou X, Huang Z, Huang S. Ginkgo biloba extract attenuates cisplatin-induced renal interstitial fibrosis by inhibiting the activation of renal fibroblasts through down-regulating the HIF-1α/STAT3/IL-6 pathway in renal tubular epithelial cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154809. [PMID: 37087791 DOI: 10.1016/j.phymed.2023.154809] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Activation of renal fibroblasts into myofibroblasts plays an important role in promoting renal interstitial fibrosis (RIF). Ginkgo biloba extract (EGb) can alleviate RIF induced by cisplatin (CDDP). PURPOSE To elucidate the effect of EGb treatment on cisplatin-induced RIF and reveal its potential mechanism. METHODS The two main active components in EGb were determined by high-performance liquid chromatography (HPLC) analysis. Rats were induced by CDDP and then treated with EGb, 2ME2 (HIF-1α inhibitor) or amifostine. After HK-2 cells and HIF-1α siRNA HK-2 cells were treated with CDDP, EGb or amifostine, the conditioned medium from each group was cultured with NRK-49F cells. The renal function of rats was detected. The renal damage and fibrosis were evaluated by H&E and Masson trichrome staining. The IL-6 content in the cell medium was detected by ELISA. The expression levels of indicators related to renal fibrosis and signaling pathway were examined by western blotting and qRT-PCR. RESULTS HPLC analysis showed that the contents of quercetin and kaempferol in EGb were 36.0 μg/ml and 45.7 μg/ml, respectively. In vivo, EGb and 2ME2 alleviated renal damage and fibrosis, as well as significantly decreased the levels of α-SMA, HIF-1α, STAT3 and IL-6 in rat tissues induced by CDDP. In vitro, the levels of HIF-1α, STAT3 and IL-6 were significantly increased in HK-2 cells and HIF-1α siRNA HK-2 cells induced by CDDP. Notably, HIF-1α siRNA significantly decreased the levels of HIF-1α, STAT3 and IL-6 in HK-2 cells, as well as the IL-6 level in medium from HK-2 cells. Additionally, the α-SMA level in NRK-49F cells was significantly increased after being cultured with conditioned medium from HK-2 cells or HIF-1α siRNA HK-2 cells exposed to CDDP. Furthermore, exogenous IL-6 increased the α-SMA level in NRK-49F cells. Importantly, the expression levels of the above-mentioned indicators were significantly decreased after the HK-2 cells and HIF-1α siRNA HK-2 cells were treated with EGb. CONCLUSION This study revealed that EGb improves CDDP-induced RIF, and the mechanism may be related to its inhibition of the renal fibroblast activation by down-regulating the HIF-1α/STAT3/IL-6 pathway in renal tubular epithelial cells.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiping Qin
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yufang Yang
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Jinxiu Li
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaolian Li
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaoqin Zou
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zhenguang Huang
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Songqing Huang
- Department of Pharmacy, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
23
|
Wu Y, Shi H, Xu Y, Wen R, Gong M, Hong G, Xu S. Selenoprotein Gene mRNA Expression Evaluation During Renal Ischemia-Reperfusion Injury in Rats and Ebselen Intervention Effects. Biol Trace Elem Res 2023; 201:1792-1805. [PMID: 35553364 DOI: 10.1007/s12011-022-03275-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/29/2022] [Indexed: 12/21/2022]
Abstract
Effects of selenoproteins on many renal diseases have been reported. However, their role in renal ischemia-reperfusion (I/R) injury is unclear. The present study was performed to investigate the impact of ebselen and renal I/R injury on the expression of selenoproteins. Sprague-Dawley rats were pretreated with or without ebselen (10 mg/kg) through a daily single oral administration from 3 days before renal I/R surgery. RT-qPCR (real-time quantitative PCR) was performed to determine the mRNA expression of 25 selenoprotein genes in the renal tissues. The expression levels of two selenoproteins, including GPX3 (glutathione peroxidase 3) and DIO1 (iodothyronine deiodinase 1), were evaluated by Western blot or/and IHF (immunohistofluorescence) assays. Furthermore, renal function, renal damage, oxidative stress, and apoptosis were assessed. The results showed that in renal I/R injury, the mRNA levels of 15 selenoprotein genes (GPX1, GPX3, GPX4, DIO1, DIO2, TXNRD2, TXNRD3, SEPHS2, MSRB1, SELENOF, SELENOK, SELENOO, SELENOP, SELENOS, and SELENOT) were decreased, whereas those of eight selenoprotein genes (GPX2, GPX6, DIO3, TXNRD1, SELENOH, SELENOM, SELENOV, and SELENOW) were increased. I/R also induced a reduction in the expression levels of GPX3 and DIO1 proteins. In addition, our results indicated that ebselen reversed the changes in those selenoprotein genes, excluding SELENOH, SELENOM, SELENOP, and SELENOT, in renal I/R injury and alleviated I/R-induced renal dysfunction, tissue damage, oxidative stress, and apoptosis. To our knowledge, this is the first study to investigate the changes of 25 mammalian selenoprotein genes in renal I/R injury kidneys. The present study also provided more evidence for the roles of ebselen against renal I/R injury.
Collapse
Affiliation(s)
- Yikun Wu
- School of Medicine, Guizhou University, Guiyang, Guizhou, China
| | - Hua Shi
- Department of Urology, Tongren City People's Hospital, Tongren, Guizhou, China
| | - Yuangao Xu
- Department of Urology, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, Guizhou, China
| | - Rao Wen
- Department of Urology, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, Guizhou, China
| | - Maodi Gong
- Department of Urology, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, Guizhou, China
| | - Guangyi Hong
- School of Medicine, Guizhou University, Guiyang, Guizhou, China
| | - Shuxiong Xu
- Department of Urology, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, Guizhou, China.
| |
Collapse
|
24
|
Özkoç M, Can B, Şentürk H, Burukoğlu Dönmez D, Kanbak G. Possible Curative Effects of Boric Acid and Bacillus clausii Treatments on TNBS-Induced Ulcerative Colitis in Rats. Biol Trace Elem Res 2023; 201:1237-1251. [PMID: 35349007 DOI: 10.1007/s12011-022-03215-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are two chronic relapsing inflammatory bowel diseases (IBD). Although there are several treatment options available to improve the symptoms of IBD patients, there is no effective treatment that provides a definitive solution. In the present study, we aim to investigate the antioxidative/anti-inflammatory effects of oral administration of boric acid and Bacillus clausii in a rat trinitrobenzenesulfonic acid (TNBS)-induced colitis model. The effects of boric acid and B. clausii were examined in serum and colon tissues with the help of some biochemical and histological analyses. Elevated inflammation and oxidative damage were found in the blood and colon tissue samples in the TNBS-induced group according to the complete blood count (CBC), tumor necrosis factor (TNF) alpha, interleukin-35 (IL-35), malondialdehyde (MDA), glutathione peroxidase (GPx), myeloperoxidase (MPO), nitric oxide (NO), and histological findings. Particularly, the highest IL-35 level (70.09 ± 12.62 ng/mL) in the combined treatment group, highest catalase activity (5322 ± 668.1 U/mg protein) in the TNBS-induced group, and lower relative expression of inducible nitric oxide synthase in the TNBS-induced group than the control group were striking findings. According to our results, it can be concluded that boric acid showed more curative effects, even if B. clausii probiotics was partially ameliorative.
Collapse
Affiliation(s)
- Mete Özkoç
- Department of Medical Biochemistry, Faculty of Medicine, Eastern Mediterranean University, Famagusta, Cyprus.
| | - Betül Can
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskişehir, Turkey
| | - Hakan Şentürk
- Department of Biology, Faculty of Science and Letters, Eskisehir Osmangazi University, Eskişehir, Turkey
| | - Dilek Burukoğlu Dönmez
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Eskişehir, Turkey
| | - Güngör Kanbak
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskişehir, Turkey
| |
Collapse
|
25
|
Zhang W, Zeng L, Yu H, He Z, Huang C, Li C, Nie Y, Li L, Zhou F, Liu B, Zhang Y, Yao Z, Zhang W, Qin L, Chen D, He Q, Lai Y. Injectable spontaneous hydrogen-releasing hydrogel for long-lasting alleviation of osteoarthritis. Acta Biomater 2023; 158:163-177. [PMID: 36596433 DOI: 10.1016/j.actbio.2022.12.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/05/2022] [Accepted: 12/26/2022] [Indexed: 01/02/2023]
Abstract
Excessive production of reactive oxygen species (ROS) amplifies pro-inflammatory pathways and exacerbates immune responses, and is a key factor in the progression of osteoarthritis (OA). Therapeutic hydrogen gas (H2) with antioxidative and anti-inflammatory effects, has a potential for OA alleviation, but the targeted delivery and sustained release of H2 are still challenging. Herein, we develop an injectable calcium boride nanosheets (CBN) loaded hydrogel platform (CBN@GelDA hydrogel) as a high-payload and sustainable H2 precursor for OA treatment. The CBN@GelDA hydrogel could maintain constant physiological pH conditions which further promotes more H2 release than the CBN alone and lasts more than one week. The biocompatibility of this hydrogel with macrophages and chondrocytes is effectively enhanced. The experiments show that the CBN@GelDA hydrogel holds the ROS scavenging ability, reducing the expression of related inflammatory cytokines, lessening M1 macrophages but stimulating M2 phenotype, and thereby decreasing chondrocyte apoptosis, which facilitates to breaking of the vicious circle of OA progression. Furthermore, a single-time injection of the CBN@GelDA hydrogel markedly reduces joint destruction in OA rats. From what has been discussed above, this injectable spontaneous H2-releasing hydrogel is promising for OA treatment. STATEMENT OF SIGNIFICANCE: Oxidative stress and inflammation play the key role in the occurrence and development of osteoarthritis (OA). The system of a hydrogel loaded with H2 precursor calcium boride nanosheet (CBN), which is the first to use as an H2 precursor, integrates superior injectable and biocompatible of hydrogel and the selection of antioxidant properties of H2. This system can improve H2 release behavior and achieve a single injection into the articular cavity to alleviate the progression of OA in rats. This study of the combination of a convenient long-acting injectable hydrogel and a safe therapeutic gas is of great value for improving the quality of life of clinical patients.
Collapse
Affiliation(s)
- Wenjing Zhang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingting Zeng
- Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huan Yu
- Faculty of Pharmaceutical Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ziheng He
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cuishan Huang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Cairong Li
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangyi Nie
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Long Li
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Zhou
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ben Liu
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuantao Zhang
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Zhenyu Yao
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei Zhang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Qin
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Di Chen
- Faculty of Pharmaceutical Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qianjun He
- Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yuxiao Lai
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Engineering Laboratory of Biomaterials Additive Manufacturing, Shenzhen, 518055, China.
| |
Collapse
|
26
|
Younis NS. Myrrh Essential Oil Mitigates Renal Ischemia/Reperfusion-Induced Injury. Curr Issues Mol Biol 2023; 45:1183-1196. [PMID: 36826023 PMCID: PMC9955815 DOI: 10.3390/cimb45020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Ischemia/reperfusion (I/R)-induced renal injury is a common reason for kidney injury in clinical settings; therefore, continuous investigation of novel nephroprotective agents is crucial. Myrrh, the oleoresin exudates generated by the genus Commiphora, display numerous pharmacological actions. This study tried to assess the preventive effects of myrrh essential oil against I/R-induced renal damage. METHODS Rats were randomized into five groups. In the sham group, the animals were subjected to bilateral renal artery separation with no occlusion. In the sham + myrrh group; the rats were administered myrrh essential oil and then treated similarly to the sham group. Renal I/R group: the animals were challenged with renal I/R. In the myrrh + renal I/R groups, rats were administered 50 or 100 mg/kg of myrrh essential oil orally for three weeks before being confronted with I/R. RESULTS Serum levels of renal function tests and renal injury biomarkers, including NGAL, KIM-1, and CysC, were amplified in the renal I/R group. Animals that experienced renal I/R exhibited elevated lipid peroxidation (MDA); declined SOD, CAT, and GPx activity; declined GSH content; augmented TLR4/NFκB gene expression; and subsequent enhancement of inflammatory mediators (TNF-α, IFN-γ, IL-1β, and IL-6). Myrrh reduced renal function tests and injury biomarkers and amended renal histological alterations. Pretreatment with myrrh reduced MDA, elevated the antioxidant enzymes' activities and GSH content, and reduced the TLR4 and NFκB gene expression, leading to subsequent inflammation and apoptosis alleviation. CONCLUSIONS The outcomes of the present investigation established the protective effect of myrrh essential oil against renal I/R via pointing out the antioxidant, anti-inflammatory, and anti-apoptotic effects of myrrh.
Collapse
Affiliation(s)
- Nancy S. Younis
- College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Pharmacology, Zagazig University Hospitals, University of Zagazig, Zagazig 44519, Egypt
| |
Collapse
|
27
|
Xu X, Deng R, Zou L, Pan X, Sheng Z, Xu D, Gan T. Sevoflurane participates in the protection of rat renal ischemia-reperfusion injury by down-regulating the expression of TRPM7. Immun Inflamm Dis 2023; 11:e753. [PMID: 36705408 PMCID: PMC9803933 DOI: 10.1002/iid3.753] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION To investigate the protective effect of sevoflurane preconditioning on renal ischemia-reperfusion injury (renalischemiareperfusionmodel, RIRI) and its related mechanism. METHODS Eighty healthy adult male SD rats were randomly divided into control group (Sham group), model group (RIRI group), sevoflurane pretreatment group (Sev group) and TRPM7 inhibitor combined with sevoflurane pretreatment group (T + Sev group), 20 animals in each group. Hematoxylin-eosin (HE) staining was used to observe the pathological changes of renal tissue, and the levels of creatinine and urea nitrogen in each group were detected. Deoxyribonucleic acid terminal transferase-mediated dUTP nick end labeling (TUNEL) assay was used to detect renal cell apoptosis, and Western blottingwas used to detect the expression of apoptotic proteins cleaved-caspase-3, bax, Bcl-2, and TRPM7 in renal tissue; Detection of oxidative stress-related index levels in renal tissue and levels of inflammatory factors in renal tissue and serum. RESULTS Compared with the Sham group, the renal tissue pathological damage was aggravated, the levels of creatinine and blood urea nitrogen were increased, and the apoptosis was increased in the RIR group and the Sev group. Death, malondialdehyde (MDA) levels and inflammatory factors were increased, and superoxide dismutase (SOD) levels were decreased (all p < .05); The scores, apoptosis rate, MDA level, and relative expression of inflammatory factor levels were decreased, and SOD levels were increased (all p < .05). Compared with the Sev group, the renal tissue pathological damage in the T + Sev group was aggravated, creatinine, blood urea nitrogen levels increased, apoptosis increased, apoptosis-related proteins cleaved-caspase-3, bax, Bcl-2 showed increased apoptosis, malondialdehyde (MDA) levels, inflammatory factor levels increased, ultrahigh The levels of oxide dismutase (SOD) were decreased (all p < .05). CONCLUSIONS Therefore, we believe that sevoflurane is involved in the protection of rat renal ischemia-reperfusion injury by downregulating the expression of TRPM7.
Collapse
Affiliation(s)
- Xudong Xu
- Department of AnesthesiologyChangzhou Hospital of Traditional Chinese MedicineChangzhouJiangsuChina
| | - Rongrong Deng
- Department of AnesthesiologyChangzhou Hospital of Traditional Chinese MedicineChangzhouJiangsuChina
| | - Lu Zou
- Department of AnesthesiologyChangzhou Hospital of Traditional Chinese MedicineChangzhouJiangsuChina
| | - Xiaoyan Pan
- Department of AnesthesiologyChangzhou Hospital of Traditional Chinese MedicineChangzhouJiangsuChina
| | - Zhifeng Sheng
- Department of AnesthesiologyChangzhou Hospital of Traditional Chinese MedicineChangzhouJiangsuChina
| | - Da Xu
- Department of AnesthesiologyChangzhou Hospital of Traditional Chinese MedicineChangzhouJiangsuChina
| | - Tingting Gan
- Department of AnesthesiologyChangzhou Hospital of Traditional Chinese MedicineChangzhouJiangsuChina
| |
Collapse
|
28
|
Corti A, Dominici S, Piaggi S, Pompella A. Enhancement of ferroptosis by boric acid and its potential use as chemosensitizer in anticancer chemotherapy. Biofactors 2022; 49:405-414. [PMID: 36468437 DOI: 10.1002/biof.1919] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022]
Abstract
Ferroptosis is a form of regulated cell death (RCD) characterized by intracellular iron ion accumulation and reactive oxygen species (ROS)-induced lipid peroxidation. Ferroptosis in cancer and ferroptosis-related anticancer drugs have recently gained interest in the field of cancer treatment. Boron is an essential trace element playing an important role in several biological processes. Recent studies have described contrasting effects of boric acid (BA) in cancer cells, ranging from protective/mitogenic to damaging/antiproliferative. Interestingly, boron has been shown to interfere with critical factors involved in ferroptosis-intracellular glutathione and lipid peroxidation in the first place. Thus, the present study was aimed to verify the ability of boron to modulate the ferroptotic process in HepG2 cells, a model of hepatocellular carcinoma. Our results indicate that-when used at high, pharmacological concentrations-BA can increase intracellular ROS, glutathione, and TBARS levels, and enhance ferroptosis induced by RSL3 and erastin. Also, high BA concentrations can directly induce ferroptosis, and such BA-induced ferroptosis can add to the cytotoxic effects of anticancer drugs sorafenib, doxorubicin and cisplatin. These observations suggest that BA could be exploited as a chemo-sensitizer agent in order to overcome cancer drug resistance in selected conditions. However, the possibility of reaching suitably high concentrations of BA in the tumor microenvironment will need to be further investigated.
Collapse
Affiliation(s)
- Alessandro Corti
- Department of Translational Research NTMS, University of Pisa Medical School, Pisa, Italy
| | - Silvia Dominici
- Department of Translational Research NTMS, University of Pisa Medical School, Pisa, Italy
| | - Simona Piaggi
- Department of Translational Research NTMS, University of Pisa Medical School, Pisa, Italy
| | - Alfonso Pompella
- Department of Translational Research NTMS, University of Pisa Medical School, Pisa, Italy
| |
Collapse
|
29
|
Khanahmad H, Mirbod SM, Karimi F, Kharazinejad E, Owjfard M, Najaflu M, Tavangar M. Pathological Mechanisms Induced by TRPM2 Ion Channels Activation in Renal Ischemia-Reperfusion Injury. Mol Biol Rep 2022; 49:11071-11079. [PMID: 36104583 DOI: 10.1007/s11033-022-07836-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 10/14/2022]
Abstract
Renal ischemia-reperfusion (IR) injury triggers a cascade of signaling reactions involving an increase in Ca2 + charge and reactive oxygen species (ROS) levels resulting in necrosis, inflammation, apoptosis, and subsequently acute kidney injury (AKI).Transient receptor potential (TRP) channels include an essential class of Ca2+ permeable cation channels, which are segregated into six main channels: the canonical channel (TRPC), the vanilloid-related channel (TRPV), the melastatin-related channel (TRPM), the ankyrin-related channel (TRPA), the mucolipin-related channel (TRPML) and polycystin-related channel (TRPP) or polycystic kidney disease protein (PKD2). TRP channels are involved in adjusting vascular tone, vascular permeability, cell volume, proliferation, secretion, angiogenesis and apoptosis.TRPM channels include eight isoforms (TRPM1-TRPM8) and TRPM2 is the second member of this subfamily that has been expressed in various tissues and organs such as the brain, heart, kidney and lung. Renal TRPM2 channels have an important role in renal IR damage. So that TRPM2 deficient mice are resistant to renal IR injury. TRPM2 channels are triggered by several chemicals including hydrogen peroxide, Ca2+, and cyclic adenosine diphosphate (ADP) ribose (cADPR) that are generated during AKI caused by IR injury, as well as being implicated in cell death caused by oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Hossein Khanahmad
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of medical science, Isfahan, Iran
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical sciences, Isfahan, Iran, Isfahan University of Medical sciences, Isfahan, Iran
| | - Seyedeh Mahnaz Mirbod
- Resident of Cardiology, Department of cardiology, Isfahan University of Medical Science, Isfahan, Iran
- Department of Cardiology, Isfahan University of Medical Sciences, Isfahan, Iran., Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzaneh Karimi
- Behbahan Faculty of Medical Sciences, Behbahan, Iran.
- Behbahan Faculty of Medical Sciences, No.8, Shahid Zibaei Blvd. Behbahan city, Behbahan, Khozestan province, Iran.
- Department of Physiology, Behbahan Faculty of Medical Sciences, Behbahan, Iran., Behbahan Faculty of Medical Sciences, Behbahan, Iran.
| | - Ebrahim Kharazinejad
- Abadan University of Medical Sciences, Abadan, Iran
- Department of Anatomy, Abadan University of Medical Sciences, Abadan, Iran, Abadan University of Medical Sciences, Abadan , Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz University of Applied Science and Technology (UAST), Shiraz, Iran
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. Shiraz University of Applied Science and Technology (UAST), Shiraz, Iran, Shiraz University of Applied Science and Technology (UAST), Shiraz, Iran
| | - Malihe Najaflu
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrsa Tavangar
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
30
|
Can B, Kar F, Kar E, Özkoç M, Şentürk H, Dönmez DB, Kanbak G, Alataş İÖ. Conivaptan and Boric Acid Treatments in Acute Kidney Injury: Is This Combination Effective and Safe? Biol Trace Elem Res 2022; 200:3723-3737. [PMID: 34676519 DOI: 10.1007/s12011-021-02977-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022]
Abstract
Acute kidney injury is still a worldwide clinic problem that affects kidney function and associated with high mortality risk. Unfortunately, approximately 1.7 million people are thought to die from acute kidney injury each year. Boron element is defined as an "essential trace element" for plants and thought to have a widespread role in living organisms. Boric acid, which is one of the important forms of boron, has been extensively discussed for both medicinal and nonmedicinal purposes. However, there is a lack of data in the literature to examine the relationship between boric acid and antidiuretic hormone (ADH) antagonism in kidney injury. Thus, we aimed to investigate the effects of conivaptan as an ADH antagonist and boric acid as an antioxidant agent on the post-ischemic renal injury process. In this study, the unilateral ischemia-reperfusion (I/R) injury rat model with contralateral nephrectomy was performed and blood/kidney tissue samples were taken at 6th hours of reperfusion. The effects of 10 mg/mL/kg conivaptan and 50 mg/kg boric acid were examined with the help of some biochemical and histological analyses. We observed that conivaptan generally alleviated the destructive effects of I/R and has therapeutic effects. Also of note is that conivaptan and boric acid combination tended to show negative effects on kidney function, considering the highest BUN (78.46 ± 3.88 mg/dL) and creatinine levels (1.561 ± 0.1018 mg/dL), suggesting possibly drug-drug interaction. Although it has reported that conivaptan can interact with other active substances, no experimental/clinical data on the possible interaction with boric acid have reported so far.
Collapse
Affiliation(s)
- Betül Can
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey.
| | - Fatih Kar
- Department of Basic Science, Faculty of Engineering and Natural Sciences, Kutahya Health Sciences University, Kutahya, Turkey
| | - Ezgi Kar
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Mete Özkoç
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Hakan Şentürk
- Department of Biology, Faculty of Science and Letters, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Dilek Burukoğlu Dönmez
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Güngör Kanbak
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - İbrahim Özkan Alataş
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
31
|
Inhibition of PLK3 Attenuates Tubular Epithelial Cell Apoptosis after Renal Ischemia–Reperfusion Injury by Blocking the ATM/P53-Mediated DNA Damage Response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4201287. [PMID: 35783188 PMCID: PMC9249506 DOI: 10.1155/2022/4201287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/18/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022]
Abstract
Objective Renal ischemia–reperfusion (I/R) injury is a major cause of acute kidney injury (AKI) in transplanted kidneys. This study was aimed at exploring the role of PLK3 (polo-like kinase 3) in renal I/R injury, focusing on its relationship with oxidative stress-induced DNA damage and renal tubular epithelial cell (TEC) apoptosis. Methods TRAP-seq data from the development dataset GSE52004 and the validation dataset GSE121191 were analyzed using GEO2R. PLK3 overexpression plasmids and targeted silencing siRNAs were used in a model of hypoxia/reoxygenation (H/R) injury, and rAAV-9-PLK3-KD were administered to C57BL/6J mice exposed to I/R injury. The ATM-specific inhibitor KU-60019 was used to block the DNA damage response (DDR). Western blotting was performed to measure DDR- and apoptosis-associated protein expression. Cell viability was measured by CCK-8 reagent, and apoptosis was examined by flow cytometry and TUNEL assay. Furthermore, the fluorescent probes H2DCFH-DA and DHE were used to measure ROS production in vitro. The MDA level and SOD activity were measured to assess oxidative stress in vivo. KIM-1 staining and Scr and BUN were used to evaluate kidney injury. Results The mRNA and protein levels of PLK3 were markedly increased in the H/R injury and I/R injury models. GO terms showed that PLK3 was mainly involved in oxidative stress and DNA damage after renal I/R injury. Overexpression of PLK3 decreased cell viability and increased apoptosis. In contrast, targeted silencing of PLK3 expression decreased the Bax/Bcl-2 ratio by decreasing P53 phosphorylation, thereby reducing TEC apoptosis. Furthermore, KU-60019 reduced PLK3 activation and DDR-induced apoptosis, while overexpression of PLK3 reversed the mitigating effect of KU-60019 on TEC apoptosis. Similarly, rAAV-9-PLK3 KD mice exhibited a lower rate of TEC apoptosis and milder renal damage after I/R injury. Conclusion We demonstrate for the first time that PLK3 is involved in oxidative stress-induced DNA damage and TEC apoptosis in renal I/R injury. Inhibition of PLK3 attenuates TEC apoptosis after I/R injury by blocking the ATM/P53-mediated DDR. Therefore, PLK3 may serve as a potential therapeutic target for ischemic AKI.
Collapse
|
32
|
Yildirim C, Cevik S, Yamaner H, Orkmez M, Eronat O, Bozdayı MA, Erdem M. Boric acid improves the behavioral, electrophysiological and histological parameters of cisplatin-induced peripheral neuropathy in rats. J Trace Elem Med Biol 2022; 70:126917. [PMID: 34963081 DOI: 10.1016/j.jtemb.2021.126917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/24/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022]
Abstract
Boric acid (BA) has been used in many diseases because it increases the amount of reduced glutathione in the body and reduces oxidative damage. This study aims to investigate the effects of boric acid in cisplatin-induced neuropathy, in which oxidative stress is also effective in its pathophysiology. In this study, 8-10 weeks old, 170-190 g Wistar Albino rats were used. Each group contained seven rats (n = 35). Experimental groups consist of control, sham, neuropathy, treatment, and boric acid groups. For the neuropathy model, a single dose of cisplatin (3 mg/kg, i.p) was administered once a week for five weeks, and for the treatment group, boric acid was administered daily (100 mg/kg, intragastric) for five weeks. After drug administration, the rotarod test to evaluate motor performance, the tail-flick and hot/cold plate tests to evaluate sensory conduction states, the von Frey filament test to evaluate the mechanical allodynia, and the adhesive removal test to assess sensorimotor function were performed. The sciatic nerve's motoric conduction velocity was also assessed electrophysiologically. Oxidative stress parameters were also assessed biochemically in sciatic nerve tissue and serum. Hematoxylin and eosin staining was used to evaluate the sciatic nerve tissue histopathologically. The motor conduction velocity of the sciatic nerve, impaired by cisplatin, was increased considerably by boric acid (p < 0.05). It also reduced the latency time of the compound muscle action potential (CMAP), which was increased by cisplatin. (p < 0.05). The von Frey filament test results demonstrated increased pain sensitivity of the cisplatin group increased, and mechanical allodynia was observed. Boric acid significantly alleviated this condition (p < 0.05). In the cold plate, adhesive removal, and rotarod tests, boric acid attenuated the adverse effects of cisplatin (p < 0.05). Biochemically, BA reduced the level of MDA, which was raised by cisplatin, and significantly increased the level of SOD, which was lowered by cisplatin (p < 0.05). Histopathologically; BA reduced neuronal degeneration and vacuolization caused by cisplatin. As a consequence, it has been determined that boric acid alleviates the adverse effects of cisplatin. BA reduced the destructive effect of cisplatin by reducing oxidative stress, and this effect was verified electrophysiologically, behaviorally, and histopathologically.
Collapse
Affiliation(s)
- Caner Yildirim
- Gaziantep University, Faculty of Medicine, Department of Physiology, Gaziantep, Turkey.
| | - Sena Cevik
- Gaziantep University, Faculty of Medicine, Department of Physiology, Gaziantep, Turkey.
| | - Hatice Yamaner
- Gaziantep University, Faculty of Medicine, Department of Physiology, Gaziantep, Turkey.
| | - Mustafa Orkmez
- Gaziantep University, Faculty of Medicine, Department of Medical Biochemistry, Gaziantep, Turkey.
| | - Omer Eronat
- Gaziantep University, Faculty of Medicine, Department of Pathology, Gaziantep, Turkey.
| | - Mehmet Akif Bozdayı
- Gaziantep University, Faculty of Medicine, Department of Medical Biochemistry, Gaziantep, Turkey.
| | - Mehmet Erdem
- Gaziantep University, Vocational School of Health Services, Gaziantep, Turkey.
| |
Collapse
|
33
|
Ou YC, Li JR, Wu CC, Yu TM, Chen WY, Liao SL, Kuan YH, Chen YF, Chen CJ. Cadmium induces the expression of Interleukin-6 through Heme Oxygenase-1 in HK-2 cells and Sprague-Dawley rats. Food Chem Toxicol 2022; 161:112846. [PMID: 35122928 DOI: 10.1016/j.fct.2022.112846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/06/2022] [Accepted: 01/29/2022] [Indexed: 11/15/2022]
Abstract
Cadmium is toxic to the kidney through mechanisms involving oxidative stress and inflammation. We studied reciprocal crosstalk among the oxidative stress, inflammation, and the nuclear Nrf2 pathway in cadmium-induced nephrotoxicity on HK-2 human renal proximal tubular epithelial cells. Cadmium chloride (CdCl2) caused cell viability loss, Reactive Oxygen Species (ROS) generation, glutathione reduction, and Interleukin-6 (IL-6) expression, accompanied by Nrf2 activation and Heme Oxygenase-1 (HO-1) expression. Pharmacological treatments demonstrated cytotprotective and anti-inflammatory effects of Nrf2 activation. Intriguingly, inhibition of HO-1 activity mitigated cell viability loss and IL-6 expression in CdCl2-treated cells. Parallel attenuation by HO-1 inhibitor was demonstrated in cadmium-induced ROS generation and glutathione reduction. CdCl2-treated cells also increased levels of ferrous iron, cGMP, Mitogen-Activated Protein Kinases phosphorylation, as well as NF-κB DNA-binding activity. These increments were mitigated by antioxidant N-Acetyl Cysteine, HO-1 inhibitor SnPP, and PKG inhibitor KT5823, and were mimicked by the Carbon Monoxide-releasing compound. In the kidney cortex of CdCl2-exposed Sprague-Dawley rats, we found similar renal injury, histological changes, ROS generation, IL-6 expression, and accompanied pro-oxidant and pro-inflammatory changes. These observations indicated that cadmium-induced nephrotoxicity was associated with oxidative stress and inflammation, and HO-1 likely acts as a linking molecule to induce nephrotoxicity-associated IL-6 expression upon cadmium exposure.
Collapse
Affiliation(s)
- Yen-Chuan Ou
- Department of Urology, Tungs' Taichung MetroHarbor Hospital, Taichung City, Taiwan
| | - Jian-Ri Li
- Division of Urology, Taichung City, Taiwan; Department of Nursing, HungKuang University, Taichung City, Taiwan
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung City, Taiwan; Department of Financial Engineering, Providence University, Taichung City, Taiwan; Department of Data Science and Big Data Analytics, Providence University, Taichung City, Taiwan
| | - Tung-Min Yu
- Division of Nephrology, Taichung City, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, Chung Shan Medical University, Taichung City, Taiwan
| | - Yu-Fan Chen
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung City, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City, Taiwan.
| |
Collapse
|
34
|
Empagliflozin Enhances Autophagy, Mitochondrial Biogenesis, and Antioxidant Defense and Ameliorates Renal Ischemia/Reperfusion in Nondiabetic Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1197061. [PMID: 35126806 PMCID: PMC8816566 DOI: 10.1155/2022/1197061] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/16/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022]
Abstract
Background. Recent meta-analyses have shown that sodium-glucose cotransporter 2 (SGLT-2) inhibitors alleviate chronic kidney disease and acute kidney injury in diabetic patients. In this study, we aimed to investigate the effect of empagliflozin on renal ischemia/reperfusion (I/R) in nondiabetic rats and find the possible mechanisms. Experimental Approach. Eighteen male Wistar rats were randomly divided into three groups, including healthy control, ischemic control, and empagliflozin-treated group. Thirty minutes of bilateral renal ischemia was induced by clamping the renal hilum. Forty-eight hours after reopening the clamps, rats’ blood samples and tissue specimens were collected. Empagliflozin 10 mg/kg was administered by gavage, 2 hours before ischemia and 24 hours after the first dose. Results. I/R injury led to a significant rise in serum creatinine and blood urea nitrogen which was significantly decreased after treatment with empagliflozin. Empagliflozin also alleviated tubulointerstitial and glomerular damage and significantly decreased tissue histology scores. Empagliflozin decreased the increased levels of malondialdehyde, interleukin 1β, and tumor necrosis factor α. SGLT2 inhibition increased the decreased expression of nuclear factor erythroid 2-related factor 2 and PPARG coactivator 1 alpha that conduct antioxidant defense and mitochondrial biogenesis, respectively. Furthermore, empagliflozin markedly increased LC3-II/LC3-I and bcl2/bax ratios, showing its beneficial effect on activation of autophagy and inhibition of apoptosis. Despite its effects on diabetic nephropathy, empagliflozin did not activate the Sestrin2/AMP-activated protein kinase pathway in this study. Conclusion. Empagliflozin improved renal I/R injury in nondiabetic rats in this study by promoting autophagy and mitochondrial biogenesis and attenuation of oxidative stress, inflammation, and apoptosis.
Collapse
|
35
|
Koc K, Geyikoglu F, Yilmaz A, Yildirim S, Deniz GY. The effect of lithium tetraborate as a novel cardioprotective agent after renal ischemia-reperfusion injury. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e201052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
| | | | - Asli Yilmaz
- Ataturk University, Turkey; Ataturk University, Turkey
| | | | | |
Collapse
|
36
|
Zhang BH, Liu H, Yuan Y, Weng XD, Du Y, Chen H, Chen ZY, Wang L, Liu XH. Knockdown of TRIM8 Protects HK-2 Cells Against Hypoxia/Reoxygenation-Induced Injury by Inhibiting Oxidative Stress-Mediated Apoptosis and Pyroptosis via PI3K/Akt Signal Pathway. Drug Des Devel Ther 2021; 15:4973-4983. [PMID: 34916780 PMCID: PMC8670861 DOI: 10.2147/dddt.s333372] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022] Open
Abstract
Background Acute kidney injury (AKI) emerges as an acute and critical disease. Tripartite motif 8 (TRIM8), one number of the TRIM protein family, is proved to participate in ischemia/reperfusion (I/R) injury. However, whether TRIM8 is involved in renal I/R injury and the associated mechanisms are currently unclear. Purpose This study aimed to investigate the precise role of TRIM8 and relevant mechanisms in renal I/R injury. Materials and Methods In this study, human renal proximal tubular epithelial cells (HK-2 cells) underwent 12 hours of hypoxia and 2 h, 3 h or 4 h of reoxygenation to establish an in vitro hypoxia/reoxygenation (H/R) model. The siRNAs specific to TRIM8 (si-TRIM8) were transfected into HK-2 cells to knockdown TRIM8. The cell H/R model included various groups including Control, H/R, H/R+DMSO, H/R+NAC, si-NC+H/R, si-TRIM8+H/R and si-TRIM8+LY294002+H/R. The cell viability and levels of reactive oxygen species (ROS), hydrogen peroxide (H2O2), mRNA, apoptotic proteins, pyroptosis-related proteins and PI3K/AKT pathway-associated proteins were assessed. Results In vitro, realtime-quantitative PCR and western-blot analysis showed that the mRNA and protein expression of TRIM8 were obviously upregulated after H/R treatment in HK-2 cells. Compared with the H/R model group, knockdown of TRIM8 significantly increased cell viability and reduced the levels of ROS, H2O2, apoptotic proteins (Cleaved caspasebase-3 and BAX) and pyroptosis-related proteins (NLRP3, ASC, Caspase-1, Caspase-11, IL-1β and GSDMD-N). Western-blot analysis also authenticated that PI3K/AKT pathway was activated after TRIM8 inhibition. The application of 5 mM N-acetyl-cysteine, one highly efficient ROS inhibitor, significantly suppressed the expression of apoptotic proteins and pyroptosis-related proteins. Moreover, the combined treatment of TRIM8 knockdown and LY294002 reversed the effects of inhibiting oxidative stress. Conclusion Knockdown of TRIM8 can alleviate H/R-induced oxidative stress by triggering the PI3K/AKT pathway, thus attenuating pyropyosis and apoptosis in vitro.
Collapse
Affiliation(s)
- Bang-Hua Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China.,Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei, People's Republic of China
| | - Hao Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China.,Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei, People's Republic of China
| | - Yan Yuan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China.,Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei, People's Republic of China
| | - Xiao-Dong Weng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yang Du
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Hui Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zhi-Yuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Xiu-Heng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
37
|
Guzel Tanoglu E, Tanoglu A, Guven BB. mir-221, mir-190b, mir-363-3p, mir-200c are involved in rat liver ischaemia-reperfusion injury through oxidative stress, apoptosis and endoplasmic reticulum stress. Int J Clin Pract 2021; 75:e14848. [PMID: 34519137 DOI: 10.1111/ijcp.14848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/10/2021] [Indexed: 12/16/2022] Open
Abstract
AIM In this study, it was aimed to investigate the relationship between expression levels of micro-RNAs, endoplasmic reticulum (ER) stress, apoptosis and oxidative stress markers in hepatic ischaemia-reperfusion (IR) injury. METHODS Sixteen rats were randomised into two groups: Sham and IR groups. In the IR group, portal vein and hepatic artery were totally clamped with an atraumatic microvascular clamp and 60 minutes later unclamped and finally IR model was accomplished (60 minutes ischaemia and 60 minutes reperfusion). After sacrification, serum insulin-like growth factor-1 (IGF-1), tumour necrosis factor-α (TNF-α), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were measured. Liver tissue samples were evaluated histopathologically. The expression levels of IR1-alpha, Perk, Catalase, Gpx-1, Caspase-3, Bcl-2 genes and miR-33a, miR-221, miR-190b, miR-363-3p, miR-200c, miR-223, miR-133b were measured by quantitative real-time polymerase chain reaction method. RESULTS Biochemical parameters of the IR group showed significantly higher changes compared with the Sham group (P < .01). Histological tissue damage was significantly prominent in the IR group. ER stress, oxidative stress and apoptosis gene expression levels were significantly higher in the IR group (P < .01). Expression levels of miR-221, miR-190b, miR-363-3p and miR-200c were increased in the IR group compared with the Sham group. No significant difference was found between the two groups in terms of miR-33a, miR-133b and miR-223 expression levels (P > .05). CONCLUSION There is a strong need to enlighten the physiopathological and molecular mechanisms of liver IR injury and to find more specific biomarkers for IR damage, and miR-221, miR-190b, miR-363-3p and miR-200c maybe used as potential biomarkers of hepatic IR injury.
Collapse
Affiliation(s)
- Esra Guzel Tanoglu
- Department of Molecular Biology and Genetics, Institution of Medical Sciences, University of Health Sciences Turkey, Istanbul, Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Istanbul, Turkey
| | - Alpaslan Tanoglu
- Department of Gastroenterology, University of Health Sciences Turkey, Sultan Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
- Department of Medical Physiology, University of Health Sciences Turkey, Istanbul, Turkey
| | - Bulent Barıs Guven
- Department of Anesthesia and Reanimation, University of Health Sciences Turkey, Sultan Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
38
|
Wang X, Lu W, Liu B, Xu Y. Thrombin aggravates hypoxia/reoxygenation injury of astrocytes by activating the autophagy pathway mediated by SPRED2. Exp Ther Med 2021; 22:1107. [PMID: 34504561 PMCID: PMC8383739 DOI: 10.3892/etm.2021.10541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/24/2021] [Indexed: 11/06/2022] Open
Abstract
Autophagy plays an important role in ischemia/reperfusion brain injury, however, the signaling pathways involved in cell autophagy are not fully understood. The present study aimed to investigate the roles and molecular mechanisms of thrombin and Sprouty-related EVH1 domain-2 (SPRED2) on autophagy in hypoxia/reoxygenation (H/R) induced astrocytes. Reverse transcription-quantitative PCR and western blot analyses were performed to detect the expression levels of thrombin and SPRED2. Western blot analysis was also performed to detect the protein expression levels of Beclin 1, microtubule-associated protein light chain 3 (LC3)-II and LC3-I. The MTT assay was performed to assess cell viability, while ELISA was performed to determine the supernatant levels of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α. The results demonstrated that the effects of H/R induction on inflammatory factor secretion, oxidative stress, autophagy and cell viability in astrocytes were aggravated by thrombin, the effects of which were reversed following SPRED2 knockdown. Taken together, the results of the present study suggest that thrombin aggravates H/R injury in astrocytes by activating the SPRED2-mediated autophagy.
Collapse
Affiliation(s)
- Xiaoning Wang
- Department of Blood Transfusion, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Weiwei Lu
- Department of Blood Transfusion, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bing Liu
- Department of Blood Transfusion, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yunhe Xu
- Department of Stomatology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
39
|
Kar F, Söğüt I, Hacıoğlu C, Göncü Y, Şenturk H, Şenat A, Erel Ö, Ay N, Kanbak G. Hexagonal boron nitride nanoparticles trigger oxidative stress by modulating thiol/disulfide homeostasis. Hum Exp Toxicol 2021; 40:1572-1583. [PMID: 33754873 DOI: 10.1177/09603271211002892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hexagonal boron nitride nanoparticles (hBN NPs) are encouraging nanomaterials with unique chemical properties in medicine and biomedical fields. Until now, the optimal hBN NP's dosage and biochemical mechanism that can be used for in vivo systems has not been fully revealed. The main aim of this article is to reveal characteristics, serum and tissue interactions and any acute cytotoxic effect of different dose of hBN NPs for the first time. METHODS hBN NPs at concentrations varying between 50-3200 µg/kg was administered by intravenous injection to Wistar albino rats (n = 80) divided into seven dosage and control groups. Blood and tissue samples were taken after 24 hours. RESULTS Our findings suggested that higher doses hBN NPs caused oxidative stress on the serum of rats dose-dependently. However, hBN NPs did not affect thiol/disulfide homeostasis on kidney, liver, spleen, pancreas and heart tissue of rats. Furthermore, hBN NPs increased serum disulfide formation by disrupting the thiol/disulfide balance in rats. Also, LOOH and MPO levels increased at high doses, while CAT levels decreased statistically. CONCLUSION The results revealed that hBN NPs induce oxidative stress in a dose-dependent manner by modulating thiol/disulfide homeostasis in rats at higher concentrations.
Collapse
Affiliation(s)
- F Kar
- Department of Medical Services and Techniques, Vocational School of Health Services, Kütahya Health Science University, Kütahya, Turkey
- Department of Medical Biochemistry, Faculty of Medicine, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - I Söğüt
- Department of Medical Biochemistry, Faculty of Medicine, Demiroglu Bilim University, İstanbul, Turkey
| | - C Hacıoğlu
- Department of Medical Biochemistry, Faculty of Medicine, Duzce University, Duzce, Turkey
| | - Y Göncü
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - H Şenturk
- Department of Biology, Faculty of Arts and Sciences, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - A Şenat
- Department of Biochemistry, Faculty of Medicine, Yildirim Beyazit University, Ankara, Turkey
| | - Ö Erel
- Department of Biochemistry, Faculty of Medicine, Yildirim Beyazit University, Ankara, Turkey
| | - N Ay
- Department of Materials Science and Engineering, Eskisehir Technical University, Eskişehir, Turkey
| | - G Kanbak
- Department of Medical Services and Techniques, Vocational School of Health Services, Kütahya Health Science University, Kütahya, Turkey
| |
Collapse
|
40
|
El-Sadek HM, Al-Shorbagy MY, Awny MM, Abdallah DM, El-Abhar HS. Pentoxifylline treatment alleviates kidney ischemia/reperfusion injury: Novel involvement of galectin-3 and ASK-1/JNK & ERK1/2/NF-κB/HMGB-1 trajectories. J Pharmacol Sci 2021; 146:136-148. [PMID: 34030796 DOI: 10.1016/j.jphs.2021.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
Despite the documented renoprotective effect of pentoxifylline (PTX), a non-selective phosphodiesterase-4 inhibitor, the studies appraised only its anti-inflammatory/-oxidant/-apoptotic capacities without assessment of the possible involved trajectories. Here, we evaluated the potential role of galectin-3 and the ASK-1/NF-κB p65 signaling pathway with its upstream/downstream signals in an attempt to unveil part of the cascades involved in the renotherapeutic effect using a renal bilateral ischemia/reperfusion (I/R) model. Rats were randomized into sham-operated, renal I/R (45 min/72 h) and I/R + PTX (100 mg/kg; p.o). Post-treatment with PTX improved renal function and abated serum levels of cystatin C, creatinine, BUN and renal KIM-1 content, effects that were reflected on an improvement of the I/R-induced renal histological changes. On the molecular level, PTX reduced renal contents of galectin-3, ASK-1 with its downstream molecule JNK and ERK1/2, as well as NF-κB p65 and HMGB1. This inhibitory effect extended also to suppress neutrophil infiltration, evidenced by diminishing ICAM-1 and MPO, as well as inflammatory cytokines (TNF-α/IL-18), oxidative stress (MDA/TAC), and caspase-3. The PTX novel renotherapeutic effect involved in part the inhibition of galectin-3 and ASK-1/JNK and ERK1/2/NF-κB/HMGB-1 trajectories to mitigate renal I/R injury and to provide basis for its anti-inflammatory, antioxidant, and anti-apoptotic impacts.
Collapse
Affiliation(s)
- Hagar M El-Sadek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza, 12585, Egypt
| | - Muhammad Y Al-Shorbagy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt; Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, 4184, United Arab Emirates
| | - Magdy M Awny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza, 12585, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, 84518, Egypt
| |
Collapse
|
41
|
Karimkhani H, Özkoç M, Shojaolsadati P, Uzuner K, Donmez DB, Kanbak G. Protective Effect of Boric Acid and Omega-3 on Myocardial Infarction in an Experimental Rat Model. Biol Trace Elem Res 2021; 199:2612-2620. [PMID: 32909114 DOI: 10.1007/s12011-020-02360-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
Abstract
Boric acid and omega-3 are used as essential elements for both animal and human health. Many researchers have shown these beneficial effects on cardiac and inflammatory markers. This study aims to evaluate cardiac protective effect of boric acid and omega-3 against MI (myocardial infarction), probably due to the suppression of pro-inflammatory cytokines of natriuretic peptides in rats. Fifty male Sprague-Dawley rats were randomly divided into five groups: control, MI, MI+boric acid, MI+omega-3, and MI+boric acid+omega-3. Saline solution (2 ml/day), omega-3 (800 mg/kg/day), and boric acid (100 mg/kg/day)+omega-3 (800 mg/kg/day) were orally administered to the relevant groups throughout the 28 days. To constitute the MI model, the rats were exposed to isoproterenol-HCl (ISO) (200 mg/kg, S.C.) on the 27th and 28th. In the MI group, serum levels of CK-MB, BNP, and TNF-α are increased significantly. Also, ST waves and heart rates were higher in the MI than the control. These results demonstrate that biochemical results healed in MI+boric acid, MI+omega-3, and MI+boric acid+omega-3 groups compared MI group. ECG and light microscope results supported the findings as well. The statistical analysis showed that boric acid and/or omega-3 has protective effects on cellular damage in MI.
Collapse
Affiliation(s)
- Hadi Karimkhani
- Department of Biochemistry, School of Medicine, Istanbul Okan University, Istanbul, Turkey.
| | - Mete Özkoç
- Department of Biochemistry, School of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Paria Shojaolsadati
- Department of Anatomy, School of Medicine, Istanbul Okan University, Istanbul, Turkey
| | - Kubilay Uzuner
- Department of Physiology, School of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Dilek Burukoglu Donmez
- Department of Histology and Embryology, School of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Güngör Kanbak
- Department of Biochemistry, School of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
42
|
Kar E, Alataş Ö, Şahıntürk V, Öz S. Effects of metformin on lipopolysaccharide induced inflammation by activating fibroblast growth factor 21. Biotech Histochem 2021; 97:44-52. [PMID: 33663305 DOI: 10.1080/10520295.2021.1894353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Lipopolysaccharide (LPS) is a component of the cell wall of Gram-negative bacteria that produces endotoxemia, which may cause septic shock. Metformin (MET) is a widely used hypoglycemic drug that exhibits anti-inflammatory properties. Fibroblast growth factor 21 (FGF21) is an endocrine polypeptide that affects glucose and lipid metabolism, and also possesses anti-inflammatory properties. We investigated the effects of MET and FGF21 on inflammation due to LPS induced endotoxemia in male rats. Animals were divided into five groups: control, LPS, pre-MET LPS, LPS + 1 h MET and LPS + 3 h MET. Serum levels of alanine aminotransferase, aspartate aminotransferase, FGF2, interleukin-10 and tumor necrosis factor alpha were measured. Malondialdehyde, myeloperoxidase and FGF21 levels were measured in liver tissue samples. Histopathology of all groups was assessed using hematoxylin and eosin stained sections. LPS caused severe inflammatory liver damage. MET exhibited a partially protective effect and reduced inflammation significantly. FGF21 is produced in the liver following inflammation and MET may increase its production.
Collapse
Affiliation(s)
- Ezgi Kar
- Department of Medical Biochemistry, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Özkan Alataş
- Department of Medical Biochemistry, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Varol Şahıntürk
- Department of Histology and Embryology, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Semih Öz
- Vocational School of Health Services, Eskişehir Osmangazi University, Eskişehir, Turkey
| |
Collapse
|
43
|
The Endothelial Glycocalyx as a Target of Ischemia and Reperfusion Injury in Kidney Transplantation-Where Have We Gone So Far? Int J Mol Sci 2021; 22:ijms22042157. [PMID: 33671524 PMCID: PMC7926299 DOI: 10.3390/ijms22042157] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
The damage of the endothelial glycocalyx as a consequence of ischemia and/or reperfusion injury (IRI) following kidney transplantation has come at the spotlight of research due to potential associations with delayed graft function, acute rejection as well as long-term allograft dysfunction. The disintegration of the endothelial glycocalyx induced by IRI is the crucial event which exposes the denuded endothelial cells to further inflammatory and oxidative damage. The aim of our review is to present the currently available data regarding complex links between shedding of the glycocalyx components, like syndecan-1, hyaluronan, heparan sulphate, and CD44 with the activation of intricate immune system responses, including toll-like receptors, cytokines and pro-inflammatory transcription factors. Evidence on modes of protection of the endothelial glycocalyx and subsequently maintenance of endothelial permeability as well as novel nephroprotective molecules such as sphingosine-1 phosphate (S1P), are also depicted. Although advances in technology are making the visualization and the analysis of the endothelial glycocalyx possible, currently available evidence is mostly experimental. Ongoing progress in understanding the complex impact of IRI on the endothelial glycocalyx, opens up a new era of research in the field of organ transplantation and clinical studies are of utmost importance for the future.
Collapse
|
44
|
Nanomicellar curcuminoids attenuates renal ischemia/reperfusion injury in rat through prevention of apoptosis and downregulation of MAPKs pathways. Mol Biol Rep 2021; 48:1735-1743. [PMID: 33606150 DOI: 10.1007/s11033-021-06214-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/02/2021] [Indexed: 01/14/2023]
Abstract
Renal ischemia/reperfusion (I/R) injury is considered as a main problem in clinical practice. Curcuminoids, the active constituents of turmeric, seem to have potential renoprotective effects. However, the poor bioavailability of curcuminoids restricts their therapeutic effects. In the present study, the effect of nanomicellar curcuminoids (NC) treatment on renal function, histology, total antioxidant capacity (TAC), total oxidative stress (TOS), caspase-3 level as well as mitogen activated protein kinases (MAPKs: JNK, p38 and ERK) phosphorylation were evaluated following renal I/R. Adult male Sprague-Dawley rats were administered NC at the dose of 25 mg/kg 1 h before renal ischemia induction. The animals were subjected to bilateral renal ischemia for 60 min and reperfusion for 24 h. Subsequently, blood urea nitrogen (BUN), creatinine (Cr), renal histopathology, TAC, TOS, and oxidative stress index, cleaved caspase-3 level, Bax and MAPKs signaling were evaluated. The results indicated that NC pretreatment at the dose of 25 mg/kg significantly improved renal function as well as histolopatholgical damages. Moreover, NC reduced the level of renal oxidative stress, cleaved caspase-3 and Bax (as the proapoptotic proteins) and suppressed the activated Jun N-terminal Kinase (JNK), p38 and extracellular receptor kinase (ERK) signaling induced by renal I/R. The findings of the current study indicate that NC might prevent the injury induced by renal I/R through suppression of oxidative stress, apoptosis and MAPKs pathways.
Collapse
|
45
|
Moore CL, Savenka AV, Basnakian AG. TUNEL Assay: A Powerful Tool for Kidney Injury Evaluation. Int J Mol Sci 2021; 22:ijms22010412. [PMID: 33401733 PMCID: PMC7795088 DOI: 10.3390/ijms22010412] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay is a long-established assay used to detect cell death-associated DNA fragmentation (3'-OH DNA termini) by endonucleases. Because these enzymes are particularly active in the kidney, TUNEL is widely used to identify and quantify DNA fragmentation and cell death in cultured kidney cells and animal and human kidneys resulting from toxic or hypoxic injury. The early characterization of TUNEL as an apoptotic assay has led to numerous misinterpretations of the mechanisms of kidney cell injury. Nevertheless, TUNEL is becoming increasingly popular for kidney injury assessment because it can be used universally in cultured and tissue cells and for all mechanisms of cell death. Furthermore, it is sensitive, accurate, quantitative, easily linked to particular cells or tissue compartments, and can be combined with immunohistochemistry to allow reliable identification of cell types or likely mechanisms of cell death. Traditionally, TUNEL analysis has been limited to the presence or absence of a TUNEL signal. However, additional information on the mechanism of cell death can be obtained from the analysis of TUNEL patterns.
Collapse
Affiliation(s)
- Christopher L. Moore
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham Street, #638, Little Rock, AR 72205, USA; (C.L.M.); (A.V.S.)
| | - Alena V. Savenka
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham Street, #638, Little Rock, AR 72205, USA; (C.L.M.); (A.V.S.)
| | - Alexei G. Basnakian
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham Street, #638, Little Rock, AR 72205, USA; (C.L.M.); (A.V.S.)
- John L. McClellan Memorial VA Hospital, Central Arkansas Veterans Healthcare System, 4300 West 7th Street, Little Rock, AR 72205, USA
- Correspondence: ; Tel.: +1-501-352-2870
| |
Collapse
|
46
|
Liu B, Deng Q, Zhang L, Zhu W. Nobiletin alleviates ischemia/reperfusion injury in the kidney by activating PI3K/AKT pathway. Mol Med Rep 2020; 22:4655-4662. [PMID: 33173956 PMCID: PMC7646848 DOI: 10.3892/mmr.2020.11554] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Recent studies have demonstrated that nobiletin (NOB) displays anti-oxidative and anti-apoptotic efficacies against multiple pathological insults. However, the potential effects of NOB on the injury caused by ischemia and reperfusion (I/R) in the kidney remain undetermined. In the present study, I/R injury was elicited by right kidney removal and left renal pedicel clamping for 45 min, followed by reperfusion for 24 h. NOB was added at the start of reperfusion. Histological examination, detection of biomarkers in plasma, and measurement of apoptosis induced by endoplasmic reticulum stress (ERS) were used to evaluate renal injury. Additionally, the PI3K/AKT inhibitor LY294002 was also used in mechanistic experiments. NOB pre-treatment significantly reduced renal damage caused by I/R injury, as indicated by decreased serum levels of creatine, blood urea nitrogen and tubular injury scores. Furthermore, NOB inhibited elevated ERS-associated apoptosis, as evidenced by reduced apoptotic rates and ERS-related signaling molecules (such as, C/EBP homologous protein, caspase-12 and glucose-regulated protein of 78 kDa). NOB increased phosphorylation of proteins in the PI3K/AKT pathway. The inhibition of PI3K/AKT signaling with pharmacological inhibitors could reverse the beneficial effects of NOB during renal I/R insult. In conclusion, NOB pre-treatment may alleviate I/R injury in the kidney by inhibiting reactive oxygen species production and ERS-induced apoptosis, partly through the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Bo Liu
- Department of Urology, Jingmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Quanhong Deng
- Department of Urology, Jingmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Lei Zhang
- Department of Urology, Jingmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Wen Zhu
- Department of Urology, Jingmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China
| |
Collapse
|
47
|
Sun W, Li A, Wang Z, Sun X, Dong M, Qi F, Wang L, Zhang Y, Du P. Tetramethylpyrazine alleviates acute kidney injury by inhibiting NLRP3/HIF‑1α and apoptosis. Mol Med Rep 2020; 22:2655-2664. [PMID: 32945382 PMCID: PMC7453617 DOI: 10.3892/mmr.2020.11378] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to investigate the protective effect and underlying mechanism of tetramethylpyrazine (TMP) on renal ischemia reperfusion injury (RIRI) in rats, which refers to the injury caused by the restoration of blood supply and reperfusion of the kidney after a period of ischemia. Sprague‑Dawley rats were randomly divided into a Sham group, renal ischemia‑reperfusion (I/R) group and TMP group. TMP hydrochloride (40 mg/kg, 6 h intervals) was given via intraperitoneal injection immediately after reperfusion in the TMP group, after 24 h the kidney tissues were taken for follow‑up experiments. Pathological changes in the kidney tissues were observed by periodic acid‑Schiff staining. Renal function was assessed by measuring levels of serum creatinine and blood urea nitrogen, and inflammatory cytokines tumor necrosis factor (TNF)‑α and interleukin (IL)‑6. Renal cell apoptosis was detected by TUNEL‑DAPI double staining, mRNA and protein changes were analyzed by reverse transcription‑quantitative PCR and western blotting. Cell viability was measured using a CCK‑8 assay. It was found that the renal tissues of the sham operation group were notably abnormal, and the renal tissues of the I/R group were damaged, while the renal tissues of the TMP group were less damaged compared with those of the I/R group. Compared with the I/R group, the serum creatinine and blood urea nitrogen levels in the TMP group were low (all P<0.05), levels of inflammatory cytokines TNF‑α and IL‑6 decreased, the apoptotic rate was low (all P<0.05), and the relative expression levels of nucleotide‑oligomerization domain‑like receptor 3 (NLRP3) protein and mRNA in renal tissues were low (all P<0.05). The expression levels of hypoxia‑inducible factor 1‑α and NLRP3 increased after oxygen and glucose deprivation (OGD), and reduced after treatment with OGD and TMP (all P<0.05). It was concluded that TMP can reduce renal injury and improve renal function in RIRI rats, and its mechanism may be related to the reduction of NLRP3 expression in renal tissues.
Collapse
Affiliation(s)
- Wangnan Sun
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Aiqun Li
- Emergency Department, Yantai Affiliated Hospital, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Zhiqiang Wang
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xuhong Sun
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Menghua Dong
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Fu Qi
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Lin Wang
- Department of Geriatrics, the Second Hospital of Shandong University, Jinan, Shandong 264001, P.R. China
| | - Yueheng Zhang
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Pengchao Du
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|