1
|
Sharma K, Esbona K, Eickhoff JC, Lloyd RV, Hu R. Long non-coding RNA MALAT 1 and PHOX2B expression in olfactory neuroblastomas and sympathetic neuroblastomas. Ann Diagn Pathol 2024; 73:152355. [PMID: 38878689 DOI: 10.1016/j.anndiagpath.2024.152355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 11/18/2024]
Abstract
Long noncoding RNAs (lncRNAs) participate in transcriptional, epigenetic, and post-transcriptional regulation of gene expression and may influence carcinogenesis. MALAT1 is a lncRNA that is expressed in endocrine and many other neoplasms and it has been shown to have oncogenic and/or tumor suppressor effects in tumor development. Olfactory neuroblastomas arise in the nasal cavity while sympathetic neuroblastomas are present mainly in the adrenal and periadrenal regions. These neoplasms have overlapping histopathological features. Rare cases of sympathetic neuroblastomas metastatic to the nasal cavity have been reported. PHOX2B has been shown to be relatively specific for sympathetic neuroblastomas, but only a limited number of cases of olfactory neuroblastomas have been examined for PHOX2B expression. This study aimed to explore the potential utilization of MALAT1 and PHOX2B in distinguishing these two entities. Tissue microarrays (TMA) were created for olfactory neuroblastomas (n = 26) and sympathetic neuroblastomas (n = 52). MALAT1 lncRNA expression was assessed by in situ hybridization using RNAScope technology. TMA slides were scanned by Vectra multispectral imaging system and image analysis and quantification were performed with inForm software. PHOX2B expression was analyzed by immunohistochemistry. MALAT1 showed predominantly nuclear expression in both tumor types and MALAT1 expression was 2-fold higher in olfactory neuroblastomas compared to sympathetic neuroblastomas (p < 0.0001). PHOX2B showed nuclear staining in most sympathetic neuroblastomas (51/52, 98 %) while only 1 olfactory neuroblastoma (3.8 %) was focally positive for this marker. These findings suggest immunostaining of PHOX2B could be an excellent marker in distinguishing between these two tumor types.
Collapse
Affiliation(s)
- Kusum Sharma
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Karla Esbona
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Jens C Eickhoff
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Rong Hu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America.
| |
Collapse
|
2
|
Jin W, Zhang H, Li M, Lin S. Long Noncoding RNA Regulator of Reprogramming Regulates Cell Growth, Metastasis, and Cisplatin Resistance in Gastric Cancer via miR-519d-3p/HMGA2 Axis. Cancer Biother Radiopharm 2023; 38:122-131. [PMID: 32614615 DOI: 10.1089/cbr.2019.3525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Gastric cancer (GC) is a common tumor found worldwide, and cisplatin is the first-line agent for the treatment of GC. However, the resistance to cisplatin is an obstacle. Here, we explored the biological mechanism of long noncoding RNA regulator of reprogramming (ROR) in the cisplatin resistance of GC. Materials and Methods: ROR, miR-519d-3p, and high mobility group protein A2 (HMGA2) expression in GC tissues and cells were measured by quantitative real-time polymerase chain reaction and Western blot. Cell viability, migration, invasion, and apoptosis were detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, transwell assay, and flow cytometry, respectively. The relative protein expression was detected by Western blot. The interactions between miR-519d-3p and ROR, HMGA2 were predicted using miRcode and starBase v2.0 online database, and then verified by dual luciferase reporter assay and RNA immunoprecipitation assay. In addition, the xenograft tumor mouse model was constructed to verify the biological role of ROR in vivo. Results: The levels of ROR, HMGA2 were significantly upregulated, and miR-519d-3p was apparently downregulated in GC tissues and cells. The miRcode and starBase v2.0 online websites and dual luciferase reporter assay validated that miR-519d-3p directly interacted with ROR and HMGA2. Furthermore, ROR knockdown downregulated HMGA2 to restrain cell proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), and cisplatin resistance in GC cells by targeting miR-519d-3p. In addition, the depletion of ROR repressed the xenograft tumor growth in vivo. Conclusion: In conclusion, we first found the ROR/miR-519d-3p/HMGA2 regulatory network to regulate cell proliferation, migration, invasion, EMT, and cisplatin resistance in GC, and this may shed light on the GC tumorigenesis.
Collapse
Affiliation(s)
- Wenhua Jin
- Department of Gastroenterology, The People's Hospital of Zhangqiu, Jinan, China
| | - Hua Zhang
- Department of Gastroenterology, The People's Hospital of Zhangqiu, Jinan, China
| | - Meng Li
- Department of Computer Tomography (CT), The People's Hospital of Zhangqiu, Jinan, China
| | - Sen Lin
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
3
|
Ghafouri-Fard S, Pourtavakoli A, Hussen BM, Taheri M, Kiani A. A review on the importance of LINC-ROR in human disorders. Pathol Res Pract 2023; 244:154420. [PMID: 36989849 DOI: 10.1016/j.prp.2023.154420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Long Intergenic Non-Protein Coding RNA, Regulator Of Reprogramming (LINC-ROR) is a long non-coding RNA with diverse physiological functions. The gene encoding this transcript resides on 18q21.31. Expression levels of LINC-ROR have been reported to be dysregulated in patients with diverse disorders, including cancer, autoimmune disorders and neurodegenerative and neurodevelopmental disorders. Moreover, polymorphisms within this lncRNA have been shown to be associated with a variety of disorders, such as some kinds of cancer and some aspects of systemic lupus erythematous. Abnormal expression of LINC-ROR in some other human disorders is not yet understood. Emerging evidence suggests that LINC-ROR exerts pivotal roles in most types of human disorders as an oncogene. Differentially expressed LINC-ROR contributes in the development of diseases by changing the expression of genes that control the cell cycle. It can also exert its role by affecting the activity of some cancer-related signaling pathways and sponging tumor suppressor miRNAs. Expanding our understanding of LINC-ROR functions will pave the way for developing efficient therapeutic strategies against cancer and related disorders. The current review aims at providing a concise overview of the role of LINC-ROR in diverse human disorders through providing a summary of association studies and expression assays.
Collapse
|
4
|
Peña-Flores JA, Enríquez-Espinoza D, Muela-Campos D, Álvarez-Ramírez A, Sáenz A, Barraza-Gómez AA, Bravo K, Estrada-Macías ME, González-Alvarado K. Functional Relevance of the Long Intergenic Non-Coding RNA Regulator of Reprogramming (Linc-ROR) in Cancer Proliferation, Metastasis, and Drug Resistance. Noncoding RNA 2023; 9:ncrna9010012. [PMID: 36827545 PMCID: PMC9965135 DOI: 10.3390/ncrna9010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Cancer is responsible for more than 10 million deaths every year. Metastasis and drug resistance lead to a poor survival rate and are a major therapeutic challenge. Substantial evidence demonstrates that an increasing number of long non-coding RNAs are dysregulated in cancer, including the long intergenic non-coding RNA, regulator of reprogramming (linc-ROR), which mostly exerts its role as an onco-lncRNA acting as a competing endogenous RNA that sequesters micro RNAs. Although the properties of linc-ROR in relation to some cancers have been reviewed in the past, active research appends evidence constantly to a better comprehension of the role of linc-ROR in different stages of cancer. Moreover, the molecular details and some recent papers have been omitted or partially reported, thus the importance of this review aimed to contribute to the up-to-date understanding of linc-ROR and its implication in cancer tumorigenesis, progression, metastasis, and chemoresistance. As the involvement of linc-ROR in cancer is elucidated, an improvement in diagnostic and prognostic tools could promote and advance in targeted and specific therapies in precision oncology.
Collapse
|
5
|
Long non-coding ROR promotes the progression of papillary thyroid carcinoma through regulation of the TESC/ALDH1A1/TUBB3/PTEN axis. Cell Death Dis 2022; 13:157. [PMID: 35173149 PMCID: PMC8850450 DOI: 10.1038/s41419-021-04210-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/02/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022]
Abstract
Papillary thyroidal carcinoma (PTC) is a common endocrine cancer that plagues people across the world. The potential roles of long non-coding RNAs (lncRNAs) in PTC have gained increasing attention. In this study, we aimed to explore whether lncRNA ROR affects the progression of PTC, with the involvement of tescalcin (TESC)/aldehyde dehydrogenase isoform 1A1 (ALDH1A1)/βIII-tubulin (TUBB3)/tensin homolog (PTEN) axis. PTC tumor and adjacent tissues were obtained, followed by measurement of lncRNA ROR and TESC, ALDH1A1, and TUBB3 expression. Interactions among lncRNA ROR, TESC, ALDH1A1, TUBB3, and PTEN were evaluated by ChIP assay, RT-qPCR, or western blot analysis. After ectopic expression and depletion experiments in PTC cells, MTT and colony formation assay, Transwell assay, and flow cytometry were performed to detect cell viability and colony formation, cell migration and invasion, and apoptosis, respectively. In addition, xenograft in nude mice was performed to test the effects of lncRNA ROR and PTEN on tumor growth in PTC in vivo. LncRNA ROR, TESC, ALDH1A1, and TUBB3 were highly expressed in PTC tissues and cells. Overexpression of lncRNA ROR activated TESC by inhibiting the G9a recruitment on the promoter of TESC and histone H3-lysine 9me methylation. Moreover, TESC upregulated ALDH1A1 expression to increase TUBB3 expression, which then reduced PTEN expression. Overexpression of lncRNA ROR, TESC, ALDH1A1 or TUBB3 and silencing of PTEN promoted PTC cell viability, colony formation, migration, and invasion while suppressing apoptosis. Moreover, overexpression of lncRNA ROR increased tumor growth by inhibiting PTEN in vivo. Taken together, the current study demonstrated that lncRNA ROR mediated TESC/ALDH1A1/TUBB3/PTEN axis, thereby facilitating the development of PTC.
Collapse
|
6
|
Zhu X, Wang X, Gong Y, Deng J. E-cadherin on epithelial-mesenchymal transition in thyroid cancer. Cancer Cell Int 2021; 21:695. [PMID: 34930256 PMCID: PMC8690896 DOI: 10.1186/s12935-021-02344-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023] Open
Abstract
Thyroid carcinoma is a common malignant tumor of endocrine system and head and neck. Recurrence, metastasis and high malignant expression after routine treatment are serious clinical problems, so it is of great significance to explore its mechanism and find action targets. Epithelial-mesenchymal transition (EMT) is associated with tumor malignancy and invasion. One key change in tumour EMT is low expression of E-cadherin. Therefore, this article reviews the expression of E-cadherin in thyroid cancers (TC), discuss the potential mechanisms involved, and outline opportunities to exploit E-cadherin on regulating the occurrence of EMT as a critical factor in cancer therapeutics.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Jing'an District, Shanghai, 200040, China
| | - Xiaoping Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Jing'an District, Shanghai, 200040, China.
| | - Yifei Gong
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Jing'an District, Shanghai, 200040, China
| | - Junlin Deng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Jing'an District, Shanghai, 200040, China
| |
Collapse
|
7
|
Li H, Hardin H, Zaeem M, Huang W, Hu R, Lloyd RV. LncRNA expression and SDHB mutations in pheochromocytomas and paragangliomas. Ann Diagn Pathol 2021; 55:151801. [PMID: 34461576 DOI: 10.1016/j.anndiagpath.2021.151801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 12/19/2022]
Abstract
Although pheochromocytomas and paragangliomas (PPGLs) are usual low-grade neoplasms, the metastatic forms of these lesions are associated with high morbidity and mortality. Recent studies have discovered multiple aberrantly expressed long non-coding RNAs (lncRNAs) in cancers that may have regulatory roles in tumor pathogenesis and metastasis; however, the roles of some lncRNAs in PPGLs are still unknown. The expression levels of lncRNAs including metastasis-associated lung adenocarcinoma transcript (MALAT1), prostate cancer antigen 3 (PCA3), and HOX transcript antisense intergenic RNA (HOTAIR) in PPGLs were analyzed by in situ hybridization, using two tissue microarrays (TMAs). The pheochromocytoma (PCC) TMA consisted of normal adrenal medulla (N = 25), non-metastatic PCCs (N = 76) and metastatic PCCs (N = 5) while the paraganglioma (PGL) TMA had 73 non-metastatic PGLs and 5 metastatic PGLs. Immunohistochemical staining was performed on all samples with an anti-SDHB antibody. The correlations between lncRNA expression, loss of SDHB expression and clinical characteristics including tumor progression and disease prognosis were investigated. The expression levels of MALAT1 and PCA3 were significantly elevated (2.5-3.9 folds) in both non-metastatic and metastatic PCCs compared to normal adrenal medulla, although there were no significant differences between the non-metastatic and metastatic neoplasms. In contrast to non-metastatic PGLs, metastatic PGLs had significantly upregulated expression of MALAT1, PCA3, and HOTAIR. SDHB loss was more frequently observed in PGLs (25 of 78), especially in metastatic PGLs (5 of 5), compared to PCCs (2 of 81) and in 0 of 5 metastatic PCCs. Patients with SDHB loss, in contrast to SDHB retained, were younger at diagnosis, had higher rates of tumor recurrence, metastatic disease, and mortality. In addition, PGLs with SDHB loss had significantly increased expression of PCA3 compared to tumors with intact SDHB expression. Our findings suggest that specific lncRNAs may be involved in the SDHx signaling pathways in the tumorigenesis and in the development of PPGL.
Collapse
Affiliation(s)
- Huihua Li
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, WI, USA.
| | - Heather Hardin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, WI, USA
| | - Misbah Zaeem
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, WI, USA
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, WI, USA
| | - Rong Hu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, WI, USA
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, WI, USA.
| |
Collapse
|
8
|
French R, Pauklin S. Epigenetic regulation of cancer stem cell formation and maintenance. Int J Cancer 2021; 148:2884-2897. [PMID: 33197277 PMCID: PMC8246550 DOI: 10.1002/ijc.33398] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/23/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Cancerous tumours contain a rare subset of cells with stem-like properties that are termed cancer stem cells (CSCs). CSCs are defined by their ability to divide both symmetrically and asymmetrically, to initiate new tumour growth and to tolerate the foreign niches required for metastatic dissemination. Accumulating evidence suggests that tumours arise from cells with stem-like properties, the generation of CSCs is therefore likely to be an initiatory event in carcinogenesis. Furthermore, CSCs in established tumours exist in a dynamic and plastic state, with nonstem tumour cells thought to be capable of de-differentiation to CSCs. The regulation of the CSC state both during tumour initiation and within established tumours is a desirable therapeutic target and is mediated by epigenetic factors. In this review, we will explore the epigenetic parallels between induced pluripotency and the generation of CSCs, and discuss how the epigenetic regulation of CSCs opens up novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Rhiannon French
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesUniversity of OxfordOxfordUK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesUniversity of OxfordOxfordUK
| |
Collapse
|
9
|
Epigenetic regulation of papillary thyroid carcinoma by long non-coding RNAs. Semin Cancer Biol 2021; 83:253-260. [PMID: 33785446 DOI: 10.1016/j.semcancer.2021.03.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/08/2023]
Abstract
Thyroid cancer is the most common primary endocrine malignancy with papillary thyroid carcinoma (PTC) its most common subtype. The jump in diagnoses over last many years has prompted re-assessment of molecularly targeted therapies and the discovery of novel targets. Long non-coding RNAs (lncRNAs) are increasingly being assessed for their expression in various PTC models. Interestingly, in addition to cell line models, a large proportion of the reported studies have evaluated lncRNA levels in PTC patient samples providing an immediate clinical relevance of their findings. While most lncRNAs either promote or suppress PTC pathogenesis, data on individual lncRNAs is not very clear. As expected, lncRNAs function in PTC through sponging of microRNAs as well as modulation of several signaling pathways. The process of epithelial-mesenchymal transition and the PI3K/Akt and wnt signaling pathways have emerged as the primary targets of lncRNAs in PTC. This comprehensive review discusses all the information that is available on lncRNAs in PTC, ranging from in vitro and in vivo findings to the possible role of lncRNAs as diagnostic and/or prognostic biomarkers.
Collapse
|
10
|
Su C, Zhang J, Yarden Y, Fu L. The key roles of cancer stem cell-derived extracellular vesicles. Signal Transduct Target Ther 2021; 6:109. [PMID: 33678805 PMCID: PMC7937675 DOI: 10.1038/s41392-021-00499-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs), the subpopulation of cancer cells, have the capability of proliferation, self-renewal, and differentiation. The presence of CSCs is a key factor leading to tumor progression and metastasis. Extracellular vesicles (EVs) are nano-sized particles released by different kinds of cells and have the capacity to deliver certain cargoes, such as nucleic acids, proteins, and lipids, which have been recognized as a vital mediator in cell-to-cell communication. Recently, more and more studies have reported that EVs shed by CSCs make a significant contribution to tumor progression. CSCs-derived EVs are involved in tumor resistance, metastasis, angiogenesis, as well as the maintenance of stemness phenotype and tumor immunosuppression microenvironment. Here, we summarized the molecular mechanism by which CSCs-derived EVs in tumor progression. We believed that the fully understanding of the roles of CSCs-derived EVs in tumor development will definitely provide new ideas for CSCs-based therapeutic strategies.
Collapse
Affiliation(s)
- Chaoyue Su
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China ,grid.410737.60000 0000 8653 1072Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jianye Zhang
- grid.410737.60000 0000 8653 1072Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yosef Yarden
- grid.13992.300000 0004 0604 7563Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Liwu Fu
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| |
Collapse
|
11
|
Shiyanbola O, Hardin H, Hu R, Eickhoff JC, Lloyd RV. Long Noncoding RNA Expression in Adrenal Cortical Neoplasms. Endocr Pathol 2020; 31:385-391. [PMID: 32725507 DOI: 10.1007/s12022-020-09642-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/22/2020] [Indexed: 12/29/2022]
Abstract
Long noncoding RNAs (lncRNAs) consist of nucleic acid molecules that are greater than 200 nucleotides in length and they do not code for specific proteins. A growing body of evidence indicates that these lncRNAs have important roles in tumorigenesis. Separating adrenal cortical adenomas from carcinomas is often a difficult problem for the surgical pathologist. This is especially true when only small needle biopsies are available for examination. We used in situ hybridization (ISH) analysis to study normal adrenal cortical tissues and adrenal cortical tumors to determine the role of specific lncRNAs in tumor development and classification. The lncRNAS studied included metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), psoriasis susceptibility-related RNA gene induced by stress (PRINS), and HOX antisense intergenic RNA myeloid 1 (HAM1). We constructed a tissue microarray (TMA) for the studies and also analyzed a subset of cases by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Two 1-mm duplicate cores of normal adrenal cortex (NAC) (n = 23), adrenal cortical adenomas (ACAs) (n = 95), and adrenal cortical carcinomas (ACCs), (n = 20) were used on the TMA. The results of ISH were analyzed by image analysis. ISH showed predominantly nuclear expression of lncRNAs in adrenal cortical tissues. MALAT1 showed more expression in ACCs than in NAC and ACA (p < 0.05). PRINS had higher expression in NACs and ACAs than in ACCs. The lncRNAs MALAT1, PRINS, and HAM1 are all expressed in normal and neoplastic adrenal cortical tissues. MALAT1 had the highest expression in ACC compared to ACAs and may have a role in ACC development.
Collapse
Affiliation(s)
- Oyewale Shiyanbola
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Heather Hardin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Rong Hu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jens C Eickhoff
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
12
|
Ogunwobi OO, Segura MF. Editorial: PVT1 in Cancer. Front Oncol 2020; 10:588786. [PMID: 33194746 PMCID: PMC7606904 DOI: 10.3389/fonc.2020.588786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/08/2020] [Indexed: 12/03/2022] Open
Affiliation(s)
- Olorunseun O Ogunwobi
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY, United States
| | - Miguel F Segura
- Laboratory of Translational Research in Child and Adolescent Cancer, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, VHIR, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Xia F, Xia W, Yu X. LncRNA HOTAIR Influences the Growth, Migration, and Invasion of Papillary Thyroid Carcinoma via Affection on the miR-488-5p/NUP205 Axis. Technol Cancer Res Treat 2020; 19:1533033820962125. [PMID: 33107391 PMCID: PMC7607809 DOI: 10.1177/1533033820962125] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Objective: The study was aim to investigate the effect of HOX transcript antisense RNA (HOTAIR) on the growth, migration, and invasion of papillary thyroid carcinoma (PTC) and its underlying mechanisms. Methods: Cell growth, invasion, and migration was respectively investigated using the MTT assay, trans-well assay, and wound healing assay. The expression of genes and proteins was respectively determined by Western blot analysis and RT-PCR experiments. Results: It was demonstrated that high expression of HOTAIR in PTC cells (BCPAP) and tissues resulted in fast tumor growth and poor survival time of the PTC-bearing mice models. Moreover, overexpression of HOTAIR leaded to markedly enhanced proliferation, migration, and invasion of BCPAP cells. Increase the levels of HOTAIR in BCPAP cells signally down-regulated the miR-488-5p levels which was able of inhibiting the growth rate, increasing the apoptosis rate, and decreasing the invasion/migration ability of BCPAP cells. Further studies indicated that HOTAIR promoted BCPAP cell growth, invasion, and migration mainly through regulating the miR-488-5p/NUP205 axis and the levels of Bcl-2 as well. Conclusion: HOTAIR promoted the growth, migration, and invasion of papillary thyroid carcinoma mainly through regulating the miR-488-5p/NUP205 axis.
Collapse
Affiliation(s)
- Feng Xia
- Department of Radiology, Hubei Maternal and Children's Hospital, Wuhan, China
| | - Wei Xia
- Department of Radiology, Hubei Maternal and Children's Hospital, Wuhan, China
| | - Xudong Yu
- Department of Radiology, Hubei Maternal and Children's Hospital, Wuhan, China
| |
Collapse
|
14
|
MicroRNA-203a regulates pancreatic β cell proliferation and apoptosis by targeting IRS2. Mol Biol Rep 2020; 47:7557-7566. [PMID: 32929654 DOI: 10.1007/s11033-020-05818-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022]
Abstract
The main pathogenesis of type 1 diabetes mellitus (T1DM) is autoimmune-mediated apoptosis of pancreatic islet β cells. We sought to characterize the function of microRNA-203a (miR-203a) on pancreatic islet β cell proliferation and apoptosis. In situ hybridization was used to detect the expression of miR-203a in islet β cells in normal and hyperglycaemic non-obese diabetic (NOD) mice. Cell proliferation was measured by cell counting kit eight and cell apoptosis was detected using flow cytometry. Insulin receptor substrate 2 (IRS2/Irs2) was determined to be a direct target of miR-203a by Luciferase reporter assay. We detected the effects of miR-203a overexpression or inhibition on proliferation and apoptosis of IRS2-overexpressing or IRS2-knockdown MIN6 cells respectively, and preliminarily explored the downstream targets of the IRS2 pathway. NOD mice model was used to detect miR-203a inhibitor treatment for diabetes. Our experiment showed miR-203a was upregulated in pancreatic β cells of hyperglycaemic NOD mice. Elevated miR-203a expression inhibited the proliferation and promoted the apoptosis of MIN6 cells. IRS2/Irs2 is a novel target gene directly regulated by miR-203a and miR-203a overexpression downregulated the expression of IRS2. Irs2 silencing reduced cell proliferation and increased apoptosis. Irs2 overexpression could abolish the pro-apoptotic and anti-proliferative effects of miR-203a on MIN6 cells. Hyperglycemia in newly hyperglycemic NOD mice was under control after treatment with miR-203a inhibitor. Our study suggests that miR-203a regulates pancreatic β cell proliferation and apoptosis by targeting IRS2, treatment with miR-203a inhibitors and IRS2 might provide a new therapeutic strategy for T1DM.
Collapse
|
15
|
Narayanan D, Mandal R, Hardin H, Chanana V, Schwalbe M, Rosenbaum J, Buehler D, Lloyd RV. Long Non-coding RNAs in Pulmonary Neuroendocrine Neoplasms. Endocr Pathol 2020; 31:254-263. [PMID: 32388776 DOI: 10.1007/s12022-020-09626-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pulmonary neuroendocrine neoplasms (NENs) are classified into low-grade neuroendocrine tumors and high-grade neuroendocrine carcinomas (NECs). There are significant differences in therapeutic strategies of the different NEN subtypes, and therefore, precise classification of pulmonary NENs is critical. However, challenges in pulmonary NEN classification include overlap of diagnostic histological features among the subtypes and reduced or negative expression of neuroendocrine markers in poorly differentiated pulmonary NECs. Recently, transcription factor insulinoma-associated protein 1 (INSM1) was identified as a sensitive marker of neuroendocrine and neuroepithelial differentiation. In this study, INSM1 expression was detected by immunohistochemistry in greater than 94% of pulmonary NENs, indicating that it is a highly sensitive marker of pulmonary NENs and is useful to detect poorly differentiated pulmonary NECs. Although there are well-established morphological and immunohistologic criteria to diagnose pulmonary NENs, there is no universal consensus regarding prognostic markers of pulmonary NENs. Studies have shown that non-small cell lung cancers express long non-coding RNAs (lncRNAs), which regulate gene expression, epithelial-to-mesenchymal transition, and carcinogenesis. We characterized expression and function of lncRNAs, including HOX transcript antisense RNA (HOTAIR), maternally expressed 3 (MEG3), and prostate cancer antigen 3 (PCA3) in pulmonary NENs, including typical carcinoid tumors, atypical carcinoid tumors, small cell lung carcinoma (SCLC/NEC), and large cell neuroendocrine carcinoma (LCNEC/NEC). In situ hybridization and real-time polymerase chain reaction studies showed higher expression (p < 0.01) of all lncRNAs in SCLC/NEC. Small interfering RNA studies indicated a role for MEG3 and PCA3 in tumor proliferation. Therefore, these lncRNAs may serve as prognostic indicators of pulmonary NEN aggressiveness and as possible therapeutic targets.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Neuroendocrine/diagnosis
- Carcinoma, Neuroendocrine/genetics
- Carcinoma, Neuroendocrine/mortality
- Carcinoma, Neuroendocrine/pathology
- Cohort Studies
- Female
- Humans
- Immunohistochemistry
- In Situ Hybridization
- Lung Neoplasms/diagnosis
- Lung Neoplasms/genetics
- Lung Neoplasms/mortality
- Lung Neoplasms/pathology
- Male
- Middle Aged
- Neoplasm Grading
- Neuroendocrine Tumors/diagnosis
- Neuroendocrine Tumors/genetics
- Neuroendocrine Tumors/mortality
- Neuroendocrine Tumors/pathology
- Prognosis
- RNA, Long Noncoding/physiology
- Tissue Array Analysis
- Tumor Cells, Cultured
- Young Adult
Collapse
Affiliation(s)
- Damodaran Narayanan
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792-8550, USA
| | - Rakesh Mandal
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792-8550, USA
| | - Heather Hardin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792-8550, USA
| | - Vishal Chanana
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792-8550, USA
| | - Michael Schwalbe
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792-8550, USA
| | - Jason Rosenbaum
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792-8550, USA
| | - Darya Buehler
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792-8550, USA
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792-8550, USA.
| |
Collapse
|
16
|
Chen W, Yang J, Fang H, Li L, Sun J. Relevance Function of Linc-ROR in the Pathogenesis of Cancer. Front Cell Dev Biol 2020; 8:696. [PMID: 32850817 PMCID: PMC7432147 DOI: 10.3389/fcell.2020.00696] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/09/2020] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are the key components of non-coding RNAs (ncRNAs) with a length of 200 nucleotides. They are transcribed from the so-called “dark matter” of the genome. Increasing evidence have shown that lncRNAs play an important role in the pathophysiology of human diseases, particularly in the development and progression of tumors. Linc-ROR, as a new intergenic non-protein coding RNA, has been considered to be a pivotal regulatory factor that affects the occurrence and development of human tumors, including breast cancer (BC), colorectal cancer (CRC), pancreatic cancer (PC), hepatocellular carcinoma (HCC), and so on. Dysregulation of Linc-ROR has been closely related to advanced clinicopathological factors predicting a poor prognosis. Because linc-ROR can regulate cell proliferation, apoptosis, migration, and invasion, it can thus be used as a potential biomarker for patients with tumors and has potential clinical significance as a therapeutic target. This article reviewed the role of linc-ROR in the development of tumors, its related molecular mechanisms, and clinical values.
Collapse
Affiliation(s)
- Wenjian Chen
- Anhui Provincial Children's Hospital, Affiliated to Anhui Medical University, Hefei, China
| | - Junfa Yang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.,School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hui Fang
- Department of Pharmacology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Lei Li
- The Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun Sun
- Anhui Provincial Children's Hospital, Affiliated to Anhui Medical University, Hefei, China
| |
Collapse
|
17
|
Sun DE, Ye SY. Emerging Roles of Long Noncoding RNA Regulator of Reprogramming in Cancer Treatment. Cancer Manag Res 2020; 12:6103-6112. [PMID: 32765105 PMCID: PMC7382586 DOI: 10.2147/cmar.s253042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022] Open
Abstract
Despite numerous advances in cancer treatment, the global prevalence and cancer-related mortality remain high. Understanding tumor initiation and progression mechanisms are critical as it will lead to the development of interventions for improving the prognosis of cancer patients. The roles of long noncoding RNAs (lncRNAs) in cancer have attracted immense research interest. Growing evidence indicates that lncRNA regulator of reprogramming (linc-ROR), a well-studied RNA, regulates the progression of various cancers, such as lung cancer (LC), hepatocellular carcinoma (HCC), breast cancer (BC), colorectal cancer (CRC), pancreatic cancer (PC), papillary thyroid carcinoma (PTC), or esophageal squamous cell carcinoma (ESCC). linc-ROR promotes the proliferation, invasion, migration and chemoresistance of cancer cells. Herein, we reviewed current literature on the modulatory functions and mechanisms of linc-ROR in cancer development. We highlight new linc-ROR-related therapeutic strategies in cancer treatment.
Collapse
Affiliation(s)
- Di-Er Sun
- Clinical Laboratory, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, People's Republic of China.,Clinical Laboratory, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, People's Republic of China
| | - Shu-Yuan Ye
- Clinical Laboratory, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, People's Republic of China.,Clinical Laboratory, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, People's Republic of China
| |
Collapse
|
18
|
Szpak-Ulczok S, Pfeifer A, Rusinek D, Oczko-Wojciechowska M, Kowalska M, Tyszkiewicz T, Cieslicka M, Handkiewicz-Junak D, Fujarewicz K, Lange D, Chmielik E, Zembala-Nozynska E, Student S, Kotecka-Blicharz A, Kluczewska-Galka A, Jarzab B, Czarniecka A, Jarzab M, Krajewska J. Differences in Gene Expression Profile of Primary Tumors in Metastatic and Non-Metastatic Papillary Thyroid Carcinoma-Do They Exist? Int J Mol Sci 2020; 21:E4629. [PMID: 32610693 PMCID: PMC7369779 DOI: 10.3390/ijms21134629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022] Open
Abstract
Molecular mechanisms of distant metastases (M1) in papillary thyroid cancer (PTC) are poorly understood. We attempted to analyze the gene expression profile in PTC primary tumors to seek the genes associated with M1 status and characterize their molecular function. One hundred and twenty-three patients, including 36 M1 cases, were subjected to transcriptome oligonucleotide microarray analyses: (set A-U133, set B-HG 1.0 ST) at transcript and gene group level (limma, gene set enrichment analysis (GSEA)). An additional independent set of 63 PTCs, including 9 M1 cases, was used to validate results by qPCR. The analysis on dataset A detected eleven transcripts showing significant differences in expression between metastatic and non-metastatic PTC. These genes were validated on microarray dataset B. The differential expression was positively confirmed for only two genes: IGFBP3, (most significant) and ECM1. However, when analyzed on an independent dataset by qPCR, the IGFBP3 gene showed no differences in expression. Gene group analysis showed differences mainly among immune-related transcripts, indicating the potential influence of tumor immune infiltration or signal within the primary tumor. The differences in gene expression profile between metastatic and non-metastatic PTC, if they exist, are subtle and potentially detectable only in large datasets.
Collapse
Affiliation(s)
- Sylwia Szpak-Ulczok
- Nuclear Medicine and Endocrine Oncology Department; Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-101 Gliwice, Poland; (S.S.-U.); (D.H.-J.); (A.K.-B.); (A.K.-G.); (B.J.)
| | - Aleksandra Pfeifer
- Department of Genetic and Molecular Diagnostics of Cancer, Maria Sklodowska, Curie National Research Institute of Oncology Gliwice Branch, 44-101 Gliwice, Poland; (A.P.); (D.R.); (M.O.-W.); (M.K.); (T.T.); (M.C.)
| | - Dagmara Rusinek
- Department of Genetic and Molecular Diagnostics of Cancer, Maria Sklodowska, Curie National Research Institute of Oncology Gliwice Branch, 44-101 Gliwice, Poland; (A.P.); (D.R.); (M.O.-W.); (M.K.); (T.T.); (M.C.)
| | - Malgorzata Oczko-Wojciechowska
- Department of Genetic and Molecular Diagnostics of Cancer, Maria Sklodowska, Curie National Research Institute of Oncology Gliwice Branch, 44-101 Gliwice, Poland; (A.P.); (D.R.); (M.O.-W.); (M.K.); (T.T.); (M.C.)
| | - Malgorzata Kowalska
- Department of Genetic and Molecular Diagnostics of Cancer, Maria Sklodowska, Curie National Research Institute of Oncology Gliwice Branch, 44-101 Gliwice, Poland; (A.P.); (D.R.); (M.O.-W.); (M.K.); (T.T.); (M.C.)
| | - Tomasz Tyszkiewicz
- Department of Genetic and Molecular Diagnostics of Cancer, Maria Sklodowska, Curie National Research Institute of Oncology Gliwice Branch, 44-101 Gliwice, Poland; (A.P.); (D.R.); (M.O.-W.); (M.K.); (T.T.); (M.C.)
| | - Marta Cieslicka
- Department of Genetic and Molecular Diagnostics of Cancer, Maria Sklodowska, Curie National Research Institute of Oncology Gliwice Branch, 44-101 Gliwice, Poland; (A.P.); (D.R.); (M.O.-W.); (M.K.); (T.T.); (M.C.)
| | - Daria Handkiewicz-Junak
- Nuclear Medicine and Endocrine Oncology Department; Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-101 Gliwice, Poland; (S.S.-U.); (D.H.-J.); (A.K.-B.); (A.K.-G.); (B.J.)
| | - Krzysztof Fujarewicz
- Institute of Automatic Control, Silesian University of Technology, 44-100 Gliwice, Poland; (K.F.); (S.S.)
| | - Dariusz Lange
- Tumor Pathology Department; Maria Sklodowska, Curie National Research Institute of Oncology Gliwice Branch, 44-101 Gliwice, Poland; (D.L.); (E.C.); (E.Z.-N.)
| | - Ewa Chmielik
- Tumor Pathology Department; Maria Sklodowska, Curie National Research Institute of Oncology Gliwice Branch, 44-101 Gliwice, Poland; (D.L.); (E.C.); (E.Z.-N.)
| | - Ewa Zembala-Nozynska
- Tumor Pathology Department; Maria Sklodowska, Curie National Research Institute of Oncology Gliwice Branch, 44-101 Gliwice, Poland; (D.L.); (E.C.); (E.Z.-N.)
| | - Sebastian Student
- Institute of Automatic Control, Silesian University of Technology, 44-100 Gliwice, Poland; (K.F.); (S.S.)
| | - Agnieszka Kotecka-Blicharz
- Nuclear Medicine and Endocrine Oncology Department; Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-101 Gliwice, Poland; (S.S.-U.); (D.H.-J.); (A.K.-B.); (A.K.-G.); (B.J.)
| | - Aneta Kluczewska-Galka
- Nuclear Medicine and Endocrine Oncology Department; Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-101 Gliwice, Poland; (S.S.-U.); (D.H.-J.); (A.K.-B.); (A.K.-G.); (B.J.)
| | - Barbara Jarzab
- Nuclear Medicine and Endocrine Oncology Department; Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-101 Gliwice, Poland; (S.S.-U.); (D.H.-J.); (A.K.-B.); (A.K.-G.); (B.J.)
| | - Agnieszka Czarniecka
- The Oncologic and Reconstructive Surgery Clinic; Maria Sklodowska, Curie National Research Institute of Oncology Gliwice Branch, 44-101 Gliwice, Poland;
| | - Michal Jarzab
- Breast Unit; Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-101 Gliwice, Poland;
| | - Jolanta Krajewska
- Nuclear Medicine and Endocrine Oncology Department; Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-101 Gliwice, Poland; (S.S.-U.); (D.H.-J.); (A.K.-B.); (A.K.-G.); (B.J.)
| |
Collapse
|
19
|
Rajabi S, Shakib H, Dastmalchi R, Danesh-Afrooz A, Karima S, Hedayati M. Metastatic propagation of thyroid cancer; organ tropism and major modulators. Future Oncol 2020; 16:1301-1319. [PMID: 32421354 DOI: 10.2217/fon-2019-0780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Thyroid cancer, as the most prevalent endocrine malignancy, comprises nearly 1% of all cancers in the world. The metastatic propagation of thyroid cancer is under the control of a number of modulating processes and factors such as signaling pathways and their components, cell division regulators, metabolic reprogramming factors, extracellular matrix remodelers, epithelial to mesenchymal transition modulators, epigenetic mechanisms, hypoxia and cytokines. Identifying the exact molecular mechanisms of these dysregulated processes could help to discover the key targets for therapeutic purposes and utilizing them as diagnostic, prognostic and predictors of the clinical course of patients. In this review article, we describe different aspects of thyroid cancer metastasis by focusing on defective genes and pathways involved in its metastatic spread.
Collapse
Affiliation(s)
- Sadegh Rajabi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Heewa Shakib
- Cellular & Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Romina Dastmalchi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsoon Danesh-Afrooz
- Cellular & Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular & Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Shen Z, Yuan J, Tong Q, Hao W, Deng H, Li Q, Zhou C, Hu Y, Xu J. Long non-coding RNA AC023794.4-201 exerts a tumor-suppressive function in laryngeal squamous cell cancer and may serve as a potential prognostic biomarker. Oncol Lett 2020; 20:774-784. [PMID: 32566004 PMCID: PMC7286120 DOI: 10.3892/ol.2020.11595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 02/20/2020] [Indexed: 12/31/2022] Open
Abstract
After the expression level of lncRNA AC023794.4-201 was upregulated in 2 laryngeal squamous cell carcinoma (LSCC) cell lines (AMC-HN-8 and TU-212) and LSCC xenografts, the biological function of lncRNA AC023794.4-201 in LSCC was further investigated using in vitro and in vivo experiments, such as cell function experiments and nude mice transplantation. In our previous study, it was demonstrated that the expression level of the long non-coding RNA (lncRNA) AC023794.4-201 were decreased in laryngeal squamous cell carcinoma, particularly in cases of LSCC with lymphatic metastasis. Moreover, low expression levels of AC023794.4-201 were revealed to be an adverse prognostic factor for patients with LSCC. In the present study, lentiviruses were used to overexpress AC023794.4-201 before a series of cell function assays were performed and a xenograft nude mouse model was constructed, in order to further investigate the functions of AC023794.4-201 in LSCC. AC023794.4-201 inhibited the proliferation and the cloning capacity of LSCC cells compared with the negative control group as indicated by real-time cell analysis and the plate colony formation assay. Flow cytometry and transwell migration assays demonstrated that AC023794.4-201 inhibited the migration, induced cell cycle arrest and increased the apoptotic rate of LSCC cells. The results of the in vivo studies demonstrated that AC023794.4-201 significantly inhibited the growth of LSCC xenografts, and promoted apoptosis. In conclusion, the findings of the present study suggested that AC023794.4-201 may exert tumor-suppressive functions in the progression of LSCC and may serve as a potential prognostic biomarker for LSCC.
Collapse
Affiliation(s)
- Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, Li Huili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Jie Yuan
- Department of Otorhinolaryngology and Head and Neck Surgery, Li Huili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang 315040, P.R. China.,Department of Otorhinolaryngology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Qiaoling Tong
- Department of Otorhinolaryngology and Head and Neck Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Wenjuan Hao
- Department of Otorhinolaryngology and Head and Neck Surgery, Li Huili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Hongxia Deng
- Department of Otorhinolaryngology and Head and Neck Surgery, Li Huili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Qun Li
- Department of Otorhinolaryngology and Head and Neck Surgery, Li Huili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Chongchang Zhou
- Department of Otorhinolaryngology and Head and Neck Surgery, Li Huili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Yan Hu
- Department of Otorhinolaryngology and Head and Neck Surgery, Li Huili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang 315040, P.R. China.,Department of Otorhinolaryngology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jie Xu
- Department of Otorhinolaryngology and Head and Neck Surgery, Li Huili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang 315040, P.R. China.,Department of Otorhinolaryngology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
21
|
RORγt may Influence the Microenvironment of Thyroid Cancer Predicting Favorable Prognosis. Sci Rep 2020; 10:4142. [PMID: 32139737 PMCID: PMC7058012 DOI: 10.1038/s41598-020-60280-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/07/2020] [Indexed: 11/09/2022] Open
Abstract
We aimed to investigate the role of RORγt (Retinoic acid-related orphan receptor gamma) in the tumor microenvironment of differentiated thyroid carcinoma. We retrospectively analyzed 56 patients (48 papillary and 8 follicular thyroid carcinomas). Immunohistochemical expression of RORγt was compared to other immune markers previously investigated by our group, clinical and pathological information. All patients presented cytoplasmic expression of RORγt in thyroid tumor cells. Seven (12.5%) patients presented no nuclear expression of RORγt. Positivity was few (up to 10%) in 14 patients; 10 to 50% in 5 patients (8.9%); and more than 50% in 30 patients (53.6%). Nuclear RORγt positivity was associated with absence of distant metastasis at diagnosis (p = 0.013) and the need of less cumulative doses of radioactive iodine (p = 0.039). Patients whose tumors were positive for nuclear RORγt presented higher 10-years relapse-free survival rate than those patients who were negative for RORγt (p = 0.023). We classified the patients according to the clustering of immunological immunohistochemical markers. We were able to distinguish a subset (A) of 38 patients who presented high expression of nuclear RORγt and tended to be scarce in proinflammatory immune markers. Other 16 patients integrated a second subset (B) whose tumor microenvironment accumulated proinflammatory markers and presented low expression of nuclear nuclear RORγt. Distant metastasis at diagnosis were more frequent among patients from cluster B than from cluster A (p = 0.008). Our results reinforce that the expression of RORγt together with other immune markers might help predict the prognosis of patients with thyroid cancer and help individualize clinical management.
Collapse
|
22
|
Javed Z, Shah FA, Rajabi S, Raza Q, Iqbal Z, Ullah M, Ahmad T, Salehi B, Sharifi-Rad M, Pezzani R, Yaqoob F, Sadia H, Iriti M, Sharifi-Rad J, Cho WC. LncRNAs as Potential Therapeutic Targets in Thyroid Cancer. Asian Pac J Cancer Prev 2020; 21:281-287. [PMID: 32102500 PMCID: PMC7332117 DOI: 10.31557/apjcp.2020.21.2.281] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/15/2020] [Indexed: 12/15/2022] Open
Abstract
Thyroid cancer (TC) is the most common cancer of endocrine system. TC can be subdivided into 4 different entities, papillary, follicular, medullary and anaplastic thyroid cancer. Among them, anaplastic thyroid cancer has the poorest prognosis. Exploring new therapeutic approach may entail favorable prediction as well as increasing overall survival rate of patients. Long non-coding RNAs (lncRNAs), have vast implications in different cancer types. Although they are not transcribed into proteins, they can act as a harness in regulating a plethora of biological functions. They have been implicated in a decisive role in gene expression via modulation of both coding and non-coding RNAs. This article discuss the multi-facet role of lncRNA in thyroid cancer biology. .
Collapse
Affiliation(s)
- Zeeshan Javed
- Office for Research Innovation and Commercialization Lahore Garrison University,
| | - Faiez Ahmed Shah
- Institute of Biochemistry and Biotechnology,University of Veterinary and Animal Sciences,
| | - Sadegh Rajabi
- Center for Excellence in Molecular Biology, University of the Punjab Lahore, Lahore,
| | - Qamar Raza
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan,
| | - Zaheer Iqbal
- Department of Clinical Biochemistry, School of Medicine,
| | - Mukhtar Ullah
- Office for Research Innovation and Commercialization Lahore Garrison University,
| | - Touqeer Ahmad
- Institute of Biochemistry and Biotechnology,University of Veterinary and Animal Sciences,
| | - Bahare Salehi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran,
| | - Mehdi Sharifi-Rad
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam,
| | - Raffaele Pezzani
- Department of Medical Parasitology, Kerman University of Medical Sciences, Kerman, Iran,
- 8OU Endocrinology, Dept. Medicine (DIMED), University of Padova, via Ospedale 105, 35128,
| | - Farooq Yaqoob
- Department of Clinical Biochemistry, School of Medicine,
| | - Haleema Sadia
- Office for Research Innovation and Commercialization Lahore Garrison University,
| | - Marcello Iriti
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base Padova,
| | - Javad Sharifi-Rad
- Department of Agricultural and Environmental Sciences, Milan State University, 20133 Milan, Italy,
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong, China.
| |
Collapse
|
23
|
He J, Tian Z, Yao X, Yao B, Liu Y, Yang J. A novel RNA sequencing-based risk score model to predict papillary thyroid carcinoma recurrence. Clin Exp Metastasis 2019; 37:257-267. [DOI: 10.1007/s10585-019-10011-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 11/25/2019] [Indexed: 12/24/2022]
|
24
|
Shakib H, Rajabi S, Dehghan MH, Mashayekhi FJ, Safari-Alighiarloo N, Hedayati M. Epithelial-to-mesenchymal transition in thyroid cancer: a comprehensive review. Endocrine 2019; 66:435-455. [PMID: 31378850 DOI: 10.1007/s12020-019-02030-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022]
Abstract
The Metastatic progression of solid tumors, such as thyroid cancer is a complex process which involves various factors. Current understanding on the role of epithelial-mesenchymal transition (EMT) in thyroid carcinomas suggests that EMT is implicated in the progression from follicular thyroid cancer (FTC) and papillary thyroid cancer (PTC) to poorly differentiated thyroid carcinoma (PDTC) and anaplastic thyroid cancer (ATC). According to the literature, the initiation of the EMT program in thyroid epithelial cells elevates the number of stem cells, which contribute to recurrent and metastatic diseases. The EMT process is orchestrated by a complex network of transcription factors, growth factors, signaling cascades, epigenetic modulations, and the tumor milieu. These factors have been shown to be dysregulated in thyroid carcinomas. Therefore, molecular interferences restoring the expression of tumor suppressors, or thwarting overexpressed oncogenes is a hopeful therapeutic method to improve the treatment of progressive diseases. In this review, we summarize the recent findings on EMT in thyroid cancer focusing on the main role-players and regulators of this process in thyroid tumors.
Collapse
Affiliation(s)
- Heewa Shakib
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadegh Rajabi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Nahid Safari-Alighiarloo
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Wang Y, Hardin H, Chu YH, Esbona K, Zhang R, Lloyd RV. Long Non-coding RNA Expression in Anaplastic Thyroid Carcinomas. Endocr Pathol 2019; 30:262-269. [PMID: 31468286 DOI: 10.1007/s12022-019-09589-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Long non-coding RNAs (lncRNAs) participate in transcription and in epigenetic or post-transcriptional regulation of gene expression. They also have roles in epithelial to mesenchymal transition and in carcinogenesis. Because lncRNAs may also have a role in thyroid cancer progression, we examined a group of thyroid tumors which included papillary thyroid carcinomas and anaplastic thyroid carcinomas to determine the specific lncRNAs that were upregulated during thyroid tumor progression. An RT2 Profiler PCR Array Human Cancer Pathway Finder consisting of 84 lncRNAs (Qiagen) and fresh tissues of normal thyroid, PTCs, and ATCs with gene expression profiling was used to determine genes upregulated and downregulated in ATCs. Two of the most highly upregulated genes, prostate cancer antigen 3 (PCA3) and HOX antisense intergenic RNA myeloid 1 (HOTAIRM1 or HAM-1), were selected for further studies using a thyroid tissue microarray(TMA) with formalin-fixed paraffin-embedded tissues of normal thyroid (NT, n = 10), nodular goiters (NG, n = 10), follicular adenoma (FA, n = 32), follicular carcinoma (FCA, n = 28), papillary thyroid carcinoma (PTC, n = 28), follicular variant of papillary thyroid carcinoma (FVPTC, n = 28), and anaplastic thyroid carcinoma (ATC, n = 10). TMA sections were analyzed by in situ hybridization (ISH) using RNAscope technology. The results of ISH analyses were imaged with Vectra imaging technology and quantified with Nuance® and inForm® software. The TMA analysis was validated by qRT-PCR using FFPE tissues for RNA preparation. Cultured thyroid carcinoma cell lines (n = 7) were also used to analyze for lncRNAs by qRT-PCR. The results showed 11 lncRNAs upregulated and 7 downregulated lncRNAs more than twofold in the ATCS compared with PTCs. Two of the upregulated lncRNAs, PCA3 and HAM-1, were analyzed on a thyroid carcinoma TMA. There was increased expression of both lncRNAs in ATCs and PTCs compared with NT after TMA analysis. qRT-PCR analyses showed increased expression of both lncRNAs in ATCs compared with NT and PTCs. Analyses of these lncRNAs from cultured thyroid carcinoma cell lines by qRT-PCR showed the highest levels of lncRNA expression in ATCs. TGF-β treatment of cultured PTC and ATC cells for 21 days led to increased expression of PCA3 lncRNA in both cell lines by day 14. These results show that the lncRNAs PCA3 and HAM-1 are upregulated during thyroid tumor development and progression and may function as oncogenes during tumor progression.
Collapse
Affiliation(s)
- Yanping Wang
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Heather Hardin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Ying-Hsia Chu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Karla Esbona
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Ranran Zhang
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA.
| |
Collapse
|
26
|
Ogunwobi OO, Kumar A. Chemoresistance Mediated by ceRNA Networks Associated With the PVT1 Locus. Front Oncol 2019; 9:834. [PMID: 31508377 PMCID: PMC6718704 DOI: 10.3389/fonc.2019.00834] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/13/2019] [Indexed: 12/24/2022] Open
Abstract
Competitive endogenous RNA (ceRNA) networks have emerged as critical regulators of carcinogenesis. Their activity is mediated by various non-coding RNAs (ncRNAs), including long non-coding RNAs and microRNAs, which competitively bind to targets, thereby modulating gene expression and activity of proteins. Of particular interest, ncRNAs encoded by the 8q24 chromosomal region are associated with the development and progression of several human cancers, most prominently lncPVT1. Chemoresistance presents a significant obstacle in the treatment of cancer and is associated with dysregulation of normal cell processes, including abnormal proliferation, differentiation, and epithelial-mesenchymal transition. CeRNA networks have been shown to regulate these processes via both direct sponging/repression and epigenetic mechanisms. Here we present a review of recent literature examining the contribution of ncRNAs encoded by the PVT1 locus and their associated ceRNA networks to the development of resistance to common chemotherapeutic agents used to treat human cancers.
Collapse
Affiliation(s)
- Olorunseun O. Ogunwobi
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, United States
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Adithya Kumar
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, United States
| |
Collapse
|
27
|
Rasmussen TP. Parallels between artificial reprogramming and the biogenesis of cancer stem cells: Involvement of lncRNAs. Semin Cancer Biol 2019; 57:36-44. [PMID: 30273656 DOI: 10.1016/j.semcancer.2018.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/12/2018] [Accepted: 09/26/2018] [Indexed: 02/08/2023]
Abstract
Cellular identity is established and maintained by the interplay of cell type-specific transcription factors and epigenetic regulation of the genome. During development in vivo and differentiation in vitro, transitions from one cell type to the next are triggered by cell signaling events culminating in modifications of chromatin that render genes accessible or inaccessible to the transcriptional apparatus. In recent years it has become apparent that cellular identity is plastic, and technological reprogramming methods such as somatic cell nuclear transfer and induced pluripotency can yield reprogrammed cells that have been restored to a state of developmental potency. Long noncoding RNAs (lncRNAs) are untranslated functional RNA molecules that are intimately involved in the regulation of the chromatin of protein-coding genes. In fact, recent evidence shows that there are more lncRNA species in the cell than mRNA species and that most protein-coding genes are likely to be under epigenetic regulation mediated by lncRNAs. This review examines lncRNA function in reprogrammed pluripotent cells and cancer stem cells. Because cancer stem cells arise from normal cells, their biogenesis can be viewed as a reprogramming process that occurs in vivo, and parallels between artificial reprogramming and cancer stem cell biogenesis are discussed.
Collapse
Affiliation(s)
- Theodore P Rasmussen
- University of Connecticut, Department of Pharmaceutical Sciences, 69 North Eagleville Road, Storrs, CT 06269, USA; University of Connecticut, Department of Molecular and Cell Biology, 91 North Eagleville Road, Storrs, CT 06269, USA; University of Connecticut, Institute for Systems Genomics, 181 Auditorium Road, Storrs, CT 06269, USA; University of Connecticut, UConn Stem Cell Institute, 400 Farmington Avenue Farmington, CT 06033, USA.
| |
Collapse
|
28
|
Chu YH, Hardin H, Zhang R, Guo Z, Lloyd RV. In situ hybridization: Introduction to techniques, applications and pitfalls in the performance and interpretation of assays. Semin Diagn Pathol 2019; 36:336-341. [PMID: 31227426 DOI: 10.1053/j.semdp.2019.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In situ hybridization (ISH) has become a common laboratory technique used for the analysis of gene expression and for the localization of specific DNA and RNA molecules in cells. Many different methods of performing ISH have been described. These techniques have evolved into important tools in basic scientific research and in clinical diagnoses. One of the goals of ISH is to localize gene sequences in situ and to visualize the products within cells while preserving cell integrity. This allows for meaningful anatomical and histological interpretation of the localized product(s) within heterogeneous tissues. Because of the possibility of false positive and false negative results that may occur with ISH assays, familiarity with the pathophysiology of the molecules that are analyzed and the cellular processes involved as well as with limitations of the assays can help to avoid erroneous diagnoses with clinical specimens.
Collapse
Affiliation(s)
- Ying-Hsia Chu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Hangzhou, China
| | - Heather Hardin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Hangzhou, China
| | - Ranran Zhang
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Hangzhou, China
| | - Zhenying Guo
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Hangzhou, China.
| |
Collapse
|
29
|
Derderian C, Orunmuyi AT, Olapade-Olaopa EO, Ogunwobi OO. PVT1 Signaling Is a Mediator of Cancer Progression. Front Oncol 2019; 9:502. [PMID: 31249809 PMCID: PMC6582247 DOI: 10.3389/fonc.2019.00502] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022] Open
Abstract
There is increasing evidence that PVT1 has oncogenic properties and regulates proliferation and growth of many cancers. Themolecular mechanisms of action of PVT1 are mediated, in part, by microRNAs (miRNAs). However, some well-established transcription factors involved in cancer cell proliferation share a common thread of microRNA associations with PVT1. Furthermore, these microRNAs are also involved in mechanisms that lead to the development of drug resistance in cancer cells. While several microRNAs have been implicated directly in PVT1-mediated tumorigenesis, significant steps need to be taken to elucidate these important relationships. We synthesize the current knowledge of the miRNAs and associated genes by which PVT1 contributes to tumorigenesis. Overall, the trend suggests a negative correlation of microRNA expression with PVT1. It is clear that future studies involving PVT1 should be carried out in conjunction with microRNA analysis and should include large scale lncRNA-miRNA-mRNA network analysis. Likewise, the relationship between established transcription factors such as p53 and MYC, and processes like epithelial-mesenchymal transition may offer valuable insight into the yet unknown mechanisms of PVTI-mediated cancer progression via microRNA-dependent signaling networks.
Collapse
Affiliation(s)
- Camille Derderian
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY, United States
| | - Akintunde T Orunmuyi
- Department of Radiation Oncology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Olorunseun O Ogunwobi
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY, United States.,Hunter College Center for Cancer Health Disparities Research, Hunter College of The City University of New York, New York, NY, United States
| |
Collapse
|
30
|
Hao Y, Baker D, Ten Dijke P. TGF-β-Mediated Epithelial-Mesenchymal Transition and Cancer Metastasis. Int J Mol Sci 2019; 20:ijms20112767. [PMID: 31195692 PMCID: PMC6600375 DOI: 10.3390/ijms20112767] [Citation(s) in RCA: 765] [Impact Index Per Article: 127.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023] Open
Abstract
Transforming growth factor β (TGF-β) is a secreted cytokine that regulates cell proliferation, migration, and the differentiation of a plethora of different cell types. Consistent with these findings, TGF-β plays a key role in controlling embryogenic development, inflammation, and tissue repair, as well as in maintaining adult tissue homeostasis. TGF-β elicits a broad range of context-dependent cellular responses, and consequently, alterations in TGF-β signaling have been implicated in many diseases, including cancer. During the early stages of tumorigenesis, TGF-β acts as a tumor suppressor by inducing cytostasis and the apoptosis of normal and premalignant cells. However, at later stages, when cancer cells have acquired oncogenic mutations and/or have lost tumor suppressor gene function, cells are resistant to TGF-β-induced growth arrest, and TGF-β functions as a tumor promotor by stimulating tumor cells to undergo the so-called epithelial-mesenchymal transition (EMT). The latter leads to metastasis and chemotherapy resistance. TGF-β further supports cancer growth and progression by activating tumor angiogenesis and cancer-associated fibroblasts and enabling the tumor to evade inhibitory immune responses. In this review, we will consider the role of TGF-β signaling in cell cycle arrest, apoptosis, EMT and cancer cell metastasis. In particular, we will highlight recent insights into the multistep and dynamically controlled process of TGF-β-induced EMT and the functions of miRNAs and long noncoding RNAs in this process. Finally, we will discuss how these new mechanistic insights might be exploited to develop novel therapeutic interventions.
Collapse
Affiliation(s)
- Yang Hao
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands.
| | - David Baker
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands.
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
31
|
Yu Q, Hardin H, Chu YH, Rehrauer W, Lloyd RV. Parathyroid Neoplasms: Immunohistochemical Characterization and Long Noncoding RNA (lncRNA) Expression. Endocr Pathol 2019; 30:96-105. [PMID: 31119524 DOI: 10.1007/s12022-019-9578-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Parathyroid adenomas are slow growing benign neoplasms associated with hypercalcemia, while atypical parathyroid adenomas and parathyroid carcinomas are uncommon tumors and their histologic features may overlap with parathyroid adenomas. LncRNAs participate in transcription and in epigenetic or post-transcriptional regulation of gene expression, and probably contribute to carcinogenesis. We analyzed a group of normal, hyperplastic, and neoplastic parathyroid lesions to determine the best immunohistochemical markers to characterize these lesions and to determine the role of selected lncRNAs in tumor progression. A tissue microarray consisting of 111 cases of normal parathyroid (n = 14), primary hyperplasia (n = 15), secondary hyperplasia (n = 10), tertiary hyperplasia (n = 11), adenomas (n = 50), atypical adenomas (n = 7), and carcinomas (n = 4) was used. Immunohistochemical staining with antibodies against chromogranin A, synaptophysin, parathyroid hormone, and insulinoma-associated protein 1(INSM1) was used. Expression of lncRNAs including metastasis-associated lung adenocarcinoma transcript one (MALAT1), HOX transcript antisense intergenic RNA (HOTAIR), and long intergenic non-protein coding regulator of reprograming (Linc-ROR or ROR) was also analyzed by in situ hybridization and RT-PCR. All of the parathyroid tissues were positive for parathyroid hormone, while most cases were positive for chromogranin A (98%). Synaptophysin was expressed in only 12 cases (11%) and INMS1 was negative in all cases. ROR was significantly downregulated during progression from normal, hyperplastic, and adenomatous parathyroid to parathyroid carcinomas. These results show that parathyroid hormone and chromogranin A are useful markers for parathyroid neoplasms, while synaptophysin and INSM1 are not very sensitive broad-spectrum markers for these neoplasms. LincRNA ROR may function as a tumor suppressor during parathyroid tumor progression.
Collapse
Affiliation(s)
- Qiqi Yu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI, 53792, USA
| | - Heather Hardin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI, 53792, USA
| | - Ying-Hsia Chu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI, 53792, USA
| | - William Rehrauer
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI, 53792, USA
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI, 53792, USA.
| |
Collapse
|
32
|
Zhao Y, Zhao L, Li J, Zhong L. Silencing of long noncoding RNA RP11-476D10.1 enhances apoptosis and autophagy while inhibiting proliferation of papillary thyroid carcinoma cells via microRNA-138-5p-dependent inhibition of LRRK2. J Cell Physiol 2019; 234:20980-20991. [PMID: 31102261 DOI: 10.1002/jcp.28702] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/27/2019] [Accepted: 04/05/2019] [Indexed: 01/04/2023]
Abstract
The distant metastasis in papillary thyroid carcinoma (PTC) is a major threat for PTC patients. Moreover, the involvement of long noncoding RNAs (lncRNAs) in the regulation of PTC progression has been extensively investigated. The aim of this study was to underscore whether lncRNA RP11-476D10.1 affects the proliferation, apoptosis and autophagy of PTC cells. Initially, we determined that lncRNA RP11-476D10.1 and LRRK2 were highly expressed in PTC cells. Meanwhile, through experimentation, miR-138-5p was confirmed to bind with lncRNA RP11-476D10.1 and LRRK2. It was also revealed that lncRNA RP11-476D10.1 downregulated the miR-138-5p expression, thereby upregulating the LRRK2 expression. After that, PTC cells were transfected with siRNA against RP11-476D10.1, or inhibitor or mimic of miR-138-5p to evaluate the influence of lncRNA RP11-476D10.1 on the PTC cell proliferation, apoptosis, and autophagy in vitro and on the tumor formation ability in vivo. The results showed that silenced lncRNA RP11-476D10.1 or overexpressed miR-138-5p enhanced the apoptosis and autophagy of PTC cells while reducing cell proliferation, with increased levels of Bax, LC3B, and Beclin1 and decreased Bcl-2 level were observed. The inhibitory role of silenced lncRNA RP11-476D10.1 role in the PTC development was further verified by the reduced tumor formation ability in nude mice. Our results demonstrated that lncRNA RP11-476D10.1 could bind to miR-138-5p and promote LRRK2 expression. Moreover, the silencing of lncRNA RP11-476D10.1 may inhibit the development of PTC, highlighting a novel insight for the development of superior therapeutic targets for PTC treatment.
Collapse
Affiliation(s)
- Yinlong Zhao
- Department of Nuclear Medicine, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Lingzhi Zhao
- Purchasing Center, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Junfeng Li
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Lili Zhong
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
33
|
Wu W, Gao H, Li X, Zhu Y, Peng S, Yu J, Zhan G, Wang J, Liu N, Guo X. LncRNA TPT1-AS1 promotes tumorigenesis and metastasis in epithelial ovarian cancer by inducing TPT1 expression. Cancer Sci 2019; 110:1587-1598. [PMID: 30941821 PMCID: PMC6500995 DOI: 10.1111/cas.14009] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/01/2019] [Accepted: 03/03/2019] [Indexed: 01/01/2023] Open
Abstract
Increasing numbers of studies have confirmed that long noncoding RNA (lncRNA) play a critical role in epithelial ovarian cancer (EOC) progression. However, the potential function of the lncRNA tumor protein translationally controlled 1 (TPT1) antisense RNA 1 (TPT1-AS1) in EOC is unclear. In this study, we aimed to uncover the biological roles and regulatory mechanisms of TPT1-AS1 in EOC progression and metastasis. First, TPT1-AS1 expression was significantly higher in EOC metastatic tissue and cell lines than in their respective control counterparts. In addition, ectopic TPT1-AS1 expression was strongly associated with unfavorable EOC clinicopathological features, including FIGO stage, tumor size and tumor differentiation. TPT1-AS1 overexpression remarkably induced cell proliferation, migration and invasion, and significantly attenuated cell adhesion ability in vitro and facilitated nude mouse subcutaneous xenograft growth and intraperitoneal metastasis in vivo, while the downregulation of TPT1-AS1 expression produced the opposite effect in vitro. Mechanistically, TPT1-AS1 was proven to be primarily distributed in EOC cell nuclei and positively modulated TPT1 promoter activity and transcription. Moreover, the oncogenic effects of TPT1-AS1 could be reversed by TPT1 depletion, and the PI3K/AKT signaling pathway downstream of TPT1 was also altered. These results suggested that TPT1-AS1 induced EOC tumor growth and metastasis through TPT1 and downstream PI3K/AKT signaling and that TPT1-AS1 may be a promising therapeutic target for EOC.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Mice
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Ovarian Epithelial/genetics
- Carcinoma, Ovarian Epithelial/metabolism
- Carcinoma, Ovarian Epithelial/pathology
- Cell Adhesion
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Cell Survival
- Gene Expression Regulation, Neoplastic
- Neoplasm Metastasis
- Neoplasm Transplantation
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Phosphatidylinositol 3-Kinases/metabolism
- Promoter Regions, Genetic
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Long Noncoding/genetics
- Signal Transduction
- Tumor Protein, Translationally-Controlled 1
- Up-Regulation
- RNA, Antisense
Collapse
Affiliation(s)
- Weimin Wu
- Department of Obstetrics and GynecologyShanghai First Maternity and Infant HospitalTongji University School of MedicineShanghaiChina
| | - Hao Gao
- Department of Obstetrics and GynecologyShanghai First Maternity and Infant HospitalTongji University School of MedicineShanghaiChina
| | - Xiaofeng Li
- Department of Obstetrics and GynecologyShanghai First Maternity and Infant HospitalTongji University School of MedicineShanghaiChina
| | - Yong Zhu
- Department of Obstetrics and GynecologyThe First Affiliated HospitalShihezi University School of MedicineXinjiangChina
| | - Shumin Peng
- Chongqing Health Center for Women and ChildrenChongqingChina
| | - Jing Yu
- Department of PathologyShanghai First Maternity and Infant HospitalTongji University School of MedicineShanghaiChina
| | - Guangxi Zhan
- Department of Obstetrics and GynecologyShanghai First Maternity and Infant HospitalTongji University School of MedicineShanghaiChina
| | - Jiapo Wang
- Department of Obstetrics and GynecologyShanghai First Maternity and Infant HospitalTongji University School of MedicineShanghaiChina
| | - Na Liu
- Department of Obstetrics and GynecologyShanghai First Maternity and Infant HospitalTongji University School of MedicineShanghaiChina
| | - Xiaoqing Guo
- Department of Obstetrics and GynecologyShanghai First Maternity and Infant HospitalTongji University School of MedicineShanghaiChina
| |
Collapse
|
34
|
Zhi Y, Abudoureyimu M, Zhou H, Wang T, Feng B, Wang R, Chu X. FOXM1-Mediated LINC-ROR Regulates the Proliferation and Sensitivity to Sorafenib in Hepatocellular Carcinoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:576-588. [PMID: 31082791 PMCID: PMC6514537 DOI: 10.1016/j.omtn.2019.04.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 01/04/2023]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-associated death worldwide. Indeed, despite the benefit of sorafenib in the treatment of some patients with HCC, the majority of these patients have a poor response to or intolerance of sorafenib, resulting in further tumor progression. Exploring the mechanisms underlying sorafenib resistance is essential to the treatment of HCC. Long noncoding RNAs (lncRNAs) are known as participants in tumorigenesis. In this study, we identified that long intergenic non-protein coding RNA, regulator of reprogramming (LINC-ROR), was upregulated in HCC cell lines, which was transcriptionally activated by FOXM1. Furthermore, the sponging of miR-876-5p by LINC-ROR released FOXM1, thereby forming a positive-feedback loop. Additionally, we demonstrated that upregulation of both FOXM1 and LINC-ROR impaired the sensitivity to sorafenib in HCC cells. The role of this feedback loop was demonstrated by rescue assays. These results revealed a novel molecular feedback loop between LINC-ROR and FOXM1 and elucidated their functions in sorafenib sensitivity of HCC cell lines.
Collapse
Affiliation(s)
- Yingru Zhi
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
| | - Mubalake Abudoureyimu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
| | - Hao Zhou
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Ting Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
| | - Bing Feng
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, People's Republic of China.
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
35
|
Chu YH, Hardin H, Eickhoff J, Lloyd RV. In Situ Hybridization Analysis of Long Non-coding RNAs MALAT1 and HOTAIR in Gastroenteropancreatic Neuroendocrine Neoplasms. Endocr Pathol 2019; 30:56-63. [PMID: 30600442 DOI: 10.1007/s12022-018-9564-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent studies suggest onco-regulatory roles for two long non-coding RNAs (lncRNAs), MALAT1 and HOTAIR, in various malignancies; however, these lncRNAs have not been previously examined in neuroendocrine neoplasms (NENs) of gastroenteropancreatic origins (GEP-NENs). In this study, we evaluated the expressions and prognostic significance of MALAT1 and HOTAIR in 83 cases of GEP-NENs (60 grade 1, 17 grade 2, and 6 grade 3 tumors) diagnosed during the years 2005-2017. Expression levels of MALAT1 and HOTAIR were digitally quantitated in assembled tissue microarray slides labeled by chromogenic in situ hybridization (ISH) using InForm 1.4.0 software. We found diffuse nuclear expression of both HOTAIR and MALAT1 in all primary tumors of GEP-NENs with variable intensities. By multivariate model which adjusted for age and histologic grade, high expression of HOTAIR was associated with lower presenting T and M stages and subsequent development of metastases (P < 0.05). MALAT1 expression was associated with presenting T stage and development of metastases (P < 0.05). In summary, MALAT1 and HOTAIR are commonly expressed in GEP-NENs. High expression of either lncRNA showed grade-independent associations with clinically less aggressive disease.
Collapse
Affiliation(s)
- Ying-Hsia Chu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Office K4/436 CSC-8550, 600 Highland Avenue, Madison, WI, 53792-8550, USA
| | - Heather Hardin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Office K4/436 CSC-8550, 600 Highland Avenue, Madison, WI, 53792-8550, USA
| | - Jens Eickhoff
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Office K4/436 CSC-8550, 600 Highland Avenue, Madison, WI, 53792-8550, USA.
| |
Collapse
|
36
|
Mahmoudian-Sani MR, Jalali A, Jamshidi M, Moridi H, Alghasi A, Shojaeian A, Mobini GR. Long Non-Coding RNAs in Thyroid Cancer: Implications for Pathogenesis, Diagnosis, and Therapy. Oncol Res Treat 2019; 42:136-142. [PMID: 30799425 DOI: 10.1159/000495151] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/21/2018] [Indexed: 12/16/2022]
Abstract
Thyroid cancer is a rare malignancy and accounts for less than 1% of malignant neoplasms in humans; however, it is the most common cancer of the endocrine system and responsible for most deaths from endocrine cancer. Long non-coding (Lnc)RNAs are defined as non-coding transcripts that are more than 200 nucleotides in length. Their expression deregulation plays an important role in the progress of cancer. These molecules are involved in physiologic cellular processes, genomic imprinting, inactivation of chromosome X, maintenance of pluripotency, and the formation of different organs via changes in chromatin, transcription, and translation. LncRNAs can act as a tumor suppressor genes or oncogenes. Several studies have shown that these molecules can interact with microRNAs and prevent their binding to messenger RNAs. Research has shown that these molecules play an important role in tumorigenicity, angiogenesis, proliferation, migration, apoptosis, and differentiation. In thyroid cancer, several lncRNAs (MALAT1, H19, BANCR, HOTAIR) have been identified as contributing factors to cancer development, and can be used as novel biomarkers for early diagnosis or even treatment. In this article, we study the newest lncRNAs and their role in thyroid cancer.
Collapse
|
37
|
Thyroid cancer stem-like cell exosomes: regulation of EMT via transfer of lncRNAs. J Transl Med 2018; 98:1133-1142. [PMID: 29967342 PMCID: PMC6138523 DOI: 10.1038/s41374-018-0065-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/23/2018] [Accepted: 03/20/2018] [Indexed: 12/12/2022] Open
Abstract
Thyroid cancers are the most common endocrine malignancy and approximately 2% of thyroid cancers are anaplastic thyroid carcinoma (ATC), one of the most lethal and treatment resistant human cancers. Cancer stem-like cells (CSCs) may initiate tumorigenesis, induce resistance to chemotherapy and radiation therapy, have multipotent capability and may be responsible for recurrent and metastatic disease. The production of CSCs has been linked to epithelial-mesenchymal transition (EMT) and the acquisition of stemness. Exosomes are small (30-150 nm) membranous vesicles secreted by most cells that play a significant role in cell-to-cell communication. Many non-coding RNAs (ncRNA), such as long-non-coding RNAs (lncRNA), can initiate tumorigenesis and the EMT process. Exosomes carry ncRNAs to local and distant cell populations. This study examines secreted exosomes from two in vitro cell culture models; an EMT model and a CSC model. The EMT was induced in a papillary thyroid carcinoma (PTC) cell line by TGFβ1 treatment. Exosomes from this model were isolated and cultured with naïve PTC cells and examined for EMT induction. In the CSC model, exosomes were isolated from a CSC clonal line, cultured with a normal thyroid cell line and examined for EMT induction. The EMT exosomes transferred the lncRNA MALAT1 and EMT effectors SLUG and SOX2; however, EMT was not induced in this model. The exosomes from the CSC model also transferred the lncRNA MALAT1 and the transcription factors SLUG and SOX2 but additionally transferred linc-ROR and induced EMT in the normal thyroid cells. Preliminary siRNA studies directed towards linc-ROR reduced invasion. We hypothesize that CSC exosomes transfer lncRNAs, importantly linc-ROR, to induce EMT and inculcate the local tumor microenvironment and the distant metastatic niche. Therapies directed towards CSCs, their exosomes and/or the lncRNAs they carry may reduce a tumor's metastatic capacity.
Collapse
|