1
|
Liu H, Li M, Deng Y, Hou Y, Hou L, Zhang X, Zheng Z, Guo F, Sun K. The Roles of DMT1 in Inflammatory and Degenerative Diseases. Mol Neurobiol 2025; 62:6317-6332. [PMID: 39775481 DOI: 10.1007/s12035-025-04687-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
Iron homeostasis is critical for multiple physiological and pathological processes. DMT1, a core iron transporter, is expressed in almost all cells and organs and altered in response to various conditions, whereas, there is few reviews focusing on DMT1 in diseases associated with aberrant iron metabolism. Based on available knowledge, this review described a full view of DMT1 and summarized the roles of DMT1 and DMT1-mediated iron metabolism in the onset and development of inflammatory and degenerative diseases. This review also provided an overview of DMT1-related treatment in these disorders, highlighting its therapeutic potential in chronic inflammatory and degenerative diseases.
Collapse
Affiliation(s)
- Haigang Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Mi Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yi Deng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yanjun Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Liangcai Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiong Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zehang Zheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
2
|
Cornelis MC, Fazlollahi A, Bennett DA, Schneider JA, Ayton S. Genetic Markers of Postmortem Brain Iron. J Neurochem 2025; 169:e16309. [PMID: 39918201 PMCID: PMC11804167 DOI: 10.1111/jnc.16309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025]
Abstract
Brain iron (Fe) dyshomeostasis is implicated in neurodegenerative diseases. Genome-wide association studies (GWAS) have identified plausible loci correlated with peripheral levels of Fe. Systemic organs and the brain share several Fe regulatory proteins but there likely exist different homeostatic pathways. We performed the first GWAS of inductively coupled plasma mass spectrometry measures of postmortem brain Fe from 635 Rush Memory and Aging Project (MAP) participants. Sixteen single nucleotide polymorphisms (SNPs) associated with Fe in at least one of four brain regions were measured (p < 5 × 10-8). Promising SNPs (p < 5 × 10-6) were followed up for replication in published GWAS of blood, spleen, and brain imaging Fe traits and mapped to candidate genes for targeted cortical transcriptomic and epigenetic analysis of postmortem Fe in MAP. Results for SNPs previously associated with other Fe traits were also examined. Ninety-eight SNPs associated with postmortem brain Fe were at least nominally (p < 0.05) associated with one or more related Fe traits. Most novel loci identified had no direct links to Fe regulatory pathways but rather endoplasmic reticulum-Golgi trafficking (SORL1, SORCS2, MARCH1, CLTC), heparan sulfate (HS3ST4, HS3ST1), and coenzyme A (SLC5A6, PANK3); supported by nearest gene function and omic analyses. We replicated (p < 0.05) several previously published Fe loci mapping to candidate genes in cellular and systemic Fe regulation. Finally, novel loci (BMAL, COQ5, SLC25A11) and replication of prior loci (PINK1, PPIF, LONP1) lend support to the role of circadian rhythms and mitochondria function in Fe regulation more generally. In summary, we provide support for novel loci linked to pathways that may have greater relevance to brain Fe accumulation; some of which are implicated in neurodegeneration. However, replication of a subset of prior loci for blood Fe suggests that genetic determinants or biological pathways underlying Fe accumulation in the brain are not completely distinct from those of Fe circulating in the periphery.
Collapse
Affiliation(s)
- Marilyn C. Cornelis
- Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Amir Fazlollahi
- Department of Radiology, Royal Melbourne HospitalUniversity of MelbourneMelbourneVictoriaAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | | | | | - Scott Ayton
- The Florey Institute of Neuroscience and Mental HealthMelbourneVictoriaAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
3
|
Zhao H, Ji QH, Jia ZZ, Shen LH. Association between deep gray matter iron deposition and clinical symptoms in Parkinson's disease: a quantitative susceptibility mapping study. Front Neurol 2025; 15:1442903. [PMID: 39835146 PMCID: PMC11743366 DOI: 10.3389/fneur.2024.1442903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
Purpose This study aimed to assess the association between motor and non-motor symptoms of Parkinson's disease (PD) and iron accumulation within the deep gray matter of the brain by Quantitative Susceptibility Mapping (QSM). Methods Fifty-six PD patients and twenty-nine healthy controls were recruited in this study. According to the Hoehn and Yahr (H-Y) stage score, PD patients were divided into early stage (H-Y ≤ 2) and advanced stage (H-Y > 2) groups. Specifically, the Regions of Interest (ROIs) encompassed the substantia nigra (SN), red nucleus (RN), caudate nucleus (CN), globus pallidus (GP) and putamen (PT). Meanwhile, various rating scales were used to assess the clinical symptoms of PD. Results Compared to healthy controls (HCs), PD patients showed a significant increase in magnetic susceptibility values (MSVs) within the SN and GP. Further comparisons indicated that the MSVs of the SN, PT, GP and CN are all higher in advanced stages than in early stages. Significant positive correlations were observed between the MSVs of the SN and scores on the UPDRS-III, HAMA, and HAMD (r = 0.310, p = 0.020; r = 0.273, p = 0.042; r = 0.342, p = 0.010, respectively). Likewise, the MSVs of the GP demonstrated notable correlations with HAMA and HAMD scores (r = 0.275, p = 0.040; r = 0.415, p = 0.001). Additionally, a significant correlation was found between the MSVs of the PT and HAMD scores (r = 0.360, p = 0.006). Furthermore, we identified a significant negative correlation between MMSE scores and the MSVs of both the PT and GP (r = -0.268, p = 0.046; r = -0.305, p = 0.022). Conclusion Our study revealed that QSM possesses the capability to serve as a biomarker for PD. Significant correlations were found between clinical features and the iron deposition in the nigrostriatal system.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Neurology, Affiliated Rudong Hospital of Xinglin College, Nantong University, Nantong, China
| | - Qiu-Hong Ji
- Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Zhong-Zheng Jia
- Department of Medical Imaging, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Li-Hua Shen
- Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| |
Collapse
|
4
|
Hosseinpour Mashkani SM, Bishop DP, Westerhausen MT, Adlard PA, Golzan SM. Alterations in zinc, copper, and iron levels in the retina and brain of Alzheimer's disease patients and the APP/PS1 mouse model. Metallomics 2024; 16:mfae053. [PMID: 39520546 PMCID: PMC11630249 DOI: 10.1093/mtomcs/mfae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Transition metals like copper (Cu), iron (Fe), and zinc (Zn) are vital for normal central nervous system function and are also linked to neurodegeneration, particularly in the onset and progression of Alzheimer's disease (AD). Their alterations in AD, identified prior to amyloid plaque aggregation, offer a unique target for staging pre-amyloid AD. However, analysing their levels in the brain is extremely challenging, necessitating the development of alternative approaches. Here, we utilized laser ablation-inductively coupled plasma-mass spectrometry and solution nebulization-inductively coupled plasma-mass spectrometry to quantitatively measure Cu, Fe, and Zn concentrations in the retina and hippocampus samples obtained from human donors (i.e. AD and healthy controls), and in the amyloid precursor protein/presenilin 1 (APP/PS1) mouse model of AD and wild-type (WT) controls, aged 9 and 18 months. Our findings revealed significantly elevated Cu, Fe, and Zn levels in the retina (*P < .05, P < .01, and P < .001) and hippocampus (*P < .05, *P < .05, and *P < .05) of human AD samples compared to healthy controls. Conversely, APP/PS1 mouse models exhibited notably lower metal levels in the same regions compared to WT mice-Cu, Fe, and Zn levels in the retina (**P < .01, *P < .05, and *P < .05) and hippocampus (**P < .01, **P < .01, and *P < .05). The contrasting metal profiles in human and mouse samples, yet similar patterns within each species' retina and brain, suggest the retina mirrors cerebral metal dyshomoeostasis in AD. Our findings lay the groundwork for staging pre-AD pathophysiology through assessment of transition metal levels in the retina.
Collapse
Affiliation(s)
- Seyed Mostafa Hosseinpour Mashkani
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - David P Bishop
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia
| | - Mika T Westerhausen
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia
| | - Paul A Adlard
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne 3010, Australia
| | - S Mojtaba Golzan
- Vision Science Group (Orthoptics Discipline), Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
5
|
Sun KY, Bai XY, Zhang L, Zhang X, Hu QQ, Song YX, Qiang RR, Zhang N, Zou JL, Yang YL, Xiang Y. A new strategy for the treatment of intracerebral hemorrhage: Ferroptosis. Exp Neurol 2024; 382:114961. [PMID: 39288829 DOI: 10.1016/j.expneurol.2024.114961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Intracerebral hemorrhage, is a cerebrovascular disease with high morbidity, mortality, and disability. Due to the lack of effective clinical treatments, the development of new drugs to treat intracerebral hemorrhage is necessary. In recent years, ferroptosis has been found to play an important role in the pathophysiological process of intracerebral hemorrhage, which can be treated by inhibiting ferroptosis and thus intracerebral hemorrhage. This article aims to explain the mechanism of ferroptosis and its relationship to intracerebral hemorrhage. In the meantime, it briefly discusses the molecules identified to alleviate intracerebral hemorrhage by inhibiting ferroptosis, along with other clinical agents that are expected to treat intracerebral hemorrhage through this mechanism. In addition, a brief overview of the morphological alterations of different forms of cell death and their role in ICH is provided. Finally, the challenges that may arise in translating ferroptosis inhibitors from basic research to clinical use are presented. This article serves as a reference and provides insights to aid in the treatment of intracerebral hemorrhage in the clinic.
Collapse
Affiliation(s)
- Ke Yao Sun
- School of Medicine, Yan'an University, Yan'an, China
| | - Xin Yue Bai
- School of Medicine, Yan'an University, Yan'an, China
| | - Lei Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Xin Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Qian Qian Hu
- School of Medicine, Yan'an University, Yan'an, China
| | - Yu Xuan Song
- School of Medicine, Yan'an University, Yan'an, China
| | | | - Ning Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Jia Lun Zou
- School of Medicine, Yan'an University, Yan'an, China
| | - Yan Ling Yang
- School of Medicine, Yan'an University, Yan'an, China
| | - Yang Xiang
- School of Medicine, Yan'an University, Yan'an, China; College of Physical Education, Yan'an University, Yan'an, China.
| |
Collapse
|
6
|
Lu Y, Zhang X, Hu L, Cheng Q, Zhang Z, Zhang H, Xie Z, Gao Y, Cao D, Chen S, Xu J. Consistent genes associated with structural changes in clinical Alzheimer's disease spectrum. Front Neurosci 2024; 18:1376288. [PMID: 39554844 PMCID: PMC11564164 DOI: 10.3389/fnins.2024.1376288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 10/14/2024] [Indexed: 11/19/2024] Open
Abstract
Background Previous studies have demonstrated widespread brain neurodegeneration in Alzheimer's disease (AD). However, the neurobiological and pathogenic substrates underlying this structural atrophy across the AD spectrum remain largely understood. Methods In this study, we obtained structural MRI data from ADNI datasets, including 83 participants with early-stage cognitive impairments (EMCI), 83 with late-stage mild cognitive impairments (LMCI), 83 with AD, and 83 with normal controls (NC). Our goal was to explore structural atrophy across the full clinical AD spectrum and investigate the genetic mechanism using gene expression data from the Allen Human Brain Atlas. Results As a result, we identified significant volume atrophy in the left thalamus, left cerebellum, and bilateral middle frontal gyrus across the AD spectrum. These structural changes were positively associated with the expression levels of genes such as ABCA7, SORCS1, SORL1, PILRA, PFDN1, PLXNA4, TRIP4, and CD2AP, while they were negatively associated with the expression levels of genes such as CD33, PLCG2, APOE, and ECHDC3 across the clinical AD spectrum. Further gene enrichment analyses revealed that the positively associated genes were mainly involved in the positive regulation of cellular protein localization and the negative regulation of cellular component organization, whereas the negatively associated genes were mainly involved in the positive regulation of iron transport. Conclusion Overall, these results provide a deeper understanding of the biological mechanisms underlying structural changes in prodromal and clinical AD.
Collapse
Affiliation(s)
- Yingqi Lu
- Department of Rehabilitation Medicine, The People’s Hospital of Baoan Shenzhen, Shenzhen, China
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaodong Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Children’s Hospital, Shenzhen, China
| | - Liyu Hu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qinxiu Cheng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhewei Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haoran Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhuoran Xie
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yiheng Gao
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dezhi Cao
- Shenzhen Children’s Hospital, Shenzhen, China
| | - Shangjie Chen
- Department of Rehabilitation Medicine, The People’s Hospital of Baoan Shenzhen, Shenzhen, China
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
7
|
Tian S, Wang B, Ding Y, Zhang Y, Yu P, Chang YZ, Gao G. The role of iron transporters and regulators in Alzheimer's disease and Parkinson's disease: Pathophysiological insights and therapeutic prospects. Biomed Pharmacother 2024; 179:117419. [PMID: 39245001 DOI: 10.1016/j.biopha.2024.117419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024] Open
Abstract
Brain iron homeostasis plays a vital role in maintaining brain development and controlling neuronal function under physiological conditions. Many studies have shown that the imbalance of brain iron homeostasis is closely related to the pathogenesis of neurodegenerative diseases (NDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD). Recent advances have revealed the importance of iron transporters and regulatory molecules in the pathogenesis and treatment of NDs. This review summarizes the research progress on brain iron overload and the aberrant expression of several key iron transporters and regulators in AD and PD, emphasizes the pathological roles of these molecules in the pathogenesis of AD and PD, and highlights the therapeutic prospects of targeting these iron transporters and regulators to restore brain iron homeostasis in the treatment of AD and PD. A comprehensive understanding of the pathophysiological roles of iron, iron transporters and regulators, and their regulations in NDs may provide new therapeutic avenues for more targeted neurotherapeutic strategies for treating these diseases.
Collapse
Affiliation(s)
- Siqi Tian
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Bing Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yiqian Ding
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yu Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Peng Yu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| | - Yan-Zhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| | - Guofen Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Collaborative Innovation Center for Eco-Environment; Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| |
Collapse
|
8
|
Jang G, Lee EM, Kim HJ, Park Y, Bang NH, Lee Kang J, Park EM. Visceral adiposity is associated with iron deposition and myelin loss in the brains of aged mice. Neurochem Int 2024; 179:105833. [PMID: 39128623 DOI: 10.1016/j.neuint.2024.105833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Iron deposition and myelin loss are observed in the brain with aging, and iron accumulation is suggested to be involved in myelin damage. However, the exact mechanism of iron deposition with aging remains unclear. This study was aimed to determine whether expanded visceral adipose tissue contributes to iron deposition and myelin loss by inducing hepcidin in the brains of aged male mice. Compared with young adult mice, levels of hepcidin in the brain, epididymal adipose tissue, and circulation were increased in aged mice, which had expanded visceral adipose tissue with inflammation. An increase in expressions of ferritin, an indicator of intracellular iron status, was accompanied by decreased levels of proteins related to myelin sheath in the brains of aged mice. These age-related changes in the brain were improved by visceral fat removal. In addition, IL-6 level, activation of microglia/macrophages, and nuclear translocation of phosphorylated Smad1/5 (pSmad1/5) inducing hepcidin expression were reduced in the brains of aged mice after visceral fat removal, accompanied by decreases of pSmad1/5- and ferritin-positive microglia/macrophages and mature oligodendrocytes. These findings indicate that visceral adiposity contributes to hepcidin-mediated iron deposition and myelin loss with inflammation in the aged brain. Our results support the importance of preventing visceral adiposity for maintaining brain health in older individuals.
Collapse
Affiliation(s)
- Gyeonghui Jang
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, 07084, Republic of Korea
| | - Eun-Mi Lee
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, 07084, Republic of Korea
| | - Hyun-Jung Kim
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, 07084, Republic of Korea
| | - Yelin Park
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, 07084, Republic of Korea
| | - Nayun Hanna Bang
- School of Medicine, Ewha Womans University, Seoul, 07084, Republic of Korea
| | - Jihee Lee Kang
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 07084, Republic of Korea; Department of Physiology, College of Medicine, Ewha Womans University, Seoul, 07084, Republic of Korea.
| | - Eun-Mi Park
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, 07084, Republic of Korea.
| |
Collapse
|
9
|
Petralla S, Saveleva L, Kanninen KM, Oster JS, Panayotova M, Fricker G, Puris E. Increased Expression of Transferrin Receptor 1 in the Brain Cortex of 5xFAD Mouse Model of Alzheimer's Disease Is Associated with Activation of HIF-1 Signaling Pathway. Mol Neurobiol 2024; 61:6383-6394. [PMID: 38296900 PMCID: PMC11339108 DOI: 10.1007/s12035-024-03990-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/24/2024] [Indexed: 02/02/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Despite intensive research efforts, there are currently no effective treatments to cure and prevent AD. There is growing evidence that dysregulation of iron homeostasis may contribute to the pathogenesis of AD. Given the important role of the transferrin receptor 1 (TfR1) in regulating iron distribution in the brain, as well as in the drug delivery, we investigated its expression in the brain cortex and isolated brain microvessels from female 8-month-old 5xFAD mice mimicking advanced stage of AD. Moreover, we explored the association between the TfR1 expression and the activation of the HIF-1 signaling pathway, as well as oxidative stress and inflammation in 5xFAD mice. Finally, we studied the impact of Aβ1-40 and Aβ1-42 on TfR1 expression in the brain endothelial cell line hCMEC/D3. In the present study, we revealed that an increase in TfR1 protein levels observed in the brain cortex of 5xFAD mice was associated with activation of the HIF-1 signaling pathway as well as accompanied by oxidative stress and inflammation. Interestingly, incubation of Aβ peptides in hCMEC/D3 cells did not affect the expression of TfR1, which supported our findings of unaltered TfR1 expression in the isolated brain microvessels in 5xFAD mice. In conclusion, the study provides important information about the expression of TfR1 in the 5xFAD mouse model and the potential role of HIF-1 signaling pathway in the regulation of TfR1 in AD, which could represent a promising strategy for the development of therapies for AD.
Collapse
Affiliation(s)
- Sabrina Petralla
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Im Neuenheimer Feld 329, 69120, Heidelberg, Germany
| | - Liudmila Saveleva
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Julia S Oster
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Im Neuenheimer Feld 329, 69120, Heidelberg, Germany
| | - Maria Panayotova
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Im Neuenheimer Feld 329, 69120, Heidelberg, Germany
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Im Neuenheimer Feld 329, 69120, Heidelberg, Germany
| | - Elena Puris
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Im Neuenheimer Feld 329, 69120, Heidelberg, Germany.
| |
Collapse
|
10
|
Lee S, Martinez-Valbuena I, Lang AE, Kovacs GG. Cellular iron deposition patterns predict clinical subtypes of multiple system atrophy. Neurobiol Dis 2024; 197:106535. [PMID: 38761956 DOI: 10.1016/j.nbd.2024.106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Multiple system atrophy (MSA) is a primary oligodendroglial synucleinopathy, characterized by elevated iron burden in early-affected subcortical nuclei. Although neurotoxic effects of brain iron deposition and its relationship with α-synuclein pathology have been demonstrated, the exact role of iron dysregulation in MSA pathogenesis is unknown. Therefore, advancing the understanding of iron dysregulation at the cellular level is critical, especially in relation to α-synuclein cytopathology. METHODS Iron burden in subcortical and brainstem regions were histologically mapped in human post-mortem brains of 4 MSA-parkinsonian (MSA-P), 4 MSA-cerebellar (MSA-C), and 1 MSA case with both parkinsonian and cerebellar features. We then performed the first cell type-specific evaluation of pathological iron deposition in α-synuclein-affected and -unaffected cells of the globus pallidus, putamen, and the substantia nigra, regions of highest iron concentration, using a combination of iron staining with immunolabelling. Selective regional and cellular vulnerability patterns of iron deposition were compared between disease subtypes. In 7 MSA cases, expression of key iron- and closely related oxygen-homeostatic genes were examined. RESULTS MSA-P and MSA-C showed different patterns of regional iron burden across the pathology-related systems. We identified subcortical microglia to predominantly accumulate iron, which was more distinct in MSA-P. MSA-C showed relatively heterogenous iron accumulation, with greater or similar deposition in astroglia. Iron deposition was also found outside cellular bodies. Cellular iron burden associated with oligodendrocytic, and not neuronal, α-synuclein cytopathology. Gene expression analysis revealed dysregulation of oxygen homeostatic genes, rather than of cellular iron. Importantly, hierarchal cluster analysis revealed the pattern of cellular vulnerability to iron accumulation, distinctly to α-synuclein pathology load in the subtype-related systems, to distinguish MSA subtypes. CONCLUSIONS Our comprehensive evaluation of iron deposition in MSA brains identified distinct regional, and for the first time, cellular distribution of iron deposition in MSA-P and MSA-C and revealed cellular vulnerability patterns to iron deposition as a novel neuropathological characteristic that predicts MSA clinical subtypes. Our findings suggest distinct iron-related pathomechanisms in MSA clinical subtypes that are therefore not a consequence of a uniform down-stream pathway to α-synuclein pathology, and inform current efforts in iron chelation therapies at the disease and cellular-specific levels.
Collapse
Affiliation(s)
- Seojin Lee
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5T 0S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ivan Martinez-Valbuena
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5T 0S8, Canada; Krembil Brain Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
| | - Anthony E Lang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5T 0S8, Canada; Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada; Krembil Brain Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5T 0S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada; Krembil Brain Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada; Laboratory Medicine Program, University Health Network, Toronto, Ontario M5G 2C4, Canada.
| |
Collapse
|
11
|
Hunt AL, Khan I, Wu AML, Makohon-Moore SC, Hood BL, Conrads KA, Abulez T, Ogata J, Mitchell D, Gist G, Oliver J, Wei D, Chung MA, Rahman S, Bateman NW, Zhang W, Conrads TP, Steeg PS. The murine metastatic microenvironment of experimental brain metastases of breast cancer differs by host age in vivo: a proteomic study. Clin Exp Metastasis 2024; 41:229-249. [PMID: 37917186 DOI: 10.1007/s10585-023-10233-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/07/2023] [Indexed: 11/04/2023]
Abstract
Breast cancer in young patients is known to exhibit more aggressive biological behavior and is associated with a less favorable prognosis than the same disease in older patients, owing in part to an increased incidence of brain metastases. The mechanistic explanations behind these findings remain poorly understood. We recently reported that young mice, in comparison to older mice, developed significantly greater brain metastases in four mouse models of triple-negative and luminal B breast cancer. Here we have performed a quantitative mass spectrometry-based proteomic analysis to identify proteins potentially contributing to age-related disparities in the development of breast cancer brain metastases. Using a mouse hematogenous model of brain-tropic triple-negative breast cancer (MDA-MB-231BR), we harvested subpopulations of tumor metastases, the tumor-adjacent metastatic microenvironment, and uninvolved brain tissues via laser microdissection followed by quantitative proteomic analysis using high resolution mass spectrometry to characterize differentially abundant proteins potentially contributing to age-dependent rates of brain metastasis. Pathway analysis revealed significant alterations in signaling pathways, particularly in the metastatic microenvironment, modulating tumorigenesis, metabolic processes, inflammation, and neuronal signaling. Tenascin C (TNC) was significantly elevated in all laser microdissection (LMD) enriched compartments harvested from young mice relative to older hosts, which was validated and confirmed by immunoblot analysis of whole brain lysates. Additional in vitro studies including migration and wound-healing assays demonstrated TNC as a positive regulator of tumor cell migration. These results provide important new insights regarding microenvironmental factors, including TNC, as mechanisms contributing to the increased brain cancer metastatic phenotype observed in young breast cancer patients.
Collapse
Affiliation(s)
- Allison L Hunt
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Rd, Annandale, VA, 22042, USA
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Imran Khan
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 1126, Bethesda, MD, 20892, USA
| | - Alex M L Wu
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 1126, Bethesda, MD, 20892, USA
- Zymeworks Inc, Vancouver, BC, V5T 1G4, Canada
| | - Sasha C Makohon-Moore
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Brian L Hood
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Kelly A Conrads
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Tamara Abulez
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Jonathan Ogata
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Dave Mitchell
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Glenn Gist
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Julie Oliver
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
| | - Debbie Wei
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 1126, Bethesda, MD, 20892, USA
| | - Monika A Chung
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 1126, Bethesda, MD, 20892, USA
- Rutgers New Jersey Medical School, 185 S Orange Ave, Newark, NJ, 07103, USA
| | - Samiur Rahman
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 1126, Bethesda, MD, 20892, USA
| | - Nicholas W Bateman
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, 6720A Rockledge Drive, Suite 100, Bethesda, MD, 20817, USA
- Department of Surgery, The John P. Murtha Cancer Center Research Program, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA
| | - Wei Zhang
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 1126, Bethesda, MD, 20892, USA
| | - Thomas P Conrads
- Women's Health Integrated Research Center, Inova Women's Service Line, Inova Health System, 3289 Woodburn Rd, Annandale, VA, 22042, USA.
- Gynecologic Cancer Center of Excellence and the Women's Health Integrated Research Center, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA.
- Department of Surgery, The John P. Murtha Cancer Center Research Program, Uniformed Services University, 8901 Wisconsin Avenue, Bethesda, MD, 20889, USA.
| | - Patricia S Steeg
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 1126, Bethesda, MD, 20892, USA.
| |
Collapse
|
12
|
Zeng W, Cai J, Zhang L, Peng Q. Iron Deposition in Parkinson's Disease: A Mini-Review. Cell Mol Neurobiol 2024; 44:26. [PMID: 38393383 PMCID: PMC10891198 DOI: 10.1007/s10571-024-01459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Iron deposition is crucial pathological changes observed in patients with Parkinson's disease (PD). Recently, scientists have actively explored therapeutic approaches targeting iron deposition in PD. However, several clinical studies have failed to yield consistent results. In this review, we provide an overview of iron deposition in PD, from both basic research and clinical perspectives. PD patients exhibit abnormalities in various iron metabolism-related proteins, leading to disruptions in iron distribution, transport, storage, and circulation, ultimately resulting in iron deposition. Excess iron can induce oxidative stress and iron-related cell death, and exacerbate mitochondrial dysfunction, contributing to the progression of PD pathology. Magnetic resonance imaging studies have indicated that the characteristics of iron deposition in the brains of PD patients vary. Iron deposition correlates with the clinical symptoms of PD, and patients with different disease courses and clinical presentations display distinct patterns of iron deposition. These iron deposition patterns may contribute to PD diagnosis. Iron deposition is a promising target for PD treatment. However, further research is required to elucidate the underlying mechanisms and their impacts on PD.
Collapse
Affiliation(s)
- Weiqi Zeng
- Department of Neurology, The First People's Hospital of Foshan, Foshan, China
| | - Jin Cai
- Department of Cardiology, The Second Hospital of Zhangzhou, Zhangzhou, China
| | - Lei Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qiwei Peng
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
Bai X, Wang B, Cui Y, Tian S, Zhang Y, You L, Chang YZ, Gao G. Hepcidin deficiency impairs hippocampal neurogenesis and mediates brain atrophy and memory decline in mice. J Neuroinflammation 2024; 21:15. [PMID: 38195497 PMCID: PMC10777572 DOI: 10.1186/s12974-023-03008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Hepcidin is the master regulator of iron homeostasis. Hepcidin downregulation has been demonstrated in the brains of Alzheimer's disease (AD) patients. However, the mechanism underlying the role of hepcidin downregulation in cognitive impairment has not been elucidated. METHODS In the present study, we generated GFAP-Cre-mediated hepcidin conditional knockout mice (HampGFAP cKO) to explore the effect of hepcidin deficiency on hippocampal structure and neurocognition. RESULTS We found that the HampGFAP cKO mice developed AD-like brain atrophy and memory deficits. In particular, the weight of the hippocampus and the number of granule neurons in the dentate gyrus were significantly reduced. Further investigation demonstrated that the morphological change in the hippocampus of HampGFAP cKO mice was attributed to impaired neurogenesis caused by decreased proliferation of neural stem cells. Regarding the molecular mechanism, increased iron content after depletion of hepcidin followed by an elevated level of the inflammatory factor tumor necrosis factor-α accounted for the impairment of hippocampal neurogenesis in HampGFAP cKO mice. These observations were further verified in GFAP promoter-driven hepcidin knockdown mice and in Nestin-Cre-mediated hepcidin conditional knockout mice. CONCLUSIONS The present findings demonstrated a critical role for hepcidin in hippocampal neurogenesis and validated the importance of iron and associated inflammatory cytokines as key modulators of neurodevelopment, providing insights into the potential pathogenesis of cognitive dysfunction and related treatments.
Collapse
Affiliation(s)
- Xue Bai
- Ministry of Education Key Laboratory of Molecular and Cellular BiologyHebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Bing Wang
- Ministry of Education Key Laboratory of Molecular and Cellular BiologyHebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Yiduo Cui
- Ministry of Education Key Laboratory of Molecular and Cellular BiologyHebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Siqi Tian
- Ministry of Education Key Laboratory of Molecular and Cellular BiologyHebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Yi Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular BiologyHebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Linhao You
- Ministry of Education Key Laboratory of Molecular and Cellular BiologyHebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Yan-Zhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular BiologyHebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China.
| | - Guofen Gao
- Ministry of Education Key Laboratory of Molecular and Cellular BiologyHebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China.
| |
Collapse
|
14
|
Apostolopoulou EP, Raikos N, Vlemmas I, Michaelidis E, Brellou GD. Metallothionein I/II Expression and Metal Ion Levels in Correlation with Amyloid Beta Deposits in the Aged Feline Brain. Brain Sci 2023; 13:1115. [PMID: 37509045 PMCID: PMC10377600 DOI: 10.3390/brainsci13071115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Brain aging has been correlated with high metallothionein I-II (MT-I/II) expression, iron and zinc dyshomeostasis, and Aβ deposition in humans and experimental animals. In the present study, iron and zinc accumulation, the expression of MT-I/II and Aβ42, and their potential association with aging in the feline brain were assessed. Tissue sections from the temporal and frontal grey (GM) and white (WM) matter, hippocampus, thalamus, striatum, cerebellum, and dentate nucleus were examined histochemically for the presence of age-related histopathological lesions and iron deposits and distribution. We found, using a modified Perl's/DAB method, two types of iron plaques that showed age-dependent accumulation in the temporal GM and WM and the thalamus, along with the age-dependent increment in cerebellar-myelin-associated iron. We also demonstrated an age-dependent increase in MT-I/II immunoreactivity in the feline brain. In cats over 7 years old, Aβ immunoreactivity was detected in vessel walls and neuronal somata; extracellular Aβ deposits were also evident. Interestingly, Aβ-positive astrocytes were also observed in certain cases. ICP-MS analysis of brain content regarding iron and zinc concentrations showed no statistically significant association with age, but a mild increase in iron with age was noticed, while zinc levels were found to be higher in the Mature and Senior groups. Our findings reinforce the suggestion that cats could serve as a dependable natural animal model for brain aging and neurodegeneration; thus, they should be further investigated on the basis of metal ion concentration changes and their effects on aging.
Collapse
Affiliation(s)
- Emmanouela P Apostolopoulou
- Department of Pathology, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece
| | - Nikolaos Raikos
- Department of Forensic Medicine & Toxicology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Vlemmas
- Department of Pathology, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece
| | - Efstratios Michaelidis
- Laboratories of the 3rd Army Veterinary Hospital, Chemical Department, 57001 Thessaloniki, Greece
| | - Georgia D Brellou
- Department of Pathology, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece
| |
Collapse
|
15
|
Qian ZM, Li W, Guo Q. Ferroportin1 in the brain. Ageing Res Rev 2023; 88:101961. [PMID: 37236369 DOI: 10.1016/j.arr.2023.101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/20/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
Despite years of research, it remains unclear why certain brain regions of patients with neurodegenerative diseases (NDs) have abnormally high levels of iron, although it has long been suggested that disrupted expression of iron-metabolizing proteins due to genetic or non-genetic factors is responsible for the enhancement in brain iron contents. In addition to the increased expression of cell-iron importers lactoferrin (lactotransferrin) receptor (LfR) in Parkinson's disease (PD) and melanotransferrin (p97) in Alzheimer's disease (AD), some investigations have suggested that cell-iron exporter ferroportin 1 (Fpn1) may be also associated with the elevated iron observed in the brain. The decreased expression of Fpn1 and the resulting decrease in the amount of iron excreted from brain cells has been thought to be able to enhance iron levels in the brain in AD, PD and other NDs. Cumulative results also suggest that the reduction of Fpn1 can be induced by hepcidin-dependent and -independent pathways. In this article, we discuss the current understanding of Fpn1 expression in the brain and cell lines of rats, mice and humans, with emphasis on the potential involvement of reduced Fpn1 in brain iron enhancement in patients with AD, PD and other NDs.
Collapse
Affiliation(s)
- Zhong-Ming Qian
- Department of Neurology, Affiliated Hospital of Nantong University, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu China 226019.
| | - Wei Li
- Department of Neurology, Affiliated Hospital of Nantong University, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu China 226019
| | - Qian Guo
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, 881 Yonghe Road, Nantong, Jiangsu 226001, China; Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
16
|
Xu L, Liu R, Qin Y, Wang T. Brain metabolism in Alzheimer's disease: biological mechanisms of exercise. Transl Neurodegener 2023; 12:33. [PMID: 37365651 DOI: 10.1186/s40035-023-00364-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
Alzheimer's disease (AD) is a major subtype of neurodegenerative dementia caused by long-term interactions and accumulation of multiple adverse factors, accompanied by dysregulation of numerous intracellular signaling and molecular pathways in the brain. At the cellular and molecular levels, the neuronal cellular milieu of the AD brain exhibits metabolic abnormalities, compromised bioenergetics, impaired lipid metabolism, and reduced overall metabolic capacity, which lead to abnormal neural network activity and impaired neuroplasticity, thus accelerating the formation of extracellular senile plaques and intracellular neurofibrillary tangles. The current absence of effective pharmacological therapies for AD points to the urgent need to investigate the benefits of non-pharmacological approaches such as physical exercise. Despite the evidence that regular physical activity can improve metabolic dysfunction in the AD state, inhibit different pathophysiological molecular pathways associated with AD, influence the pathological process of AD, and exert a protective effect, there is no clear consensus on the specific biological and molecular mechanisms underlying the advantages of physical exercise. Here, we review how physical exercise improves crucial molecular pathways and biological processes associated with metabolic disorders in AD, including glucose metabolism, lipid metabolism, Aβ metabolism and transport, iron metabolism and tau pathology. How metabolic states influence brain health is also presented. A better knowledge on the neurophysiological mechanisms by which exercise improves AD metabolism can contribute to the development of novel drugs and improvement of non-pharmacological interventions.
Collapse
Affiliation(s)
- Longfei Xu
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, China
- Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China
| | - Ran Liu
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, China
- Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China
| | - Yingkai Qin
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, China.
| | - Tianhui Wang
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, China.
- Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China.
| |
Collapse
|
17
|
Gao G, You L, Zhang J, Chang YZ, Yu P. Brain Iron Metabolism, Redox Balance and Neurological Diseases. Antioxidants (Basel) 2023; 12:1289. [PMID: 37372019 DOI: 10.3390/antiox12061289] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The incidence of neurological diseases, such as Parkinson's disease, Alzheimer's disease and stroke, is increasing. An increasing number of studies have correlated these diseases with brain iron overload and the resulting oxidative damage. Brain iron deficiency has also been closely linked to neurodevelopment. These neurological disorders seriously affect the physical and mental health of patients and bring heavy economic burdens to families and society. Therefore, it is important to maintain brain iron homeostasis and to understand the mechanism of brain iron disorders affecting reactive oxygen species (ROS) balance, resulting in neural damage, cell death and, ultimately, leading to the development of disease. Evidence has shown that many therapies targeting brain iron and ROS imbalances have good preventive and therapeutic effects on neurological diseases. This review highlights the molecular mechanisms, pathogenesis and treatment strategies of brain iron metabolism disorders in neurological diseases.
Collapse
Affiliation(s)
- Guofen Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan'erhuan Eastern Road, Shijiazhuang 050024, China
| | - Linhao You
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan'erhuan Eastern Road, Shijiazhuang 050024, China
| | - Jianhua Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan'erhuan Eastern Road, Shijiazhuang 050024, China
| | - Yan-Zhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan'erhuan Eastern Road, Shijiazhuang 050024, China
| | - Peng Yu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan'erhuan Eastern Road, Shijiazhuang 050024, China
| |
Collapse
|
18
|
Ma J, Guo Q, Shen MQ, Li W, Zhong QX, Qian ZM. Apolipoprotein E is required for brain iron homeostasis in mice. Redox Biol 2023; 64:102779. [PMID: 37339558 PMCID: PMC10363452 DOI: 10.1016/j.redox.2023.102779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Apolipoprotein E deficiency (ApoE-/-) increases progressively iron in the liver, spleen and aortic tissues with age in mice. However, it is unknown whether ApoE affects brain iron. METHODS We investigated iron contents, expression of transferrin receptor 1 (TfR1), ferroportin 1 (Fpn1), iron regulatory proteins (IRPs), aconitase, hepcidin, Aβ42, MAP2, reactive oxygen species (ROS), cytokines and glutathione peroxidase 4 (Gpx4) in the brain of ApoE-/- mice. RESULTS We demonstrated that ApoE-/- induced a significant increase in iron, TfR1 and IRPs and a reduction in Fpn1, aconitase and hepcidin in the hippocampus and basal ganglia. We also showed that replenishment of ApoE absent partly reversed the iron-related phenotype in ApoE-/- mice at 24-months old. In addition, ApoE-/- induced a significant increase in Aβ42, MDA, 8-isoprostane, IL-1β, IL-6, and TNFα and a reduction in MAP2 and Gpx4 in hippocampus, basal ganglia and/or cortex of mice at 24-months old. CONCLUSIONS Our findings implied that ApoE is required for brain iron homeostasis and ApoE-/--induced increase in brain iron is due to the increased IRP/TfR1-mediated cell-iron uptake as well as the reduced IRP/Fpn1 associated cell-iron export and suggested that ApoE-/- induced neuronal injury resulted mainly from the increased iron and subsequently ROS, inflammation and ferroptosis.
Collapse
Affiliation(s)
- Juan Ma
- Department of Neurology, Affiliated Hospital, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu, 226001, China; Laboratory of Neuropharmacology of Pharmacy School, and National Clinical Research Center for Aging and Medicine of Huashan Hospital, Fudan University, Shanghai, 201203, China.
| | - Qian Guo
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, 881 Yonghe Road, Nantong, Jiangsu, 226001, China; Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Meng-Qi Shen
- Department of Neurology, Affiliated Hospital, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu, 226001, China.
| | - Wei Li
- Department of Neurology, Affiliated Hospital, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu, 226001, China.
| | - Qi-Xin Zhong
- Department of Cardiovascular Medicine, Shenzhen Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518034, China.
| | - Zhong-Ming Qian
- Department of Neurology, Affiliated Hospital, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
19
|
Kawahara M, Kato-Negishi M, Tanaka KI. Dietary Trace Elements and the Pathogenesis of Neurodegenerative Diseases. Nutrients 2023; 15:2067. [PMID: 37432185 PMCID: PMC10180548 DOI: 10.3390/nu15092067] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 07/12/2023] Open
Abstract
Trace elements such as iron (Fe), zinc (Zn), copper (Cu), and manganese (Mn) are absorbed from food via the gastrointestinal tract, transported into the brain, and play central roles in normal brain functions. An excess of these trace elements often produces reactive oxygen species and damages the brain. Moreover, increasing evidence suggests that the dyshomeostasis of these metals is involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease, prion diseases, and Lewy body diseases. The disease-related amyloidogenic proteins can regulate metal homeostasis at the synapses, and thus loss of the protective functions of these amyloidogenic proteins causes neurodegeneration. Meanwhile, metal-induced conformational changes of the amyloidogenic proteins contribute to enhancing their neurotoxicity. Moreover, excess Zn and Cu play central roles in the pathogenesis of vascular-type senile dementia. Here, we present an overview of the intake, absorption, and transport of four essential elements (Fe, Zn, Cu, Mn) and one non-essential element (aluminum: Al) in food and their connections with the pathogenesis of neurodegenerative diseases based on metal-protein, and metal-metal cross-talk.
Collapse
Affiliation(s)
- Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| | - Midori Kato-Negishi
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| | - Ken-Ichiro Tanaka
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| |
Collapse
|
20
|
Tian Y, Xie Y, Guo Z, Feng P, You Y, Yu Q. 17β-oestradiol inhibits ferroptosis in the hippocampus by upregulating DHODH and further improves memory decline after ovariectomy. Redox Biol 2023; 62:102708. [PMID: 37116254 PMCID: PMC10163677 DOI: 10.1016/j.redox.2023.102708] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 04/30/2023] Open
Abstract
Ovariectomy (OVX) conducted before the onset of natural menopause is considered to bringing forward and accelerate the process of ageing-associated neurodegeneration. However, the mechanisms underlying memory decline and other cognitive dysfunctions following OVX are unclear. Given that iron accumulates during ageing and after OVX, we hypothesized that excess iron accumulation in the hippocampus would cause ferroptosis-induced increased neuronal degeneration and death associated with memory decline. In the current study, female rats that underwent OVX showed decreased dihydroorotate dehydrogenase (DHODH) expression and reduced performance in the Morris water maze (MWM). We used primary cultured hippocampal cells to explore the ferroptosis resistance-inducing effect of 17β-oestradiol (E2). The data supported a vital role of DHODH in neuronal ferroptosis. Specifically, E2 alleviated ferroptosis induced by erastin and ferric ammonium citrate (FAC), which can be blocked by brequinar (BQR). Further in vitro studies showed that E2 reduced lipid peroxidation levels and improved the behavioural performance of OVX rats. Our research interprets OVX-related neurodegeneration with respect to ferroptosis, and both our in vivo and in vitro data show that E2 supplementation exerts beneficial antiferroptotic effects by upregulating DHODH. Our data demonstrate the utility of E2 supplementation after OVX and provide a potential target, DHODH, for which hormone therapy has not been available.
Collapse
Affiliation(s)
- Ying Tian
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| | - Yuan Xie
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| | - Zaixin Guo
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| | - Penghui Feng
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| | - Yang You
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| | - Qi Yu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
21
|
Jo D, Jung YS, Song J. Lipocalin-2 Secreted by the Liver Regulates Neuronal Cell Function Through AKT-Dependent Signaling in Hepatic Encephalopathy Mouse Model. Clin Nutr Res 2023; 12:154-167. [PMID: 37214781 PMCID: PMC10193436 DOI: 10.7762/cnr.2023.12.2.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 05/24/2023] Open
Abstract
Hepatic encephalopathy (HE) associated with liver failure is accompanied by hyperammonemia, severe inflammation, depression, anxiety, and memory deficits as well as liver injury. Recent studies have focused on the liver-brain-inflammation axis to identify a therapeutic solution for patients with HE. Lipocalin-2 is an inflammation-related glycoprotein that is secreted by various organs and is involved in cellular mechanisms including iron homeostasis, glucose metabolism, cell death, neurite outgrowth, and neurogenesis. In this study, we investigated that the roles of lipocalin-2 both in the brain cortex of mice with HE and in Neuro-2a (N2A) cells. We detected elevated levels of lipocalin-2 both in the plasma and liver in a bile duct ligation mouse model of HE. We confirmed changes in cytokine expression, such as interleukin-1β, cyclooxygenase 2 expression, and iron metabolism related to gene expression through AKT-mediated signaling both in the brain cortex of mice with HE and N2A cells. Our data showed negative effects of hepatic lipocalin-2 on cell survival, iron homeostasis, and neurite outgrowth in N2A cells. Thus, we suggest that regulation of lipocalin-2 in the brain in HE may be a critical therapeutic approach to alleviate neuropathological problems focused on the liver-brain axis.
Collapse
Affiliation(s)
- Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea
| | - Yoon Seok Jung
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea
| |
Collapse
|
22
|
Wen J, Yang F, Fang CX, Chen HL, Yang L. Sulforaphane triggers iron overload-mediated ferroptosis in gastric carcinoma cells by activating the PI3K/IRP2/DMT1 pathway. Hum Exp Toxicol 2023; 42:9603271231177295. [PMID: 37201195 DOI: 10.1177/09603271231177295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
OBJECTIVE Increasing evidence indicates that prolonged exposure to sulforaphane (SFN) can improve malignancies. However, the role of iron in SFN-triggered death in gastric carcinoma cells and the underlying molecular mechanisms remain unclear. Thus, the current study explored the effects of SFN on iron overload-mediated ferroptosis and the PI3K/IRP2/DMT1 pathway in gastric carcinoma cells. METHODS We utilized the MGC-803 cell line to assess whether SFN affected iron metabolism and whether this effect contributed to cell death. Pharmacological inhibition of iron metabolism also was performed to determine the molecular mechanism underlying SFN-triggered iron overload and the disturbance in iron metabolism. RESULTS Our data revealed that SFN treatment altered iron homeostasis and led to iron overload in vitro. Interestingly, SFN-stimulated cell death resulted from ferroptosis, a recently identified iron-dependent form of regulated cell death. Furthermore, an iron chelator, deferiprone, ameliorated the SFN-triggered mitochondrial dysfunction and reduced the iron overload. In addition, we found that the SFN-triggered iron overload was regulated by the PI3K/IRP2/DMT1 signaling pathway. CONCLUSION We discovered that disturbance in iron metabolism might be involved in the SFN-triggered cell death in gastric carcinoma cells. Blockade of the PI3K/IRP2/DMT1 axis could provide a feedback effect on SFN-induced ferroptosis to protect tumor cells from growth.
Collapse
Affiliation(s)
- Jing Wen
- Department of Oncology, Minda Hospital of Hubei Minzu University, Enshi, P.R.China
| | - Fan Yang
- Department of General Surgery II, Minda Hospital of Hubei Minzu University, Enshi, P.R.China
| | - Cheng-Xiang Fang
- Department of Oncology, Minda Hospital of Hubei Minzu University, Enshi, P.R.China
| | - Hong-Liu Chen
- Department of General Surgery II, Minda Hospital of Hubei Minzu University, Enshi, P.R.China
| | - Li Yang
- Department of Oncology, Minda Hospital of Hubei Minzu University, Enshi, P.R.China
| |
Collapse
|
23
|
Zheng J, Wang JJ, Ma HM, Shen MQ, Qian ZM, Bao YX. Norcantharidin down-regulates iron contents in the liver and spleen of lipopolysaccharide-treated mice. Redox Rep 2022; 27:119-127. [PMID: 35735222 PMCID: PMC9246006 DOI: 10.1080/13510002.2022.2088011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective The inhibiting effect of Norcantharidin (NCTD) on IL-6 (interleukin-6) and STAT3 and the involvement of the IL-6/STAT3 pathway in hepcidin expression prompted us to speculate that NCTD could affect iron metabolism. Methods We examined the effects of NCTD on serum iron (SI) and transferrin (Tf) saturation, iron and ferritin light chain (FTL), transferrin receptor 1 (TfR1), divalent metal transporter 1 (DMT1), ferroportin 1 (Fpn1), iron regulatory protein 1 (IRP1) and hepcidin, as well as IL-6 and STAT3 in the liver, spleen and duodenum of mice treated with lipopolysaccharide (LPS) in vivo, using RT-PCR, Western blotting and immunofluorescence analysis. Results NCTD could increase SI and Tf saturation and reduce tissue iron and FTL content by affecting expression of cell-iron transport proteins TfR1, DMT1 and Fpn1. The impact of NCTD on TfR1, DMT1 and Fpn1 expression is mediated by up-regulating IRP1 and down-regulating hepcidin expression, while NCTD-induced down-regulation of hepcidin is mediated by the IL-6/STAT3 signalling pathway in LPS-treated mice. Conclusions NCTD affects iron metabolism by modifying the expression of IL-6/JAK2/STAT3/hepcidin and IRP1 and suggest that the ability of NCTD to reduce tissue iron contents may be a novel mechanism associated with the anti-cancer effects of NCTD.
Collapse
Affiliation(s)
- Jie Zheng
- Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, People's Republic of China
| | - Jiao-Jiao Wang
- Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, People's Republic of China
| | - Hui-Min Ma
- Institute of Translational and Precision Medicine, Nantong University, Nantong, People's Republic of China
| | - Meng-Qi Shen
- Institute of Translational and Precision Medicine, Nantong University, Nantong, People's Republic of China
| | - Zhong-Ming Qian
- Institute of Translational and Precision Medicine, Nantong University, Nantong, People's Republic of China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, People's Republic of China
| | - Yu-Xin Bao
- Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, People's Republic of China
| |
Collapse
|
24
|
Liu Q, Wang Z, Cao J, Dong Y, Chen Y. The Role of Insulin Signaling in Hippocampal-Related Diseases: A Focus on Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms232214417. [PMID: 36430894 PMCID: PMC9699017 DOI: 10.3390/ijms232214417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is a global concern and has become a major public health event affecting human health. Insulin is a metabolic hormone secreted mainly by the peripheral tissue pancreas. In recent years, more and more evidence has proved that insulin regulates various functions of the brain. The hippocampus, one of the earliest brain regions affected by AD, is widely distributed with insulin receptors. Studies have shown that type 2 diabetes mellitus, characterized by insulin resistance, is closely related to AD, which has drawn extensive attention to the relationship between hippocampal insulin signaling and AD. Therefore, we provide an overview of intranasal insulin administration on memory and its underlying mechanism. We also highlight the molecular link between hippocampal insulin resistance and AD and provide a theoretical basis for finding new therapeutic targets for AD in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Yaoxing Chen
- Correspondence: ; Tel.: +86-10-6273-3778; Fax: +86-10-6273-3199
| |
Collapse
|
25
|
Smith KJ, Gwyer Findlay E. Expression of antimicrobial host defence peptides in the central nervous system during health and disease. DISCOVERY IMMUNOLOGY 2022; 1:kyac003. [PMID: 38566904 PMCID: PMC10917193 DOI: 10.1093/discim/kyac003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/13/2022] [Accepted: 07/21/2022] [Indexed: 04/04/2024]
Abstract
Antimicrobial host defence peptides (HDP) are critical for the first line of defence against bacterial, viral, and fungal pathogens. Over the past decade we have become more aware that, in addition to their antimicrobial roles, they also possess the potent immunomodulatory capacity. This includes chemoattracting immune cells, activating dendritic cells and macrophages, and altering T-cell differentiation. Most examinations of their immunomodulatory roles have focused on tissues in which they are very abundant, such as the intestine and the inflamed skin. However, HDP have now been detected in the brain and the spinal cord during a number of conditions. We propose that their presence in the central nervous system (CNS) during homeostasis, infection, and neurodegenerative disease has the potential to contribute to immunosurveillance, alter host responses and skew developing immunity. Here, we review the evidence for HDP expression and function in the CNS in health and disease. We describe how a wide range of HDP are expressed in the CNS of humans, rodents, birds, and fish, suggesting a conserved role in protecting the brain from pathogens, with evidence of production by resident CNS cells. We highlight differences in methodology used and how this may have resulted in the immunomodulatory roles of HDP being overlooked. Finally, we discuss what HDP expression may mean for CNS immune responses.
Collapse
Affiliation(s)
- Katie J Smith
- Centre for Inflammation Research, University of Edinburgh, 47 Little France Crescent, EH16 4TJ, Edinburgh, UK
| | - Emily Gwyer Findlay
- Centre for Inflammation Research, University of Edinburgh, 47 Little France Crescent, EH16 4TJ, Edinburgh, UK
| |
Collapse
|
26
|
Parr AC, Calabro F, Tervo-Clemmens B, Larsen B, Foran W, Luna B. Contributions of dopamine-related basal ganglia neurophysiology to the developmental effects of incentives on inhibitory control. Dev Cogn Neurosci 2022; 54:101100. [PMID: 35344773 PMCID: PMC8961188 DOI: 10.1016/j.dcn.2022.101100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/23/2022] [Accepted: 03/16/2022] [Indexed: 01/19/2023] Open
Abstract
Inhibitory control can be less reliable in adolescence, however, in the presence of rewards, adolescents' performance often improves to adult levels. Dopamine is known to play a role in signaling rewards and supporting cognition, but its role in the enhancing effects of reward on adolescent cognition and inhibitory control remains unknown. Here, we assessed the contribution of basal ganglia dopamine-related neurophysiology using longitudinal MR-based assessments of tissue iron in rewarded inhibitory control, using an antisaccade task. In line with prior work, we show that neutral performance improves with age, and incentives enhance performance in adolescents to that of adults. We find that basal ganglia tissue iron is associated with individual differences in the magnitude of this reward boost, which is strongest in those with high levels of tissue iron, predominantly in adolescence. Our results provide novel evidence that basal ganglia neurophysiology supports developmental effects of rewards on cognition, which can inform neurodevelopmental models of the role of dopamine in reward processing during adolescence.
Collapse
Affiliation(s)
- Ashley C Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 14213, United States.
| | - Finnegan Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 14213, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 14213, United States
| | | | - Bart Larsen
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Will Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 14213, United States
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 14213, United States.
| |
Collapse
|
27
|
Wang F, Wang J, Shen Y, Li H, Rausch WD, Huang X. Iron Dyshomeostasis and Ferroptosis: A New Alzheimer’s Disease Hypothesis? Front Aging Neurosci 2022; 14:830569. [PMID: 35391749 PMCID: PMC8981915 DOI: 10.3389/fnagi.2022.830569] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Iron plays a crucial role in many physiological processes of the human body, but iron is continuously deposited in the brain as we age. Early studies found iron overload is directly proportional to cognitive decline in Alzheimer’s disease (AD). Amyloid precursor protein (APP) and tau protein, both of which are related to the AD pathogenesis, are associated with brain iron metabolism. A variety of iron metabolism-related proteins have been found to be abnormally expressed in the brains of AD patients and mouse models, resulting in iron deposition and promoting AD progression. Amyloid β (Aβ) and hyperphosphorylated tau, two pathological hallmarks of AD, can also promote iron deposition in the brain, forming a vicious cycle of AD development-iron deposition. Iron deposition and the subsequent ferroptosis has been found to be a potential mechanism underlying neuronal loss in many neurodegenerative diseases. Iron chelators, antioxidants and hepcidin were found useful for treating AD, which represents an important direction for AD treatment research and drug development in the future. The review explored the deep connection between iron dysregulation and AD pathogenesis, discussed the potential of new hypothesis related to iron dyshomeostasis and ferroptosis, and summarized the therapeutics capable of targeting iron, with the expectation to draw more attention of iron dysregulation and corresponding drug development.
Collapse
Affiliation(s)
- Feixue Wang
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Institute of Integrated Traditional and Western Medicine, Beijing, China
| | - Jiandong Wang
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Institute of Integrated Traditional and Western Medicine, Beijing, China
| | - Ying Shen
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Institute of Integrated Traditional and Western Medicine, Beijing, China
| | - Hao Li
- Department of General Diseases, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wolf-Dieter Rausch
- Department of Biomedical Sciences, Institute of Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Xiaobo Huang
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Institute of Integrated Traditional and Western Medicine, Beijing, China
- *Correspondence: Xiaobo Huang,
| |
Collapse
|
28
|
Rosenblum SL, Kosman DJ. Aberrant Cerebral Iron Trafficking Co-morbid With Chronic Inflammation: Molecular Mechanisms and Pharmacologic Intervention. Front Neurol 2022; 13:855751. [PMID: 35370907 PMCID: PMC8964494 DOI: 10.3389/fneur.2022.855751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
The redox properties that make iron an essential nutrient also make iron an efficient pro-oxidant. Given this nascent cytotoxicity, iron homeostasis relies on a combination of iron transporters, chaperones, and redox buffers to manage the non-physiologic aqueous chemistry of this first-row transition metal. Although a mechanistic understanding of the link between brain iron accumulation (BIA) and neurodegenerative diseases is lacking, BIA is co-morbid with the majority of cognitive and motor function disorders. The most prevalent neurodegenerative disorders, including Alzheimer's Disease (AD), Parkinson's Disease (PD), Multiple System Atrophy (MSA), and Multiple Sclerosis (MS), often present with increased deposition of iron into the brain. In addition, ataxias that are linked to mutations in mitochondrial-localized proteins (Friedreich's Ataxia, Spinocerebellar Ataxias) result in mitochondrial iron accumulation and degradation of proton-coupled ATP production leading to neuronal degeneration. A comorbidity common in the elderly is a chronic systemic inflammation mediated by primary cytokines released by macrophages, and acute phase proteins (APPs) released subsequently from the liver. Abluminal inflammation in the brain is found downstream as a result of activation of astrocytes and microglia. Reasonably, the iron that accumulates in the brain comes from the cerebral vasculature via the microvascular capillary endothelial cells whose tight junctions represent the blood-brain barrier. A premise amenable to experimental interrogation is that inflammatory stress alters both the trans- and para-cellular flux of iron at this barrier resulting in a net accumulation of abluminal iron over time. This review will summarize the evidence that lends support to this premise; indicate the mechanisms that merit delineation; and highlight possible therapeutic interventions based on this model.
Collapse
Affiliation(s)
| | - Daniel J. Kosman
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
29
|
Zhang Z, Yuan Q, Hu X, Liao J, Kuang J. Rifaximin protects SH-SY5Y neuronal cells from iron overload-induced cytotoxicity via inhibiting STAT3/NF-κB signaling. Cell Biol Int 2022; 46:1062-1073. [PMID: 35143099 DOI: 10.1002/cbin.11776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 01/10/2022] [Accepted: 02/09/2022] [Indexed: 11/06/2022]
Abstract
Acute or chronic liver disease-caused liver failure is the cause of hepatic encephalopathy (HE), characterized by neuropsychiatric manifestations. Liver diseases potentially lead to peripheral iron metabolism dysfunction and surges of iron concentration in the brain, contributing to the pathophysiological process of degenerative disorders of the central nervous system. In this study, the mechanism of rifaximin treating hepatic encephalopathy was investigated. Ferric ammonium citrate (FAC)-induced iron overload significantly reduced the proliferation and boosted the apoptosis in SH-SY5Y cells through increasing reactive oxygen species (ROS) levels and inducing iron metabolism disorder. Rifaximin treatment could rectify the FAC-induced iron overload and lipopolysaccharide (LPS)-induced iron deposition, therefore effectively protecting SH-SY5Y cells from ROS-induced cell injury and apoptosis. Signal transducer and activator of transcription 3 (STAT3)/nuclear factor-kappaB (NF-κB) signaling is involved in the protective function of rifaximin against LPS-induced iron deposition. The therapeutic effect of rifaximin on HE associated with acute hepatic failure in mouse model was ascertained. In conclusion, Rifaximin could effectively protect SH-SY5Y cells against injury caused by iron overload through the rectification of the iron metabolism disorder via the STAT3/NF-κB signaling pathway. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Hepatopathy, The Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Qi Yuan
- Department of Hepatopathy, The Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Xiaoxuan Hu
- Department of Hepatopathy, The Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Jinmao Liao
- Department of Hepatopathy, The Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Jia Kuang
- Department of Hepatopathy, The Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| |
Collapse
|
30
|
Sato T, Shapiro JS, Chang HC, Miller RA, Ardehali H. Aging is associated with increased brain iron through cortex-derived hepcidin expression. eLife 2022; 11:e73456. [PMID: 35014607 PMCID: PMC8752087 DOI: 10.7554/elife.73456] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/08/2021] [Indexed: 01/24/2023] Open
Abstract
Iron is an essential molecule for biological processes, but its accumulation can lead to oxidative stress and cellular death. Due to its oxidative effects, iron accumulation is implicated in the process of aging and neurodegenerative diseases. However, the mechanism for this increase in iron with aging, and whether this increase is localized to specific cellular compartment(s), are not known. Here, we measured the levels of iron in different tissues of aged mice, and demonstrated that while cytosolic non-heme iron is increased in the liver and muscle tissue, only the aged brain cortex exhibits an increase in both the cytosolic and mitochondrial non-heme iron. This increase in brain iron is associated with elevated levels of local hepcidin mRNA and protein in the brain. We also demonstrate that the increase in hepcidin is associated with increased ubiquitination and reduced levels of the only iron exporter, ferroportin-1 (FPN1). Overall, our studies provide a potential mechanism for iron accumulation in the brain through increased local expression of hepcidin, and subsequent iron accumulation due to decreased iron export. Additionally, our data support that aging is associated with mitochondrial and cytosolic iron accumulation only in the brain and not in other tissues.
Collapse
Affiliation(s)
- Tatsuya Sato
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University School of MedicineChicagoUnited States
| | - Jason Solomon Shapiro
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University School of MedicineChicagoUnited States
| | - Hsiang-Chun Chang
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University School of MedicineChicagoUnited States
| | - Richard A Miller
- Department of Pathology, University of Michigan School of MedicineAnn ArborUnited States
| | - Hossein Ardehali
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University School of MedicineChicagoUnited States
| |
Collapse
|
31
|
Pujol‐Giménez J, Poirier M, Bühlmann S, Schuppisser C, Bhardwaj R, Awale M, Visini R, Javor S, Hediger MA, Reymond J. Inhibitors of Human Divalent Metal Transporters DMT1 (SLC11A2) and ZIP8 (SLC39A8) from a GDB-17 Fragment Library. ChemMedChem 2021; 16:3306-3314. [PMID: 34309203 PMCID: PMC8596699 DOI: 10.1002/cmdc.202100467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Indexed: 11/06/2022]
Abstract
Solute carrier proteins (SLCs) are membrane proteins controlling fluxes across biological membranes and represent an emerging class of drug targets. Here we searched for inhibitors of divalent metal transporters in a library of 1,676 commercially available 3D-shaped fragment-like molecules from the generated database GDB-17, which lists all possible organic molecules up to 17 atoms of C, N, O, S and halogen following simple criteria for chemical stability and synthetic feasibility. While screening against DMT1 (SLC11A2), an iron transporter associated with hemochromatosis and for which only very few inhibitors are known, only yielded two weak inhibitors, our approach led to the discovery of the first inhibitor of ZIP8 (SLC39A8), a zinc transporter associated with manganese homeostasis and osteoarthritis but with no previously reported pharmacology, demonstrating that this target is druggable.
Collapse
Affiliation(s)
- Jonai Pujol‐Giménez
- Department of Biomedical Research and Department of Nephrology and Hypertension Membrane Transport Discovery Lab Inselspital, Bern University HospitalUniversity of BernCH-3010BernSwitzerland
| | - Marion Poirier
- Department of Chemistry Biochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 33012BernSwitzerland
| | - Sven Bühlmann
- Department of Chemistry Biochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 33012BernSwitzerland
| | - Céline Schuppisser
- Department of Chemistry Biochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 33012BernSwitzerland
| | - Rajesh Bhardwaj
- Department of Biomedical Research and Department of Nephrology and Hypertension Membrane Transport Discovery Lab Inselspital, Bern University HospitalUniversity of BernCH-3010BernSwitzerland
| | - Mahendra Awale
- Department of Chemistry Biochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 33012BernSwitzerland
| | - Ricardo Visini
- Department of Chemistry Biochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 33012BernSwitzerland
| | - Sacha Javor
- Department of Chemistry Biochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 33012BernSwitzerland
| | - Matthias A. Hediger
- Department of Biomedical Research and Department of Nephrology and Hypertension Membrane Transport Discovery Lab Inselspital, Bern University HospitalUniversity of BernCH-3010BernSwitzerland
| | - Jean‐Louis Reymond
- Department of Chemistry Biochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 33012BernSwitzerland
| |
Collapse
|
32
|
Han J, Fan Y, Wu P, Huang Z, Li X, Zhao L, Ji Y, Zhu M. Parkinson's Disease Dementia: Synergistic Effects of Alpha-Synuclein, Tau, Beta-Amyloid, and Iron. Front Aging Neurosci 2021; 13:743754. [PMID: 34707492 PMCID: PMC8542689 DOI: 10.3389/fnagi.2021.743754] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/21/2021] [Indexed: 12/31/2022] Open
Abstract
Parkinson’s disease dementia (PDD) is a common complication of Parkinson’s disease that seriously affects patients’ health and quality of life. At present, the process and pathological mechanisms of PDD remain controversial, which hinders the development of treatments. An increasing number of clinical studies have shown that alpha-synuclein (α-syn), tau, beta-amyloid (Aβ), and iron are closely associated with PDD severity. Thus, we inferred the vicious cycle that causes oxidative stress (OS), due to the synergistic effects of α-syn, tau, Aβ, and, iron, and which plays a pivotal role in the mechanism underlying PDD. First, iron-mediated reactive oxygen species (ROS) production can lead to neuronal protein accumulation (e.g., α-syn andAβ) and cytotoxicity. In addition, regulation of post-translational modification of α-syn by iron affects the aggregation or oligomer formation of α-syn. Iron promotes tau aggregation and neurofibrillary tangles (NFTs) formation. High levels of iron, α-syn, Aβ, tau, and NFTs can cause severe OS and neuroinflammation, which lead to cell death. Then, the increasing formation of α-syn, Aβ, and NFTs further increase iron levels, which promotes the spread of α-syn and Aβ in the central and peripheral nervous systems. Finally, iron-induced neurotoxicity promotes the activation of glycogen synthase kinase 3β (GSK3β) related pathways in the synaptic terminals, which in turn play an important role in the pathological synergistic effects of α-syn, tau and Aβ. Thus, as the central factor regulating this vicious cycle, GSK3β is a potential target for the prevention and treatment of PDD; this is worthy of future study.
Collapse
Affiliation(s)
- Jiajun Han
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yaohua Fan
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Peipei Wu
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zifeng Huang
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xinrong Li
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lijun Zhao
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yichun Ji
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Meiling Zhu
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
33
|
Wang X, Wang Z, Cao J, Dong Y, Chen Y. Ferroptosis Mechanisms Involved in Hippocampal-Related Diseases. Int J Mol Sci 2021; 22:ijms22189902. [PMID: 34576065 PMCID: PMC8472822 DOI: 10.3390/ijms22189902] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/18/2022] Open
Abstract
Ferroptosis is a newly recognized type of cell death that is different from traditional forms of cell death, such as apoptosis, autophagy, and necrosis. It is caused by the accumulation of intracellular iron, promoting lipid peroxidation and leading to cell death. Iron is essential as a redox metal in several physiological functions. The brain is one of the organs known to be affected by iron homeostatic balance disruption. An increased concentration of iron in the central nervous system has been associated with oxidative stress, lipid peroxidation of proteins, and cell death. The hippocampus is an important brain region for learning, memory, and emotional responses, and is also a sensitive part of the brain to the dysfunctional homeostasis of transition metals. Damage of hippocampal structure and function are intimately involved in the pathogenic mechanisms underlying neurodegenerative diseases. Currently, ferroptosis is playing an increasingly important role in treatment areas of central nervous system diseases. Thus, we provide an overview of ferroptosis regulatory mechanisms, such as lipid metabolism, glutathione metabolism, and iron metabolism in this review. We also highlight the role of ferroptosis in hippocampal-related diseases and investigate a theoretical basis for further research on the role of ferroptosis in nervous system disease treatment.
Collapse
Affiliation(s)
| | | | | | | | - Yaoxing Chen
- Correspondence: ; Tel.: +86-10-62733778; Fax: +86-10-62733199
| |
Collapse
|
34
|
Li B, Jiang Y, Wang T, He X, Ma L, Li B, Li Y. Effect of atrazine on accumulation of iron via the iron transport proteins in the midbrain of SD rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146666. [PMID: 34030342 DOI: 10.1016/j.scitotenv.2021.146666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Atrazine (ATR), a widely used herbicide that belongs to the triazine class, has detrimental effects on several organ systems. It has also been shown that ATR exposure results in dopaminergic neurotoxicity. However, the mechanism of herbicides causing ferroptosis in neurons is less concerned. So, the present study aimed to investigate the effects of long-term oral exposure to ATR on ferroptosis in adult male rats. In this study, we show that there was a dose-dependent increase in the concentration of iron in the midbrain. Simultaneously, the expression of tyrosine hydroxylase (TH) and Synuclein (α-syn) were altered by the ATR. We carried out miRNA profiling brain tissue in order to identify factors that mediate ferroptosis. We also found that the mRNA and protein expression of the transferrin receptor (TFR), divalent metal transporter 1 (DMT1), hephaestin (HEPH), and ferroportin 1 (Fpn1) in the midbrain were affected by ATR. Based on the current results and previously published data, it is clear that exposure of adult male rats to high doses of ATR leads to iron loading in the midbrain. The long-term adverse effects of ATR on the midbrain have a special relevance after exposure.
Collapse
Affiliation(s)
- Bingyun Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, Heilongjiang Province, China; Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin 150081, Heilongjiang Province, China
| | - Yujia Jiang
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Ting Wang
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Xi He
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Lin Ma
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Baixiang Li
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin 150081, Heilongjiang Province, China.
| | - Yanshu Li
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin 150081, Heilongjiang Province, China.
| |
Collapse
|
35
|
Choi DH, Kwon KC, Hwang DJ, Koo JH, Um HS, Song HS, Kim JS, Jang Y, Cho JY. Treadmill Exercise Alleviates Brain Iron Dyshomeostasis Accelerating Neuronal Amyloid-β Production, Neuronal Cell Death, and Cognitive Impairment in Transgenic Mice Model of Alzheimer's Disease. Mol Neurobiol 2021; 58:3208-3223. [PMID: 33641078 DOI: 10.1007/s12035-021-02335-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/17/2021] [Indexed: 02/03/2023]
Abstract
Brain iron increases with age and abnormal brain iron metabolism is proving increasingly likely to be involved in the pathology of Alzheimer's disease (AD). The iron-regulatory effect of furin, a ubiquitously expressed proconvertase, might play an important role in AD. Therefore, there is an urgent need to study the effect of furin on iron regulation in AD. For that purpose, we aimed to determine the role of physical exercise in AD associated with brain iron dyshomeostasis. Treadmill exercise attenuated the AD-related abnormal brain iron regulation by furin in vivo, as demonstrated via experiments in aged APP-C105 mice. Next, we examined whether treadmill exercise decreases excessive iron, directly affecting amyloid-β (Aβ) production through the regulation of α-secretase-dependent processing of amyloid protein precursor (APP) involved in the modulation of furin activity. We first observed that cognitive decline and Aβ-induced neuronal cell death were induced by disruption of APP processing via excess iron-induced disruption of furin activity in aged APP-C105 mice. The induced cognitive decline and cell death were attenuated by treadmill exercise. This result suggests that treadmill exercise alleviated cognitive decline and Aβ-induced neuronal cell death by promoting α-secretase-dependent processing of APP through low iron-induced enhancement of furin activity. This is concomitant with decreasing levels of lipid peroxidation products and promoting antioxidant defense enzyme capacities. Therefore, iron-targeted therapeutic strategies involving treadmill exercise might be useful for patients with AD.
Collapse
Affiliation(s)
- Dong-Hun Choi
- Exercise Biochemistry Laboratory, Korea National Sport University, 1239 Yangjaedae-ro, Songpa-gu, 05541, Seoul, Republic of Korea
| | - Ki-Chun Kwon
- Exercise Biochemistry Laboratory, Korea National Sport University, 1239 Yangjaedae-ro, Songpa-gu, 05541, Seoul, Republic of Korea
| | - Dong-Joo Hwang
- Exercise Biochemistry Laboratory, Korea National Sport University, 1239 Yangjaedae-ro, Songpa-gu, 05541, Seoul, Republic of Korea
| | - Jung-Hoon Koo
- Exercise Biochemistry Laboratory, Korea National Sport University, 1239 Yangjaedae-ro, Songpa-gu, 05541, Seoul, Republic of Korea
| | - Hyun-Seob Um
- Department of Sport Medicine, Kon-Yang University, 119 Daehangro, Nonsan, Chungnam, 320-711, Republic of Korea
| | - Hong-Sun Song
- Korea Institute of Sport Science, 727 Hwarang-ro, Nowon-gu, Seoul, 01794, Republic of Korea
| | - Ji-Sun Kim
- Department of physical Education, Jung-Won University, 85 Munmu-ro Goesan-eup Goesan-gun, Chungbuk, 28024, Republic of Korea
| | - Yongchul Jang
- Exercise Biochemistry Laboratory, Korea National Sport University, 1239 Yangjaedae-ro, Songpa-gu, 05541, Seoul, Republic of Korea.
| | - Joon-Yong Cho
- Exercise Biochemistry Laboratory, Korea National Sport University, 1239 Yangjaedae-ro, Songpa-gu, 05541, Seoul, Republic of Korea.
| |
Collapse
|
36
|
Parr AC, Calabro F, Larsen B, Tervo-Clemmens B, Elliot S, Foran W, Olafsson V, Luna B. Dopamine-related striatal neurophysiology is associated with specialization of frontostriatal reward circuitry through adolescence. Prog Neurobiol 2021; 201:101997. [PMID: 33667595 PMCID: PMC8096717 DOI: 10.1016/j.pneurobio.2021.101997] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 01/09/2023]
Abstract
Characterizing developmental changes in frontostriatal circuitry is critical to understanding adolescent development and can clarify neurobiological mechanisms underlying increased reward sensitivity and risk-taking and the emergence of psychopathology during this period. However, the role of striatal neurobiology in the development of frontostriatal circuitry through human adolescence remains largely unknown. We examined background connectivity during a reward-guided decision-making task ("reward-state"), in addition to resting-state, and assessed the association between age-related changes in frontostriatal connectivity and age-related changes in reward learning and risk-taking through adolescence. Further, we examined the contribution of dopaminergic processes to changes in frontostriatal circuitry and decision-making using MR-based assessments of striatal tissue-iron as a correlate of dopamine-related neurobiology. Connectivity between the nucleus accumbens (NAcc) and ventral anterior cingulate, subgenual cingulate, and orbitofrontal cortices decreased through adolescence into adulthood, and decreases in reward-state connectivity were associated with improvements reward-guided decision-making as well as with decreases in risk-taking. Finally, NAcc tissue-iron mediated age-related changes and was associated with variability in connectivity, and developmental increases in NAcc R2' corresponded with developmental decreases in connectivity. Our results provide evidence that dopamine-related striatal properties contribute to the specialization of frontostriatal circuitry, potentially underlying changes in risk-taking and reward sensitivity into adulthood.
Collapse
Affiliation(s)
- Ashley C. Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
| | - Finnegan Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
| | - Bart Larsen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Brenden Tervo-Clemmens
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
| | - Samuel Elliot
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
| | - Will Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
| | - Valur Olafsson
- NUBIC, Northeastern University, Boston, MA, 02115, United States
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
| |
Collapse
|
37
|
Burrinha T, Martinsson I, Gomes R, Terrasso AP, Gouras GK, Almeida CG. Up-regulation of APP endocytosis by neuronal aging drives amyloid dependent-synapse loss. J Cell Sci 2021; 134:240244. [PMID: 33910234 DOI: 10.1242/jcs.255752] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/03/2021] [Indexed: 12/14/2022] Open
Abstract
Neuronal aging increases the risk of late-onset Alzheimer's disease. During normal aging, synapses decline, and β-amyloid (Aβ) accumulates intraneuronally. However, little is known about the underlying cell biological mechanisms. We studied normal neuronal aging using normal aged brain and aged mouse primary neurons that accumulate lysosomal lipofuscin and show synapse loss. We identify the up-regulation of amyloid precursor protein (APP) endocytosis as a neuronal aging mechanism that potentiates APP processing and Aβ production in vitro and in vivo. The increased APP endocytosis may contribute to the observed early endosomes enlargement in the aged brain. Mechanistically, we show that clathrin-dependent APP endocytosis requires F-actin and that clathrin and endocytic F-actin increase with neuronal aging. Finally, Aβ production inhibition reverts synaptic decline in aged neurons while Aβ accumulation, promoted by endocytosis up-regulation in younger neurons, recapitulates aging-related synapse decline. Overall, we identify APP endocytosis up-regulation as a potential mechanism of neuronal aging and, thus, a novel target to prevent late-onset Alzheimer's disease.
Collapse
Affiliation(s)
- Tatiana Burrinha
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056 Lisboa,Portugal
| | - Isak Martinsson
- Experimental Dementia Research Unit, Lund University, 22184 Lund, Sweden
| | - Ricardo Gomes
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056 Lisboa,Portugal.,iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Ana Paula Terrasso
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056 Lisboa,Portugal.,iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Gunnar K Gouras
- Experimental Dementia Research Unit, Lund University, 22184 Lund, Sweden
| | - Cláudia Guimas Almeida
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056 Lisboa,Portugal
| |
Collapse
|
38
|
Ficiarà E, Boschi S, Ansari S, D'Agata F, Abollino O, Caroppo P, Di Fede G, Indaco A, Rainero I, Guiot C. Machine Learning Profiling of Alzheimer's Disease Patients Based on Current Cerebrospinal Fluid Markers and Iron Content in Biofluids. Front Aging Neurosci 2021; 13:607858. [PMID: 33692679 PMCID: PMC7937894 DOI: 10.3389/fnagi.2021.607858] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, characterized by a complex etiology that makes therapeutic strategies still not effective. A true understanding of key pathological mechanisms and new biomarkers are needed, to identify alternative disease-modifying therapies counteracting the disease progression. Iron is an essential element for brain metabolism and its imbalance is implicated in neurodegeneration, due to its potential neurotoxic effect. However, the role of iron in different stages of dementia is not clearly established. This study aimed to investigate the potential impact of iron both in cerebrospinal fluid (CSF) and in serum to improve early diagnosis and the related therapeutic possibility. In addition to standard clinical method to detect iron in serum, a precise quantification of total iron in CSF was performed using graphite-furnace atomic absorption spectrometry in patients affected by AD, mild cognitive impairment, frontotemporal dementia, and non-demented neurological controls. The application of machine learning techniques, such as clustering analysis and multiclassification algorithms, showed a new potential stratification of patients exploiting iron-related data. The results support the involvement of iron dysregulation and its potential interaction with biomarkers (Tau protein and Amyloid-beta) in the pathophysiology and progression of dementia.
Collapse
Affiliation(s)
- Eleonora Ficiarà
- Department of Neurosciences "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Silvia Boschi
- Department of Neurosciences "Rita Levi Montalcini", University of Torino, Torino, Italy.,Department NEUROFARBA, University of Firenze, Firenze, Italy
| | - Shoeb Ansari
- Department of Neurosciences "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Federico D'Agata
- Department of Neurosciences "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Ornella Abollino
- Department of Drug Science and Technology, University of Torino, Torino, Italy
| | - Paola Caroppo
- Unit of Neurology 5 and Neuropathology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuseppe Di Fede
- Unit of Neurology 5 and Neuropathology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
| | - Antonio Indaco
- Unit of Neurology 5 and Neuropathology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
| | - Innocenzo Rainero
- Department of Neurosciences "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Caterina Guiot
- Department of Neurosciences "Rita Levi Montalcini", University of Torino, Torino, Italy
| |
Collapse
|
39
|
Zhang C, Qian C, Yang G, Bao YX, Qian ZM. Hepcidin inhibits autophagy in intracerebral hemorrhage models in vitro and in vivo. Mol Cell Neurosci 2021; 111:103589. [PMID: 33422672 DOI: 10.1016/j.mcn.2021.103589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 11/27/2022] Open
Abstract
Iron has a key role in the activation of the autophagic pathway in rats with intracerebral hemorrhage (ICH), and hepcidin has the ability to reduce brain iron in ICH-rats. We therefore hypothesized that hepcidin might be able to inhibit autophagy by reducing iron in an ICH brain. Here, we investigated the effects of Ad-hepcidin and/or hepcidin peptide on autophagic activities in ICH models in vitro and in vivo. We demonstrated that ad-hepcidin and hepcidin peptide both inhibited hemin-induced increase in LC3-II/LC3-I conversion ratio and reversed the reduction in p62 content in cortical neurons in vitro. We also showed that ad-hepcidin inhibited ICH-induced increase in LC3-II/LC3-I conversion ratio and reversed ICH-induced reduction in p62 content in the brain cortex of rats in vivo. Based on these findings plus previous data on the effects of ad-hepcidin and/or hepcidin peptide on iron contents in ICH models, we suggested that hepcidin-induced inhibition of autophagy might be mediated via reducing iron in hemin-treated neurons in vitro and ICH-rat brain in vivo.
Collapse
Affiliation(s)
- Chao Zhang
- Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong 226001, China
| | - Christopher Qian
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Guang Yang
- Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong 226001, China
| | - Yu-Xin Bao
- Research Center for Medicine and Biology, Zunyi Medical University, Zunyi 563000, Guizhou, China.
| | - Zhong-Ming Qian
- Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong 226001, China.
| |
Collapse
|
40
|
Urrutia PJ, Bórquez DA, Núñez MT. Inflaming the Brain with Iron. Antioxidants (Basel) 2021; 10:antiox10010061. [PMID: 33419006 PMCID: PMC7825317 DOI: 10.3390/antiox10010061] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Iron accumulation and neuroinflammation are pathological conditions found in several neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). Iron and inflammation are intertwined in a bidirectional relationship, where iron modifies the inflammatory phenotype of microglia and infiltrating macrophages, and in turn, these cells secrete diffusible mediators that reshape neuronal iron homeostasis and regulate iron entry into the brain. Secreted inflammatory mediators include cytokines and reactive oxygen/nitrogen species (ROS/RNS), notably hepcidin and nitric oxide (·NO). Hepcidin is a small cationic peptide with a central role in regulating systemic iron homeostasis. Also present in the cerebrospinal fluid (CSF), hepcidin can reduce iron export from neurons and decreases iron entry through the blood-brain barrier (BBB) by binding to the iron exporter ferroportin 1 (Fpn1). Likewise, ·NO selectively converts cytosolic aconitase (c-aconitase) into the iron regulatory protein 1 (IRP1), which regulates cellular iron homeostasis through its binding to iron response elements (IRE) located in the mRNAs of iron-related proteins. Nitric oxide-activated IRP1 can impair cellular iron homeostasis during neuroinflammation, triggering iron accumulation, especially in the mitochondria, leading to neuronal death. In this review, we will summarize findings that connect neuroinflammation and iron accumulation, which support their causal association in the neurodegenerative processes observed in AD and PD.
Collapse
Affiliation(s)
- Pamela J. Urrutia
- Department of Biology, Faculty of Sciences, Universidad de Chile, 7800024 Santiago, Chile;
| | - Daniel A. Bórquez
- Center for Biomedical Research, Faculty of Medicine, Universidad Diego Portales, 8370007 Santiago, Chile;
| | - Marco Tulio Núñez
- Department of Biology, Faculty of Sciences, Universidad de Chile, 7800024 Santiago, Chile;
- Correspondence: ; Tel.: +56-2-29787360
| |
Collapse
|
41
|
Totten MS, Pierce DM, Erikson KM. The influence of sex and strain on trace element dysregulation in the brain due to diet-induced obesity. J Trace Elem Med Biol 2021; 63:126661. [PMID: 33035813 DOI: 10.1016/j.jtemb.2020.126661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND The objective of this study was to identify interaction effects between diet, sex, and strain on trace element dysregulation and gene expression alterations due to diet-induced obesity (DIO) in the hippocampus, striatum, and midbrain. METHODS Male and female C57BL/6 J (B6 J) and DBA/2 J (D2 J) mice were fed either a low fat (10 % kcal) diet (LFD) or high fat (60 % kcal) diet (HFD) for 16 weeks, then assessed for trace element concentrations and gene expression patterns in the brain. RESULTS In the hippocampus, zinc was significantly increased by 48 % in D2 J males but decreased by 44 % in D2 J females, and divalent metal transporter 1 was substantially upregulated in B6 J males due to DIO. In the striatum, iron was significantly elevated in B6 J female mice, and ceruloplasmin was significantly upregulated in D2 J female mice due to DIO. In the midbrain, D2 J males fed a HFD had a 48 % reduction in Cu compared to the LFD group, and D2 J females had a 37 % reduction in Cu compared to the control group. CONCLUSIONS The alteration of trace element homeostasis and gene expression due to DIO was brain-region dependent and was highly influenced by sex and strain. A significant three-way interaction between diet, sex, and strain was discovered for zinc in the hippocampus (for mice fed a HFD, zinc increased in male D2 Js, decreased in female D2 Js, and had no effect in B6 J mice). A significant diet by sex interaction was observed for iron in the striatum (iron increased only in female mice fed a HFD). A main effect of decreased copper in the midbrain was found for the D2 J strain fed a HFD. These results emphasize the importance of considering sex and genetics as biological factors when investigating potential associations between DIO and neurodegenerative disease.
Collapse
Affiliation(s)
- Melissa S Totten
- Department of Nutrition, UNC Greensboro, 1400 Spring Garden Street, Greensboro, NC, 27412, United States.
| | - Derek M Pierce
- Department of Nutrition, UNC Greensboro, 1400 Spring Garden Street, Greensboro, NC, 27412, United States.
| | - Keith M Erikson
- Department of Nutrition, UNC Greensboro, 1400 Spring Garden Street, Greensboro, NC, 27412, United States.
| |
Collapse
|
42
|
Fernández-Mendívil C, Luengo E, Trigo-Alonso P, García-Magro N, Negredo P, López MG. Protective role of microglial HO-1 blockade in aging: Implication of iron metabolism. Redox Biol 2020; 38:101789. [PMID: 33212416 PMCID: PMC7680814 DOI: 10.1016/j.redox.2020.101789] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/06/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is an inducible enzyme known for its anti-inflammatory, antioxidant and neuroprotective effects. However, increased expression of HO-1 during aging and age-related neurodegenerative diseases have been associated to neurotoxic ferric iron deposits. Being microglia responsible for the brain's innate immune response, the aim of this study was to understand the role of microglial HO-1 under inflammatory conditions in aged mice. For this purpose, aged wild type (WT) and LysMCreHmox1△△ (HMOX1M-KO) mice that lack HO-1 in microglial cells, were used. Aged WT mice showed higher basal expression levels of microglial HO-1 in the brain than adult mice. This increase was even higher when exposed to an inflammatory stimulus (LPS via i.p.) and was accompanied by alterations in different iron-related metabolism proteins, resulting in an increase of iron deposits, oxidative stress, ferroptosis and cognitive decline. Furthermore, microglia exhibited a primed phenotype and increased levels of inflammatory markers such as iNOS, p65, IL-1β, TNF-α, Caspase-1 and NLRP3. Interestingly, all these alterations were prevented in aged HMOX1M-KO and WT mice treated with the HO-1 inhibitor ZnPPIX. In order to determine the effects of microglial HO-1-dependent iron overload, aged WT mice were treated with the iron chelator deferoxamine (DFX). DFX caused major improvements in iron, inflammatory and behavioral alterations found in aged mice exposed to LPS. In conclusion, this study highlights how microglial HO-1 overexpression contributes to neurotoxic iron accumulation providing deleterious effects in aged mice exposed to an inflammatory insult. Microglial HO-1 increases with aging and under an acute inflammatory stimulus. LPS-dependent microglial HO-1 upregulation during aging leads to iron overload. Microglial HO-1-dependent iron accumulation leads to ferroptosis. HO-1-dependent iron alterations lead to neuroinflammation. HO-1 inhibitors/iron chelators reduce iron accumulation and neuroinflammation.
Collapse
Affiliation(s)
- Cristina Fernández-Mendívil
- Instituto Teófilo Hernando for Drug Discovery. Department of Pharmacology. School of Medicine. Universidad Autónoma Madrid. Madrid, Spain; Instituto de Investigación Sanitario (IIS-IP), Hospital Universitario de La Princesa, Madrid, Spain
| | - Enrique Luengo
- Instituto Teófilo Hernando for Drug Discovery. Department of Pharmacology. School of Medicine. Universidad Autónoma Madrid. Madrid, Spain; Instituto de Investigación Sanitario (IIS-IP), Hospital Universitario de La Princesa, Madrid, Spain
| | - Paula Trigo-Alonso
- Instituto Teófilo Hernando for Drug Discovery. Department of Pharmacology. School of Medicine. Universidad Autónoma Madrid. Madrid, Spain; Instituto de Investigación Sanitario (IIS-IP), Hospital Universitario de La Princesa, Madrid, Spain
| | - Nuria García-Magro
- Department of Anatomy, Histology and Neuroscience. School of Medicine. Universidad Autónoma de Madrid. Madrid, Spain
| | - Pilar Negredo
- Department of Anatomy, Histology and Neuroscience. School of Medicine. Universidad Autónoma de Madrid. Madrid, Spain
| | - Manuela G López
- Instituto Teófilo Hernando for Drug Discovery. Department of Pharmacology. School of Medicine. Universidad Autónoma Madrid. Madrid, Spain; Instituto de Investigación Sanitario (IIS-IP), Hospital Universitario de La Princesa, Madrid, Spain.
| |
Collapse
|
43
|
Zhang X, Gou YJ, Zhang Y, Li J, Han K, Xu Y, Li H, You LH, Yu P, Chang YZ, Gao G. Hepcidin overexpression in astrocytes alters brain iron metabolism and protects against amyloid-β induced brain damage in mice. Cell Death Discov 2020; 6:113. [PMID: 33298837 PMCID: PMC7603348 DOI: 10.1038/s41420-020-00346-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022] Open
Abstract
Progressive iron accumulation in the brain and iron-induced oxidative stress are considered to be one of the initial causes of Alzheimer’s disease (AD), and modulation of brain iron level shows promise for its treatment. Hepcidin expressed by astrocytes has been speculated to regulate iron transport across the blood–brain barrier (BBB) and control the whole brain iron load. Whether increasing the expression of astrocyte hepcidin can reduce brain iron level and relieve AD symptoms has yet to be studied. Here, we overexpressed hepcidin in astrocytes of the mouse brain and challenged the mice with amyloid-β25–35 (Aβ25–35) by intracerebroventricular injection. Our results revealed that hepcidin overexpression in astrocytes significantly ameliorated Aβ25–35-induced cell damage in both the cerebral cortex and hippocampus. This protective role was also attested by behavioral tests of the mice. Our data further demonstrated that astrocyte-overexpressed hepcidin could decrease brain iron level, possibly by acting on ferroportin 1 (FPN1) on the brain microvascular endothelial cells (BMVECs), which in turn reduced Aβ25–35-induced oxidative stress and apoptosis, and ultimately protected cells from damage. This study provided in vivo evidences of the important role of astrocyte hepcidin in the regulation of brain iron metabolism and protection against Aβ-induced cortical and hippocampal damages and implied its potential in the treatment of oxidative stress-related brain disorders.
Collapse
Affiliation(s)
- Xinwei Zhang
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, 050024, Shijiazhuang, China
| | - Yu-Jing Gou
- Chengde Medical University, Shuang Qiao District, An Yuan Road, 067000, Chengde, China
| | - Yating Zhang
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, 050024, Shijiazhuang, China
| | - Jie Li
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, 050024, Shijiazhuang, China
| | - Kang Han
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, 050024, Shijiazhuang, China
| | - Yong Xu
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, 050024, Shijiazhuang, China
| | - Haiyan Li
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, 050024, Shijiazhuang, China.,Chengde Medical University, Shuang Qiao District, An Yuan Road, 067000, Chengde, China
| | - Lin-Hao You
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, 050024, Shijiazhuang, China
| | - Peng Yu
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, 050024, Shijiazhuang, China
| | - Yan-Zhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, 050024, Shijiazhuang, China.
| | - Guofen Gao
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, 050024, Shijiazhuang, China.
| |
Collapse
|
44
|
Zhang J, Huang W, Xu F, Cao Z, Jia F, Li Y. Iron Dyshomeostasis Participated in Rat Hippocampus Toxicity Caused by Aluminum Chloride. Biol Trace Elem Res 2020; 197:580-590. [PMID: 31848921 DOI: 10.1007/s12011-019-02008-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
Abstract
Aluminum (Al) alters iron regulatory factors content and leads to the changes in iron-related proteins causing iron accumulation. But limited evidence ascertains this hypothesis. Therefore, our experiment was conducted and four groups of male Wistar rats were orally administrated of 0, 50, 150, and 450 mg/kg BW/d aluminum chloride (AlCl3) for 90 days by drinking water, respectively. The cognitive function, pathological lesion of hippocampus, oxidative stress, as well as iron-related proteins and iron regulatory factors expression were detected. The results showed that AlCl3 remarkably induced the oxidative stress and pathological lesion in the hippocampus and impaired the learning-memory ability. The contents of Al and iron increased in all AlCl3-exposed groups. Meanwhile, the increased divalent metal transporter 1 (DMT1) expression enhanced iron import and the decreased ferroportin 1 (Fpn1) expression reduced iron export in AlCl3-exposed groups. The iron accumulated and ferritin heavy chains (Fth) expression decreased in all AlCl3-exposed groups led to an increase in free iron. The study also showed that iron regulatory factor iron regulatory protein 2 (IRP2) was decreased and hepcidin was increased in AlCl3-exposed groups. The results indicated that AlCl3 induces iron dyshomeostasis presenting as iron accumulation, the disordered expression of iron import, export, store, and regulatory proteins in rat hippocampus accompanied with oxidative stress, pathological lesion, and impaired learning-memory ability.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- College of Veterinary Medicine, Northeast Agricultural University, 600, Changjiang Road, Harbin, 150030, NO, China
| | - Wanyue Huang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- College of Veterinary Medicine, Northeast Agricultural University, 600, Changjiang Road, Harbin, 150030, NO, China
| | - Feibo Xu
- Binzhou Medical University, Yantai, China
| | - Zheng Cao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- College of Veterinary Medicine, Northeast Agricultural University, 600, Changjiang Road, Harbin, 150030, NO, China
| | - Fubo Jia
- Liaoning Agricultural College, Yingkou, 115009, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- College of Veterinary Medicine, Northeast Agricultural University, 600, Changjiang Road, Harbin, 150030, NO, China.
| |
Collapse
|
45
|
Xu Y, Zhang Y, Zhang JH, Han K, Zhang X, Bai X, You LH, Yu P, Shi Z, Chang YZ, Gao G. Astrocyte hepcidin ameliorates neuronal loss through attenuating brain iron deposition and oxidative stress in APP/PS1 mice. Free Radic Biol Med 2020; 158:84-95. [PMID: 32707154 DOI: 10.1016/j.freeradbiomed.2020.07.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/24/2020] [Accepted: 07/08/2020] [Indexed: 02/08/2023]
Abstract
Iron overload in the brain and iron-induced oxidative damage have been considered to play key roles in the pathogenesis of Alzheimer's disease (AD). Hepcidin is a peptide that regulates systemic iron metabolism by interacting with iron exporter ferroportin 1 (FPN1). Studies have indicated that the astrocyte hepcidin could regulate brain iron intake at the blood-brain barrier and injection of hepcidin into brain attenuated iron deposition in the brain. However, whether overexpression of hepcidin in astrocytes of APP/PS1 transgenic mice can alleviate AD symptoms by reducing iron deposition has not been evaluated. In this study, we overexpressed hepcidin in astrocytes of APP/PS1 mice and investigated its effects on β-amyloid (Aβ) aggregation, neuronal loss, iron deposition and iron-induced oxidative damages. Our results showed that the elevated expression of astrocyte hepcidin in APP/PS1 mice significantly improved their cognitive decline, and partially alleviated the formation of Aβ plaques in cortex and hippocampus. Further investigations revealed that overexpression of hepcidin in astrocytes significantly reduced iron levels in cortex and hippocampus of APP/PS1 mice, especially iron content in neurons, which led to the reduction of iron accumulation-induced oxidative stress and neuroinflammation, and finally decreased neuronal cell death in the cortex and hippocampus of APP/PS1 mice. This study demonstrated that overexpression of hepcidin in astrocytes of APP/PS1 mice could partially alleviate AD symptoms and delay the pathological process of AD.
Collapse
Affiliation(s)
- Yong Xu
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, Shijiazhuang, 050024, China
| | - Yating Zhang
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, Shijiazhuang, 050024, China
| | - Jian-Hua Zhang
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, Shijiazhuang, 050024, China
| | - Kang Han
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, Shijiazhuang, 050024, China
| | - Xinwei Zhang
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, Shijiazhuang, 050024, China
| | - Xue Bai
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, Shijiazhuang, 050024, China
| | - Lin-Hao You
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, Shijiazhuang, 050024, China
| | - Peng Yu
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, Shijiazhuang, 050024, China
| | - Zhenhua Shi
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, Shijiazhuang, 050024, China
| | - Yan-Zhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, Shijiazhuang, 050024, China.
| | - Guofen Gao
- Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, No. 20, Nan Er Huan East Road, Shijiazhuang, 050024, China.
| |
Collapse
|
46
|
Poirier M, Pujol-Giménez J, Manatschal C, Bühlmann S, Embaby A, Javor S, Hediger MA, Reymond JL. Pyrazolyl-pyrimidones inhibit the function of human solute carrier protein SLC11A2 (hDMT1) by metal chelation. RSC Med Chem 2020; 11:1023-1031. [PMID: 33479694 PMCID: PMC7649969 DOI: 10.1039/d0md00085j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/06/2020] [Indexed: 12/22/2022] Open
Abstract
Solute carrier proteins (SLCs) control fluxes of ions and molecules across biological membranes and represent an emerging class of drug targets. SLC11A2 (hDMT1) mediates intestinal iron uptake and its inhibition might be used to treat iron overload diseases such as hereditary hemochromatosis. Here we report a micromolar (IC50 = 1.1 μM) pyrazolyl-pyrimidone inhibitor of radiolabeled iron uptake in hDMT1 overexpressing HEK293 cells acting by a non-competitive mechanism, which however does not affect the electrophysiological properties of the transporter. Isothermal titration calorimetry, competition with calcein, induced precipitation of radioactive iron and cross inhibition of the unrelated iron transporter SLC39A8 (hZIP8) indicate that inhibition is mediated by metal chelation. Mapping the chemical space of thousands of pyrazolo-pyrimidones and similar 2,2'-diazabiaryls in ChEMBL suggests that their reported activities might partly reflect metal chelation. Such metal chelating groups are not listed in pan-assay interference compounds (PAINS) but should be checked when addressing SLCs.
Collapse
Affiliation(s)
- Marion Poirier
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , 3012 Bern , Switzerland .
| | - Jonai Pujol-Giménez
- Institute of Biochemistry and Molecular Medicine , University of Bern , Bühlstrasse 28 , 3012 Bern , Switzerland
- Membrane Transport Discovery Lab , Department of Nephrology and Hypertension , Inselspital , University of Bern Kinderklinik , Freiburgstrasse 15 , 3010 Bern , Switzerland .
- Department of Biomedical Research , University of Bern , Murtenstrasse 35 , 3008 Bern , Switzerland
| | - Cristina Manatschal
- Department of Biochemistry , University of Zürich , Winterthurerstrasse 190 , Zürich , Switzerland
| | - Sven Bühlmann
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , 3012 Bern , Switzerland .
| | - Ahmed Embaby
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , 3012 Bern , Switzerland .
| | - Sacha Javor
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , 3012 Bern , Switzerland .
| | - Matthias A Hediger
- Institute of Biochemistry and Molecular Medicine , University of Bern , Bühlstrasse 28 , 3012 Bern , Switzerland
- Membrane Transport Discovery Lab , Department of Nephrology and Hypertension , Inselspital , University of Bern Kinderklinik , Freiburgstrasse 15 , 3010 Bern , Switzerland .
- Department of Biomedical Research , University of Bern , Murtenstrasse 35 , 3008 Bern , Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , 3012 Bern , Switzerland .
| |
Collapse
|
47
|
Grubić Kezele T, Ćurko-Cofek B. Age-Related Changes and Sex-Related Differences in Brain Iron Metabolism. Nutrients 2020; 12:E2601. [PMID: 32867052 PMCID: PMC7551829 DOI: 10.3390/nu12092601] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/21/2022] Open
Abstract
Iron is an essential element that participates in numerous cellular processes. Any disruption of iron homeostasis leads to either iron deficiency or iron overload, which can be detrimental for humans' health, especially in elderly. Each of these changes contributes to the faster development of many neurological disorders or stimulates progression of already present diseases. Age-related cellular and molecular alterations in iron metabolism can also lead to iron dyshomeostasis and deposition. Iron deposits can contribute to the development of inflammation, abnormal protein aggregation, and degeneration in the central nervous system (CNS), leading to the progressive decline in cognitive processes, contributing to pathophysiology of stroke and dysfunctions of body metabolism. Besides, since iron plays an important role in both neuroprotection and neurodegeneration, dietary iron homeostasis should be considered with caution. Recently, there has been increased interest in sex-related differences in iron metabolism and iron homeostasis. These differences have not yet been fully elucidated. In this review we will discuss the latest discoveries in iron metabolism, age-related changes, along with the sex differences in iron content in serum and brain, within the healthy aging population and in neurological disorders such as multiple sclerosis, Parkinson's disease, Alzheimer's disease, and stroke.
Collapse
Affiliation(s)
- Tanja Grubić Kezele
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
- Clinical Department for Clinical Microbiology, Clinical Hospital Center Rijeka, Krešimirova 42, 51000 Rijeka, Croatia
| | - Božena Ćurko-Cofek
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| |
Collapse
|
48
|
Shin JA, Kim HS, Lee Kang J, Park EM. Estrogen deficiency is associated with brain iron deposition via upregulation of hepcidin expression in aged female mice. Neurobiol Aging 2020; 96:33-42. [PMID: 32920472 DOI: 10.1016/j.neurobiolaging.2020.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/02/2020] [Accepted: 08/17/2020] [Indexed: 01/19/2023]
Abstract
The total iron level in the brain increases with age, and excess iron is associated with neurodegenerative diseases; however, the mechanism of brain iron deposition is unknown. In peripheral cells, the expression of hepcidin, a master regulator of iron homeostasis, is regulated by estrogen. This study aimed to determine whether hepcidin was involved in iron deposition in the brain and brain endothelial cells of estrogen-deficient aged female mice. Aged mice showed increased levels of hepcidin and ferritin in the brain and brain microvessels compared with young mice, and these levels were reduced by estrogen replacement in ovariectomized aged mice. In the brain endothelial cell line bEnd.3, the lipopolysaccharide (10 ng/mL)-induced increases of hepcidin mRNA and protein levels, the number of Prussian blue-positive cells, and free radicals were reduced after estrogen treatment. These results suggest that estrogen deficiency with an increase of hepcidin is partly responsible for iron deposition in the brain and brain endothelial cells and that hepcidin can be a target to prevent brain aging and neurodegeneration in postmenopausal women.
Collapse
Affiliation(s)
- Jin A Shin
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Hee-Sun Kim
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Jihee Lee Kang
- Department of Physiology and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Eun-Mi Park
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
49
|
Aging and Progression of Beta-Amyloid Pathology in Alzheimer's Disease Correlates with Microglial Heme-Oxygenase-1 Overexpression. Antioxidants (Basel) 2020; 9:antiox9070644. [PMID: 32708329 PMCID: PMC7402118 DOI: 10.3390/antiox9070644] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023] Open
Abstract
Neuroinflammation and oxidative stress are being recognized as characteristic hallmarks in many neurodegenerative diseases, especially those that portray proteinopathy, such as Alzheimer’s disease (AD). Heme-oxygenase 1 (HO-1) is an inducible enzyme with antioxidant and anti-inflammatory properties, while microglia are the immune cells in the central nervous system. To elucidate the brain expression profile of microglial HO-1 in aging and AD-progression, we have used the 5xFAD (five familial AD mutations) mouse model of AD and their littermates at different ages (four, eight, 12, and 18 months). Total brain expression of HO-1 was increased with aging and such increase was even higher in 5xFAD animals. In co-localization studies, HO-1 expression was mainly found in microglia vs. other brain cells. The percentage of microglial cells expressing HO-1 and the amount of HO-1 expressed within microglia increased progressively with aging. Furthermore, this upregulation was increased by 2–3-fold in the elder 5xFAD mice. In addition, microglia overexpressing HO-1 was predominately found surrounding beta-amyloid plaques. These results were corroborated using postmortem brain samples from AD patients, where microglial HO-1 was found up-regulated in comparison to brain samples from aged matched non-demented patients. This study demonstrates that microglial HO-1 expression increases with aging and especially with AD progression, highlighting HO-1 as a potential biomarker or therapeutic target for AD.
Collapse
|
50
|
Schiavi A, Strappazzon F, Ventura N. Mitophagy and iron: two actors sharing the stage in age-associated neuronal pathologies. Mech Ageing Dev 2020; 188:111252. [PMID: 32330468 DOI: 10.1016/j.mad.2020.111252] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022]
Abstract
Aging is characterized by the deterioration of different cellular and organismal structures and functions. A typical hallmark of the aging process is the accumulation of dysfunctional mitochondria and excess iron, leading to a vicious cycle that promotes cell and tissue damage, which ultimately contribute to organismal aging. Accordingly, altered mitochondrial quality control pathways such as mitochondrial autophagy (mitophagy) as well as altered iron homeostasis, with consequent iron overload, can accelerate the aging process and the development and progression of different age-associated disorders. In this review we first briefly introduce the aging process and summarize molecular mechanisms regulating mitophagy and iron homeostasis. We then provide an overview on how dysfunction of these two processes impact on aging and age-associated neurodegenerative disorders with a focus on Alzheimer's disease, Parkinson's disease and Amyotrophic Lateral Sclerosis. Finally, we summarize some recent evidence showing mechanistic links between iron metabolism and mitophagy and speculate on how regulating the crosstalk between the two processes may provide protective effects against aging and age-associated neuronal pathologies.
Collapse
Affiliation(s)
- Alfonso Schiavi
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; IUF- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | | | - Natascia Ventura
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; IUF- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| |
Collapse
|