1
|
Rong L, Wang Y, Meidl P, Baqar M, Li A, Wang L, Sun H. Insights into soil microbial assemblages and nitrogen cycling function responses to conventional and biodegradable microplastics. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137889. [PMID: 40081053 DOI: 10.1016/j.jhazmat.2025.137889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Biodegradable microplastics (MPs) are proposed as sustainable alternatives to conventional MPs, yet their distinct effects on soil microbial communities and ecological functions remain insufficiently understood. This study compares the impacts of biodegradable polylactic acid (PLA) and conventional polyvinyl chloride (PVC) MPs on soil microbial assemblages and nitrogen cycling. Fluorescein diacetate hydrolase (FDAse) activity was temporarily stimulated by 2 % (w/w) PLA and PVC MPs, while 7 % (w/w) PVC MPs initially inhibited FDAse activity before promoting it. PLA MPs (2 % and 7 %, w/w) dramatically reduced bacterial diversity and altered community structure, enriching genera such as Nocardioides, Arthrobacter, Agromyces, Amycolatopsis, Saccharothrix, and Ramlibacter, known for degrading complex compounds. Conversely, PVC MPs (2 % and 7 %, w/w) showed minimal influence on bacterial diversity, with only temporary structural shifts at high concentrations (7 % w/w). Network analysis revealed greater microbial complexity with PLA MPs, where MPs-degrading taxa emerged as keystone species. PLA MPs at both concentrations notably increased the abundance of nitrogenase iron protein subunit H gene (nifH) and nitrogen-fixing bacteria, such as Bradyrhizobium, while also sustaining ammonia monooxygenase subunit A gene (AOB amoA) effects up to day 90. At higher doses (7 % w/w), PLA MPs enriched copper-containing nitrite reductase gene (nirK) and cytochrome cd1 nitrite reductase gene (nirS) abundance, boosting denitrifiers like Cupriavidus, Pseudarthrobacter, and Ensifer. In contrast, PVC MPs showed short-term effects on nitrogen cycling function. These findings have important implications for promoting sustainable agriculture and managing the environmental risks posed by MPs in soil ecosystems.
Collapse
Affiliation(s)
- Lili Rong
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Peter Meidl
- Institute of Biology, Freie Universität Berlin, Berlin 14195, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin 14195, Germany
| | - Mujtaba Baqar
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Andi Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
2
|
Hatwar N, Qureshi A. Comprehensive Review on Bio-Based Treatments for Polyvinyl Chloride Plastic. Appl Biochem Biotechnol 2025; 197:2769-2798. [PMID: 39820925 DOI: 10.1007/s12010-024-05174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/19/2025]
Abstract
Polyvinyl chloride (PVC) plastics are widespread around the globe, and each year, thousands of tons of PVC end up in the environment in the form of micro-/nanoplastics. Literature has reported extensively on the biodegradation of its PVC additives/plasticizers; however, bio-based treatment approaches for its polymers have been scanty. The current review has discussed elaborately all possible PVC degradation processes and the toxicity challenges faced during its mitigation. This review has also delineated and assessed all physical, chemical, and biological approaches reported for PVC treatments. All the biodeterioration, biocatalysis, and biodegradation mechanisms reported for PVC have been comprehensively discussed. Recent advances have also been highlighted like the direct application of invertebrate species and selective enzymes like peroxidases, alkane monooxygenase, and laccase during PVC treatment. Insights of functional genomes/genes and OMICS have been recommended, which might help predict and address any future issues during the mitigation of PVC pollution in the environment.
Collapse
Affiliation(s)
- Neha Hatwar
- Sustainable Environmental Processes - Environmental Bioprocesses (SEP-EB), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Asifa Qureshi
- Sustainable Environmental Processes - Environmental Bioprocesses (SEP-EB), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Liu Z, Chang SH, Mailhot G. Emerging Biochemical Conversion for Plastic Waste Management: A Review. Molecules 2025; 30:1255. [PMID: 40142030 PMCID: PMC11946717 DOI: 10.3390/molecules30061255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
In recent years, vast amounts of plastic waste have been released into the environment worldwide, posing a severe threat to human health and ecosystems. Despite the partial success of traditional plastic waste management technologies, their limitations underscore the need for innovative approaches. This review provides a comprehensive overview of recent advancements in chemical and biological technologies for converting and utilizing plastic waste. Key topics include the technical parameters, characteristics, processes, and reaction mechanisms underlying these emerging technologies. Additionally, the review highlights the importance of conducting economic analyses and life cycle assessments of these emerging technologies, offering valuable insights and establishing a robust foundation for future research. By leveraging the literature from the last five years, this review explores innovative chemical approaches, such as hydrolysis, hydrogenolysis, alcoholysis, ammonolysis, pyrolysis, and photolysis, which break down high-molecular-weight macromolecules into oligomers or small molecules by cracking or depolymerizing specific chemical groups within plastic molecules. It also examines innovative biological methods, including microbial enzymatic degradation, which employs microorganisms or enzymes to convert high-molecular-weight macromolecules into oligomers or small molecules through degradation and assimilation mechanisms. The review concludes by discussing future research directions focused on addressing the technological, economic, and scalability challenges of emerging plastic waste management technologies, with a strong commitment to promoting sustainable solutions and achieving lasting environmental impact.
Collapse
Affiliation(s)
- Zhongchuang Liu
- Department of Environmental Engineering Technology, College of Power Engineering, Chongqing Electric Power College, No. 9, Electric Power Fourth Village, Jiulongpo District, Chongqing 400053, China
| | - Siu Hua Chang
- Waste Management and Resource Recovery (WeResCue) Group, Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh 13500, Penang, Malaysia;
| | - Gilles Mailhot
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne—Centre National de la Recherche Scientifique (CNRS), F-63000 Clermont-Ferrand, France
| |
Collapse
|
4
|
Havaei M, Akin O, Locaspi A, John Varghese R, Minette F, Romers E, De Meester S, Van Geem KM. Beyond the Landfill: A critical review of techniques for End-of-Life Polyvinyl chloride (PVC) valorization. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 193:105-134. [PMID: 39657507 DOI: 10.1016/j.wasman.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/04/2024] [Accepted: 11/16/2024] [Indexed: 12/12/2024]
Abstract
Polyvinyl chloride (PVC) is a polymer comprised of more than 50% chlorine that offers unmatched versatility at low expense. PVC is irreplaceable in several applications, such as construction materials, medical applications, and cables. This versatility and tunable properties come at the cost of complex formulations for the product and challenging end-of-life (EoL) options for PVC waste. Pure collected and sorted PVC is already recycled successfully to some extent, yet, when PVC ends up in a mixed plastic waste stream, it can be detrimental to the recycling process. PVC waste and its effects at various concentrations remain a focal point for both scholars and policymakers. In this review, the narrative begins at the naissance of PVC and continues to investigate the EoL valorization options when the products are inevitably discarded. Strategies for PVC waste recycling and the technical and legal challenges regarding each method are discussed, focusing on the European recycling market. An effective solution to handle EoL PVC requires a combination of policies and schemes for proper collection and sorting of specific waste streams and considering all available technologies to select the right tools. This review can support appropriate policies and the selection of suitable methods of recycling PVC waste.
Collapse
Affiliation(s)
- Mohammadhossein Havaei
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark-Zwijnaarde 125, B-9052, Belgium
| | - Oğuzhan Akin
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark-Zwijnaarde 125, B-9052, Belgium
| | - Andrea Locaspi
- CRECK Modeling Lab, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Robin John Varghese
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark-Zwijnaarde 125, B-9052, Belgium
| | - Florent Minette
- Research, Technology & Engineering (RTE), INEOS Inovyn, Rue Solvay 39, B-5190 Jemeppe-sur-Sambre, Belgium
| | - Eric Romers
- Research, Technology & Engineering (RTE), INEOS Inovyn, Rue Solvay 39, B-5190 Jemeppe-sur-Sambre, Belgium
| | - Steven De Meester
- Department of Green Chemistry and Technology, Ghent University, Graaf Karel de Goedelaan 5, B-8500, Kortrijk, Belgium
| | - Kevin M Van Geem
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark-Zwijnaarde 125, B-9052, Belgium.
| |
Collapse
|
5
|
Lu Q, Tang D, Liang Q, Wang S. Biotechnology for the degradation and upcycling of traditional plastics. ENVIRONMENTAL RESEARCH 2024; 263:120140. [PMID: 39395553 DOI: 10.1016/j.envres.2024.120140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/14/2024]
Abstract
Traditional plastics, predominantly derived from petrochemicals, are extensively utilized in modern industry and daily life. However, inadequate management and disposal practices have resulted in widespread environmental contamination, with polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, and polystyrene being the most prevalent pollutants. Biological methods for plastic degradation have garnered significant attention due to their cost-effectiveness and potential for resource recovery, positioning them as promising strategies for sustainable plastic waste management. While polyethylene terephthalate, characterized by its relatively less stable C-O bonds, has been extensively studied and demonstrates significant potential for biodegradation. In contrast, the biodegradation of other plastics remains a significant challenge due to the inherent stability of their C-C backbone structures. This review comprehensively examines the state-of-the-art biotechnology for treating these traditional plastics, focusing on: (1) the roles of specific microorganisms and enzymes, their taxonomic classifications, and the metabolic pathways involved in plastic biodegradation; and (2) a proposed two-stage hybrid approach integrating physicochemical and biological processes to enhance the biodegradation or upcycling of these traditional plastics. Additionally, the review highlights the critical role of multi-omics approaches and tailored strategies in enhancing the efficiency of plastic biodegradation while examining the impact of plastic molecular structures and additives on their degradation potential. It also addresses key challenges and delineates future research directions to foster the development of innovative biological methods for the effective and sustainable management of plastic waste.
Collapse
Affiliation(s)
- Qihong Lu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Daoyu Tang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qi Liang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shanquan Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Yang J, Duan A, Li Z, Chen Z, Xu Q, Huang T, Liu W, Wang A. Critical advances and assessment on chemo-biological conversions of waste polyvinyl chloride. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177170. [PMID: 39486540 DOI: 10.1016/j.scitotenv.2024.177170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
The widespread production and consumption of polyvinyl chloride (PVC) present significant ecological challenges, including chronic exposure to humans, microplastic releases, and climate changes. This review aims to provide a comprehensive overview of innovative strategies for PVC waste conversions through biotic degradation and chemical approaches (e.g. thermolysis, photocatalysis, and electrocatalysis). We critically analyze the challenges and opportunities associated with each recycling/upcycling method of PVC, evaluating five representative techniques-microbial degradation, thermolysis, photocatalysis, and electrocatalysis, based on their environmental impacts, economic viability, and industrial relevance. While microbial degradation shows promise for energy-efficient PVC degradation, it lacks effective metabolic pathways and high-efficiency enzymes. Thermolysis emerges as the most recommended method for PVC recycling/upcycling due to its ease of implementation, operational simplicity, and valuable products, and acceptance for large-scale applications. This review is expected to advance strategies for mitigating plastic wastes and fostering circular economies.
Collapse
Affiliation(s)
- Jiaqi Yang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Aochuan Duan
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Zhenglin Chen
- Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The FifthAffliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Qiongying Xu
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Tianyi Huang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wenzong Liu
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Aijie Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
7
|
Kumar A, Lakhawat SS, Singh K, Kumar V, Verma KS, Dwivedi UK, Kothari SL, Malik N, Sharma PK. Metagenomic analysis of soil from landfill site reveals a diverse microbial community involved in plastic degradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135804. [PMID: 39276741 DOI: 10.1016/j.jhazmat.2024.135804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/23/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
In this study, we have investigated microbial communities structure and function using high throughput amplicon sequencing and whole metagenomic sequencing of DNA extracted from different depths of a plastic-laden landfill site. With diverse taxonomic groups inhabiting the plastic-rich soil, our study demonstrates the remarkable adaptability of microbes to use this new substrate as a carbon source. FTIR spectroscopic analysis of soil indicated degradation of plastic as perceived from the carbonyl index of 0.16, 0.72, and 0.44 at 0.6, 0.9 and 1.2 m depth, respectively. Similarly, water contact angles of 108.7 degree, 99.7 degree, 62.7 degree, and 77.8 degree of plastic pieces collected at 0.3, 0.6, 0.9, and 1.2 m depths respectively showed increased wettability and hydrophilicity of the plastic. Amplicon analysis of 16S and 18 S rRNA revealed a high abundance of several plastic-degrading bacterial groups, including Pseudomonas, Rhizobiales, Micrococcaceae, Chaetomium, Methylocaldum, Micromonosporaceae, Rhodothermaceae and fungi, including Trichoderma, Aspergillus, Candida at 0.9 m. The co-existence of specific microbial groups at different depths of landfill site indicates importance of bacterial and fungal interactions for plastic. Whole metagenome analysis of soil sample at 0.9 m depth revealed a high abundance of genes encoding enzymes that participate in the biodegradation of PVC, polyethylene, PET, and polyurethane. Curation of the pathways related to the degradation of these materials provided a blueprint for plastic biodegradation in this ecosystem. Altogether, our study has highlighted the importance of microbial cooperation for the biodegradation of pollutants. Our metagenome-based investigation supports the current perception that consortia of fungi-bacteria are preferable to axenic cultures for effective bioremediation of the environment.
Collapse
Affiliation(s)
- Akhilesh Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | | | - Kashmir Singh
- Department of Biotechnology, Panjab University Chandigarh, India
| | - Vikram Kumar
- Amity Institute of Pharmacy, Amity University Rajasthan, Jaipur, Rajasthan, India
| | | | | | - S L Kothari
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Naveen Malik
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India.
| | - Pushpender Kumar Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India; Amity Centre for Nanobiotechnology and Nanomedicine, Amity University Rajasthan, Jaipur, India.
| |
Collapse
|
8
|
Qian N, Wu Y, Zhang W, Yang J, Bhadauria V, Zhang G, Yan J, Zhao W. Three New Species and Five New Host Records from Chaetomiaceae with Anti-Phytopathogenic Potential from Cover Crops Astragalus sinicus and Vicia villosa. J Fungi (Basel) 2024; 10:776. [PMID: 39590695 PMCID: PMC11595803 DOI: 10.3390/jof10110776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Cover crops, typically planted during off-seasons and requiring less agronomic manipulation, may provide abundant fungal resources. Certain species of Chaetomiaceae could serve as potential agents for controlling plant diseases and developing bioorganic fertilizers. Eight species from five genera of Chaetomiaceae were identified from healthy Astragalus sinicus and Vicia villosa, two major cover crops, through multigene phylogenetic analysis, morphological identification, and pairwise homoplasy index testing. The identified species comprise three new species: Achaetomium astragali, Subramaniula henanensis, and S. sichuanensis, as well as five known but new host record species: Botryotrichum murorum, Chaetomium coarctatum, C. pseudocochliodes, C. pseudoglobosum, and Collariella pachypodioides. Dual culture tests revealed that isolates of all eight Chaetomiaceae species exhibited antagonistic effects on multiple phytopathogens. Among the identified fungi, the NSJA2 isolate, belonging to C. coarctatum, exhibited significant relative inhibition effects on 14 out of 15 phytopathogens tested in this study, indicating its broad-spectrum antagonistic effects. Additionally, NSJA2 exhibited excellent salt tolerance. Overall, our study has identified multiple fungi with anti-phytopathogens potential, among which NSJA2 exhibits high potential for practical application. This finding paves the way for further exploration and exploitation of NSJA2 as a promising biocontrol agent.
Collapse
Affiliation(s)
- Ning Qian
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing 100193, China; (N.Q.); (Y.W.); (J.Y.)
| | - Yuhong Wu
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing 100193, China; (N.Q.); (Y.W.); (J.Y.)
| | - Wei Zhang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Jun Yang
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing 100193, China; (N.Q.); (Y.W.); (J.Y.)
| | - Vijai Bhadauria
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing 100193, China; (V.B.); (G.Z.)
| | - Guozhen Zhang
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing 100193, China; (V.B.); (G.Z.)
| | - Jiye Yan
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Wensheng Zhao
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing 100193, China; (N.Q.); (Y.W.); (J.Y.)
| |
Collapse
|
9
|
Garcia Simão RDC, Rocha PMC, Martins JTK, Turkiewicz M, Plewka J, da-Conceição Silva JL, Maller A, Kadowaki MK, Costa-Júnior ÁPS. Exploring biodegradable alternatives: microorganism-mediated plastic degradation and environmental policies for sustainable plastic management. Arch Microbiol 2024; 206:457. [PMID: 39499332 DOI: 10.1007/s00203-024-04170-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/05/2024] [Accepted: 10/12/2024] [Indexed: 11/07/2024]
Abstract
Plastics offer versatility, durability and low production costs, but they also pose environmental and health risks due to improper disposal, accumulation in water bodies, low recycling rates and temporal action that causes physicochemical changes in plastics and the release of toxic products to animal health and nature. Some microorganisms may play crucial roles in improving plastic waste management in the future. Cunningamella echinulata has been identified as a promising candidate that remains viable for long periods and produces a cutinase that is capable of degrading plastic. Other recent approaches involving the use of microorganisms are discussed in this review. However, there does not seem to be a single science that is efficient or most appropriate for solving the problem of plastic pollution on the planet at present. Regulations, especially the implementation of different laws that address the entire plastic cycle in different countries, such as Brazil, the USA, China and the European Union, play important roles in the management of this waste and can contribute to reducing this problem. In the context of the transversality of the information compiled here, the current limitations are discussed, and an effective plan is proposed to reduce plastic pollution. Although it is challenging, it involves implementing legislation, promoting sustainable alternatives, improving collection and recycling systems, encouraging reuse, supporting research and technological innovation, promoting corporate responsibility, collaborating globally, raising public awareness, optimizing waste management and, above all, continuously monitoring the progress of actions based on measurable metrics.
Collapse
Affiliation(s)
- Rita de Cássia Garcia Simão
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Unioeste, Cascavel, PR, Brazil.
| | - Paula Maria Carneiro Rocha
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Unioeste, Cascavel, PR, Brazil
| | - Júlia Thays Kava Martins
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Unioeste, Cascavel, PR, Brazil
| | - Maurício Turkiewicz
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Unioeste, Cascavel, PR, Brazil
| | - Jacqueline Plewka
- Hospital Universitário do Oeste do Paraná, HUOP, Universidade Estadual do Oeste do Paraná, Unioeste, Cascavel, PR, Brazil
| | - José Luis da-Conceição Silva
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Unioeste, Cascavel, PR, Brazil
| | - Alexandre Maller
- Laboratório de Bioquímica de Microrganismos, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste Do Paraná, UNIOESTE, Cascavel, PR, Brazil
| | - Marina Kimiko Kadowaki
- Laboratório de Bioquímica de Microrganismos, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste Do Paraná, UNIOESTE, Cascavel, PR, Brazil
| | | |
Collapse
|
10
|
Fernández-Sanmartín P, Robledo-Mahón T, Requena-Menéndez A, Martínez-Cortizas A, Aranda E. ATR-FTIR characterisation of daily-use plastics mycodegradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117232. [PMID: 39447295 DOI: 10.1016/j.ecoenv.2024.117232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/26/2024]
Abstract
Synthetic polymers, such as plastics, have permeated all aspects of modern life, and nowadays plastic pollution is a major environmental problem. Mycodegradation of these polymers could represent part of the solution to this problem since it calls on a broad toolbox of enzymes and applies non-enzymatic mechanisms to degrade and deteriorate recalcitrant materials. However, not enough is known about this ability for most of the representatives of the fungal kingdom. Another bottleneck is the harmonisation of technologies to analyse plastic degradation. This work involved the design of a biodegradation experiment, where the potential of four fungi representative of Dikarya and Penicillia (Funalia floccosa, Trametes versicolor, Pycnoporus cinnabarinus and Penicillium oxalicum) were tested on their ability to deteriorate the six most used plastics based on gravimetry and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). The following correlation between changes in the band signals and the loss of mass after treatment was determined using polyethylene terephthalate, polypropylene, polyethylene, poly vinyl chloride, high density polyethylene, low density polyethylene and nylon. After treatment, the decrease in absorbance of the characteristic bands of the plastics was taken as an indication of the degradation of the corresponding bonds/functionalities. The four fungi used could transform CH, CH2, CH3, CO, CO, CN, NH and CCl bonds. The best result was obtained using the fungus F. floccosa with 90-day treatments for high density polyethylene (∼ 62.0 %), low density polyethylene (∼ 23.6 %) and nylon (∼ 35.6 %). Therefore, mycodegradation could open up new doors in the fight against plastic pollution.
Collapse
Affiliation(s)
- Paola Fernández-Sanmartín
- Institute of Water Research, Department of Microbiology, University of Granada, Ramón y Cajal, 4. Bldg. Fray Luis, Granada 18071, Spain; Research Center in Environmental Technologies (CRETUS,) EcoPast (GI-1553), Facultade de Bioloxía - Universidade de Santiago de Compostela, 15782, Spain
| | - Tatiana Robledo-Mahón
- Institute of Water Research, Department of Microbiology, University of Granada, Ramón y Cajal, 4. Bldg. Fray Luis, Granada 18071, Spain.
| | - Alejandro Requena-Menéndez
- Institute of Water Research, Department of Microbiology, University of Granada, Ramón y Cajal, 4. Bldg. Fray Luis, Granada 18071, Spain
| | - Antonio Martínez-Cortizas
- Research Center in Environmental Technologies (CRETUS,) EcoPast (GI-1553), Facultade de Bioloxía - Universidade de Santiago de Compostela, 15782, Spain
| | - Elisabet Aranda
- Institute of Water Research, Department of Microbiology, University of Granada, Ramón y Cajal, 4. Bldg. Fray Luis, Granada 18071, Spain
| |
Collapse
|
11
|
Shafana Farveen M, Narayanan R. Omic-driven strategies to unveil microbiome potential for biodegradation of plastics: a review. Arch Microbiol 2024; 206:441. [PMID: 39432094 DOI: 10.1007/s00203-024-04165-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/28/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
Plastic waste accumulation has lately been identified as the leading and pervasive environmental concern, harming all living beings, natural habitats, and the global market. Given this issue, developing ecologically friendly solutions, such as biodegradation instead of standard disposal, is critical. To effectively address and develop better strategies, it is critical to understand the inter-relationship between microorganisms and plastic, the role of genes and enzymes involved in this process. However, the complex nature of microbial communities and the diverse mechanisms involved in plastic biodegradation have hindered the development of efficient plastic waste degradation strategies. Omics-driven approaches, encompassing genomics, transcriptomics and proteomics have revolutionized our understanding of microbial ecology and biotechnology. Therefore, this review explores the application of omics technologies in plastic degradation studies and discusses the key findings, challenges, and future prospects of omics-based approaches in identifying novel plastic-degrading microorganisms, enzymes, and metabolic pathways. The integration of omics technologies with advanced molecular technologies such as the recombinant DNA technology and synthetic biology would guide in the optimization of microbial consortia and engineering the microbial systems for enhanced plastic biodegradation under various environmental conditions.
Collapse
Affiliation(s)
- Mohamed Shafana Farveen
- Department of Genetic Engineering, College of Engineering and Technology (CET), SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu, 603 203, India
| | - Rajnish Narayanan
- Department of Genetic Engineering, College of Engineering and Technology (CET), SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu, 603 203, India.
| |
Collapse
|
12
|
Soni A, Chakraborty S, Das PK, Saha AK. Selection of sustainable construction material from recycled waste plastics by q-rung orthopair fuzzy SWARA-MABAC approach. CHEMOSPHERE 2024; 364:143166. [PMID: 39209034 DOI: 10.1016/j.chemosphere.2024.143166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 06/14/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Recycling of waste plastics and agro-industrial waste for the development of sustainable polymeric composites is recognized as a viable approach to overcome the detrimental environmental effects of plastics waste. Despite of immense potential of sustainable composites in the Circular Economy (CE), its implementation is still insignificant due to the lack of an effective material selection approach. The existence of several influencing aspects in the process of material selection considers it a multi-criteria decision making (MCDM) problem. In the present work, an Aggregation Operator (AO) based integrated Stepwise Weight Assessment Ratio Analysis (SWARA) and Multi-attributive Border Approximation Area Comparison (MABAC) has been proposed to deal with the issues of material selection for polymer based sustainable composites. Moreover, q-rung orthopair fuzzy numbers (q-ROPFNs) have been implemented to tackle the uncertainty in the information. The effectiveness of the proposed approach has been confirmed by different comparative and sensitivity investigations. The developed composites have shown excellent properties whereas the responses of the materials vary invariably with compositions. The proposed method has identified the amalgamation of 10 wt percentage of rice husk ash and 10 wt percentage of sand with 80 wt percentage of high-density polyethylene (HDPE) as an appropriate material for the development of sustainable floor tiles as the composites resulted to optimum mechanical performances and minimum abrasive wear. The proposed model gives reliable and robust results and is sensitive to the criteria weights and mathematical parameters. The outcome of the research has exposed that the suggested mathematical approach can be effectively applied for material selection of sustainable polymeric composites for different applications.
Collapse
Affiliation(s)
- Ashish Soni
- Department of Mechanical Engineering, National Institute of Technology Agartala, Tripura, 799046, India; Centre for Additive Manufacturing, Chennai Institute of Technology, Chennai, Tamil Nadu, 600069, India.
| | - Sayanta Chakraborty
- Department of Mathematics, National Institute of Technology Agartala, Tripura, 799046, India.
| | - Pankaj Kumar Das
- Department of Mechanical Engineering, National Institute of Technology Agartala, Tripura, 799046, India.
| | - Apu Kumar Saha
- Department of Mathematics, National Institute of Technology Agartala, Tripura, 799046, India.
| |
Collapse
|
13
|
Wu J, Wang J, Zeng Y, Sun X, Yuan Q, Liu L, Shen X. Biodegradation: the best solution to the world problem of discarded polymers. BIORESOUR BIOPROCESS 2024; 11:79. [PMID: 39110313 PMCID: PMC11306678 DOI: 10.1186/s40643-024-00793-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
The widespread use of polymers has made our lives increasingly convenient by offering a more convenient and dependable material. However, the challenge of efficiently decomposing these materials has resulted in a surge of polymer waste, posing environment and health risk. Currently, landfill and incineration treatment approaches have notable shortcomings, prompting a shift towards more eco-friendly and sustainable biodegradation approaches. Biodegradation primarily relies on microorganisms, with research focusing on both solitary bacterial strain and multi-strain communities for polymer biodegradation. Furthermore, directed evolution and rational design of enzyme have significantly contributed to the polymer biodegradation process. However, previous reviews often undervaluing the role of multi-strain communities. In this review, we assess the current state of these three significant fields of research, provide practical solutions to issues with polymer biodegradation, and outline potential future directions for the subject. Ultimately, biodegradation, whether facilitated by single bacteria, multi-strain communities, or engineered enzymes, now represents the most effective method for managing waste polymers.
Collapse
Affiliation(s)
- Jun Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yicheng Zeng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
14
|
Khatua S, Simal-Gandara J, Acharya K. Myco-remediation of plastic pollution: current knowledge and future prospects. Biodegradation 2024; 35:249-279. [PMID: 37665521 PMCID: PMC10950981 DOI: 10.1007/s10532-023-10053-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023]
Abstract
To date, enumerable fungi have been reported to participate in the biodegradation of several notorious plastic materials following their isolation from soil of plastic-dumping sites, marine water, waste of mulch films, landfills, plant parts and gut of wax moth. The general mechanism begins with formation of hydrophobin and biofilm proceding to secretion of specific plastic degarding enzymes (peroxidase, hydrolase, protease and urease), penetration of three dimensional substrates and mineralization of plastic polymers into harmless products. As a result, several synthetic polymers including polyethylene, polystyrene, polypropylene, polyvinyl chloride, polyurethane and/or bio-degradable plastics have been validated to deteriorate within months through the action of a wide variety of fungal strains predominantly Ascomycota (Alternaria, Aspergillus, Cladosporium, Fusarium, Penicillium spp.). Understanding the potential and mode of operation of these organisms is thus of prime importance inspiring us to furnish an up to date view on all the presently known fungal strains claimed to mitigate the plastic waste problem. Future research henceforth needs to be directed towards metagenomic approach to distinguish polymer degrading microbial diversity followed by bio-augmentation to build fascinating future of waste disposal.
Collapse
Affiliation(s)
- Somanjana Khatua
- Department of Botany, Faculty of Science, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, 32004, Ourense, Spain.
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| |
Collapse
|
15
|
Ranauda MA, Zuzolo D, Maisto M, Tartaglia M, Scarano P, Prigioniero A, Sciarrillo R, Guarino C. Microplastics affect soil-plant system: Implications for rhizosphere biology and fitness of sage (Salvia officinalis L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123656. [PMID: 38408506 DOI: 10.1016/j.envpol.2024.123656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 02/28/2024]
Abstract
A mesocosm experiment was set-up to investigate the effects of low-density polyethylene (LDPE) fragments deriving from plastic film on soil ecology, rhizosphere and plant (Salvia officinalis L.) fitness. The internal transcribed spacer (ITS) and 16S metagenomic analysis was adopted to evaluate taxonomic and functional shifts of both soil and rhizosphere under the influence of microplastics (MPs). Photosynthetic parameters and enzymes involved in oxidative stress were assessed to unveil the plant physiological state. MP fragments were analysed by scanning electron microscope (SEM) and metagenomics to investigate the plastisphere. Microbial biomarkers of MPs pollution were identified in soil and rhizosphere, reinforcing the concept of molecular biomonitoring. Overall, Bacillus, Nocardioides and Streptomyces genera are bacterial biomarkers of MPs pollution in soil whereas Aspergillus, Fusarium and Trichoderma genera, and Nectriaceae family are fungal biomarkers of MPs polluted soil. The data show that the presence of MPs promotes the abundance of taxa involved in the soil N cycle, but simultaneously reduces the endophytic interaction capability and enhances pathogen related functions at the rhizosphere level. A significant decrease in chlorophyll levels and increase of oxidative stress enzymes was observed in plants grown in MPs-polluted soil. The SEM observations of MPs fragments revealed a complex colonisation, where bacteria (Bacillus in MPSo and Microvirga in MPRz) and fungi (Aspergillus in MPSo and Trichoderma in MPRz) represent the main colonisers. The results demonstrate that the presence of MPs causes changes in the soil and rhizosphere microbial community and functions leading to negative effects on plant fitness.
Collapse
Affiliation(s)
- Maria Antonietta Ranauda
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100, Benevento, Italy
| | - Daniela Zuzolo
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100, Benevento, Italy.
| | - Maria Maisto
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100, Benevento, Italy
| | - Maria Tartaglia
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100, Benevento, Italy
| | - Pierpaolo Scarano
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100, Benevento, Italy
| | - Antonello Prigioniero
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100, Benevento, Italy
| | - Rosaria Sciarrillo
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100, Benevento, Italy
| | - Carmine Guarino
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100, Benevento, Italy
| |
Collapse
|
16
|
Zahid H, Afzal N, Arif MM, Zahid M, Nawab S, Qasim MM, Alvi FN, Nazir S, Perveen I, Abbas N, Saleem Y, Mazhar S, Nawaz S, Faridi TA, Awan HMA, Syed Q, Abidi SHI. Microorganism-mediated biodegradation for effective management and/or removal of micro-plastics from the environment: a comprehensive review. Arch Microbiol 2024; 206:198. [PMID: 38558101 DOI: 10.1007/s00203-024-03904-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 04/04/2024]
Abstract
Micro- plastics (MPs) pose significant global threats, requiring an environment-friendly mode of decomposition. Microbial-mediated biodegradation and biodeterioration of micro-plastics (MPs) have been widely known for their cost-effectiveness, and environment-friendly techniques for removing MPs. MPs resistance to various biocidal microbes has also been reported by various studies. The biocidal resistance degree of biodegradability and/or microbiological susceptibility of MPs can be determined by defacement, structural deformation, erosion, degree of plasticizer degradation, metabolization, and/or solubilization of MPs. The degradation of microplastics involves microbial organisms like bacteria, mold, yeast, algae, and associated enzymes. Analytical and microbiological techniques monitor microplastic biodegradation, but no microbial organism can eliminate microplastics. MPs can pose environmental risks to aquatic and human life. Micro-plastic biodegradation involves fragmentation, assimilation, and mineralization, influenced by abiotic and biotic factors. Environmental factors and pre-treatment agents can naturally degrade large polymers or induce bio-fragmentation, which may impact their efficiency. A clear understanding of MPs pollution and the microbial degradation process is crucial for mitigating its effects. The study aimed to identify deteriogenic microorganism species that contribute to the biodegradation of micro-plastics (MPs). This knowledge is crucial for designing novel biodeterioration and biodegradation formulations, both lab-scale and industrial, that exhibit MPs-cidal actions, potentially predicting MPs-free aquatic and atmospheric environments. The study emphasizes the urgent need for global cooperation, research advancements, and public involvement to reduce micro-plastic contamination through policy proposals and improved waste management practices.
Collapse
Affiliation(s)
- Hassan Zahid
- Department of Public Health, University of Health Sciences, Lahore, Pakistan
| | - Nimra Afzal
- Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Maaz Arif
- Department of Medical Education, University of Health Sciences, Lahore, Pakistan
| | - Mahnoor Zahid
- Department of Biochemistry and Molecular Biology, University of Gujrat, Gujrat, Pakistan
| | - Samia Nawab
- Government Graduate College (W), Township, Lahore, Pakistan
| | | | | | | | - Ishrat Perveen
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, Pakistan.
| | - Naaz Abbas
- Minhaj University Lahore, Lahore, Pakistan
| | - Yasar Saleem
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, Pakistan
| | - Sania Mazhar
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, Pakistan
| | - Shaista Nawaz
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, Pakistan
| | | | | | - Quratulain Syed
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, Pakistan
| | - Syed Hussain Imam Abidi
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore, Pakistan
| |
Collapse
|
17
|
Shah MZ, Quraishi M, Sreejith A, Pandit S, Roy A, Khandaker MU. Sustainable degradation of synthetic plastics: A solution to rising environmental concerns. CHEMOSPHERE 2024; 352:141451. [PMID: 38368957 DOI: 10.1016/j.chemosphere.2024.141451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/30/2024] [Accepted: 02/10/2024] [Indexed: 02/20/2024]
Abstract
Plastics have a significant role in various sectors of the global economy since they are widely utilized in agriculture, architecture, and construction, as well as health and consumer goods. They play a crucial role in several industries as they are utilized in the production of diverse things such as defense materials, sanitary wares, tiles, plastic bottles, artificial leather, and various other household goods. Plastics are utilized in the packaging of food items, medications, detergents, and cosmetics. The overconsumption of plastics presents a significant peril to both the ecosystem and human existence on Earth. The accumulation of plastics on land and in the sea has sparked interest in finding ways to breakdown these polymers. It is necessary to employ suitable biodegradable techniques to decrease the accumulation of plastics in the environment. To address the environmental issues related to plastics, it is crucial to have a comprehensive understanding of the interaction between microorganisms and polymers. A wide range of creatures, particularly microbes, have developed techniques to survive and break down plastics. This review specifically examines the categorization of plastics based on their thermal and biodegradable properties, as well as the many types of degradation and biodegradation. It also discusses the various types of degradable plastics, the characterization of biodegradation, and the factors that influence the process of biodegradation. The plastic breakdown and bioremediation capabilities of these microbes make them ideal for green chemistry applications aimed at removing hazardous polymers from the ecosystem.
Collapse
Affiliation(s)
- Masirah Zahid Shah
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, 410206, India
| | - Marzuqa Quraishi
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, 410206, India
| | - Anushree Sreejith
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, 410206, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201306, India.
| | - Arpita Roy
- Department of Biotechnology, Sharda School of Engineering & Technology, Sharda University, Greater Noida, India.
| | - Mayeen Uddin Khandaker
- Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia; Faculty of Graduate Studies, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| |
Collapse
|
18
|
Ali Z, Abdullah M, Yasin MT, Amanat K, Ahmad K, Ahmed I, Qaisrani MM, Khan J. Organic waste-to-bioplastics: Conversion with eco-friendly technologies and approaches for sustainable environment. ENVIRONMENTAL RESEARCH 2024; 244:117949. [PMID: 38109961 DOI: 10.1016/j.envres.2023.117949] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/24/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Petrochemical-based synthetic plastics poses a threat to humans, wildlife, marine life and the environment. Given the magnitude of eventual depletion of petrochemical sources and global environmental pollution caused by the manufacturing of synthetic plastics such as polyethylene (PET) and polypropylene (PP), it is essential to develop and adopt biopolymers as an environment friendly and cost-effective alternative to synthetic plastics. Research into bioplastics has been gaining traction as a way to create a more sustainable and eco-friendlier environment with a reduced environmental impact. Biodegradable bioplastics can have the same characteristics as traditional plastics while also offering additional benefits due to their low carbon footprint. Therefore, using organic waste from biological origin for bioplastic production not only reduces our reliance on edible feedstock but can also effectively assist with solid waste management. This review aims at providing an in-depth overview on recent developments in bioplastic-producing microorganisms, production procedures from various organic wastes using either pure or mixed microbial cultures (MMCs), microalgae, and chemical extraction methods. Low production yield and production costs are still the major bottlenecks to their deployment at industrial and commercial scale. However, their production and commercialization pose a significant challenge despite such potential. The major constraints are their production in small quantity, poor mechanical strength, lack of facilities and costly feed for industrial-scale production. This review further explores several methods for producing bioplastics with the aim of encouraging researchers and investors to explore ways to utilize these renewable resources in order to commercialize degradable bioplastics. Challenges, future prospects and Life cycle assessment of bioplastics are also highlighted. Utilizing a variety of bioplastics obtained from renewable and cost-effective sources (e.g., organic waste, agro-industrial waste, or microalgae) and determining the pertinent end-of-life option (e.g., composting or anaerobic digestion) may lead towards the right direction that assures the sustainable production of bioplastics.
Collapse
Affiliation(s)
- Zain Ali
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan
| | - Muhammad Abdullah
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan
| | - Muhammad Talha Yasin
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Kinza Amanat
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Khurshid Ahmad
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province, 266404, P.R. China.
| | - Ishfaq Ahmed
- Haide College, Ocean University of China, Laoshan Campus, Qingdao, Shandong Province, 266100, PR China
| | - Muther Mansoor Qaisrani
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan
| | - Jallat Khan
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan; Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), 64200, Rahim Yar Khan, Pakistan.
| |
Collapse
|
19
|
Kudzin MH, Piwowarska D, Festinger N, Chruściel JJ. Risks Associated with the Presence of Polyvinyl Chloride in the Environment and Methods for Its Disposal and Utilization. MATERIALS (BASEL, SWITZERLAND) 2023; 17:173. [PMID: 38204025 PMCID: PMC10779931 DOI: 10.3390/ma17010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Plastics have recently become an indispensable part of everyone's daily life due to their versatility, durability, light weight, and low production costs. The increasing production and use of plastics poses great environmental problems due to their incomplete utilization, a very long period of biodegradation, and a negative impact on living organisms. Decomposing plastics lead to the formation of microplastics, which accumulate in the environment and living organisms, becoming part of the food chain. The contamination of soils and water with poly(vinyl chloride) (PVC) seriously threatens ecosystems around the world. Their durability and low weight make microplastic particles easily transported through water or air, ending up in the soil. Thus, the problem of microplastic pollution affects the entire ecosystem. Since microplastics are commonly found in both drinking and bottled water, humans are also exposed to their harmful effects. Because of existing risks associated with the PVC microplastic contamination of the ecosystem, intensive research is underway to develop methods to clean and remove it from the environment. The pollution of the environment with plastic, and especially microplastic, results in the reduction of both water and soil resources used for agricultural and utility purposes. This review provides an overview of PVC's environmental impact and its disposal options.
Collapse
Affiliation(s)
- Marcin H. Kudzin
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Łódź, Poland; (M.H.K.); (D.P.); (N.F.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Brzezińska 5/15, 92-103 Łódź, Poland
| | - Dominika Piwowarska
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Łódź, Poland; (M.H.K.); (D.P.); (N.F.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, 21/23 Jana Matejki Str., 90-237 Łódź, Poland
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Str., 90-232 Łódź, Poland
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, 3 Tylna Str., 90-364 Łódź, Poland
| | - Natalia Festinger
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Łódź, Poland; (M.H.K.); (D.P.); (N.F.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Brzezińska 5/15, 92-103 Łódź, Poland
| | - Jerzy J. Chruściel
- Łukasiewicz Research Network—Lodz Institute of Technology, 19/27 Marii Sklodowskiej-Curie Str., 90-570 Łódź, Poland; (M.H.K.); (D.P.); (N.F.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Brzezińska 5/15, 92-103 Łódź, Poland
| |
Collapse
|
20
|
Swiontek Brzezinska M, Kaczmarek-Szczepańska B, Dąbrowska GB, Michalska-Sionkowska M, Dembińska K, Richert A, Pejchalová M, Kumar SB, Kalwasińska A. Application Potential of Trichoderma in the Degradation of Phenolic Acid-Modified Chitosan. Foods 2023; 12:3669. [PMID: 37835322 PMCID: PMC10572696 DOI: 10.3390/foods12193669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The aim of the study was to determine the potential use of fungi of the genus Trichoderma for the degradation of phenolic acid-modified chitosan in compost. At the same time, the enzymatic activity in the compost was checked after the application of a preparation containing a suspension of the fungi Trichoderma (spores concentration 105/mL). The Trichoderma strains were characterized by high lipase and aminopeptidase activity, chitinase, and β-1,3-glucanases. T. atroviride TN1 and T. citrinoviride TN3 metabolized the modified chitosan films best. Biodegradation of modified chitosan films by native microorganisms in the compost was significantly less effective than after the application of a formulation composed of Trichoderma TN1 and TN3. Bioaugmentation with a Trichoderma preparation had a significant effect on the activity of all enzymes in the compost. The highest oxygen consumption in the presence of chitosan with tannic acid film was found after the application of the consortium of these strains (861 mg O2/kg after 21 days of incubation). Similarly, chitosan with gallic acid and chitosan with ferulic acid were found after the application of the consortium of these strains (849 mgO2/kg and 725 mg O2/kg after 21 days of incubation). The use of the Trichoderma consortium significantly increased the chitinase activity. The application of Trichoderma also offers many possibilities in sustainable agriculture. Trichoderma can not only degrade chitosan films, but also protect plants against fungal pathogens by synthesizing chitinases and β-1,3 glucanases with antifungal properties.
Collapse
Affiliation(s)
- Maria Swiontek Brzezinska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland; (M.M.-S.); (K.D.); (S.B.K.); (A.K.)
| | - Beata Kaczmarek-Szczepańska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Grażyna B. Dąbrowska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland; (G.B.D.); (A.R.)
| | - Marta Michalska-Sionkowska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland; (M.M.-S.); (K.D.); (S.B.K.); (A.K.)
| | - Katarzyna Dembińska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland; (M.M.-S.); (K.D.); (S.B.K.); (A.K.)
| | - Agnieszka Richert
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland; (G.B.D.); (A.R.)
| | - Marcela Pejchalová
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Sudentska 573, 53210 Pardubice, Czech Republic;
| | - Sweta Binod Kumar
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland; (M.M.-S.); (K.D.); (S.B.K.); (A.K.)
| | - Agnieszka Kalwasińska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland; (M.M.-S.); (K.D.); (S.B.K.); (A.K.)
| |
Collapse
|
21
|
Le VR, Nguyen MK, Nguyen HL, Lin C, Rakib MRJ, Thai VA, Le VG, Malafaia G, Idris AM. Organic composts as A vehicle for the entry of microplastics into the environment: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 892:164758. [PMID: 37308024 DOI: 10.1016/j.scitotenv.2023.164758] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Plastic pollution is a widespread issue that poses a threat to agroecosystems. Recent data on microplastic (MP) pollution from compost and its application to soil have highlighted the potential impact of micropollutants that may be transferred from compost. Thus, we aim with this review to elucidate the distribution-occurrence, characterization, fate/transport, and potential risk of MPs from organic compost to gain comprehensive knowledge and mitigate the adverse impacts of compost application. The concentration of MPs in compost was up to thousands of items/kg. Among micropollutants, fibers, fragments, and films are the most common, with small MPs having a higher potential to absorb other pollutants and cause harm to organisms. Various synthetic polymers, including polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS), polyvinyl chloride (PVC), polyester (PES), and acrylic polymers (AP), have been widely used of plastic items. MPs are emerging pollutants that can have diverse effects on soil ecosystems, as they can transfer potential pollutants from MPs to compost and then to the soil. Following the microbial degradation scheme, the transfer chain from plastics to compost to soil can be broken down into main stages, i.e., colonization - (bio)fragmentation - assimilation - and mineralization. Microorganisms and adding biochar play an essential role during composting, which can be an effective solution to enhance MP degradation. Findings have shown that stimulating free radical generation could promote the biodegradation efficacy of MPs and possibly remove their occurrence in compost, thereby reducing their contribution to ecosystem pollution. Furthermore, future recommendations were discussed to reduce ecosystem risks and health challenges.
Collapse
Affiliation(s)
- Van-Re Le
- Ho Chi Minh City University of Food Industry (HUFI), 140 Le Trong Tan Street, Tan Phu District, Ho Chi Minh City 700000, Viet Nam
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Hoang-Lam Nguyen
- Department of Civil Engineering, McGill University, Montreal, Canada
| | - Chitsan Lin
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
| | - Van-Anh Thai
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Van-Giang Le
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi 111000, Viet Nam
| | - Guilherme Malafaia
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil.
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, 61431 Abha, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
22
|
Ren SY, Ni HG. Biodeterioration of Microplastics by Bacteria Isolated from Mangrove Sediment. TOXICS 2023; 11:toxics11050432. [PMID: 37235247 DOI: 10.3390/toxics11050432] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/18/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
As a kind of ubiquitous emerging pollutant, microplastics (MPs) are persistent in the environment and have a large impact on the ecosystem. Fortunately, some microorganisms in the natural environment can degrade these persistent MPs without creating secondary pollution. In this study, 11 different MPs were selected as carbon sources to screen the microorganisms for degradable MPs and explore the possible mechanism of degradation. After repeated domestication, a relatively stable microbial community was obtained after approximately 30 days later. At this time, the biomass of the medium ranged from 88 to 699 mg/L. The growth of bacteria with different MPs ranged from 0.030 to 0.090 optical density (OD) 600 of the first generation to 0.009-0.081 OD 600 of the third generation. The weight loss method was used to determine the biodegradation ratios of different MPs. The mass losses of polyhydroxybutyrate (PHB), polyethylene (PE), and polyhydroxyalkanoate (PHA) were relatively large, at 13.4%, 13.0%, and 12.7%, respectively; these figures for polyvinyl chloride (PVC) and polystyrene (PS) were relatively slight, 8.90% and 9.10%, respectively. The degradation half-life (t1/2) of 11 kinds of MPs ranges from 67 to 116 days. Among the mixed strains, Pseudomonas sp., Pandoraea sp., and Dyella sp. grew well. The possible degradation mechanism is that such microbial aggregates can adhere to the surface of MPs and form complex biofilms, secrete extracellular and intracellular enzymes, etc., break the hydrolyzable chemical bonds or ends of molecular chains by attacking the plastic molecular chains, and produce monomers, dimers, and other oligomers, leading to the reduction of the molecular weight of the plastic itself.
Collapse
Affiliation(s)
- Shu-Yan Ren
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Hong-Gang Ni
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
23
|
Key insights into secondary metabolites from various Chaetomium species. Appl Microbiol Biotechnol 2023; 107:1077-1093. [PMID: 36648526 PMCID: PMC9843691 DOI: 10.1007/s00253-023-12365-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/26/2022] [Accepted: 12/31/2022] [Indexed: 01/18/2023]
Abstract
Endophytic fungi have proved to be a major source of secondary metabolites, wherein the genus Chaetomium has emerged as a source of multifarious bioactive natural compounds belonging to diverse classes such as chaetoglobosins, epipolythiodioxopiperazines, azaphilones, xanthones, anthraquinone, chromones, depsidones, terpenoids, and steroids. The objective of this review is to encapsulate recent findings on various Chaetomium strains, such as C. globosum, C. cupreum, C. elatum, C. subspirale, C. olivaceum, C. indicum, and C. nigricolor known for production of beneficial secondary metabolites, with an insight into their origin and function. A thorough literature survey was conducted for obtaining Chaetomium-derived secondary metabolites, with a scope of future application into drug development efforts. More than 100 secondary metabolites, with various beneficial properties such as antitumor, cytotoxic, antimalarial, and enzyme inhibitory activities, were enlisted. We believe this review will enhance the understanding of beneficial effects conferred by various Chaetomium-derived secondary metabolites and emphasize their potential in serving novel drug development efforts. KEY POINTS: • Identified Chaetomium-derived metabolites with potential for drug development. • More than 100 beneficial metabolites are enlisted. • Benefits include anti-cancerous, antimalarial, and anti-enzymatic properties.
Collapse
|
24
|
Rodríguez-Fonseca MF, Ruiz-Balaguera S, Valero MF, Sánchez-Suárez J, Coy-Barrera E, Díaz LE. Freshwater-Derived Streptomyces: Prospective Polyvinyl Chloride (PVC) Biodegraders. ScientificWorldJournal 2022; 2022:6420003. [PMID: 36419778 PMCID: PMC9678452 DOI: 10.1155/2022/6420003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/17/2022] [Accepted: 11/03/2022] [Indexed: 12/02/2024] Open
Abstract
Polyvinyl chloride (PVC) is widely used in industrial applications, such as construction and clothing, owing to its chemical, physical, and environmental resistance. Owing to the previous characteristics, PVC is the third most consumed plastic worldwide and, consequently, an increasing waste accumulation-related problem. The current study evaluated an in-house collection of 61 Actinobacteria strains for PVC resin biodegradation. Weight loss percentage was measured after the completion of incubation. Thermo-gravimetric analysis was subsequently performed using the PVC incubated with the three strains exhibiting the highest weight loss. GC-MS and ionic exchange chromatography analyses were also performed using the culture media supernatant of these three strains. After incubation, 14 strains had a PVC weight loss percentage higher than 50% in ISP-2 broth. These 14 strains were identified as Streptomyces strains. Strains 208, 250, and 290 showed the highest weight loss percentages (57.6-61.5% range). The thermal stability of PVC after bacterial exposure using these three strains was evaluated, and a modification of the representative degradation stages of nonincubated PVC was observed. Additionally, GC-MS analysis revealed the presence of aromatic compounds in the inoculated culture media, and ionic exchange chromatography showed chloride release in the supernatant. A mathematical relation between culture conditions and PVC weight loss was also found for strains 208 and 290, showing an accuracy up to 97.99%. These results highlight the potential of the freshwater-derived Streptomyces strains as candidates for the PVC biodegradation strategy and constitute the first approach to a waste management control scale-up process.
Collapse
Affiliation(s)
- Maria Fernanda Rodríguez-Fonseca
- Process Design and Management, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia
| | - Sonia Ruiz-Balaguera
- Conservation, Bioprospecting, and Sustainable Development Group, Environmental Engineering Program, Universidad Nacional Abierta y a Distancia (UNAD), Bogotá 110911, Colombia
| | - Manuel Fernando Valero
- Energy, Materials and Environment Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia
| | - Jeysson Sánchez-Suárez
- Environmental Engineering Program, School of Exact Sciences and Engineering, Universidad Sergio Arboleda, Bogotá 111071, Colombia
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
| | - Luis Eduardo Díaz
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia
| |
Collapse
|
25
|
Giangeri G, Morlino MS, De Bernardini N, Ji M, Bosaro M, Pirillo V, Antoniali P, Molla G, Raga R, Treu L, Campanaro S. Preliminary investigation of microorganisms potentially involved in microplastics degradation using an integrated metagenomic and biochemical approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157017. [PMID: 35777567 DOI: 10.1016/j.scitotenv.2022.157017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Plastic pollution is becoming an emerging environmental issue due to inappropriate disposal at the end of the materials life cycle. When plastics are released, they undergo physical and chemical corrosion, leading to the formation of small particles, commonly referred to as microplastics. In this study, a microbial community derived from the leachate of a bioreactor containing a mixture of soil and plastic collected during a landfill mining process underwent an enrichment protocol in order to select the microbial species specifically involved in plastic degradation. The procedure was set up and tested on polyethylene, polyvinyl chloride, and polyethylene terephthalate, both in anaerobic and aerobic conditions. The evolution of the microbiome has been monitored using a combined approach based on microscopy, marker-gene amplicon sequencing, genome-centric metagenomics, degradation assays, and GC-MS analyses. This procedure permitted us to deeply investigate the metabolic pathways potentially involved in plastic degradation and to depict the route for microplastics metabolization from the enriched microbial community. Six enzymes, among the ones already identified, were found in our samples (alkane 1-monooxygenase, cutinase, feruloyl esterase, triacylglycerol lipase, medium-chain acyl-CoA dehydrogenase, and protocatechuate 4,5-dioxygenase) and new enzymes, addressed as MHETases most probably for the presence of the catalytic triad (His-Asp-Ser), were detected. Among the enzymes involved in plastics degradation, alkane 1-monooxygenase was found in high copy number (between ten and 62 copies) in the metagenomes that resulted most abundant in the microbiome enriched with polyethylene, while protocatechuate 4,5-dioxygenase was found between one and eight copies in the most abundant metagenomes of the microbial culture enriched with polyethylene terephthalate. Degradation assays, performed using both bacterial lysates and supernatants, revealed interesting results on polyethylene terephthalate degradation. Moreover, this study demonstrates to what extent different types of microplastics can affect the microbial community composition. The results obtained significantly increase the knowledge of the plastic degradation process.
Collapse
Affiliation(s)
- Ginevra Giangeri
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| | - Maria Silvia Morlino
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| | - Nicola De Bernardini
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| | - Mengyuan Ji
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| | - Matteo Bosaro
- Italiana Biotecnologie, Via Vigazzolo 112, 36054 Montebello Vicentino, Italy
| | - Valentina Pirillo
- Department of Biotechnology and Life Sciences, University of Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | - Paolo Antoniali
- Italiana Biotecnologie, Via Vigazzolo 112, 36054 Montebello Vicentino, Italy
| | - Gianluca Molla
- Department of Biotechnology and Life Sciences, University of Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | - Roberto Raga
- ICEA, Department of Civil, Environmental and Architectural Engineering, University of Padua, via Marzolo 9, 35131 Padova, Italy
| | - Laura Treu
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy.
| | - Stefano Campanaro
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy; CRIBI biotechnology center, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| |
Collapse
|
26
|
Mapook A, Hyde KD, Hassan K, Kemkuignou BM, Čmoková A, Surup F, Kuhnert E, Paomephan P, Cheng T, de Hoog S, Song Y, Jayawardena RS, Al-Hatmi AMS, Mahmoudi T, Ponts N, Studt-Reinhold L, Richard-Forget F, Chethana KWT, Harishchandra DL, Mortimer PE, Li H, Lumyong S, Aiduang W, Kumla J, Suwannarach N, Bhunjun CS, Yu FM, Zhao Q, Schaefer D, Stadler M. Ten decadal advances in fungal biology leading towards human well-being. FUNGAL DIVERS 2022; 116:547-614. [PMID: 36123995 PMCID: PMC9476466 DOI: 10.1007/s13225-022-00510-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/28/2022] [Indexed: 11/04/2022]
Abstract
Fungi are an understudied resource possessing huge potential for developing products that can greatly improve human well-being. In the current paper, we highlight some important discoveries and developments in applied mycology and interdisciplinary Life Science research. These examples concern recently introduced drugs for the treatment of infections and neurological diseases; application of -OMICS techniques and genetic tools in medical mycology and the regulation of mycotoxin production; as well as some highlights of mushroom cultivaton in Asia. Examples for new diagnostic tools in medical mycology and the exploitation of new candidates for therapeutic drugs, are also given. In addition, two entries illustrating the latest developments in the use of fungi for biodegradation and fungal biomaterial production are provided. Some other areas where there have been and/or will be significant developments are also included. It is our hope that this paper will help realise the importance of fungi as a potential industrial resource and see the next two decades bring forward many new fungal and fungus-derived products.
Collapse
Affiliation(s)
- Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou, 510225 China
| | - Khadija Hassan
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
| | - Blondelle Matio Kemkuignou
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
| | - Adéla Čmoková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Frank Surup
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Brunswick, Germany
| | - Eric Kuhnert
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Pathompong Paomephan
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400 Thailand
| | - Tian Cheng
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Sybren de Hoog
- Center of Expertise in Mycology, Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Guiyang, China
- Microbiology, Parasitology and Pathology Graduate Program, Federal University of Paraná, Curitiba, Brazil
| | - Yinggai Song
- Department of Dermatology, Peking University First Hospital, Peking University, Beijing, China
| | - Ruvishika S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Abdullah M. S. Al-Hatmi
- Center of Expertise in Mycology, Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nadia Ponts
- INRAE, UR1264 Mycology and Food Safety (MycSA), 33882 Villenave d’Ornon, France
| | - Lena Studt-Reinhold
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| | | | - K. W. Thilini Chethana
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dulanjalee L. Harishchandra
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Peter E. Mortimer
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Huili Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Saisamorm Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, 10300 Thailand
| | - Worawoot Aiduang
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Chitrabhanu S. Bhunjun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Feng-Ming Yu
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Qi Zhao
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Doug Schaefer
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Brunswick, Germany
| |
Collapse
|
27
|
Zhang Z, Peng H, Yang D, Zhang G, Zhang J, Ju F. Polyvinyl chloride degradation by a bacterium isolated from the gut of insect larvae. Nat Commun 2022; 13:5360. [PMID: 36097154 PMCID: PMC9468159 DOI: 10.1038/s41467-022-32903-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/23/2022] [Indexed: 11/28/2022] Open
Abstract
Evidence for microbial degradation of polyvinyl chloride (PVC) has previously been reported, but little is known about the degrading strains and enzymes. Here, we isolate a PVC-degrading bacterium from the gut of insect larvae and shed light on the PVC degradation pathway using a multi-omic approach. We show that the larvae of an insect pest, Spodoptera frugiperda, can survive by feeding on PVC film, and this is associated with enrichment of Enterococcus, Klebsiella and other bacteria in the larva's gut microbiota. A bacterial strain isolated from the larval intestine (Klebsiella sp. EMBL-1) is able to depolymerize and utilize PVC as sole energy source. We use genomic, transcriptomic, proteomic, and metabolomic analyses to identify genes and proteins potentially involved in PVC degradation (e.g., catalase-peroxidase, dehalogenases, enolase, aldehyde dehydrogenase and oxygenase), and propose a PVC biodegradation pathway. Furthermore, enzymatic assays using the purified catalase-peroxidase support a role in PVC depolymerization.
Collapse
Affiliation(s)
- Zhe Zhang
- Research Center for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang Province, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang Province, China
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang Province, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Haoran Peng
- Research Center for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang Province, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang Province, China
| | - Dongchen Yang
- College of Plant Protection, Hebei Agricultural University, Baoding, 071000, China
| | - Guoqing Zhang
- Research Center for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang Province, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang Province, China
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding, 071000, China
| | - Feng Ju
- Research Center for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang Province, China.
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang Province, China.
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang Province, China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang Province, China.
| |
Collapse
|
28
|
Zhou Y, Kumar V, Harirchi S, Vigneswaran VS, Rajendran K, Sharma P, Wah Tong Y, Binod P, Sindhu R, Sarsaiya S, Balakrishnan D, Mofijur M, Zhang Z, Taherzadeh MJ, Kumar Awasthi M. Recovery of value-added products from biowaste: A review. BIORESOURCE TECHNOLOGY 2022; 360:127565. [PMID: 35788392 DOI: 10.1016/j.biortech.2022.127565] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
This review provides an update on the state-of-the art technologies for the valorization of solid waste and its mechanism to generate various bio-products. The organic content of these wastes can be easily utilized by the microbes and produce value-added compounds. Microbial fermentation techniques can be utilized for developing waste biorefinery processes. The utilization of lignocellulosic and plastics wastes for the generation of carbon sources for microbial utilization after pre-processing steps will make the process a multi-product biorefinery. The C1 and C2 gases generated from different industries could also be utilized by various microbes, and this will help to control global warming. The review seeks to expand expertise about the potential application through several perspectives, factors influencing remediation, issues, and prospects.
Collapse
Affiliation(s)
- Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee 247667, Uttarakhand, India
| | - Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - V S Vigneswaran
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Karthik Rajendran
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Pooja Sharma
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technology Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| | - Yen Wah Tong
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technology Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691505, Kerala, India
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Deepanraj Balakrishnan
- Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - M Mofijur
- Faculty of Engineering and IT, University of Technology Sydney, NSW 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | | | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
29
|
Maleki Rad M, Moghimi H, Azin E. Biodegradation of thermo-oxidative pretreated low-density polyethylene (LDPE) and polyvinyl chloride (PVC) microplastics by Achromobacter denitrificans Ebl13. MARINE POLLUTION BULLETIN 2022; 181:113830. [PMID: 35717877 DOI: 10.1016/j.marpolbul.2022.113830] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/29/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Microplastics pretreatment of prior to biodegradation is an efficient approach for their bioremediation. We isolated Achromobacter denitrificans from compost and used it for biodegradation of thermo-oxidative pretreated polyvinyl chloride (PVC) and low-density polyethylene (LDPE). About 12.3 % and 6.5 % weight loss, and 326.4 and 112.32 mg L-1 extracellular protein were observed in bacterial flasks with PVC and LDPE, respectively. The pH in treated PVC reached to 5.12 and the thermal stability increased by 29 °C. The chemical modification in LDPE was demonstrated through oxidation of antioxidants (Phenol group), formation of new groups (Aldehyde group), and chain fracture in the main backbone by Fourier transform infrared spectroscopy. Formation of peaks at the range of 1700-1850 cm-1 in LDPE attributed to formation of carbonyl groups as the degradation result. Scanning electron microscopy confirmed LDPE and PVC degradation by surface alterations. Consequently, thermo-oxidative pretreatment can be considered as a suitable strategy for improving microplastics biodegradation.
Collapse
Affiliation(s)
- Mojtaba Maleki Rad
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Hamid Moghimi
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Ehsan Azin
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
30
|
Shilpa, Basak N, Meena SS. Microbial biodegradation of plastics: Challenges, opportunities, and a critical perspective. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2022; 16:161. [PMID: 35874797 PMCID: PMC9295099 DOI: 10.1007/s11783-022-1596-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 05/19/2023]
Abstract
The abundance of synthetic polymers has increased due to their uncontrolled utilization and disposal in the environment. The recalcitrant nature of plastics leads to accumulation and saturation in the environment, which is a matter of great concern. An exponential rise has been reported in plastic pollution during the corona pandemic because of PPE kits, gloves, and face masks made up of single-use plastics. The physicochemical methods have been employed to degrade synthetic polymers, but these methods have limited efficiency and cause the release of hazardous metabolites or by-products in the environment. Microbial species, isolated from landfills and dumpsites, have utilized plastics as the sole source of carbon, energy, and biomass production. The involvement of microbial strains in plastic degradation is evident as a substantial amount of mineralization has been observed. However, the complete removal of plastic could not be achieved, but it is still effective compared to the preexisting traditional methods. Therefore, microbial species and the enzymes involved in plastic waste degradation could be utilized as eco-friendly alternatives. Thus, microbial biodegradation approaches have a profound scope to cope with the plastic waste problem in a cost-effective and environmental-friendly manner. Further, microbial degradation can be optimized and combined with physicochemical methods to achieve substantial results. This review summarizes the different microbial species, their genes, biochemical pathways, and enzymes involved in plastic biodegradation.
Collapse
Affiliation(s)
- Shilpa
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Punjab, 144027 India
| | - Nitai Basak
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Punjab, 144027 India
| | - Sumer Singh Meena
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Punjab, 144027 India
| |
Collapse
|
31
|
Temporiti MEE, Nicola L, Nielsen E, Tosi S. Fungal Enzymes Involved in Plastics Biodegradation. Microorganisms 2022; 10:1180. [PMID: 35744698 PMCID: PMC9230134 DOI: 10.3390/microorganisms10061180] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/04/2022] Open
Abstract
Plastic pollution is a growing environmental problem, in part due to the extremely stable and durable nature of this polymer. As recycling does not provide a complete solution, research has been focusing on alternative ways of degrading plastic. Fungi provide a wide array of enzymes specialized in the degradation of recalcitrant substances and are very promising candidates in the field of plastic degradation. This review examines the present literature for different fungal enzymes involved in plastic degradation, describing their characteristics, efficacy and biotechnological applications. Fungal laccases and peroxidases, generally used by fungi to degrade lignin, show good results in degrading polyethylene (PE) and polyvinyl chloride (PVC), while esterases such as cutinases and lipases were successfully used to degrade polyethylene terephthalate (PET) and polyurethane (PUR). Good results were also obtained on PUR by fungal proteases and ureases. All these enzymes were isolated from many different fungi, from both Basidiomycetes and Ascomycetes, and have shown remarkable efficiency in plastic biodegradation under laboratory conditions. Therefore, future research should focus on the interactions between the genes, proteins, metabolites and environmental conditions involved in the processes. Further steps such as the improvement in catalytic efficiency and genetic engineering could lead these enzymes to become biotechnological applications in the field of plastic degradation.
Collapse
Affiliation(s)
- Marta Elisabetta Eleonora Temporiti
- Laboratory of Mycology, Department of Earth and Environmental Sciences, Università degli Studi di Pavia, Via S. Epifanio 14, 27100 Pavia, Italy; (L.N.); (S.T.)
| | - Lidia Nicola
- Laboratory of Mycology, Department of Earth and Environmental Sciences, Università degli Studi di Pavia, Via S. Epifanio 14, 27100 Pavia, Italy; (L.N.); (S.T.)
| | - Erik Nielsen
- Department of Biology and Biotechnology, Università degli Studi di Pavia, Via Ferrata 9, 27100 Pavia, Italy;
| | - Solveig Tosi
- Laboratory of Mycology, Department of Earth and Environmental Sciences, Università degli Studi di Pavia, Via S. Epifanio 14, 27100 Pavia, Italy; (L.N.); (S.T.)
| |
Collapse
|
32
|
Kalinina IG, Ivanov VB, Semenov SA, Kazarin VV, Zhdanova OA. Growth of the Fungus Aspergillus niger on a Varnished Fabric in Different Temperature and Humidity Conditions. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793122010213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Srikanth M, Sandeep TSRS, Sucharitha K, Godi S. Biodegradation of plastic polymers by fungi: a brief review. BIORESOUR BIOPROCESS 2022; 9:42. [PMID: 38647755 PMCID: PMC10991219 DOI: 10.1186/s40643-022-00532-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/27/2022] [Indexed: 11/10/2022] Open
Abstract
Plastic polymers are non-degradable solid wastes that have become a great threat to the whole world and degradation of these plastics would take a few decades. Compared with other degradation processes, the biodegradation process is the most effective and best way for plastic degradation due to its non-polluting mechanism, eco-friendly nature, and cost-effectiveness. Biodegradation of synthetic plastics is a very slow process that also involves environmental factors and the action of wild microbial species. In this plastic biodegradation, fungi play a pivotal role, it acts on plastics by secreting some degrading enzymes, i.e., cutinase`, lipase, and proteases, lignocellulolytic enzymes, and also the presence of some pro-oxidant ions can cause effective degradation. The oxidation or hydrolysis by the enzyme creates functional groups that improve the hydrophilicity of polymers, and consequently degrade the high molecular weight polymer into low molecular weight. This leads to the degradation of plastics within a few days. Some well-known species which show effective degradation on plastics are Aspergillus nidulans, Aspergillus flavus, Aspergillus glaucus, Aspergillus oryzae, Aspergillus nomius, Penicillium griseofulvum, Bjerkandera adusta, Phanerochaete chrysosporium, Cladosporium cladosporioides, etc., and some other saprotrophic fungi, such as Pleurotus abalones, Pleurotus ostreatus, Agaricus bisporus and Pleurotus eryngii which also helps in degradation of plastics by growing on them. Some studies say that the degradation of plastics was more effective when photodegradation and thermo-oxidative mechanisms involved with the biodegradation simultaneously can make the degradation faster and easier. This present review gives current knowledge regarding different species of fungi that are involved in the degradation of plastics by their different enzymatic mechanisms to degrade different forms of plastic polymers.
Collapse
Affiliation(s)
- Munuru Srikanth
- Department of Biotechnology, College of Science and Technology, Andhra University, Visakhapatnam, 530003, India
| | - T S R S Sandeep
- Department of Biotechnology, College of Science and Technology, Andhra University, Visakhapatnam, 530003, India.
| | - Kuvala Sucharitha
- Department of Biotechnology, Pydah Degree College, Affiliated to Andhra University, Visakhapatnam, India
| | - Sudhakar Godi
- Department of Human Genetics, College of Science and Technology, Andhra University, Visakhapatnam, 530003, India
| |
Collapse
|
34
|
Lim BKH, Thian ES. Biodegradation of polymers in managing plastic waste - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:151880. [PMID: 34826495 DOI: 10.1016/j.scitotenv.2021.151880] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
The modern economy that is fast-moving and convenience centric has led to excessive consumption of plastic. This has unwittingly led to egregious accumulation of plastic waste polluting the environment. Unfortunately, present means of plastic waste management have all been proven as less than adequate; namely recycling, landfill and incineration. Recent focus on plastic waste management has seen the confluence of the developments in biodegradable polymers and microbial engineering strategy for more expedient decomposition of plastic waste at composting facilities. This review paper is an assimilation of current developments in the areas of biodegradable polymer as well as microbial strategy towards management of polymer waste. Advents in biodegradable polymers have been promising, especially with aliphatic polyesters and starch in blends or co-polymers of these. Microbial strategies have been pursued for the identification of microbial strains and understanding of their enzymatic degradation process on polymers. New insights in these two areas have been focused in improving the rate of degradation of plastic waste at composting facilities. Recent alignment of testing and certification standards is outlined to give intimate insights into the mechanisms and factors influencing biodegradation. Despite recent milestones, economic viability of composting plastic waste in mainstream waste facilities is still a distance away. As it remains that a polymer that is biodegradable is functionally inferior to conventional polymers. Rather, it requires a shift in consumer behaviour to accept less durable biodegradable plastic products, this will then lower the threshold for biodegradable polymers to become a commercial reality.
Collapse
Affiliation(s)
- Berlinda Kwee Hong Lim
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Eng San Thian
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore.
| |
Collapse
|
35
|
Ebrahimbabaie P, Yousefi K, Pichtel J. Photocatalytic and biological technologies for elimination of microplastics in water: Current status. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150603. [PMID: 34592303 DOI: 10.1016/j.scitotenv.2021.150603] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Water pollution by microplastics (MPs) has emerged as a significant environmental and public health concern. Several conventional technologies in drinking water and wastewater treatment facilities are capable of capturing a substantial portion of microplastics from surface water; however, only limited methods are available for actual destruction of microplastics. Rate of success is highly variable, and actual mechanisms which result in MP destruction are only partly known. Photocatalysis and microbial degradation technologies show promise at laboratory scale for the transformation of microplastics to water-soluble hydrocarbons, carbon dioxide and, in limited cases, useful fuels. Both photocatalytic and microbial technologies offer the potential for long-term water security and ecological stability and deserve further attention by scientists. Additional research is necessary, however, in identifying more effective semiconductors for photocatalysis, and optimal effective microbial consortia and environmental conditions to optimize microplastic biodegradation. Many more polymer types beyond polyethylene must be studied for degradation, and laboratory-scale research must be expanded to field-scale. This paper provides a comprehensive overview of processes and mechanisms for removing MPs by photocatalysis and microbial technologies. It provides useful data for research dedicated to improved removal of MPs from surface waters.
Collapse
Affiliation(s)
- Parisa Ebrahimbabaie
- Environment, Geology and Natural Resources, Ball State University, Muncie, IN 47306, USA.
| | - Kimiya Yousefi
- Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University, Kerman, Iran.
| | - John Pichtel
- Environment, Geology and Natural Resources, Ball State University, Muncie, IN 47306, USA.
| |
Collapse
|
36
|
Sun Y, Hu J, Yusuf A, Wang Y, Jin H, Zhang X, Liu Y, Wang Y, Yang G, He J. A critical review on microbial degradation of petroleum-based plastics: quantitatively effects of chemical addition in cultivation media on biodegradation efficiency. Biodegradation 2022; 33:1-16. [PMID: 35025000 DOI: 10.1007/s10532-021-09969-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/12/2021] [Indexed: 01/19/2023]
Abstract
Petroleum-based plastics (PBP) with different properties have been developed to suit various needs of modern lives. Nevertheless, these well-developed properties also present the double-edged sword effect that significantly threatens the sustainability of the environment. This work focuses on the impact of microbial cultivating conditions (the elementary compositions and temperature) to provide insightful information for the process optimization of microbial degradation. The major elementary compositions in cultivation media and temperature from the literature were radically reviewed and assessed using the constructed supervised machine learning algorithm. Fifty-two literatures were collected as a training dataset to investigate the impact of major chemical elements and cultivation temperature upon PBP biodegradation. Among six singular parameters (NH4+, K+, PO43-, Mg2+, Ca2+, and temperature) and thirty corresponding binary parameters, four singular (NH4+, K+, PO43-, and Mg2+) and six binary parameters (NH4+/K+, NH4+/PO43-, NH4+/Ca2+, K+/PO43-, PO43-/Mg2+, Mg2+/Temp) were identified as statistically significant towards microbial degradation through analysis of variance (ANOVA). The binary effect (PO43-/Mg2+) is found to be the most statistically significant towards the microbial degradation of PBP. The concentration range, which locates at 0.1-0.6 g/L for Mg2+ and 0-2.8 g/L for PO43-, was identified to contribute to the maximum PBP biodegradation. Among all the investigated elements, Mg2+ is the only element that is statistically and significantly associated with the variations of cultivation temperature. The optimal preparation conditions within ± 20% uncertainties based upon the range of collected literature reports are recommended. Five representative cultivation elementary compositions (NH4+, K+, PO43-, Mg2+, and Ca2+) and temperature were reviewed from fifty two different literature reports to investigate their impacts on the microbial degradation of PBP using supervised machine learning algorithm. The optimal cultivation conditions based upon collected literature reports to achieve biodegradation over 80% were identified.
Collapse
Affiliation(s)
- Yong Sun
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, University of Nottingham Ningbo, Ningbo, 315100, China. .,School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
| | - Jing Hu
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, University of Nottingham Ningbo, Ningbo, 315100, China
| | - Abubakar Yusuf
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, University of Nottingham Ningbo, Ningbo, 315100, China
| | - Yixiao Wang
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, University of Nottingham Ningbo, Ningbo, 315100, China
| | - Huan Jin
- School of Computer Science, University of Nottingham Ningbo, Ningbo, 15100, China.
| | - Xiyue Zhang
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, University of Nottingham Ningbo, Ningbo, 315100, China
| | - Yiyang Liu
- Department of Chemistry, University College London (UCL), 20 Gordon Street, London, WC1H 0AJ, UK
| | - Yunshan Wang
- National Engineering Laboratory of Cleaner Hydrometallurgical Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Gang Yang
- National Engineering Laboratory of Cleaner Hydrometallurgical Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jun He
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo, Ningbo, 315100, China. .,Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Ningbo, 315021, China.
| |
Collapse
|
37
|
Rodríguez-Fonseca MF, Sánchez-Suárez J, Valero MF, Ruiz-Balaguera S, Díaz LE. Streptomyces as Potential Synthetic Polymer Degraders: A Systematic Review. Bioengineering (Basel) 2021; 8:bioengineering8110154. [PMID: 34821720 PMCID: PMC8614672 DOI: 10.3390/bioengineering8110154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
The inherent resistance of synthetic plastics to degradation has led to an increasing challenge of waste accumulation problem and created a pollution issue that can only be addressed with novel complementary methods such as biodegradation. Since biocontrol is a promising eco-friendly option to address this challenge, the identification of suitable biological agents is a crucial requirement. Among the existing options, organisms of the Streptomyces genus have been reported to biodegrade several complex polymeric macromolecules such as chitin, lignin, and cellulose. Therefore, this systematic review aimed to evaluate the potential of Streptomyces strains for the biodegradation of synthetic plastics. The results showed that although Streptomyces strains are widely distributed in different ecosystems in nature, few studies have explored their capacity as degraders of synthetic polymers. Moreover, most of the research in this field has focused on Streptomyces strains with promising biotransforming potential against polyethylene-like polymers. Our findings suggest that this field of study is still in the early stages of development. Moreover, considering the diverse ecological niches associated with Streptomyces, these actinobacteria could serve as complementary agents for plastic waste management and thereby enhance carbon cycle dynamics.
Collapse
Affiliation(s)
- Maria Fernanda Rodríguez-Fonseca
- Master in Process Design and Management, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia;
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia;
| | - Jeysson Sánchez-Suárez
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia;
| | - Manuel Fernando Valero
- Energy, Materials and Environment Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia;
| | - Sonia Ruiz-Balaguera
- Conservation, Bioprospecting and Sustainable Development Group, Environmental Engineering Program, Universidad Nacional Abierta y a Distancia (UNAD), Bogotá 110911, Colombia;
| | - Luis Eduardo Díaz
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia;
- Correspondence: ; Tel.: +57-861-5555 (ext. 25208)
| |
Collapse
|
38
|
Khandare SD, Chaudhary DR, Jha B. Bioremediation of polyvinyl chloride (PVC) films by marine bacteria. MARINE POLLUTION BULLETIN 2021; 169:112566. [PMID: 34089962 DOI: 10.1016/j.marpolbul.2021.112566] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/05/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Polyvinyl chloride (PVC) is the third one after polyethylene and polypropylene in the production demand. It intends to grow further, causing an increase in the risk of health and ecological problems due to environmental accumulation and incineration. In the present study, we determined the biodegradative abilities of marine bacteria for PVC. Three potential marine bacterial isolates, T-1.3, BP-4.3 and S-237 (Vibrio, Altermonas and Cobetia, respectively) were identified after preliminary screening. They led to active biofilm formation, viability and protein formation on the PVC surface. The highest weight loss (1.76%) of PVC films was exhibited by BP-4.3 isolate after 60 days of incubation. Remineralization of PVC film was confirmed by CO2 assimilation assay. Change in surface topography was confirmed by field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). The functional group peak intensity was decreased for the terminal chlorine group at the region 1000-1300 cm-1, which indicated the dechlorination. Thermogravimetric, tensile strength and contact angle analysis showed a decline in the mechanical properties and a rise in PVC film's hydrophilic nature after biodegradation. These results demonstrated promising evidence of PVC degradation by marine bacteria.
Collapse
Affiliation(s)
- Shrikant D Khandare
- CSIR - Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, Gujarat 364 002, India; Academy of Scientific and Innovative Research (AcSIR), CSIR, Ghaziabad, U. P. 201 002, India
| | - Doongar R Chaudhary
- CSIR - Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, Gujarat 364 002, India; Academy of Scientific and Innovative Research (AcSIR), CSIR, Ghaziabad, U. P. 201 002, India.
| | - Bhavanath Jha
- CSIR - Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, Gujarat 364 002, India
| |
Collapse
|
39
|
Ali SS, Elsamahy T, Koutra E, Kornaros M, El-Sheekh M, Abdelkarim EA, Zhu D, Sun J. Degradation of conventional plastic wastes in the environment: A review on current status of knowledge and future perspectives of disposal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144719. [PMID: 33548729 DOI: 10.1016/j.scitotenv.2020.144719] [Citation(s) in RCA: 215] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/30/2020] [Accepted: 12/21/2020] [Indexed: 05/23/2023]
Abstract
Accumulation of plastic wastes has been recently recognized as one of the most critical environmental challenges, affecting all life forms, natural ecosystems and economy, worldwide. Under this threat, finding alternative environmentally-friendly solutions, such as biodegradation instead of traditional disposal, is of utmost importance. However, up to date, there is limited knowledge on plastic biodegradation mechanisms and efficiency. From this point of view, the purpose of this review is to highlight the negative effects of the accumulation of the most conventional plastic waste (polyethylene, polypropylene, polystyrene, polyvinylchloride, polyethylene terephthalate and polyurethane) on the environment and to present their degradability potential through abiotic and biotic processes. Furthermore, the ability of different microbial species for degradation of these polymers is thoroughly discussed. The present review also addresses the contribution of invertebrates, such as insects, in plastic degradation process, highlighting the vital role that they could play in the future. In total, a schematic pathway of an innovative approach to improve the disposal of plastic wastes is proposed, with view to establishing an effective and sustainable practice for plastic waste management.
Collapse
Affiliation(s)
- Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Eleni Koutra
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504 Patras, Greece; INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504 Patras, Greece
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504 Patras, Greece; INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504 Patras, Greece
| | - Mostafa El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Esraa A Abdelkarim
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daochen Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
40
|
Tymon LS, Morgan P, Gundersen B, Inglis DA. Potential of endophytic fungi collected from Cucurbita pepo roots grown under three different agricultural mulches as antagonistic endophytes to Verticillium dahliae in western Washington. Microbiol Res 2020; 240:126535. [PMID: 32629360 DOI: 10.1016/j.micres.2020.126535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 11/17/2022]
Abstract
Verticillium dahliae is a significant pathogen in cucurbit cropping systems for which there are limited control options outside of soil fumigation. Endophytes, fungi and bacteria that live within plant hosts without impacting the host negatively, have exhibited antagonism to V. dahliae. The objectives of this study were to survey potential V. dahliae-antagonistic endophytes from roots of 'Cinnamon Girl' pumpkin (Cucurbita pepo) grown under either polyethylene (PE), an experimental polylactic acid/ poly(hydroxalkanoate) (PLA/PHA) mulch, Weed Guard Plus, or no mulch, as well as from 'Sugar Baby' watermelon (Citrullus lanatus), and 'Tetsukabuto' squash (C. maxima x C. moschata). Four selected endophytes were screened for antagonism against V. dahliae in the laboratory, greenhouse, and field. A total of 777 isolates of potential fungal endophytes were recovered from pumpkin, watermelon, and squash roots between 2015 and 2016 of which 198 isolates were identified down to the genus level. Of those isolates, frequency of isolation was greatest for Dichotomopilus/Chaetomium spp. (5%), Cladosporium spp. (15.2 %), Clonostachys spp. (5.6 %), Epicoccum spp. (22.2 %), and Fusarium spp. (24.7 %). All five genera only weakly associated with roots grown under a particular mulch treatment (Cramer's V = 0.22) or cucurbit host (Cramer's V = 0.1925). In a laboratory culture plate assay, V. dahliae isolate JAW-113 was plated against one of four prospective endophytes (Dichotomopilus sp., Epicoccum sp., Microdochium sp., or Schizothecium sp.). The area under the Verticillium culture growth curve (AUVGC) was significantly highest (P < 0.0001) when V. dahliae was by Schizothecium sp. or Dichotomopilus sp. In a greenhouse study using a Mason jar assay with V. dahliae amended potting mix, pumpkin plant vigor, plant fresh weight, root fresh weight, and root dry weight were significantly higher (P < 0.05) for plants inoculated with Dichotomopilus sp., Epicoccum sp., Microdochium sp., and Schizothecium sp. compared to plants without endophyte inoculation. Subsequent field trials in 2017 and 2018 showed no significant differences in foliar disease severity or fruit yield, regardless of whether plants were inoculated with an endophyte or not. However, recovery of V. dahliae colony forming units from pumpkin stem sap was significantly lower (P < 0.0001) for plants inoculated with either Dichotomopilus sp. or Schizothecium sp. in 2017 or Dichotomopilus sp. in 2018.
Collapse
Affiliation(s)
- Lydia S Tymon
- Department of Plant Pathology, Washington State University, Northwestern Washington Research & Extension Center, Mount Vernon, WA, 98273, USA.
| | - Paul Morgan
- Department of Plant Pathology, Washington State University, Northwestern Washington Research & Extension Center, Mount Vernon, WA, 98273, USA
| | - Babette Gundersen
- Department of Plant Pathology, Washington State University, Northwestern Washington Research & Extension Center, Mount Vernon, WA, 98273, USA
| | - Debra Ann Inglis
- Department of Plant Pathology, Washington State University, Northwestern Washington Research & Extension Center, Mount Vernon, WA, 98273, USA
| |
Collapse
|
41
|
Influence of the Chitosan and Rosemary Extract on Fungal Biodegradation of Some Plasticized PLA-Based Materials. Polymers (Basel) 2020; 12:polym12020469. [PMID: 32085447 PMCID: PMC7077637 DOI: 10.3390/polym12020469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 11/28/2022] Open
Abstract
The fungal degradation of the complex polymeric systems based on poly(lactic acid) (PLA) and natural bioactive compounds (chitosan and powdered rosemary alcoholic extract) was studied. Two fungal strains, Chaetomium globosum and Phanerochaete chrysosporium were tested. Both fungi characteristics and changes in morphology, structure and thermal properties were monitored. Biochemical parameters as superoxide dismutase, catalase, soluble protein and malondialdehyde have been determined at different time periods of fungal degradation. The fungi extracellular enzyme activities are slightly decreased in the case of composites containing bioactive compounds. The presence of natural compounds in the PLA-based polymeric system determines an acceleration of fungal degradation and probably the chemical hydrolysis, which further helps the attachment of fungi on the surface of polymeric samples. Significant decreases in average molecular mass of the polymeric samples were observed by fungi action; accompanied by structural changes, increase in crystallinity and decrease of thermal properties and the loss of the physical integrity and finally to degradation and integration of fungal degradation products into environmental medium. It was found that both fungi tested are efficient for PLA-based materials degradation, the most active from them being Chaetomium globosum fungus.
Collapse
|
42
|
Sánchez C. Fungal potential for the degradation of petroleum-based polymers: An overview of macro- and microplastics biodegradation. Biotechnol Adv 2019; 40:107501. [PMID: 31870825 DOI: 10.1016/j.biotechadv.2019.107501] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 11/18/2022]
Abstract
Petroleum-based plastic materials as pollutants raise concerns because of their impact on the global ecosystem and on animal and human health. There is an urgent need to remove plastic waste from the environment to overcome the environmental crisis of plastic pollution. This review describes the natural and unique ability of fungi to invade substrates by using enzymes that have the capacity to detoxify pollutants and are able to act on nonspecific substrates, the fungal ability to produce hydrophobins for surface coating to attach hyphae to hydrophobic substrates, and hyphal ability to penetrate three dimensional substrates. Fungal studies on macro- and microplastics biodegradation have shown that fungi are able to use these materials as the sole carbon and energy source. Further research is required on novel isolates from plastisphere ecosystems, on the use of molecular techniques to characterize plastic-degrading fungi and enhance enzymatic activity levels, and on the use of omics-based technologies to accelerate plastic waste biodegradation processes. The addition of pro-oxidants species (photosensitizers) and the reduction of biocides and antioxidant stabilizers used in the plastic manufacturing process should also be considered to promote biodegradation. Interdisciplinary research and innovative fungal strategies for plastic waste biodegradation, as well as ecofriendly manufacturing of petroleum-based plastics, may help to reduce the negative impacts of plastic waste pollution in the biosphere.
Collapse
Affiliation(s)
- Carmen Sánchez
- Laboratory of Biotechnology, Research Centre for Biological Sciences, Universidad Autónoma de Tlaxcala, Ixtacuixtla, C.P. 90120 Tlaxcala, Mexico.
| |
Collapse
|
43
|
Al Hosni AS, Pittman JK, Robson GD. Microbial degradation of four biodegradable polymers in soil and compost demonstrating polycaprolactone as an ideal compostable plastic. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 97:105-114. [PMID: 31447017 DOI: 10.1016/j.wasman.2019.07.042] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/04/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Plastics are an indispensable material but also a major environmental pollutant. In contrast, biodegradable polymers have the potential to be compostable. The biodegradation of four polymers as discs, polycaprolactone (PCL), polyhydroxybutyrate (PHB), polylactic acid (PLA) and poly(1,4 butylene) succinate (PBS) was compared in soil and compost over a period of more than 10 months at 25 °C, 37 °C and 50 °C. Degradation rates varied between the polymers and incubation temperatures but PCL showed the fastest degradation rate under all conditions and was completely degraded when buried in compost and incubated at 50 °C after 91 days. Furthermore, PCL strips showed a significant reduction in tensile strength in just 2 weeks when incubated in compost >45 °C. Various fungal strains growing on the polymer surfaces were identified by sequence analysis. Aspergillus fumigatus was most commonly found at 25 °C and 37 °C, while Thermomyces lanuginosus, which was abundant at 50 °C, was associated with PCL degradation.
Collapse
Affiliation(s)
- Asma S Al Hosni
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Jon K Pittman
- Department of Earth and Environmental Sciences, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| | - Geoffrey D Robson
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|