1
|
Li W, Zhang L, Xu Y, Li H, Li B, Sun S, Zhang X, Duan G, Chen Y, Zhang J, Cao Y, Li X, Liu Q, Wu Y, Zhang S, Leavenworth JW, Wang X, Zhu C. Altered monocyte subpopulations and their association with autism spectrum disorder risk in children. Brain Behav Immun 2025; 126:315-326. [PMID: 40010548 DOI: 10.1016/j.bbi.2025.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 02/06/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025] Open
Abstract
OBJECTIVE Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficits in social communication, restricted interests, and repetitive behaviors. Emerging evidence suggests a link between immune dysregulation and ASD. This study investigates alterations in monocyte subpopulations and cytokine production in children with ASD and their potential associations with ASD risk and severity. METHODS Initially, the immune status of peripheral blood mononuclear cells was assessed in cohort-I of 96 typically developing (TD) children and 92 children diagnosed with ASD using flow cytometry. Subsequently, the secretion of cytokines IL-6 and IL-10 by monocytes was evaluated following stimulation with a leukocyte activation mixture and intracellular protein staining technique in cohort-II. RESULTS Children with ASD exhibited significantly higher levels of total monocytes, classical monocytes (CD14hi/CD16-), and non-classical monocytes (CD14low/CD16+) compared to TD children (p < 0.001). Elevated levels of classical monocytes (β: 0.395; 95 %CI: 0.260-0.530; p < 0.001) and non-classical monocytes (β: 0.629; 95 %CI: 0.516-0.742; p < 0.001) were significantly associated with ASD after adjusting for age, sex and body mass index. Furthermore, increased production of IL-6 by monocytes was observed in children with ASD (p = 0.001). Logistic regression analysis revealed that classical monocytes (OR: 1.104; 95 %CI: 1.062-1.147; p < 0.001), non-classical monocytes (OR: 2.913; 95 %CI: 2.130-3.986; p < 0.001) and IL-6 production by monocytes (OR: 1.306; 95 %CI: 1.096-1.557; p = 0.003) are risk factors for ASD. Spearman correlation analysis revealed a negative correlation between classical monocyte levels and adaptive behavior developmental quotient (DQ) (r = - 0.377; p = 0.001), fine motor DQ (r = - 0.329; p = 0.003) and personal-social DQ (r = - 0.247; p = 0.029) in children with ASD. CONCLUSION Elevated classical and non-classical monocytes are potential risk factors for ASD and may influence neurodevelopmental outcomes. Further research is needed to elucidate the precise mechanisms and therapeutic implications.
Collapse
Affiliation(s)
- Wenhua Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg 40530, Sweden
| | - Lingling Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hongwei Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Bingbing Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shuang Sun
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Guiqin Duan
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yiwen Chen
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jie Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yangyang Cao
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoping Li
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qianqian Liu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yanan Wu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shan Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg 40530, Sweden
| | - Jianmei W Leavenworth
- Department of Neurosurgery and Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham AL 35233, USA
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Centre of Perinatal Medicine and Health, Institute of Clinical Science, University of Gothenburg 40530 Gothenburg, Sweden
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg 40530, Sweden; Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Tseng CEJ, Guma E, McDougle CJ, Hooker JM, Zürcher NR. Regional skull translocator protein elevation in autistic adults detected by PET-MRI. Brain Behav Immun 2025; 126:70-79. [PMID: 39904469 DOI: 10.1016/j.bbi.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/26/2025] [Accepted: 02/01/2025] [Indexed: 02/06/2025] Open
Abstract
Immune processes have been implicated in the pathophysiology of autism spectrum disorder (ASD). Brain borders, such as the skull, have recently been highlighted as sites where neuro-immune interactions occur with key consequences for brain immunity. Translocator protein (TSPO), a mitochondrial protein involved in immune functions, was measured in the skull using [11C]PBR28 positron emission tomography-magnetic resonance imaging (PET-MRI) in 38 autistic adults (26 males, 12 females) and 29 age-and sex-matched healthy controls (19 males, 10 females). [11C]PBR28 uptake relative to a pseudo-reference region assessed using standardized uptake value ratio (SUVR) revealed elevated TSPO in autistic adults in frontal and temporal skull. We did not observe an association between [11C]PBR28 uptake in total or regional skull areas and autism symptom severity. C-reactive protein levels were positively associated with [11C]PBR28 uptake in the total skull across participants. Lastly, [11C]PBR28 uptake in the total skull was stable across a 4-month period. This work indicates regional TSPO elevations in the skull in autistic adults, which may suggest immune involvement.
Collapse
Affiliation(s)
- Chieh-En Jane Tseng
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging Charlestown MA USA; Harvard Medical School Boston MA USA
| | - Elisa Guma
- Harvard Medical School Boston MA USA; Lurie Center for Autism, Massachusetts General Hospital Lexington MA USA
| | - Christopher J McDougle
- Harvard Medical School Boston MA USA; Lurie Center for Autism, Massachusetts General Hospital Lexington MA USA
| | - Jacob M Hooker
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging Charlestown MA USA; Harvard Medical School Boston MA USA; Lurie Center for Autism, Massachusetts General Hospital Lexington MA USA
| | - Nicole R Zürcher
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging Charlestown MA USA; Harvard Medical School Boston MA USA; Lurie Center for Autism, Massachusetts General Hospital Lexington MA USA.
| |
Collapse
|
3
|
Liu Z, Wang L, Yu L, Zhao Y, Zhu M, Wang Y, Cao A. Identification of immune cells and circulating inflammatory factors associated with neurodevelopmental disorders by bidirectional Mendelian randomization and mediation analysis. Sci Rep 2025; 15:12840. [PMID: 40229469 PMCID: PMC11997206 DOI: 10.1038/s41598-025-98020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 04/08/2025] [Indexed: 04/16/2025] Open
Abstract
The roles of various immune cells and circulating inflammatory factors in neurodevelopmental disorders (NDDs) remain controversial. Therefore we employed a two-sample and bidirectional Mendelian randomization and mediation method to explore the causal relationships between immune cells, circulating inflammatory factors, and NDDs. All data were originated from Genome-Wide Association Study (GWAS) datasets. We found a significant positive causal relationship between 13 immune cells and autism spectrum disorder (ASD), including six CD8+ T cells, one CD3+ T cell, two CD20+ B cells, one CD38+ B cell, and two plasmacytoid DC. 9 inflammatory factors showed significant causal relationships with ASD: interleukins-7 (IL-7), interleukins-2 (IL-2), Interleukin-2 receptor subunit beta levels( IL-2β) and interleukins-18 receptor 1 levels (IL-18-R1) were negatively associated. In contrast, five inflammatory factors were positively associated, such as tumor necrosis factor-α (TNF-α). 14 immune cells exhibited significant causal relationships with attention deficit hyperactivity disorder (ADHD). CD3 on naive CD8br and CD4 on activated Treg were positively associated, while four CD27-expressing B cells were positively associated with ASD. Four CD40-expressing monocytes were negatively associated with ADHD. 7 inflammatory factors had significant causal relationships with ADHD: Fibroblast Growth Factor 23 levels (FGF-23), CD40L receptor levels, Glial Cell Line-Derived Neurotrophic Factor levels (GDNF), TNF-α were more important among these. Mediation analysis identified 12 mediating relationships, with three showing strong evidence: Natural killer cell receptor 2B4 levels (19.9%), FGF-23 (11%), and Eotaxin levels (- 5.95%). Strong causal relationships existed between immune cells, circulating inflammatory factors, and NDDs. Inflammatory factors mediated the pathways between immune cells and NDDs.
Collapse
Affiliation(s)
- Zhiyue Liu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Lihong Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Lianhu Yu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Yongheng Zhao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Mengna Zhu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Yu Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Aihua Cao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
4
|
Qin Q, Fan L, Zeng X, Zheng D, Wang H, Li M, Jiang Y, Wang H, Liu H, Liang S, Wu L, Liang S. Mesenchymal stem cell-derived extracellular vesicles alleviate autism by regulating microglial glucose metabolism reprogramming and neuroinflammation through PD-1/PD-L1 interaction. J Nanobiotechnology 2025; 23:201. [PMID: 40069859 PMCID: PMC11895333 DOI: 10.1186/s12951-025-03250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/18/2025] [Indexed: 03/15/2025] Open
Abstract
Neuroinflammation triggered by microglia activation is hallmark of autism spectrum disorder (ASD), and this process includes crucial metabolic reprogramming from oxidative phosphorylation to glycolysis, which may cause neuron loss and functional impairment. The inhibitory immune checkpoint programmed cell death protein 1 (PD-1) on immune cells is an important target for tumor immunotherapy. However, the immunomodulatory effects of PD-1 in ASD remains to be elusive. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) exhibit immunomodulatory capabilities in a range of neurological diseases. Our findings indicated the expression of PD-L1 on MSC-EVs, potentially facilitating signaling to PD-1-expressing microglia. Here, we showed how MSC-EVs activated of PD-L1/PD-1 axis and ameliorated glycolysis, neuroinflammation and autism-like behaviors. After first detecting elevated glycolysis and neuroinflammation in prefrontal cortex (PFC) tissue from the maternal immune activation (MIA) mice, we also demonstrated that PD-1 expression level was upregulated in microglia. Following given MSC-EVs carried PD-L1 into adult MIA offspring mice via intranasal administration, which bound with PD-1 on microglia and then the autism-like behaviors were alleviated as well. Further experiments verified that MSC-EVs could decreased the level of glycolysis and neuroinflammation by PD-1/ERK/HIF-1α pathway in the primary microglia in PFC of MIA offspring mice. Pharmacological blockade and genetic inhibition of PD-1 could weaken the effect of MSC-EVs and aggravate microglial dysfunction, glycolysis and autism-like behaviors in MIA offspring mice. Futhermore, PD-L1 deficient weakened the effect of MSC-EVs on neuroinflammation, glycolysis and autism-like behaviors in MIA offspring mice. Our research indicated the significant immunomodulatory capabilities of MSC-EVs, which play an important role in reprogramming microglial glucose metabolism and suppressing neuroinflammation in ASD. By activating the PD-L1/PD-1 axis and inhibiting the downstream ERK/HIF-1α pathway, MSC-EVs were found to alleviate autism-like behaviors, which revealing a novel pathological mechanism and offering promising therapeutic insights into ASD.
Collapse
Affiliation(s)
- Qian Qin
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Linlin Fan
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Xin Zeng
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Danyang Zheng
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Han Wang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Mengyue Li
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Yutong Jiang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Hui Wang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Hao Liu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Shengjun Liang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Lijie Wu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China.
| | - Shuang Liang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
5
|
Chen Y, Du X, Zhang X, Li F, Yuan S, Wang W, Zhu Z, Wang M, Gu C. Research trends of inflammation in autism spectrum disorders: a bibliometric analysis. Front Immunol 2025; 16:1534660. [PMID: 40028326 PMCID: PMC11868081 DOI: 10.3389/fimmu.2025.1534660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
Background Inflammation has been recognized as a significant factor in the pathophysiology of autism spectrum disorders (ASD), which have garnered increasing scholarly attention over the past few decades. This study aims to explore research trends related to inflammation and ASD through bibliometric analysis. Method A comprehensive literature search was conducted in the Web of Science Core Collection (WoSCC) on August 28, 2024. This study was restricted to literature published in English. The bibliometric analysis utilized VOSviewer, CiteSpace, and the R package "bibliometrix" to visualize collaborations, keyword co-occurrences, and emerging research trends. Results A total of 1,752 articles addressing inflammation and ASD were published, demonstrating a consistent upward trend in research output. The United States emerged as the country with the highest volume of publications. Saleh A. Bakheet was identified as the most prolific authors, significantly contributing to the literature with 54 publications. The University of California System was recognized as the most productive institution in this area of study. The journal of Brain Behavior and Immunity was noted as a prominent venue for publication in this field, exhibiting high citation metrics that reflect its considerable influence. The keyword "children" was the most frequently occurring term, with other significant terms including "oxidative stress" and "brain." The keyword burst analysis revealed notable periods of increased research focus on topics such as "inflammatory bowel disease," "cytokine production," "neurodevelopmental disorders," and "microbiota." Conclusion This bibliometric analysis highlights the growing scholarly attention devoted to the relationship between inflammation and ASD. Significant contributions and emerging trends emphasize the pivotal role of neuroinflammation in ASD, indicating a necessity for further exploration in this domain.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zengyan Zhu
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| | - Mei Wang
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| | - Chao Gu
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| |
Collapse
|
6
|
Jin F, Wang Z. Mapping the structure of biomarkers in autism spectrum disorder: a review of the most influential studies. Front Neurosci 2024; 18:1514678. [PMID: 39734494 PMCID: PMC11671500 DOI: 10.3389/fnins.2024.1514678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/02/2024] [Indexed: 12/31/2024] Open
Abstract
BACKGROUND Autism spectrum disorder is a distinctive developmental condition which is caused by an interaction between genetic vulnerability and environmental factors. Biomarkers play a crucial role in understanding disease characteristics for diagnosis, prognosis, and treatment. This study employs bibliometric analysis to identify and review the 100 top-cited articles' characteristics, current research hotspots and future directions of autism biomarkers. METHODS A comprehensive search of autism biomarkers studies was retrieved from the Web of Science Core Collection database with a combined keyword search strategy. A comprehensive analysis of the top 100 articles was conducted with CiteSpace, VOSviewer, and Excel, including citations, countries, authors, and keywords. RESULTS The top 100 cited studies were published between 1988 and 2021, with the United States led in productivity. Core biomarkers such as genetics, children, oxidative stress, and mitochondrial dysfunction are well-established. Potential trends for future research may include brain studies, metabolomics, and associations with other psychiatric disorders. CONCLUSION This pioneering bibliometric analysis provides a comprehensive compilation of the 100 most-cited studies on autism, which not only offers a valuable resource for doctors, and researchers but shedding insights into current shortcomings and future endeavors. Future research should prioritize the application of emerging technologies for biomarkers, longitudinal study of biomarkers, and specificity of autism biomarkers to advance the precision of ASD diagnosis and treatment.
Collapse
Affiliation(s)
| | - Zhidan Wang
- School of Education Science, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
7
|
Huo S, Li B, Du J, Zhang X, Song M, Li Y. Neurotoxic effects of perinatal exposure to Bisphenol F on offspring mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124932. [PMID: 39260543 DOI: 10.1016/j.envpol.2024.124932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/26/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Bisphenols constitute a diverse group of endocrine-disrupting chemicals (EDCs) that impact hormone activity. Bisphenol F (BPF) is commonly used as a substitute for Bisphenol A (BPA). The disruption of the immune system by EDCs during embryonic brain development has been suggested as a plausible factor to neurodevelopmental disorders. We investigated the neurotoxic effects of perinatal exposure to BPF on offspring mice. Female mice were exposed to BPF through their drinking water on day 0.5 of pregnancy, and this exposure continued until the offspring mice were weaned, throughout the perinatal period. Our findings revealed that exposure to BPF hindered both growth and neurodevelopment in offspring mice, with a more pronounced effect observed in males. Additionally, transcriptomic analysis was conducted on the brains of male offspring mice exposed to high doses of BPF. In summary, our study indicates that perinatal exposure to BPF results in neurodevelopmental impairments in male offspring mice, linked to oxidative stress, inflammatory responses, and immune dysregulation. These findings underscore that BPF may not be a safe substitute for BPA. Thus, there is a pressing need to reevaluate the current regulation of BPF.
Collapse
Affiliation(s)
- Siming Huo
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jiayu Du
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
8
|
Noori AS, Rajabi P, Sargolzaei J, Alaghmand A. Correlation of biochemical markers and inflammatory cytokines in autism spectrum disorder (ASD). BMC Pediatr 2024; 24:696. [PMID: 39487445 PMCID: PMC11529241 DOI: 10.1186/s12887-024-05182-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
INTRODUCTION Autism Spectrum Disorder (ASD) is a disorder that severely affects neurodevelopment, and its underlying causes are not yet entirely understood. Research suggests that there may be a connection between the occurrence of ASD and changes in immune responses. This study aims to know if some biochemical and inflammatory cytokines are promising biomarkers for ASD and whether they are involved in the pathogenesis of ASD. METHODS The serum levels of CRP, TNF-α, TGF-β, IL-1β, IL-10, 1 L-8, and IL-6 were measured in all of the patients (n = 22) and in the healthy (n = 12) children using ELISA method. RESULTS The serum concentrations of IL-10 and IL-8 were significantly lower in the ASD patients compared to the control group (p < 0.05) and there were not significant differences between CRP, TNF-α, TGF-β, IL-6 and IL-1β levels in two groups. There were positive correlations between CRP and IL-10, also CRP and IL-8, in ASD group. In contrast to the ASD patients, the correlations of IL-8, IL-10, and CRP were not significant in the control group. CONCLUSION In conclusion, this study highlights the potential role of certain biochemical markers and inflammatory cytokines in ASD. Specifically, the lower levels of IL-10 and IL-8 in ASD patients, along with the significant correlations between CRP and these cytokines, suggest an altered immune response in individuals with ASD. These findings support the hypothesis that immune dysregulation may be involved in ASD pathogenesis. Further research is needed to explore these biomarkers and their mechanistic links to ASD, which could lead to improved diagnostics or therapeutic strategies.
Collapse
Affiliation(s)
- Ali Sabbah Noori
- Department of Biology, Faculty of Science, Arak University, Arak, 38156-8-8349, Iran
| | - Parisa Rajabi
- Department of Psychiatry, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Javad Sargolzaei
- Department of Biology, Faculty of Science, Arak University, Arak, 38156-8-8349, Iran.
| | - Anita Alaghmand
- Department of Psychiatry, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
9
|
Rezaiezadeh H, Langarizadeh MA, Tavakoli MR, Sabokro M, Banazadeh M, Kohlmeier KA, Shabani M. Therapeutic potential of Bergenin in the management of neurological-based diseases and disorders. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8349-8366. [PMID: 38850305 DOI: 10.1007/s00210-024-03197-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Originally sourced from plants, Bergenin has been used as a medicinal compound in traditional medicine for centuries, and anecdotal reports suggest a wide range of therapeutic uses. Naturally-occurring and lab-synthesized Bergenin, as well as some of its related compounds, have been shown in in vivo and in vitro studies to alter activity of several enzymes and proteins critical in cellular functioning, including reelin, GSK-3β, Lingo-1, Ten-4, GP-43, Aβ 1-42, P-tau, SOD1,2, GPx, Glx1, NQO1, HO1, PPAR-ɣ, BDNF, VEGF, and STAT6. Additionally, Bergenin alters levels of several cytokines, such as IL-6, IL-1β, TNF-α, and TGF-β. Behavioral and cellular effects of Bergenin have been shown to involve PI3K/Akt, NF-κB, PKC, Nrf2, and Sirt1/FOXO3a pathways. These pathways, enzymes, and proteins have been shown to be important in normal neurological functioning, and/or dysfunctions in these pathways and proteins have been shown to be important in several neuro-based disorders or diseases, which suggests that Bergenin could be therapeutic in management of neuropsychiatric conditions or neurological disorders. In preclinical studies, Bergenin has been shown to be useful for the management of Alzheimer's disease, Parkinson's disease, anxiety, depression, addiction, epilepsy, insomnia, stroke, and potentially, state control. Our review aims to summarize current evidence supporting the conclusion that Bergenin could play a role in treating various neuro-based disorders and that future studies should be conducted to evaluate the mechanisms by which Bergenin could exert its therapeutic effects.
Collapse
Affiliation(s)
- Hojjat Rezaiezadeh
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box, Shiraz, 71345-1583, Iran
| | - Mohammad Amin Langarizadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Marziye Ranjbar Tavakoli
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Sabokro
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
10
|
Szabo A, O'Connell KS, Akkouh IA, Ueland T, Sønderby IE, Hope S, Røe AB, Dønnum MS, Sjaastad I, Steen NE, Ueland T, Sæther LS, Osete JR, Andreassen OA, Nærland T, Djurovic S. Elevated levels of peripheral and central nervous system immune markers reflect innate immune dysregulation in autism spectrum disorder. Psychiatry Res 2024; 342:116245. [PMID: 39481220 DOI: 10.1016/j.psychres.2024.116245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 07/30/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Evidence suggests dysregulated immune functions in the pathophysiology of Autism spectrum disorder (ASD), although specific immune mechanisms are yet to be identified. METHODS We assessed circulating levels of 25 immune/neuroinflammatory markers in a large ASD sample (n = 151) and matched controls (n = 72) using linear models. In addition, we performed global brain transcriptomics analyses of relevant immune-related genes. We also assessed the expression and function of factors and pathway elements of the inflammasome system in peripheral blood mononuclear cells (PBMC) isolated from ASD and controls using in vitro methods. RESULTS We found higher circulating levels of IL-18 and adhesion factors (ICAM-1, MADCAM1) in individuals with ASD relative to controls. Consistent with this, brain levels of ICAM1 mRNA were also higher in ASD compared to controls. Furthermore, we found higher expression/activity of Caspase-1 and the inflammasome sensor NLRP3 in PBMCs in ASD, both at baseline and following inflammatory challenge. This corresponded with higher levels of secreted IL-18, IL-1β, and IL-8, as well as increased expression of adhesion factors following inflammasome activation in ASD PBMC cultures. Inhibition of the NLRP3-inflammasome rescued the observed immune phenotype in ASD in vitro. CONCLUSION Our results suggest a role for inflammasome dysregulation in ASD pathophysiology.
Collapse
Affiliation(s)
- Attila Szabo
- K.G. Jebsen Center for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
| | - Kevin S O'Connell
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ibrahim A Akkouh
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, building 25, Kirkeveien 166, Oslo 0450, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Thrombosis Research Center (TREC), Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ida E Sønderby
- K.G. Jebsen Center for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, building 25, Kirkeveien 166, Oslo 0450, Norway
| | - Sigrun Hope
- K.G. Jebsen Center for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Neurohabilitation, Oslo University Hospital, Oslo, Norway; Department of Rare Disorders and Disabilities, Nevsom, Oslo University Hospital, Oslo, Norway
| | - Anne B Røe
- St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Monica S Dønnum
- Department of Adult Habilitation, Akershus University Hospital, Oslo, Norway
| | - Ingrid Sjaastad
- Department of Child and Adolescent Psychiatry, Vestre Viken Hospital Trust, Norway
| | - Nils Eiel Steen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Torill Ueland
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Linn Sofie Sæther
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Jordi Requena Osete
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, building 25, Kirkeveien 166, Oslo 0450, Norway
| | - Ole A Andreassen
- K.G. Jebsen Center for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Terje Nærland
- K.G. Jebsen Center for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Rare Disorders and Disabilities, Nevsom, Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- K.G. Jebsen Center for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, building 25, Kirkeveien 166, Oslo 0450, Norway; Department of Clinical Science, NORMENT, University of Bergen, Bergen, Norway.
| |
Collapse
|
11
|
Abualait T, Alabbad M, Kaleem I, Imran H, Khan H, Kiyani MM, Bashir S. Autism Spectrum Disorder in Children: Early Signs and Therapeutic Interventions. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1311. [PMID: 39594885 PMCID: PMC11592467 DOI: 10.3390/children11111311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024]
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by challenges in communication, social interaction difficulties, and repetitive behaviors that can hinder a child's development. The growing prevalence of autism necessitates early detection and effective intervention strategies. This review summarizes the current knowledge of early indicators of ASD, including brain development markers and behavioral signs visible in infants. It investigates diagnostic processes, emphasizing the importance of timely detection at 18 to 24 months using established screening tools. We discuss a variety of therapeutic approaches, including behavioral interventions, educational strategies such as music therapy, and technological advancements such as speech-generating devices. Furthermore, we investigate pharmacological options for treating associated symptoms, emphasizing the lack of targeted medications for core ASD symptoms. Finally, we present evidence highlighting the positive effects of early intervention on developmental outcomes, advocating for individualized treatment plans to enhance the well-being of children with ASD. This comprehensive overview aims to inform ongoing ASD research and clinical practices.
Collapse
Affiliation(s)
- Turki Abualait
- College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia;
| | - Maryam Alabbad
- College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia;
- Department of Medical Rehabilitation and Long-Term Care, Al-Ahsa Health Cluster, Al-Ahsa 31982, Saudi Arabia
| | - Imdad Kaleem
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan (H.I.)
| | - Hadia Imran
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan (H.I.)
| | - Hamid Khan
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad 44000, Pakistan;
| | - Mubin Mustafa Kiyani
- Shifa College of Medical Technology, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan;
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital, Dammam 32253, Saudi Arabia;
| |
Collapse
|
12
|
Anastasescu CM, Gheorman V, Stoicanescu EC, Popescu F, Gheorman V, Udriștoiu I. Immunological Biomarkers in Autism Spectrum Disorder: The Role of TNF-Alpha and Dependent Trends in Serum IL-6 and CXCL8. Life (Basel) 2024; 14:1201. [PMID: 39337983 PMCID: PMC11432970 DOI: 10.3390/life14091201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) has seen a rise in prevalence, and the immune system's role in brain development is increasingly recognized. This study investigates the relationship between immune dysregulation and ASD by examining serum concentrations of interleukin 6 (IL-6), interleukin 8 (CXCL8), and tumor necrosis factor alpha (TNF-alpha) in children. METHODS Serum samples from 45 children with ASD and 30 controls, aged 2 to 12 years, were analyzed using electrochemiluminescence, chemiluminescent microparticle immunoassay, and chemiluminescent immunoassay. ASD symptoms were assessed using the Autism Spectrum Rating Scale (ASRS) and Social Communication Questionnaire (SCQ). RESULTS No significant correlation was observed between CXCL8 levels and ASD. IL-6 levels showed a trend toward elevation in boys with ASD. TNF-alpha levels were significantly higher in children with ASD under 5 years compared to older children and controls, though no correlation with symptom severity was found. CONCLUSIONS TNF-alpha may be a potential biomarker for early ASD detection, especially in younger children. Further research on larger cohorts is needed to understand the role of immune dysregulation in ASD.
Collapse
Affiliation(s)
| | - Veronica Gheorman
- Department of Medical Semiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Eugen-Cristi Stoicanescu
- Pediatry Department, Emergency Clinical Hospital Râmnicu-Vâlcea, 200300 Râmnicu-Vâlcea, Romania;
| | - Florica Popescu
- Pharmacology Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Victor Gheorman
- Department of Psychiatry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.G.); (I.U.)
| | - Ion Udriștoiu
- Department of Psychiatry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.G.); (I.U.)
| |
Collapse
|
13
|
Fuentes-Albero M, Mafla-España MA, Martínez-Raga J, Cauli O. Autistic Children/Adolescents Have Lower Adherence to the Mediterranean Diet and Higher Salivary IL-6 Concentration: Potential Diet-Inflammation Links? PATHOPHYSIOLOGY 2024; 31:376-387. [PMID: 39189164 PMCID: PMC11348102 DOI: 10.3390/pathophysiology31030028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is one of the most prevalent neurodevelopmental disorders. Many patients with ASD often show behavioral problems at mealtimes, including food selectivity and atypical feeding behaviors. The Mediterranean diet (MD) has a beneficial effect on mental health for the general population across different ages. There is evidence that good adherence to the MD is effective in reducing peripheral inflammatory markers, such as the cytokine interleukin-6 (IL-6). The present study was designed to evaluate adherence to the MD in children with ASD using age- and sex-matched, typically developing individuals (TDs) as a control group and to determine whether differences in adherence to the MD are associated with salivary IL-6 and IL-6 receptor concentration. METHODS Twenty children and adolescents with ASD (mean age 9.95 ± 0.65 years) and twenty TDs (mean age: 9.85 ± 0.59 years) participated in this study (N = 16 males and N = 4 females in each group). Participants with ASD were enrolled in a psychiatric consultation in Valencia (Spain), and TDs were recruited from two public schools in Valencia. The parents of both ASD and TD groups answered the items in a validated Mediterranean Diet Quality Index for children and adolescents (KIDMED) questionnaire on their children's adherence to the MD. RESULTS The mean adherence to MD score was significantly lower in the ASD group (9.10 ± 0.42) (range 6-12) than in the TD group (10.35 ± 0.31) (range 8-12) (p = 0.02, Mann-Whitney U test). There was no statistically significant association between adherence to the MD and age or sex in both groups, but there was a significant correlation between the total KIDMED score and body mass index (BMI) in the ASD group. Regarding the concentration of Il-6 and the Il-6 receptor in saliva samples, there were no significant differences between the two groups; however, linear regression analysis by group revealed significant associations between the adherence to MD score and the concentration of IL-6 and its receptor in saliva in the ASD group (p = 0.003, OR = 0.68, 95% CI 0.007 to -0.02; p = 0.009, OR = -0.64, 95% CI -0.01 to -0.00). In contrast, no significant associations were observed between the adherence to MD score and the concentration of IL-6 and its receptor in saliva in the TD group. CONCLUSIONS Children and adolescents with ASD showed significantly lower adherence to the MD, which can contribute to nutritional deficits described in ASD, and the role of BMI composition (fat versus lean mass) needs to be further investigated in this group. The concentration of IL-6 and its receptor in saliva is associated with adherence to the MD, suggesting a possible link between IL-6 and diet in ASD. Further studies to clarify the associations between IL-6, psychiatric alterations, and diet in ASD are needed.
Collapse
Affiliation(s)
| | | | - José Martínez-Raga
- Department of Psychiatry and Clinical Psychology, Hospital Universitario Doctor Peset and University of Valencia, 46010 Valencia, Spain;
| | - Omar Cauli
- Nursing Department, University of Valencia, 46010 Valencia, Spain;
| |
Collapse
|
14
|
Gevezova M, Ivanov Z, Pacheva I, Timova E, Kazakova M, Kovacheva E, Ivanov I, Sarafian V. Bioenergetic and Inflammatory Alterations in Regressed and Non-Regressed Patients with Autism Spectrum Disorder. Int J Mol Sci 2024; 25:8211. [PMID: 39125780 PMCID: PMC11311370 DOI: 10.3390/ijms25158211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Autism spectrum disorder (ASD) is associated with multiple physiological abnormalities. Current laboratory and clinical evidence most commonly report mitochondrial dysfunction, oxidative stress, and immunological imbalance in almost every cell type of the body. The present work aims to evaluate oxygen consumption rate (OCR), extracellular acidification rate (ECAR), and inflammation-related molecules such as Cyclooxygenase-2 (COX-2), chitinase 3-like protein 1 (YKL-40), Interleukin-1 beta (IL-1β), Interleukin-9 (IL-9) in ASD children with and without regression compared to healthy controls. Children with ASD (n = 56) and typically developing children (TDC, n = 12) aged 1.11 to 11 years were studied. Mitochondrial activity was examined in peripheral blood mononuclear cells (PBMCs) isolated from children with ASD and from the control group, using a metabolic analyzer. Gene and protein levels of IL-1β, IL-9, COX-2, and YKL-40 were investigated in parallel. Our results showed that PBMCs of the ASD subgroup of regressed patients (ASD R(+), n = 21) had a specific pattern of mitochondrial activity with significantly increased maximal respiration, respiratory spare capacity, and proton leak compared to the non-regressed group (ASD R(-), n = 35) and TDC. Furthermore, we found an imbalance in the studied proinflammatory molecules and increased levels in ASD R(-) proving the involvement of inflammatory changes. The results of this study provide new evidence for specific bioenergetic profiles of immune cells and elevated inflammation-related molecules in ASD. For the first time, data on a unique metabolic profile in ASD R(+) and its comparison with a random group of children of similar age and sex are provided. Our data show that mitochondrial dysfunction is more significant in ASD R(+), while in ASD R(-) inflammation is more pronounced. Probably, in the group without regression, immune mechanisms (immune dysregulation, leading to inflammation) begin initially, and at a later stage mitochondrial activity is also affected under exogenous factors. On the other hand, in the regressed group, the initial damage is in the mitochondria, and perhaps at a later stage immune dysfunction is involved.
Collapse
Affiliation(s)
- Maria Gevezova
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.G.); (Z.I.); (M.K.); (E.K.)
- Research Institute at MU-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Zdravko Ivanov
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.G.); (Z.I.); (M.K.); (E.K.)
| | - Iliana Pacheva
- Department of Pediatrics and Medical Genetics, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (I.P.); (I.I.)
- Pediatrics Clinic, St. George University Hospital, 4002 Plovdiv, Bulgaria;
| | - Elena Timova
- Pediatrics Clinic, St. George University Hospital, 4002 Plovdiv, Bulgaria;
| | - Maria Kazakova
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.G.); (Z.I.); (M.K.); (E.K.)
- Research Institute at MU-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Eleonora Kovacheva
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.G.); (Z.I.); (M.K.); (E.K.)
- Research Institute at MU-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Ivan Ivanov
- Department of Pediatrics and Medical Genetics, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (I.P.); (I.I.)
- Pediatrics Clinic, St. George University Hospital, 4002 Plovdiv, Bulgaria;
| | - Victoria Sarafian
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.G.); (Z.I.); (M.K.); (E.K.)
- Research Institute at MU-Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
15
|
Le Belle JE, Condro M, Cepeda C, Oikonomou KD, Tessema K, Dudley L, Schoenfield J, Kawaguchi R, Geschwind D, Silva AJ, Zhang Z, Shokat K, Harris NG, Kornblum HI. Acute rapamycin treatment reveals novel mechanisms of behavioral, physiological, and functional dysfunction in a maternal inflammation mouse model of autism and sensory over-responsivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602602. [PMID: 39026891 PMCID: PMC11257517 DOI: 10.1101/2024.07.08.602602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Maternal inflammatory response (MIR) during early gestation in mice induces a cascade of physiological and behavioral changes that have been associated with autism spectrum disorder (ASD). In a prior study and the current one, we find that mild MIR results in chronic systemic and neuro-inflammation, mTOR pathway activation, mild brain overgrowth followed by regionally specific volumetric changes, sensory processing dysregulation, and social and repetitive behavior abnormalities. Prior studies of rapamycin treatment in autism models have focused on chronic treatments that might be expected to alter or prevent physical brain changes. Here, we have focused on the acute effects of rapamycin to uncover novel mechanisms of dysfunction and related to mTOR pathway signaling. We find that within 2 hours, rapamycin treatment could rapidly rescue neuronal hyper-excitability, seizure susceptibility, functional network connectivity and brain community structure, and repetitive behaviors and sensory over-responsivity in adult offspring with persistent brain overgrowth. These CNS-mediated effects are also associated with alteration of the expression of several ASD-,ion channel-, and epilepsy-associated genes, in the same time frame. Our findings suggest that mTOR dysregulation in MIR offspring is a key contributor to various levels of brain dysfunction, including neuronal excitability, altered gene expression in multiple cell types, sensory functional network connectivity, and modulation of information flow. However, we demonstrate that the adult MIR brain is also amenable to rapid normalization of these functional changes which results in the rescue of both core and comorbid ASD behaviors in adult animals without requiring long-term physical alterations to the brain. Thus, restoring excitatory/inhibitory imbalance and sensory functional network modularity may be important targets for therapeutically addressing both primary sensory and social behavior phenotypes, and compensatory repetitive behavior phenotypes.
Collapse
|
16
|
Arenella M. Immunomodulatory options for neurodevelopmental spectrum conditions: are we there yet? Int Clin Psychopharmacol 2024; 39:220-222. [PMID: 38261431 DOI: 10.1097/yic.0000000000000531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
About 3-7% of the worldwide population is diagnosed with a neurodevelopmental condition, including autism and attention-deficit hyperactivity disorder. Nonetheless, the aetiology of these conditions is unclear and support options are limited or not effective for all those diagnosed. Cumulating evidence, however, supports a role of the immune system in neurodevelopment, and immune dysregulations have been implicated in neurodevelopmental atypicalities. This knowledge offers tremendous opportunities, especially the possibility to adopt immunomodulatory compounds, which are already available and safe to use, for the management of neurodevelopmental difficulties. This perspective discusses the potential of immune-based interventions in neurodevelopmental care. Here, the application of existing immunomodulatory compounds to symptom management is justified by findings of immune dysregulations across neurodevelopmental conditions and preliminary, encouraging immune-based clinical trials. Still, key considerations are presented, specifically the necessity of immune biomarkers to ensure the right support option for the right (subgroup of) individuals within the neurodevelopmental spectrum.
Collapse
Affiliation(s)
- Martina Arenella
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
17
|
Wikarska A, Roszak K, Roszek K. Mesenchymal Stem Cells and Purinergic Signaling in Autism Spectrum Disorder: Bridging the Gap between Cell-Based Strategies and Neuro-Immune Modulation. Biomedicines 2024; 12:1310. [PMID: 38927517 PMCID: PMC11201695 DOI: 10.3390/biomedicines12061310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of autism spectrum disorder (ASD) is still increasing, which means that this neurodevelopmental lifelong pathology requires special scientific attention and efforts focused on developing novel therapeutic approaches. It has become increasingly evident that neuroinflammation and dysregulation of neuro-immune cross-talk are specific hallmarks of ASD, offering the possibility to treat these disorders by factors modulating neuro-immunological interactions. Mesenchymal stem cell-based therapy has already been postulated as one of the therapeutic approaches for ASD; however, less is known about the molecular mechanisms of stem cell influence. One of the possibilities, although still underestimated, is the paracrine purinergic activity of MSCs, by which stem cells ameliorate inflammatory reactions. Modulation of adenosine signaling may help restore neurotransmitter balance, reduce neuroinflammation, and improve overall brain function in individuals with ASD. In our review article, we present a novel insight into purinergic signaling, including but not limited to the adenosinergic pathway and its role in neuroinflammation and neuro-immune cross-talk modulation. We anticipate that by achieving a greater understanding of the purinergic signaling contribution to ASD and related disorders, novel therapeutic strategies may be devised for patients with autism in the near future.
Collapse
Affiliation(s)
| | | | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland; (A.W.); (K.R.)
| |
Collapse
|
18
|
Alwetaid MY, Almanaa TN, Bakheet SA, Ansari MA, Nadeem A, Attia SM, Hussein MH, Attia MSM, Ahmad SF. Aflatoxin B 1 exposure exacerbates chemokine receptor expression in the BTBR T + Itpr3 tf/J Mouse Model, unveiling insights into autism spectrum disorder: A focus on brain and spleen. Reprod Toxicol 2024; 126:108599. [PMID: 38679149 DOI: 10.1016/j.reprotox.2024.108599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
OBJECTIVE Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by significant difficulties in social interaction, communication, and repeated stereotypic behaviour. Aflatoxin B1 (AFB1) is the most potent and well-known mycotoxin in various food sources. Despite its propensity to generate significant biochemical and structural changes in human and animal tissues, the influence of AFB1 on ASD has yet to be thoroughly studied. Mounting evidence indicates that chemokine receptors play a crucial function in the central nervous system and are implicated in developing several neuroinflammatory disorders. Chemokine receptors in individuals with ASD were elevated in the anterior cingulate gyrus astrocytes, cerebellum, and brain. METHODS The BTBR T+Itpr3tf/J (BTBR) mice are inbred strains that exhibit strong and consistently observed deficits in social interactions, characterized by excessive self-grooming and limited vocalization in social contexts. We examined the impact of AFB1 on CCR3-, CCR7-, CCR9-, CXCR3-, CXCR4-, and CXCR6-expressing I-A/I-E+ cells in the spleen of the BTBR mouse model of autism. We evaluated the mRNA levels of CCR3, CCR7, CCR9, CXCR3, CXCR4, and CXCR6 chemokine receptors in the brain. RESULTS The exposure to AFB1 in BTBR mice resulted in a significant rise in the number of I-A/I-E+CCR3+, I-A/I-E+CCR7+, I-A/I-E+CCR9+, I-A/I-E+CXCR3+, I-A/I-E+CXCR4+, and I-A/I-E+CXCR6+ cells. Furthermore, exposure to AFB1 increased mRNA expression levels of CCR3, CCR7, CCR9, CXCR3, CXCR4, and CXCR6 in the brain. CONCLUSIONS These findings highlight that AFB1 exposure increases the expression of chemokine receptors in BTBR mice, indicating the necessity for further research into AFB1's role in the development of ASD.
Collapse
Affiliation(s)
- Mohammad Y Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marwa H Hussein
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
19
|
Davis A, Van Eck K, Copeland-Linder N, Phuong K, Belcher HME. Hospitalization and Mortality for Insured Patients in the United States with COVID-19 with and without Autism Spectrum Disorder. J Autism Dev Disord 2024; 54:2347-2354. [PMID: 37022580 PMCID: PMC10077315 DOI: 10.1007/s10803-023-05971-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2023] [Indexed: 04/07/2023]
Abstract
Autism spectrum disorder (ASD) is a neuropsychiatric condition that may be associated with negative health outcomes. This retrospective cohort study reveals the odds of hospitalization and mortality based on ASD for a population of insured patients with COVID-19. The odds of hospitalization and mortality for people with ASD were found to be greater than individuals without ASD when adjusted for sociodemographic characteristics. Hospitalization and mortality was associated with a dose-response increase to comorbidity counts (1 to 5+). Odds of mortality remained greater for those with ASD when adjusting for comorbid health conditions. ASD is a risk factor for COVID-19 mortality. Comorbid health conditions play a particular role in increasing the odds of COVID-19 related hospitalization and death for ASD patients.
Collapse
Affiliation(s)
- Amber Davis
- Department of Pediatrics, Johns Hopkins University, School of Medicine, Baltimore, USA
- Office for Health, Equity, Inclusion, and Diversity, Kennedy Krieger Institute, Baltimore, USA
| | - Kathryn Van Eck
- Office for Health, Equity, Inclusion, and Diversity, Kennedy Krieger Institute, Baltimore, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, Baltimore, USA
- Kennedy Krieger Institute, Center for Diversity in Public Health Leadership Training, 716 North Broadway, Baltimore, MD, 21205, USA
| | - Nikeea Copeland-Linder
- Office for Health, Equity, Inclusion, and Diversity, Kennedy Krieger Institute, Baltimore, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, Baltimore, USA
- Kennedy Krieger Institute, Center for Diversity in Public Health Leadership Training, 716 North Broadway, Baltimore, MD, 21205, USA
| | | | - Harolyn M E Belcher
- Department of Pediatrics, Johns Hopkins University, School of Medicine, Baltimore, USA.
- Office for Health, Equity, Inclusion, and Diversity, Kennedy Krieger Institute, Baltimore, USA.
- Kennedy Krieger Institute, Center for Diversity in Public Health Leadership Training, 716 North Broadway, Baltimore, MD, 21205, USA.
| |
Collapse
|
20
|
Yu Y, Yang X, Hu G, Yin Y, Yu R. Causal effects of 731 immune cell phenotypes on autism spectrum disorder: a Mendelian randomization study. Front Psychiatry 2024; 15:1397006. [PMID: 38827447 PMCID: PMC11140572 DOI: 10.3389/fpsyt.2024.1397006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/15/2024] [Indexed: 06/04/2024] Open
Abstract
Objective The role of different immune cells in autism spectrum disorders (ASD) is still controversial. The purpose of this study was to evaluate the causal effects of different immune cell phenotypes on ASD via Mendelian randomization (MR). Methods Datasets of immune cell phenotypes were obtained from the European Bioinformatics Institute, and datasets of ASD were obtained from the IEU Open GWAS project. Single nucleotide polymorphisms were selected based on the assumptions of association, independence, and exclusivity. Inverse variance weighted was utilized as the main method for MR analysis. MR-Egger was employed to assess the horizontal pleiotropy of the results. Cochran's Q and leave-one-out method were used for heterogeneity analysis and sensitivity analysis of the results, respectively. Results MR analysis showed that TD CD8br AC [odds ratio (OR), 1.137; 95% confidence interval (CI), 1.031-1.254; p = 0.010], CD8br %leukocyte (OR, 1.142; 95% CI, 1.067-1.223; p < 0.001), CD8br and CD8dim %leukocyte (OR, 1.117; 95% CI, 1.032-1.210; p = 0.006), naive CD8br %T cell (OR, 1.052; 95% CI, 1.004-1.104; p = 0.035), CD28- CD8dim %T cell (OR, 1.097; 95% CI, 1.038-1.158; p < 0.001), CD127- CD8br AC (OR, 1.086; 95% CI, 1.006-1.171; p = 0.034), CD45 on CD8br (OR, 1.059; 95% CI, 1.021-1.099; p = 0.002), CD3 on HLA DR+ CD8br (OR, 1.098; 95% CI, 1.041-1.158; p < 0.001), CD4 on activated Treg (OR, 1.048; 95% CI, 1.001-1.096; p = 0.046), CD3 on CD39+ resting Treg (OR, 1.070; 95% CI, 1.012-1.131; p = 0.018), IgD+ CD38- %lymphocyte (OR, 1.103; 95% CI, 1.023-1.190; p = 0.011), CD62L- plasmacytoid DC %DC (OR, 1.046; 95% CI, 1.001-1.093; p = 0.046), and FSC-A on plasmacytoid DC (OR, 1.075; 95% CI, 1.003-1.153; p = 0.042) were associated with increased genetic susceptibility to ASD. MR-Egger displayed no horizontal pleiotropy (p ≥ 0.05). Cochran's Q revealed no heterogeneity of results (p ≥ 0.05). Sensitivity analysis indicated that the results were robust. Conclusion This MR analysis revealed 13 immune cell phenotypes associated with increased genetic susceptibility to ASD and emphasized the importance of CD8 T cells and Tregs, which provides new directions for the pathogenesis and drug research of ASD.
Collapse
Affiliation(s)
- Yunfeng Yu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Endocrinology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xinyu Yang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Gang Hu
- Department of Endocrinology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yuman Yin
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Rong Yu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Endocrinology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
21
|
Osman HC, Moreno R, Rose D, Rowland ME, Ciernia AV, Ashwood P. Impact of maternal immune activation and sex on placental and fetal brain cytokine and gene expression profiles in a preclinical model of neurodevelopmental disorders. J Neuroinflammation 2024; 21:118. [PMID: 38715090 PMCID: PMC11077729 DOI: 10.1186/s12974-024-03106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/21/2024] [Indexed: 05/12/2024] Open
Abstract
Maternal inflammation during gestation is associated with a later diagnosis of neurodevelopmental disorders including autism spectrum disorder (ASD). However, the specific impact of maternal immune activation (MIA) on placental and fetal brain development remains insufficiently understood. This study aimed to investigate the effects of MIA by analyzing placental and brain tissues obtained from the offspring of pregnant C57BL/6 dams exposed to polyinosinic: polycytidylic acid (poly I: C) on embryonic day 12.5. Cytokine and mRNA content in the placenta and brain tissues were assessed using multiplex cytokine assays and bulk-RNA sequencing on embryonic day 17.5. In the placenta, male MIA offspring exhibited higher levels of GM-CSF, IL-6, TNFα, and LT-α, but there were no differences in female MIA offspring. Furthermore, differentially expressed genes (DEG) in the placental tissues of MIA offspring were found to be enriched in processes related to synaptic vesicles and neuronal development. Placental mRNA from male and female MIA offspring were both enriched in synaptic and neuronal development terms, whereas females were also enriched for terms related to excitatory and inhibitory signaling. In the fetal brain of MIA offspring, increased levels of IL-28B and IL-25 were observed with male MIA offspring and increased levels of LT-α were observed in the female offspring. Notably, we identified few stable MIA fetal brain DEG, with no male specific difference whereas females had DEG related to immune cytokine signaling. Overall, these findings support the hypothesis that MIA contributes to the sex- specific abnormalities observed in ASD, possibly through altered neuron developed from exposure to inflammatory cytokines. Future research should aim to investigate how interactions between the placenta and fetal brain contribute to altered neuronal development in the context of MIA.
Collapse
Affiliation(s)
- Hadley C Osman
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
- The M.I.N.D. Institute, University of California at Sacramento, Sacramento, CA, USA
| | - Rachel Moreno
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
- The M.I.N.D. Institute, University of California at Sacramento, Sacramento, CA, USA
| | - Destanie Rose
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
- The M.I.N.D. Institute, University of California at Sacramento, Sacramento, CA, USA
| | - Megan E Rowland
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Annie Vogel Ciernia
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA.
- The M.I.N.D. Institute, University of California at Sacramento, Sacramento, CA, USA.
| |
Collapse
|
22
|
González-Madrid E, Rangel-Ramírez MA, Opazo MC, Méndez L, Bohmwald K, Bueno SM, González PA, Kalergis AM, Riedel CA. Gestational hypothyroxinemia induces ASD-like phenotypes in behavior, proinflammatory markers, and glutamatergic protein expression in mouse offspring of both sexes. Front Endocrinol (Lausanne) 2024; 15:1381180. [PMID: 38752179 PMCID: PMC11094302 DOI: 10.3389/fendo.2024.1381180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Background The prevalence of autism spectrum disorder (ASD) has significantly risen in the past three decades, prompting researchers to explore the potential contributions of environmental factors during pregnancy to ASD development. One such factor of interest is gestational hypothyroxinemia (HTX), a frequent condition in pregnancy associated with cognitive impairments in the offspring. While retrospective human studies have linked gestational HTX to autistic traits, the cellular and molecular mechanisms underlying the development of ASD-like phenotypes remain poorly understood. This study used a mouse model of gestational HTX to evaluate ASD-like phenotypes in the offspring. Methods To induce gestational HTX, pregnant mice were treated with 2-mercapto-1-methylimidazole (MMI), a thyroid hormones synthesis inhibitor, in the tap-drinking water from embryonic days (E) 10 to E14. A separate group received MMI along with a daily subcutaneous injection of T4, while the control group received regular tap water during the entire pregnancy. Female and male offspring underwent assessments for repetitive, anxious, and social behaviors from postnatal day (P) 55 to P64. On P65, mice were euthanized for the evaluation of ASD-related inflammatory markers in blood, spleen, and specific brain regions. Additionally, the expression of glutamatergic proteins (NLGN3 and HOMER1) was analyzed in the prefrontal cortex and hippocampus. Results The HTX-offspring exhibited anxious-like behavior, a subordinate state, and impaired social interactions. Subsequently, both female and male HTX-offspring displayed elevated proinflammatory cytokines in blood, including IL-1β, IL-6, IL-17A, and TNF-α, while only males showed reduced levels of IL-10. The spleen of HTX-offspring of both sexes showed increased Th17/Treg ratio and M1-like macrophages. In the prefrontal cortex and hippocampus of male HTX-offspring, elevated levels of IL-17A and reduced IL-10 were observed, accompanied by increased expression of hippocampal NLGN3 and HOMER1. All these observations were compared to those observed in the Control-offspring. Notably, the supplementation with T4 during the MMI treatment prevents the development of the observed phenotypes. Correlation analysis revealed an association between maternal T4 levels and specific ASD-like outcomes. Discussion This study validates human observations, demonstrating for the first time that gestational HTX induces ASD-like phenotypes in the offspring, highlighting the need of monitoring thyroid function during pregnancy.
Collapse
Affiliation(s)
- Enrique González-Madrid
- Laboratorio de Endocrino-inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ma. Andreina Rangel-Ramírez
- Laboratorio de Endocrino-inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María C. Opazo
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Medicina Veterinaria y Agronomía, Instituto de Ciencias Naturales, Universidad de las Américas, Santiago, Chile
| | - Luis Méndez
- Laboratorio de Endocrino-inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Laboratorio de Endocrino-inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
23
|
Bozzatello P, Novelli R, Montemagni C, Rocca P, Bellino S. Nutraceuticals in Psychiatric Disorders: A Systematic Review. Int J Mol Sci 2024; 25:4824. [PMID: 38732043 PMCID: PMC11084672 DOI: 10.3390/ijms25094824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Correct nutrition and diet are directly correlated with mental health, functions of the immune system, and gut microbiota composition. Diets with a high content of some nutrients, such as fibers, phytochemicals, and short-chain fatty acids (omega-3 fatty acids), seem to have an anti-inflammatory and protective action on the nervous system. Among nutraceuticals, supplementation of probiotics and omega-3 fatty acids plays a role in improving symptoms of several mental disorders. In this review, we collect data on the efficacy of nutraceuticals in patients with schizophrenia, autism spectrum disorders, major depression, bipolar disorder, and personality disorders. This narrative review aims to provide an overview of recent evidence obtained on this topic, pointing out the direction for future research.
Collapse
Affiliation(s)
- Paola Bozzatello
- Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy; (R.N.); (C.M.); (P.R.); (S.B.)
| | | | | | | | | |
Collapse
|
24
|
Li H, Dang Y, Yan Y. Serum interleukin-17 A and homocysteine levels in children with autism. BMC Neurosci 2024; 25:17. [PMID: 38475688 DOI: 10.1186/s12868-024-00860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that typically emerges early in childhood. This study aimed to explore the potential link between serum levels of vitamin B12 and homocysteine (Hcy) and the severity of ASD symptoms in children. METHODS In this study, 50 children diagnosed with ASD comprised the observation group, while 50 healthy children constituted the control group. Serum levels of IL-17 A, Hcy, folate, and vitamin B12 were compared between the study group and control group, as well as among children with different degrees of ASD severity. The correlation between the Childhood Autism Rating Scale (CARS) score and serum levels of IL-17 A, Hcy, folate, and vitamin B12 was examined. Additionally, the relationship between serum IL-17 A and Hcy levels and their association with the severity ASD were explored. RESULTS Compared to the control group, the observation group demonstrated elevated serum Hcy and IL-17 A levels alongside decreased folate and vitamin B12 levels. Individuals with severe ASD exhibited higher Hcy and IL-17 A levels but lower folate and vitamin B12 levels compared to those with mild to moderate ASD. The CARS score showed negative correlations with serum folate and vitamin B12 levels and positive correlations with serum IL-17 A and Hcy levels in ASD patients. Additionally, serum Hcy and IL-17 A levels were correlated with ASD severity. CONCLUSION Children diagnosed with ASD presented with reduced serum vitamin B12 levels and increased levels of Hcy, potentially contributing to the onset and severity of ASD.
Collapse
Affiliation(s)
- Hui Li
- Department of Child Health Care, Northwest Women's and Children's Hospital, 710061, Xi'an, China.
| | - Yunhao Dang
- Xi'an Mental Health Center, Department of Children and adolescents Psychology, 710061, Xi'an, China
| | - Ying Yan
- Department of Child Health Care, Xi'an Central Hospital, 710004, Xi'an, China
| |
Collapse
|
25
|
Kovacheva E, Gevezova M, Maes M, Sarafian V. Mast Cells in Autism Spectrum Disorder-The Enigma to Be Solved? Int J Mol Sci 2024; 25:2651. [PMID: 38473898 DOI: 10.3390/ijms25052651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is a disturbance of neurodevelopment with a complicated pathogenesis and unidentified etiology. Many children with ASD have a history of "allergic symptoms", often in the absence of mast cell (MC)-positive tests. Activation of MCs by various stimuli may release molecules related to inflammation and neurotoxicity, contributing to the development of ASD. The aim of the present paper is to enrich the current knowledge on the relationship between MCs and ASD by discussing key molecules and immune pathways associated with MCs in the pathogenesis of autism. Cytokines, essential marker molecules for MC degranulation and therapeutic targets, are also highlighted. Understanding the relationship between ASD and the activation of MCs, as well as the involved molecules and interactions, are the main points contributing to solving the enigma. Key molecules, associated with MCs, may provide new insights to the discovery of drug targets for modeling inflammation in ASD.
Collapse
Affiliation(s)
- Eleonora Kovacheva
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Maria Gevezova
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Michael Maes
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Cognitive Fitness and Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Psychiatry, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|
26
|
Vacharasin JM, Ward JA, McCord MM, Cox K, Imitola J, Lizarraga SB. Neuroimmune mechanisms in autism etiology - untangling a complex problem using human cellular models. OXFORD OPEN NEUROSCIENCE 2024; 3:kvae003. [PMID: 38665176 PMCID: PMC11044813 DOI: 10.1093/oons/kvae003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/13/2024] [Accepted: 01/31/2024] [Indexed: 04/28/2024]
Abstract
Autism spectrum disorder (ASD) affects 1 in 36 people and is more often diagnosed in males than in females. Core features of ASD are impaired social interactions, repetitive behaviors and deficits in verbal communication. ASD is a highly heterogeneous and heritable disorder, yet its underlying genetic causes account only for up to 80% of the cases. Hence, a subset of ASD cases could be influenced by environmental risk factors. Maternal immune activation (MIA) is a response to inflammation during pregnancy, which can lead to increased inflammatory signals to the fetus. Inflammatory signals can cross the placenta and blood brain barriers affecting fetal brain development. Epidemiological and animal studies suggest that MIA could contribute to ASD etiology. However, human mechanistic studies have been hindered by a lack of experimental systems that could replicate the impact of MIA during fetal development. Therefore, mechanisms altered by inflammation during human pre-natal brain development, and that could underlie ASD pathogenesis have been largely understudied. The advent of human cellular models with induced pluripotent stem cell (iPSC) and organoid technology is closing this gap in knowledge by providing both access to molecular manipulations and culturing capability of tissue that would be otherwise inaccessible. We present an overview of multiple levels of evidence from clinical, epidemiological, and cellular studies that provide a potential link between higher ASD risk and inflammation. More importantly, we discuss how stem cell-derived models may constitute an ideal experimental system to mechanistically interrogate the effect of inflammation during the early stages of brain development.
Collapse
Affiliation(s)
- Janay M Vacharasin
- Department of Biological Sciences, and Center for Childhood Neurotherapeutics, Univ. of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
- Department of Biological Sciences, Francis Marion University, 4822 East Palmetto Street, Florence, S.C. 29506, USA
| | - Joseph A Ward
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
- Center for Translational Neuroscience, Carney Institute of Brain Science, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - Mikayla M McCord
- Department of Biological Sciences, and Center for Childhood Neurotherapeutics, Univ. of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| | - Kaitlin Cox
- Department of Biological Sciences, and Center for Childhood Neurotherapeutics, Univ. of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| | - Jaime Imitola
- Laboratory of Neural Stem Cells and Functional Neurogenetics, UConn Health, Departments of Neuroscience, Neurology, Genetics and Genome Sciences, UConn Health, 263 Farmington Avenue, Farmington, CT 06030-5357, USA
| | - Sofia B Lizarraga
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
- Center for Translational Neuroscience, Carney Institute of Brain Science, Brown University, 70 Ship Street, Providence, RI 02903, USA
| |
Collapse
|
27
|
Takada R, Toritsuka M, Yamauchi T, Ishida R, Kayashima Y, Nishi Y, Ishikawa M, Yamamuro K, Ikehara M, Komori T, Noriyama Y, Kamikawa K, Saito Y, Okano H, Makinodan M. Granulocyte macrophage colony-stimulating factor-induced macrophages of individuals with autism spectrum disorder adversely affect neuronal dendrites through the secretion of pro-inflammatory cytokines. Mol Autism 2024; 15:10. [PMID: 38383466 PMCID: PMC10882766 DOI: 10.1186/s13229-024-00589-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/06/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND A growing body of evidence suggests that immune dysfunction and inflammation in the peripheral tissues as well as the central nervous system are associated with the neurodevelopmental deficits observed in autism spectrum disorder (ASD). Elevated expression of pro-inflammatory cytokines in the plasma, serum, and peripheral blood mononuclear cells of ASD has been reported. These cytokine expression levels are associated with the severity of behavioral impairments and symptoms in ASD. In a prior study, our group reported that tumor necrosis factor-α (TNF-α) expression in granulocyte-macrophage colony-stimulating factor-induced macrophages (GM-CSF MΦ) and the TNF-α expression ratio in GM-CSF MΦ/M-CSF MΦ (macrophage colony-stimulating factor-induced macrophages) was markedly higher in individuals with ASD than in typically developed (TD) individuals. However, the mechanisms of how the macrophages and the highly expressed cytokines affect neurons remain to be addressed. METHODS To elucidate the effect of macrophages on human neurons, we used a co-culture system of control human-induced pluripotent stem cell-derived neurons and differentiated macrophages obtained from the peripheral blood mononuclear cells of five TD individuals and five individuals with ASD. All participants were male and ethnically Japanese. RESULTS Our results of co-culture experiments showed that GM-CSF MΦ affect the dendritic outgrowth of neurons through the secretion of pro-inflammatory cytokines, interleukin-1α and TNF-α. Macrophages derived from individuals with ASD exerted more severe effects than those derived from TD individuals. LIMITATIONS The main limitations of our study were the small sample size with a gender bias toward males, the use of artificially polarized macrophages, and the inability to directly observe the interaction between neurons and macrophages from the same individuals. CONCLUSIONS Our co-culture system revealed the non-cell autonomous adverse effects of GM-CSF MΦ in individuals with ASD on neurons, mediated by interleukin-1α and TNF-α. These results may support the immune dysfunction hypothesis of ASD, providing new insights into its pathology.
Collapse
Affiliation(s)
- Ryohei Takada
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Michihiro Toritsuka
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan.
| | - Takahira Yamauchi
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Rio Ishida
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Yoshinori Kayashima
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Yuki Nishi
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Kazuhiko Yamamuro
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Minobu Ikehara
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Takashi Komori
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Yuki Noriyama
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Kohei Kamikawa
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Yasuhiko Saito
- Department of Neurophysiology, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
- Osaka Psychiatric Research Center, 3-16-21 Miyanosaka, Hirakata City, Osaka, 573-0022, Japan
| |
Collapse
|
28
|
Santos TCD, Obando JMC, Leite PEC, Pereira MR, Leitão MDF, Abujadi C, Pimenta LDFL, Martins RCC, Cavalcanti DN. Approaches of marine compounds and relevant immune mediators in Autism Spectrum Disorder: Opportunities and challenges. Eur J Med Chem 2024; 266:116153. [PMID: 38277916 DOI: 10.1016/j.ejmech.2024.116153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/28/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that affects social skills, language, communication, and behavioral skills, significantly impacting the individual's quality of life. Recently, numerous works have centered on the connections between the immune and central nervous systems and the influence of neuroinflammation on autism symptomatology. Marine natural products are considered as important alternative sources of different types of compounds, including polysaccharides, polyphenols, sterols, carotenoids, terpenoids and, alkaloids. These compounds present anti-inflammatory, neuroprotective and immunomodulatory activities, exhibiting a potential for the treatment of many diseases. Although many studies address the marine compounds in the modulation of inflammatory mediators, there is a gap regarding their use in the regulation of the immune system in ASD. Thus, this review aims to provide a better understanding regarding cytokines, chemokines, growth factors and immune responses in ASD, as well as the potential of bioactive marine compounds in the immune regulation in ASD. We expect that this review would contribute to the development of therapeutic alternatives for controlling immune mediators and inflammation in ASD.
Collapse
Affiliation(s)
- Thalisia Cunha Dos Santos
- Programa de Pós-graduação em Química de Produtos Naturais, Instituto de Pesquisas de Produtos Naturais Walter Mors, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Laboratório de Produtos Naturais de Algas Marinha (ALGAMAR), Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Núcleo de Estudos e Pesquisas em Autismo (NEPA), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - Johana Marcela Concha Obando
- Laboratório de Produtos Naturais de Algas Marinha (ALGAMAR), Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Núcleo de Estudos e Pesquisas em Autismo (NEPA), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Paulo Emílio Corrêa Leite
- Núcleo de Estudos e Pesquisas em Autismo (NEPA), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Instituto LisMAPS, Niterói, RJ, Brazil
| | - Mariana Rodrigues Pereira
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Instituto LisMAPS, Niterói, RJ, Brazil; Programa de Pós-graduação em Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Mônica de Freitas Leitão
- Núcleo de Estudos e Pesquisas em Autismo (NEPA), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Faculdade de Medicina, Pontifícia Universidade Católica de Campinas (PUC-Camp), Campinas, SP, Brazil
| | - Caio Abujadi
- Núcleo de Estudos e Pesquisas em Autismo (NEPA), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Programa de Pós-graduação em Ciência, Tecnologia e Inclusão (PGCTIn), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | | | - Roberto Carlos Campos Martins
- Programa de Pós-graduação em Química de Produtos Naturais, Instituto de Pesquisas de Produtos Naturais Walter Mors, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diana Negrão Cavalcanti
- Laboratório de Produtos Naturais de Algas Marinha (ALGAMAR), Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Núcleo de Estudos e Pesquisas em Autismo (NEPA), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Programa de Pós-graduação em Ciência, Tecnologia e Inclusão (PGCTIn), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| |
Collapse
|
29
|
Cano ACSS, Santos D, Beltrão-Braga PCB. The Interplay of Astrocytes and Neurons in Autism Spectrum Disorder. ADVANCES IN NEUROBIOLOGY 2024; 39:269-284. [PMID: 39190079 DOI: 10.1007/978-3-031-64839-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Autism spectrum disorder (ASD) comprises a complex neurodevelopmental condition characterized by an impairment in social interaction, involving communication deficits and specific patterns of behaviors, like repetitive behaviors. ASD is clinically diagnosed and usually takes time, typically occurring not before four years of age. Genetic mutations affecting synaptic transmission, such as neuroligin and neurexin, are associated with ASD and contribute to behavioral and cognitive deficits. Recent research highlights the role of astrocytes, the brain's most abundant glial cells, in ASD pathology. Aberrant Ca2+ signaling in astrocytes is linked to behavioral deficits and neuroinflammation. Notably, the cytokine IL-6 overexpression by astrocytes impacts synaptogenesis. Altered neurotransmitter levels, disruptions in the blood-brain barrier, and cytokine dysregulation further contribute to ASD complexity. Understanding these astrocyte-related mechanisms holds promise for identifying ASD subtypes and developing targeted therapies.
Collapse
Affiliation(s)
- Amanda C S S Cano
- Laboratory of Disease Modeling, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Debora Santos
- Laboratory of Disease Modeling, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Patricia C B Beltrão-Braga
- Laboratory of Disease Modeling, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
- Institut Pasteur de São Paulo, São Paulo, Brazil.
| |
Collapse
|
30
|
Wheeler S, Rai-Bhogal R, Crawford DA. Abnormal Microglial Density and Morphology in the Brain of Cyclooxygenase 2 Knockin Mice. Neuroscience 2023; 534:66-81. [PMID: 37863307 DOI: 10.1016/j.neuroscience.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Prostaglandin E2 (PGE2) is a signaling molecule produced by cyclooxygenase-2 (COX-2) that is important in healthy brain development. Anomalies in the COX-2/PGE2 pathway due to genetic or environmental factors have been linked to Autism Spectrum Disorders (ASD). Our previous studies showed that COX-2 deficient (COX-2-KI) mice exhibit sex-dependent molecular changes in the brain and associated autism-related behaviors. Here, we aim to determine the effect of COX-2-KI on microglial density and morphology in the developing brain. Microglia normally transition between an amoeboid or ramified morphology depending on their surroundings and are important for the development of the healthy brain, assisting with synaptogenesis, synaptic pruning, and phagocytosis. We use COX-2-KI male and female mice to evaluate microglia density, morphology, and branch length and number in five brain regions (cerebellum, hippocampus, olfactory bulb, prefrontal cortex, and thalamus) at the gestational day 19 (G19) and postnatal day 25 (PN25). We discovered that COX2-KI females were affected at G19 with increased microglial density, altered percentage of amoeboid and ramified microglia, affected branch length, and decreased branching networks in a region-specific manner; these effects persisted to PN25 in select regions. Interestingly, while limited changes were found in G19 COX-2-KI males, at PN25 we found increased microglial density, higher percentages of ramified microglia, and increased branch counts, and length observed in nearly all brain regions tested. Overall, we show for the first time that the COX-2 deficiency in our ASD mouse model influences microglia morphology in a sex- and region- and stage-dependent manner.
Collapse
Affiliation(s)
- Sarah Wheeler
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada; Neuroscience Graduate Diploma Program, York University, Toronto, ON M3J 1P3, Canada
| | | | - Dorota A Crawford
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada; Neuroscience Graduate Diploma Program, York University, Toronto, ON M3J 1P3, Canada; Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
31
|
Arenella M, Matuleviciute R, Tamouza R, Leboyer M, McAlonan G, Bralten J, Murphy D. Immunogenetics of autism spectrum disorder: A systematic literature review. Brain Behav Immun 2023; 114:488-499. [PMID: 37717669 DOI: 10.1016/j.bbi.2023.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023] Open
Abstract
The aetiology of autism spectrum disorder (ASD) is complex and, partly, accounted by genetic factors. Nonetheless, the genetic underpinnings of ASD are poorly defined. The presence of immune dysregulations in autistic individuals, and their families, supports a role of the immune system and its genetic regulators. Albeit immune responses belong either to the innate or adaptive arms, the overall immune system genetics is broad, and encompasses a multitude of functionally heterogenous pathways which may have different influences on ASD. Hence, to gain insights on the immunogenetic underpinnings of ASD, we conducted a systematic literature review of previous immune genetic and transcription studies in ASD. We defined a list of immune genes relevant to ASD and explored their neuro-immune function. Our review confirms the presence of immunogenetic variability in ASD, accounted by inherited variations of innate and adaptive immune system genes and genetic expression changes in the blood and post-mortem brain of autistic individuals. Besides their immune function, the identified genes control neurodevelopment processes (neuronal and synaptic plasticity) and are highly expressed in pre/peri-natal periods. Hence, our synthesis bolsters the hypothesis that perturbation in immune genes may contribute to ASD by derailing the typical trajectory of neurodevelopment. Our review also helped identifying some of the limitations of prior immunogenetic research in ASD. Thus, alongside clarifying the neurodevelopment role of immune genes, we outline key considerations for future work into the aetiology of ASD and possible novel intervention targets.
Collapse
Affiliation(s)
- Martina Arenella
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute of Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands.
| | - Rugile Matuleviciute
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Ryad Tamouza
- University Paris Est Créteil (UPEC), INSERM, IMRB, Translational Neuropsychiatry Lab, AP-HP, Department of Addiction and Psychiatry (DMU IMPACT, FHU ADAPT), France; Fondation FondaMental, F-94010 Créteil, France
| | - Marion Leboyer
- University Paris Est Créteil (UPEC), INSERM, IMRB, Translational Neuropsychiatry Lab, AP-HP, Department of Addiction and Psychiatry (DMU IMPACT, FHU ADAPT), France; Fondation FondaMental, F-94010 Créteil, France
| | - Grainne McAlonan
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Janita Bralten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute of Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Declan Murphy
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
32
|
Cao X, Tang X, Feng C, Lin J, Zhang H, Liu Q, Zheng Q, Zhuang H, Liu X, Li H, Khan NU, Shen L. A Systematic Investigation of Complement and Coagulation-Related Protein in Autism Spectrum Disorder Using Multiple Reaction Monitoring Technology. Neurosci Bull 2023; 39:1623-1637. [PMID: 37031449 PMCID: PMC10603015 DOI: 10.1007/s12264-023-01055-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/02/2023] [Indexed: 04/10/2023] Open
Abstract
Autism spectrum disorder (ASD) is one of the common neurodevelopmental disorders in children. Its etiology and pathogenesis are poorly understood. Previous studies have suggested potential changes in the complement and coagulation pathways in individuals with ASD. In this study, using multiple reactions monitoring proteomic technology, 16 of the 33 proteins involved in this pathway were identified as differentially-expressed proteins in plasma between children with ASD and controls. Among them, CFHR3, C4BPB, C4BPA, CFH, C9, SERPIND1, C8A, F9, and F11 were found to be altered in the plasma of children with ASD for the first time. SERPIND1 expression was positively correlated with the CARS score. Using the machine learning method, we obtained a panel composed of 12 differentially-expressed proteins with diagnostic potential for ASD. We also reviewed the proteins changed in this pathway in the brain and blood of patients with ASD. The complement and coagulation pathways may be activated in the peripheral blood of children with ASD and play a key role in the pathogenesis of ASD.
Collapse
Affiliation(s)
- Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Chengyun Feng
- Maternal and Child Health Hospital of Baoan, Shenzhen, 518100, China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Qiong Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Qihong Zheng
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Haiying Li
- Department of Endocrinology, Guiyang First People's Hospital, Guiyang, 550002, China
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China.
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen, 518060, China.
| |
Collapse
|
33
|
Man MQ, Yang S, Mauro TM, Zhang G, Zhu T. Link between the skin and autism spectrum disorder. Front Psychiatry 2023; 14:1265472. [PMID: 37920540 PMCID: PMC10619695 DOI: 10.3389/fpsyt.2023.1265472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/28/2023] [Indexed: 11/04/2023] Open
Abstract
Autism spectrum disorder (ASD) is a common neurological disorder. Although the etiologies of ASD have been widely speculated, evidence also supports the pathogenic role of cutaneous inflammation in autism. The prevalence of ASD is higher in individuals with inflammatory dermatoses than in those without inflammatory diseases. Anti-inflammation therapy alleviates symptoms of ASD. Recent studies suggest a link between epidermal dysfunction and ASD. In the murine model, mice with ASD display epidermal dysfunction, accompanied by increased expression levels of proinflammatory cytokines in both the skin and the brain. Children with ASD, which develops in their early lifetime, also exhibit altered epidermal function. Interestingly, improvement in epidermal function alleviates some symptoms of ASD. This line of evidence suggests a pathogenic role of cutaneous dysfunction in ASD. Either an improvement in epidermal function or effective treatment of inflammatory dermatoses can be an alternative approach to the management of ASD. We summarize here the current evidence of the association between the skin and ASD.
Collapse
Affiliation(s)
- Mao-Qiang Man
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- Department of Dermatology, University of California, San Francisco, CA, United States
- Dermatology Service, San Francisco VA Medical Center,San Francisco, CA, United States
| | - Shuyun Yang
- Department of Dermatology, The People’s Hospital of Baoshan, Baoshan, China
| | - Theodora M. Mauro
- Department of Dermatology, University of California, San Francisco, CA, United States
- Dermatology Service, San Francisco VA Medical Center,San Francisco, CA, United States
| | - Guoqiang Zhang
- Department of Dermatology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tingting Zhu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
34
|
Maric DM, Vojvodic D, Maric DL, Velikic G, Radomir M, Sokolovac I, Stefik D, Ivkovic N, Susnjevic S, Puletic M, Dulic O, Abazovic D. Cytokine Dynamics in Autism: Analysis of BMAC Therapy Outcomes. Int J Mol Sci 2023; 24:15080. [PMID: 37894761 PMCID: PMC10606637 DOI: 10.3390/ijms242015080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
Autism spectrum disorder (ASD) has recently been linked to neuroinflammation and an aberrant immune response within the central nervous system. The intricate relationship between immune response and ASD remains elusive, with a gap in understanding the connection between specific immune mechanisms and neural manifestations in autism. In this study, we employed a comprehensive statistical approach, fusing both overarching and granular methods to examine the concentration of 16 cytokines in the cerebrospinal fluid (CSF) across each autologous bone marrow aspirate concentrate (BMAC) intrathecal administration in 63 male and 17 female autism patients. Following a six-month period post the third administration, patients were stratified into three categories based on clinical improvement: Group 1- no/mild (28 subjects), Group 2-moderate (16 subjects), and Group 3-major improvement (15 subjects). Our integrated analysis revealed pronounced disparities in CSF cytokine patterns and clinical outcomes in autism subjects pre- and post-BMAC transplantation. Crucially, our results suggest that these cytokine profiles hold promise as predictive markers, pinpointing ASD individuals who might not exhibit notable clinical amelioration post-BMAC therapy.
Collapse
Affiliation(s)
- Dusan M. Maric
- Department for Research and Development, Clinic Orto MD-Parks Dr Dragi Hospital, 21000 Novi Sad, Serbia; (D.M.M.); (M.R.)
- Faculty of Stomatology Pancevo, University Business Academy, 26101 Pancevo, Serbia;
| | - Danilo Vojvodic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (D.V.); (D.S.)
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Dusica L. Maric
- Department of Anatomy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Gordana Velikic
- Department for Research and Development, Clinic Orto MD-Parks Dr Dragi Hospital, 21000 Novi Sad, Serbia; (D.M.M.); (M.R.)
- Hajim School of Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Mihajlo Radomir
- Department for Research and Development, Clinic Orto MD-Parks Dr Dragi Hospital, 21000 Novi Sad, Serbia; (D.M.M.); (M.R.)
| | | | - Debora Stefik
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (D.V.); (D.S.)
| | - Nemanja Ivkovic
- Department of Anatomy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Sonja Susnjevic
- Department of Social Medicine and Health Statistics with Informatics, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Miljan Puletic
- Faculty of Stomatology Pancevo, University Business Academy, 26101 Pancevo, Serbia;
| | - Oliver Dulic
- Department of Surgery, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | | |
Collapse
|
35
|
Morin C, Bokobza C, Fleiss B, Hill-Yardin EL, Van Steenwinckel J, Gressens P. Preterm Birth by Cesarean Section: The Gut-Brain Axis, a Key Regulator of Brain Development. Dev Neurosci 2023; 46:179-187. [PMID: 37717575 DOI: 10.1159/000534124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/11/2023] [Indexed: 09/19/2023] Open
Abstract
Understanding the long-term functional implications of gut microbial communities during the perinatal period is a bourgeoning area of research. Numerous studies have revealed the existence of a "gut-brain axis" and the impact of an alteration of gut microbiota composition in brain diseases. Recent research has highlighted how gut microbiota could affect brain development and behavior. Many factors in early life such as the mode of delivery or preterm birth could lead to disturbance in the assembly and maturation of gut microbiota. Notably, global rates of cesarean sections (C-sections) have increased in recent decades and remain important when considering premature delivery. Both preterm birth and C-sections are associated with an increased risk of neurodevelopmental disorders such as autism spectrum disorders, with neuroinflammation a major risk factor. In this review, we explore links between preterm birth by C-sections, gut microbiota alteration, and neuroinflammation. We also highlight C-sections as a risk factor for developmental disorders due to alterations in the microbiome.
Collapse
Affiliation(s)
- Cécile Morin
- Université Paris Cité, Inserm, NeuroDiderot, Paris, France
- Hôpital Robert Debré, Assistance Publique, Hôpitaux de Paris (APHP), Paris, France
| | - Cindy Bokobza
- Université Paris Cité, Inserm, NeuroDiderot, Paris, France
| | - Bobbi Fleiss
- Université Paris Cité, Inserm, NeuroDiderot, Paris, France
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, Victoria, Australia
| | - Elisa L Hill-Yardin
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, Victoria, Australia
| | | | - Pierre Gressens
- Université Paris Cité, Inserm, NeuroDiderot, Paris, France
- Hôpital Robert Debré, Assistance Publique, Hôpitaux de Paris (APHP), Paris, France
| |
Collapse
|
36
|
Ferencova N, Visnovcova Z, Ondrejka I, Hrtanek I, Bujnakova I, Kovacova V, Macejova A, Tonhajzerova I. Peripheral Inflammatory Markers in Autism Spectrum Disorder and Attention Deficit/Hyperactivity Disorder at Adolescent Age. Int J Mol Sci 2023; 24:11710. [PMID: 37511467 PMCID: PMC10380731 DOI: 10.3390/ijms241411710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD) are associated with immune dysregulation. We aimed to estimate the pro- and anti-inflammatory activity/balance in ASD and ADHD patients at a little-studied adolescent age with respect to sex. We evaluated 20 ASD patients (5 girls, average age: 12.4 ± 1.9 y), 20 ADHD patients (5 girls, average age: 13.4 ± 1.8 y), and 20 age- and gender-matched controls (average age: 13.2 ± 1.9 y). The evaluated parameters included (1) white blood cells (WBCs), neutrophils, monocytes, lymphocytes, platelets, platelet distribution width (PDW), mean platelet volume, and derived ratios, as well as (2) cytokines-interferon-gamma, interleukin (IL)-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, and IL-10, tumor necrosis factor-alpha (TNF-α), and derived profiles and ratios. ASD adolescents showed higher levels of WBC, monocytes, IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, and IL-10, macrophages (M)1 profile, and anti-inflammatory profile than the controls, with ASD males showing higher monocytes, IL-6 and IL-10, anti-inflammatory profile, and a lower T-helper (Th)1/Th2+T-regulatory cell ratio than control males. The ADHD adolescents showed higher levels of PDW, IL-1β and IL-6, TNF-α, M1 profile, proinflammatory profile, and pro-/anti-inflammatory ratio than the controls, with ADHD females showing a higher TNF-α and pro-/anti-inflammatory ratio than the control females and ADHD males showing higher levels of IL-1β and IL-6, TNF-α, and M1 profile than the control males. Immune dysregulation appeared to be different for both neurodevelopmental disorders in adolescence.
Collapse
Affiliation(s)
- Nikola Ferencova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Zuzana Visnovcova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Igor Ondrejka
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03601 Martin, Slovakia
| | - Igor Hrtanek
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03601 Martin, Slovakia
| | - Iveta Bujnakova
- Society to Help People with Autism (SPOSA-Turiec), 03601 Martin, Slovakia
| | - Veronika Kovacova
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03601 Martin, Slovakia
| | - Andrea Macejova
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03601 Martin, Slovakia
| | - Ingrid Tonhajzerova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
37
|
Santos JX, Sampaio P, Rasga C, Martiniano H, Faria C, Café C, Oliveira A, Duque F, Oliveira G, Sousa L, Nunes A, Vicente AM. Evidence for an association of prenatal exposure to particulate matter with clinical severity of Autism Spectrum Disorder. ENVIRONMENTAL RESEARCH 2023; 228:115795. [PMID: 37028534 DOI: 10.1016/j.envres.2023.115795] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 03/06/2023] [Accepted: 03/28/2023] [Indexed: 05/16/2023]
Abstract
Early-life exposure to air pollutants, including ozone (O3), particulate matter (PM2.5 or PM10, depending on diameter of particles), nitrogen dioxide (NO2) and sulfur dioxide (SO2) has been suggested to contribute to the etiology of Autism Spectrum Disorder (ASD). In this study, we used air quality monitoring data to examine whether mothers of children with ASD were exposed to high levels of air pollutants during critical periods of pregnancy, and if higher exposure levels may lead to a higher clinical severity in their offspring. We used public data from the Portuguese Environment Agency to estimate exposure to these pollutants during the first, second and third trimesters of pregnancy, full pregnancy and first year of life of the child, for 217 subjects with ASD born between 2003 and 2016. These subjects were stratified in two subgroups according to clinical severity, as defined by the Autism Diagnostic Observational Schedule (ADOS). For all time periods, the average levels of PM2.5, PM10 and NO2 to which the subjects were exposed were within the admissible levels defined by the European Union. However, a fraction of these subjects showed exposure to levels of PM2.5 and PM10 above the admissible threshold. A higher clinical severity was associated with higher exposure to PM2.5 (p = 0.001), NO2 (p = 0.011) and PM10 (p = 0.041) during the first trimester of pregnancy, when compared with milder clinical severity. After logistic regression, associations with higher clinical severity were identified for PM2.5 exposure during the first trimester (p = 0.002; OR = 1.14, 95%CI: 1.05-1.23) and full pregnancy (p = 0.04; OR = 1.07, 95%CI: 1.00-1.15) and for PM10 (p = 0.02; OR = 1.07, 95%CI: 1.01-1.14) exposure during the third trimester. Exposure to PM is known to elicit neuropathological mechanisms associated with ASD, including neuroinflammation, mitochondrial disruptions, oxidative stress and epigenetic changes. These results offer new insights on the impact of early-life exposure to PM in ASD clinical severity.
Collapse
Affiliation(s)
- João Xavier Santos
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisboa, Portugal; BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, C8, 1749-016, Lisboa, Portugal.
| | - Pedro Sampaio
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisboa, Portugal; BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, C8, 1749-016, Lisboa, Portugal.
| | - Célia Rasga
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisboa, Portugal; BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, C8, 1749-016, Lisboa, Portugal.
| | - Hugo Martiniano
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisboa, Portugal; BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, C8, 1749-016, Lisboa, Portugal.
| | - Clarissa Faria
- Unidade de Neurodesenvolvimento e Autismo, Serviço Do Centro de Desenvolvimento da Criança, Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.
| | - Cátia Café
- Unidade de Neurodesenvolvimento e Autismo, Serviço Do Centro de Desenvolvimento da Criança, Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculty of Medicine, University Clinic of Pediatrics and Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Alexandra Oliveira
- Unidade de Neurodesenvolvimento e Autismo, Serviço Do Centro de Desenvolvimento da Criança, Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculty of Medicine, University Clinic of Pediatrics and Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| | - Frederico Duque
- Unidade de Neurodesenvolvimento e Autismo, Serviço Do Centro de Desenvolvimento da Criança, Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculty of Medicine, University Clinic of Pediatrics and Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| | - Guiomar Oliveira
- Unidade de Neurodesenvolvimento e Autismo, Serviço Do Centro de Desenvolvimento da Criança, Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculty of Medicine, University Clinic of Pediatrics and Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| | - Lisete Sousa
- Departamento de Estatística e Investigação Operacional e Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| | - Ana Nunes
- BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, C8, 1749-016, Lisboa, Portugal; Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| | - Astrid Moura Vicente
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisboa, Portugal; BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, C8, 1749-016, Lisboa, Portugal.
| |
Collapse
|
38
|
Cebadero-Dominguez Ó, Casas-Rodríguez A, Puerto M, Cameán AM, Jos A. In vitro safety assessment of reduced graphene oxide in human monocytes and T cells. ENVIRONMENTAL RESEARCH 2023; 232:116356. [PMID: 37295592 DOI: 10.1016/j.envres.2023.116356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Considering the increase in the use of graphene derivatives in different fields, the environmental and human exposure to these materials is likely, and the potential consequences are not fully elucidated. This study is focused on the human immune system, as this plays a key role in the organism's homeostasis. In this sense, the cytotoxicity response of reduced graphene oxide (rGO) was investigated in monocytes (THP-1) and human T cells (Jurkat). A mean effective concentration (EC50-24 h) of 121.45 ± 11.39 μg/mL and 207.51 ± 21.67 μg/mL for cytotoxicity was obtained in THP-1 and Jurkat cells, respectively. rGO decreased THP-1 monocytes differentiation at the highest concentration after 48 h of exposure. Regarding the inflammatory response at genetic level, rGO upregulated IL-6 in THP-1 and all cytokines tested in Jurkat cells after 4 h of exposure. At 24 h, IL-6 upregulation was maintained, and a significant decrease of TNF-α gene expression was observed in THP-1 cells. Moreover, TNF-α, and INF-γ upregulation were maintained in Jurkat cells. With respect to the apoptosis/necrosis, gene expression was not altered in THP-1 cells, but a down regulation of BAX and BCL-2 was observed in Jurkat cells after 4 h of exposure. These genes showed values closer to negative control after 24 h. Finally, rGO did not trigger a significant release of any cytokine at any exposure time assayed. In conclusion, our data contributes to the risk assessment of this material and suggest that rGO has an impact on the immune system whose final consequences should be further investigated.
Collapse
Affiliation(s)
- Óscar Cebadero-Dominguez
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - Antonio Casas-Rodríguez
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - María Puerto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - Ana María Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| |
Collapse
|
39
|
Barzegari A, Mahdirejei HA, Hanani M, Esmaeili MH, Salari AA. Adolescent swimming exercise following maternal valproic acid treatment improves cognition and reduces stress-related symptoms in offspring mice: Role of sex and brain cytokines. Physiol Behav 2023; 269:114264. [PMID: 37295664 DOI: 10.1016/j.physbeh.2023.114264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/20/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Valproic acid (VPA) treatment during pregnancy is a risk factor for developing autism spectrum disorder, cognitive deficits, and stress-related disorders in children. No effective therapeutic strategies are currently approved to treat or manage core symptoms of autism. Active lifestyles and physical activity are closely associated with health and quality of life during childhood and adulthood. This study aimed to evaluate whether swimming exercise during adolescence can prevent the development of cognitive dysfunction and stress-related disorders in prenatally VPA-exposed mice offspring. Pregnant mice received VPA, afterwards, offspring were subjected to swimming exercise. We assessed neurobehavioral performances and inflammatory cytokines (interleukin-(IL)6, tumor-necrosis-factor-(TNF)α, interferon-(IFN)γ, and IL-17A) in the hippocampus and prefrontal cortex of offspring. Prenatal VPA treatment increased anxiety-and anhedonia-like behavior and decreased social behavior in male and female offspring. Prenatal VPA exposure also increased behavioral despair and reduced working and recognition memory in male offspring. Although prenatal VPA increased hippocampal IL-6 and IFN-γ, and prefrontal IFN-γ and IL-17 in males, it only increased hippocampal TNF-α and IFN-γ in female offspring. Adolescent exercise made VPA-treated male and female offspring resistant to anxiety-and anhedonia-like behavior in adulthood, whereas it only made VPA-exposed male offspring resistant to behavioral despair, social and cognitive deficits in adulthood. Exercise reduced hippocampal IL-6, TNF-α, IFN-γ, and IL-17, and prefrontal IFN-γ and IL-17 in VPA-treated male offspring, whereas it reduced hippocampal TNF-α and IFN-γ in VPA-treated female offspring. This study suggests that adolescent exercise may prevents the development of stress-related symptoms, cognitive deficits, and neuroinflammation in prenatally VPA-exposed offspring mice.
Collapse
Affiliation(s)
- Ali Barzegari
- Department of Exercise Physiology, Payame Noor University (PNU), Tehran, Iran
| | | | - Masoumeh Hanani
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Kish International Campus, University of Tehran, Kish, Iran
| | | | - Ali-Akbar Salari
- Salari Institute of Cognitive and Behavioral Disorders (SICBD), Karaj, Alborz, Iran; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
40
|
Paudel R, Singh S. Selection of Young Animal Models of Autism over Adult: Benefits and Limitations. Integr Psychol Behav Sci 2023; 57:697-712. [PMID: 33447895 DOI: 10.1007/s12124-020-09595-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2020] [Indexed: 10/22/2022]
Abstract
Autism is a complex neurodevelopmental broad-spectrum disorder characterized by social interaction, and aberrant restrictive and repetitive behavior. The complex pathophysiology and unexplored drug targets make it difficult to standardize and validate the animal models of autism. The review was purposed for determining the benefits of younger animal models over adult models of autism. Similarly, animal models with respect to age, sex, body weight, number of animals used, along with autism inducing agents have been reviewed in this article. The differentiation of behavioral parameters has shown the benefits in the selection of younger animal models. Thus, we conclude that young and adolescence animal models of autism will be supporting for early detection and interventions with significant results.
Collapse
Affiliation(s)
- Raju Paudel
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Shamsher Singh
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
41
|
Jiang P, Zhou L, Du Z, Zhao L, Tang Y, Fei X, Wang L, Li D, Li S, Yang H, Fan X, Liao H. Icariin alleviates autistic-like behavior, hippocampal inflammation and vGlut1 expression in adult BTBR mice. Behav Brain Res 2023; 445:114384. [PMID: 36889463 DOI: 10.1016/j.bbr.2023.114384] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/23/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023]
Abstract
Autism spectrum disorder (ASD) is a complicated, heterogeneous disorder characterized by social interaction deficits and repetitive stereotypical behaviors. Neuroinflammation and synaptic protein dysregulation have been implicated in ASD pathogenesis. Icariin (ICA) has proven to exert neuroprotective function through anti-inflammatory function. Therefore, this study aimed to clarify the effects of ICA treatment on autism-like behavioral deficits in BTBR mice and whether these changes were related to modifications in the hippocampal inflammation and the balance of excitatory/inhibitory synapses. ICA supplementation (80 mg/kg, once daily for ten days, i.g.) ameliorated social deficits, repetitive stereotypical behaviors, and short-term memory deficit without affecting locomotor activity or anxiety-like behaviors of BTBR mice. Furthermore, ICA treatment inhibited neuroinflammation via decreasing microglia number and the soma size in the CA1 region of the hippocampus, as well as the protein levels of proinflammatory cytokines in the hippocampus of BTBR mice. In addition, ICA treatment also rescued excitatory-inhibitory synaptic protein imbalance by inhibiting the increased vGlut1 level without affecting the vGAT level in the BTBR mouse hippocampus. Collectively, the observed results indicate that ICA treatment alleviates ASD-like features, mitigates disturbed balance of excitatory-inhibitory synaptic protein, and inhibits hippocampal inflammation in BTBR mice, and may represent a novel promising drug for ASD treatment.
Collapse
Affiliation(s)
- Peiyan Jiang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China; Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China
| | - Lianyu Zhou
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China; Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Zhulin Du
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Linyang Zhao
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China
| | - Yexi Tang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Xinghang Fei
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China; Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Lian Wang
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China
| | - Dabing Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Song Li
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China
| | - Hui Yang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China.
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China.
| | - Huiling Liao
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
42
|
Nie ZQ, Han D, Zhang K, Li M, Kwon HK, Im SH, Xu L, Yang JC, Li ZW, Huang XW, Wen J, Shu-Jun Y, Yin F, Shen C, Ashwood P, Kang CY, Cao X. TH1/Treg ratio may be a marker of autism in children with immune dysfunction. RESEARCH IN AUTISM SPECTRUM DISORDERS 2023; 101:102085. [DOI: 10.1016/j.rasd.2022.102085] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
|
43
|
Lu H, Gong L, Xu H, Zhou Q, Zhao H, Wu S, Hu R, Li X. Environmental Enrichment Protects Offspring of a Rat Model of Preeclampsia from Cognitive Decline. Cell Mol Neurobiol 2023; 43:381-394. [PMID: 35119541 PMCID: PMC11415177 DOI: 10.1007/s10571-022-01192-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/07/2022] [Indexed: 01/07/2023]
Abstract
Preeclampsia affects 5-7% of all pregnancies and contributes to adverse pregnancy and birth outcomes. In addition to the short-term effects of preeclampsia, preeclampsia can exert long-term adverse effects on offspring. Numerous studies have demonstrated that offspring of preeclamptic women exhibit cognitive deficits from childhood to old age. However, effective ways to improve the cognitive abilities of these offspring remain to be investigated. The aim of this study was to explore whether environmental enrichment in early life could restore the cognitive ability of the offspring of a rat model of preeclampsia and to investigate the cellular and molecular mechanisms by which EE improves cognitive ability. L-NAME was used to establish a rat model of preeclampsia. The spatial learning and memory abilities and recognition memory of 56-day-old offspring were evaluated by the Morris water maze and Novel object recognition (NOR) task. Immunofluorescence was performed to evaluate cell proliferation and apoptosis in the DG region of the hippocampus. qRT-PCR was performed to examine the expression levels of neurogenesis-associated genes, pre- and postsynaptic proteins and inflammatory cytokines. An enzyme-linked immune absorbent assay was performed to evaluate the concentration of vascular endothelial growth factor (VEGF) and inflammatory cytokines in the hippocampus. The administration of L-NAME led to increased systolic blood pressure and urine protein levels in pregnant rats. Offspring in the L-NAME group exhibited impaired spatial learning ability and memory as well as NOR memory. Hippocampal neurogenesis and synaptic plasticity were impaired in offspring from the L-NAME group. Furthermore, cell apoptosis in the hippocampus was increased in the L-NAME group. The hippocampus was skewed to a proinflammatory profile, as shown by increased inflammatory cytokine levels. EE improved the cognitive ability of offspring in the L-NAME group and resulted in increased hippocampal neurogenesis and synaptic protein expression levels and decreased apoptosis and inflammatory cytokine levels. Environmental enrichment resolves cognitive impairment in the offspring of a rat model of preeclampsia by improving hippocampal neurogenesis and synaptic plasticity and normalizing the apoptosis level and the inflammatory balance.
Collapse
Affiliation(s)
- Huiqing Lu
- Obstetrics and Gynecology Hospital, Fudan University, No.419 Fangxie Rd. Huangpu Division, Shanghai, 200011, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Lili Gong
- Obstetrics and Gynecology Hospital, Fudan University, No.419 Fangxie Rd. Huangpu Division, Shanghai, 200011, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Huangfang Xu
- Obstetrics and Gynecology Hospital, Fudan University, No.419 Fangxie Rd. Huangpu Division, Shanghai, 200011, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Qiongjie Zhou
- Obstetrics and Gynecology Hospital, Fudan University, No.419 Fangxie Rd. Huangpu Division, Shanghai, 200011, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Huanqiang Zhao
- Obstetrics and Gynecology Hospital, Fudan University, No.419 Fangxie Rd. Huangpu Division, Shanghai, 200011, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Suwen Wu
- Obstetrics and Gynecology Hospital, Fudan University, No.419 Fangxie Rd. Huangpu Division, Shanghai, 200011, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Rong Hu
- Obstetrics and Gynecology Hospital, Fudan University, No.419 Fangxie Rd. Huangpu Division, Shanghai, 200011, China.
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China.
| | - Xiaotian Li
- Obstetrics and Gynecology Hospital, Fudan University, No.419 Fangxie Rd. Huangpu Division, Shanghai, 200011, China.
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China.
| |
Collapse
|
44
|
Torres Y, Celis C, Acurio J, Escudero C. Language Impairment in Children of Mothers with Gestational Diabetes, Preeclampsia, and Preterm Delivery: Current Hypothesis and Potential Underlying Mechanisms : Language Impartment and Pregnancy Complications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:245-267. [PMID: 37466777 DOI: 10.1007/978-3-031-32554-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Many conditions may impair or delay language development, including socioeconomic status, parent's education, or intrauterine environment. Accordingly, increasing evidence has described that pregnancy complications, including gestational diabetes mellitus (GDM), preeclampsia, and preterm delivery, are associated with the offspring's impaired neurodevelopment. Since language is one of the high brain functions, alterations in this function are another sign of neurodevelopment impairment. How these maternal conditions may generate language impairment has yet to be entirely understood. However, since language development requires adequate structural formation and function/connectivity of the brain, these processes must be affected by alterations in maternal conditions. However, the underlying mechanisms of these structural alterations are largely unknown. This manuscript critically analyzes the literature focused on the risk of developing language impairment in children of mothers with GDM, preeclampsia, and preterm delivery. Furthermore, we highlight potential underlying molecular mechanisms associated with these alterations, such as neuroinflammatory and metabolic and cerebrovascular alterations.
Collapse
Affiliation(s)
- Yesenia Torres
- Vascular Physiology Laboratory, Department of Basic Science, Faculty of Sciences, Universidad of Bio Bio, Chillán, Chile
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Catalonia, Spain
| | - Cristian Celis
- Vascular Physiology Laboratory, Department of Basic Science, Faculty of Sciences, Universidad of Bio Bio, Chillán, Chile
- Centro terapéutico , ABCfonoaudiologia, Santiago, Chile
| | - Jesenia Acurio
- Vascular Physiology Laboratory, Department of Basic Science, Faculty of Sciences, Universidad of Bio Bio, Chillán, Chile
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
| | - Carlos Escudero
- Vascular Physiology Laboratory, Department of Basic Science, Faculty of Sciences, Universidad of Bio Bio, Chillán, Chile.
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile.
| |
Collapse
|
45
|
The Role of Oxytocin in Abnormal Brain Development: Effect on Glial Cells and Neuroinflammation. Cells 2022; 11:cells11233899. [PMID: 36497156 PMCID: PMC9740972 DOI: 10.3390/cells11233899] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
The neonatal period is critical for brain development and determinant for long-term brain trajectory. Yet, this time concurs with a sensitivity and risk for numerous brain injuries following perinatal complications such as preterm birth. Brain injury in premature infants leads to a complex amalgam of primary destructive diseases and secondary maturational and trophic disturbances and, as a consequence, to long-term neurocognitive and behavioral problems. Neuroinflammation is an important common factor in these complications, which contributes to the adverse effects on brain development. Mediating this inflammatory response forms a key therapeutic target in protecting the vulnerable developing brain when complications arise. The neuropeptide oxytocin (OT) plays an important role in the perinatal period, and its importance for lactation and social bonding in early life are well-recognized. Yet, novel functions of OT for the developing brain are increasingly emerging. In particular, OT seems able to modulate glial activity in neuroinflammatory states, but the exact mechanisms underlying this connection are largely unknown. The current review provides an overview of the oxytocinergic system and its early life development across rodent and human. Moreover, we cover the most up-to-date understanding of the role of OT in neonatal brain development and the potential neuroprotective effects it holds when adverse neural events arise in association with neuroinflammation. A detailed assessment of the underlying mechanisms between OT treatment and astrocyte and microglia reactivity is given, as well as a focus on the amygdala, a brain region of crucial importance for socio-emotional behavior, particularly in infants born preterm.
Collapse
|
46
|
Patel E, Jones Iii JP, Bono-Lunn D, Kuchibhatla M, Palkar A, Cendejas Hernandez J, Sarafian JT, Lawton VG, Anderson LG, Konsoula Z, Reissner KJ, Parker W. The safety of pediatric use of paracetamol (acetaminophen): a narrative review of direct and indirect evidence. Minerva Pediatr (Torino) 2022; 74:774-788. [PMID: 35822581 DOI: 10.23736/s2724-5276.22.06932-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Paracetamol (acetaminophen) use during pregnancy and early childhood was accepted as safe in the 1970s, but is now a subject of considerable concern. Careful analysis shows that initial acceptance of the drug was based on the false assumption that drug interactions in babies and adults are the same, and on a complete absence of knowledge regarding the impact of the drug on brain development. At least fourteen epidemiological studies now indicate that prenatal exposure to paracetamol is associated with neurodevelopmental problems. Based on these studies, it can be concluded that prenatal exposure to paracetamol causes statistically significant risks of developmental delays, attention deficit hyperactivity disorder, and a subtype of autism spectrum disorder (ASD) associated with hyperkinetic behavior. In contrast, data regarding postnatal exposure to paracetamol are limited, and several factors impede a classic multivariate analysis of epidemiologic data to resolve the issue. However, circumstantial evidence regarding postnatal exposure to the drug is abundant, and includes at least three otherwise unexplained temporal relationships, data from laboratory animal studies, several miscellaneous and otherwise unexplained correlations, and a lack of alternative suspects that fit the evidence-derived profile. Based on this evidence, it can be concluded without any reasonable doubt that oxidative stress puts some babies and children at risk of paracetamol-induced neurodevelopmental injury, and that postnatal exposure to paracetamol in those susceptible babies and children is responsible for many if not most cases of ASD.
Collapse
Affiliation(s)
| | - John P Jones Iii
- WPLab, Inc. Durham, NC, USA.,Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Dillan Bono-Lunn
- Departments of Public Policy, University of North Carolina, Chapel Hill, NC, USA
| | - Maragatha Kuchibhatla
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Antara Palkar
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | | | - Joshua T Sarafian
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Victoria G Lawton
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Lauren G Anderson
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | | | - Kathryn J Reissner
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA.,Department of Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - William Parker
- WPLab, Inc. Durham, NC, USA - .,Department of Surgery, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
47
|
Keim SA, Jude A, Smith K, Khan AQ, Coury DL, Rausch J, Udaipuria S, Norris M, Bartram LR, Narayanan AR, Rogers LK. Randomized Controlled Trial of Omega-3 and -6 Fatty Acid Supplementation to Reduce Inflammatory Markers in Children with Autism Spectrum Disorder. J Autism Dev Disord 2022; 52:5342-5355. [PMID: 35013866 PMCID: PMC9271516 DOI: 10.1007/s10803-021-05396-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2021] [Indexed: 12/26/2022]
Abstract
This double-blind, randomized controlled trial, tested fatty acid (FA) supplementation in children (ages 2- < 6 years) recently diagnosed with Autism Spectrum Disorder (ASD). Participants received daily oral FA supplement containing omega-3 and omega-6 FA, or a placebo for 90 days based on participant weight. Erythrocyte FAs and the cytokines, IL-1β, IL-2, IFNγ, were measured in plasma obtained from serial blood collections. Treatment increased omega-3 and omega-6 FA levels (1.40 mol% for EPA and 1.62 mol% for DHA) and reduced IL-2 levels compared to placebo (- 0.17 pg/mL, 95% CI - 0.31, - 0.02, d = - 0.62). Omega 3-6 treatment was tolerable and adherence was greater than 70%. Future research will assess the effects of Omega 3-6 treatment on ASD symptoms. Registered on 06/08/2018 with ClinicalTrials.gov: NCT03550209.
Collapse
Affiliation(s)
- Sarah A Keim
- Nationwide Children's Hospital, 700 Children's Dr, Columbus, OH, 43205, USA.
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA.
- Division of Epidemiology, College of Public Health, The Ohio State University, Columbus, OH, USA.
| | - Abigail Jude
- Nationwide Children's Hospital, 700 Children's Dr, Columbus, OH, 43205, USA
| | - Katie Smith
- Nationwide Children's Hospital, 700 Children's Dr, Columbus, OH, 43205, USA
| | - Aiman Q Khan
- Nationwide Children's Hospital, 700 Children's Dr, Columbus, OH, 43205, USA
| | - Daniel L Coury
- Nationwide Children's Hospital, 700 Children's Dr, Columbus, OH, 43205, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Joseph Rausch
- Nationwide Children's Hospital, 700 Children's Dr, Columbus, OH, 43205, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Shivika Udaipuria
- Nationwide Children's Hospital, 700 Children's Dr, Columbus, OH, 43205, USA
| | - Megan Norris
- Nationwide Children's Hospital, 700 Children's Dr, Columbus, OH, 43205, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
- Department of Psychology, College of Arts and Sciences, The Ohio State University, Columbus, OH, USA
| | - Lindsay R Bartram
- Nationwide Children's Hospital, 700 Children's Dr, Columbus, OH, 43205, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Anita R Narayanan
- Nationwide Children's Hospital, 700 Children's Dr, Columbus, OH, 43205, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Lynette K Rogers
- Nationwide Children's Hospital, 700 Children's Dr, Columbus, OH, 43205, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
48
|
Altered meningeal immunity contributing to the autism-like behavior of BTBR T Itpr3/J mice. Brain Behav Immun Health 2022; 26:100563. [DOI: 10.1016/j.bbih.2022.100563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/08/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
|
49
|
Jameson C, Boulton KA, Silove N, Guastella AJ. Eczema and related atopic diseases are associated with increased symptom severity in children with autism spectrum disorder. Transl Psychiatry 2022; 12:415. [PMID: 36171195 PMCID: PMC9519885 DOI: 10.1038/s41398-022-02185-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Growing evidence indicates that autism spectrum disorder (ASD) has diverse genetic, neurological, and environmental factors that contribute to its neurodevelopmental course. Interestingly, childhood ASD is often accompanied by skin disorders, such as eczema, and other related atopic manifestations. This link may be due to the shared embryonic origin of epidermal and neural tissue. Accordingly, we consider the potential influence of a skin-brain co-vulnerability and ensuing atopic cascade on ASD symptomatology by investigating whether atopic disorders (asthma, allergies, eczema and hay fever) are associated with increased symptom severity in children with ASD. Overall, 45 atopic and 93 non-atopic children with ASD were assessed using the ADOS-2 on scores of total, social and non-social symptoms. Differences in ASD symptom severity were further evaluated as a function of atopic disease type. Atopic children displayed greater symptom severity overall and in the social domain, relative to non-atopic participants. Atopic children were 2.4 times more likely to experience overall impairments classified within the ADOS-2 highest-level severity bracket and 2.7 times more likely to show social difficulties in this range. Moreover, those reporting comorbid eczema displayed increased symptom severity relative to both their non-atopic peers and those reporting asthma and allergies. Taken together, findings indicate that atopic disorders, and particularly comorbid eczema, are associated with increases in ASD symptom severity. Findings provide grounds for future investigations into this link between childhood skin diseases and ASD symptom severity to advance our understanding of neurodevelopment and to develop targeted assessment and intervention opportunities.
Collapse
Affiliation(s)
- C. Jameson
- grid.1013.30000 0004 1936 834XClinic for Autism and Neurodevelopment (CAN) Research, Brain and Mind Centre, Children’s Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, Australia
| | - K. A. Boulton
- grid.1013.30000 0004 1936 834XClinic for Autism and Neurodevelopment (CAN) Research, Brain and Mind Centre, Children’s Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, Australia ,grid.1013.30000 0004 1936 834XChild Neurodevelopment and Mental Health Team, Brain and Mind Centre, University of Sydney, Camperdown, Australia
| | - N. Silove
- grid.1013.30000 0004 1936 834XChild Neurodevelopment and Mental Health Team, Brain and Mind Centre, University of Sydney, Camperdown, Australia ,grid.413973.b0000 0000 9690 854XChild Development Unit, The Children’s Hospital at Westmead, Westmead, NSW 2145 Australia
| | - A. J. Guastella
- grid.1013.30000 0004 1936 834XClinic for Autism and Neurodevelopment (CAN) Research, Brain and Mind Centre, Children’s Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, Australia ,grid.1013.30000 0004 1936 834XChild Neurodevelopment and Mental Health Team, Brain and Mind Centre, University of Sydney, Camperdown, Australia
| |
Collapse
|
50
|
Abstract
OBJECTIVES Considering autism spectrum disorder (ASD) as a neurodevelopmental condition associated with immune system impairments, we aimed to evaluate the potential benefits, efficacy, tolerability, and safety of the anti-inflammatory, antioxidant, and neuroprotective trans-resveratrol (RSV) in behavioral impairments and in a set of 8 microRNAs (miR) related to the immune system in pediatric subjects with ASD. METHODS This is an open-label pilot trial over a 3 months (90 days) study follow-up period designed to assess the effect of 200 mg/d RSV on 5 boys aged 10 to 13 (11.8 ± 1.1) years diagnosed with ASD according to Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. RESULTS The RSV treatment significantly reduced the Aberrant Behavior Checklist total score (P = 0.042) and Irritability (P = 0.041), with no alteration in Stereotypical Behavior (P = 0.066), Hyperactivity (P = 0.068), and Lethargy/Social Withdrawal (P = 0.078) subscales. On the Clinical Global Impression scale, 3 individuals showed marked improvement in behavior; one showed mild improvement, and the other had no changes. The RSV treatment increased the miR-195-5p (P = 0.043), an important modulator of targets related to inflammatory and immunological pathways. RSV administration did not present adverse effects and did not alter clinical laboratory results. CONCLUSIONS RSV is a safe molecule for administrating in the pediatric population, able to modulate behavior alterations and molecules associated with the immune system, becoming a promising therapeutic strategy for large-scale studies in ASD, to investigate both behavioral and molecular approaches.
Collapse
|