1
|
Ning W, Yan S, Song Y, Xu H, Zhang J, Wang X. Virus-like particle: a nano-platform that delivers cancer antigens to elicit an anti-tumor immune response. Front Immunol 2025; 15:1504124. [PMID: 39840069 PMCID: PMC11747419 DOI: 10.3389/fimmu.2024.1504124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Virus-like particles (VLPs), as a unique form of nanocarrier, predominantly encompass hollow protein shells that exhibit analogous morphology and structure to naturally occurring viruses, yet devoid of genetic material. VLPs are considered safe, easily modifiable, and stable, making them suitable for preparation in various expression systems. They serve as precise biological instruments with broad applications in the field of medical biology. Leveraging their unique structural attributes and facile modification capabilities, VLPs can serve as an effective platform for the delivery of tumor antigens, thereby stimulating the immune system and facilitating the eradication of tumor cells.
Collapse
Affiliation(s)
- Weisen Ning
- School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Sheng Yan
- School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yongyao Song
- School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Hanning Xu
- School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jinling Zhang
- Department of Oncology, Wuhan Fourth Hospital, Wuhan Orthopedic Hospital, Wuhan, Hubei, China
| | - Xiaomei Wang
- School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Raji AA, Dastjerdi PZ, Omar AR. Virus-like particles in poultry disease: an approach to effective and safe vaccination. Front Vet Sci 2024; 11:1405605. [PMID: 39315089 PMCID: PMC11417104 DOI: 10.3389/fvets.2024.1405605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
The poultry industry, a cornerstone of global food security, faces dynamic challenges exacerbated by viral diseases. This review traces the trajectory of poultry vaccination, evolving from traditional methods to the forefront of innovation Virus-Like Particle (VLP) vaccines. Vaccination has been pivotal in disease control, but traditional vaccines exhibit some limitations. This review examines the emergence of VLPs as a game-changer in poultry vaccination. VLPs, mimicking viruses without replication, offer a safer, targeted alternative with enhanced immunogenicity. The narrative encompasses VLP design principles, production methods, immunogenicity, and efficacy against major poultry viruses. Challenges and prospects are explored, presenting VLP vaccines as a transformative technique in poultry disease control. Understanding their potential empowers industry stakeholders to navigate poultry health management with precision, promising improved welfare, reduced economic losses, and heightened food safety.
Collapse
Affiliation(s)
- Abdullahi Abdullahi Raji
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Paniz Zarghami Dastjerdi
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Abdul Rahman Omar
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
3
|
Peng R, Chen C, Chen Q, Zhang Y, Huang R, Zhang Y, Li J. Global progress in clinical research on human respiratory syncytial virus vaccines. Front Microbiol 2024; 15:1457703. [PMID: 39286350 PMCID: PMC11402711 DOI: 10.3389/fmicb.2024.1457703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Human respiratory syncytial virus (hRSV) not only affects newborns but also older adults, contributing to a substantial worldwide burden of disease. However, only three approved hRSV vaccines remain commercially available to date. The development of a safe, practical and broad-spectrum vaccine suitable for all age groups remains extremely challenging. Using five different approaches-live-attenuated, recombinant-vector, subunit, particle-based, and mRNA-nearly 30 hRSV vaccine candidates are currently conducting clinical trials worldwide; moreover, > 30 vaccines are under preclinical evaluation. This review presents a comprehensive overview of these hRSV vaccines along with prospects for the development of infectious disease vaccines in the post-COVID-19 pandemic era.
Collapse
Affiliation(s)
- Ruofan Peng
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenghao Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qian Chen
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Yuwen Zhang
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Renjin Huang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Yanjun Zhang
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jianhua Li
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
4
|
Henríquez R, Muñoz-Barroso I. Viral vector- and virus-like particle-based vaccines against infectious diseases: A minireview. Heliyon 2024; 10:e34927. [PMID: 39144987 PMCID: PMC11320483 DOI: 10.1016/j.heliyon.2024.e34927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
To overcome the limitations of conventional vaccines, new platforms for vaccine design have emerged such as those based on viral vectors and virus-like particles (VLPs). Viral vector vaccines are highly efficient and the onset of protection is quick. Many recombinant vaccine candidates for humans are based on viruses belonging to different families such as Adenoviridae, Retroviridae, Paramyxoviridae, Rhabdoviridae, and Parvoviridae. Also, the first viral vector vaccine licensed for human vaccination was the Japanese encephalitis virus vaccine. Since then, several viral vectors have been approved for vaccination against the viruses of Lassa fever, Ebola, hepatitis B, hepatitis E, SARS-CoV-2, and malaria. VLPs are nanoparticles that mimic viral particles formed from the self-assembly of structural proteins and VLP-based vaccines against hepatitis B and E viruses, human papillomavirus, and malaria have been commercialized. As evidenced by the accelerated production of vaccines against COVID-19, these new approaches are important tools for vaccinology and for generating rapid responses against pathogens and emerging pandemic threats.
Collapse
Affiliation(s)
- Ruth Henríquez
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab.106. Plaza Doctores de la Reina S/n, 37007, Salamanca, Spain
| | - Isabel Muñoz-Barroso
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab.106. Plaza Doctores de la Reina S/n, 37007, Salamanca, Spain
| |
Collapse
|
5
|
Wu G, Li Q, Dai J, Mao G, Ma Y. Design and Application of Biosafe Coronavirus Engineering Systems without Virulence. Viruses 2024; 16:659. [PMID: 38793541 PMCID: PMC11126016 DOI: 10.3390/v16050659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
In the last twenty years, three deadly zoonotic coronaviruses (CoVs)-namely, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2-have emerged. They are considered highly pathogenic for humans, particularly SARS-CoV-2, which caused the 2019 CoV disease pandemic (COVID-19), endangering the lives and health of people globally and causing unpredictable economic losses. Experiments on wild-type viruses require biosafety level 3 or 4 laboratories (BSL-3 or BSL-4), which significantly hinders basic virological research. Therefore, the development of various biosafe CoV systems without virulence is urgently needed to meet the requirements of different research fields, such as antiviral and vaccine evaluation. This review aimed to comprehensively summarize the biosafety of CoV engineering systems. These systems combine virological foundations with synthetic genomics techniques, enabling the development of efficient tools for attenuated or non-virulent vaccines, the screening of antiviral drugs, and the investigation of the pathogenic mechanisms of novel microorganisms.
Collapse
Affiliation(s)
- Guoqiang Wu
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| | - Qiaoyu Li
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Guobin Mao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
| | - Yingxin Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
| |
Collapse
|
6
|
Guardalini LGO, Leme J, da Silva Cavalcante PE, de Mello RG, Bernardino TC, Jared SGS, Antoniazzi MM, Astray RM, Tonso A, Núñez EGF, Jorge SAC. Sf9 Cell Metabolism Throughout the Recombinant Baculovirus and Rabies Virus-Like Particles Production in Two Culture Systems. Mol Biotechnol 2024; 66:354-364. [PMID: 37162721 DOI: 10.1007/s12033-023-00759-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/22/2023] [Indexed: 05/11/2023]
Abstract
This work aimed to assess the Sf9 cell metabolism during growth, and infection steps with recombinant baculovirus bearing rabies virus proteins, to finally obtain rabies VLP in two culture systems: Schott flask (SF) and stirred tank reactor (STR). Eight assays were performed in SF and STR (four assays in each system) using serum-free SF900 III culture medium. Two non-infection growth kinetics assays and six recombinant baculovirus infection assays. The infection runs were carried out at 0.1 pfu/cell multiplicity of infection (MOI) for single baculovirus bearing rabies glycoprotein (BVG) and matrix protein (BVM) and a coinfection with both baculoviruses at MOI of 3 and 2 pfu/cell for BVG and BVM, respectively. The SF assays were done in triplicate. The glucose, glutamine, glutamate, lactate, and ammonium uptake or release specific rates were quantified over the exponential growth phase and infection stage. The highest uptake specific rate was observed for glucose (42.5 × 10-12 mmol cell/h) in SF and for glutamine (30.8 × 10-12 mmol/cell/h) in STR, in the exponential growth phases. A wave pattern was observed for assessed analytes throughout the infection phase and the glucose had the highest wave amplitude within the 10-10 mmol cell/h order. This alternative uptake and release behavior is in harmony with the lytic cycle of baculovirus in insect cells. The virus propagation and VLP generation were not limited by glucose, glutamine, and glutamate, neither by the toxicity of lactate nor ammonium under the conditions appraised in this work. The findings from this work can be useful to set baculovirus infection processes at high cell density to improve rabies VLP yield, purity, and productivity.
Collapse
Affiliation(s)
| | - Jaci Leme
- Laboratório de Biotecnologia Viral, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, CEP 05503-900, Brazil
| | | | - Renata Gois de Mello
- Laboratório de Biotecnologia Viral, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, CEP 05503-900, Brazil
| | - Thaissa Consoni Bernardino
- Laboratório de Biotecnologia Viral, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, CEP 05503-900, Brazil
| | - Simone Gonçalves Silva Jared
- Laboratório de Biologia Estrutural, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, CEP 05503-900, Brazil
| | - Marta Maria Antoniazzi
- Laboratório de Biologia Estrutural, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, CEP 05503-900, Brazil
| | - Renato Mancini Astray
- Laboratório Multipropósito, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, CEP 05503-900, Brazil
| | - Aldo Tonso
- Laboratório de Células Animais, Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, Av. Prof. Luciano Gualberto, Trav. 3, 380, São Paulo, SP, 05508-900, Brazil
| | - Eutimio Gustavo Fernández Núñez
- Grupo de Engenharia de Bioprocessos. Escola de Artes, Ciências e Humanidades (EACH), Universidade de São Paulo, Rua Arlindo Béttio, 1000, São Paulo, SP, CEP 03828-000, Brazil
| | - Soraia Attie Calil Jorge
- Laboratório de Biotecnologia Viral, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, CEP 05503-900, Brazil.
| |
Collapse
|
7
|
Sung J, Cheong Y, Kim YS, Ahn J, Sohn MH, Byun S, Seong BL. Harnessing Pentameric Scaffold of Cholera Toxin B (CTB) for Design of Subvirion Recombinant Dengue Virus Vaccine. Vaccines (Basel) 2024; 12:92. [PMID: 38250905 PMCID: PMC10819241 DOI: 10.3390/vaccines12010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Dengue virus is an enveloped virus with an icosahedral assembly of envelope proteins (E). The E proteins are arranged as a head-to-tail homodimer, and domain III (EDIII) is placed at the edge of the dimer, converging to a pentamer interface. For a structure-based approach, cholera toxin B (CTB) was harnessed as a structural scaffold for the five-fold symmetry of EDIII. Pivoted by an RNA-mediated chaperone for the protein folding and assembly, CTB-EDIII of dengue serotype 1 (DV1) was successfully produced as soluble pentamers in an E. coli host with a high yield of about 28 mg/L. Immunization of mice with CTB-DV1EDIII elicited increased levels of neutralizing antibodies against infectious viruses compared to the control group immunized with DV1EDIII without CTB fusion. IgG isotype switching into a balanced Th1/Th2 response was also observed, probably triggered by the intrinsic adjuvant activity of CTB. Confirming the immune-enhancing potential of CTB in stabilizing the pentamer assembly of EDIII, this study introduces a low-cost bacterial production platform designed to augment the soluble production of subunit vaccine candidates, particularly those targeting flaviviruses.
Collapse
Affiliation(s)
- Jemin Sung
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (J.S.); (Y.-S.K.)
| | - Yucheol Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (J.S.); (Y.-S.K.)
| | - Young-Seok Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (J.S.); (Y.-S.K.)
| | - Jina Ahn
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea;
| | - Myung Hyun Sohn
- Department of Pediatrics, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea;
| | - Sanguine Byun
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (J.S.); (Y.-S.K.)
- POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Baik-Lin Seong
- Department of Microbiology and Immunology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
8
|
Molenda S, Sikorska A, Florczak A, Lorenc P, Dams-Kozlowska H. Oligonucleotide-Based Therapeutics for STAT3 Targeting in Cancer-Drug Carriers Matter. Cancers (Basel) 2023; 15:5647. [PMID: 38067351 PMCID: PMC10705165 DOI: 10.3390/cancers15235647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 09/08/2024] Open
Abstract
High expression and phosphorylation of signal transducer and transcription activator 3 (STAT3) are correlated with progression and poor prognosis in various types of cancer. The constitutive activation of STAT3 in cancer affects processes such as cell proliferation, apoptosis, metastasis, angiogenesis, and drug resistance. The importance of STAT3 in cancer makes it a potential therapeutic target. Various methods of directly and indirectly blocking STAT3 activity at different steps of the STAT3 pathway have been investigated. However, the outcome has been limited, mainly by the number of upstream proteins that can reactivate STAT3 or the relatively low specificity of the inhibitors. A new branch of molecules with significant therapeutic potential has emerged thanks to recent developments in the regulatory function of non-coding nucleic acids. Oligonucleotide-based therapeutics can silence target transcripts or edit genes, leading to the modification of gene expression profiles, causing cell death or restoring cell function. Moreover, they can reach untreatable targets, such as transcription factors. This review briefly describes oligonucleotide-based therapeutics that found application to target STAT3 activity in cancer. Additionally, this review comprehensively summarizes how the inhibition of STAT3 activity by nucleic acid-based therapeutics such as siRNA, shRNA, ASO, and ODN-decoy affected the therapy of different types of cancer in preclinical and clinical studies. Moreover, due to some limitations of oligonucleotide-based therapeutics, the importance of carriers that can deliver nucleic acid molecules to affect the STAT3 in cancer cells and cells of the tumor microenvironment (TME) was pointed out. Combining a high specificity of oligonucleotide-based therapeutics toward their targets and functionalized nanoparticles toward cell type can generate very efficient formulations.
Collapse
Affiliation(s)
- Sara Molenda
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; (S.M.); (A.S.); (A.F.); (P.L.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Agata Sikorska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; (S.M.); (A.S.); (A.F.); (P.L.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Anna Florczak
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; (S.M.); (A.S.); (A.F.); (P.L.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Patryk Lorenc
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; (S.M.); (A.S.); (A.F.); (P.L.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Hanna Dams-Kozlowska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; (S.M.); (A.S.); (A.F.); (P.L.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| |
Collapse
|
9
|
Aves KL, Guerra PR, Fresno AH, Saraiva MMS, Cox E, Bækbo PJ, Nielsen MA, Sander AF, Olsen JE. A Virus-like Particle-Based F4 Enterotoxigenic Escherichia coli Vaccine Is Inhibited by Maternally Derived Antibodies in Piglets but Generates Robust Responses in Sows. Pathogens 2023; 12:1388. [PMID: 38133272 PMCID: PMC10745950 DOI: 10.3390/pathogens12121388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
F4-positive enterotoxigenic Escherichia coli is associated with diarrhea and poor growth outcomes in neonatal and newly weaned piglets and is thus a major economic and welfare burden in the swine industry. Vaccination of sows with F4 fimbriae protects against the neonatal disease via passive transfer of maternal immunity. However, this strategy does not protect against infection post-weaning. Consequently, prevention and treatment methods in weaner pigs heavily rely on the use of antimicrobials. Therefore, in order to reduce antimicrobial consumption, more effective prophylactic alternatives are needed. In this study, we describe the development of a capsid virus-like particle (cVLP)-based vaccine targeting the major F4 fimbriae subunit and adhesion molecule, FaeG, and evaluate its immunogenicity in mice, piglets, and sows. cVLP-display significantly increased systemic and mucosal antibody responses towards the recombinant FaeG antigen in mice models. However, in piglets, the presence of anti-F4 maternally derived antibodies severely inhibited the induction of active humoral responses towards the FaeG antigen. This inhibition could not be overcome, even with the enhanced immunogenicity achieved via cVLP display. However, in sows, intramuscular vaccination with the FaeG.cVLP vaccine was able to generate robust IgG and IgA responses that were comparable with a commercial fimbriae-based vaccine, and which were effectively transferred to piglets via colostrum intake. These results demonstrate that cVLP display has the potential to improve the systemic humoral responses elicited against low-immunogenic antigens in pigs; however, this effect is dependent on the use of antigens, which are not the targets of pre-existing maternal immunity.
Collapse
Affiliation(s)
- Kara-Lee Aves
- Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Priscila R. Guerra
- Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| | - Ana H. Fresno
- Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| | - Mauro M. S. Saraiva
- Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| | - Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - Poul J. Bækbo
- SEGES Innovation, Danish Pig Research Centre, Agro Food Park 15, DK-8200 Aarhus, Denmark
| | - Morten A. Nielsen
- Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Adam F. Sander
- Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark
- AdaptVac, Ole Maaløes Vej 3, DK-2200 Copenhagen, Denmark
| | - John E. Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| |
Collapse
|
10
|
Tang J, Fu M, Xu C, Xue B, Zhou A, Chen S, Zhao H, Zhou Y, Chen J, Yang Q, Chen X. Development of a novel virus-like particle-based vaccine for preventing tick-borne encephalitis virus infection. Virol Sin 2023; 38:767-777. [PMID: 37328107 PMCID: PMC10590693 DOI: 10.1016/j.virs.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV) is an important tick-borne pathogen that poses as a serious public health concern. The coverage and immunogenicity of the currently available vaccines against TBEV are relatively low; therefore, it is crucial to develop novel and effective vaccines against TBEV. The present study describes a novel strategy for the assembly of virus-like particles (VLPs) by co-expressing the structural (core/prM/E) and non-structural (NS2B/NS3Pro) proteins of TBEV. The efficacy of the VLPs was subsequently evaluated in C57BL/6 mice, and the resultant IgG serum could neutralize both Far-Eastern and European subtypes of TBEV. These findings indicated that the VLP-based vaccine elicited the production of cross-subtype reactive antibodies. The VLPs provided protection to mice lacking the type I interferon receptor (IFNAR-/-) against lethal TBEV challenge, with undetectable viral load in brain and intestinal tissues. Furthermore, the group that received the VLP vaccine did not exhibit significant pathological changes and the inflammatory factors were significantly suppressed compared to the control group. Immunization with the VLP vaccine induced the production of multiple-cytokine-producing antiviral CD4+ T cells in vivo, including TNF-α+, IL-2+, and IFN-γ+ T cells. Altogether, the findings suggest that noninfectious VLPs can serve as a potentially safe and effective vaccine candidate against diverse subtypes of TBEV.
Collapse
Affiliation(s)
- Jielin Tang
- Guangzhou National Laboratory, Guangzhou, 510005, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Muqing Fu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Chonghui Xu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Bao Xue
- Guangzhou National Laboratory, Guangzhou, 510005, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Anqi Zhou
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Sijie Chen
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - He Zhao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yuan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jizheng Chen
- Guangzhou National Laboratory, Guangzhou, 510005, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qi Yang
- Guangzhou National Laboratory, Guangzhou, 510005, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Xinwen Chen
- Guangzhou National Laboratory, Guangzhou, 510005, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
11
|
Mellid-Carballal R, Gutierrez-Gutierrez S, Rivas C, Garcia-Fuentes M. Viral protein-based nanoparticles (part 2): Pharmaceutical applications. Eur J Pharm Sci 2023; 189:106558. [PMID: 37567394 DOI: 10.1016/j.ejps.2023.106558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/10/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Viral protein nanoparticles (ViP NPs) such as virus-like particles and virosomes are structures halfway between viruses and synthetic nanoparticles. The biological nature of ViP NPs endows them with the biocompatibility, biodegradability, and functional properties that many synthetic nanoparticles lack. At the same time, the absence of a viral genome avoids the safety concerns of viruses. Such characteristics of ViP NPs offer a myriad of opportunities for theirapplication at several points across disease development: from prophylaxis to diagnosis and treatment. ViP NPs present remarkable immunostimulant properties, and thus the vaccination field has benefited the most from these platforms capable of overcoming the limitations of both traditional and subunit vaccines. This was reflected in the marketing authorization of several VLP- and virosome-based vaccines. Besides, ViP NPs inherit the ability of viruses to deliver their cargo to target cells. Because of that, ViP NPs are promising candidates as vectors for drug and gene delivery, and for diagnostic applications. In this review, we analyze the pharmaceutical applications of ViP NPs, describing the products that are commercially available or under clinical evaluation, but also the advances that scientists are making toward the implementation of ViP NPs in other areas of major pharmaceutical interest.
Collapse
Affiliation(s)
- Rocio Mellid-Carballal
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain
| | - Sara Gutierrez-Gutierrez
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain
| | - Carmen Rivas
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, Spain; Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología (CNB)-CSIC, Spain
| | - Marcos Garcia-Fuentes
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, Spain.
| |
Collapse
|
12
|
Srivastava V, Nand KN, Ahmad A, Kumar R. Yeast-Based Virus-like Particles as an Emerging Platform for Vaccine Development and Delivery. Vaccines (Basel) 2023; 11:vaccines11020479. [PMID: 36851356 PMCID: PMC9965603 DOI: 10.3390/vaccines11020479] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Virus-like particles (VLPs) are empty, nanoscale structures morphologically resembling viruses. Internal cavity, noninfectious, and particulate nature with a high density of repeating epitopes, make them an ideal platform for vaccine development and drug delivery. Commercial use of Gardasil-9 and Cervarix showed the usefulness of VLPs in vaccine formulation. Further, chimeric VLPs allow the raising of an immune response against different immunogens and thereby can help reduce the generation of medical or clinical waste. The economically viable production of VLPs significantly impacts their usage, application, and availability. To this end, several hosts have been used and tested. The present review will discuss VLPs produced using different yeasts as fermentation hosts. We also compile a list of studies highlighting the expression and purification of VLPs using a yeast-based platform. We also discuss the advantages of using yeast to generate VLPs over other available systems. Further, the issues or limitations of yeasts for producing VLPs are also summarized. The review also compiles a list of yeast-derived VLP-based vaccines that are presently in public use or in different phases of clinical trials.
Collapse
Affiliation(s)
- Vartika Srivastava
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Kripa N. Nand
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Ravinder Kumar
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Correspondence:
| |
Collapse
|
13
|
Zhang L, Xu W, Ma X, Sun X, Fan J, Wang Y. Virus-like Particles as Antiviral Vaccine: Mechanism, Design, and Application. BIOTECHNOL BIOPROC E 2023; 28:1-16. [PMID: 36627930 PMCID: PMC9817464 DOI: 10.1007/s12257-022-0107-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 01/09/2023]
Abstract
Virus-like particles (VLPs) are viral structural protein that are noninfectious as they do not contain viral genetic materials. They are safe and effective immune stimulators and play important roles in vaccine development because of their intrinsic immunogenicity to induce cellular and humoral immune responses. In the design of antiviral vaccine, VLPs based vaccines are appealing multifunctional candidates with the advantages such as self-assembling nanoscaled structures, repetitive surface epitopes, ease of genetic and chemical modifications, versatility as antigen presenting platforms, intrinsic immunogenicity, higher safety profile in comparison with live-attenuated vaccines and inactivated vaccines. In this review, we discuss the mechanism of VLPs vaccine inducing cellular and humoral immune responses. We outline the impact of size, shape, surface charge, antigen presentation, genetic and chemical modification, and expression systems when constructing effective VLPs based vaccines. Recent applications of antiviral VLPs vaccines and their clinical trials are summarized.
Collapse
Affiliation(s)
- Lei Zhang
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi China
| | - Wen Xu
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi China
| | - Xi Ma
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi China
| | - XiaoJing Sun
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi China
| | - JinBo Fan
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi China
| | - Yang Wang
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi China
| |
Collapse
|
14
|
Olshefsky A, Richardson C, Pun SH, King NP. Engineering Self-Assembling Protein Nanoparticles for Therapeutic Delivery. Bioconjug Chem 2022; 33:2018-2034. [PMID: 35487503 PMCID: PMC9673152 DOI: 10.1021/acs.bioconjchem.2c00030] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite remarkable advances over the past several decades, many therapeutic nanomaterials fail to overcome major in vivo delivery barriers. Controlling immunogenicity, optimizing biodistribution, and engineering environmental responsiveness are key outstanding delivery problems for most nanotherapeutics. However, notable exceptions exist including some lipid and polymeric nanoparticles, some virus-based nanoparticles, and nanoparticle vaccines where immunogenicity is desired. Self-assembling protein nanoparticles offer a powerful blend of modularity and precise designability to the field, and have the potential to solve many of the major barriers to delivery. In this review, we provide a brief overview of key designable features of protein nanoparticles and their implications for therapeutic delivery applications. We anticipate that protein nanoparticles will rapidly grow in their prevalence and impact as clinically relevant delivery platforms.
Collapse
Affiliation(s)
- Audrey Olshefsky
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Christian Richardson
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Suzie H. Pun
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Molecular
Engineering and Sciences Institute, University
of Washington, Seattle, Washington 98195, United States
| | - Neil P. King
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
15
|
Facciolà A, Visalli G, Laganà A, Di Pietro A. An Overview of Vaccine Adjuvants: Current Evidence and Future Perspectives. Vaccines (Basel) 2022; 10:vaccines10050819. [PMID: 35632575 PMCID: PMC9147349 DOI: 10.3390/vaccines10050819] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
Vaccinations are one of the most important preventive tools against infectious diseases. Over time, many different types of vaccines have been developed concerning the antigen component. Adjuvants are essential elements that increase the efficacy of vaccination practises through many different actions, especially acting as carriers, depots, and stimulators of immune responses. For many years, few adjuvants have been included in vaccines, with aluminium salts being the most commonly used adjuvant. However, recent research has focused its attention on many different new compounds with effective adjuvant properties and improved safety. Modern technologies such as nanotechnologies and molecular biology have forcefully entered the production processes of both antigen and adjuvant components, thereby improving vaccine efficacy. Microparticles, emulsions, and immune stimulators are currently in the spotlight for their huge potential in vaccine production. Although studies have reported some potential side effects of vaccine adjuvants such as the recently recognised ASIA syndrome, the huge worth of vaccines remains unquestionable. Indeed, the recent COVID-19 pandemic has highlighted the importance of vaccines, especially in regard to managing future potential pandemics. In this field, research into adjuvants could play a leading role in the production of increasingly effective vaccines.
Collapse
Affiliation(s)
- Alessio Facciolà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.L.); (A.D.P.)
- Correspondence:
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.L.); (A.D.P.)
| | - Antonio Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.L.); (A.D.P.)
- Multi-Specialist Clinical Institute for Orthopaedic Trauma Care (COT), 98124 Messina, Italy
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.L.); (A.D.P.)
| |
Collapse
|
16
|
Can Virus-like Particles Be Used as Synergistic Agent in Pest Management? Viruses 2022; 14:v14050943. [PMID: 35632685 PMCID: PMC9144638 DOI: 10.3390/v14050943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 02/05/2023] Open
Abstract
Among novel strategies proposed in pest management, synergistic agents are used to improve insecticide efficacy through an elevation of intracellular calcium concentration that activates the calcium-dependent intracellular pathway. This leads to a changed target site conformation and to increased sensitivity to insecticides while reducing their concentrations. Because virus-like particles (VLPs) increase the intracellular calcium concentration, they can be used as a synergistic agent to synergize the effect of insecticides. VLPs are self-assembled viral protein complexes, and by contrast to entomopathogen viruses, they are devoid of genetic material, which makes them non-infectious and safer than viruses. Although VLPs are well-known to be used in human health, we propose in this study the development of a promising strategy based on the use of VLPs as synergistic agents in pest management. This will lead to increased insecticides efficacy while reducing their concentrations.
Collapse
|
17
|
Sendai virus particles carrying target virus glycoproteins for antibody induction. Vaccine 2022; 40:2420-2431. [DOI: 10.1016/j.vaccine.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 02/05/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
|
18
|
Tariq H, Batool S, Asif S, Ali M, Abbasi BH. Virus-Like Particles: Revolutionary Platforms for Developing Vaccines Against Emerging Infectious Diseases. Front Microbiol 2022; 12:790121. [PMID: 35046918 PMCID: PMC8761975 DOI: 10.3389/fmicb.2021.790121] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Virus-like particles (VLPs) are nanostructures that possess diverse applications in therapeutics, immunization, and diagnostics. With the recent advancements in biomedical engineering technologies, commercially available VLP-based vaccines are being extensively used to combat infectious diseases, whereas many more are in different stages of development in clinical studies. Because of their desired characteristics in terms of efficacy, safety, and diversity, VLP-based approaches might become more recurrent in the years to come. However, some production and fabrication challenges must be addressed before VLP-based approaches can be widely used in therapeutics. This review offers insight into the recent VLP-based vaccines development, with an emphasis on their characteristics, expression systems, and potential applicability as ideal candidates to combat emerging virulent pathogens. Finally, the potential of VLP-based vaccine as viable and efficient immunizing agents to induce immunity against virulent infectious agents, including, SARS-CoV-2 and protein nanoparticle-based vaccines has been elaborated. Thus, VLP vaccines may serve as an effective alternative to conventional vaccine strategies in combating emerging infectious diseases.
Collapse
Affiliation(s)
- Hasnat Tariq
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sannia Batool
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saaim Asif
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Mohammad Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | | |
Collapse
|
19
|
Garay E, Fontana D, Leschiutta L, Kratje R, Prieto C. Rational design of novel fusion rabies glycoproteins displaying a major antigenic site of foot-and-mouth disease virus for vaccine applications. Appl Microbiol Biotechnol 2022; 106:579-592. [PMID: 34971413 PMCID: PMC8718594 DOI: 10.1007/s00253-021-11747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 11/09/2022]
Abstract
Chimeric virus-like particles are self-assembling structures composed of viral proteins that had been modified to incorporate sequences from different organisms, being able to trigger immune responses against the heterologous sequence. However, the identification of suitable sites for that purpose in the carrier protein is not an easy task. In this work, we describe the generation of rabies chimeric VLPs that expose a major antigenic site of foot-and-mouth disease virus (FMDV) by identifying suitable regions in rabies glycoprotein (RVG), as a proof of concept of a novel heterologous display platform for vaccine applications. To identify adequate sites for insertion of heterologous sequences without altering the correct folding of RVG, we identified regions that were evolutionally non-conserved in Lyssavirus glycoproteins and performed a structural analysis of those regions using a 3D model of RVG trimer that we generated. The heterologous sequence was inserted in three different sites within RVG sequence. In every case, it did not affect the correct folding of the protein and was surface exposed, being recognized by anti-FMDV antibodies in expressing cells as well as in the surface of VLPs. This work sets the base for the development of a heterologous antigen display platform based on rabies VLPs. KEY POINTS: • Adequate regions for foreign epitope display in RVG were found. • G-H loop of FMDV was inserted in three regions of RVG. • The foreign epitope was detected by specific antibodies on fusion proteins. • G-H loop was detected on the surface of chimeric VLPs.
Collapse
Affiliation(s)
- Ernesto Garay
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA), Santa Fe, Argentina
| | - Diego Fontana
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA), Santa Fe, Argentina.
| | - Lautaro Leschiutta
- UNL, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA), Santa Fe, Argentina
| | - Ricardo Kratje
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA), Santa Fe, Argentina
| | - Claudio Prieto
- UNL, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242 - (S3000ZAA), Santa Fe, Argentina
| |
Collapse
|
20
|
Nervous Necrosis Virus-like Particle (VLP) Vaccine Stimulates European Sea Bass Innate and Adaptive Immune Responses and Induces Long-Term Protection against Disease. Pathogens 2021; 10:pathogens10111477. [PMID: 34832632 PMCID: PMC8623669 DOI: 10.3390/pathogens10111477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/29/2022] Open
Abstract
The rapidly increasing Mediterranean aquaculture production of European sea bass is compromised by outbreaks of viral nervous necrosis, which can be recurrent and detrimental. In this study, we evaluated the duration of protection and immune response in sea bass given a single dose of a virus-like particle (VLP)-based vaccine. Examinations included experimental challenge with nervous necrosis virus (NNV), serological assays for NNV-specific antibody reactivity, and immune gene expression analysis. VLP-vaccinated fish showed high and superior survival in challenge both 3 and 7.5 months (1800 and 4500 dd) post-vaccination (RPS 87 and 88, OR (surviving) = 16.5 and 31.5, respectively, p < 0.01). Although not providing sterile immunity, VLP vaccination seemed to control the viral infection, as indicated by low prevalence of virus in the VLP-vaccinated survivors. High titers of neutralizing and specific antibodies were produced in VLP-vaccinated fish and persisted for at least ~9 months post-vaccination as well as after challenge. However, failure of immune sera to protect recipient fish in a passive immunization trial suggested that other immune mechanisms were important for protection. Accordingly, gene expression analysis revealed that VLP-vaccination induced a mechanistically broad immune response including upregulation of both innate and adaptive humoral and cellular components (mx, isg12, mhc I, mhc II, igm, and igt). No clinical side effects of the VLP vaccination at either tissue or performance levels were observed. The results altogether suggested the VLP-based vaccine to be suitable for clinical testing under farming conditions.
Collapse
|
21
|
Balkrishna A, Arya V, Rohela A, Kumar A, Verma R, Kumar D, Nepovimova E, Kuca K, Thakur N, Thakur N, Kumar P. Nanotechnology Interventions in the Management of COVID-19: Prevention, Diagnosis and Virus-Like Particle Vaccines. Vaccines (Basel) 2021; 9:1129. [PMID: 34696237 PMCID: PMC8537718 DOI: 10.3390/vaccines9101129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2 claimed numerous lives and put nations on high alert. The lack of antiviral medications and the small number of approved vaccines, as well as the recurrence of adverse effects, necessitates the development of novel treatment ways to combat COVID-19. In this context, using databases such as PubMed, Google Scholar, and Science Direct, we gathered information about nanotechnology's involvement in the prevention, diagnosis and virus-like particle vaccine development. This review revealed that various nanomaterials like gold, polymeric, graphene and poly amino ester with carboxyl group coated magnetic nanoparticles have been explored for the fast detection of SARS-CoV-2. Personal protective equipment fabricated with nanoparticles, such as gloves, masks, clothes, surfactants, and Ag, TiO2 based disinfectants played an essential role in halting COVID-19 transmission. Nanoparticles are used not only in vaccine delivery, such as lipid nanoparticles mediated transport of mRNA-based Pfizer and Moderna vaccines, but also in the development of vaccine as the virus-like particles elicit an immune response. There are now 18 virus-like particle vaccines in pre-clinical development, with one of them, developed by Novavax, reported being in phase 3 trials. Due to the probability of upcoming COVID-19 waves, and the rise of new diseases, the future relevance of virus-like particles is imperative. Furthermore, psychosocial variables linked to vaccine reluctance constitute a critical problem that must be addressed immediately to avert pandemic.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar 249405, India; (A.B.); (V.A.); (A.R.)
- Department of Allied Sciences, University of Patanjali, Haridwar 249405, India
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar 249405, India; (A.B.); (V.A.); (A.R.)
- Department of Allied Sciences, University of Patanjali, Haridwar 249405, India
| | - Akansha Rohela
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar 249405, India; (A.B.); (V.A.); (A.R.)
| | - Ashwani Kumar
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar 249405, India; (A.B.); (V.A.); (A.R.)
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India;
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
- Biomedical Research Center, University Hospital in Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic
| | - Naveen Thakur
- Department of Physics, Career Point University, Hamirpur 177001, India; (N.T.); (N.T.); (P.K.)
| | - Nikesh Thakur
- Department of Physics, Career Point University, Hamirpur 177001, India; (N.T.); (N.T.); (P.K.)
| | - Pankaj Kumar
- Department of Physics, Career Point University, Hamirpur 177001, India; (N.T.); (N.T.); (P.K.)
| |
Collapse
|
22
|
Calvo Fernández E, Zhu LY. Racing to immunity: Journey to a COVID-19 vaccine and lessons for the future. Br J Clin Pharmacol 2021; 87:3408-3424. [PMID: 33289156 PMCID: PMC7753785 DOI: 10.1111/bcp.14686] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2 is the novel coronavirus behind the COVID-19 pandemic. Since its emergence, the global scientific community has mobilized to study this virus, and an overwhelming effort to identify COVID-19 treatments is currently ongoing for a variety of therapeutics and prophylactics. To better understand these efforts, we compiled a list of all COVID-19 vaccines undergoing preclinical and clinical testing using the WHO and ClinicalTrials.gov database, with details surrounding trial design and location. The most advanced vaccines are discussed in more detail, with a focus on their technology, advantages and disadvantages, as well as any available recent clinical findings. We also cover some of the primary challenges, safety concerns and public responses to COVID-19 vaccine trials, and consider what this can mean for the future. By compiling this information, we aim to facilitate a more thorough understanding of the extensive COVID-19 clinical testing vaccine landscape as it unfolds, and better highlight some of the complexities and challenges being faced by the joint effort of the scientific community in finding a prophylactic against COVID-19.
Collapse
Affiliation(s)
- Ester Calvo Fernández
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNYUSA
| | - Lucie Y. Zhu
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNYUSA
| |
Collapse
|
23
|
Lim J, Cheong Y, Kim YS, Chae W, Hwang BJ, Lee J, Jang YH, Roh YH, Seo SU, Seong BL. RNA-dependent assembly of chimeric antigen nanoparticles as an efficient H5N1 pre-pandemic vaccine platform. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 37:102438. [PMID: 34256061 DOI: 10.1016/j.nano.2021.102438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/12/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022]
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) pose a significant threat to human health, with high mortality rates, and require effective vaccines. We showed that, harnessed with novel RNA-mediated chaperone function, hemagglutinin (HA) of H5N1 HPAIV could be displayed as an immunologically relevant conformation on self-assembled chimeric nanoparticles (cNP). A tri-partite monomeric antigen was designed including: i) an RNA-interaction domain (RID) as a docking tag for RNA to enable chaperna function (chaperna: chaperone + RNA), ii) globular head domain (gd) of HA as a target antigen, and iii) ferritin as a scaffold for 24 mer-assembly. The immunization of mice with the nanoparticles (~46 nm) induced a 25-30 fold higher neutralizing capacity of the antibody and provided cross-protection from homologous and heterologous lethal challenges. This study suggests that cNP assembly is conducive to eliciting antibodies against the conserved region in HA, providing potent and broad protective efficacy.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/therapeutic use
- Antibodies, Viral/immunology
- Antibodies, Viral/therapeutic use
- Birds/virology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/therapeutic use
- Humans
- Influenza A Virus, H5N1 Subtype/drug effects
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/pathogenicity
- Influenza Vaccines/chemistry
- Influenza Vaccines/immunology
- Influenza Vaccines/therapeutic use
- Influenza in Birds/immunology
- Influenza in Birds/prevention & control
- Influenza in Birds/virology
- Mice
- Nanoparticles/chemistry
- Nanoparticles/therapeutic use
- Pandemics
- RNA/genetics
- RNA/immunology
- RNA/therapeutic use
Collapse
Affiliation(s)
- Jongkwan Lim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yucheol Cheong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Young-Seok Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Wonil Chae
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Beom Jeung Hwang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jinhee Lee
- Department of Integrated OMICS for Biomedical Science, College of Life Sciences and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yo Han Jang
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Biotechnology, Andong National University, Andong, Republic of Korea
| | - Young Hoon Roh
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, Republic of Korea.
| | - Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Baik L Seong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, Republic of Korea; Department of Microbiology, College of Medicine, Yonsei University, Seoul, Republic of Korea; Vaccine Innovative Technology Alliance-Korea, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Barsøe S, Toffan A, Pascoli F, Stratmann A, Pretto T, Marsella A, Er-Rafik M, Vendramin N, Olesen NJ, Sepúlveda D, Lorenzen N. Long-Term Protection and Serologic Response of European Sea Bass Vaccinated with a Betanodavirus Virus-Like Particle Produced in Pichia pastoris. Vaccines (Basel) 2021; 9:vaccines9050447. [PMID: 34063318 PMCID: PMC8147411 DOI: 10.3390/vaccines9050447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/10/2023] Open
Abstract
Viral Nervous Necrosis (VNN) causes high mortality and reduced growth in farmed European sea bass (Dicentrarchus labrax) in the Mediterranean. In the current studies, we tested a novel Pichia-produced virus-like particle (VLP) vaccine against VNN in European sea bass, caused by the betanodavirus “Red-Spotted Grouper Nervous Necrosis Virus” (RGNNV). European sea bass were immunized with a VLP-based vaccine formulated with different concentrations of antigen and with or without adjuvant. Antibody response was evaluated by ELISA and serum neutralization. The efficacy of these VLP-vaccine formulations was evaluated by an intramuscular challenge with RGNNV at different time points (1, 2 and 10 months post-vaccination) and both dead and surviving fish were sampled to evaluate the level of viable virus in the brain. The VLP-based vaccines induced an effective protective immunity against experimental infection at 2 months post-vaccination, and even to some degree at 10 months post-vaccination. Furthermore, the vaccine formulations triggered a dose-dependent response in neutralizing antibodies. Serologic response and clinical efficacy, measured as relative percent survival (RPS), seem to be correlated with the administered dose, although for the individual fish, a high titer of neutralizing antibodies prior to challenge was not always enough to protect against disease. The efficacy of the VLP vaccine could not be improved by formulation with a water-in-oil (W/O) adjuvant. The developed RGNNV-VLPs show a promising effect as a vaccine candidate, even without adjuvant, to protect sea bass against disease caused by RGNNV. However, detection of virus in vaccinated survivors means that it cannot be ruled out that survivors can transmit the virus.
Collapse
Affiliation(s)
- Sofie Barsøe
- National Institute of Aquatic Resources (DTU AQUA), Technical University of Denmark, 2800 Lyngby, Denmark; (S.B.); (N.V.); (N.J.O.); (D.S.)
| | - Anna Toffan
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Padua, Italy; (A.T.); (F.P.); (T.P.); (A.M.)
| | - Francesco Pascoli
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Padua, Italy; (A.T.); (F.P.); (T.P.); (A.M.)
| | | | - Tobia Pretto
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Padua, Italy; (A.T.); (F.P.); (T.P.); (A.M.)
| | - Andrea Marsella
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Padua, Italy; (A.T.); (F.P.); (T.P.); (A.M.)
| | - Mériem Er-Rafik
- National Center for Nano Fabrication and Characterization (DTU Nanolab), Technical University of Denmark, 2800 Lyngby, Denmark;
| | - Niccolò Vendramin
- National Institute of Aquatic Resources (DTU AQUA), Technical University of Denmark, 2800 Lyngby, Denmark; (S.B.); (N.V.); (N.J.O.); (D.S.)
| | - Niels J. Olesen
- National Institute of Aquatic Resources (DTU AQUA), Technical University of Denmark, 2800 Lyngby, Denmark; (S.B.); (N.V.); (N.J.O.); (D.S.)
| | - Dagoberto Sepúlveda
- National Institute of Aquatic Resources (DTU AQUA), Technical University of Denmark, 2800 Lyngby, Denmark; (S.B.); (N.V.); (N.J.O.); (D.S.)
| | - Niels Lorenzen
- National Institute of Aquatic Resources (DTU AQUA), Technical University of Denmark, 2800 Lyngby, Denmark; (S.B.); (N.V.); (N.J.O.); (D.S.)
- Correspondence:
| |
Collapse
|
25
|
Dutta K, Das R, Medeiros J, Thayumanavan S. Disulfide Bridging Strategies in Viral and Nonviral Platforms for Nucleic Acid Delivery. Biochemistry 2021; 60:966-990. [PMID: 33428850 PMCID: PMC8753971 DOI: 10.1021/acs.biochem.0c00860] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Self-assembled nanostructures that are sensitive to environmental stimuli are promising nanomaterials for drug delivery. In this class, disulfide-containing redox-sensitive strategies have gained enormous attention because of their wide applicability and simplicity of nanoparticle design. In the context of nucleic acid delivery, numerous disulfide-based materials have been designed by relying on covalent or noncovalent interactions. In this review, we highlight major advances in the design of disulfide-containing materials for nucleic acid encapsulation, including covalent nucleic acid conjugates, viral vectors or virus-like particles, dendrimers, peptides, polymers, lipids, hydrogels, inorganic nanoparticles, and nucleic acid nanostructures. Our discussion will focus on the context of the design of materials and their impact on addressing the current shortcomings in the intracellular delivery of nucleic acids.
Collapse
Affiliation(s)
- Kingshuk Dutta
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Ritam Das
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jewel Medeiros
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
26
|
Lee KZ, Basnayake Pussepitiyalage V, Lee YH, Loesch-Fries LS, Harris MT, Hemmati S, Solomon KV. Engineering Tobacco Mosaic Virus and Its Virus-Like-Particles for Synthesis of Biotemplated Nanomaterials. Biotechnol J 2021; 16:e2000311. [PMID: 33135368 DOI: 10.1002/biot.202000311] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/27/2020] [Indexed: 12/12/2022]
Abstract
Biomolecules are increasingly attractive templates for the synthesis of functional nanomaterials. Chief among them is the plant tobacco mosaic virus (TMV) due to its high aspect ratio, narrow size distribution, diverse biochemical functionalities presented on the surface, and compatibility with a number of chemical conjugations. These properties are also easily manipulated by genetic modification to enable the synthesis of a range of metallic and non-metallic nanomaterials for diverse applications. This article reviews the characteristics of TMV and related viruses, and their virus-like particle (VLP) derivatives, and how these may be manipulated to extend their use and function. A focus of recent efforts has been on greater understanding and control of the self-assembly processes that drive biotemplate formation. How these features have been exploited in engineering applications such as, sensing, catalysis, and energy storage are briefly outlined. While control of VLP surface features is well-established, fewer tools exist to control VLP self-assembly, which limits efforts to control template uniformity and synthesis of certain templated nanomaterials. However, emerging advances in synthetic biology, machine learning, and other fields promise to accelerate efforts to control template uniformity and nanomaterial synthesis enabling more widescale industrial use of VLP-based biotemplates.
Collapse
Affiliation(s)
- Kok Zhi Lee
- Agricultural & Biological Engineering, Purdue University, 225 S University St, West Lafayette, IN, 47907, USA
| | | | - Yu-Hsuan Lee
- School of Chemical Engineering, Purdue University, 480 W Stadium Ave, West Lafayette, IN, 47907, USA
| | - L Sue Loesch-Fries
- Department of Botany and Plant Pathology, Purdue University, 915 W State St, West Lafayette, IN, 47907, USA
| | - Michael T Harris
- School of Chemical Engineering, Purdue University, 480 W Stadium Ave, West Lafayette, IN, 47907, USA
| | - Shohreh Hemmati
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK, 74078, USA
| | - Kevin V Solomon
- Agricultural & Biological Engineering, Purdue University, 225 S University St, West Lafayette, IN, 47907, USA
- Laboratory of Renewable Resources Engineering (LORRE), Purdue University, 500 Central Drive, West Lafayette, IN, 47907, USA
| |
Collapse
|
27
|
VLP-Based Vaccines as a Suitable Technology to Target Trypanosomatid Diseases. Vaccines (Basel) 2021; 9:vaccines9030220. [PMID: 33807516 PMCID: PMC7998750 DOI: 10.3390/vaccines9030220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/25/2022] Open
Abstract
Research on vaccines against trypanosomatids, a family of protozoa that cause neglected tropical diseases, such as Chagas disease, leishmaniasis, and sleeping sickness, is a current need. Today, according to modern vaccinology, virus-like particle (VLP) technology is involved in many vaccines, including those undergoing studies related to COVID-19. The potential use of VLPs as vaccine adjuvants opens an opportunity for the use of protozoan antigens for the development of vaccines against diseases caused by Trypanosoma cruzi, Leishmania spp., and Trypanosoma brucei. In this context, it is important to consider the evasion mechanisms of these protozoa in the host and the antigens involved in the mechanisms of the parasite–host interaction. Thus, the immunostimulatory properties of VLPs can be part of an important strategy for the development and evaluation of new vaccines. This work aims to highlight the potential of VLPs as vaccine adjuvants for the development of immunity in complex diseases, specifically in the context of tropical diseases caused by trypanosomatids.
Collapse
|
28
|
Sari‐Ak D, Bufton J, Gupta K, Garzoni F, Fitzgerald D, Schaffitzel C, Berger I. VLP-factory™ and ADDomer © : Self-assembling Virus-Like Particle (VLP) Technologies for Multiple Protein and Peptide Epitope Display. Curr Protoc 2021; 1:e55. [PMID: 33729713 PMCID: PMC9733710 DOI: 10.1002/cpz1.55] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Virus-like particles (VLPs) play a prominent role in vaccination as safe and highly versatile alternatives to attenuated or inactivated viruses or subunit vaccines. We present here two innovations, VLP-factory™ and ADDomer© , for creating VLPs displaying entire proteins or peptide epitopes as antigens, respectively, to enable efficient vaccination. For producing these VLPs, we use MultiBac, a baculovirus expression vector system (BEVS) that we developed for producing complex protein biologics in insect cells transfected with an engineered baculovirus. VLPs are protein assemblies that share features with viruses but are devoid of genetic material, and thus considered safe. VLP-factory™ represents a customized MultiBac baculovirus tailored to produce enveloped VLPs based on the M1 capsid protein of influenza virus. We apply VLP-factory™ to create an array of influenza-derived VLPs presenting functional mutant influenza hemagglutinin (HA) glycoprotein variants. Moreover, we describe MultiBac-based production of ADDomer© , a synthetic self-assembling adenovirus-derived protein-based VLP platform designed to display multiple copies of pathogenic epitopes at the same time on one particle for highly efficient vaccination. © 2021 The Authors. Basic Protocol 1: VLP-factory™ baculoviral genome generation Basic Protocol 2: Influenza VLP array generation using VLP-factory™ Basic Protocol 3: Influenza VLP purification Basic Protocol 4: ADDomer© BioBrick design, expression, and purification Basic Protocol 5: ADDomer© candidate vaccines against infectious diseases.
Collapse
Affiliation(s)
- Duygu Sari‐Ak
- Department of Medical Biology, School of MedicineUniversity of Health SciencesIstanbulTurkey
| | - Joshua Bufton
- Bristol Synthetic Biology Centre BrisSynBioUniversity of BristolBristolUnited Kingdom
- School of Biochemistry, Biomedical SciencesUniversity of BristolBristolUnited Kingdom
| | - Kapil Gupta
- Bristol Synthetic Biology Centre BrisSynBioUniversity of BristolBristolUnited Kingdom
- School of Biochemistry, Biomedical SciencesUniversity of BristolBristolUnited Kingdom
| | - Frederic Garzoni
- Imophoron Ltd, St. Philips CentralSt. PhilipsBristolUnited Kingdom
| | | | - Christiane Schaffitzel
- Bristol Synthetic Biology Centre BrisSynBioUniversity of BristolBristolUnited Kingdom
- School of Biochemistry, Biomedical SciencesUniversity of BristolBristolUnited Kingdom
| | - Imre Berger
- Bristol Synthetic Biology Centre BrisSynBioUniversity of BristolBristolUnited Kingdom
- School of Biochemistry, Biomedical SciencesUniversity of BristolBristolUnited Kingdom
- School of ChemistryUniversity of BristolBristolUnited Kingdom
- Max Planck Bristol Centre for Minimal BiologyUniversity of BristolBristolUnited Kingdom
| |
Collapse
|
29
|
Lutz H, Popowski KD, Dinh PUC, Cheng K. Advanced Nanobiomedical Approaches to Combat Coronavirus Disease of 2019. ADVANCED NANOBIOMED RESEARCH 2021; 1:2000063. [PMID: 33681865 PMCID: PMC7917381 DOI: 10.1002/anbr.202000063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
New infectious diseases are making themselves known as the human population grows, expands into new regions, and becomes more dense, increasing contact with each other and animal populations. Ease of travel has also increased infectious disease transmission and has now culminated into a global pandemic. The emergence of the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019 has already infected over 83.7 million people and caused over 1.8 million deaths. While there have been vaccine candidates produced and supportive care implemented, the world is impatiently waiting for a commercially approved vaccine and treatment for the coronavirus disease of 2019 (COVID-19). The different vaccine types investigated for the prevention of COVID-19 all have great promise but face safety obstacles that must be first addressed. Some vaccine candidates of key interest are whole inactivated viruses, adeno-associated viruses, virus-like particles, and lipid nanoparticles. This review examines nanobiomedical techniques for combatting COVID-19 in terms of vaccines and therapeutics.
Collapse
Affiliation(s)
- Halle Lutz
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNC27607USA
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNC27607USA
| | - Kristen D. Popowski
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNC27607USA
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNC27607USA
| | - Phuong-Uyen C. Dinh
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNC27607USA
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNC27607USA
| | - Ke Cheng
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNC27607USA
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNC27607USA
- Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel Hill/North Carolina State UniversityRaleigh/Chapel HillNC27607/27599USA
- Division of Pharmacoengineering and Molecular PharmaceuticsUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| |
Collapse
|
30
|
Nooraei S, Bahrulolum H, Hoseini ZS, Katalani C, Hajizade A, Easton AJ, Ahmadian G. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J Nanobiotechnology 2021; 19:59. [PMID: 33632278 PMCID: PMC7905985 DOI: 10.1186/s12951-021-00806-7] [Citation(s) in RCA: 417] [Impact Index Per Article: 104.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
Virus-like particles (VLPs) are virus-derived structures made up of one or more different molecules with the ability to self-assemble, mimicking the form and size of a virus particle but lacking the genetic material so they are not capable of infecting the host cell. Expression and self-assembly of the viral structural proteins can take place in various living or cell-free expression systems after which the viral structures can be assembled and reconstructed. VLPs are gaining in popularity in the field of preventive medicine and to date, a wide range of VLP-based candidate vaccines have been developed for immunization against various infectious agents, the latest of which is the vaccine against SARS-CoV-2, the efficacy of which is being evaluated. VLPs are highly immunogenic and are able to elicit both the antibody- and cell-mediated immune responses by pathways different from those elicited by conventional inactivated viral vaccines. However, there are still many challenges to this surface display system that need to be addressed in the future. VLPs that are classified as subunit vaccines are subdivided into enveloped and non- enveloped subtypes both of which are discussed in this review article. VLPs have also recently received attention for their successful applications in targeted drug delivery and for use in gene therapy. The development of more effective and targeted forms of VLP by modification of the surface of the particles in such a way that they can be introduced into specific cells or tissues or increase their half-life in the host is likely to expand their use in the future. Recent advances in the production and fabrication of VLPs including the exploration of different types of expression systems for their development, as well as their applications as vaccines in the prevention of infectious diseases and cancers resulting from their interaction with, and mechanism of activation of, the humoral and cellular immune systems are discussed in this review.
Collapse
Affiliation(s)
- Saghi Nooraei
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran
| | - Howra Bahrulolum
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran
| | - Zakieh Sadat Hoseini
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran
| | - Camellia Katalani
- Sari Agriculture Science and Natural Resource University (SANRU), Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari, Iran
| | - Abbas Hajizade
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Andrew J Easton
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, UK.
| | - Gholamreza Ahmadian
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran.
| |
Collapse
|
31
|
Hwang BJ, Jang Y, Kwon SB, Yu JE, Lim J, Roh YH, Seong BL. RNA-assisted self-assembly of monomeric antigens into virus-like particles as a recombinant vaccine platform. Biomaterials 2021; 269:120650. [PMID: 33465537 DOI: 10.1016/j.biomaterials.2021.120650] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/15/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022]
Abstract
Representing highly ordered repetitive structures of antigen macromolecular assemblies, virus-like particles (VLPs) serve as a high-priority vaccine platform against emerging viral infections, as alternatives to traditional cell culture-based vaccines. RNAs can function as chaperones (Chaperna) and are extremely effective in promoting protein folding. Beyond their canonical function as translational adaptors, tRNAs may moonlight as chaperones for the kinetic control of macromolecular antigen assembly. Capitalizing on genomic RNA co-assembly in infectious virions, we present the first report of a biomimetic assembly of viral capsids that was assisted by non-viral host RNAs into genome-free, non-infectious empty particles. Here, we demonstrate the assembly of bacterially-produced soluble norovirus VP1 forming VLPs (n = 180) in vitro. A tRNA-interacting domain (tRID) was genetically fused with the VP1 capsid protein, as a tRNA docking tag, in the bacterial host to transduce chaperna function for de novo viral antigen folding. tRID/tRNA removal prompted the in vitro assembly of monomeric antigens into highly ordered repetitive structures that elicited robust protective immune responses after immunization. The chaperna-based assembly of monomeric antigens will impact the development and deployment of VLP vaccines for emerging and re-emerging viral infections.
Collapse
Affiliation(s)
- Beom Jeung Hwang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Vaccine Innovative Technology Alliance-Korea, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yohan Jang
- Department of Biological Sciences and Biotechnology Major in Bio-Vaccine Engineering, Andong National University, Andong, South Korea
| | - Soon Bin Kwon
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji Eun Yu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jongkwan Lim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Young Hoon Roh
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Baik L Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Vaccine Innovative Technology Alliance-Korea, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
32
|
Nano-based approaches in the development of antiviral agents and vaccines. Life Sci 2020; 265:118761. [PMID: 33189824 PMCID: PMC7658595 DOI: 10.1016/j.lfs.2020.118761] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022]
Abstract
Outbreaks and the rapid transmission of viruses, such as coronaviruses and influenza viruses, are serious threats to human health. A major challenge in combating infectious diseases caused by viruses is the lack of effective methods for prevention and treatment. Nanotechnology has provided a basis for the development of novel antiviral strategies. Owing to their large modifiable surfaces that can be functionalized with multiple molecules to realize sophisticated designs, nanomaterials have been developed as nanodrugs, nanocarriers, and nano-based vaccines to effectively induce sufficient immunologic memory. From this perspective, we introduce various nanomaterials with diverse antiviral mechanisms and summarize how nano-based antiviral agents protect against viral infection at the molecular, cellular, and organismal levels. We summarize the applications of nanomaterials for defense against emerging viruses by trapping and inactivating viruses and inhibiting viral entry and replication. We also discuss recent progress in nano-based vaccines with a focus on the mechanisms by which nanomaterials contribute to immunogenicity. We further describe how nanotechnology may improve vaccine efficacy by delivering large amounts of antigens to target immune cells and enhancing the immune response by mimicking viral structures and activating dendritic cells. Finally, we provide an overview of future prospects for nano-based antiviral agents and vaccines.
Collapse
|
33
|
Current State and Challenges in Developing Respiratory Syncytial Virus Vaccines. Vaccines (Basel) 2020; 8:vaccines8040672. [PMID: 33187337 PMCID: PMC7711987 DOI: 10.3390/vaccines8040672] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/01/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the main cause of acute respiratory tract infections in infants and it also induces significant disease in the elderly. The clinical course may be severe, especially in high-risk populations (infants and elderly), with a large number of deaths in developing countries and of intensive care hospitalizations worldwide. To date, prevention strategies against RSV infection is based on hygienic measures and passive immunization with humanized monoclonal antibodies, limited to selected high-risk children due to their high costs. The development of a safe and effective vaccine is a global health need and an important objective of research in this field. A growing number of RSV vaccine candidates in different formats (particle-based vaccines, vector-based vaccines, subunit vaccines and live-attenuated vaccines) are being developed and are now at different stages, many of them already being in the clinical stage. While waiting for commercially available safe and effective vaccines, immune prophylaxis in selected groups of high-risk populations is still mandatory. This review summarizes the state-of-the-art of the RSV vaccine research and its implications for clinical practice, focusing on the characteristics of the vaccines that reached the clinical stage of development.
Collapse
|
34
|
Zhang N, Li C, Jiang S, Du L. Recent Advances in the Development of Virus-Like Particle-Based Flavivirus Vaccines. Vaccines (Basel) 2020; 8:vaccines8030481. [PMID: 32867194 PMCID: PMC7565697 DOI: 10.3390/vaccines8030481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 01/07/2023] Open
Abstract
Flaviviruses include several medically important viruses, such as Zika virus (ZIKV), Dengue virus (DENV), West Nile virus (WNV) and Japanese encephalitis virus (JEV). They have expanded in geographic distribution and refocused international attention in recent years. Vaccination is one of the most effective public health strategies for combating flavivirus infections. In this review, we summarized virus-like particle (VLP)-based vaccines against the above four mentioned flaviviruses. Potential strategies to improve the efficacy of VLP-based flavivirus vaccines were also illustrated. The applications of flavivirus VLPs as tools for viral detection and antiviral drug screening were finally proposed.
Collapse
Affiliation(s)
- Naru Zhang
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China; (N.Z.); (C.L.)
| | - Chaoqun Li
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China; (N.Z.); (C.L.)
| | - Shibo Jiang
- School of Basic Medical Sciences, Fudan University, Shanghai 200433, China
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
- Correspondence: (S.J.); (L.D.)
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
- Correspondence: (S.J.); (L.D.)
| |
Collapse
|
35
|
Moleirinho MG, Fernandes RP, Carvalho SB, Bezemer S, Detmers F, Hermans P, Silva RJ, Alves PM, Carrondo MJ, Peixoto C. Baculovirus affinity removal in viral-based bioprocesses. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Tsoras AN, Champion JA. Protein and Peptide Biomaterials for Engineered Subunit Vaccines and Immunotherapeutic Applications. Annu Rev Chem Biomol Eng 2020; 10:337-359. [PMID: 31173518 DOI: 10.1146/annurev-chembioeng-060718-030347] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although vaccines have been the primary defense against widespread infectious disease for decades, there is a critical need for improvement to combat complex and variable diseases. More control and specificity over the immune response can be achieved by using only subunit components in vaccines. However, these often lack sufficient immunogenicity to fully protect, and conjugation or carrier materials are required. A variety of protein and peptide biomaterials have improved effectiveness and delivery of subunit vaccines for infectious, cancer, and autoimmune diseases. They are biodegradable and have control over both material structure and immune function. Many of these materials are built from naturally occurring self-assembling proteins, which have been engineered for incorporation of vaccine components. In contrast, others are de novo designs of structures with immune function. In this review, protein biomaterial design, engineering, and immune functionality as vaccines or immunotherapies are discussed.
Collapse
Affiliation(s)
- Alexandra N Tsoras
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-2000, USA;
| | - Julie A Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-2000, USA;
| |
Collapse
|
37
|
Kim MJ, Lee SH, Kang HJ, Chu KB, Park H, Jin H, Moon EK, Kim SS, Quan FS. Virus-like particle vaccine displaying Toxoplasma gondii apical membrane antigen 1 induces protection against T. gondii ME49 infection in mice. Microb Pathog 2020; 142:104090. [PMID: 32097746 DOI: 10.1016/j.micpath.2020.104090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 01/13/2023]
Abstract
Toxoplasmosis is an intracellular parasitic disease caused by the protozoa Toxoplasma gondii, which affects about half of the world's population. In spite of the strenuous endeavors, a T. gondii vaccine for clinical use remains unreported to date. In the present study, we generated virus-like particles (VLPs) containing T. gondii apical membrane antigen 1 (AMA1) and assessed its efficacy in a murine model. VLPs were characterized using western blot and TEM. T. gondii-specific IgG and IgA antibody responses in sera, germinal center B cell responses in spleen, brain cyst counts and their sizes were determined. Elevated T. gondii-specific IgG and IgA antibody responses were observed from the sera of AMA1 VLP-immunized mice. Immunization with AMA1 VLPs enhanced T. gondii-specific antibody-secreting cell responses and germinal center B cell responses upon antigen stimulation. Brain tissue analysis revealed that AMA1 VLP-immunization reduced cyst formation and its size compared to control. Also, VLP-immunized mice were less susceptible to body weight loss and displayed enhanced survival rate compared to the control group. Our results demonstrated that the immune response induced by T. gondii AMA1 VLPs confer partial protection against T. gondii infection and provides important insight into potential T. gondii vaccine design strategy.
Collapse
Affiliation(s)
- Min-Ju Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Su-Hwa Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hae-Ji Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ki-Back Chu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyunwoo Park
- Health Park Co., Ltd, Seoul, 06627, Republic of Korea
| | - Hui Jin
- Health Park Co., Ltd, Seoul, 06627, Republic of Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, Kyung Hee University School of Medicine, Seoul, 02447, Republic of Korea; Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, 02447, Republic of Korea; Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
38
|
A Flow-Through Chromatographic Strategy for Hepatitis C Virus-Like Particles Purification. Processes (Basel) 2020. [DOI: 10.3390/pr8010085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Biopharmaceuticals are currently becoming one of the fastest growing segments of the global pharmaceutical industry, being used in practically all branches of medicine from disease treatment to prevention. Virus-like particles (VLP) hold tremendous potential as a vaccine candidate due to their anticipated immunogenicity and safety profile when compared to inactivated or live attenuated viral vaccines. Nevertheless, there are several challenges yet to be solved in the development and manufacturing of these products, which ultimately can increase time to market. Suchlike virus-based products, the development of a platform approach is often hindered due to diversity and inherent variability of physicochemical properties of the product. In the present work, a flow-through chromatographic purification strategy for hepatitis C VLP expressed using the baculovirus-insect cell expression system was developed. The impact of operational parameters, such as residence time and ionic strength were studied using scaled-down models and their influence on the purification performance was described. The flow-through strategy herein reported made use of radial-flow chromatography columns packed with an anion exchanger and was compared with a bind and elute approach using the same chromatography media. Overall, by selecting the optimal operational setpoints, we were able to achieve higher VLP recoveries in the flow-through process (66% versus 37%) with higher removal of DNA, baculovirus and host-cell protein (92%, 99% and 50% respectively).
Collapse
|
39
|
Garg H, Mehmetoglu-Gurbuz T, Ruddy GM, Joshi A. Capsid containing virus like particle vaccine against Zika virus made from a stable cell line. Vaccine 2019; 37:7123-7131. [PMID: 31607605 DOI: 10.1016/j.vaccine.2019.09.093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/16/2022]
Abstract
Zika virus infection during pregnancy is associated with severe birth defects including microcephaly in the new born. The lack of specific treatment calls for the development of a safe and effective vaccine for use in pregnant women. We recently tested the efficacy of a Virus Like Particle (VLP) vaccine for Zika virus in mice and found that Capsid-preMembrane-Env (CprME) VLPs generated a better neutralizing antibody response than preMembrane-Env (prME) VLPs. The superiority of CprME VLPs suggested that inclusion of capsid in the vaccine may enhance the immune response. However, production of CprME VLPs requires co-expression of NS2B-3 protease, which creates a major hurdle for generation of stable cell lines. To overcome this limitation, we generated a bicistronic vector that expresses CprME and NS2B-3 using an IRES sequence. This bicistronic expression cassette, in a lentiviral vector, was used to create a stable cell line that constitutively secretes CprME VLPs. The expression of NS2B-3, presence of capsid in the secreted VLPs, efficiency of VLP release, and stability of the cell line was extensively tested. Antigen sparing studies in mice using prME and CprME VLPs, both derived from stable cell lines, confirmed the superiority of CprME VLPs in generation of neutralizing antibody response. Capsid specific antibodies were detected in CprME VLP immunized mice providing mechanistic insights into the superiority of these VLPs. Challenge of CprME VLP immunized mice with Zika PRVABC59 showed complete protection against day 3 viremia further validating the efficacy of the vaccine. Our study is the first to generate a stable cell line secreting Zika CprME VLPs via natural NS2B-3 cleavage, demonstrate incorporation of capsid in CprME VLPs and complete protection in challenge studies. This is a major advancement for the Zika vaccine platform that is safe for use in pregnant women and readily scalable for use in developing countries.
Collapse
Affiliation(s)
- Himanshu Garg
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA.
| | - Tugba Mehmetoglu-Gurbuz
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Gregory M Ruddy
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Anjali Joshi
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA.
| |
Collapse
|
40
|
Govasli ML, Diaz Y, Puntervoll P. Virus-like particle-display of the enterotoxigenic Escherichia coli heat-stable toxoid STh-A14T elicits neutralizing antibodies in mice. Vaccine 2019; 37:6405-6414. [PMID: 31515145 DOI: 10.1016/j.vaccine.2019.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 10/26/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) causes diarrhoea by secreting enterotoxins into the small intestine. Human ETEC strains may secrete any combination of three enterotoxins: the heat-labile toxin (LT) and the heat-stable toxins (ST), of which there are two variants, called human ST (STh) and porcine ST (STp). Strains expressing STh, either alone or in combination with LT and/or STp, are among the four most important diarrhoea-causing pathogens affecting children in low- and middle-income countries. ST is therefore an attractive target for ETEC vaccine development. To produce a safe ST-based vaccine, several challenges must be solved. ST must be rendered immunogenic and non-toxic, and antibodies elicited by an ST vaccine should neutralize ST but not cross-react with the endogenous ligands uroguanylin and guanylin. Virus-like particles (VLPs) tend to be highly immunogenic and are increasingly being used as carriers for presenting heterologous antigens in new vaccines. In this study, we have coupled native STh and the STh-A14T toxoid to the coat protein of Acinetobacter phage AP205 by using the SpyCatcher system and immunized mice with these VLPs without the use of adjuvants. We found that both STs were efficiently coupled to the VLP, that both the STh and STh-A14T VLPs were immunogenic in mice, and that the resulting serum antibodies could completely neutralize the toxic activities of native STh. The serum antibodies showed a high degree of immunological cross-reaction to STp, while there was little or no unwanted cross-reaction to uroguanylin and guanylin. Moreover, compared to native STh, the STh-A14T mutation did not seem to negatively impact the immunogenicity of the construct or the neutralizing ability of the resulting sera. Taken together, these findings demonstrate that VLPs are suitable carriers for making STs immunogenic, and that the STh-A14T-coupled AP205 VLP represents a promising ETEC vaccine candidate.
Collapse
Affiliation(s)
- Morten L Govasli
- NORCE Norwegian Research Centre, Postboks 22 Nygårdstangen, 5838 Bergen, Norway
| | - Yuleima Diaz
- NORCE Norwegian Research Centre, Postboks 22 Nygårdstangen, 5838 Bergen, Norway
| | - Pål Puntervoll
- NORCE Norwegian Research Centre, Postboks 22 Nygårdstangen, 5838 Bergen, Norway; Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Postboks 7804, 5020 Bergen, Norway.
| |
Collapse
|
41
|
Sari-Ak D, Bahrami S, Laska MJ, Drncova P, Fitzgerald DJ, Schaffitzel C, Garzoni F, Berger I. High-Throughput Production of Influenza Virus-Like Particle (VLP) Array by Using VLP-factory ™, a MultiBac Baculoviral Genome Customized for Enveloped VLP Expression. Methods Mol Biol 2019; 2025:213-226. [PMID: 31267455 DOI: 10.1007/978-1-4939-9624-7_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Baculovirus-based expression of proteins in insect cell cultures has emerged as a powerful technology to produce complex protein biologics for many applications ranging from multiprotein complex structural biology to manufacturing of therapeutic proteins including virus-like particles (VLPs). VLPs are protein assemblies that mimic live viruses but typically do not contain any genetic material, and therefore are safe and attractive alternatives to life attenuated or inactivated viruses for vaccination purposes. MultiBac is an advanced baculovirus expression vector system (BEVS) which consists of an engineered viral genome that can be customized for tailored applications. Here we describe the creation of a MultiBac-based VLP-factory™, based on the M1 capsid protein from influenza, and its application to produce in a parallelized fashion an array of influenza-derived VLPs containing functional mutations in influenza hemagglutinin (HA) thought to modulate the immune response elicited by the VLP.
Collapse
Affiliation(s)
- Duygu Sari-Ak
- The European Molecular Biology Laboratory (EMBL), Grenoble Cedex 9, France
| | | | - Magdalena J Laska
- Department of Biomedicine, Bartholins Allé 6, University of Aarhus, Aarhus C, Denmark
| | - Petra Drncova
- The European Molecular Biology Laboratory (EMBL), Grenoble Cedex 9, France
| | | | - Christiane Schaffitzel
- School of Biochemistry and Bristol Synthetic Biology Centre BrisSynBio, University Walk, University of Bristol, Clifton, UK
| | | | - Imre Berger
- School of Biochemistry and Bristol Synthetic Biology Centre BrisSynBio, University Walk, University of Bristol, Clifton, UK.
| |
Collapse
|
42
|
Kim YS, Son A, Kim J, Kwon SB, Kim MH, Kim P, Kim J, Byun YH, Sung J, Lee J, Yu JE, Park C, Kim YS, Cho NH, Chang J, Seong BL. Chaperna-Mediated Assembly of Ferritin-Based Middle East Respiratory Syndrome-Coronavirus Nanoparticles. Front Immunol 2018; 9:1093. [PMID: 29868035 PMCID: PMC5966535 DOI: 10.3389/fimmu.2018.01093] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/01/2018] [Indexed: 12/14/2022] Open
Abstract
The folding of monomeric antigens and their subsequent assembly into higher ordered structures are crucial for robust and effective production of nanoparticle (NP) vaccines in a timely and reproducible manner. Despite significant advances in in silico design and structure-based assembly, most engineered NPs are refractory to soluble expression and fail to assemble as designed, presenting major challenges in the manufacturing process. The failure is due to a lack of understanding of the kinetic pathways and enabling technical platforms to ensure successful folding of the monomer antigens into regular assemblages. Capitalizing on a novel function of RNA as a molecular chaperone (chaperna: chaperone + RNA), we provide a robust protein-folding vehicle that may be implemented to NP assembly in bacterial hosts. The receptor-binding domain (RBD) of Middle East respiratory syndrome-coronavirus (MERS-CoV) was fused with the RNA-interaction domain (RID) and bacterioferritin, and expressed in Escherichia coli in a soluble form. Site-specific proteolytic removal of the RID prompted the assemblage of monomers into NPs, which was confirmed by electron microscopy and dynamic light scattering. The mutations that affected the RNA binding to RBD significantly increased the soluble aggregation into amorphous structures, reducing the overall yield of NPs of a defined size. This underscored the RNA-antigen interactions during NP assembly. The sera after mouse immunization effectively interfered with the binding of MERS-CoV RBD to the cellular receptor hDPP4. The results suggest that RNA-binding controls the overall kinetic network of the antigen folding pathway in favor of enhanced assemblage of NPs into highly regular and immunologically relevant conformations. The concentration of the ion Fe2+, salt, and fusion linker also contributed to the assembly in vitro, and the stability of the NPs. The kinetic "pace-keeping" role of chaperna in the super molecular assembly of antigen monomers holds promise for the development and delivery of NPs and virus-like particles as recombinant vaccines and for serological detection of viral infections.
Collapse
Affiliation(s)
- Young-Seok Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Ahyun Son
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jihoon Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Soon Bin Kwon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Myung Hee Kim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Paul Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Jieun Kim
- Life Science and Biotechnology, Underwood International College, Yonsei University, Seoul, South Korea
| | - Young Ho Byun
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jemin Sung
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Jinhee Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Ji Eun Yu
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Chan Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Yeon-Sook Kim
- Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Baik L Seong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| |
Collapse
|
43
|
Sulczewski FB, Liszbinski RB, Romão PRT, Rodrigues Junior LC. Nanoparticle vaccines against viral infections. Arch Virol 2018; 163:2313-2325. [PMID: 29728911 DOI: 10.1007/s00705-018-3856-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/13/2018] [Indexed: 02/07/2023]
Abstract
Despite numerous efforts, we still do not have prophylactic vaccines for many clinically relevant viruses, such as HIV, hepatitis C virus, Zika virus, and respiratory syncytial virus. Several factors have contributed to the current lack of effective vaccines, including the high rate of viral mutation, low immunogenicity of recombinant viral antigens, instability of viral antigenic proteins administered in vivo, sophisticated mechanisms of viral immune evasion, and inefficient induction of mucosal immunity by vaccine models studied to date. Some of these obstacles could be partially overcome by the use of vaccine adjuvants. Nanoparticles have been intensively investigated as vaccine adjuvants because they possess chemical and structural properties that improve immunogenicity. The use of nanotechnology in the construction of immunization systems has developed into the field of viral nanovaccinology. The purpose of this paper is to review and correlate recent discoveries concerning nanoparticles and specific properties that contribute to the immunogenicity of viral nanoparticle vaccines, bio-nano interaction, design of nanoparticle vaccines for clinically relevant viruses, and future prospects for viral nanoparticle vaccination.
Collapse
Affiliation(s)
- Fernando B Sulczewski
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Av. Sarmento Leite, 245, Porto Alegre, RS, 90050-170, Brazil
| | - Raquel B Liszbinski
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Av. Sarmento Leite, 245, Porto Alegre, RS, 90050-170, Brazil
| | - Pedro R T Romão
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Av. Sarmento Leite, 245, Porto Alegre, RS, 90050-170, Brazil
| | - Luiz Carlos Rodrigues Junior
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Av. Sarmento Leite, 245, Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
44
|
Wang X, Dong K, Long M, Lin F, Gao Z, Wang L, Zhang Z, Chen X, Dai Y, Wang H, Zhang H. Induction of a high-titered antibody response using HIV gag-EV71 VP1-based virus-like particles with the capacity to protect newborn mice challenged with a lethal dose of enterovirus 71. Arch Virol 2018; 163:1851-1861. [PMID: 29582164 PMCID: PMC5999152 DOI: 10.1007/s00705-018-3797-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 02/24/2018] [Indexed: 11/26/2022]
Abstract
Enterovirus 71 (EV71) is the most frequently detected causative agent in hand, foot, and mouth disease (HFMD) and is a serious threat to public health in the Asia-Pacific region. Many EV71 vaccines are under development worldwide, and although both inactivated virus vaccines and virus-like particles (VLPs) are considered to be effective, the main focus has been on inactivated EV71vaccines. There have been very few studies on EV71 VLPs. In this study, using a strategy based on HIV gag VLPs, we constructed a gag-VP1 fusion gene to generate a recombinant baculovirus expressing the EV71 structural protein VP1 together with gag, which was then used to infect TN5 cells to form VLPs. The VLPs were characterized using transmission electron microscopy, electrophoresis and staining with Coomassie blue, and Western blotting. Mice immunized with gag-VP1 VLPs showed strong humoral and cellular immune responses. Finally, immunization of female mice with gag-VP1 VLPs provided effective protection of their newborn offspring against challenge with a lethal dose EV71. These results demonstrate a successful approach for producing EV71 VP1 VLPs based on the ability of HIV gag to self-assemble, thus providing a good foundation for producing high-titered anti-EV71 antibody by immunization with VLP-based gag EV71 VP1 protein.
Collapse
Affiliation(s)
- Xi Wang
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xinsi Road No 569, 710038, Xi'an, Shaanxi, China
| | - Ke Dong
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xinsi Road No 569, 710038, Xi'an, Shaanxi, China.
| | - Min Long
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xinsi Road No 569, 710038, Xi'an, Shaanxi, China
| | - Fang Lin
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xinsi Road No 569, 710038, Xi'an, Shaanxi, China
| | - Zhaowei Gao
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xinsi Road No 569, 710038, Xi'an, Shaanxi, China
| | - Lin Wang
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xinsi Road No 569, 710038, Xi'an, Shaanxi, China
| | - Zhe Zhang
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xinsi Road No 569, 710038, Xi'an, Shaanxi, China
| | - Xi Chen
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xinsi Road No 569, 710038, Xi'an, Shaanxi, China
| | - Ying Dai
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xinsi Road No 569, 710038, Xi'an, Shaanxi, China
| | - Huiping Wang
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xinsi Road No 569, 710038, Xi'an, Shaanxi, China
| | - Huizhong Zhang
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xinsi Road No 569, 710038, Xi'an, Shaanxi, China.
| |
Collapse
|
45
|
Incorporation of CD40 ligand enhances the immunogenicity of tumor‑associated calcium signal transducer 2 virus‑like particles against lung cancer. Int J Mol Med 2018; 41:3671-3679. [PMID: 29568866 DOI: 10.3892/ijmm.2018.3570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/05/2018] [Indexed: 11/05/2022] Open
Abstract
The cell surface glycoprotein Trop‑2 is overexpressed in various types of cancer, including in lung cancer, and has recently been used as an effective immunotherapeutic target. CD40 ligand (CD40L), a tumor necrosis factor superfamily member, is a promising immune adjuvant. Human immunodeficiency virus (HIV) gag‑based virus‑like particles (VLPs) are highly immunogenic, and foreign antigens can be incorporated onto their membrane envelope for cancer vaccine development. In the present study, a HIV gag‑based VLP strategy and Bac‑to‑Bac system were utilized to construct Trop‑2, CD40L and gag recombinant baculoviruses, which were then used to infect TN5 cells in order to form Trop‑2 VLPs or Trop‑2‑CD40L VLPs. These VLPs were characterized using transmission electron microscopy and western blot analysis methods. VLPs incorporating murine Trop‑2 only or incorporating Trop‑2 and CD40L were used to immunize C57BL/6 mice. Immunized mice demonstrated high humoral and cellular immunity responses, whereas the Trop‑2‑CD40L VLPs led to higher immune responses in comparison with Trop‑2 only VLPs. Immunization with Trop‑2‑CD40L VLPs also reduced tumor growth more effectively compared with Trop‑2 VLPs. Furthermore, Trop‑2‑CD40L VLP immunization increased the survival rate of Lewis tumor‑bearing mice more significantly when compared with Trop‑2 only VLPs. In conclusion, the present study provided a novel vaccine design by combination of a tumor antigen and an immune adjuvant based on a VLP strategy, which may be potentially applied as an alternative immunotherapeutic option in the treatment of lung cancer.
Collapse
|
46
|
Samoylova TI, Braden TD, Spencer JA, Bartol FF. Immunocontraception: Filamentous Bacteriophage as a Platform for Vaccine Development. Curr Med Chem 2017; 24:3907-3920. [PMID: 28901276 PMCID: PMC5738698 DOI: 10.2174/0929867324666170911160426] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/19/2017] [Accepted: 08/23/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Population control of domestic, wild, invasive, and captive animal species is a global issue of importance to public health, animal welfare and the economy. There is pressing need for effective, safe, and inexpensive contraceptive technologies to address this problem. Contraceptive vaccines, designed to stimulate the immune system in order to block critical reproductive events and suppress fertility, may provide a solution. Filamentous bacteriophages can be used as platforms for development of such vaccines. OBJECTIVE In this review authors highlight structural and immunogenic properties of filamentous phages, and discuss applications of phage-peptide vaccines for advancement of immunocontraception technology in animals. RESULTS Phages can be engineered to display fusion (non-phage) peptides as coat proteins. Such modifications can be accomplished via genetic manipulation of phage DNA, or by chemical conjugation of synthetic peptides to phage surface proteins. Phage fusions with antigenic determinants induce humoral as well as cell-mediated immune responses in animals, making them attractive as vaccines. Additional advantages of the phage platform include environmental stability, low cost, and safety for immunized animals and those administering the vaccines. CONCLUSION Filamentous phages are viable platforms for vaccine development that can be engineered with molecular and organismal specificity. Phage-based vaccines can be produced in abundance at low cost, are environmentally stable, and are immunogenic when administered via multiple routes. These features are essential for a contraceptive vaccine to be operationally practical in animal applications. Adaptability of the phage platform also makes it attractive for design of human immunocontraceptive agents.
Collapse
Affiliation(s)
- Tatiana I Samoylova
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.,Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Timothy D Braden
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Jennifer A Spencer
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Frank F Bartol
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.,Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
47
|
Lee YH, Jang YH, Byun YH, Cheong Y, Kim P, Lee YJ, Lee YJ, Sung JM, Son A, Lee HM, Lee J, Yang SW, Song JM, Seong BL. Green Tea Catechin-Inactivated Viral Vaccine Platform. Front Microbiol 2017; 8:2469. [PMID: 29312180 PMCID: PMC5732980 DOI: 10.3389/fmicb.2017.02469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/28/2017] [Indexed: 11/22/2022] Open
Abstract
Traditionally, chemical agents such as formalin (FA) and β-propiolactone (BPL) have long been used for the preparation of inactivated vaccines or toxoids. It has been shown that FA extensively modifies vaccine antigens and thus affects immunogenicity profiles, sometimes compromising the protective efficacy of the vaccines or even exacerbating the disease upon infection. In this study, we show that natural catechins from green tea extracts (GT) can be used as an inactivating agent to prepare inactivated viral vaccines. GT treatment resulted in complete and irreversible inactivation of influenza virus as well as dengue virus. In contrast to FA that reacted extensively with multiple amino acids including lysine, a major anchor residue for epitope binding to MHC molecules, GT catechin epigallocatechin-3-gallate (EGCG) crosslinked primarily with cysteine residues and thus preserved the major epitopes of the influenza hemagglutinin. In a mouse model, vaccination with GT-inactivated influenza virus (GTi virus) elicited higher levels of viral neutralizing antibodies than FA-inactivated virus (FAi virus). The vaccination completely protected the mice from a lethal challenge and restricted the challenge viral replication in the lungs. Of note, the quality of antibody responses of GTi virus was superior to that with FAi virus, in terms of the magnitude of antibody titer, cross-reactivity to hetero-subtypes of influenza viruses, and the avidity to viral antigens. As the first report of using non-toxic natural compounds for the preparation of inactivated viral vaccines, the present results could be translated into a clinically relevant vaccine platform with improved efficacy, safety, productivity, and public acceptance.
Collapse
Affiliation(s)
- Yun H Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yo H Jang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Young H Byun
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yucheol Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Paul Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Young J Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yoon J Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Je M Sung
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Ahyun Son
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Hye M Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jinhee Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Seung W Yang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jae-Min Song
- Department of Global Medical Science, Health and Wellness College, Sungshin Women's University, Seoul, South Korea
| | - Baik L Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| |
Collapse
|
48
|
Pelosse M, Crocker H, Gorda B, Lemaire P, Rauch J, Berger I. MultiBac: from protein complex structures to synthetic viral nanosystems. BMC Biol 2017; 15:99. [PMID: 29084535 PMCID: PMC5661938 DOI: 10.1186/s12915-017-0447-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The MultiBac baculovirus/insect cell expression vector system was conceived as a user-friendly, modular tool-kit for producing multiprotein complexes for structural biology applications. MultiBac has allowed the structure and function of many molecular machines to be elucidated, including previously inaccessible high-value drug targets. More recently, MultiBac developments have shifted to customized baculoviral genomes that are tailored for a range of applications, including synthesizing artificial proteins by genetic code expansion. We review some of these developments, including the ongoing rewiring of the MultiBac system for mammalian applications, notably CRISPR/Cas9-mediated gene editing.
Collapse
Affiliation(s)
- Martin Pelosse
- The School of Biochemistry and Bristol Synthetic Biology Centre BrisSynBio, University of Bristol, Tankard's Close, Bristol, BS8 1TD, UK
| | - Hannah Crocker
- The School of Biochemistry and Bristol Synthetic Biology Centre BrisSynBio, University of Bristol, Tankard's Close, Bristol, BS8 1TD, UK
| | - Barbara Gorda
- The School of Biochemistry and Bristol Synthetic Biology Centre BrisSynBio, University of Bristol, Tankard's Close, Bristol, BS8 1TD, UK
| | - Paul Lemaire
- Geneva Biotech SARL, Avenue de la Roseraie 64, 1205, Genève, Switzerland
| | - Jens Rauch
- Systems Biology Ireland, University College Dublin, Belfield Dublin 4, Republic of Ireland
| | - Imre Berger
- The School of Biochemistry and Bristol Synthetic Biology Centre BrisSynBio, University of Bristol, Tankard's Close, Bristol, BS8 1TD, UK.
| |
Collapse
|
49
|
Development of Virus-Like-Particle Vaccine and Reporter Assay for Zika Virus. J Virol 2017; 91:JVI.00834-17. [PMID: 28794019 DOI: 10.1128/jvi.00834-17] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022] Open
Abstract
Recent worldwide outbreaks of Zika virus (ZIKV) infection and the lack of an approved vaccine raise serious concerns regarding preparedness to combat this emerging virus. We used a virus-like particle (VLP)-based approach to develop a vaccine and a microneutralization assay for ZIKV. A synthetic capsid-premembrane-envelope (C-prM-E) gene construct of ZIKV was used to generate reporter virus particles (RVPs) that package a green fluorescent protein (GFP) reporter-expressing West Nile virus (WNV) replicon. The assay was adapted to a 96-well format, similar to the plaque reduction neutralization test (PRNT), and showed high reproducibility with specific detection of ZIKV neutralizing antibodies. Furthermore, C-prM-E and prM-E VLPs were tested as vaccine candidates in mice and compared to DNA vaccination. While the ZIKV prM-E construct alone was sufficient for generating VLPs, efficient VLP production from the C-prM-E construct could be achieved in the presence of the WNV NS2B-3 protease, which cleaves C from prM, allowing virus release. Immunization studies in mice showed that VLPs generated higher neutralizing antibody titers than those with the DNA vaccines, with C-prM-E VLPs giving slightly higher titers than those with prM-E VLPs. The superiority of C-prM-E VLPs suggests that inclusion of capsid may have benefits for ZIKV and other flaviviral VLP vaccines. To facilitate the VLP platform, we generated a stable cell line expressing high levels of ZIKV prM-E proteins that constitutively produce VLPs as well as a cell line expressing ZIKV C-prM-E proteins for RVP production. While several vaccine platforms have been proposed for ZIKV, this study describes a safe, effective, and economical VLP-based vaccine against ZIKV.IMPORTANCE To address the growing Zika virus epidemic, we undertook this study with two objectives: first, to develop a safe, effective, and economical vaccine for ZIKV, and second, to develop a rapid and versatile assay to detect the anti-ZIKV immune response. We generated a cell line stably expressing ZIKV prM-E that produces large amounts of VLPs in the supernatant and a ZIKV C-prM-E cell line that produces reporter virus particles upon transfection with a GFP replicon plasmid. The prM-E VLPs induced a strong neutralizing antibody response in mice that was better when the capsid was included. VLP-based vaccines showed significantly better neutralizing antibody responses than those with their DNA counterparts. The RVP-based microneutralization assay worked similarly to the PRNT assay, with a rapid GFP readout in a 96-well format. Our VLP-based platform provides a source for a ZIKV vaccine and diagnosis that can rapidly be adapted to current outbreaks.
Collapse
|
50
|
Cimica V, Galarza JM. Adjuvant formulations for virus-like particle (VLP) based vaccines. Clin Immunol 2017; 183:99-108. [PMID: 28780375 DOI: 10.1016/j.clim.2017.08.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/11/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022]
Abstract
The development of virus-like particle (VLP) technology has had an enormous impact on modern vaccinology. In order to optimize the efficacy and safety of VLP-based vaccines, adjuvants are included in most vaccine formulations. To date, most licensed VLP-based vaccines utilize the classic aluminum adjuvant compositions. Certain challenging pathogens and weak immune responder subjects may require further optimization of the adjuvant formulation to maximize the magnitude and duration of the protective immunity. Indeed, novel classes of adjuvants such as liposomes, agonists of pathogen recognition receptors, polymeric particles, emulsions, cytokines and bacterial toxins, can be used to further improve the immunostimulatory activity of a VLP-based vaccine. This review describes the current advances in adjuvant technology for VLP-based vaccines directed at viral diseases, and discusses the basic principles for designing adjuvant formulations for enhancing the vaccine immunogenicity.
Collapse
Affiliation(s)
- Velasco Cimica
- TechnoVax, Inc., 765 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Jose M Galarza
- TechnoVax, Inc., 765 Old Saw Mill River Road, Tarrytown, NY 10591, United States.
| |
Collapse
|