1
|
Xu L, Yang B, Zhang J, Liu S, Zhang Q, Ran L, Li B. Targeting ALPPL2 with a novel CD89 bispecific antibody reprograms macrophages to enhance anti-tumor immunity. Biochem Biophys Res Commun 2025; 762:151761. [PMID: 40209501 DOI: 10.1016/j.bbrc.2025.151761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025]
Abstract
Immunotherapy holds promise for cancer treatment, but its efficacy in solid tumors is often limited by the immunosuppressive tumor microenvironment (TME). Macrophages, abundant within the TME, can be reprogrammed to elicit anti-tumor immunity. We developed a novel bispecific antibody, ALPPL2-CD89, to specifically target and activate macrophages within the tumor. The ALPPL2-CD89 bispecific antibody demonstrated high binding affinity to both targets and significantly enhanced macrophage-mediated phagocytosis of tumor cells. In vivo studies using human CD89 transgenic mice bearing ALPPL2-expressing tumors showed significant tumor growth inhibition. Analysis of the tumor microenvironment revealed that ALPPL2-CD89 treatment increased CD3+ and CD8+ T cell infiltration, and shifted tumor-associated macrophages toward a pro-inflammatory M1 phenotype. Our findings establish ALPPL2-CD89 as a promising therapeutic candidate that effectively reprograms the myeloid compartment to drive potent anti-tumor immunity against ALPPL2-positive malignancies.
Collapse
Affiliation(s)
- Lijun Xu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Bowen Yang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Junhan Zhang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Shujian Liu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Qi Zhang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Longchao Ran
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Bingyu Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China; The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China.
| |
Collapse
|
2
|
Guo RQ, Li YM, Bie ZX, Peng JZ, Li XG. Microwave ablation of non-small cell lung cancer enhances local T-cell abundance and alters monocyte interactions. BMC Cancer 2025; 25:605. [PMID: 40181307 PMCID: PMC11966799 DOI: 10.1186/s12885-025-14002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 03/24/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Minimally invasive thermal therapies show great prospect in non-small cell lung cancer (NSCLC) treatment. However, changes in immune cell populations following microwave ablation (MWA) in NSCLC microenvironment are not fully revealed. OBJECTIVE The present study was conducted to identify changes in immune cell populations and analyse dysregulated genes in immune cells after MWA in NSCLC microenvironment. METHODS The patients received fractionated MWA in two treatments separated by 3 weeks. Tumor biopsy samples were obtained through core-needle biopsy before each fractionated MWA procedure at the same site and used for single-cell RNA sequencing with the 10x Genomics pipeline. RESULTS A total of 9 major cell types were identified after MWA, which include neutrophils, T cells, B cells, monocytes, epithelial cells, chondrocytes, macrophages, tissue stem cells, and endothelial cells. After MWA, the tumor tissue exhibited an increased proportion of T cells. MWA altered gene expression in each cell cluster at the single-cell level. Cell trajectory analysis revealed that the cells at the starting point were most like T helper cells, naïve T cells, and regulatory T cells; they then developed into anergic T cells, T follicular cells, natural killer T cells, T memory cells, and exhausted T cells, and finally ended as γδ T cells and cytotoxic T cells. Moreover, after MWA, more interaction between monocytes and T cells (or B cells) were identified. CONCLUSIONS MWA increases local T-cell abundance and alters monocyte interactions, thereby reshaping the tumor microenvironment. This study lays a foundation for investigating dysregulated genes that may contribute to the MWA-induced immune response in NSCLC. WHAT IS ALREADY KNOWN ON THIS TOPIC Thermal ablation may change the immune profiles of patients by activating various steps in the cancer immunity cycle. However, changes in immune cell populations following MWA of NSCLC have not been fully reported. WHAT THIS STUDY ADDS After MWA, an increase in interactions between monocytes and T cells intratumorally was observed, which promoted antitumor immunity. HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR POLICY The current study illuminates the MWA-caused systemic immune response in NSCLC, which may help to identify the dysregulated genes involved in the MWA-caused immune response.
Collapse
Affiliation(s)
- Run-Qi Guo
- Minimally Invasive Tumor Therapies Centre Beijing Hospital, Institute of Geriatric Medicine, National Centre of Gerontology, Chinese Academy of Medical Sciences, No.1 Dongdan Dahua Street, Beijing, 100370, P.R. China.
| | - Yuan-Ming Li
- Minimally Invasive Tumor Therapies Centre Beijing Hospital, Institute of Geriatric Medicine, National Centre of Gerontology, Chinese Academy of Medical Sciences, No.1 Dongdan Dahua Street, Beijing, 100370, P.R. China
| | - Zhi-Xin Bie
- Minimally Invasive Tumor Therapies Centre Beijing Hospital, Institute of Geriatric Medicine, National Centre of Gerontology, Chinese Academy of Medical Sciences, No.1 Dongdan Dahua Street, Beijing, 100370, P.R. China
| | - Jin-Zhao Peng
- Minimally Invasive Tumor Therapies Centre Beijing Hospital, Institute of Geriatric Medicine, National Centre of Gerontology, Chinese Academy of Medical Sciences, No.1 Dongdan Dahua Street, Beijing, 100370, P.R. China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Xiao-Guang Li
- Minimally Invasive Tumor Therapies Centre Beijing Hospital, Institute of Geriatric Medicine, National Centre of Gerontology, Chinese Academy of Medical Sciences, No.1 Dongdan Dahua Street, Beijing, 100370, P.R. China.
| |
Collapse
|
3
|
Zhou H, Wang W, Liang R, Zhu R, Cao J, Sun C, Sun Y. The Prognostic Significance of TRs in Hepatocellular Carcinoma: Insights from TCGA and GEO Databases. Biomark Insights 2025; 20:11772719251315321. [PMID: 39866810 PMCID: PMC11765354 DOI: 10.1177/11772719251315321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND Reduced expression of thyroid hormone receptors (TRs) has been observed in various human malignancies, though its predictive value in hepatocellular carcinoma (HCC) remains uncertain. OBJECTIVE To explore the predictive value of TRs in patients with hepatocellular carcinoma. DESIGN The design was bioinformatic analysis combined with experimental study. METHODS This study utilized Kaplan-Meier analysis of TR expression profiles from The Cancer Genome Atlas (TCGA). Expression levels of TRs in HCC and immune single cells were assessed using datasets from the Gene Expression Omnibus (GEO) and TCGA, analyzed with R software. Cox and logistic regression analyses were also conducted. Functional assays, including wound healing, CCK-8, and Transwell migration assays, were employed to investigate the role of the THRB gene. RESULTS Kaplan-Meier analysis revealed that low THRB expression was significantly associated with reduced overall survival (OS), 5-year OS and disease-specific survival (DSS) in HCC patients (P < 0.05), while no significant association was found with THRA expression. Both Cox regression and logistic regression identified low THRB expression as an independent risk factor for HCC. THRB expression was significantly downregulated in tumor tissues compared to non-tumorous tissues in 3 GEO datasets and the TCGA profile. Functional assays confirmed that THRB inhibited HCC cell proliferation and migration. Additionally, single-cell RNA sequencing revealed that THRB was primarily expressed in CD16+ monocytes within tumor tissues and was associated with a poor OS rate. CONCLUSION Reduced THRB expression, but not THRA, was correlated with decreased OS in HCC patients.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, Henan Province, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, China
| | - Weijie Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, Henan Province, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, China
| | - Ruopeng Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, Henan Province, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, China
| | - Rongtao Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, Henan Province, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, China
| | - Jiahui Cao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, Henan Province, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, China
| | - Chenguang Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, Henan Province, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, China
| | - Yuling Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, Henan Province, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, China
| |
Collapse
|
4
|
Wang CA, Hou YC, Hong YK, Tai YJ, Shen C, Hou PC, Fu JL, Wu CL, Cheng SM, Hwang DY, Su YY, Shan YS, Tsai SJ. Intercellular TIMP-1-CD63 signaling directs the evolution of immune escape and metastasis in KRAS-mutated pancreatic cancer cells. Mol Cancer 2025; 24:25. [PMID: 39825392 PMCID: PMC11742192 DOI: 10.1186/s12943-024-02207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/24/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND AND AIMS Oncogenic KRAS mutations are present in approximately 90% of pancreatic ductal adenocarcinoma (PDAC). However, Kras mutation alone is insufficient to transform precancerous cells into metastatic PDAC. This study investigates how KRAS-mutated epithelial cells acquire the capacity to escape senescence or even immune clearance, thereby progressing to advanced PDAC. METHODS Single-cell RNA sequencing and analysis of primary PDAC tumors were conducted. Genetically engineered pancreas-specific Kras-mutated, dual specificity phosphatase-2 (Dusp2) knockout mouse models were established. Human and mouse primary pancreatic cancer cell lines were used for in vitro assessment of cancer characteristics. Tumor progression was studied via pancreas orthotopic and portal vein injection in the immune-competent mice. Clinical relevance was validated by digital spatial transcriptomic analysis of PDAC tumors. RESULTS Kras mutation induces the formation of pancreatic intraepithelial neoplasia (PanIN), these lesions also exhibit significant apoptotic signals. Single-cell RNA sequencing identified a subset of ERKactiveDUSP2low cells continuing to expand from early to advanced stage PDAC. In vitro and in vivo studies reveal that early infiltrating macrophage-derived tissue inhibitor of metallopeptidase 1 (TIMP-1) is the key factor in maintaining the ERKactiveDUSP2low cell population in a CD63-dependent manner. The ERKactiveDUSP2low cancer cells further exacerbate macrophage-mediated cancer malignancy, including loss of epithelial trait, increased lymphangiogenesis, and immune escape. Digital spatial profiling analysis of PDAC samples demonstrates the colocalization of TIMP-1high macrophages and CD63high cancer cells. The presence of TIMP-1high macrophages and CD63high epithelial cells correlates with poor prognosis in PDAC. CONCLUSIONS Our study reveals the vicious cycle between early infiltrating macrophages and pancreatic cancer cells, providing a mechanistic insight into the dynamic regulation directing pancreatic cancer progression.
Collapse
Affiliation(s)
- Chu-An Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Chin Hou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Kai Hong
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yu-Jing Tai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chieh Shen
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Chi Hou
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Jhao-Lin Fu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Lin Wu
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Siao Muk Cheng
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Daw-Yang Hwang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Yung-Yeh Su
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Center for Cancer Research,, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Shaw-Jenq Tsai
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Biomedical Sciences, National Chung Cheng University, No.168, Sect. 1, University Rd., Minhsiung, Chiayi, 621301, Taiwan.
| |
Collapse
|
5
|
Zhang Z, Sehgal K, Shirai K, Butler RA, Wiencke JK, Koestler DC, Ramush G, Lee MK, Molinaro AM, Stolrow HG, Birnbaum A, Salas LA, Haddad RI, Kelsey KT, Christensen BC. Methylation cytometric pretreatment blood immune profiles with tumor mutation burden as prognostic indicators for survival outcomes in head and neck cancer patients on anti-PD-1 therapy. NPJ Precis Oncol 2024; 8:267. [PMID: 39558036 PMCID: PMC11573993 DOI: 10.1038/s41698-024-00759-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Abstract
Tissue biomarkers for immune checkpoint inhibitor (ICI) response are limited by tumor sample heterogeneity and availability. This study identifies clinically actionable pretreatment blood biomarkers that are associated with ICI treatment response and survival in recurrent/metastatic head and neck squamous cell carcinoma. A prospective multi-center study enrolled 100 patients before standard-of-care immunotherapy. Blood immune profiles, measured by methylation cytometry, were assessed alongside tumor mutational burden (TMB) and PD-L1 combined proportion score (CPS). TMB and PD-L1 CPS were available for 56 and 91 patients, respectively. High neutrophils, monocytes, and neutrophil-to-lymphocyte ratio were associated with worse survival, while high CD4T cells, especially naïve CD4T cells, and lymphocyte-to-monocyte ratio were associated with better survival. Significant interactions between TMB and peripheral immune profiles for both progression-free and overall survival were found. Clinically relevant pretreatment peripheral immune biomarkers were identified, demonstrating the potential of DNA-based immune profiling to predict ICI response before treatment.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA.
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| | - Kartik Sehgal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Keisuke Shirai
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Rondi A Butler
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - John K Wiencke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Devin C Koestler
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Geat Ramush
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Min Kyung Lee
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Hannah G Stolrow
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Ariel Birnbaum
- Department of Medicine, Rhode Island Hospital, Providence, RI, USA
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Robert I Haddad
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Karl T Kelsey
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| |
Collapse
|
6
|
Fabian KP, Santiago-Sanchez G, Padget MR, Lassoued W, Allen CT, Battula S, Kaufman H, Hodge JW. Alum-anchored IL-12 combined with cytotoxic chemotherapy and immune checkpoint blockade enhanced antitumor immune responses in head and neck cancer models. J Immunother Cancer 2024; 12:e009712. [PMID: 39448201 PMCID: PMC11499830 DOI: 10.1136/jitc-2024-009712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND First-line treatment with pembrolizumab plus chemotherapy in recurrent and metastatic head and neck squamous cell carcinomas (HNSCC) has improved survival. However, the overall response rate with this standard of care regimen (SOC) remains limited. Interleukin (IL)-12 is a potent cytokine that facilitates the crosstalk between innate and adaptive immunity, making it crucial in the antitumor response. Alum-anchored murine IL-12 (mANK-101) has been demonstrated to elicit robust antitumor responses in diverse syngeneic models, which were correlated with increased immune effector functions and prolonged local retention of IL-12. This study investigates the therapeutic benefit of combining mANK-101 with SOC in the MOC1 and MOC2 murine HNSCC tumor models. METHODS MOC1 and MOC2 tumor-bearing C57BL/6 mice were administered with a single intratumoral injection of mANK-101 and weekly intraperitoneal injections of cisplatin and α-programmed death 1 (PD-1) for 3 weeks. For MOC1, flow cytometry and cytokine array were performed to assess the immune effector functions associated with the combinational treatment. Multiplex immunofluorescence was employed to characterize the influence of the treatment on the immune architecture in the tumors. RNA analysis was implemented for in-depth examination of the macrophage and effector populations. RESULTS In the MOC1 and MOC2 models, combination therapy with mANK-101, cisplatin, and α-PD-1 resulted in superior tumor growth inhibition and resulted in the highest rate of tumor-free survival when compared with treatment cohorts that received mANK-101 monotherapy or SOC treatment with α-PD-1 plus cisplatin. Furthermore, the combination therapy protected against tumor re-growth on rechallenge and controlled the growth of distal tumors. The improved therapeutic effect was associated with increased CD8+ T-cell recruitment, increased CD8+ and CD4+ activity, and repolarization of the macrophage population from M2 to M1 at the tumor site. Elevated and prolonged interferon-γ expression is central to the antitumor activity mediated by the combination therapy. In addition, the combination therapy with mANK-101+cisplatin+α-PD-1 induced the formation of tertiary lymphoid structure-like immune aggregates in the peritumoral space. CONCLUSION The current findings provide a rationale for the combination of alum-tethered IL-12 with cisplatin and α-PD-1 for HNSCC.
Collapse
Affiliation(s)
- Kellsye P Fabian
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ginette Santiago-Sanchez
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michelle R Padget
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Wiem Lassoued
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Clint Tanner Allen
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - James W Hodge
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Lee SW, Kim S, Kim B, Seong JB, Park YH, Lee HJ, Choi DK, Yeom E, Lee DS. IDH2 regulates macrophage polarization and tumorigenesis by modulating mitochondrial metabolism in macrophages. Mol Med 2024; 30:143. [PMID: 39256649 PMCID: PMC11385829 DOI: 10.1186/s10020-024-00911-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Targeting the tumor microenvironment represents an emerging therapeutic strategy for cancer. Macrophages are an essential part of the tumor microenvironment. Macrophage polarization is modulated by mitochondrial metabolism, including oxidative phosphorylation (OXPHOS), the tricarboxylic acid (TCA) cycle, and reactive oxygen species content. Isocitrate dehydrogenase 2 (IDH2), an enzyme involved in the TCA cycle, reportedly promotes cancer progression. However, the mechanisms through which IDH2 influences macrophage polarization and modulates tumor growth remain unknown. METHODS In this study, IDH2-deficient knockout (KO) mice and primary cultured bone marrow-derived macrophages (BMDMs) were used. Both in vivo subcutaneous tumor experiments and in vitro co-culture experiments were performed, and samples were collected for analysis. Western blotting, RNA quantitative analysis, immunohistochemistry, and flow cytometry were employed to confirm changes in mitochondrial function and the resulting polarization of macrophages exposed to the tumor microenvironment. To analyze the effect on tumor cells, subcutaneous tumor size was measured, and growth and metastasis markers were identified. RESULTS IDH2-deficient macrophages co-cultured with cancer cells were found to possess increased mitochondrial dysfunction and fission than wild-type BMDM. Additionally, the levels of M2-associated markers decreased, whereas M1-associated factor levels increased in IDH2-deficient macrophages. IDH2-deficient macrophages were predominantly M1. Tumor sizes in the IDH2-deficient mouse group were significantly smaller than in the wild-type mouse group. IDH2 deficiency in macrophages was associated with inhibited tumor growth and epithelial-mesenchymal transition. CONCLUSIONS Our findings suggest that IDH2 deficiency inhibits M2 macrophage polarization and suppresses tumorigenesis. This study underlines the potential contribution of IDH2 expression in macrophages and tumor microenvironment remodeling, which could be useful in clinical cancer research.
Collapse
Affiliation(s)
- Sung Woo Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
- School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Soyoon Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
- School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Bokyung Kim
- School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
- Illimis Therapeutics Inc., Seoul, 06376, Republic of Korea
| | - Jung Bae Seong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea
| | - Young-Ho Park
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Republic of Korea
| | - Hong Jun Lee
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
- Research Institute, huMetaCELL Inc., 220 Bugwang-ro, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Dong Kyu Choi
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
- School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Eunbyul Yeom
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
- School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
- School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
8
|
Pantazi D, Alivertis D, Tselepis AD. Underlying Mechanisms of Thrombosis Associated with Cancer and Anticancer Therapies. Curr Treat Options Oncol 2024; 25:897-913. [PMID: 38862694 DOI: 10.1007/s11864-024-01210-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 06/13/2024]
Abstract
Cancer-associated thrombosis (CAT) has been identified as the second most prevalent cause of death after cancer itself. Moreover, the risk of thrombotic events in cancer patients increases due to anticancer drugs, such as tyrosine kinase inhibitors (TKIs). Venous thromboembolism (VTE) as well as arterial thromboembolic (ATE) events are present in CAT. Although VTE occurs more frequently, ATE events are very significant and in some cases are more dangerous than VTE. Guidelines for preventing thrombosis refer mainly VTE as well as the contribution of ATE events. Several factors are involved in thrombosis related to cancer, but the whole pathomechanism of thrombosis is not clear and may differ between patients. The activation of the coagulation system and the interaction of cancer cells with other cells including platelets, endothelial cells, monocytes, and neutrophils are promoted by a hypercoagulable state caused by cancer. We present an update on the pathomechanisms of CAT and the effect of anticancer drugs, mainly targeted therapies with a focus on TKIs. Considering the risk of bleeding associated with anticoagulation in each cancer patient, the anticoagulation strategy may involve the use of FXIa inhibitors, direct oral anticoagulants, and low-molecular-weight heparin. Further research would be valuable in developing strategies for reducing CAT.
Collapse
Affiliation(s)
- Despoina Pantazi
- Laboratory of Biochemistry, Department of Chemistry/Atherothrombosis Research Centre, University of Ioannina, 451 10, Ioannina, Epirus, Greece.
| | - Dimitrios Alivertis
- Department of Biological Applications and Technology, University of Ioannina, 451 10, Ioannina, Epirus, Greece
| | - Alexandros D Tselepis
- Laboratory of Biochemistry, Department of Chemistry/Atherothrombosis Research Centre, University of Ioannina, 451 10, Ioannina, Epirus, Greece
| |
Collapse
|
9
|
Szukiewicz D. CX3CL1 (Fractalkine)-CX3CR1 Axis in Inflammation-Induced Angiogenesis and Tumorigenesis. Int J Mol Sci 2024; 25:4679. [PMID: 38731899 PMCID: PMC11083509 DOI: 10.3390/ijms25094679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The chemotactic cytokine fractalkine (FKN, chemokine CX3CL1) has unique properties resulting from the combination of chemoattractants and adhesion molecules. The soluble form (sFKN) has chemotactic properties and strongly attracts T cells and monocytes. The membrane-bound form (mFKN) facilitates diapedesis and is responsible for cell-to-cell adhesion, especially by promoting the strong adhesion of leukocytes (monocytes) to activated endothelial cells with the subsequent formation of an extracellular matrix and angiogenesis. FKN signaling occurs via CX3CR1, which is the only known member of the CX3C chemokine receptor subfamily. Signaling within the FKN-CX3CR1 axis plays an important role in many processes related to inflammation and the immune response, which often occur simultaneously and overlap. FKN is strongly upregulated by hypoxia and/or inflammation-induced inflammatory cytokine release, and it may act locally as a key angiogenic factor in the highly hypoxic tumor microenvironment. The importance of the FKN/CX3CR1 signaling pathway in tumorigenesis and cancer metastasis results from its influence on cell adhesion, apoptosis, and cell migration. This review presents the role of the FKN signaling pathway in the context of angiogenesis in inflammation and cancer. The mechanisms determining the pro- or anti-tumor effects are presented, which are the cause of the seemingly contradictory results that create confusion regarding the therapeutic goals.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
10
|
Chauhan SK, Dunn C, Andresen NK, Røssevold AH, Skorstad G, Sike A, Gilje B, Raj SX, Huse K, Naume B, Kyte JA. Peripheral immune cells in metastatic breast cancer patients display a systemic immunosuppressed signature consistent with chronic inflammation. NPJ Breast Cancer 2024; 10:30. [PMID: 38653982 DOI: 10.1038/s41523-024-00638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/13/2024] [Indexed: 04/25/2024] Open
Abstract
Immunotherapies blocking the PD-1/PD-L1 checkpoint show some efficacy in metastatic breast cancer (mBC) but are often hindered by immunosuppressive mechanisms. Understanding these mechanisms is crucial for personalized treatments, with peripheral blood monitoring representing a practical alternative to repeated biopsies. In the present study, we performed a comprehensive mass cytometry analysis of peripheral blood immune cells in 104 patients with HER2 negative mBC and 20 healthy donors (HD). We found that mBC patients had significantly elevated monocyte levels and reduced levels of CD4+ T cells and plasmacytoid dendritic cells, when compared to HD. Furthermore, mBC patients had more effector T cells and regulatory T cells, increased expression of immune checkpoints and other activation/exhaustion markers, and a shift to a Th2/Th17 phenotype. Furthermore, T-cell phenotypes identified by mass cytometry correlated with functionality as assessed by IFN-γ production. Additional analysis indicated that previous chemotherapy and CDK4/6 inhibition impacted the numbers and phenotype of immune cells. From 63 of the patients, fresh tumor samples were analyzed by flow cytometry. Paired PBMC-tumor analysis showed moderate correlations between peripheral CD4+ T and NK cells with their counterparts in tumors. Further, a CD4+ T cell cluster in PBMCs, that co-expressed multiple checkpoint receptors, was negatively associated with CD4+ T cell tumor infiltration. In conclusion, the identified systemic immune signatures indicate an immune-suppressed environment in mBC patients who had progressed/relapsed on standard treatments, and is consistent with ongoing chronic inflammation. These activated immuno-suppressive mechanisms may be investigated as therapeutic targets, and for use as biomarkers of response or treatment resistance.
Collapse
Affiliation(s)
- Sudhir Kumar Chauhan
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Claire Dunn
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Nikolai Kragøe Andresen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Clinical Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Andreas Hagen Røssevold
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Clinical Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gjertrud Skorstad
- Department of Clinical Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Adam Sike
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Bjørnar Gilje
- Department of Hematology and Oncology, Stavanger University Hospital, Stavanger, Norway
| | - Sunil Xavier Raj
- Department of Oncology, St Olav University Hospital, Trondheim, Norway
| | - Kanutte Huse
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Bjørn Naume
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Jon Amund Kyte
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- Department of Clinical Cancer Research, Oslo University Hospital, Oslo, Norway.
- Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway.
| |
Collapse
|
11
|
Lu F, Verleg SMNE, Groven RVM, Poeze M, van Griensven M, Blokhuis TJ. Is there a role for N1-N2 neutrophil phenotypes in bone regeneration? A systematic review. Bone 2024; 181:117021. [PMID: 38253189 DOI: 10.1016/j.bone.2024.117021] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/02/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
PURPOSE This review aims to provide an overview of the multiple functions of neutrophils, with the recognition of the inflammatory (N1) and regenerative (N2) phenotypes, in relation to fracture healing. METHODS A literature search was performed using the PubMed database. The quality of the articles was evaluated using critical appraisal checklists. RESULTS Thirty one studies were included in this review. These studies consistently support that neutrophils exert both beneficial and detrimental effects on bone regeneration, influenced by Tumor Necrosis Factor-α (TNF-α), Interleukin 8 (IL-8), mast cells, and macrophages. The N2 phenotype has recently emerged as one promoter of bone healing. The N1 phenotype has progressively been connected with inflammatory neutrophils during fracture healing. CONCLUSIONS This review has pinpointed various aspects and mechanisms of neutrophil influence on bone healing. The recognition of N1 and N2 neutrophil phenotypes potentially shed new light on the dynamic shifts taking place within the Fracture Hematoma (FH).
Collapse
Affiliation(s)
- Fangzhou Lu
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands; Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands.
| | - Samai M N E Verleg
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands; Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands.
| | - Rald V M Groven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands; Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands.
| | - Martijn Poeze
- Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands.
| | - Martijn van Griensven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands.
| | - Taco J Blokhuis
- Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands.
| |
Collapse
|
12
|
Poveda-Garavito N, Combita AL. Contribution of the TIME in BCP-ALL: the basis for novel approaches therapeutics. Front Immunol 2024; 14:1325255. [PMID: 38299154 PMCID: PMC10827891 DOI: 10.3389/fimmu.2023.1325255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/28/2023] [Indexed: 02/02/2024] Open
Abstract
The bone marrow (BM) niche is a microenvironment where both immune and non-immune cells functionally interact with hematopoietic stem cells (HSC) and more differentiated progenitors, contributing to the regulation of hematopoiesis. It is regulated by various signaling molecules such as cytokines, chemokines, and adhesion molecules in its microenvironment. However, despite the strict regulation of BM signals to maintain their steady state, accumulating evidence in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) indicates that leukemic cells can disrupt the physiological hematopoietic niche in the BM, creating a new leukemia-supportive microenvironment. This environment favors immunological evasion mechanisms and the interaction of these cells with the development and progression of BCP-ALL. With a growing understanding of the tumor immune microenvironment (TIME) in the development and progression of BCP-ALL, current strategies focused on "re-editing" TIME to promote antitumor immunity have been developed. In this review, we summarize how TIME cells are disrupted by the presence of leukemic cells, evading immunosurveillance mechanisms in the BCP-ALL model. We also explore the crosstalk between TIME and leukemic cells that leads to treatment resistance, along with the most promising immuno-therapy strategies. Understanding and further research into the role of the BM microenvironment in leukemia progression and relapse are crucial for developing more effective treatments and reducing patient mortality.
Collapse
Affiliation(s)
- Nathaly Poveda-Garavito
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología (INC), Bogotá, Colombia
- Grupo de Investigación Traslacional en Oncología, Instituto Nacional de Cancerología (INC), Bogotá, Colombia
- Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Alba Lucía Combita
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología (INC), Bogotá, Colombia
- Grupo de Investigación Traslacional en Oncología, Instituto Nacional de Cancerología (INC), Bogotá, Colombia
- Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
13
|
Xu X, Zhu N, Zheng J, Peng Y, Zeng MS, Deng K, Duan C, Yuan Y. EBV abortive lytic cycle promotes nasopharyngeal carcinoma progression through recruiting monocytes and regulating their directed differentiation. PLoS Pathog 2024; 20:e1011934. [PMID: 38206974 PMCID: PMC10846743 DOI: 10.1371/journal.ppat.1011934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/06/2024] [Accepted: 01/01/2024] [Indexed: 01/13/2024] Open
Abstract
Epstein-Barr virus (EBV) is associated with several types of human cancer including nasopharyngeal carcinoma (NPC). The activation of EBV to the lytic cycle has been observed in advanced NPC and is believed to contribute to late-stage NPC development. However, how EBV lytic cycle promotes NPC progression remains elusive. Analysis of clinical NPC samples indicated that EBV reactivation and immunosuppression were found in advanced NPC samples, as well as abnormal angiogenesis and invasiveness. To investigate the role of the EBV lytic cycle in tumor development, we established a system that consists of two NPC cell lines, respectively, in EBV abortive lytic cycle and latency. In a comparative analysis using this system, we found that the NPC cell line in EBV abortive lytic cycle exhibited the superior chemotactic capacity to recruit monocytes and polarized their differentiation toward tumor-associated macrophage (TAM)-like phenotype and away from DCs, compared to EBV-negative or EBV-latency NPC cells. EBV-encoded transcription activator ZTA is responsible for regulating monocyte chemotaxis and TAM phenotype by up-regulating the expression of GM-CSF, IL-8, and GRO-α. As a result, TAM induced by EBV abortive lytic cycle promotes NPC angiogenesis, invasion, and migration. Overall, this study elucidated the role of the EBV lytic life cycle in the late development of NPC and revealed a mechanism underlying the ZTA-mediated establishment of the tumor microenvironment (TME) that promotes NPC late-stage progression.
Collapse
Affiliation(s)
- Xiaoting Xu
- Laboratory of Clinical, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Nannan Zhu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Junming Zheng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yingying Peng
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kai Deng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chaohui Duan
- Laboratory of Clinical, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Yuan
- Institute for Advanced Medical Research, Shandong University, Jinan, China
| |
Collapse
|
14
|
Stip MC, Teeuwen L, Dierselhuis MP, Leusen JHW, Krijgsman D. Targeting the myeloid microenvironment in neuroblastoma. J Exp Clin Cancer Res 2023; 42:337. [PMID: 38087370 PMCID: PMC10716967 DOI: 10.1186/s13046-023-02913-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Myeloid cells (granulocytes and monocytes/macrophages) play an important role in neuroblastoma. By inducing a complex immunosuppressive network, myeloid cells pose a challenge for the adaptive immune system to eliminate tumor cells, especially in high-risk neuroblastoma. This review first summarizes the pro- and anti-tumorigenic functions of myeloid cells, including granulocytes, monocytes, macrophages, and myeloid-derived suppressor cells (MDSC) during the development and progression of neuroblastoma. Secondly, we discuss how myeloid cells are engaged in the current treatment regimen and explore novel strategies to target these cells in neuroblastoma. These strategies include: (1) engaging myeloid cells as effector cells, (2) ablating myeloid cells or blocking the recruitment of myeloid cells to the tumor microenvironment and (3) reprogramming myeloid cells. Here we describe that despite their immunosuppressive traits, tumor-associated myeloid cells can still be engaged as effector cells, which is clear in anti-GD2 immunotherapy. However, their full potential is not yet reached, and myeloid cell engagement can be enhanced, for example by targeting the CD47/SIRPα axis. Though depletion of myeloid cells or blocking myeloid cell infiltration has been proven effective, this strategy also depletes possible effector cells for immunotherapy from the tumor microenvironment. Therefore, reprogramming of suppressive myeloid cells might be the optimal strategy, which reverses immunosuppressive traits, preserves myeloid cells as effectors of immunotherapy, and subsequently reactivates tumor-infiltrating T cells.
Collapse
Affiliation(s)
- Marjolein C Stip
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Loes Teeuwen
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | | | - Jeanette H W Leusen
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Daniëlle Krijgsman
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands.
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands.
| |
Collapse
|
15
|
Shao S, Miao H, Ma W. Unraveling the enigma of tumor-associated macrophages: challenges, innovations, and the path to therapeutic breakthroughs. Front Immunol 2023; 14:1295684. [PMID: 38035068 PMCID: PMC10682717 DOI: 10.3389/fimmu.2023.1295684] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are integral to the tumor microenvironment (TME), influencing cancer progression significantly. Attracted by cancer cell signals, TAMs exhibit unparalleled adaptability, aligning with the dynamic tumor milieu. Their roles span from promoting tumor growth and angiogenesis to modulating metastasis. While substantial research has explored the fundamentals of TAMs, comprehending their adaptive behavior, and leveraging it for novel treatments remains challenging. This review delves into TAM polarization, metabolic shifts, and the complex orchestration of cytokines and chemokines determining their functions. We highlight the complexities of TAM-targeted research focusing on their adaptability and potential variability in therapeutic outcomes. Moreover, we discuss the synergy of integrating TAM-focused strategies with established cancer treatments, such as chemotherapy, and immunotherapy. Emphasis is laid on pioneering methods like TAM reprogramming for cancer immunotherapy and the adoption of single-cell technologies for precision intervention. This synthesis seeks to shed light on TAMs' multifaceted roles in cancer, pinpointing prospective pathways for transformative research and enhancing therapeutic modalities in oncology.
Collapse
Affiliation(s)
- Shengwen Shao
- Clinical Research Center, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Huilai Miao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Department of Hepatobiliary Surgery, Liaobu Hospital of Dongguan City, Dongguan, Guangdong, China
| | - Wenxue Ma
- Department of Medicine, Moores Cancer Center, and Sanford Stem Cell Institute, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
16
|
Davodabadi F, Sajjadi SF, Sarhadi M, Mirghasemi S, Nadali Hezaveh M, Khosravi S, Kamali Andani M, Cordani M, Basiri M, Ghavami S. Cancer chemotherapy resistance: Mechanisms and recent breakthrough in targeted drug delivery. Eur J Pharmacol 2023; 958:176013. [PMID: 37633322 DOI: 10.1016/j.ejphar.2023.176013] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Conventional chemotherapy, one of the most widely used cancer treatment methods, has serious side effects, and usually results in cancer treatment failure. Drug resistance is one of the primary reasons for this failure. The most significant drawbacks of systemic chemotherapy are rapid clearance from the circulation, the drug's low concentration in the tumor site, and considerable adverse effects outside the tumor. Several ways have been developed to boost neoplasm treatment efficacy and overcome medication resistance. In recent years, targeted drug delivery has become an essential therapeutic application. As more mechanisms of tumor treatment resistance are discovered, nanoparticles (NPs) are designed to target these pathways. Therefore, understanding the limitations and challenges of this technology is critical for nanocarrier evaluation. Nano-drugs have been increasingly employed in medicine, incorporating therapeutic applications for more precise and effective tumor diagnosis, therapy, and targeting. Many benefits of NP-based drug delivery systems in cancer treatment have been proven, including good pharmacokinetics, tumor cell-specific targeting, decreased side effects, and lessened drug resistance. As more mechanisms of tumor treatment resistance are discovered, NPs are designed to target these pathways. At the moment, this innovative technology has the potential to bring fresh insights into cancer therapy. Therefore, understanding the limitations and challenges of this technology is critical for nanocarrier evaluation.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran.
| | - Seyedeh Fatemeh Sajjadi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| | - Mohammad Sarhadi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Shaghayegh Mirghasemi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mahdieh Nadali Hezaveh
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Samin Khosravi
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Mahdieh Kamali Andani
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran.
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain.
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Saeid Ghavami
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555. Katowice, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 3P5, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada.
| |
Collapse
|
17
|
Khan S, Falahati M, Cho WC, Vahdani Y, Siddique R, Sharifi M, Jaragh-Alhadad LA, Haghighat S, Zhang X, Ten Hagen TLM, Bai Q. Core-shell inorganic NP@MOF nanostructures for targeted drug delivery and multimodal imaging-guided combination tumor treatment. Adv Colloid Interface Sci 2023; 321:103007. [PMID: 37812992 DOI: 10.1016/j.cis.2023.103007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 08/16/2023] [Accepted: 09/23/2023] [Indexed: 10/11/2023]
Abstract
It is well known that metal-organic framework (MOF) nanostructures have unique characteristics such as high porosity, large surface areas and adjustable functionalities, so they are ideal candidates for developing drug delivery systems (DDSs) as well as theranostic platforms in cancer treatment. Despite the large number of MOF nanostructures that have been discovered, conventional MOF-derived nanosystems only have a single biofunctional MOF source with poor colloidal stability. Accordingly, developing core-shell MOF nanostructures with good colloidal stability is a useful method for generating efficient drug delivery, multimodal imaging and synergistic therapeutic systems. The preparation of core-shell MOF nanostructures has been done with a variety of materials, but inorganic nanoparticles (NPs) are highly effective for drug delivery and imaging-guided tumor treatment. Herein, we aimed to overview the synthesis of core-shell inorganic NP@MOF nanostructures followed by the application of core-shell MOFs derived from magnetic, quantum dots (QDs), gold (Au), and gadolinium (Gd) NPs in drug delivery and imaging-guided tumor treatment. Afterward, we surveyed different factors affecting prolonged drug delivery and cancer therapy, cellular uptake, biocompatibility, biodegradability, and enhanced permeation and retention (EPR) effect of core-shell MOFs. Last but not least, we discussed the challenges and the prospects of the field. We envision this article may hold great promise in providing valuable insights regarding the application of hybrid nanostructures as promising and potential candidates for multimodal imaging-guided combination cancer therapy.
Collapse
Affiliation(s)
- Suliman Khan
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands; Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, the Netherlands.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | - Yasaman Vahdani
- Department of Biochemistry and Molecular Medicine, University of Montreal, Canada
| | - Rabeea Siddique
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands; Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, the Netherlands.
| | - Qian Bai
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
18
|
Bhoopathi P, Kumar A, Pradhan AK, Maji S, Mannangatti P, Windle JJ, Subler MA, Zhang D, Vudatha V, Trevino JG, Madan E, Atfi A, Sarkar D, Gogna R, Das SK, Emdad L, Fisher PB. Cytoplasmic-delivery of polyinosine-polycytidylic acid inhibits pancreatic cancer progression increasing survival by activating Stat1-CCL2-mediated immunity. J Immunother Cancer 2023; 11:e007624. [PMID: 37935566 PMCID: PMC10649894 DOI: 10.1136/jitc-2023-007624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer without effective therapies and with poor prognosis, causing 7% of all cancer-related fatalities in the USA. Considering the lack of effective therapies for this aggressive cancer, there is an urgent need to define newer and more effective therapeutic strategies. Polyinosine-polycytidylic acid (pIC) is a synthetic double-stranded RNA (dsRNA) which directly activates dendritic cells and natural killer cells inhibiting tumor growth. When pIC is delivered into the cytoplasm using polyethyleneimine (PEI), pIC-PEI, programmed-cell death is induced in PDAC. Transfection of [pIC]PEI into PDAC cells inhibits growth, promotes toxic autophagy and also induces apoptosis in vitro and in vivo in animal models. METHODS The KPC transgenic mouse model that recapitulates PDAC development in patients was used to interrogate the role of an intact immune system in vivo in PDAC in response to [pIC]PEI. Antitumor efficacy and survival were monitored endpoints. Comprehensive analysis of the tumor microenvironment (TME) and immune cells, cytokines and chemokines in the spleen, and macrophage polarization were analyzed. RESULTS Cytosolic delivery of [pIC]PEI induces apoptosis and provokes strong antitumor immunity in vivo in immune competent mice with PDAC. The mechanism underlying the immune stimulatory properties of [pIC]PEI involves Stat1 activation resulting in CCL2 and MMP13 stimulation thereby provoking macrophage polarization. [pIC]PEI induces apoptosis via the AKT-XIAP pathway, as well as macrophage differentiation and T-cell activation via the IFNγ-Stat1-CCL2 signaling pathways in PDAC. In transgenic tumor mouse models, [pIC]PEI promotes robust and profound antitumor activity implying that stimulating the immune system contributes to biological activity. The [pIC]PEI anti-PDAC effects are enhanced when used in combination with a standard of care (SOC) treatment, that is, gemcitabine. CONCLUSIONS In summary, [pIC]PEI treatment is non-toxic toward normal pancreatic cells while displaying strong cytotoxic and potent immune activating activities in PDAC, making it an attractive therapeutic when used alone or in conjunction with SOC therapeutic agents, potentially providing a safe and effective treatment protocol with translational potential for the effective therapy of PDAC.
Collapse
Affiliation(s)
- Praveen Bhoopathi
- Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Amit Kumar
- Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Anjan K Pradhan
- Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Santanu Maji
- Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Padmanabhan Mannangatti
- Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Jolene J Windle
- Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Mark A Subler
- Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Dongyu Zhang
- Surgery, Division of Surgical Oncology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Vignesh Vudatha
- Surgery, Division of Surgical Oncology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Jose G Trevino
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- Surgery, Division of Surgical Oncology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Esha Madan
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- Surgery, Division of Surgical Oncology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Azeddine Atfi
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Devanand Sarkar
- Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Rajan Gogna
- Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Swadesh K Das
- Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Luni Emdad
- Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Paul B Fisher
- Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
19
|
Greenlund L, Shanley R, Mulford K, Neil EC, Lawrence J, Arnold S, Olin M, Pluhar GE, Venteicher AS, Chen CC, Ferreira C, Reynolds M, Cho LC, Wilke C, Shoo BA, Yuan J, Dusenbery K, Kleinberg LR, Terezakis SA, Sloan L. Comparison of peripheral leukocyte parameters in patients receiving conventionally and hypofractionated radiotherapy schemes for the treatment of newly diagnosed glioblastoma. Front Immunol 2023; 14:1284118. [PMID: 38022656 PMCID: PMC10644882 DOI: 10.3389/fimmu.2023.1284118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Treatment for glioblastomas, aggressive and nearly uniformly fatal brain tumors, provide limited long-term success. Immunosuppression by myeloid cells in both the tumor microenvironment and systemic circulation are believed to contribute to this treatment resistance. Standard multi-modality therapy includes conventionally fractionated radiotherapy over 6 weeks; however, hypofractionated radiotherapy over 3 weeks or less may be appropriate for older patients or populations with poor performance status. Lymphocyte concentration changes have been reported in patients with glioblastoma; however, monocytes are likely a key cell type contributing to immunosuppression in glioblastoma. Peripheral monocyte concentration changes in patients receiving commonly employed radiation fractionation schemes are unknown. Methods To determine the effect of conventionally fractionated and hypofractionated radiotherapy on complete blood cell leukocyte parameters, retrospective longitudinal concentrations were compared prior to, during, and following standard chemoradiation treatment. Results This study is the first to report increased monocyte concentrations and decreased lymphocyte concentrations in patients treated with conventionally fractionated radiotherapy compared to hypofractionated radiotherapy. Discussion Understanding the impact of fractionation on peripheral blood leukocytes is important to inform selection of dose fractionation schemes for patients receiving radiotherapy.
Collapse
Affiliation(s)
- Lindsey Greenlund
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN, United States
| | - Ryan Shanley
- Clinical and Translational Science Institute, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Kellen Mulford
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN, United States
| | - Elizabeth C. Neil
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Jessica Lawrence
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Susan Arnold
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Michael Olin
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - G. Elizabeth Pluhar
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Andrew S. Venteicher
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Clark C. Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Clara Ferreira
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN, United States
| | - Margaret Reynolds
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN, United States
| | - L. Chinsoo Cho
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN, United States
| | - Christopher Wilke
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - B. Aika Shoo
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN, United States
| | - Jianling Yuan
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Kathryn Dusenbery
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Lawrence R. Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Stephanie A. Terezakis
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Lindsey Sloan
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
20
|
Sai Krishna AVS, Ramu A, Hariharan S, Sinha S, Donakonda S. Characterization of tumor microenvironment in glioblastoma multiforme identifies ITGB2 as a key immune and stromal related regulator in glial cell types. Comput Biol Med 2023; 165:107433. [PMID: 37660569 DOI: 10.1016/j.compbiomed.2023.107433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/06/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of brain tumor characterized by inter and intra-tumor heterogeneity and complex tumor microenvironment. To uncover the molecular targets in this milieu, we systematically identified immune and stromal interactions at the glial cell type level that leverages on RNA-sequencing data of GBM patients from The Cancer Genome Atlas. The perturbed genes between the high vs low immune and stromal scored patients were subjected to weighted gene co-expression network analysis to identify the glial cell type specific networks in immune and stromal infiltrated patients. The intramodular connectivity analysis identified the highly connected genes in each module. Combining it with univariable and multivariable prognostic analysis revealed common vital gene ITGB2, between the immune and stromal infiltrated patients enriched in microglia and newly formed oligodendrocytes. We found following unique hub genes in immune infiltrated patients; COL6A3 (microglia), ITGAM (oligodendrocyte precursor cells), TNFSF9 (microglia), and in stromal infiltrated patients, SERPINE1 (microglia) and THBS1 (newly formed oligodendrocytes, oligodendrocyte precursor cells). To validate these hub genes, we used external GBM patient single cell RNA-sequencing dataset and this identified ITGB2 to be significantly enriched in microglia, newly formed oligodendrocytes, T-cells, macrophages and adipocyte cell types in both immune and stromal datasets. The tumor infiltration analysis of ITGB2 showed that it is correlated with myeloid dendritic cells, macrophages, monocytes, neutrophils, B-cells, fibroblasts and adipocytes. Overall, the systematic screening of tumor microenvironment components at glial cell types uncovered ITGB2 as a potential target in primary GBM.
Collapse
Affiliation(s)
- A V S Sai Krishna
- Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Alagammai Ramu
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, MS Ramaiah University of Applied Sciences, Bengaluru, India
| | - Srimathangi Hariharan
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, MS Ramaiah University of Applied Sciences, Bengaluru, India
| | - Swati Sinha
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, MS Ramaiah University of Applied Sciences, Bengaluru, India
| | - Sainitin Donakonda
- Institute of Molecular Immunology and Experimental Oncology, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
21
|
Li K, Zeng X, Liu P, Zeng X, Lv J, Qiu S, Zhang P. The Role of Inflammation-Associated Factors in Head and Neck Squamous Cell Carcinoma. J Inflamm Res 2023; 16:4301-4315. [PMID: 37791117 PMCID: PMC10544098 DOI: 10.2147/jir.s428358] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/16/2023] [Indexed: 10/05/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), which originates in the head or neck tissues, is characterized by high rates of recurrence and metastasis. Inflammation is important in HNSCC prognosis. Inflammatory cells and their secreted factors contribute to the various stages of HNSCC development through multiple mechanisms. In this review, the mechanisms through which inflammatory factors, signaling pathways, and cells contribute to the initiation and progression of HNSCC have been discussed in detail. Furthermore, the diagnostic and therapeutic potential of targeting inflammation in HNSCC has been discussed to gain new insights into improving patient prognosis.
Collapse
Affiliation(s)
- Kang Li
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, People’s Republic of China
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, People’s Republic of China
| | - Xianhai Zeng
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, People’s Republic of China
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, People’s Republic of China
| | - Peng Liu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, People’s Republic of China
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, People’s Republic of China
| | - Xiaoxia Zeng
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, People’s Republic of China
| | - Jie Lv
- School of Computer Science and Engineering, Yulin Normal University, Yulin, Guangxi, People’s Republic of China
| | - Shuqi Qiu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, People’s Republic of China
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, People’s Republic of China
| | - Peng Zhang
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, People’s Republic of China
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
22
|
Ohkuma R, Fujimoto Y, Ieguchi K, Onishi N, Watanabe M, Takayanagi D, Goshima T, Horiike A, Hamada K, Ariizumi H, Hirasawa Y, Ishiguro T, Suzuki R, Iriguchi N, Tsurui T, Sasaki Y, Homma M, Yamochi T, Yoshimura K, Tsuji M, Kiuchi Y, Kobayashi S, Tsunoda T, Wada S. Monocyte subsets associated with the efficacy of anti‑PD‑1 antibody monotherapy. Oncol Lett 2023; 26:381. [PMID: 37559573 PMCID: PMC10407861 DOI: 10.3892/ol.2023.13967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/26/2023] [Indexed: 08/11/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) are among the most notable advances in cancer immunotherapy; however, reliable biomarkers for the efficacy of ICIs are yet to be reported. Programmed death (PD)-ligand 1 (L1)-expressing CD14+ monocytes are associated with shorter overall survival (OS) time in patients with cancer treated with anti-PD-1 antibodies. The present study focused on the classification of monocytes into three subsets: Classical, intermediate and non-classical. A total of 44 patients with different types of cancer treated with anti-PD-1 monotherapy (pembrolizumab or nivolumab) were enrolled in the present study. The percentage of each monocyte subset was investigated, and the percentage of cells expressing PD-L1 or PD-1 within each of the three subsets was further analyzed. Higher pretreatment classical monocyte percentages were correlated with shorter OS (r=-0.32; P=0.032), whereas higher non-classical monocyte percentages were correlated with a favorable OS (r=0.39; P=0.0083). PD-L1-expressing classical monocytes accounted for a higher percentage of the total monocytes than non-classical monocytes with PD-L1 expression. In patients with non-small cell lung cancer (NSCLC), a higher percentage of PD-L1-expressing classical monocytes was correlated with shorter OS (r=-0.60; P=0.012), which is similar to the observation for the whole patient cohort. Comparatively, higher percentages of non-classical monocytes expressing PD-L1 were significantly associated with better OS, especially in patients with NSCLC (r=0.60; P=0.010). Moreover, a higher percentage of non-classical monocytes contributed to prolonged progression-free survival in patients with NSCLC (r=0.50; P=0.042), with similar results for PD-L1-expressing non-classical monocytes. The results suggested that the percentage of monocyte subsets in patients with cancer before anti-PD-1 monotherapy may predict the treatment efficacy and prognosis. Furthermore, more classical monocytes and fewer non-classical monocytes, especially those expressing PD-L1, are involved in shortening OS time, which may indicate the poor efficiency of anti-PD-1 treatment approaches.
Collapse
Affiliation(s)
- Ryotaro Ohkuma
- Division of Medical Oncology, Department of Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo 157-8577, Japan
| | - Yuki Fujimoto
- Division of Medical Oncology, Department of Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo 157-8577, Japan
- Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo 157-8577, Japan
| | - Katsuaki Ieguchi
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo 157-8577, Japan
- Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo 157-8577, Japan
| | - Nobuyuki Onishi
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo 157-8577, Japan
- Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo 157-8577, Japan
| | - Makoto Watanabe
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo 157-8577, Japan
- Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo 157-8577, Japan
- Division of Medical Pharmacology, Department of Pharmacology, School of Medicine, Showa University, Tokyo 142-8555, Japan
- Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan
| | - Daisuke Takayanagi
- Division of Medical Oncology, Department of Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo 157-8577, Japan
- Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo 157-8577, Japan
| | - Tsubasa Goshima
- Division of Medical Oncology, Department of Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo 157-8577, Japan
- Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo 157-8577, Japan
| | - Atsushi Horiike
- Division of Medical Oncology, Department of Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan
| | - Kazuyuki Hamada
- Division of Medical Oncology, Department of Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan
| | - Hirotsugu Ariizumi
- Division of Medical Oncology, Department of Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan
| | - Yuya Hirasawa
- Division of Medical Oncology, Department of Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan
| | - Tomoyuki Ishiguro
- Division of Medical Oncology, Department of Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan
| | - Risako Suzuki
- Division of Medical Oncology, Department of Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan
| | - Nana Iriguchi
- Division of Medical Oncology, Department of Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan
| | - Toshiaki Tsurui
- Division of Medical Oncology, Department of Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan
| | - Yosuke Sasaki
- Department of Pathology, Showa University School of Medicine, Tokyo 157-8577, Japan
| | - Mayumi Homma
- Department of Pathology, Showa University School of Medicine, Tokyo 157-8577, Japan
| | - Toshiko Yamochi
- Department of Pathology, Showa University School of Medicine, Tokyo 157-8577, Japan
| | - Kiyoshi Yoshimura
- Division of Medical Oncology, Department of Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan
- Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo 157-8577, Japan
- Department of Clinical Immuno-oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo 157-8577, Japan
| | - Mayumi Tsuji
- Division of Medical Pharmacology, Department of Pharmacology, School of Medicine, Showa University, Tokyo 142-8555, Japan
- Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan
| | - Yuji Kiuchi
- Division of Medical Pharmacology, Department of Pharmacology, School of Medicine, Showa University, Tokyo 142-8555, Japan
- Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan
| | - Shinichi Kobayashi
- Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo 157-8577, Japan
| | - Takuya Tsunoda
- Division of Medical Oncology, Department of Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan
| | - Satoshi Wada
- Division of Medical Oncology, Department of Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo 157-8577, Japan
- Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo 157-8577, Japan
| |
Collapse
|
23
|
Wang Y, Chen J, Su G, Mei J, Li J. A Review of Single-Cell Microrobots: Classification, Driving Methods and Applications. MICROMACHINES 2023; 14:1710. [PMID: 37763873 PMCID: PMC10537272 DOI: 10.3390/mi14091710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023]
Abstract
Single-cell microrobots are new microartificial devices that use a combination of single cells and artificial devices, with the advantages of small size, easy degradation and ease of manufacture. With externally driven strategies such as light fields, sound fields and magnetic fields, microrobots are able to carry out precise micromanipulations and movements in complex microenvironments. Therefore, single-cell microrobots have received more and more attention and have been greatly developed in recent years. In this paper, we review the main classifications, control methods and recent advances in the field of single-cell microrobot applications. First, different types of robots, such as cell-based microrobots, bacteria-based microrobots, algae-based microrobots, etc., and their design strategies and fabrication processes are discussed separately. Next, three types of external field-driven technologies, optical, acoustic and magnetic, are presented and operations realized in vivo and in vitro by applying these three technologies are described. Subsequently, the results achieved by these robots in the fields of precise delivery, minimally invasive therapy are analyzed. Finally, a short summary is given and current challenges and future work on microbial-based robotics are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Junyang Li
- School of Electronic Engineering, Ocean University of China, Qingdao 266000, China; (Y.W.); (J.C.); (G.S.); (J.M.)
| |
Collapse
|
24
|
Ma H, Zhang Z, Hu Q, Chen H, Wu G, Zhou Y, Xue Q. Shedding light on macrophage immunotherapy in lung cancer. J Cancer Res Clin Oncol 2023; 149:8143-8152. [PMID: 37052632 DOI: 10.1007/s00432-023-04740-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/02/2023] [Indexed: 04/14/2023]
Abstract
The search for therapeutic options for lung cancer continues to advance, with rapid advances in the search for therapies to improve patient prognosis. At present, systemic chemotherapy, immune checkpoint inhibitor therapy, antiangiogenic therapy, and targeted therapy for driver gene positivity are available in the clinic. Common clinical treatments fail to achieve desired outcomes due to immunosuppression of the tumor microenvironment (TME). Tumor immune evasion is mediated by cytokines, chemokines, immune cells, and other cells such as vascular endothelial cells within the tumor immune microenvironment. Tumor-associated macrophages (TAMs) are important immune cells in the TME, inducing tumor angiogenesis, encouraging tumor cell proliferation and migration, and suppressing antitumor immune responses. Thus, TAM targeting becomes the key to lung cancer immunotherapy. This review focuses on macrophage phenotype, polarization mechanism, role in lung cancer, and advances in macrophage centric immunotherapies.
Collapse
Affiliation(s)
- Huiyun Ma
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Zhouwei Zhang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Qin Hu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Hongyu Chen
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Gujie Wu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Youlang Zhou
- Research Central of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
| | - Qun Xue
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
| |
Collapse
|
25
|
Carroll TM, Chadwick JA, Owen RP, White MJ, Kaplinsky J, Peneva I, Frangou A, Xie PF, Chang J, Roth A, Amess B, James SA, Rei M, Fuchs HS, McCann KJ, Omiyale AO, Jacobs BA, Lord SR, Norris-Bulpitt S, Dobbie ST, Griffiths L, Ramirez KA, Ricciardi T, Macri MJ, Ryan A, Venhaus RR, Van den Eynde BJ, Karydis I, Schuster-Böckler B, Middleton MR, Lu X. Tumor monocyte content predicts immunochemotherapy outcomes in esophageal adenocarcinoma. Cancer Cell 2023; 41:1222-1241.e7. [PMID: 37433281 PMCID: PMC11913779 DOI: 10.1016/j.ccell.2023.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 04/07/2023] [Accepted: 06/14/2023] [Indexed: 07/13/2023]
Abstract
For inoperable esophageal adenocarcinoma (EAC), identifying patients likely to benefit from recently approved immunochemotherapy (ICI+CTX) treatments remains a key challenge. We address this using a uniquely designed window-of-opportunity trial (LUD2015-005), in which 35 inoperable EAC patients received first-line immune checkpoint inhibitors for four weeks (ICI-4W), followed by ICI+CTX. Comprehensive biomarker profiling, including generation of a 65,000-cell single-cell RNA-sequencing atlas of esophageal cancer, as well as multi-timepoint transcriptomic profiling of EAC during ICI-4W, reveals a novel T cell inflammation signature (INCITE) whose upregulation correlates with ICI-induced tumor shrinkage. Deconvolution of pre-treatment gastro-esophageal cancer transcriptomes using our single-cell atlas identifies high tumor monocyte content (TMC) as an unexpected ICI+CTX-specific predictor of greater overall survival (OS) in LUD2015-005 patients and of ICI response in prevalent gastric cancer subtypes from independent cohorts. Tumor mutational burden is an additional independent and additive predictor of LUD2015-005 OS. TMC can improve patient selection for emerging ICI+CTX therapies in gastro-esophageal cancer.
Collapse
Affiliation(s)
- Thomas M Carroll
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Joseph A Chadwick
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Richard P Owen
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Michael J White
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Joseph Kaplinsky
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Iliana Peneva
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Anna Frangou
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK; Big Data Institute, University of Oxford, Oxford, UK
| | - Phil F Xie
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Jaeho Chang
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Andrew Roth
- Department of Pathology and Molecular Medicine, University of British Columbia, Vancouver, Canada; Department of Computer Science, University of British Columbia, Vancouver, Canada; Department of Molecular Oncology, BC Cancer, Vancouver, Canada
| | - Bob Amess
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Sabrina A James
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Margarida Rei
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Hannah S Fuchs
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Katy J McCann
- Cancer Research UK Southampton Experimental Cancer Medicine Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ayo O Omiyale
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | | | - Simon R Lord
- Department of Oncology, University of Oxford, Oxford, UK
| | - Stewart Norris-Bulpitt
- Early Phase Clinical Trials Unit, Cancer & Haematology Centre, Churchill Hospital, Oxford, UK
| | - Sam T Dobbie
- Oncology Clinical Trials Office (OCTO), Department of Oncology, University of Oxford, Oxford, UK
| | - Lucinda Griffiths
- Oncology Clinical Trials Office (OCTO), Department of Oncology, University of Oxford, Oxford, UK
| | | | | | | | | | | | - Benoit J Van den Eynde
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK; Ludwig Institute for Cancer Research, Brussels, Belgium; de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Ioannis Karydis
- Cancer Sciences Unit, University of Southampton and Cancer Care Group, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | - Mark R Middleton
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK; Department of Oncology, University of Oxford, Oxford, UK; Early Phase Clinical Trials Unit, Cancer & Haematology Centre, Churchill Hospital, Oxford, UK.
| | - Xin Lu
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
26
|
Cheng F, He J, Yang J. Bone marrow microenvironment: roles and therapeutic implications in obesity-associated cancer. Trends Cancer 2023; 9:566-577. [PMID: 37087397 PMCID: PMC10329995 DOI: 10.1016/j.trecan.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/24/2023]
Abstract
Obesity is increasing globally and has been closely linked to the initiation and progression of multiple human cancers. These relationships, to a large degree, are mediated through obesity-driven disruption of physiological homeostasis characterized by local and systemic endocrinologic, inflammatory, and metabolic changes. Bone marrow microenvironment (BMME), which evolves during obesity, has been implicated in multiple types of cancer. Growing evidence shows that physiological dysfunction of BMME with altered cellular composition, stromal and immune cell function, and energy metabolism, as well as inflammation and hypoxia, in the context of obesity contributes to cancer initiation and progression. Nonetheless, the mechanisms underlying the obesity-BMME-cancer axis remain elusive. In this review, we discuss the recent advances in understanding the evolution of BMME during obesity, its contributions to cancer initiation and progression, and the implications for cancer therapy.
Collapse
Affiliation(s)
- Feifei Cheng
- Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Jin He
- Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Jing Yang
- Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
27
|
Bhoopathi P, Mannangatti P, Das SK, Fisher PB, Emdad L. Chemoresistance in pancreatic ductal adenocarcinoma: Overcoming resistance to therapy. Adv Cancer Res 2023; 159:285-341. [PMID: 37268399 DOI: 10.1016/bs.acr.2023.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a prominent cause of cancer deaths worldwide, is a highly aggressive cancer most frequently detected at an advanced stage that limits treatment options to systemic chemotherapy, which has provided only marginal positive clinical outcomes. More than 90% of patients with PDAC die within a year of being diagnosed. PDAC is increasing at a rate of 0.5-1.0% per year, and it is expected to be the second leading cause of cancer-related mortality by 2030. The resistance of tumor cells to chemotherapeutic drugs, which can be innate or acquired, is the primary factor contributing to the ineffectiveness of cancer treatments. Although many PDAC patients initially responds to standard of care (SOC) drugs they soon develop resistance caused partly by the substantial cellular heterogeneity seen in PDAC tissue and the tumor microenvironment (TME), which are considered key factors contributing to resistance to therapy. A deeper understanding of molecular mechanisms involved in PDAC progression and metastasis development, and the interplay of the TME in all these processes is essential to better comprehend the etiology and pathobiology of chemoresistance observed in PDAC. Recent research has recognized new therapeutic targets ushering in the development of innovative combinatorial therapies as well as enhancing our comprehension of several different cell death pathways. These approaches facilitate the lowering of the therapeutic threshold; however, the possibility of subsequent resistance development still remains a key issue and concern. Discoveries, that can target PDAC resistance, either alone or in combination, have the potential to serve as the foundation for future treatments that are effective without posing undue health risks. In this chapter, we discuss potential causes of PDAC chemoresistance and approaches for combating chemoresistance by targeting different pathways and different cellular functions associated with and mediating resistance.
Collapse
Affiliation(s)
- Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States
| | - Padmanabhan Mannangatti
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
28
|
Weizman OE, Luyten S, Krykbaeva I, Song E, Mao T, Bosenberg M, Iwasaki A. Type 2 Dendritic Cells Orchestrate a Local Immune Circuit to Confer Antimetastatic Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1146-1155. [PMID: 36881866 PMCID: PMC10067787 DOI: 10.4049/jimmunol.2200697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/11/2023] [Indexed: 03/09/2023]
Abstract
The progression of transformed primary tumors to metastatic colonization is a lethal determinant of disease outcome. Although circulating adaptive and innate lymphocyte effector responses are required for effective antimetastatic immunity, whether tissue-resident immune circuits confer initial immunity at sites of metastatic dissemination remains ill defined. Here we examine the nature of local immune cell responses during early metastatic seeding in the lung using intracardiac injection to mimic monodispersed metastatic spread. Using syngeneic murine melanoma and colon cancer models, we demonstrate that lung-resident conventional type 2 dendritic cells (DC2) orchestrate a local immune circuit to confer host antimetastatic immunity. Tissue-specific ablation of lung DC2, and not peripheral DC populations, led to increased metastatic burden in the presence of an intact T cell and NK cell compartment. We demonstrate that DC nucleic acid sensing and transcription factors IRF3 and IRF7 signaling are required for early metastatic control and that DC2 serve as a robust source of proinflammatory cytokines in the lung. Critically, DC2 direct the local production of IFN-γ by lung-resident NK cells, which limits the initial metastatic burden. Collectively, our results highlight, to our knowledge, a novel DC2-NK cell axis that colocalizes around pioneering metastatic cells to orchestrate an early innate immune response program to limit initial metastatic burden in the lung.
Collapse
Affiliation(s)
- Orr-El Weizman
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Sophia Luyten
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Irina Krykbaeva
- Department of Dermatology, Yale University School of Medicine, New Haven, CT
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Eric Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Tianyang Mao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Marcus Bosenberg
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Department of Dermatology, Yale University School of Medicine, New Haven, CT
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Department of Dermatology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Chevy Chase, MD
| |
Collapse
|
29
|
Jain N, Srinivasarao DA, Famta P, Shah S, Vambhurkar G, Shahrukh S, Singh SB, Srivastava S. The portrayal of macrophages as tools and targets: A paradigm shift in cancer management. Life Sci 2023; 316:121399. [PMID: 36646378 DOI: 10.1016/j.lfs.2023.121399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/02/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Macrophages play a major role in maintaining an organism's physiology, such as development, homeostasis, tissue repair, and immunity. These immune cells are known to be involved in tumor progression and modulation. Monocytes can be polarized to two types of macrophages (M1 macrophages and pro-tumor M2 macrophages). Through this article, we aim to emphasize the potential of targeting macrophages in order to improve current strategies for tumor management. Various strategies that target macrophages as a therapeutic target have been discussed along with ongoing clinical trials. We have discussed the role of macrophages in various stages of tumor progression epithelial-to-mesenchymal transition (EMT), invasion, maintaining the stability of circulating tumor cells (CTCs) in blood, and establishing a premetastatic niche along with the role of various cytokines and chemokines involved in these processes. Intriguingly macrophages can also serve as drug carriers due to their tumor tropism along the chemokine gradient. They surpass currently explored nanotherapeutics in tumor accumulation and circulation half-life. We have emphasized on macrophage-based biomimetic formulations and macrophage-hitchhiking as a strategy to effectively target tumors. We firmly believe that targeting macrophages or utilizing them as an indigenous carrier system could transform cancer management.
Collapse
Affiliation(s)
- Naitik Jain
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Syed Shahrukh
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
30
|
Hirz T, Mei S, Sarkar H, Kfoury Y, Wu S, Verhoeven BM, Subtelny AO, Zlatev DV, Wszolek MW, Salari K, Murray E, Chen F, Macosko EZ, Wu CL, Scadden DT, Dahl DM, Baryawno N, Saylor PJ, Kharchenko PV, Sykes DB. Dissecting the immune suppressive human prostate tumor microenvironment via integrated single-cell and spatial transcriptomic analyses. Nat Commun 2023; 14:663. [PMID: 36750562 PMCID: PMC9905093 DOI: 10.1038/s41467-023-36325-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
The treatment of low-risk primary prostate cancer entails active surveillance only, while high-risk disease requires multimodal treatment including surgery, radiation therapy, and hormonal therapy. Recurrence and development of metastatic disease remains a clinical problem, without a clear understanding of what drives immune escape and tumor progression. Here, we comprehensively describe the tumor microenvironment of localized prostate cancer in comparison with adjacent normal samples and healthy controls. Single-cell RNA sequencing and high-resolution spatial transcriptomic analyses reveal tumor context dependent changes in gene expression. Our data indicate that an immune suppressive tumor microenvironment associates with suppressive myeloid populations and exhausted T-cells, in addition to high stromal angiogenic activity. We infer cell-to-cell relationships from high throughput ligand-receptor interaction measurements within undissociated tissue sections. Our work thus provides a highly detailed and comprehensive resource of the prostate tumor microenvironment as well as tumor-stromal cell interactions.
Collapse
Affiliation(s)
- Taghreed Hirz
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| | - Shenglin Mei
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | - Hirak Sarkar
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Youmna Kfoury
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Shulin Wu
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bronte M Verhoeven
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Alexander O Subtelny
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Dimitar V Zlatev
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew W Wszolek
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Keyan Salari
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Evan Murray
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Fei Chen
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Evan Z Macosko
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Chin-Lee Wu
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Douglas M Dahl
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ninib Baryawno
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Philip J Saylor
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Peter V Kharchenko
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Altos Labs, San Diego, CA, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
31
|
Singh AK, Awasthi R, Malviya R. Bioinspired microrobots: Opportunities and challenges in targeted cancer therapy. J Control Release 2023; 354:439-452. [PMID: 36669531 DOI: 10.1016/j.jconrel.2023.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 01/21/2023]
Abstract
Chemotherapy is still the most effective technique to treat many forms of cancer. However, it also carries a high risk of side effects. Numerous nanomedicines have been developed to avoid unintended consequences and significant negative effects of conventional therapies. Achieving targeted drug delivery also has several challenges. In this context, the development of microrobots is receiving considerable attention of formulation scientists and clinicians to overcome such challenges. Due to their mobility, microrobots can infiltrate tissues and reach tumor sites more quickly. Different types of microrobots, like custom-made moving bacteria, microengines powered by small bubbles, and hybrid spermbots, can be designed with complex features that are best for precise targeting of a wide range of cancers. In this review, we mainly focus on the idea of how microrobots can quickly target cancer cells and discuss specific advantages of microrobots. A brief summary of the microrobots' drug loading and release behavior is provided in this manuscript. This manuscript will assist clinicians and other medical professionals in diagnosing and treating cancer without surgery.
Collapse
Affiliation(s)
- Arun Kumar Singh
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rajendra Awasthi
- Department of Pharmaceutical Sciences, School of Health Sciences & Technology, University of Petroleum and Energy Studies (UPES), Energy Acres, P.O. Bidholi, Via-Prem Nagar, Dehradun 248 007, Uttarakhand, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
32
|
Wang C, Jin W, Ma X, Dong Z. The different predictive value of mean platelet volume-to-lymphocyte ratio for postoperative recurrence between non-muscular invasive bladder cancer patients treated with intravesical chemotherapy and intravesical chemohyperthermia. Front Oncol 2023; 12:1101830. [PMID: 36713575 PMCID: PMC9874935 DOI: 10.3389/fonc.2022.1101830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction The inflammatory response plays a potential role in postoperative recurrence in patients with non-muscular invasive bladder cancer (NMIBC). We aimed to investigate whether platelet-to-lymphocyte ratio (PLR), mean platelet volume to lymphocyte ratio (MPVLR), and the systemic immune-inflammatory index (SII) have prognostic values in NMIBC treated with conventional intravesical chemotherapy or intravesical Chemohyperthermia (CHT) and the differences between them. Materials and methods A retrospective cohort study was conducted on 222 patients with NMIBC treated with Intravesical Chemotherapy or Intravesical CHT between January 2016 and December 2020. Within a week before surgery, PLR, MPVLR, and SII were determined based on routine blood settling. The optimal cutoff value of each index was determined using the receiver operating characteristic curve, and various groups were categorized accordingly. The factors influencing the prognosis of NMIBC patients receiving various treatments were investigated using the Kaplan- Meier survival curve and the Cox regression model. Results 69 cases (46.3%) in the gemcitabine (GEM) group had tumor recurrence and 19 (12.8%) of them progressed to muscle-invasive bladder cancer (MIBC) or got metastasis, while 19 cases (26.0%) in the CHT group recurred and 2 (2.7%) progressed. Elevated PLR, MPVLR, and SII were associated with higher recurrence rates in the GEM group. Meanwhile, PLR and MPVLR were the independent risk factors. While in the CHT group, high PLR and SII were related to postoperative recurrence and none of them were independent risk factors. Conclusion The preoperative clinical inflammatory indexes PLR, SII, and MPVLR have certain predictive value for the postoperative recurrence-free survival (RFS) in NMIBC patients treated with intravesical chemotherapy while PLR and SII can predict the prognosis of NMIBC patients treated with intravesical CHT, which indicates that intravesical CHT may stop tumor recurrence by influencing the effect of mean platelet volume on tumor growth through some unknown mechanisms.
Collapse
Affiliation(s)
- Chengbo Wang
- The Department of Urology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, China
| | - Wenjun Jin
- The Department of Urology, Wuwei Cancer Hospital of Gansu Province, Wuwei, Gansu, China
| | - Xiaodong Ma
- The Department of Urology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, China
| | - Zhilong Dong
- The Department of Urology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, China,*Correspondence: Zhilong Dong,
| |
Collapse
|
33
|
Zhong G, Guo C, Shang Y, Cui Z, Zhou M, Sun M, Fu Y, Zhang L, Feng H, Chen C. Development of a novel pyroptosis-related LncRNA signature with multiple significance in acute myeloid leukemia. Front Genet 2023; 13:1029717. [PMID: 36685973 PMCID: PMC9845279 DOI: 10.3389/fgene.2022.1029717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/14/2022] [Indexed: 01/05/2023] Open
Abstract
Background: Pyroptosis, a programmed cell death (PCD) with highly inflammatory form, has been recently found to be associated with the origin of hematopoietic malignancies. Long noncoding RNA (lncRNA) had emerged as an essential mediator to regulate gene expression and been involved in oncogenesis. However, the roles of pyroptosis-related lncRNA (PRlncRNA) in acute myeloid leukemia (AML) have not yet been completely clarified. Methods: We collected AML datasets from public databases to obtain PRlncRNA associated with survival and constructed a PRlncRNA signature using Lasso-Cox regression analysis. Subsequently, we employed RT-PCR to confirm its expression difference and internal training to further verify its reliability. Next, AML patients were classified into two subgroups by the median risk score. Finally, the differences between two groups in immune infiltration, enrichment analysis and drug sensitivity were further explored. Results: A PRlncRNA signature and an effective nomogram combined with clinicopathological variables to predict the prognosis of AML were constructed. The internal validations showed that the PRlncRNA risk score model was an accurate and productive indicator to predict the outcome of AML. Furthermore, this study indicated that higher inflammatory cell and immunosuppressive cells, and less sensitive to conventional chemotherapy drugs were highlighted in the high-risk group. Conclusion: Through comprehensive analysis of PRlncRNA model, our study may offer a valuable basis for future researches in targeting pyroptosis and tumor microenvironment (TME) and provide new measures for prevention and treatment in AML.
Collapse
Affiliation(s)
- Guangcai Zhong
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Chong Guo
- The Second Hospital of Shandong University, Jinan, China
| | - Yangli Shang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Zelong Cui
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Minran Zhou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Mingshan Sun
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Yue Fu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Lu Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Huimin Feng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Chunyan Chen
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China,*Correspondence: Chunyan Chen,
| |
Collapse
|
34
|
Cilt Kanserlerinin Ayırıcı Tanısında İnflamatuar Belirteçlerin Yeri. JOURNAL OF CONTEMPORARY MEDICINE 2022. [DOI: 10.16899/jcm.1131708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aim: The purpose of this study was to evaluate the role of WBC count, NLR, LMR, PLR, Systemic immune-inflammation index (SII) [(platelet count X neutrophil count) \ lymphocyte count] and platelet count (Plt)×NLR in the differential diagnosis of basal cell carcinoma, squamous cell carcinoma, and malignant melanoma and to determine the effect of tumor type, prediction of lymph node metastasis at initial diagnosis and location on these inflammatory markers.
Material and Method: Patients who underwent surgery for basal cell carcinoma, squamous cell carcinoma, or malignant melanoma were retrospectively screened. NLR, LMR, PLR, SII and Plt×NLR were calculated. Relationships between tumor type, prediction of lymph node metastasis at initial diagnosis, tumor localization and the inflammatory and hematological parameters of interest were investigated. Tumor location was classified as head and neck and others.
Results: A total of 257 patients were included in the study. No statistically significant differences in WBC, NLR, PLR, LMR, SII or Plt×NLR were detected according to tumor location. The patients with squamous cell carcinoma had higher NLR, PRL, SII and Plt×NLR values than those with basal cell carcinoma. The risk of lymph node metastasis at the time of initial diagnosis was 10.3 times higher in patients with PLR levels of 180.7 and higher. The risk of lymph node metastasis detected at initial diagnosis was 8.9 times higher in patients with Plt×NLR of 747 and higher. The risk of lymph node metastasis detected at initial diagnosis was 7.1 times higher in patients with SII of 414 and higher.
Conclusion: Inflammatory markers seem to be useful in the differential diagnosis of skin cancers and determined the risk of lymph node metastasis. However, it does not differ according to tumor localization.
Collapse
|
35
|
Bassan VL, Barretto GD, de Almeida FC, Palma PVB, Binelli LS, da Silva JPL, Fontanari C, Castro RC, de Figueiredo Pontes LL, Frantz FG, de Castro FA. Philadelphia-negative myeloproliferative neoplasms display alterations in monocyte subpopulations frequency and immunophenotype. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:223. [PMID: 36175590 PMCID: PMC9522456 DOI: 10.1007/s12032-022-01825-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/14/2022] [Indexed: 11/06/2022]
Abstract
Philadelphia-negative myeloproliferative neoplasms (MPN) are clonal hematological diseases associated with driver mutations in JAK2, CALR, and MPL genes. Moreover, several evidence suggests that chronic inflammation and alterations in stromal and immune cells may contribute to MPN’s pathophysiology. We evaluated the frequency and the immunophenotype of peripheral blood monocyte subpopulations in patients with polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (MF). Peripheral blood monocytes from PV (n = 16), ET (n = 16), and MF (n = 15) patients and healthy donors (n = 10) were isolated and submitted to immunophenotyping to determine the frequency of monocyte subpopulations and surface markers expression density. Plasma samples were used to measure the levels of soluble CD163, a biomarker of monocyte activity. PV, ET, and MF patients presented increased frequency of intermediate and non-classical monocytes and reduced frequency of classical monocytes compared to controls. Positivity for JAK2 mutation was significantly associated with the percentage of intermediate monocytes. PV, ET, and MF patients presented high-activated monocytes, evidenced by higher HLA-DR expression and increased soluble CD163 levels. The three MPN categories presented increased frequency of CD56+ aberrant monocytes, and PV and ET patients presented reduced frequency of CD80/86+ monocytes. Therefore, alterations in monocyte subpopulations frequency and surface markers expression pattern may contribute to oncoinflammation and may be associated with the pathophysiology of MPN.
Collapse
Affiliation(s)
- Vitor Leonardo Bassan
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil.
| | - Gabriel Dessotti Barretto
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Felipe Campos de Almeida
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Patrícia Vianna Bonini Palma
- Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501 - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14051-260, Brazil
| | - Larissa Sarri Binelli
- Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501 - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14051-260, Brazil.,Department of Medical Images, Hematology and Clinical Oncology, University Hospital of the Ribeirão Preto Medical School, University of São Paulo, Rua Tenente Catão Roxo, 3900 - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14015-010, Brazil
| | - João Paulo Lettieri da Silva
- Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501 - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14051-260, Brazil.,Department of Medical Images, Hematology and Clinical Oncology, University Hospital of the Ribeirão Preto Medical School, University of São Paulo, Rua Tenente Catão Roxo, 3900 - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14015-010, Brazil
| | - Caroline Fontanari
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Ricardo Cardoso Castro
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Lorena Lôbo de Figueiredo Pontes
- Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501 - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14051-260, Brazil.,Department of Medical Images, Hematology and Clinical Oncology, University Hospital of the Ribeirão Preto Medical School, University of São Paulo, Rua Tenente Catão Roxo, 3900 - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14015-010, Brazil
| | - Fabiani Gai Frantz
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Fabíola Attié de Castro
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil
| |
Collapse
|
36
|
Helmin-Basa A, Gackowska L, Balcerowska S, Ornawka M, Naruszewicz N, Wiese-Szadkowska M. The application of the natural killer cells, macrophages and dendritic cells in treating various types of cancer. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2019-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Innate immune cells such as natural killer (NK) cells, macrophages and dendritic cells (DCs) are involved in the surveillance and clearance of tumor. Intensive research has exposed the mechanisms of recognition and elimination of tumor cells by these immune cells as well as how cancers evade immune response. Hence, harnessing the immune cells has proven to be an effective therapy in treating a variety of cancers. Strategies aimed to harness and augment effector function of these cells for cancer therapy have been the subject of intense researches over the decades. Different immunotherapeutic possibilities are currently being investigated for anti-tumor activity. Pharmacological agents known to influence immune cell migration and function include therapeutic antibodies, modified antibody molecules, toll-like receptor agonists, nucleic acids, chemokine inhibitors, fusion proteins, immunomodulatory drugs, vaccines, adoptive cell transfer and oncolytic virus–based therapy. In this review, we will focus on the preclinical and clinical applications of NK cell, macrophage and DC immunotherapy in cancer treatment.
Collapse
Affiliation(s)
- Anna Helmin-Basa
- Department of Immunology , Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun , 85-094 Bydgoszcz , Poland
| | - Lidia Gackowska
- Department of Immunology , Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun , 85-094 Bydgoszcz , Poland
| | - Sara Balcerowska
- Department of Immunology , Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun , 85-094 Bydgoszcz , Poland
| | - Marcelina Ornawka
- Department of Immunology , Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun , 85-094 Bydgoszcz , Poland
| | - Natalia Naruszewicz
- Department of Immunology , Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun , 85-094 Bydgoszcz , Poland
| | - Małgorzata Wiese-Szadkowska
- Department of Immunology , Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun , 85-094 Bydgoszcz , Poland
| |
Collapse
|
37
|
Laoharawee K, Johnson MJ, Lahr WS, Sipe CJ, Kleinboehl E, Peterson JJ, Lonetree CL, Bell JB, Slipek NJ, Crane AT, Webber BR, Moriarity BS. A Pan-RNase Inhibitor Enabling CRISPR-mRNA Platforms for Engineering of Primary Human Monocytes. Int J Mol Sci 2022; 23:9749. [PMID: 36077152 PMCID: PMC9456164 DOI: 10.3390/ijms23179749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/16/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022] Open
Abstract
Monocytes and their downstream effectors are critical components of the innate immune system. Monocytes are equipped with chemokine receptors, allowing them to migrate to various tissues, where they can differentiate into macrophage and dendritic cell subsets and participate in tissue homeostasis, infection, autoimmune disease, and cancer. Enabling genome engineering in monocytes and their effector cells will facilitate a myriad of applications for basic and translational research. Here, we demonstrate that CRISPR-Cas9 RNPs can be used for efficient gene knockout in primary human monocytes. In addition, we demonstrate that intracellular RNases are likely responsible for poor and heterogenous mRNA expression as incorporation of pan-RNase inhibitor allows efficient genome engineering following mRNA-based delivery of Cas9 and base editor enzymes. Moreover, we demonstrate that CRISPR-Cas9 combined with an rAAV vector DNA donor template mediates site-specific insertion and expression of a transgene in primary human monocytes. Finally, we demonstrate that SIRPa knock-out monocyte-derived macrophages have enhanced activity against cancer cells, highlighting the potential for application in cellular immunotherapies.
Collapse
Affiliation(s)
- Kanut Laoharawee
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Matthew J. Johnson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Walker S. Lahr
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christopher J. Sipe
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Evan Kleinboehl
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joseph J. Peterson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Cara-lin Lonetree
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jason B. Bell
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nicholas J. Slipek
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Andrew T. Crane
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Beau R. Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Branden S. Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
38
|
Napolitano L, Barone B, Reccia P, De Luca L, Morra S, Turco C, Melchionna A, Morgera V, Cirillo L, Fusco GM, Mirto BF, Napodano G, Del Biondo D, Prezioso D, Imbimbo C, Crocetto F. Preoperative monocyte-to-lymphocyte ratio as a potential predictor of bladder cancer. J Basic Clin Physiol Pharmacol 2022; 33:751-757. [PMID: 35985034 DOI: 10.1515/jbcpp-2022-0179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/28/2022] [Indexed: 01/14/2023]
Abstract
OBJECTIVES The aim of this study was to investigate the role of preoperative Monocyte-to-Lymphocyte ratio (MLR) as a potential predictor of bladder cancer (BC). METHODS Clinical data of patients who underwent TURBT at our institution between 2017 and 2021 were collected and retrospectively analysed. MLR was obtained from preoperative blood analyses performed within 1 month from hospital admission. The association of MLR with different clinic-pathological features obtained from histological reports was further analysed. Statistical analysis was performed using the Kruskal Wallis test for non-parametric variables, assuming p<0.05 as statistically significant. RESULTS 510 patients were included in the study (81% males, 19% females), with a mean age of 71.66 ± 11.64 years. Mean MLR was higher in patients with any-type bladder cancer, reporting an MLR of 0.41 ± 0.11 compared to 0.38 ± 0.43 in patients without bladder cancer (p=0.043). In the subsequent comparison among low-grade and high-grade bladder cancer, MLR did not report statistically significant differences, with 0.29 ± 0.12 for low-grade BC and 0.51 ± 0.81 for high-grade BC (p=0.085). CONCLUSIONS Our findings reported elevated preoperative MLR should be considered a potential biomarker predicting malignancy for bladder tumours. Furthermore, research are necessary to assess its role in discerning low-grade from high-grade patients.
Collapse
Affiliation(s)
- Luigi Napolitano
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Biagio Barone
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Pasquale Reccia
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Luigi De Luca
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Simone Morra
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Carmine Turco
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Alberto Melchionna
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Vincenzo Morgera
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Luigi Cirillo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Giovanni Maria Fusco
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Benito Fabio Mirto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Giorgio Napodano
- Department of Urology, Ospedale del Mare, ASL Napoli 1 Centro, Naples, Italy
| | - Dario Del Biondo
- Department of Urology, Ospedale del Mare, ASL Napoli 1 Centro, Naples, Italy
| | - Domenico Prezioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Ciro Imbimbo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Felice Crocetto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
39
|
Ou YH, Liang J, Chng WH, Muthuramalingam RPK, Ng ZX, Lee CK, Neupane YR, Yau JNN, Zhang S, Lou CKL, Huang C, Wang JW, Pastorin G. Investigations on Cellular Uptake Mechanisms and Immunogenicity Profile of Novel Bio-Hybrid Nanovesicles. Pharmaceutics 2022; 14:1738. [PMID: 36015364 PMCID: PMC9413569 DOI: 10.3390/pharmaceutics14081738] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 12/19/2022] Open
Abstract
In drug delivery, the development of nanovesicles that combine both synthetic and cellular components provides added biocompatibility and targeting specificity in comparison to conventional synthetic carriers such as liposomes. Produced through the fusion of U937 monocytes' membranes and synthetic lipids, our nano-cell vesicle technology systems (nCVTs) showed promising results as targeted cancer treatment. However, no investigation has been conducted yet on the immunogenic profile and the uptake mechanisms of nCVTs. Hence, this study was aimed at exploring the potential cytotoxicity and immune cells' activation by nCVTs, as well as the routes through which cells internalize these biohybrid systems. The endocytic pathways were selectively inhibited to establish if the presence of cellular components in nCVTs affected the internalization route in comparison to both liposomes (made up of synthetic lipids only) and nano-cellular membranes (made up of biological material only). As a result, nCVTs showed an 8-to-40-fold higher cellular internalization than liposomes within the first hour, mainly through receptor-mediated processes (i.e., clathrin- and caveolae-mediated endocytosis), and low immunostimulatory potential (as indicated by the level of IL-1α, IL-6, and TNF-α cytokines) both in vitro and in vivo. These data confirmed that nCVTs preserved surface cues from their parent U937 cells and can be rationally engineered to incorporate ligands that enhance the selective uptake and delivery toward target cells and tissues.
Collapse
Affiliation(s)
- Yi-Hsuan Ou
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Jeremy Liang
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Wei Heng Chng
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore 119077, Singapore
| | | | - Zi Xiu Ng
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Choon Keong Lee
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Yub Raj Neupane
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA 52242, USA
| | - Jia Ning Nicolette Yau
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore 119077, Singapore
| | - Sitong Zhang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Nanomedicine Translational Research Programme, Centre for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
| | - Charles Kang Liang Lou
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Nanomedicine Translational Research Programme, Centre for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
| | - Chenyuan Huang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Cardiovascular Research Institute, National University Heart Centre, Singapore 117599, Singapore
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Nanomedicine Translational Research Programme, Centre for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
- Cardiovascular Research Institute, National University Heart Centre, Singapore 117599, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Giorgia Pastorin
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
40
|
Hadadi A, Smith KE, Wan L, Brown JR, Russler G, Yantorni L, Caulfield S, Lafollette J, Moore M, Kucuk O, Carthon B, Nazha B, Liu Y, Bilen MA. Baseline basophil and basophil-to-lymphocyte status is associated with clinical outcomes in metastatic hormone sensitive prostate cancer. Urol Oncol 2022; 40:271.e9-271.e18. [PMID: 35466038 PMCID: PMC9117505 DOI: 10.1016/j.urolonc.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/17/2022] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Biomarkers have the potential to provide clinical guidance, but there is limited data for biomarkers in metastatic hormone sensitive prostate cancer (mHSPC). METHODS We performed a retrospective multicenter review from Winship Cancer Institute at Emory University and Georgia Cancer Center for Excellence at Grady Memorial Hospital (2014-2020) in the United States of America (USA). We collected demographics, disease characteristics, and laboratory data, including complete blood counts (CBC) at the start of upfront therapy. We evaluated overall survival (OS) and progression-free survival (PFS) associated with baseline lab values. RESULTS 165 patients were included with a median follow-up time of 33.5 months (mo). 105 (63.6%) had Gleason scores of 8-10 and 108 (65.9%) were classified as high-volume disease. 92 patients received upfront docetaxel (55.8%) and 73 received upfront abiraterone (44.2%). Univariate analyses (UVA) and multivariable analyses (MVA) identified worse clinical outcomes (CO) associated with elevated basophils and basophil-to-lymphocyte ratio (BLR). Based on MVA, elevated basophils (defined as ≥0.1, optimal cut) were associated with a hazard ratio (HR) of 3.51 (95% CI 1.65-7.43, P 0.001) for OS and HR of 1.88 (95% CI 1.05-3.38, P 0.034) for PFS. Our MVA also found that BLR ≥0.0142 was associated with HR 2.11 (95% CI 1.09-4.10, P 0.028) for OS; however, PFS was not statistically significant. CONCLUSION We conclude that elevated baseline basophils and BLR are associated with worse clinical outcomes in mHSPC. Although results require further validation, BLR is a potential prognostic biomarker.
Collapse
Affiliation(s)
- Agreen Hadadi
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA
| | - Katherine Er Smith
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA
| | - Limeng Wan
- Departments of Biostatistics and Bioinformatics, Emory University, Atlanta, GA
| | - Jacqueline R Brown
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA; Department of Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Greta Russler
- Department of Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Lauren Yantorni
- Department of Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Sarah Caulfield
- Department of Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | | | - Melvin Moore
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA; Department of Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA; Grady Cancer Center for Excellence, Grady Memorial Hospital, Atlanta, GA
| | - Omer Kucuk
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA; Department of Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA; Grady Cancer Center for Excellence, Grady Memorial Hospital, Atlanta, GA
| | - Bradley Carthon
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA; Department of Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA; Grady Cancer Center for Excellence, Grady Memorial Hospital, Atlanta, GA
| | - Bassel Nazha
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA; Department of Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA; Grady Cancer Center for Excellence, Grady Memorial Hospital, Atlanta, GA
| | - Yuan Liu
- Departments of Biostatistics and Bioinformatics, Emory University, Atlanta, GA
| | - Mehmet A Bilen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA; Department of Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA; Grady Cancer Center for Excellence, Grady Memorial Hospital, Atlanta, GA.
| |
Collapse
|
41
|
Chen Y, Guan Z, Shen G. Naples prognostic score: a novel predictor of survival in patients with HER2-positive breast cancer. Future Oncol 2022; 18:2655-2665. [PMID: 35592939 DOI: 10.2217/fon-2022-0212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose: The predictive significance of the Naples prognostic score (NPS) in HER2-positive breast cancer is unclear. Hence we sought to evaluate the relationship between NPS and the clinical outcomes in HER2-positive breast cancer patients. Methods: This study retrospectively collected and analyzed data from 173 HER2-positive breast cancer patients between August 2004 and February 2014. The Cox regression model was applied in univariate and multivariate statistical analysis. Results: In multivariate analysis, increased NPS score correlated significantly with poor overall survival (p = 0.001) and disease-free survival (p < 0.001). Conclusion: Our findings may point to NPS being a novel and reliable prognostic score system with favorable predictive ability for HER2-positive breast cancer patients.
Collapse
Affiliation(s)
- Yuye Chen
- Department of Oncology, Zhuji People's Hospital of Zhejiang Province, Zhuji, Shaoxing City, 311800, China
| | - Zheming Guan
- Weifang People's Hospital, Weifang City, 261000, China
| | - Guo Shen
- Department of General Surgery, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou City, 311202, China
| |
Collapse
|
42
|
Liu Q, Sun W, Zhang H. Roles and new Insights of Macrophages in the Tumor Microenvironment of Thyroid Cancer. Front Pharmacol 2022; 13:875384. [PMID: 35479325 PMCID: PMC9035491 DOI: 10.3389/fphar.2022.875384] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/21/2022] [Indexed: 12/17/2022] Open
Abstract
Although most thyroid cancers have a good and predictable prognosis, the anaplastic, medullary, and refractory thyroid cancers still prone to recurrence and metastasis, resulting in poor prognosis. Although a number of newly developed targeted therapies have begun to be indicated for the above types of thyroid cancer in recent years, their ability to improve overall survival remain hindered by low efficacy. As the largest component of immune cells in tumor microenvironment, tumor-associated macrophages play a key role in the invasion and metastasis of thyroid cancer. There is much evidence that the immune system, tumor microenvironment and cancer stem cell interactions may revolutionize traditional therapeutic directions. Tumor-associated macrophages have been extensively studied in a variety of tumors, however, research on the relationship between thyroid cancer and macrophages is still insufficient. In this review, we summarize the functions of tumor-associated macrophages in different types of thyroid cancer, their cytokines or chemokines effect on thyroid cancer and the mechanisms that promote tumor proliferation and migration. In addition, we discuss the mechanisms by which tumor-associated macrophages maintain the stemness of thyroid cancer and potential strategies for targeting tumor-associated macrophages to treat thyroid cancer.
Collapse
Affiliation(s)
| | | | - Hao Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
43
|
Tan H, Wang L, Liu Z. Role of Suprabasin in the Dedifferentiation of Follicular Epithelial Cell-Derived Thyroid Cancer and Identification of Related Immune Markers. Front Genet 2022; 13:810681. [PMID: 35222534 PMCID: PMC8865917 DOI: 10.3389/fgene.2022.810681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/14/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Aberrant regulation of suprabasin (SBSN) is associated with the development of cancer and immune disorders. SBSN influences tumor cell migration, proliferation, angiogenesis, and immune resistance. In this study, we investigated the potential correlation between SBSN expression and immune infiltration in thyroid cancer. Methods: The expression of SBSN in 80 papillary thyroid carcinoma (PTC) specimens was determined using quantitative reverse-transcription polymerase chain reaction, western blotting, and immunohistochemical staining. The expression of SBSN in 9 cases of poorly differentiated thyroid carcinoma (PDTC) and 18 cases of anaplastic thyroid carcinoma (ATC) was evaluated by immunohistochemical staining. Comprehensive bioinformatics analysis of SBSN expression was performed using The Cancer Genome Atlas and Gene Expression Omnibus datasets, and the relationship of SBSN expression with M2 macrophages and T regulatory cells (Tregs) in ATC and PTC was verified by immunohistochemical staining. Results: Compared with those in adjacent normal tissues, the expression levels of SBSN mRNA and protein were significantly higher in PTC tissues. SBSN expression level was correlated with that of cervical lymph node metastasis in PTC patients. Immunohistochemical staining results showed statistically significant differences among high-positive expression rates of SBSN in PTC, PDTC, and ATC. Functional enrichment analysis showed that SBSN expression was associated with pathways related to cancer, cell signaling, and immune response. Furthermore, analysis of the tumor microenvironment (using CIBERSORT-ABS and xCell algorithms) showed that SBSN expression affected immune cell infiltration and the cancer immunity cycle, and immunohistochemistry confirmed a significant increase in M2 macrophage and Treg infiltration in tumor tissues with high-positive SBSN expression. Conclusion: These findings reveal that SBSN may be involved in thyroid carcinogenesis, tumor dedifferentiation progression, and immunosuppression as an important regulator of tumor immune cell infiltration.
Collapse
|
44
|
Hao Q, Wu Y, Wu Y, Wang P, Vadgama JV. Tumor-Derived Exosomes in Tumor-Induced Immune Suppression. Int J Mol Sci 2022; 23:1461. [PMID: 35163380 PMCID: PMC8836190 DOI: 10.3390/ijms23031461] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/07/2023] Open
Abstract
Exosomes are a class of small membrane-bound extracellular vesicles released by almost all cell types and present in all body fluids. Based on the studies of exosome content and their interactions with recipient cells, exosomes are now thought to mediate "targeted" information transfer. Tumor-derived exosomes (TEX) carry a cargo of molecules different from that of normal cell-derived exosomes. TEX functions to mediate distinct biological effects such as receptor discharge and intercellular cross-talk. The immune system defenses, which may initially restrict tumor progression, are progressively blunted by the broad array of TEX molecules that activate suppressive pathways in different immune cells. Herein, we provide a review of the latest research progress on TEX in the context of tumor-mediated immune suppression and discuss the potential as well as challenges of TEX as a target of immunotherapy.
Collapse
Affiliation(s)
- Qiongyu Hao
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (Y.W.); (Y.W.)
| | - Yong Wu
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (Y.W.); (Y.W.)
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Yanyuan Wu
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (Y.W.); (Y.W.)
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Piwen Wang
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (Y.W.); (Y.W.)
| | - Jaydutt V. Vadgama
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (Y.W.); (Y.W.)
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
45
|
Tirier SM, Mallm JP, Steiger S, Poos AM, Awwad MHS, Giesen N, Casiraghi N, Susak H, Bauer K, Baumann A, John L, Seckinger A, Hose D, Müller-Tidow C, Goldschmidt H, Stegle O, Hundemer M, Weinhold N, Raab MS, Rippe K. Subclone-specific microenvironmental impact and drug response in refractory multiple myeloma revealed by single-cell transcriptomics. Nat Commun 2021; 12:6960. [PMID: 34845188 PMCID: PMC8630108 DOI: 10.1038/s41467-021-26951-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023] Open
Abstract
Virtually all patients with multiple myeloma become unresponsive to treatment over time. Relapsed/refractory multiple myeloma (RRMM) is accompanied by the clonal evolution of myeloma cells with heterogeneous genomic aberrations and profound changes of the bone marrow microenvironment (BME). However, the molecular mechanisms that drive drug resistance remain elusive. Here, we analyze the heterogeneous tumor cell population and its complex interaction network with the BME of 20 RRMM patients by single cell RNA-sequencing before/after treatment. Subclones with chromosome 1q-gain express a specific transcriptomic signature and frequently expand during treatment. Furthermore, RRMM cells shape an immune suppressive BME by upregulation of inflammatory cytokines and close interaction with the myeloid compartment. It is characterized by the accumulation of PD1+ γδ T-cells and tumor-associated macrophages as well as the depletion of hematopoietic progenitors. Thus, our study resolves transcriptional features of subclones in RRMM and mechanisms of microenvironmental reprogramming with implications for clinical decision-making.
Collapse
Affiliation(s)
- Stephan M. Tirier
- grid.7497.d0000 0004 0492 0584Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Jan-Philipp Mallm
- grid.7497.d0000 0004 0492 0584Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Single Cell Open Lab, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany ,grid.461742.2Molecular Precision Oncology Program, NCT Heidelberg, Heidelberg, Germany
| | - Simon Steiger
- grid.7497.d0000 0004 0492 0584Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Alexandra M. Poos
- grid.5253.10000 0001 0328 4908University Hospital Heidelberg, Internal Medicine V, Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584CCU Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mohamed H. S. Awwad
- grid.5253.10000 0001 0328 4908University Hospital Heidelberg, Internal Medicine V, Heidelberg, Germany
| | - Nicola Giesen
- grid.5253.10000 0001 0328 4908University Hospital Heidelberg, Internal Medicine V, Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584CCU Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nicola Casiraghi
- grid.7497.d0000 0004 0492 0584Division of Computational Genomics and System Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Hana Susak
- grid.7497.d0000 0004 0492 0584Division of Computational Genomics and System Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Katharina Bauer
- grid.7497.d0000 0004 0492 0584Single Cell Open Lab, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany ,grid.461742.2Molecular Precision Oncology Program, NCT Heidelberg, Heidelberg, Germany
| | - Anja Baumann
- grid.7497.d0000 0004 0492 0584CCU Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lukas John
- grid.5253.10000 0001 0328 4908University Hospital Heidelberg, Internal Medicine V, Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584CCU Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anja Seckinger
- grid.5253.10000 0001 0328 4908University Hospital Heidelberg, Internal Medicine V, Heidelberg, Germany ,Department of Hematology and Immunology, Myeloma Center Brussels, Jette, Belgium
| | - Dirk Hose
- grid.5253.10000 0001 0328 4908University Hospital Heidelberg, Internal Medicine V, Heidelberg, Germany ,Department of Hematology and Immunology, Myeloma Center Brussels, Jette, Belgium
| | - Carsten Müller-Tidow
- grid.5253.10000 0001 0328 4908University Hospital Heidelberg, Internal Medicine V, Heidelberg, Germany
| | - Hartmut Goldschmidt
- grid.5253.10000 0001 0328 4908University Hospital Heidelberg, Internal Medicine V, Heidelberg, Germany ,grid.461742.2National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Oliver Stegle
- grid.7497.d0000 0004 0492 0584Division of Computational Genomics and System Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Michael Hundemer
- grid.5253.10000 0001 0328 4908University Hospital Heidelberg, Internal Medicine V, Heidelberg, Germany
| | - Niels Weinhold
- grid.5253.10000 0001 0328 4908University Hospital Heidelberg, Internal Medicine V, Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584CCU Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc S. Raab
- grid.5253.10000 0001 0328 4908University Hospital Heidelberg, Internal Medicine V, Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584CCU Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany.
| |
Collapse
|
46
|
Zhong J, Wu H, Bu X, Li W, Cai S, Du M, Gao Y, Ping B. Establishment of Prognosis Model in Acute Myeloid Leukemia Based on Hypoxia Microenvironment, and Exploration of Hypoxia-Related Mechanisms. Front Genet 2021; 12:727392. [PMID: 34777463 PMCID: PMC8578022 DOI: 10.3389/fgene.2021.727392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/22/2021] [Indexed: 01/21/2023] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous hematologic neoplasm with poor survival outcomes. However, the routine clinical features are not sufficient to accurately predict the prognosis of AML. The expression of hypoxia-related genes was associated with survival outcomes of a variety of hematologic and lymphoid neoplasms. We established an 18-gene signature-based hypoxia-related prognosis model (HPM) and a complex model that consisted of the HPM and clinical risk factors using machine learning methods. Both two models were able to effectively predict the survival of AML patients, which might contribute to improving risk classification. Differentially expressed genes analysis, Gene Ontology (GO) categories, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed to reveal the underlying functions and pathways implicated in AML development. To explore hypoxia-related changes in the bone marrow immune microenvironment, we used CIBERSORT to calculate and compare the proportion of 22 immune cells between the two groups with high and low hypoxia-risk scores. Enrichment analysis and immune cell composition analysis indicated that the biological processes and molecular functions of drug metabolism, angiogenesis, and immune cell infiltration of bone marrow play a role in the occurrence and development of AML, which might help us to evaluate several hypoxia-related metabolic and immune targets for AML therapy.
Collapse
Affiliation(s)
- Jinman Zhong
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hang Wu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyin Bu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiru Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shengchun Cai
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meixue Du
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ya Gao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Baohong Ping
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Huiqiao, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
47
|
Chien WC, Cheng PH, Cheng XJ, Chuang CC, Huang YT, T S A, Liu CH, Lu YJ, Wu KCW. MCP-1-Functionalized, Core-Shell Gold Nanorod@Iron-Based Metal-Organic Framework (MCP-1/GNR@MIL-100(Fe)) for Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52092-52105. [PMID: 34415720 DOI: 10.1021/acsami.1c09518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The low vessel density and oxygen concentration in hypoxia are the main causes of reduced efficiency of anticancer therapeutics and can stimulate the tumor's relapse. Research showed that macrophages could cross the blood-vessel barriers and reach the hypoxic regions of tumors. Using macrophages in a drug delivery system has been a promising method for tumor targeting in recent years. In this work, we successfully modified monocyte chemoattractant protein-1 (MCP-1) and iron-based metal-organic framework (MIL-100(Fe)) on the photothermal agent, gold nanorods (GNRs) (i.e., MCP-1/GNR@MIL-100(Fe)), to increase cellular uptake and biocompatibility. The results of TEM, UV-vis, and FTIR all confirmed that we'd synthesized MCP-1/GNR@MIL-100(Fe) successfully, and the MCP-1/GNR@MIL-100(Fe) also showed good biocompatibility. A transwell migration assay illustrated that our material attracted macrophages, and the material uptake amount was increased by 1.5 times after MCP-1 functionalization. It also indicated that the macrophages have a tumor-targeting ability. In the in vivo experiment, we subcutaneously implanted U251 MG cells in nude mice as a xenograft model to demonstrate the photothermal activity of MCP-1/GNR@MIL-100(Fe). With successive NIR treatment, the tumor growth could be controlled, and the tumor volume still remained below 100 mm3 after laser treatment. MCP-1/GNR@MIL-100(Fe) combined with the laser treatment showed an excellent antitumor efficacy from the histology of tumor tissues, survival rates, and bioluminescence imaging.
Collapse
Affiliation(s)
- Wei-Cheng Chien
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Po-Hsiu Cheng
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Division of Neurosurgery, Chang Gung Memorial Hospital, No. 5, Fuxing Street, Guishan District, Taoyuan City 333, Taiwan
- Department of International Graduate Program of Molecular Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Xu-Jun Cheng
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chi-Cheng Chuang
- Division of Neurosurgery, Chang Gung Memorial Hospital, No. 5, Fuxing Street, Guishan District, Taoyuan City 333, Taiwan
| | - Yu-Ting Huang
- Division of Neurosurgery, Chang Gung Memorial Hospital, No. 5, Fuxing Street, Guishan District, Taoyuan City 333, Taiwan
| | - Anilkumar T S
- Division of Neurosurgery, Chang Gung Memorial Hospital, No. 5, Fuxing Street, Guishan District, Taoyuan City 333, Taiwan
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu-Hsing Street, Taipei 110, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, No. 250, Wu-Hsing Street, Taipei 110, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, No. 291, Zhongzheng Road, Zhonghe District, New Taipei City 23561, Taiwan
| | - Yu-Jen Lu
- Division of Neurosurgery, Chang Gung Memorial Hospital, No. 5, Fuxing Street, Guishan District, Taoyuan City 333, Taiwan
- College of Medicine, Chang Gung University, No.259, Wenhua First Road, Guishan District, Taoyuan City 33302, Taiwan
- Center for Biomedical Science and Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Department of International Graduate Program of Molecular Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Division of Biomedical Engineering & Nanomedicine, National Health Research Institutes, Maoli County 350, Taiwan
| |
Collapse
|
48
|
Roy S, Kumaravel S, Banerjee P, White TK, O’Brien A, Seelig C, Chauhan R, Ekser B, Bayless KJ, Alpini G, Glaser SS, Chakraborty S. Tumor Lymphatic Interactions Induce CXCR2-CXCL5 Axis and Alter Cellular Metabolism and Lymphangiogenic Pathways to Promote Cholangiocarcinoma. Cells 2021; 10:3093. [PMID: 34831316 PMCID: PMC8623887 DOI: 10.3390/cells10113093] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cholangiocarcinoma (CCA), or cancer of bile duct epithelial cells, is a very aggressive malignancy characterized by early lymphangiogenesis in the tumor microenvironment (TME) and lymph node (LN) metastasis which correlate with adverse patient outcome. However, the specific roles of lymphatic endothelial cells (LECs) that promote LN metastasis remains unexplored. Here we aimed to identify the dynamic molecular crosstalk between LECs and CCA cells that activate tumor-promoting pathways and enhances lymphangiogenic mechanisms. Our studies show that inflamed LECs produced high levels of chemokine CXCL5 that signals through its receptor CXCR2 on CCA cells. The CXCR2-CXCL5 signaling axis in turn activates EMT (epithelial-mesenchymal transition) inducing MMP (matrix metalloproteinase) genes such as GLI, PTCHD, and MMP2 in CCA cells that promote CCA migration and invasion. Further, rate of mitochondrial respiration and glycolysis of CCA cells was significantly upregulated by inflamed LECs and CXCL5 activation, indicating metabolic reprogramming. CXCL5 also induced lactate production, glucose uptake, and mitoROS. CXCL5 also induced LEC tube formation and increased metabolic gene expression in LECs. In vivo studies using CCA orthotopic models confirmed several of these mechanisms. Our data points to a key finding that LECs upregulate critical tumor-promoting pathways in CCA via CXCR2-CXCL5 axis, which further augments CCA metastasis.
Collapse
Affiliation(s)
- Sukanya Roy
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (S.R.); (S.K.); (P.B.); (T.K.W.); (A.O.); (C.S.); (R.C.); (S.S.G.)
| | - Subhashree Kumaravel
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (S.R.); (S.K.); (P.B.); (T.K.W.); (A.O.); (C.S.); (R.C.); (S.S.G.)
| | - Priyanka Banerjee
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (S.R.); (S.K.); (P.B.); (T.K.W.); (A.O.); (C.S.); (R.C.); (S.S.G.)
| | - Tori K. White
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (S.R.); (S.K.); (P.B.); (T.K.W.); (A.O.); (C.S.); (R.C.); (S.S.G.)
| | - April O’Brien
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (S.R.); (S.K.); (P.B.); (T.K.W.); (A.O.); (C.S.); (R.C.); (S.S.G.)
| | - Catherine Seelig
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (S.R.); (S.K.); (P.B.); (T.K.W.); (A.O.); (C.S.); (R.C.); (S.S.G.)
| | - Rahul Chauhan
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (S.R.); (S.K.); (P.B.); (T.K.W.); (A.O.); (C.S.); (R.C.); (S.S.G.)
| | - Burcin Ekser
- Department of Surgery, Division of Transplant Surgery, Indiana University School of Medicine, Indianapolis, IN 46202-3082, USA;
| | - Kayla J. Bayless
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA;
| | - Gianfranco Alpini
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University, Indianapolis, IN 46202-3082, USA;
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202-3082, USA
| | - Shannon S. Glaser
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (S.R.); (S.K.); (P.B.); (T.K.W.); (A.O.); (C.S.); (R.C.); (S.S.G.)
| | - Sanjukta Chakraborty
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (S.R.); (S.K.); (P.B.); (T.K.W.); (A.O.); (C.S.); (R.C.); (S.S.G.)
| |
Collapse
|
49
|
McMillen P, Oudin MJ, Levin M, Payne SL. Beyond Neurons: Long Distance Communication in Development and Cancer. Front Cell Dev Biol 2021; 9:739024. [PMID: 34621752 PMCID: PMC8491768 DOI: 10.3389/fcell.2021.739024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Cellular communication is important in all aspects of tissue and organism functioning, from the level of single cells, two discreet populations, and distant tissues of the body. Long distance communication networks integrate individual cells into tissues to maintain a complex organism during development, but when communication between cells goes awry, disease states such as cancer emerge. Herein we discuss the growing body of evidence suggesting that communication methods known to be employed by neurons, also exist in other cell types. We identify three major areas of long-distance communication: bioelectric signaling, tunneling nanotubes (TNTs), and macrophage modulation of networks, and draw comparisons about how these systems operate in the context of development and cancer. Bioelectric signaling occurs between cells through exchange of ions and tissue-level electric fields, leading to changes in biochemical gradients and molecular signaling pathways to control normal development and tumor growth and invasion in cancer. TNTs transport key morphogens and other cargo long distances, mediating electrical coupling, tissue patterning, and malignancy of cancer cells. Lastly macrophages maintain long distance signaling networks through trafficking of vesicles during development, providing communication relays and priming favorable microenvironments for cancer metastasis. By drawing comparisons between non-neural long distance signaling in the context of development and cancer we aim to encourage crosstalk between the two fields to cultivate new hypotheses and potential therapeutic strategies.
Collapse
Affiliation(s)
- Patrick McMillen
- Department of Biology, Allen Discovery Center, Tufts University, Medford, MA, United States
| | - Madeleine J Oudin
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Michael Levin
- Department of Biology, Allen Discovery Center, Tufts University, Medford, MA, United States
| | - Samantha L Payne
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| |
Collapse
|
50
|
Babania O, Mohammadi S, Yaghoubi E, Sohrabi A, Sadat Seyedhosseini F, Abdolahi N, Yazdani Y. The expansion of CD14+ CD163+ subpopulation of monocytes and myeloid cells-associated cytokine imbalance; candidate diagnostic biomarkers for celiac disease (CD). J Clin Lab Anal 2021; 35:e23984. [PMID: 34449925 PMCID: PMC8529138 DOI: 10.1002/jcla.23984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/27/2021] [Accepted: 08/17/2021] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Celiac disease (CD) is a chronic autoimmune disorder of small intestine against dietary gluten, among genetically predisposed individuals. Monocytes are versatile innate immune cells involved in the regulation of inflammation, and strongly involved in the intestinal immunity. However, the role of monocytes and their subtypes in CD is not well demonstrated. METHODS Here, we assessed the polarization of CD14+ monocytes by evaluating the M1 (CD16) and M2 (CD163) markers by flowcytometry, their soluble forms (sCD16 and sCD163), and the serum levels of IL-10, IL-12, TGF-β, and TNF-α cytokines using ELISA method, among 30 CD patients and 30 sex- and age-matched healthy subjects (HS). We also analyzed the diagnostic values of all variables with significant differences. RESULTS CD14+CD163+ monocytes were more frequent in CD patients than HS, while CD14+CD16+ monocytes were higher in HS. IL-10and TNF-α increased, and TGF-β expression was decreased among CD patients. The sCD16 serum levels were elevated in patients, while sCD163 was higher but not significant among CD patients. CD163+/CD16+ and IL-10/IL-12 ratios were higher in CD patients, and TGFβ/TNFα ratio was higher in HS group. IL-10, CD14+CD163+, TNF-α, and IL-10/IL-12 ratios with the AUC over 0.7 were introduced as fair diagnostic markers. Our findings revealed that the M2 (CD14+CD163+) monocytes were more frequent among CD patients, and the cytokine balance was disturbed. CONCLUSION According to the significant functional diversities of monocyte subtypes between CD patients and HS group, these immunologic markers could be introduced as specific diagnostic biomarkers for CD.
Collapse
Affiliation(s)
- Omid Babania
- Department of ImmunologySchool of MedicineGolestan University of Medical SciencesGorganIran
- Amirkola Shafizadeh Pediatric HospitalBabol University of Medical SciencesBabolIran
- Razi Pathobiology and Genetics LaboratoryBabolIran
| | - Saeed Mohammadi
- Infectious Diseases Research CenterGolestan University of Medical SciencesGorganIran
- Stem Cell Research centerGolestan University of Medical SciencesGorganIran
| | | | - Ahmad Sohrabi
- Infectious Diseases Research CenterGolestan University of Medical SciencesGorganIran
| | | | - Nafiseh Abdolahi
- Golestan Rheumatology Research CenterGolestan University of Medical SciencesGorganIran
| | - Yaghoub Yazdani
- Department of ImmunologySchool of MedicineGolestan University of Medical SciencesGorganIran
- Stem Cell Research centerGolestan University of Medical SciencesGorganIran
| |
Collapse
|